Sample records for solar system math

  1. Seven-panel solar wing deployment and on-orbit maneuvering analyses

    NASA Astrophysics Data System (ADS)

    Hwang, Earl

    2005-05-01

    BSS developed a new generation high power (~20kW) solar array to meet the customer demands. The high power solar array had the north and south solar wings of which designs were identical. Each side of the solar wing consists of three main conventional solar panels and the four-side panel swing-out new design. The fully deployed solar array surface area is 966 ft2. It was a quite challenging task to define the solar array's optimum design parameters and deployment scheme for such a huge solar array's successful deployment and on-orbit maneuvering. Hence, a deployable seven-flex-panel solar wing nonlinear math model and a fully deployed solar array/bus-payload math model were developed with the Dynamic Analysis and Design System (DADS) program codes utilizing the inherited and empirical data. Performing extensive parametric analyses with the math model, the optimum design parameters and the orbit maneuvering /deployment schemes were determined to meet all the design requirements, and for the successful solar wing deployment on-orbit.

  2. Making the Math/Science Connection.

    ERIC Educational Resources Information Center

    Sherman, Laurel Galbraith

    1989-01-01

    Suggestions are made for activities that combine the teaching of math and science. Math concepts include: graphing, estimating, measurement, statistics, geometry, and logic. Science topics include: plant reproduction, solar system, forces, longitude and latitude, Earth's magnetic field, nutrition, and heat. (IAH)

  3. Close Binary Star Speckle Interferometry on the McMath-Pierce 0.8-Meter Solar Telescope

    NASA Astrophysics Data System (ADS)

    Wiley, Edward; Harshaw, Richard; Jones, Gregory; Branston, Detrick; Boyce, Patrick; Rowe, David; Ridgely, John; Estrada, Reed; Genet, Russell

    2015-09-01

    Observations were made in April 2014 to assess the utility of the 0.8-meter solar telescope at the McMath-Pierce Solar Observatory at Kitt Peak National Observatory for performing speckle interferometry observations of close binary stars. Several configurations using science cameras, acquisition cameras, eyepieces, and flip mirrors were evaluated. Speckle images were obtained and recommendations for further improvement of the acquisition system are presented.

  4. Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry

    NASA Astrophysics Data System (ADS)

    Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell

    2015-09-01

    We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.

  5. Exploring the Solar System? Let the Math Teachers Help!

    ERIC Educational Resources Information Center

    Charles, Karen; Canales, J. D.; Smith, Angela; Zimmerman, Natalie

    2012-01-01

    Scale measurement and ratio and proportion are topics that fall clearly in the middle-grades mathematics curriculum in Texas. So does the solar system. In their experience, the authors have found that students have trouble manipulating, much less comprehending, very large numbers and very small numbers. These concepts can be brought into students'…

  6. Math Space Mission. [A Product of] the Regional Math Network: A Teacher Invigoration and Curriculum Development Project.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Graduate School of Education.

    This unit is intended to teach estimation skills in such a way as to be relevant and useful to students as they apply them in various problem-solving activities. The teaching activities feature the earth, exploration into space, and the other worlds in the solar system. The teacher's guide contains four modules. Module I suggests the use of…

  7. STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Law, E. S.; Day, B. H.

    2018-01-01

    This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools.

  8. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  9. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    NASA Technical Reports Server (NTRS)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  10. Programs for Students and Teachers | NREL

    Science.gov Websites

    competition that tests the brainpower of middle and high school teams on science and math topics. Model Car 8th grade students. Student teams apply math, science, and creativity to construct solar and battery

  11. Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy; Wawro, Martha

    2013-03-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.

  12. Think Scientifically: The Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy; Wawro; Martha

    2012-03-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.

  13. The Mixed Up Solar System: professional development for secondary science and math educators

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Eisenhamer, B.; Summers, F.; McCallister, D.; Cordes, K.

    2013-12-01

    The Hubble Education Team has developed the standards-based Mixed Up Solar System activity to provide middle and high school educators with the experience and tools for using real astronomical data in their classrooms. The activity builds upon a table of characteristics of 16 selected objects (without identifying names) that are representative of the diversity of the solar system. Through a series of plotting exercises, participants explore individual characteristics and the trends that appear when comparing characteristics. Through the activity, participants discover similarities among certain solar system objects and begin to classify them accordingly. They discover that Pluto has much more in common with KBOs than rocky or giant planets, and, in doing so, go beyond a mnemonic (MVEMJSUNP) to understand the true structure of the solar system. During professional development workshops, the Hubble education team has worked through this exercise with more than 1000 educators. Evaluation results indicate that by experiencing this activity for themselves, educators gain a better appreciation for solar system science, an understanding of how to incorporate and scaffold real data into their classrooms, and begin to think of adaptations for their students.

  14. Solar System Educators Program

    NASA Astrophysics Data System (ADS)

    Knudsen, R.

    2004-11-01

    The Solar System Educators Program is a nationwide network of highly motivated teachers who lead workshops that show other teachers in their local communities how to successfully incorporate NASA materials and research into their classes. Currently there are 57 Solar System Educators in 37 states whose workshops are designed to assist their fellow teachers in understanding and including standards-based NASA materials into their classroom activities. Solar System Educators attend a training institute during their first year in the program and have the option of attending subsequent annual institutes. The volunteers in this program receive additional web-based mission-specific telecon trainings in conjunction with the Solar System Ambassadors. Resource and handout materials in the form of DVDs, posters, pamphlets, fact sheets, postcards and bookmarks are also provided. Scientists can get involved with this program by partnering with the Solar System Educators in their regions, presenting at their workshops and mentoring these outstanding volunteers. This formal education program helps optimize project funding set aside for education through the efforts of these volunteer master teachers. At the same time, teachers become familiar with NASA's educational materials with which to inspire students into pursuing careers in science, technology, engineering and math.

  15. Hands-on Activities for Exploring the Solar System in K-14 Formal and Informal Education Settings

    NASA Astrophysics Data System (ADS)

    Allen, J. S.; Tobola, K. W.

    2004-12-01

    Introduction: Activities developed by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. Educators may choose activities that fit a particular concept or theme within their curriculum from activities that highlight missions and research pertaining to exploring the solar system. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. The web sites for the activities contain current information so students experience recent mission information such as data from Mars rovers or the status of Stardust sample return. The Johnson Space Center Astromaterials Research and Exploration Science education team has compiled a variety of NASA solar system activities to produce an annotated thematic syllabus useful to classroom educators and informal educators as they teach space science. An important aspect of the syllabus is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting, educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. In both the informal and the primary education levels the activities are appropriately designed to excite interest, arouse curiosity and easily take the participants from pre-awareness to the awareness stage. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered may easily be adapted for the upper levels of high school and early college, as they require students to use and analyze data. Syllabus Format: The Exploring the Solar System Syllabus of Activities starts with a variety of solar system scale activities that fit different settings and equipment. The early solar system formation activities are focused on asteroids, meteorites and planet formation. The theme of how and why we explore our solar system encompasses activities that engage the language and creative arts. Further activities highlight the Sun and planetary geology. A key aspect of the usefulness of the syllabus is that it provides easy access to solar system content, activities, related links and the thematic context for the classroom teacher or group leader. Conclusion: The Exploring the Solar System Syllabus of Activities is a concentrated resource of activities and links that allows educators to comfortably and inexpensively share the excitement and science of solar system exploration with students and members of the public. Additional Information: Some of the activities included in the Exploring the Solar System Syllabus of Activities are in the following NASA developed guides. http://ares.jsc.nasa.gov/Education/index.html

  16. Training Informal Educators Provides Leverage for Space Science Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Allen, J. S.; Tobola, K. W.; Betrue, R.

    2004-01-01

    How do we reach the public with the exciting story of Solar System Exploration? How do we encourage girls to think about careers in science, math, engineering and technology? Why should NASA scientists make an effort to reach the public and informal education settings to tell the Solar System Exploration story? These are questions that the Solar System Exploration Forum, a part of the NASA Office of Space Science Education (SSE) and Public Outreach network, has tackled over the past few years. The SSE Forum is a group of education teams and scientists who work to share the excitement of solar system exploration with colleagues, formal educators, and informal educators like museums and youth groups. One major area of the SSE Forum outreach supports the training of Girl Scouts of the USA (GS) leaders and trainers in a suite of activities that reflect NASA missions and science research. Youth groups like Girl Scouts structure their activities as informal education.

  17. Small Bodies, Big Discoveries: NASA's Small Bodies Education Program

    NASA Astrophysics Data System (ADS)

    Mayo, L.; Erickson, K. J.

    2014-12-01

    2014 is turning out to be a watershed year for celestial events involving the solar system's unsung heroes, small bodies. This includes the close flyby of comet C/2013 A1 / Siding Spring with Mars in October and the historic Rosetta mission with its Philae lander to comet 67P/Churyumov-Gerasimenko. Beyond 2014, the much anticipated 2015 Pluto flyby by New Horizons and the February Dawn Mission arrival at Ceres will take center stage. To deliver the excitement and wonder of our solar system's small bodies to worldwide audiences, NASA's JPL and GSFC education teams in partnership with NASA EDGE will reach out to the public through multiple venues including broadcast media, social media, science and math focused educational activities, observing challenges, interactive visualization tools like "Eyes on the Solar System" and more. This talk will highlight NASA's focused education effort to engage the public in small bodies mission science and the role these objects play in our understanding of the formation and evolution of the solar system.

  18. Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy M.

    2013-07-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solar science concepts, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions. These books are being distributed through teacher workshops and conferences, and are available free at http://sdo.gsfc.nasa.gov/epo/educators/thinkscientifically.php.

  19. Science in a Box: An Educator Guide with NASA Glovebox Activities in Science, Math, and Technology.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Education Dept.

    The Space Shuttle and International Space Station provide a unique microgravity environment for research that is a critical part of the National Aeronautics and Space Administration's (NASA) mission to improve the quality of life on Earth and enable the health and safety of space explorers for long duration missions beyond our solar system. This…

  20. A New Era in Solar Thermal-IR Astronomy: the NSO Array Camera (NAC) on the McMath-Pierce Telescope

    NASA Astrophysics Data System (ADS)

    Ayres, T.; Penn, M.; Plymate, C.; Keller, C.

    2008-09-01

    The U.S. National Solar Observatory Array Camera (NAC) is a cryogenically cooled 1Kx1K InSb ``Aladdin" array that recently became operational at the McMath-Pierce facility on Kitt Peak, a high dry site in the southwest U.S. (Arizona). The new camera is similar to those already incorporated into instruments on nighttime telescopes, and has unprecedented sensitivity, low noise, and excellent cosmetics compared with the Amber Engineering (AE) device it replaces. (The latter was scavenged from a commercial surveillance camera in the 1990's: only 256X256 format, high noise, and annoying flatfield structure). The NAC focal plane is maintained at 30 K by a mechanical closed-cycle helium cooler, dispensing with the cumbersome pumped--solid-N2 40 K system used previously with the AE camera. The NAC linearity has been verified for exposures as short as 1 ms, although latency in the data recording holds the maximum frame rate to about 8 Hz (in "streaming mode"). The camera is run in tandem with the Infrared Adaptive Optics (IRAO) system. Utilizing a 37-actuator deformable mirror, IRAO can--under moderate seeing conditions--correct the telescope image to the diffraction limit longward of 2.3 mu (if a suitable high contrast target is available: the IR granulation has proven too bland to reliably track). IRAO also provides fine control over the solar image for spatial scanning in long-slit mode with the 14 m vertical "Main" spectrograph (MS). A 1'X1' area scan, with 0.5" steps orthogonal to the slit direction, requires less than half a minute, much shorter than p-mode and granulation evolution time scales. A recent engineering test run, in April 2008, utilized NAC/IRAO/MS to capture the fundamental (4.6 mu) and first-overtone (2.3 mu) rovibrational bands of CO, including maps of quiet regions, drift scans along the equatorial limbs (to measure the off-limb molecular emissions), and imaging of a fortuitous small sunspot pair, a final gasp, perhaps, of Cycle 23. Future work with the NAC will emphasize pathfinding toward the next generation of IR imaging spectrometers for the Advanced Technology Solar Telescope, whose 4 m aperture finally will bring sorely needed high spatial resolution to daytime infrared astronomy. In the meantime, the NAC is available to qualified solar physicists from around the world to conduct forefront research in the 1-5 mu region, on the venerable--but infrared friendly--McMath-Pierce telescope.

  1. Obituary: A. Keith Pierce, 1918 - 2005

    NASA Astrophysics Data System (ADS)

    Livingston, William Charles

    2006-12-01

    A. Keith Pierce was a solar astronomer who will be remembered for bringing the physics lab to the telescope and for his design of the world's largest solar telescope, the 1.5-meter McMath Telescope on Kitt Peak in Arizona. Born in Lincoln, Nebraska, he died of cancer in Tucson on 11 March 2005. He was eighty-six. His father, Tracy Pierce, had gone to graduate school in Berkeley, California, with a major in mathematics and a minor in astronomy. Fellow students of his class included Seth Nicholson and Donald Shane, people who were later to influence young Keith's life. Tracy Pierce received an appointment as an instructor, later Professor, of mathematics at the University of Nebraska in Lincoln. In his spare time dad Tracy became something of a telescope nut, following "the bible" —Albert Ingall's A.T.M (Amateur Telescope Making). His enthusiasm rubbed off on his son. Seth Nicholson, who became a famous Mt. Wilson Observatory astronomer, and Donald Shane from Berkeley, both stayed at the Pierce home while on their Sigma Xi lecture tours. After two years at Lincoln, followed by two more at Berkeley, Keith had earned his bachelor's degree in astronomy. During World War II, Dr. Shane became personnel director at the E.O. Lawrence Radiation Lab and arranged for Keith to work there at the cyclotron. A crash program to produce U235 from U238 was under way. At a crucial point in 1942 the cyclotron turned out the sought-after material. Much celebration ensued among the Rad Lab leaders. During this gala, Keith was on the night-shift and pretty much on his own. It was then that he turned a valve to the right, when left was called for, and the entire system went down. Shortly thereafter he was sent to Oak Ridge for the duration of the war. He cannot have been thought of badly, however, because he was invited to the Trinity test in New Mexico. (He didn't go because of the pending birth of his first son, John.) The year 1945 found Keith back in Berkeley working on his Ph.D. under Shane. After finishing this degree, Keith was brought by Leo Goldberg to the University of Michigan, Ann Arbor, and then to Lake Angelus, where his association with Robert McMath began. His prowess with instrumentation led to a mapping of the infrared solar spectrum with unprecedented accuracy. McMath, a Detroit engineer, had this dream of building a large solar telescope at a suitable elevated and dry location. Through friends in Washington (viz. the Director of the Bureau of the Budget), he found funds to construct this telescope under the guidance of Keith Pierce. Kitt Peak National Observatory was an ancillary result. The above is a distillation of an interview with Keith regarding his career on the occasion in 1992 of the re-dedication of the McMath-Pierce Solar Facility. I would add that Keith carried out seminal work on the solar spectrum. These include "The Chromospheric Spectrum Outside Eclipse, ?? 3040-9266," with Jim Breckenridge, "The Kitt Peak Table of Photographic Solar Spectrum Wavelengths," and with Charles Slaughter, "Solar Limb Darkening, I and II." For sixteen years, Keith directed the Solar Program of KPNO with a gentle hand. At home with his first wife, Mildred, and later with his second, Trudy, he extended warm hospitality to visitors from around the world. He leaves three children: John (deceased), Barbara Isabel Orville, and Willard Ross.

  2. Estimation of heat loss from a cylindrical cavity receiver based on simultaneous energy and exergy analyses

    NASA Astrophysics Data System (ADS)

    Madadi, Vahid; Tavakoli, Touraj; Rahimi, Amir

    2015-03-01

    This study undertakes the experimental and theoretical investigation of heat losses from a cylindrical cavity receiver employed in a solar parabolic dish collector. Simultaneous energy and exergy equations are used for a thermal performance analysis of the system. The effects of wind speed and its direction on convection loss has also been investigated. The effects of operational parameters, such as heat transfer fluid mass flow rate and wind speed, and structural parameters, such as receiver geometry and inclination, are investigated. The portion of radiative heat loss is less than 10%. An empirical and simplified correlation for estimating the dimensionless convective heat transfer coefficient in terms of the Re mathrm {Re} number and the average receiver wall temperature is proposed. This correlation is applicable for a wind speed range of 0.10.1 to 10 m/s. Moreover, the proposed correlation for Nu mathrm {Nu} number is validated using experimental data obtained through the experiments carried out with a conical receiver with two aperture diameters. The coefficient of determination R2 and the normalized root mean square error (NRMSE) parameters were calculated, and the results show that there is a good agreement between predicted results and experimental data. R2 is greater than 0.950.95 and the NRMSE parameters is less than 0.060.06 in this analysis.

  3. Mechanisms test bed math model modification and simulation support

    NASA Technical Reports Server (NTRS)

    Gilchrist, Andrea C.; Tobbe, Patrick A.

    1995-01-01

    This report summarizes the work performed under contract NAS8-38771 in support of the Marshall Space Flight Center Six Degree of Freedom Motion Facility and Flight Robotics Laboratory. The contract activities included the development of the two flexible body and Remote Manipulator System simulations, Dynamic Overhead Target Simulator control system and operating software, Global Positioning System simulation, and Manipulator Coupled Spacecraft Controls Testbed. Technical support was also provided for the Lightning Imaging Sensor and Solar X-Ray Imaging programs. The cover sheets and introductory sections for the documentation written under this contract are provided as an appendix.

  4. Project TIMS (Teaching Integrated Math/Science)

    NASA Technical Reports Server (NTRS)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  5. The James Webb Space Telescope's Near-Infrared Camera (NIRCam): Making Models, Building Understanding

    NASA Astrophysics Data System (ADS)

    McCarthy, D. W., Jr.; Lebofsky, L. A.; Higgins, M. L.; Lebofsky, N. R.

    2011-09-01

    Since 2003, the Near Infrared Camear (NIRCam) science team for the James Webb Space Telescope (JWST) has conducted "Train the Trainer" workshops for adult leaders of the Girl Scout of the USA (GSUSA), engaging them in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. Training includes topics in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extra-solar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. Participants become part of our world-wide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking.

  6. Obituary: Helen Dodson Prince, 1905-2002

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi Paul

    2009-01-01

    Helen Dodson Prince, a pioneer in the observation of solar flares, a pioneer in women's rise in the profession of astronomy, and a respected and revered educator of future astronomers, died on 4 February 2002 in Arlington, Virginia. Helen Dodson was born in Baltimore, Maryland, on 31 December 1905. Her parents were Helen Walter and Henry Clay Dodson. Helen went to Goucher College in nearby Towson with a full scholarship in mathematics. She turned to astronomy under the influence of a legendary teacher, Professor Florence P. Lewis, and she graduated in 1927. Funded by grants and private charity, she earned the Ph.D. in astronomy at the University of Michigan under the direction of Heber Doust Curtis in 1933. Dodson taught at Wellesley College from 1933 until 1943, when she went on leave to spend the last three years of World War II at the MIT Radiation Laboratory. She returned to Goucher after the war as professor of astronomy and mathematics, and in 1947 she came back to Michigan both as professor of astronomy and staff member of the McMath-Hulbert Observatory, of which she became associate director. In 1976 she retired from Michigan and spent her later years in Alexandria, Virginia. In 1932 Dodson held the Dean Van Meter fellowship from Goucher; in 1954 she received the Annie Jump Cannon Prize from the AAS; and in 1974 The University of Michigan honored her with its Faculty Distinguished Achievement Award. She published over 130 articles, mostly on her research specialty, solar flares. Dodson's interest in the Sun began at Michigan, although her dissertation was, like so many Michigan dissertations of the era, on stellar spectroscopy, "A Study of the Spectrum of 25 Orionis." She came to Michigan during the establishment and growth of the solar observatory at Lake Angelus, the creation of three gifted and industrious amateurs. Heber Curtis fostered the growth of the McMath-Hulbert enterprise and brought it into the University. Dodson's solar activity grew as a result of a number of summers spent, during her Wellesley years, at the solar observatory at Meudon, near Paris. When she returned to Michigan, Dodson became involved in the study of solar flares, based upon the long series of daily observations made with the tower telescopes at Lake Angelus and the improved spectroscopic equipment developed by Robert McMath, Orren Mohler, Leo Goldberg, Keith Pierce, and others. Her colleague during most of these years was Emma Ruth Hedeman, who co-authored many articles with her. Among her great accomplishments was the Comprehensive Flare Index, a widely used measure of flare activity. A "real live wire" and "a marvelous woman," in the words of students and colleagues, Dodson was also a kind and effective teacher, not at all vain about her accomplishments: She held that solar behavior has a way of making people humble. Dodoson was married to Edmund L. Prince and lived across Lake Angelus from the McMath-Hulbert Observatory; often she sailed to work, a joy denied to almost all other astronomers. During her years at McMath-Hulbert, The University of Michigan was the sole major American research university to have two women holding professorial positions in astronomy: Helen Dodson Prince and Hazel Marie Losh. One of the founding members of the Solar Physics Division, Professor Prince was a major factor in the rise and success of the McMath-Hulbert Observatory, even when, after the 1950s, urban growth and upper Midwestern weather conditions conspired to cripple the advantages the observatory's technologies had once conferred. Her colleagues and students recall her with great respect and affection.

  7. Preserving Food by Drying. A Math/Science Teaching Manual. Appropriate Technologies for Development. Manual No. M-10.

    ERIC Educational Resources Information Center

    Fahy, Cynthia; And Others

    This manual presents a design for teaching science principles and mathematics concepts through a sequence of activities concentrating on weather, solar food dryers, and nutrition. Part I focuses on the effect of solar energy on air and water, examining the concepts of evaporation, condensation, radiation, conduction, and convection. These concepts…

  8. Cookin' with Sun: Design and Build Solar Cookers

    ERIC Educational Resources Information Center

    Brand, Lance; Warren, Ande; Fitzgerald, Mike

    2006-01-01

    Having students design and construct solar cookers is a great way to teach them about designing to meet human needs and about many basic global issues related to health and the environment. Because the activity includes solid content from the fields of math, science and technology, it is an excellent vehicle for technology educators who want to…

  9. Think Scientifically: Hiding Science in a Storybook

    NASA Astrophysics Data System (ADS)

    Van Norden, W. M.; Wawro, M.

    2013-12-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solid solar science, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions and assessment questions. These books are being distributed through teacher workshops and conferences.

  10. Evaluation of a Magneto-optical Filter and a Fabry-perot Interferometer for the Measurement of Solar Velocity Fields from Space

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Blamont, J.; Tomczyk, S.; Ulrich, R. K.; Howard, R. F.

    1984-01-01

    A program was developed to evaluate the performance of three different devices as possible space-borne solar velocity field imagers. Two of these three devices, a magneto-optical filter and a molecular adherence Fabry-Perot interferometer were installed in a newly-constructed observing system located at the 60-foot tower telescope at the Mt. Wilson Observatory. Time series of solar filtergrams and Dopplergrams lasting up to 10 hours per day were obtained with the filter while shorter runs were obtained with the Fabry-Perot. Two-dimensional k (sub h)-omega power spectra which show clearly the well-known p-mode ridges were computed from the time series obtained with the magneto-optical filter. These power spectra were compared with similar power spectra obtained recently with the 13.7-m McMath spectrograph at Kitt Peak.

  11. Establishing Astronomy in the Curriculum at a Teacher Preparation College: Some Successes and Some Challenges

    NASA Astrophysics Data System (ADS)

    French, L. M.; Borkovitz, D.

    1999-12-01

    At Wheelock College, a liberal arts college in Boston which prepares students for careers in elementary and early childhood teaching and social work, we are developing science and mathematics courses designed to prepare our students for their work with children while teaching them adult-level math and science. Our students arrive with varying skill levels and, often, a great deal of math and science anxiety. We must address the anxiety in order for the students to make progress as learners and, eventually, teachers of math and science. Two courses have been notable successes. A one-semester course entitled The Solar System has become a staple in the curriculum. Major topics covered include finding our way around the sky, the nature of light and color, the size and scale of the solar system, and the causes of the Earth’s seasons and the phases of the moon. Students report that it changes their minds about how science can be taught by modeling a style of teaching which is more interactive than the way they were taught. In the graduate school, astronomy is the focus for a course entitled Teaching and Learning. Co-taught by an education faculty member and an astronomer, the course immerses students in learning a new content area and asks them to consider their own learning process. Observations play an important role here, with students keeping journals of their own sky observations. We also describe two challenges. One is the establishment of more advanced courses; although an astrophysics class has been offered twice to overwhelmingly positive student reviews, it is not easy to “sell”. The other challenge is the establishment of an introductory level course in stars and galaxies for non-science majors. This work has been supported in part by a grant from the DUE of the National Science Foundation.

  12. The Sunnel: Engaging Visitors in Solar Research via a Tunnel Through the Sun

    NASA Astrophysics Data System (ADS)

    DeMuth, Nora H.; Walker, C. E.

    2006-12-01

    The publicly accessible hallway space inside the McMath-Pierce Solar Telescope building on Kitt Peak has great untapped potential to house a display that would be relevant and understandable to KPNO visitors without the need for mediation or further explanation. An effective display would unite background content on solar physics and astronomy, and information on current solar research techniques and results in an accessible way that would excite and engage visitors. Considering these requirements, we created a concept currently dubbed the Sunnel (for “Sun-tunnel”). The Sunnel consists of two 95by 13-foot murals of the layers of the Sun stretching down the visitor hallway in the McMath-Pierce Solar Telescope. Temperatures of the layers are represented by the colors of the peak in the corresponding black-body curves, and solar features such as sunspots and pressure waves are represented by abstract designs flowing along the walls. A photon path will be laid on the floor using tiles, and several posters highlighting current solar research and background science content relevant to solar research will be displayed on one wall. An audio tour featuring interviews with solar researchers guides visitors along the Sunnel, engaging them and supporting deeper appreciation of the solar research. Installation of the murals is scheduled for early 2007, just in time to celebrate the International Heliophysical Year. DeMuth's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  13. Searching for the Golden Model of Education: Cross-National Analysis of Math Achievement

    PubMed Central

    Bodovski, Katerina; Byun, Soo-yong; Chykina, Volha; Chung, Hee Jin

    2017-01-01

    We utilized four waves of TIMSS data in addition to the information we have collected on countries’ educational systems to examine whether different degrees of standardization, differentiation, proportion of students in private schools and governmental spending on education influence students’ math achievement, its variation and socioeconomic status (SES) gaps in math achievement. Findings: A higher level of standardization of educational systems was associated with higher average math achievement. Greater expenditure on education (as % of total government expenditure) was associated with a lower level of dispersion of math achievement and smaller SES gaps in math achievement. Wealthier countries exhibited higher average math achievement and a narrower variation. Higher income inequality (measured by Gini index) was associated with a lower average math achievement and larger SES gaps. Further, we found that higher level of standardization alleviates the negative effects of differentiation in the systems with more rigid tracking. PMID:29151667

  14. 78 FR 41924 - Privacy Act of 1974; System of Records-Impact Evaluation of Math Professional Development

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... DEPARTMENT OF EDUCATION Privacy Act of 1974; System of Records--Impact Evaluation of Math... ``Impact Evaluation of Math Professional Development'' (18-13-35). The National Center for Education...-focused math professional development (PD) program on teacher knowledge, teacher practices, and student...

  15. Calculation Software

    NASA Technical Reports Server (NTRS)

    1994-01-01

    MathSoft Plus 5.0 is a calculation software package for electrical engineers and computer scientists who need advanced math functionality. It incorporates SmartMath, an expert system that determines a strategy for solving difficult mathematical problems. SmartMath was the result of the integration into Mathcad of CLIPS, a NASA-developed shell for creating expert systems. By using CLIPS, MathSoft, Inc. was able to save the time and money involved in writing the original program.

  16. Bright X-ray arcs and the emergence of solar magnetic flux

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Broussard, R. M.

    1977-01-01

    The Skylab S-056 and S-082A experiments and ground-based magnetograms have been used to study the role of bright X-ray arcs and the emergence of solar magnetic flux in the McMath region 12476. The S-056 X-ray images show a system of one or sometimes two bright arcs within a diffuse emitting region. The arcs seem to directly connect regions of opposite magnetic polarity in the photosphere. Magnetograms suggest the possible emergence of a magnetic flux. The width of the main arc is approximately 6 arcsec when most clearly defined, and the length is approximately 30-50 arcsec. Although the arc system is observed to vary in brightness over a period exceeding 24 hours, it remains fixed in orientation. The temperature of the main arc is approximately 3 x 10 to the 6th K. It is suggested that merging magnetic fields may provide the primary energy source, perhaps accompanied by resistive heating from a force-free current.

  17. Feedback Design Patterns for Math Online Learning Systems

    ERIC Educational Resources Information Center

    Inventado, Paul Salvador; Scupelli, Peter; Heffernan, Cristina; Heffernan, Neil

    2017-01-01

    Increasingly, computer-based learning systems are used by educators to facilitate learning. Evaluations of several math learning systems show that they result in significant student learning improvements. Feedback provision is one of the key features in math learning systems that contribute to its success. We have recently been uncovering feedback…

  18. A Big Year for Small Bodies

    NASA Astrophysics Data System (ADS)

    Mayo, Louis; Erickson, K.

    2013-10-01

    2013 is a watershed year for celestial events involving the solar system’s unsung heroes, small bodies. The Cosmic Valentine of Asteroid 2012 DA14 which passed within ~ 3.5 Earth radii of the Earth's surface (February 15, 2013), Comet C/2011 L4 PANSTARRS and the Thanksgiving 2013 pass of Comet ISON, which will pass less than 0.012 AU (1.8 million km) from the solar surface and could be visible during the day. All this in addition to Comet Lemmon and a host of meteor showers makes 2013 a landmark year to deliver the excitement of planetary science to the audiences worldwide. To deliver the excitement and wonder of our solar system’s small bodies to worldwide audiences, NASA’s JPL and GSFC education teams in partnership with NASA EDGE will reach out to the public through multiple venues including broadcast media, social media, science and math focused educational activities, observing challenges, interactive visualization tools like “Eyes on the Solar System” and more culminating in the Thanksgiving Day Comet ISON perihelion passage. This talk will highlight NASA’s focused education effort to engage the public in small bodies science and the role these objects play in our understanding of the formation and evolution of the solar system.

  19. 77 FR 46749 - Tests Determined To Be Suitable for Use in the National Reporting System for Adult Education

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Student Assessment Systems (CASAS) Life Skills Math Assessments--Application of Mathematics (Secondary... Proficiency Test (MAPT) for Math. This test is approved for use through a computer-adaptive delivery format...) Employability Competency System (ECS) Math Assessments--Workforce Learning Systems (WLS). Forms 11, 12, 13, 14...

  20. Dynamics of Quiet Solar Chromosphere at the Limb

    NASA Astrophysics Data System (ADS)

    Choudhary, D.; Tejomoortula, U.; Penn, M. J.

    2008-12-01

    We have observed the solar limb using 1024 × 1024 InSb Near Infrared Camera and Spectroheliograph at McMath-Pierce telescope during the solar minimum period of April 29 to May 1, 2008. A 120 micron slit, corresponding to 0.3 arc second was aligned perpendicular to the solar limb for the observations. The slit spectrum with a resolution of 0.036 Å corresponding to about 05 to 1.0 km/s were obtained in the wavelength regions of HeI 10830 Å, Hydogen Paschen α 12818 Å and Hydrogen Brackett γ 21661 Å. Excellent seeing conditions and the use of adaptive optics produced stable observing conditions during most of the observations. We present the results of line width variation as a function of chromospheric height around the solar limb.

  1. Addressing Math Anxiety in the Classroom

    ERIC Educational Resources Information Center

    Finlayson, Maureen

    2014-01-01

    In today's educational systems, students of all levels of education experience math anxiety. Furthermore, math anxiety is frequently linked to poor achievement in mathematics. The purpose of this study is to examine the causes of math anxiety and to explore strategies which pre-service teachers have identified to overcome math anxiety. The…

  2. Atlas 1.1 Implementation Guide: Moving from Theory into Practice

    DTIC Science & Technology

    2018-01-16

    Math /Science/General Engienering...six proficiency areas based on the Helix interview data, as shown in Figure 6 below. Figure 6. Proficiency Areas for Systems Engineers 1. Math ...the problem domain and solution Math / Science / General Engineering System’s Domain & Opera:onal Context Systems Engineering

  3. 75 FR 5303 - Tests Determined To Be Suitable for Use in the National Reporting System for Adult Education (NRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... publication of this notice: (1) Comprehensive Adult Student Assessment Systems (CASAS) Life Skills Math.... Internet: http://www.casas.org . (2) Massachusetts Adult Proficiency Test (MAPT) for Math. Publisher... Competency System (ECS) Math Assessments--Workforce Learning Systems (WLS). Forms 11, 12, 13, 14, 15, 16, 17...

  4. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1991-01-01

    One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approx. 10 meter/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this study was to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight were made in the near infrared (approx. 2 micron), using the Kitt Peak McMath Fourier transform spectrometer, with a N2O gas absorption cell for calibration. An accuracy of approx. 5 meter/sec was achieved.

  5. The Effectiveness of Using STAR Math to Improve PSSA Math Scores

    ERIC Educational Resources Information Center

    Holub, Sherry L.

    2017-01-01

    This is a quantitative study examining whether STAR Math, a student monitoring system, can improve PSSA Math scores. The experimental school used STAR Math during the 2015-2016 school year in grouping students for remediation and intervention. The control school used traditional curriculum measures to group students for remediation and…

  6. National Migrant Education Program Math Skills Information System.

    ERIC Educational Resources Information Center

    de la Rosa, Raul; Hackett, Eugene deG.

    The educational background and issues which shaped the design of the National Migrant Education Program Math Skills Information System are explained in this report, along with a full description of the features of the system and its operation. It discusses the variety of math skills information used to permit teachers to input and receive math…

  7. 76 FR 56188 - Tests Determined To Be Suitable for Use in the National Reporting System for Adult Education

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... (CASAS) Life Skills Math Assessments--Application of Mathematics (Secondary Level). We are clarifying... Proficiency Test (MAPT) for Math. We are clarifying that the computer-adaptive test (CAT) is an approved...): (1) Comprehensive Adult Student Assessment Systems (CASAS) Employability Competency System (ECS) Math...

  8. Using the Intel Math Kernel Library on Peregrine | High-Performance

    Science.gov Websites

    Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier

  9. Developmental Math Programs in California Community College: An Analysis of Math Boot Camp at Cosumnes River College

    ERIC Educational Resources Information Center

    Powell, Torence J.

    2017-01-01

    The California Community College system, as an open access institution, is tasked with helping students who possess math skills far below college-level complete math course requirements for obtaining an associate degree or transfer to a university. Colleges have created various developmental math programs to achieve this mission; this paper…

  10. Impact of Math Snacks Games on Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.

    2016-01-01

    This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…

  11. Solid state SPS microwave generation and transmission study. Volume 1: Phase 2

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  12. The approximate number system and domain-general abilities as predictors of math ability in children with normal hearing and hearing loss.

    PubMed

    Bull, Rebecca; Marschark, Marc; Nordmann, Emily; Sapere, Patricia; Skene, Wendy A

    2018-06-01

    Many children with hearing loss (CHL) show a delay in mathematical achievement compared to children with normal hearing (CNH). This study examined whether there are differences in acuity of the approximate number system (ANS) between CHL and CNH, and whether ANS acuity is related to math achievement. Working memory (WM), short-term memory (STM), and inhibition were considered as mediators of any relationship between ANS acuity and math achievement. Seventy-five CHL were compared with 75 age- and gender-matched CNH. ANS acuity, mathematical reasoning, WM, and STM of CHL were significantly poorer compared to CNH. Group differences in math ability were no longer significant when ANS acuity, WM, or STM was controlled. For CNH, WM and STM fully mediated the relationship of ANS acuity to math ability; for CHL, WM and STM only partially mediated this relationship. ANS acuity, WM, and STM are significant contributors to hearing status differences in math achievement, and to individual differences within the group of CHL. Statement of contribution What is already known on this subject? Children with hearing loss often perform poorly on measures of math achievement, although there have been few studies focusing on basic numerical cognition in these children. In typically developing children, the approximate number system predicts math skills concurrently and longitudinally, although there have been some contradictory findings. Recent studies suggest that domain-general skills, such as inhibition, may account for the relationship found between the approximate number system and math achievement. What does this study adds? This is the first robust examination of the approximate number system in children with hearing loss, and the findings suggest poorer acuity of the approximate number system in these children compared to hearing children. The study addresses recent issues regarding the contradictory findings of the relationship of the approximate number system to math ability by examining how this relationship varies across children with normal hearing and hearing loss, and by examining whether this relationship is mediated by domain-general skills (working memory, short-term memory, and inhibition). © 2017 The British Psychological Society.

  13. Center for Applied Solar Physics

    DTIC Science & Technology

    1990-04-30

    and store each image. This may seriously de- 2 Jefferics, J., Lites, B. W., and Skumanich , A., "Transfer of Line Radia- tion in a Magnetic Field...in 1952. He received a B.S. degree in mathe- JOHN W. O’BYRNE was born in matics and physics from Andrews Sydney, Australia, in 1959. He re

  14. Individual Differences Related to College Students' Course Performance in Calculus II

    ERIC Educational Resources Information Center

    Hart, Sara A.; Daucourt, Mia; Ganley, Colleen M.

    2017-01-01

    In this study, we explore student achievement in a semester-long flipped Calculus II course, combining various predictor measures related to student attitudes (math anxiety, math confidence, math interest, math importance) and cognitive skills (spatial skills, approximate number system), as well as student engagement with the online system…

  15. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  16. 78 FR 75550 - Tests Determined To Be Suitable for Use in the National Reporting System for Adult Education

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... Student Assessment Systems (CASAS) Life Skills Math Assessments--Application of Mathematics (Secondary... Proficiency Test (MAPT) for Math. This test is approved for use through a computer-adaptive delivery format...: www.wonderlic.com . (2) General Assessment of Instructional Needs (GAIN)--Test of Math Skills. Forms A...

  17. Effect of Technology-Enhanced Continuous Progress Monitoring on Math Achievement

    ERIC Educational Resources Information Center

    Ysseldyke, Jim; Bolt, Daniel M.

    2007-01-01

    We examined the extent to which use of a technology-enhanced continuous progress monitoring system would enhance the results of math instruction, examined variability in teacher implementation of the program, and compared math results in classrooms in which teachers did and did not use the system. Classrooms were randomly assigned to within-school…

  18. Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement.

    PubMed

    Haist, Frank; Wazny, Jarnet H; Toomarian, Elizabeth; Adamo, Maha

    2015-02-01

    A central question in cognitive and educational neuroscience is whether brain operations supporting nonlinguistic intuitive number sense (numerosity) predict individual acquisition and academic achievement for symbolic or "formal" math knowledge. Here, we conducted a developmental functional magnetic resonance imaging (MRI) study of nonsymbolic numerosity task performance in 44 participants including 14 school age children (6-12 years old), 14 adolescents (13-17 years old), and 16 adults and compared a brain activity measure of numerosity precision to scores from the Woodcock-Johnson III Broad Math index of math academic achievement. Accuracy and reaction time from the numerosity task did not reliably predict formal math achievement. We found a significant positive developmental trend for improved numerosity precision in the parietal cortex and intraparietal sulcus specifically. Controlling for age and overall cognitive ability, we found a reliable positive relationship between individual math achievement scores and parietal lobe activity only in children. In addition, children showed robust positive relationships between math achievement and numerosity precision within ventral stream processing areas bilaterally. The pattern of results suggests a dynamic developmental trajectory for visual discrimination strategies that predict the acquisition of formal math knowledge. In adults, the efficiency of visual discrimination marked by numerosity acuity in ventral occipital-temporal cortex and hippocampus differentiated individuals with better or worse formal math achievement, respectively. Overall, these results suggest that two different brain systems for nonsymbolic numerosity acuity may contribute to individual differences in math achievement and that the contribution of these systems differs across development. © 2014 Wiley Periodicals, Inc.

  19. Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement

    PubMed Central

    Haist, Frank; Wazny, Jarnet H.; Toomarian, Elizabeth; Adamo, Maha

    2015-01-01

    A central question in cognitive and educational neuroscience is whether brain operations supporting non-linguistic intuitive number sense (numerosity) predict individual acquisition and academic achievement for symbolic or “formal” math knowledge. Here, we conducted a developmental functional MRI study of nonsymbolic numerosity task performance in 44 participants including 14 school age children (6–12 years-old), 14 adolescents (13–17 years-old), and 16 adults and compared a brain activity measure of numerosity precision to scores from the Woodcock-Johnson III Broad Math index of math academic achievement. Accuracy and reaction time from the numerosity task did not reliably predict formal math achievement. We found a significant positive developmental trend for improved numerosity precision in the parietal cortex and intraparietal sulcus (IPS) specifically. Controlling for age and overall cognitive ability, we found a reliable positive relationship between individual math achievement scores and parietal lobe activity only in children. In addition, children showed robust positive relationships between math achievement and numerosity precision within ventral stream processing areas bilaterally. The pattern of results suggests a dynamic developmental trajectory for visual discrimination strategies that predict the acquisition of formal math knowledge. In adults, the efficiency of visual discrimination marked by numerosity acuity in ventral occipital-temporal cortex and hippocampus differentiated individuals with better or worse formal math achievement, respectively. Overall, these results suggest that two different brain systems for nonsymbolic numerosity acuity may contribute to individual differences in math achievement and that the contribution of these systems differs across development. PMID:25327879

  20. When approximate number acuity predicts math performance: The moderating role of math anxiety

    PubMed Central

    Libertus, Melissa E.

    2018-01-01

    Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments. PMID:29718939

  1. When approximate number acuity predicts math performance: The moderating role of math anxiety.

    PubMed

    Braham, Emily J; Libertus, Melissa E

    2018-01-01

    Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.

  2. MSFC Skylab contamination control systems mission evaluation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Cluster external contamination control evaluation was made throughout the Skylab Mission. This evaluation indicated that contamination control measures instigated during the design, development, and operational phases of this program were adequate to reduce the general contamination environment external to the Cluster below the threshold senstivity levels for experiments and affected subsystems. Launch and orbit contamination control features included eliminating certain vents, rerouting vents for minimum contamination impact, establishing filters, incorporating materials with minimum outgassing characteristics and developing operational constraints and mission rules to minimize contamination effects. Prior to the launch of Skylab, contamination control math models were developed which were used to predict Cluster surface deposition and background brightness levels throughout the mission. The report summarizes the Skylab system and experiment contamination control evaluation. The Cluster systems and experiments evaluated include Induced Atmosphere, Corollary and ATM Experiments, Thermal Control Surfaces, Solar Array Systems, Windows and Star Tracker.

  3. Training the approximate number system improves math proficiency.

    PubMed

    Park, Joonkoo; Brannon, Elizabeth M

    2013-10-01

    Humans and nonhuman animals share an approximate number system (ANS) that permits estimation and rough calculation of quantities without symbols. Recent studies show a correlation between the acuity of the ANS and performance in symbolic math throughout development and into adulthood, which suggests that the ANS may serve as a cognitive foundation for the uniquely human capacity for symbolic math. Such a proposition leads to the untested prediction that training aimed at improving ANS performance will transfer to improvement in symbolic-math ability. In the two experiments reported here, we showed that ANS training on approximate addition and subtraction of arrays of dots selectively improved symbolic addition and subtraction. This finding strongly supports the hypothesis that complex math skills are fundamentally linked to rudimentary preverbal quantitative abilities and provides the first direct evidence that the ANS and symbolic math may be causally related. It also raises the possibility that interventions aimed at the ANS could benefit children and adults who struggle with math.

  4. On the apparent velocity of integrated sunlight. 2: 1983-1992 and comparisons with magnetograms

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Plymate, Claude

    1994-01-01

    We report additional results in our program to monitor the wavelength stability of lines in the 2.3 micrometer spectrum of integrated sunlight. We use the McMath Fourier transform spectrometer (FTS) of the National Solar Observatory to monitor 16 delta V = 2 lines of (12)C(16)O, as well as five atomic lines. Wavenumber calibration is achieved using a low-pressure N2O absorption cell and checked against terrestrial atmospheric lines. Imperfect optical integration of the solar disk remains the principal source of error, but this error has been reduced by improved FTS/telescope collimation and observing procedures. The present results include data from an additional 13 quarterly observing runs since 1985. We continue to find that the apparent velocity of integrated sunlight is variable, in the sense of having a greater reshift at solar maximum. This is supported by the temporal dependence of the integrated light velocity, and by the presence of a correlation between velocity and the disk-averaged magnetic flux derived from Kitt Peak magnetograms. The indicated peak-to-peak apparent velocity amplitude over a solar cycle is approximately the same as the velocity amplitude of the Sun's motion about the solar system barycenter. This represents about half the amplitude which we inferred in Paper I (Deming et al. 1987), but the present result has a much greater statistical significance. Our results have implications for those investigations which search for the Doppler signatures of planetary-mass companions to solar-type stars. We contrast our results to the recent finding by McMillan et al. 1993 that solar absorption lines in the violet spectral region are wavelength-stable over the solar cycle.

  5. On the apparent velocity of integrated sunlight. 2: 1983-1992 and comparisons with magnetograms

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Plymate, Claude

    1994-05-01

    We report additional results in our program to monitor the wavelength stability of lines in the 2.3 micrometer spectrum of integrated sunlight. We use the McMath Fourier transform spectrometer (FTS) of the National Solar Observatory to monitor 16 delta V = 2 lines of (12)C(16)O, as well as five atomic lines. Wavenumber calibration is achieved using a low-pressure N2O absorption cell and checked against terrestrial atmospheric lines. Imperfect optical integration of the solar disk remains the principal source of error, but this error has been reduced by improved FTS/telescope collimation and observing procedures. The present results include data from an additional 13 quarterly observing runs since 1985. We continue to find that the apparent velocity of integrated sunlight is variable, in the sense of having a greater reshift at solar maximum. This is supported by the temporal dependence of the integrated light velocity, and by the presence of a correlation between velocity and the disk-averaged magnetic flux derived from Kitt Peak magnetograms. The indicated peak-to-peak apparent velocity amplitude over a solar cycle is approximately the same as the velocity amplitude of the Sun's motion about the solar system barycenter. This represents about half the amplitude which we inferred in Paper I (Deming et al. 1987), but the present result has a much greater statistical significance. Our results have implications for those investigations which search for the Doppler signatures of planetary-mass companions to solar-type stars. We contrast our results to the recent finding by McMillan et al. 1993 that solar absorption lines in the violet spectral region are wavelength-stable over the solar cycle.

  6. Automated Loads Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  7. Tour Through the Solar System: A Hands-On Planetary Geology Course for High School Students

    NASA Astrophysics Data System (ADS)

    Sherman, S. B.; Gillis-Davis, J. J.

    2011-09-01

    We have developed a course in planetary geology for high school students, the primary goals of which are to help students learn how to learn, to reduce the fear and anxiety associated with learning science and math, and to encourage an interest in science, technology, engineering, and mathematics (STEM) fields. Our emphasis in this course is on active learning in a learner-centered environment. All students scored significantly higher on the post-knowledge survey compared with the pre-knowledge survey, and there is a good correlation between the post-knowledge survey and the final exam. Student evaluations showed an increased interest in STEM fields as a result of this course.

  8. MATH77, Version 4.0

    NASA Technical Reports Server (NTRS)

    Lawson, Charles L.; Krogh, Fred; Van Snyder, W.; Oken, Carol A.; Mccreary, Faith A.; Lieske, Jay H.; Perrine, Jack; Coffin, Ralph S.; Wayne, Warren J.

    1994-01-01

    MATH77 is high-quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for basic computational processes of science and engineering. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. MATH77 release 4.0 subroutine library designed to be usable on any computer system supporting full ANSI standard FORTRAN 77 language.

  9. Learning by Choosing: Fourth Graders Use of an Online Multimedia Tutoring System for Math Problem Solving

    ERIC Educational Resources Information Center

    Maloy, Robert W.; Razzaq, Leena; Edwards, Sharon A.

    2014-01-01

    This study explored the use of an online mathematics tutoring system in eight fourth grade classrooms in two Massachusetts communities--a small rural city with a low 2010 Adequate Yearly Progress (AYP) math performance rating and a small suburban district with a high 2010 AYP math performance rating. 165 fourth graders completed 11 modules…

  10. Preschool acuity of the approximate number system correlates with school math ability.

    PubMed

    Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin

    2011-11-01

    Previous research shows a correlation between individual differences in people's school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and with non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants' ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children's math ability and vocabulary size prior to the onset of formal math instruction. We found that children's ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life. 2011 Blackwell Publishing Ltd.

  11. Preschool Acuity of the Approximate Number System Correlates with School Math Ability

    PubMed Central

    Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin

    2012-01-01

    Previous research shows a correlation between individual differences in people’s school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants’ ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children’s math ability and vocabulary size prior to the onset of formal math instruction. We found that children’s ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life. PMID:22010889

  12. The Approximate Number System and its Relation to Early Math Achievement: Evidence from the Preschool Years

    PubMed Central

    Bonny, Justin W.; Lourenco, Stella F.

    2012-01-01

    Humans rely on two main systems of quantification - one is non-symbolic and involves approximate number representations (known as the approximate number system or ANS), the other is symbolic and allows for exact calculations of number. Despite the pervasiveness of the ANS across development, recent studies with adolescents and school-aged children point to individual differences in the precision of these representations, which, importantly, have been shown to relate to symbolic math competence, even after controlling for general aspects of intelligence. Such findings suggest that the ANS, which humans share with nonhuman animals, interfaces specifically with a uniquely human system of formal mathematics. Other findings, however, point to a less straightforward picture, leaving open questions about the nature and ontogenetic origins of the relation between these two systems. Testing children across the preschool period, we found that ANS precision correlated with early math achievement, but, critically, that this relation was non-linear. More specifically, the correlation between ANS precision and math competence was stronger for children with lower math scores than for children with higher math scores. Taken together, our findings suggest that early-developing connections between the ANS and mathematics may be fundamentally discontinuous. Possible mechanisms underlying such non-linearity are discussed. PMID:23201156

  13. The approximate number system and its relation to early math achievement: evidence from the preschool years.

    PubMed

    Bonny, Justin W; Lourenco, Stella F

    2013-03-01

    Humans rely on two main systems of quantification; one is nonsymbolic and involves approximate number representations (known as the approximate number system or ANS), and the other is symbolic and allows for exact calculations of number. Despite the pervasiveness of the ANS across development, recent studies with adolescents and school-aged children point to individual differences in the precision of these representations that, importantly, have been shown to relate to symbolic math competence even after controlling for general aspects of intelligence. Such findings suggest that the ANS, which humans share with nonhuman animals, interfaces specifically with a uniquely human system of formal mathematics. Other findings, however, point to a less straightforward picture, leaving open questions about the nature and ontogenetic origins of the relation between these two systems. Testing children across the preschool period, we found that ANS precision correlated with early math achievement but, critically, that this relation was nonlinear. More specifically, the correlation between ANS precision and math competence was stronger for children with lower math scores than for children with higher math scores. Taken together, our findings suggest that early-developing connections between the ANS and mathematics may be fundamentally discontinuous. Possible mechanisms underlying such nonlinearity are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. STS-2: SAIL non-avionics subsystems math model requirements

    NASA Technical Reports Server (NTRS)

    Bennett, W. P.; Herold, R. W.

    1980-01-01

    Simulation of the STS-2 Shuttle nonavionics subsystems in the shuttle avionics integration laboratory (SAIL) is necessary for verification of the integrated shuttle avionics system. The math model (simulation) requirements for each of the nonavionics subsystems that interfaces with the Shuttle avionics system is documented and a single source document for controlling approved changes (by the SAIL change control panel) to the math models is provided.

  15. Atlas Career Path Guidebook: Patterns and Common Practices in Systems Engineers’ Development

    DTIC Science & Technology

    2018-01-16

    Overview of Atlas Proficiency Model .............................................................................. 68 5.1.2. Math /Science/General... Math /Science/General Engineering ................................ 72 Figure 42. Distribution for individuals with highest proficiency self...assessment in Math /Science/General Engineering ..................................................................................... 73 Figure 43

  16. The Precision of Mapping Between Number Words and the Approximate Number System Predicts Children’s Formal Math Abilities

    PubMed Central

    Libertus, Melissa E.; Odic, Darko; Feigenson, Lisa; Halberda, Justin

    2016-01-01

    Children can represent number in at least two ways: by using their non-verbal, intuitive Approximate Number System (ANS), and by using words and symbols to count and represent numbers exactly. Further, by the time they are five years old, children can map between the ANS and number words, as evidenced by their ability to verbally estimate numbers of items without counting. How does the quality of the mapping between approximate and exact numbers relate to children’s math abilities? The role of the ANS-number word mapping in math competence remains controversial for at least two reasons. First, previous work has not examined the relation between verbal estimation and distinct subtypes of math abilities. Second, previous work has not addressed how distinct components of verbal estimation – mapping accuracy and variability – might each relate to math performance. Here, we address these gaps by measuring individual differences in ANS precision, verbal number estimation, and formal and informal math abilities in 5- to 7-year-old children. We found that verbal estimation variability, but not estimation accuracy, predicted formal math abilities even when controlling for age, expressive vocabulary, and ANS precision, and that it mediated the link between ANS precision and overall math ability. These findings suggest that variability in the ANS-number word mapping may be especially important for formal math abilities. PMID:27348475

  17. The precision of mapping between number words and the approximate number system predicts children's formal math abilities.

    PubMed

    Libertus, Melissa E; Odic, Darko; Feigenson, Lisa; Halberda, Justin

    2016-10-01

    Children can represent number in at least two ways: by using their non-verbal, intuitive approximate number system (ANS) and by using words and symbols to count and represent numbers exactly. Furthermore, by the time they are 5years old, children can map between the ANS and number words, as evidenced by their ability to verbally estimate numbers of items without counting. How does the quality of the mapping between approximate and exact numbers relate to children's math abilities? The role of the ANS-number word mapping in math competence remains controversial for at least two reasons. First, previous work has not examined the relation between verbal estimation and distinct subtypes of math abilities. Second, previous work has not addressed how distinct components of verbal estimation-mapping accuracy and variability-might each relate to math performance. Here, we addressed these gaps by measuring individual differences in ANS precision, verbal number estimation, and formal and informal math abilities in 5- to 7-year-old children. We found that verbal estimation variability, but not estimation accuracy, predicted formal math abilities, even when controlling for age, expressive vocabulary, and ANS precision, and that it mediated the link between ANS precision and overall math ability. These findings suggest that variability in the ANS-number word mapping may be especially important for formal math abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A hard X-ray and gamma ray observation of the 22 November 1977 solar flare. [experimental design

    NASA Technical Reports Server (NTRS)

    Chambon, G.; Hurley, K.; Niel, M.; Talon, R.; Vedrenne, G.; Likine, O. B.; Kouznetsov, A. V.; Estouline, I. V.

    1978-01-01

    The Franco-Soviet experiment package Signe 2 MP for solar and cosmic X and gamma ray observations, launched aboard a Soviet Prognoz satellite into a highly eccentric earth orbit is described. An uncollimated NaI detector 37 mm thick by 90 mm diameter, placed on the upper surface of the satellite faced the sun. A collimated lateral NaI detector 14 mm thick by 38 mm diameter also faced the sun, and a similar lateral detector faced the anti-solar direction. Data tapes reveal an intense solar flare up to energies of up to 5 MeV, with evidence for line emission at 2.23 MeV and possibly 4.4 MeV. The event observed was associated with the Mc Math Plage Region 15031, and an H-alpha flare of importance 2B. It is not yet clear what radio emission is associated with the X-ray observation.

  19. The existence of almost periodic solutions of certain perturbation systems

    NASA Astrophysics Data System (ADS)

    Xia, Yonghui; Lin, Muren; Cao, Jinde

    2005-10-01

    Certain almost periodic perturbation systems are considered in this paper. By using the roughness theory of exponential dichotomies and the contraction mapping principle, some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution of the above systems. Our results generalize those in [J.K. Hale, Ordinary Differential Equations, Krieger, Huntington, 1980; C. He, Existence of almost periodic solutions of perturbation systems, Ann. Differential Equations 9 (1992) 173-181; M. Lin, The existence of almost periodic solution and bounded solution of perturbation systems, Acta Math. Sinica 22A (2002) 61-70 (in Chinese); W.A. Coppel, Almost periodic properties of ordinary differential equations, Ann. Math. Pura Appl. 76 (1967) 27-50; A.M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., vol. 377, Springer-Verlag, New York, 1974; Y. Xia, F. Chen, A. Chen, J. Cao, Existence and global attractivity of an almost periodic ecological model, Appl. Math. Comput. 157 (2004) 449-475].

  20. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children's Math Skills.

    PubMed

    Hart, Sara A; Ganley, Colleen M; Purpura, David J

    2016-01-01

    There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.

  1. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children’s Math Skills

    PubMed Central

    Ganley, Colleen M.; Purpura, David J.

    2016-01-01

    There is a growing literature concerning the role of the home math environment in children’s math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children’s math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children’s skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills. PMID:28005925

  2. Naval Sea Systems Command > Home

    Science.gov Websites

    Parties Vehicles for Partnering STEM Programs FIRST LEGO League Robotics Program Carderock Math Contest Educational Partnership Agreements Math Clubs Seaplane Challenge Calculator-Controlled Robot Program Students - 'Fun Twist on Math' May 24, 2018 More SOCIAL MEDIA Facebook Logo Join us live as we commission

  3. ASTP ranging system mathematical model

    NASA Technical Reports Server (NTRS)

    Ellis, M. R.; Robinson, L. H.

    1973-01-01

    A mathematical model is presented of the VHF ranging system to analyze the performance of the Apollo-Soyuz test project (ASTP). The system was adapted for use in the ASTP. The ranging system mathematical model is presented in block diagram form, and a brief description of the overall model is also included. A procedure for implementing the math model is presented along with a discussion of the validation of the math model and the overall summary and conclusions of the study effort. Detailed appendices of the five study tasks are presented: early late gate model development, unlock probability development, system error model development, probability of acquisition and model development, and math model validation testing.

  4. Observations of the scatter-free solar-flare electrons in the energy range 20-1000 keV

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Fisk, L. A.; Lin, R. P.

    1971-01-01

    Observations of the scatter-free electron events from solar active region McMath No. 8905 are presented. The measurements were made on Explorer 33 satellite. The data show that more than 80% of the electrons from these events undergo no or little scattering and that these electrons travel only approximately 1.5 a.u. between the sun and the earth. The duration of these events cannot be accounted fully by velocity dispersion alone. It is suggested that these electrons could be continuously injected into interplanetary medium for a time interval of approximately 2 to 3 minutes. Energy spectra of these electrons are discussed.

  5. Changing the precision of preschoolers' approximate number system representations changes their symbolic math performance.

    PubMed

    Wang, Jinjing Jenny; Odic, Darko; Halberda, Justin; Feigenson, Lisa

    2016-07-01

    From early in life, humans have access to an approximate number system (ANS) that supports an intuitive sense of numerical quantity. Previous work in both children and adults suggests that individual differences in the precision of ANS representations correlate with symbolic math performance. However, this work has been almost entirely correlational in nature. Here we tested for a causal link between ANS precision and symbolic math performance by asking whether a temporary modulation of ANS precision changes symbolic math performance. First, we replicated a recent finding that 5-year-old children make more precise ANS discriminations when starting with easier trials and gradually progressing to harder ones, compared with the reverse. Next, we show that this brief modulation of ANS precision influenced children's performance on a subsequent symbolic math task but not a vocabulary task. In a supplemental experiment, we present evidence that children who performed ANS discriminations in a random trial order showed intermediate performance on both the ANS task and the symbolic math task, compared with children who made ordered discriminations. Thus, our results point to a specific causal link from the ANS to symbolic math performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Changing the precision of preschoolers’ approximate number system representations changes their symbolic math performance

    PubMed Central

    Wang, Jinjing (Jenny); Odic, Darko; Halberda, Justin; Feigenson, Lisa

    2016-01-01

    From early in life, humans have access to an Approximate Number System (ANS) that supports an intuitive sense of numerical quantity. Previous work in both children and adults suggests that individual differences in the precision of ANS representations correlate with symbolic math performance. However, this work has been almost entirely correlational in nature. Here we tested for a causal link between ANS precision and symbolic math performance by asking whether a temporary modulation of ANS precision changes symbolic math performance. First we replicated a recent finding that 5-year-old children make more precise ANS discriminations when starting with easier trials and gradually progressing to harder ones, compared to the reverse. Next, we show that this brief modulation of ANS precision influenced children’s performance on a subsequent symbolic math task, but not a vocabulary task. In a supplemental experiment we present evidence that children who performed ANS discriminations in a random trial order showed intermediate performance both on the ANS task and the symbolic math task, compared to the children who made ordered discriminations. Thus, our results point to a specific causal link from the ANS to symbolic math performance. PMID:27061668

  7. 78 FR 48472 - Notice of Entering into a Compact with Georgia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... assessments. The project consists of three activities, which were targeted to specifically improve math and... approximately 23,400 math, science, information and communications technology, and English teachers in grades 7... approximately six national assessments focused on math and science, and the development of a system of classroom...

  8. Atlas 1.1: An Update to the Theory of Effective Systems Engineers

    DTIC Science & Technology

    2018-01-16

    Proficiency Model ........................................................................................................... 21 5.1.1 Area 1: Math ... Math /Science/General Engineering: Foundational concepts from mathematics, physical sciences, and general engineering; 2. System’s Domain...Table 5. Atlas Proficiency Areas, Categories, and Topics Area Category Topic 1. Math / Science / General Engineering 1.1. Natural Science

  9. Color Your Classroom II. A Math Curriculum Guide.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson.

    This math curriculum guide, correlated with the numerical coding of the Math Skills List published by the Migrant Student Record Transfer System, covers 10 learning areas: readiness, number meaning, whole numbers, fractions, decimals, percent, measurement, geometry, probability and statistics, and sets. Each exercise is illustrated by a large…

  10. A Correlation of Community College Math Readiness and Student Success

    NASA Astrophysics Data System (ADS)

    Brown, Jayna Nicole

    Although traditional college students are more prepared for college-level math based on college admissions tests, little data have been collected on nontraditional adult learners. The purpose of this study was to investigate relationships between math placement tests and community college students' success in math courses and persistence to degree or certificate completion. Guided by Tinto's theory of departure and student retention, the research questions addressed relationships and predictability of math Computer-adaptive Placement Assessment and Support System (COMPASS) test scores and students' performance in math courses, persistence in college, and degree completion. After conducting correlation and regression analyses, no significant relationships were identified between COMPASS Math test scores and students' performance (n = 234) in math courses, persistence in college, or degree completion. However, independent t test and chi-squared analyses of the achievements of college students who tested into Basic Math (n = 138) vs. Introduction to Algebra (n = 96) yielded statistically significant differences in persistence (p = .039), degree completion (p < .001), performance (p = .008), and progress ( p = .001), indicating students who tested into Introduction to Algebra were more successful and persisted more often to degree completion. In order to improve instructional methods for Basic Math courses, a 3-day professional development workshop was developed for math faculty focusing on current, best practices in remedial math instruction. Implications for social change include providing math faculty with the knowledge and skills to develop new instructional methods for remedial math courses. A change in instructional methods may improve community college students' math competencies and degree achievement.

  11. Is Approximate Number Precision a Stable Predictor of Math Ability?

    ERIC Educational Resources Information Center

    Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin

    2013-01-01

    Previous research shows that children's ability to estimate numbers of items using their Approximate Number System (ANS) predicts later math ability. To more closely examine the predictive role of early ANS acuity on later abilities, we assessed the ANS acuity, math ability, and expressive vocabulary of preschoolers twice, six months apart. We…

  12. Effectiveness of a Class-Wide Peer-Mediated Elementary Math Differentiation Strategy

    ERIC Educational Resources Information Center

    Lloyd, Jason D.

    2017-01-01

    Approximately 60% of classroom students have insufficient math skills. Within a Multi-Tiered Systems of Support (MTSS) framework, teachers can implement core differentiation strategies targeted at improving math skills of an entire class of students. Differentiation programs are developed in order to target academic skills of groups of students…

  13. Pathways Post-Participation Outcomes: Preliminary Findings. Carnegie Math Pathways Research Brief

    ERIC Educational Resources Information Center

    Norman, Jon

    2017-01-01

    The Carnegie Foundation for the Advancement of Teaching's Math Pathways seek to improve outcomes for community college students who take remedial math courses. The Pathways include two comprehensive instructional systems--Statway® and Quantaway® and are described in this report. They are designed to support students to achieve the necessary math…

  14. Beauty and the beast: Aligning national curriculum standards with state (high school) graduation requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linder-Scholer, B.

    1994-12-31

    An overview of SCI/MATH/MN - Minnesota`s standards-based, systemic approach to the reform and improvement of the K-12 science and mathematics education delivery system - is offered as an illustration of the challenges of aligning state educational practices with the national curriculum standards, and as a model for business involvement in state educational policy issues that will enable fundamental, across-the-system reform. SCI/MATH/MN illustrates the major challenges involved in developing a statewide vision for math and science education reform, articulating frameworks aligned with the national standards, building capacity for system-oriented change at the local level, and involving business in systemic reform.

  15. The influence of math anxiety on symbolic and non-symbolic magnitude processing.

    PubMed

    Dietrich, Julia F; Huber, Stefan; Moeller, Korbinian; Klein, Elise

    2015-01-01

    Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.

  16. The influence of math anxiety on symbolic and non-symbolic magnitude processing

    PubMed Central

    Dietrich, Julia F.; Huber, Stefan; Moeller, Korbinian; Klein, Elise

    2015-01-01

    Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed. PMID:26579012

  17. A Partnership between English Language Learners and a Team of Rocket Scientists: EPO for the NASA SDO Extreme Ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Buhr, S. M.; McCaffrey, M. S.; Eparvier, F.; Murillo, M.

    2008-05-01

    Recent immigrant high school students were successfully engaged in learning about Sun-Earth connections through a partnership with the NASA Solar Dynamics Observatory Extreme Ultraviolet Variability Experiment (EVE) project. The students were enrolled in a pilot course as part of the Math, Engineering and Science Achievement (MESA) program. The English Language Learner (ELL) students doubled their achievement on a pre- and post- assessment on the content of the course. Students learned scientific content and vocabulary in English with support in Spanish, attended field trips, hosted scientist speakers, built antenna and deployed space weather monitors as part of the Stanford SOLAR project, and gave final presentations in English, showcasing their new computer skills. Teachers who taught the students in other courses noted gains in the students' willingness to use English in class and noted gains in math skills. The course has been broken into modules for use in shorter after-school environments, or for use by EVE scientists who are outside of the Boulder area. Video footage of "The Making of a Satellite", and "All About EVE" is completed for use in the kits. Other EVE EPO includes upcoming professional development for teachers and content workshops for journalists.

  18. Effects of MyTeachingPartner-Math/Science on Teacher-Child Interactions in Prekindergarten Classrooms

    ERIC Educational Resources Information Center

    Whittaker, Jessica Vick; Kinzie, Mable B.; Williford, Amanda; DeCoster, Jamie

    2016-01-01

    Research Findings: This study examined the impact of MyTeachingPartner-Math/Science, a system of math and science curricula and professional development, on the quality of teachers' interactions with children in their classrooms. Schools were randomly assigned to 1 of 2 intervention conditions (Basic: curricula providing within-activity, embedded…

  19. How Effective Are Community College Remedial Math Courses for Students with the Lowest Math Skills?

    ERIC Educational Resources Information Center

    Xu, Di; Dadgar, Mina

    2018-01-01

    Objective: This article examines the effectiveness of remediation for community college students who are identified as having the lowest skills in math. Method: We use transcript data from a state community college system and take advantage of a regression discontinuity design that compares statistically identical students who are assigned to the…

  20. Diagrams and Math Notation in E-Learning: Growing Pains of a New Generation

    ERIC Educational Resources Information Center

    Smith, Glenn Gordon; Ferguson, David

    2004-01-01

    Current e-learning environments are ill-suited to college mathematics. Instructors/students struggle to post diagrams and math notation. A new generation of math-friendly e-learning tools, including WebEQ, bundled with Blackboard 6, and NetTutor's Whiteboard, address these problems. This paper compares these two systems using criteria for ideal…

  1. Spatial but Not Temporal Numerosity Thresholds Correlate with Formal Math Skills in Children

    ERIC Educational Resources Information Center

    Anobile, Giovanni; Arrighi, Roberto; Castaldi, Elisa; Grassi, Eleonora; Pedonese, Lara; Moscoso, Paula A. M.; Burr, David C.

    2018-01-01

    Humans and other animals are able to make rough estimations of quantities using what has been termed the "approximate number system" (ANS). Much evidence suggests that sensitivity to numerosity correlates with symbolic math capacity, leading to the suggestion that the ANS may serve as a start-up tool to develop symbolic math. Many…

  2. Relation of large-scale coronal X-ray structure and cosmic rays. II - Coronal control of interplanetary injection of 300 keV protons

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Gold, R. E.; Krimigis, S. M.; Krieger, A. S.; Nolte, J. T.; Mcintosh, P. S.; Lazarus, A. J.; Sullivan, J. D.

    1975-01-01

    We report the striking coronal control of low-energy solar particles from the solar flare of September 7, 1973. The flare was at S18, W46 (Carrington longitude 188 deg) in McMath Plage Region 12307. We find strong intensity gradients in heliolongitude (about 10% per deg) that are nearly identical in protons, helium, and medium nuclei at energies about 0.5 MeV/nuc, as well as relativistic electrons and 3 MeV protons. This pervasive gradient occurs at longitudes over bright X-ray emission structures east of the flare site which interconnect large-scale chromospheric polarity regions identifiable in H-alpha filtergrams.

  3. Growth Texture and Mechanism of Zinc Nanowires Produced by Mechanical Elongation of Nanocontacts.

    PubMed

    Yamabe, Kammu; Kizuka, Tokushi

    2018-01-01

    Two zinc nanotips were brought into contact and elongated inside a transmission electron microscope, thereby growing single-crystal nanowires. The growth dynamics was observed in situ via a lattice imaging method. The preferential crystal growth directions were identified as [101-0], [112-0], [101-2-], and [0001]. Of these, the nanowires grown along the [101-0] and [112-0] directions accounted for 75% of the total and were surrounded by low-energy side surfaces, i.e., {0001}, {101-1}, and {101-0}. On the basis of these features, models of the nanowire morphology were proposed. In either growth direction, the tensile force aligned parallel to the direction along which slip events corresponding to the predominant slip system were unlikely to occur. This led to a high tensile stress for extracting atoms from the growth region, i.e., the promotion of nanowire growth.

  4. The Design and Analysis of a Complete Hierarchical Interface for the Multi-Backend Database System.

    DTIC Science & Technology

    1984-06-01

    Change the prerequisite of Course# 4 from Math to Discrete Math . The DL/I call to accomplish this is as follows: GHU COURSE (COURSE# = 𔃾’) PREREQ change...title to ’ Discrete Math ’ in I/O work area REPL The interface would respond to this call by treating the Get Hold Unique call as a Get Unique call...4) & (PREREQ.COURSE# = COURSE#1)) <TITLE = DISCRETE MATH > Upon execution of this request, the call is completed. 61 VI. IMPLEMENTATION CONCERNS AND

  5. Development of a Math Input Interface with Flick Operation for Mobile Devices

    ERIC Educational Resources Information Center

    Nakamura, Yasuyuki; Nakahara, Takahiro

    2016-01-01

    Developing online test environments for e-learning for mobile devices will be useful to increase drill practice opportunities. In order to provide a drill practice environment for calculus using an online math test system, such as STACK, we develop a flickable math input interface that can be easily used on mobile devices. The number of taps…

  6. Using the TouchMath Program to Teach Mathematical Computation to At-Risk Students and Students with Disabilities

    ERIC Educational Resources Information Center

    Ellingsen, Ryleigh; Clinton, Elias

    2017-01-01

    This manuscript reviews the empirical literature of the TouchMath© instructional program. The TouchMath© program is a commercial mathematics series that uses a dot notation system to provide multisensory instruction of computation skills. Using the program, students are taught to solve computational tasks in a multisensory manner that does not…

  7. Analyses of Trends in High School Students' Math-Science Course Credit Attainment and Registrations in Texas

    ERIC Educational Resources Information Center

    Zeng, Liang; Poelzer, G. Herold

    2016-01-01

    This study describes the trends in course credit attainment (CCA) of high school students in required and non-required science and math courses and trends in registration in non-required science and math courses in Texas between 1997 and 2009. Using Texas Public Education Information Management System data between 1997 and 2009, it presents…

  8. "MyTeachingPartner--Math/Science" Pre-Kindergarten Curricula and Teacher Supports: Associations with Children's Mathematics and Science Learning

    ERIC Educational Resources Information Center

    Kinzie, Mable B.; Whittaker, Jessica Vick; Williford, Amanda P.; DeCoster, Jamie; McGuire, Patrick; Lee, Youngju; Kilday, Carolyn R.

    2014-01-01

    "MyTeachingPartner--Math/Science" ("MTP-MS") is a system of two curricula (math and science) plus teacher supports designed to improve the quality of instructional interactions in pre-kindergarten classrooms and to scaffold children's development in mathematics and science. The program includes year-long curricula in these…

  9. Influence of Game Quests on Pupils' Enjoyment and Goal-Pursuing in Math Learning

    ERIC Educational Resources Information Center

    Chen, Zhi-Hong; Liao, Calvin C. Y.; Cheng, Hercy N. H.; Yeh, Charles Y. C.; Chan, Tak-Wai

    2012-01-01

    As a medium for learning, digital games provide promising possibilities to motivate and engage students in subject learning. In this study, a game-based learning system, My-Pet-My-Quest, is developed to support pupils' math learning. This is due to the fact that most students in Taiwan have relatively lower positive attitude towards math learning,…

  10. My chaotic trajectory: A brief (personalized) history of solar-system dynamics.

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.

    2014-05-01

    I will use this opportunity to recall my professional career. Like many, I was drawn into the space program during the mid-60s and early 70s when the solar system’s true nature was being revealed. Previously, dynamical astronomy discussed the short-term, predictable motions of point masses; simultaneously, small objects (e.g., satellites, asteroids, dust) were thought boring rather than dynamically rich. Many of today’s most active research subjects were unknown: TNOs, planetary rings, exoplanets and debris disks. The continuing stream of startling findings by spacecraft, ground-based surveys and numerical simulations forced a renaissance in celestial mechanics, incorporating new dynamical paradigms and additional physics (e.g., energy loss, catastrophic events, radiation forces). My interests evolved as the space program expanded outward: dust, asteroids, natural satellites, rings; rotations, orbital evolution, origins. Fortunately for me, in the early days, elementary models with simple solutions were often adequate to gain a first-order explanation of many puzzles. One could be a generalist, always learning new things.My choice of research subjects was influenced greatly by: i) Cornell colleagues involved in space missions who shared results: the surprising diversity of planetary satellites, the unanticipated orbital and rotational dynamics of asteroids, the chaotic histories of solar system bodies, the non-intuitive behavior of dust and planetary rings, irregular satellites. ii) Teaching introductory courses in applied math, dynamics and planetary science encouraged understandable models. iii) The stimulation of new ideas owing to service at Icarus and on space policy forums. iv) Most importantly, excellent students and colleagues who pushed me into new research directions, and who then stimulated and educated me about those topics.If time allows, I will describe some of today’s puzzles for me and point out similarities between the past development in our understanding of the solar system’s operation and the contemporary quest to figure out exoplanet systems.

  11. Video Based Developmental Mathematics Learning System For Community College Students.

    ERIC Educational Resources Information Center

    Gormley, Tyrone D.

    The University of Maine at Augusta uses an individualized video-taped mathematics instructional system to eliminate students' math weaknesses before they attempt college math. The course, "1 Mth Developmental Mathematics," is part of the Educational Assistance Program and teaches basic skills and concepts of arithmetic and algebra. The…

  12. Using Computer Symbolic Algebra to Solve Differential Equations.

    ERIC Educational Resources Information Center

    Mathews, John H.

    1989-01-01

    This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)

  13. Real-Time Optimization of Distribution Grids for Increased Flexibility and

    Science.gov Websites

    ensure a stable system operation. Now let's go a little bit to the math, because there are some technical math. This one looks very complicated, but it's actually very simple, because, for example, you take stability and optimality. However, I'm not going to delve into the math. I'm going to move to some test

  14. High Productivity Computing Systems Analysis and Performance

    DTIC Science & Technology

    2005-07-01

    cubic grid Discrete Math Global Updates per second (GUP/S) RandomAccess Paper & Pencil Contact Bob Lucas (ISI) Multiple Precision none...can be found at the web site. One of the HPCchallenge codes, RandomAccess, is derived from the HPCS discrete math benchmarks that we released, and...Kernels Discrete Math … Graph Analysis … Linear Solvers … Signal Processi ng Execution Bounds Execution Indicators 6 Scalable Compact

  15. Proprioceptor pathway development is dependent on Math1

    NASA Technical Reports Server (NTRS)

    Bermingham, N. A.; Hassan, B. A.; Wang, V. Y.; Fernandez, M.; Banfi, S.; Bellen, H. J.; Fritzsch, B.; Zoghbi, H. Y.

    2001-01-01

    The proprioceptive system provides continuous positional information on the limbs and body to the thalamus, cortex, pontine nucleus, and cerebellum. We showed previously that the basic helix-loop-helix transcription factor Math1 is essential for the development of certain components of the proprioceptive pathway, including inner-ear hair cells, cerebellar granule neurons, and the pontine nuclei. Here, we demonstrate that Math1 null embryos lack the D1 interneurons and that these interneurons give rise to a subset of proprioceptor interneurons and the spinocerebellar and cuneocerebellar tracts. We also identify three downstream genes of Math1 (Lh2A, Lh2B, and Barhl1) and establish that Math1 governs the development of multiple components of the proprioceptive pathway.

  16. Your Brain and Nervous System

    MedlinePlus

    ... using your cerebrum. You need it to solve math problems, figure out a video game, and draw ... said to be more analytical, helping you with math, logic, and speech. Scientists do know for sure ...

  17. An Indigenous Framework for Science, Technology, Engineering and Mathematics

    NASA Astrophysics Data System (ADS)

    Monette, G.

    2003-12-01

    The American Indian Higher Education Consortium, composed of 35 American Indian tribally-controlled Colleges and Universities in the U.S. and Canada, is leading a comprehensive effort to improve American Indian student achievement in STEM. A key component of this effort is the synthesis of indigenous ways of knowing and western education systems. This presentation will provide an overview of culturally responsive, place-based teaching, learning, and research and will discuss potential opportunities and strategies for helping to ensure that education systems and research programs reflect our diversity and respect our cultures. One example to be discussed is the NSF-funded "Tribal College Rural Systemic Initiative." Founded on the belief that all students can learn and should be given the opportunity to reach their full potential, Tribal Colleges are leading this effort to achieve successful and sustainable improvement of science, math, and technology education at the K-14 level in rural, economically disadvantaged, geographically challenged areas. Working with parents, tribal governments, schools and the private sector, the colleges are helping to implement math and science standards-based curriculum for students and standards-based assessment for schools; provide math and science standards-based professional development for teachers, administrators, and community leaders; and integrate local Native culture into math and science standards-based curriculum. The close working relationship between the Tribal Colleges and K-12 is paying off. According to the National Science Foundation, successful systemic reform has resulted in enhanced student achievement and participation in science and math; reductions in the achievement disparities among students that can be attributed to socioeconomic status, race, ethnicity, gender, or learning styles; implementation of a comprehensive, standards-based curriculum aligned with instructions and assessment; development of a coherent, consistent set of policies that supports high quality math and science education for each student; convergence of science and math resource; and broad-based support from parents and the community.

  18. SATA Stochastic Algebraic Topology and Applications

    DTIC Science & Technology

    2017-01-23

    Harris et al. Selective sampling after solving a convex problem". arXiv:1609.05609 [ math , stat] (Sept. 2016). arXiv: 1609.05609. 13. Baryshnikov...Functions, Adv. Math . 245, 573-586, 2014. 15. Y. Baryshnikov, Liberzon, Daniel,Robust stability conditions for switched linear systems: Commutator bounds...Consistency via Kernel Estimation, arXiv:1407.5272 [ math , stat] (July 2014) arXiv: 1407.5272. to appear in Bernoulli 18. O.Bobrowski and S.Weinberger

  19. Cybersecurity Education for Military Officers

    DTIC Science & Technology

    2017-12-01

    lecture showed the math behind the possible combinations of passwords of different lengths, and made the recommendation to increase your password to...2. Math the system to the real world: Use of effective metaphors and real world language wherever possible. 3. User Control: Try to give the user...given any training on this topic outside of annual NKO courses. I was a math major for my undergraduate degree, so I have no computer science

  20. Algebraic Structure of Dynamical Systems

    DTIC Science & Technology

    2017-05-22

    to suggest that the mathematics performed in this research will have such profound 10 implications, but just to demonstrate that studying math for...the sake of studying math can often reveal much about the world, even if not immediately obvious. Throughout the paper, we prove the following three...Banach and Alfred Tarski. Sur la décomposition des ensembles de points en parties respectivement congruentes. Fund. math , 6(1924):244–277, 1924. [3

  1. Theory and Applications of Weakly Interacting Markov Processes

    DTIC Science & Technology

    2018-02-03

    Moderate deviation principles for stochastic dynamical systems. Boston University, Math Colloquium, March 27, 2015. • Moderate Deviation Principles for...Markov chain approximation method. Submitted. [8] E. Bayraktar and M. Ludkovski. Optimal trade execution in illiquid markets. Math . Finance, 21(4):681...701, 2011. [9] E. Bayraktar and M. Ludkovski. Liquidation in limit order books with controlled intensity. Math . Finance, 24(4):627–650, 2014. [10] P.D

  2. Approximate number sense correlates with math performance in gifted adolescents.

    PubMed

    Wang, Jinjing Jenny; Halberda, Justin; Feigenson, Lisa

    2017-05-01

    Nonhuman animals, human infants, and human adults all share an Approximate Number System (ANS) that allows them to imprecisely represent number without counting. Among humans, people differ in the precision of their ANS representations, and these individual differences have been shown to correlate with symbolic mathematics performance in both children and adults. For example, children with specific math impairment (dyscalculia) have notably poor ANS precision. However, it remains unknown whether ANS precision contributes to individual differences only in populations of people with lower or average mathematical abilities, or whether this link also is present in people who excel in math. Here we tested non-symbolic numerical approximation in 13- to 16-year old gifted children enrolled in a program for talented adolescents (the Center for Talented Youth). We found that in this high achieving population, ANS precision significantly correlated with performance on the symbolic math portion of two common standardized tests (SAT and ACT) that typically are administered to much older students. This relationship was robust even when controlling for age, verbal performance, and reaction times in the approximate number task. These results suggest that the Approximate Number System is linked to symbolic math performance even at the top levels of math performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Improving quantitative skills in introductory geoscience courses at a four-year public institution using online math modules

    NASA Astrophysics Data System (ADS)

    Gordon, E. S.

    2011-12-01

    Fitchburg State University has a diverse student population comprised largely of students traditionally underrepresented in higher education, including first-generation, low-income, and/or students with disabilities. Approximately half of our incoming students require developmental math coursework, but often enroll in science classes prior to completing those courses. Since our introductory geoscience courses (Oceanography, Meteorology, Geology, Earth Systems Science) do not have prerequisites, many students who take them lack basic math skills, but are taking these courses alongside science majors. In order to provide supplemental math instruction without sacrificing time for content, "The Math You Need, When You Need It (TMYN), a set of online math tutorials placed in a geoscience context, will be implemented in three of our introductory courses (Oceanography, Meteorology, and Earth Systems Science) during Fall, 2011. Students will complete 5-6 modules asynchronously, the topics of which include graphing skills, calculating rates, unit conversions, and rearranging equations. Assessment of quantitative skills will be tracked with students' pre- and post-test results, as well as individual module quiz scores. In addition, student assessment results from Oceanography will be compared to student data from Academic Year 2010-11, during which quantitative skills were evaluated with pre- and post-test questions, but students did not receive online supplemental instruction.

  4. Attentional bias in math anxiety.

    PubMed

    Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly

    2015-01-01

    Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms.

  5. Test and analysis procedures for updating math models of Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1991-01-01

    Over the next decade or more, the Space Shuttle will continue to be the primary transportation system for delivering payloads to Earth orbit. Although a number of payloads have already been successfully carried by the Space Shuttle in the payload bay of the Orbiter vehicle, there continues to be a need for evaluation of the procedures used for verifying and updating the math models of the payloads. The verified payload math models is combined with an Orbiter math model for the coupled-loads analysis, which is required before any payload can fly. Several test procedures were employed for obtaining data for use in verifying payload math models and for carrying out the updating of the payload math models. Research was directed at the evaluation of test/update procedures for use in the verification of Space Shuttle payload math models. The following research tasks are summarized: (1) a study of free-interface test procedures; (2) a literature survey and evaluation of model update procedures; and (3) the design and construction of a laboratory payload simulator.

  6. Coyotes, Skunks, and Bears in the Sky --- A Multicultural Approach to Astronomy

    NASA Astrophysics Data System (ADS)

    Lebofsky, N. R.; Lebofsky, L. A.; Canizo, T.

    1994-12-01

    Staff and teacher/facilitators from the ARTIST (Astronomy-Related Teacher Inservice Training) and ACCESS! (All Children Can Explore the Solar System!) PROJECTS use myths, legends, creative writing, and related activities to augment astronomy lessons. In both elementary and middle school classrooms teachers use an integrated curriculum approach to extend the science lesson into language arts, social studies, fine arts, and math. Reading, writing, storytelling, and art projects blend easily with lessons on constellations, planets, Sun, Moon, and sky. Including myths and legends from a variety of cultures and time periods underscores the universal appeal of both sky-watching and creativity. Through a variety of inservice programs and materials development, the authors provide scientific background and classroom activities for teachers in grades K--8. Project facilitators report marked improvement in primary grade reading and writing skills and improved language acquisition for bilingual students when a high interest topic such as astronomy is introduced and integrated with language arts lessons. Facilitators have used astronomy to empower special education students to share both their knowledge and appreciation of the universe with the general school population. A slide-and-music presentation and samples of student work will highlight activities developed through PROJECT ARTIST. PROJECT ARTIST is funded by the National Science Foundation. PROJECT ACCESS! is funded by the Arizona Board of Regents (Eisenhower Math and Science Program).

  7. Efficient development and processing of thermal math models of very large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.

    1993-01-01

    As the spacecraft moves along the orbit, the truss members are subjected to direct and reflected solar, albedo and planetary infra-red (IR) heating rates, as well as IR heating and shadowing from other spacecraft components. This is a transient process with continuously changing heating loads and the shadowing effects. The resulting nonuniform temperature distribution may cause nonuniform thermal expansion, deflection and stress in the truss elements, truss warping and thermal distortions. There are three challenges in the thermal-structural analysis of the large truss structures. The first is the development of the thermal and structural math models, the second - model processing, and the third - the data transfer between the models. All three tasks require considerable time and computer resources to be done because of a very large number of components involved. To address these challenges a series of techniques of automated thermal math modeling and efficient processing of very large space truss structures were developed. In the process the finite element and finite difference methods are interfaced. A very substantial reduction of the quantity of computations was achieved while assuring a desired accuracy of the results. The techniques are illustrated on the thermal analysis of a segment of the Space Station main truss.

  8. Space Science Payloads Optical Properties Monitor (OPM) Mission Flight Anomalies Thermal Analyses

    NASA Technical Reports Server (NTRS)

    Schmitz, Craig P.

    2001-01-01

    The OPM was the first space payload that measured in-situ the optical properties of materials and had data telemetered to ground. The OPM was EVA mounted to the Mir Docking Module for an eight-month stay where flight samples were exposed to the Mir induced and natural environments. The OPM was comprised of three optical instruments; a total hemispherical spectral reflectometer, a vacuum ultraviolet spectrometer, and a total integrated scatterometer. There were also three environmental monitors; an atomic oxygen monitor, solar and infrared radiometers, and two temperature-controlled quartz crystal microbalances (to monitor contamination). Measurements were performed weekly and data telemetered to ground through the Mir data system. This paper will describe the OPM thermal control design and how the thermal math models were used to analyze anomalies which occurred during the space flight mission.

  9. A PDS Archive for Observations of Mercury's Na Exosphere

    NASA Astrophysics Data System (ADS)

    Backes, C.; Cassidy, T.; Merkel, A. W.; Killen, R. M.; Potter, A. E.

    2016-12-01

    We present a data product consisting of ground-based observations of Mercury's sodium exosphere. We have amassed a sizeable dataset of several thousand spectral observations of Mercury's exosphere from the McMath-Pierce solar telescope. Over the last year, a data reduction pipeline has been developed and refined to process and reconstruct these spectral images into low resolution images of sodium D2 emission. This dataset, which extends over two decades, will provide an unprecedented opportunity to analyze the dynamics of Mercury's mid to high-latitude exospheric emissions, which have long been attributed to solar wind ion bombardment. This large archive of observations will be of great use to the Mercury science community in studying the effects of space weather on Mercury's tenuous exosphere. When completely processed, images in this dataset will show the observed spatial distribution of Na D2 in the Mercurian exosphere, have measurements of this sodium emission per pixel in units of kilorayleighs, and be available through NASA's Planetary Data System. The overall goal of the presentation will be to provide the Planetary Science community with a clear picture of what information and data this archival product will make available.

  10. Coexistence Properties of Some Predator-Prey Systems under Constant Rate Harvesting and Stocking.

    DTIC Science & Technology

    1980-08-01

    been given before for species in competition [Yodzis (1976), Reading (unpublished), Griffel (1979)). I -6- G=G (F) Fig.1 Gc FGFc Fig. 2 An we have...stocking of predator-prey systems, J. Math. Biology, to appear. 5. D. H. Griffel : Harvesting competing populations, Rocky Mountain J. of Math. 9, 87-91 (1979

  11. Everything You Need To Know about Math Homework. A Desk Reference for Students and Parents. Fourth to Sixth Grades. Scholastic Homework Reference Series.

    ERIC Educational Resources Information Center

    Zeman, Anne; Kelly, Kate

    This book is written to answer commonly asked homework questions of fourth, fifth, and sixth graders. Included are facts, charts, definitions, explanations, examples, and illustrations. Topics include ancient number systems; decimal system; math symbols; addition; subtraction; multiplication; division; fractions; estimation; averages; properties;…

  12. Evaluating the Benefits of Providing Archived Online Lectures to In-Class Math Students

    ERIC Educational Resources Information Center

    Cascaval, Radu C.; Fogler, Kethera A.; Abrams, Gene D.; Durham, Robert L.

    2008-01-01

    The present study examines the impact of a novel online video lecture archiving system on in-class students enrolled in traditional math courses at a mid-sized, primarily undergraduate, university in the West. The archiving system allows in-class students web access to complete video recordings of the actual classroom lectures, and sometimes of…

  13. Effectiveness of Intelligent Tutoring Systems: A Meta Analytic Review

    DTIC Science & Technology

    2017-02-01

    studies of peer tutoring in elementary and secondary school mathematics, reported that tutoring programs raised math test scores by an average of 0.60...programs in elementary and secondary schools. Mathes and Fuchs (1994) found an improvement of 0.36 stan- dard deviations in 11 studies of peer...per- centile. Slavin et al. analyzed evaluations carried out in math courses in both middle and high schools. They located 13 evaluations, but only

  14. Optimal Mass Transport for Statistical Estimation, Image Analysis, Information Geometry, and Control

    DTIC Science & Technology

    2017-01-10

    Metric Uncertainty for Spectral Estimation based on Nevanlinna-Pick Interpolation, (with J. Karlsson) Intern. Symp. on the Math . Theory of Networks and...Systems, Melbourne 2012. 22. Geometric tools for the estimation of structured covariances, (with L. Ning, X. Jiang) Intern. Symposium on the Math . Theory...estimation and the reversibility of stochastic processes, (with Y. Chen, J. Karlsson) Proc. Int. Symp. on Math . Theory of Networks and Syst., July

  15. Studies in the Control of Stochastic Systems

    DTIC Science & Technology

    2017-10-31

    scientists and engineers. 2. Math Awareness Months (MAM) (Every April for the past twenty-three years) Agenda: workshops each year for fifth...graders from two schools on different days, math competitions on the first Saturday of April, lectures for a broad audience, MAM declarations from city...and state. Math Competitions at three levels: 3-6 grades, 8-9 grades and 9-12 grades: the local schools, the schools in Kansas City and Topeka are

  16. Students Who Choose to Enroll in STEM Electives and Those Who Do Not: An Ex Post Facto Study on Math Self-Efficacy at a High School in Germany

    ERIC Educational Resources Information Center

    Udoaka, Vicky L.

    2017-01-01

    School systems across the United States have launched the Science, Technology, Engineering and Math recruitment initiatives to interest students in related majors and careers. While an overall interest of high school students in Science, Technology, Engineering and Math majors and careers has increased by over twenty-five percent in the past two…

  17. SOLAR COSMIC RAYS AND SOFT RADIATION OBSERVED AT 5,000,000 KILOMETERS FROM EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnoldy, R.L.; Hoffman, R.A.; Winckler, J.R.

    1960-09-01

    During the period Mar. 27 to Apr. 6, 1960, the integrating ionization chamber and Geiger counter in Pioneer V detected solar cosmic rays and some soft- radiation effects associated with a high level of solar activity. The space probe was 5 x 10/sup 6/ km from the earth, approximately in the plane of the ecliptic, and located somewhat behind the sunearth radius toward the sun. The solar activity was associated with McMath plage region 5615 and was characterized by numerous flares of all sizes, large loops and surge prominences, and strong emission over a wide range of frequencies. On Mar.more » 31 at 0800 UT, a severe geomagnetic storm began on earth accompanied by major earth-current disturbances, a complete blackout of the North Atlantic communications channel, and auroral displays. At the same time, a large Forbush decrease occurred in the galactic cosmic radiation. An intense series of balloon flights was conducted to record the counting-rate increases at high altitudes due to solar cosmic rays and auroral x rays. Explorer VII showed substantial changes in the radiation belts and detected the solar cosmic rays. The observations of Pioneer V are summarized and compared to the findings of Explorer VII for the same period. (B.O.G.)« less

  18. Think Scientifically: Science Hidden in a Storybook

    NASA Astrophysics Data System (ADS)

    Van Norden, W. M.

    2012-12-01

    The Solar Dynamics Observatory's Think Scientifically (TS) program links literacy and science in the elementary classroom through an engaging storybook format and hands-on, inquiry based activities. TS consists of three illustrated storybooks, each addressing a different solar science concept. Accompanying each book is a hands-on science lesson plan that emphasizes the concepts addressed in the book, as well as math, reading, and language arts activities. Written by teachers, the books are designed to be extremely user-friendly and easy to implement in classroom instruction. The objectives of the program are: (1) to increase time spent on science in elementary school classrooms, (2) to assist educators in implementing hands-on science activities that reinforce concepts from the book, (3) to increase teacher capacity and comfort in teaching solar concepts, (4) to increase student awareness and interest in solar topics, especially students in under-served and under-represented communities. Our program meets these objectives through the National Science Standards-based content delivered in each story, the activities provided in the books, and the accompanying training that teachers are offered through the program.; ;

  19. A Finite Difference Approximation for a Coupled System of Nonlinear Size-Structured Populations

    DTIC Science & Technology

    2000-01-01

    are available. For a classical Lotka - Volterra competition model which is represented by a system of N di erential equations, conditions on the growth...Methods Appl. Sci., 9 (1999), 1379-1391. [5] S. Ahmed, Extinction of Species in Nonautonomous Lotka - Volterra Systems, Proc. Amer. Math. Soc., 127 (1999...Walter DeGruyter, Berlin, 1995. [7] S. Ahmed and F. Montes de Oca, Extinction in Nonautonomous T -periodic Lotka - Volterra System, Appl. Math. Comput

  20. The Impact of Classroom Performance System-Based Instruction with Peer Instruction upon Student Achievement and Motivation in Eighth Grade Math Students

    ERIC Educational Resources Information Center

    Allison, Tracy Michelle Hunter

    2012-01-01

    The researcher employed two designs to address the research question for this particular study. This quasi-experimental non-equivalent control group study compared the math achievement of 92 eighth grade students who received Classroom Performance System (CPS)-based instruction using Peer Instruction (PI) to 76 eighth grade students who received…

  1. Intermediate Trends in Math and Science Partnership-Related Changes in Student Achievement with Management Information System Data

    ERIC Educational Resources Information Center

    Dimitrov, Dimiter M.

    2009-01-01

    This substudy in the evaluation design of the Math and Science Partnership (MSP) Program Evaluation examines student proficiency in mathematics and science for the MSPs' schools in terms of changes across three years (2003/04, 2004/05, and 2005/06) and relationships with MSP-related variables using Management Information System data with the…

  2. Attentional bias in math anxiety

    PubMed Central

    Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly

    2015-01-01

    Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms. PMID:26528208

  3. Changes in frontal-parietal activation and math skills performance following adaptive number sense training: Preliminary results from a pilot study

    PubMed Central

    Kesler, Shelli R.; Sheau, Kristen; Koovakkattu, Della; Reiss, Allan L.

    2011-01-01

    Number sense is believed to be critical for math development. It is putatively an implicitly learned skill and may therefore have limitations in terms of being explicitly trained, particularly in individuals with altered neurodevelopment. A case series study was conducted using an adaptive, computerized program that focused on number sense and general problem solving skills was designed to investigate training effects on performance as well as brain function in a group of children with Turner syndrome who are at risk for math difficulties and altered development of math-related brain networks. Standardized measurements of math and math-related cognitive skills as well as functional magnetic resonance imaging (fMRI) were used to assess behavioral and neurobiologic outcomes following training. Participants demonstrated significantly increased basic math skills, including number sense, and calculation as well as processing speed, cognitive flexibility and visual-spatial processing skills. With the exception of calculation, increased scores also were clinically significant (i.e. recovered) based on reliable change analysis. Participants additionally demonstrated significantly increased bilateral parietal lobe activation and decreased frontal-striatal and mesial temporal activation following the training program. These findings show proof of concept for an accessible training approach that may be potentially associated with improved number sense, math and related skills, as well as functional changes in math-related neural systems, even among individuals at risk for altered brain development. PMID:21714745

  4. A 3-Component System of Competition and Diffusion.

    DTIC Science & Technology

    1983-08-01

    assume * that the distribution of the populations are determined by competition of’ Lotka - Volterra - * Gause type and simple diffusion. Suppose ui(t,x...diffusive Lotka - Volterra system with three species can have a stable non-constant equilibrium solutions. J. Math. Biol., (in press). [7] Kishimoto, K., Mimura...M. and Yoshida, K., Stable spatlo-temporal oscillations of diffusive Lotka - Volterra systems with three or more species, to appear in J. Math. Biol

  5. The preconditioned Gauss-Seidel method faster than the SOR method

    NASA Astrophysics Data System (ADS)

    Niki, Hiroshi; Kohno, Toshiyuki; Morimoto, Munenori

    2008-09-01

    In recent years, a number of preconditioners have been applied to linear systems [A.D. Gunawardena, S.K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154-156 (1991) 123-143; T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997) 113-123; H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner (I+Smax), J. Comput. Appl. Math. 145 (2002) 373-378; H. Kotakemori, H. Niki, N. Okamoto, Accelerated iteration method for Z-matrices, J. Comput. Appl. Math. 75 (1996) 87-97; M. Usui, H. Niki, T.Kohno, Adaptive Gauss-Seidel method for linear systems, Internat. J. Comput. Math. 51(1994)119-125 [10

  6. Math and science illiteracy: Social and economic impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.L.

    1994-05-01

    Today`s highly competitive global economy is being driven by increasingly rapid technological development. This paper explores the problems of math and science illiteracy in the United States and the potential impact on our economic survival in this environment during the next century. Established educational methods that reward task performance, emphasize passive lecture, and fail to demonstrate relevance to real life are partly to blame. Social norms, stereotypes, and race and gender bias also have an impact. To address this crisis, we need to question the philosophy of an educational system that values task over concept. Many schools have already initiatedmore » programs at all grade levels to make math and science learning more relevant, stimulating, and fun. Teaching methods that integrate math and science learning with teamwork, social context, and other academic subjects promote the development of higher-order thinking skills and help students see math and science as necessary skills.« less

  7. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, D.; Espenak, F.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Jennings, D. E.

    1986-01-01

    The Sun-as-a-star was monitored using the McMath Fourier transform spectometer (FTS) on Kitt Peak in 1983. In 1985 the first measurement was made using the laser heterodyne technique. The FTS measurements now extend for three years, with errors of order 3 meters/sec at a given epoch. Over this 3 year period, a 33 meter/sec change was measured in the apparent velocity of integrated sunlight. The sense of the effect is that a greater blueshift is seen near solar minimum, which is consistent with expectations based on considering the changing morphology of solar granular convection. Presuming this effect is solar-cycle-related, it will mimic the Doppler reflex produced by a planetary companion of approximately two Jupiter masses, with an 11 year orbital period. Thus, Jupiter itself is below the threshold for detection by spectroscopic means, without an additional technique for discrimination. However, for planetary companions in shorter period orbits (P approx. 3 years) the threshold for unambiguous detection is well below one Jupiter mass.

  8. Periodic intensity variations in sulfur emissions from the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Woodward, R. Carey, Jr.; Scherb, Frank; Roesler, Fred L.

    1994-01-01

    In November and December 1988, we acquired 157 spectra of (S II) lambda 6731 emissions from the Io plasma torus with a Fabry-Perot interferometer at the McMath-Pierce Solar Telescope facility on Kitt Peak. A major goal of this experiment was to extend our earlier studies of intensity variations in the plasma torus. Our earlier analysis (F. L. Roesler, F. Scherb, and R. J. Oliversen, 1984, of (S III) lambda 9531 emission spectra acquired in April 1982 had shown that the intensity of torus emissions varied periodically with a period of 10.20 +/- 0.06 hr (1-sigma uncertainty level), slightly longer than Jupiter's System 3 rotational period of 9.925 hr. We present here an reanalysis of our 1982 data revealing, in addition to the 10.20-hr period, a clear secondary periodicity at 9.95 +/- 0.906 hr. By constrast, we show that our new (S II) lambda 6731 data have a single period of 10.14 +/- 0.03 hr. which is neither the System 3 period nor the proposed 'System 4' period of 10.224 hr.

  9. Periodic intensity variations in sulfur emissions from the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Woodward, R. Carey, Jr.; Scherb, Frank; Roesler, Fred L.; Oliversen, Ronald J.

    1994-09-01

    In November and December 1988, we acquired 157 spectra of (S II) lambda 6731 emissions from the Io plasma torus with a Fabry-Perot interferometer at the McMath-Pierce Solar Telescope facility on Kitt Peak. A major goal of this experiment was to extend our earlier studies of intensity variations in the plasma torus. Our earlier analysis (F. L. Roesler, F. Scherb, and R. J. Oliversen, 1984, of (S III) lambda 9531 emission spectra acquired in April 1982 had shown that the intensity of torus emissions varied periodically with a period of 10.20 +/- 0.06 hr (1-sigma uncertainty level), slightly longer than Jupiter's System 3 rotational period of 9.925 hr. We present here an reanalysis of our 1982 data revealing, in addition to the 10.20-hr period, a clear secondary periodicity at 9.95 +/- 0.906 hr. By constrast, we show that our new (S II) lambda 6731 data have a single period of 10.14 +/- 0.03 hr. which is neither the System 3 period nor the proposed 'System 4' period of 10.224 hr.

  10. I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    The I CAN Learn[R] Education System is an interactive, self-paced, mastery-based software system that includes the I CAN Learn[R] Fundamentals of Math (5th-6th grade math) curriculum, the I CAN Learn[R] Pre-Algebra curriculum, and the I CAN Learn[R] Algebra curriculum. College algebra credit is also available to students in participating schools…

  11. The Impact of Supplemental Education Services Program on Middle School At-Risk Learners' Math and Reading Scores

    ERIC Educational Resources Information Center

    Maxwell, June B.

    2010-01-01

    In the state of Georgia, local school systems are under pressure to increase at-risk middle school students' state scores in reading and math. At the data site, the local school system implemented a supplemental education service (SES) program for at-risk students in order to pass the Georgia Criterion Referenced Competency Test (CRCT) in reading…

  12. Improving Student Achievement in Math and Science

    NASA Technical Reports Server (NTRS)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order thinking via the incorporation of Global Learning Observations To Benefit the Environment (GLOBE), Mission to Planet Earth and the use of Geographic Imaging Systems into the K-12th grade curriculum.

  13. Positive Attitude Toward Math Supports Early Academic Success: Behavioral Evidence and Neurocognitive Mechanisms.

    PubMed

    Chen, Lang; Bae, Se Ri; Battista, Christian; Qin, Shaozheng; Chen, Tianwen; Evans, Tanya M; Menon, Vinod

    2018-03-01

    Positive attitude is thought to impact academic achievement and learning in children, but little is known about its underlying neurocognitive mechanisms. Using a large behavioral sample of 240 children, we found that positive attitude toward math uniquely predicted math achievement, even after we accounted for multiple other cognitive-affective factors. We then investigated the neural mechanisms underlying the link between positive attitude and academic achievement in two independent cohorts of children (discovery cohort: n = 47; replication cohort: n = 28) and tested competing hypotheses regarding the differential roles of affective-motivational and learning-memory systems. In both cohorts, we found that positive attitude was associated with increased engagement of the hippocampal learning-memory system. Structural equation modeling further revealed that, in both cohorts, increased hippocampal activity and more frequent use of efficient memory-based strategies mediated the relation between positive attitude and higher math achievement. Our study is the first to elucidate the neurocognitive mechanisms by which positive attitude influences learning and academic achievement.

  14. Numerical cognition is resilient to dramatic changes in early sensory experience.

    PubMed

    Kanjlia, Shipra; Feigenson, Lisa; Bedny, Marina

    2018-06-20

    Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities. Copyright © 2018. Published by Elsevier B.V.

  15. Individual differences in non-verbal number acuity correlate with maths achievement.

    PubMed

    Halberda, Justin; Mazzocco, Michèle M M; Feigenson, Lisa

    2008-10-02

    Human mathematical competence emerges from two representational systems. Competence in some domains of mathematics, such as calculus, relies on symbolic representations that are unique to humans who have undergone explicit teaching. More basic numerical intuitions are supported by an evolutionarily ancient approximate number system that is shared by adults, infants and non-human animals-these groups can all represent the approximate number of items in visual or auditory arrays without verbally counting, and use this capacity to guide everyday behaviour such as foraging. Despite the widespread nature of the approximate number system both across species and across development, it is not known whether some individuals have a more precise non-verbal 'number sense' than others. Furthermore, the extent to which this system interfaces with the formal, symbolic maths abilities that humans acquire by explicit instruction remains unknown. Here we show that there are large individual differences in the non-verbal approximation abilities of 14-year-old children, and that these individual differences in the present correlate with children's past scores on standardized maths achievement tests, extending all the way back to kindergarten. Moreover, this correlation remains significant when controlling for individual differences in other cognitive and performance factors. Our results show that individual differences in achievement in school mathematics are related to individual differences in the acuity of an evolutionarily ancient, unlearned approximate number sense. Further research will determine whether early differences in number sense acuity affect later maths learning, whether maths education enhances number sense acuity, and the extent to which tertiary factors can affect both.

  16. Foundation for the Future.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    This document describes some of the many programs sponsored by the National Science Foundation in its efforts to continue to promote systemic science and mathematics education reform. Brief descriptions of the following programs are included: (1) Interactive Math Program Restructures 9-12 Math Education; (2) Algebra I Project Sparks Citywide…

  17. Teaching Math to the Talented

    ERIC Educational Resources Information Center

    Hanushek, Eric A.; Peterson, Paul E.; Woessmann, Ludger

    2011-01-01

    Maintaining America's productivity as a nation depends importantly on developing a highly qualified cadre of scientists, engineers, entrepreneurs, and other professionals. To realize that objective requires a system of schooling that produces students with advanced math and science skills. To see how well schools in the United States do at…

  18. Nurturing The STEM Pipeline: Graduate Student Leadership In NIRCam's Ongoing E/PO Mission For JWST

    NASA Astrophysics Data System (ADS)

    Schlingman, Wayne M.; Stock, N.; Teske, J.; Tyler, K.; Biller, B.; Donley, J.; Hedden, A.; Knierman, K.; Young, P.

    2011-01-01

    The Astronomy Camp for Girl Scout Leaders is an education and public outreach (E/PO) program offered by the science team of the Near-InfraRed Camera (NIRCam) for NASA's 6.5-meter James Webb Space Telescope (JWST). Since 2003, astronomy graduate students have helped design and lead biannual "Train the Trainer” workshops for adults from the Girl Scouts of the USA (GSUSA), engaging these trainers in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. These workshops have helped revise the national GSUSA badge curriculum and directly benefitted thousands of young girls of all ages, not only in general science and math education but also in specific astronomical and technological concepts relating to JWST. To date, nine graduate students have become members of NIRCam's E/PO team. They have developed curriculum and activities used to teach concepts in stellar nucleosynthesis, lookback time, galaxy classification, etc. They have also contributed to the overall strategic approach and helped lead more general activities in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extrasolar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. The resulting experience has empowered these students to propose and to develop their own E/PO programs after graduation as postdocs and young faculty. They also continue as part of NIRCam's growing worldwide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking. NIRCam and its E/PO program are funded by NASA under contract NAS5-02105.

  19. MATH77 - A LIBRARY OF MATHEMATICAL SUBPROGRAMS FOR FORTRAN 77, RELEASE 4.0

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1994-01-01

    MATH77 is a high quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for the basic computational processes of science and engineering. The portability of MATH77 meets the needs of present-day scientists and engineers who typically use a variety of computing environments. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. Usage of the user-callable subprograms is described in 69 sections of the 416 page users' manual. The topics covered by MATH77 are indicated by the following list of chapter titles in the users' manual: Mathematical Functions, Pseudo-random Number Generation, Linear Systems of Equations and Linear Least Squares, Matrix Eigenvalues and Eigenvectors, Matrix Vector Utilities, Nonlinear Equation Solving, Curve Fitting, Table Look-Up and Interpolation, Definite Integrals (Quadrature), Ordinary Differential Equations, Minimization, Polynomial Rootfinding, Finite Fourier Transforms, Special Arithmetic , Sorting, Library Utilities, Character-based Graphics, and Statistics. Besides subprograms that are adaptations of public domain software, MATH77 contains a number of unique packages developed by the authors of MATH77. Instances of the latter type include (1) adaptive quadrature, allowing for exceptional generality in multidimensional cases, (2) the ordinary differential equations solver used in spacecraft trajectory computation for JPL missions, (3) univariate and multivariate table look-up and interpolation, allowing for "ragged" tables, and providing error estimates, and (4) univariate and multivariate derivative-propagation arithmetic. MATH77 release 4.0 is a subroutine library which has been carefully designed to be usable on any computer system that supports the full ANSI standard FORTRAN 77 language. It has been successfully implemented on a CRAY Y/MP computer running UNICOS, a UNISYS 1100 computer running EXEC 8, a DEC VAX series computer running VMS, a Sun4 series computer running SunOS, a Hewlett-Packard 720 computer running HP-UX, a Macintosh computer running MacOS, and an IBM PC compatible computer running MS-DOS. Accompanying the library is a set of 196 "demo" drivers that exercise all of the user-callable subprograms. The FORTRAN source code for MATH77 comprises 109K lines of code in 375 files with a total size of 4.5Mb. The demo drivers comprise 11K lines of code and 418K. Forty-four percent of the lines of the library code and 29% of those in the demo code are comment lines. The standard distribution medium for MATH77 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 9track 1600 BPI magnetic tape in VAX BACKUP format and a TK50 tape cartridge in VAX BACKUP format. An electronic copy of the documentation is included on the distribution media. Previous releases of MATH77 have been used over a number of years in a variety of JPL applications. MATH77 Release 4.0 was completed in 1992. MATH77 is a copyrighted work with all copyright vested in NASA.

  20. Study of Magnetic Structure in the Solar Photosphere and Chromosphere

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.; Avrett, Eugene; Nisenson, Peter; Uitenbroek, Han; vanBallegooijen, Adriaan

    1998-01-01

    This grant funded an observational and theoretical program to study the structure and dynamics of the solar photosphere and low chromosphere, and the spectral signatures that result. The overall goal is to learn about mechanisms that cause heating of the overlying atmosphere, and produce variability of solar emission in spectral regions important for astrophysics and space physics. The program exploited two new ground-based observational capabilities: one using the Swedish Solar Telescope on La Palma for very high angular resolution observations of the photospheric intensity field (granulation) and proxies of the magnetic field (G-band images); and the other using the Near Infrared Magnetograph at the McMath-Pierce Solar Facility to map the spatial variation and dynamic behavior of the solar temperature minimum region using infrared CO lines. We have interpreted these data using a variety of theoretical and modelling approaches, some developed especially for this project. Previous annual reports cover the work done up to 31 May 1997. This final report summarizes our work for the entire period, including the period of no-cost extension from 1 June 1997 through September 30 1997. In Section 2 we discuss observations and modelling of the photospheric flowfields and their consequences for heating of the overlying atmosphere, and in Section 3 we discuss imaging spectroscopy of the CO lines at 4.67 mu.

  1. How education systems shape cross-national ethnic inequality in math competence scores: Moving beyond mean differences.

    PubMed

    Spörlein, Christoph; Schlueter, Elmar

    2018-01-01

    Here we examine a conceptualization of immigrant assimilation that is based on the more general notion that distributional differences erode across generations. We explore this idea by reinvestigating the efficiency-equality trade-off hypothesis, which posits that stratified education systems educate students more efficiently at the cost of increasing inequality in overall levels of competence. In the context of ethnic inequality in math achievement, this study explores the extent to which an education system's characteristics are associated with ethnic inequality in terms of both the group means and group variances in achievement. Based on data from the 2012 PISA and mixed-effect location scale models, our analyses revealed two effects: on average, minority students had lower math scores than majority students, and minority students' scores were more concentrated at the lower end of the distribution. However, the ethnic inequality in the distribution of scores declined across generations. We did not find compelling evidence that stratified education systems increase mean differences in competency between minority and majority students. However, our analyses revealed that in countries with early educational tracking, minority students' math scores tended to cluster at the lower end of the distribution, regardless of compositional and school differences between majority and minority students.

  2. NASA Space Imaging is a Great Resource to Teach Science Topics in Professional Development Courses

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Long, T.; Edwards, S.; Ofman, L.; Brosius, J. W.; Gordon, D.; St Cyr, O. C.; Krotkov, N. A.; Fatoyinbo, T. E.

    2013-12-01

    Our multi- component project aims to develop and test NASA educational resource materials, provide training for pre- and in-service elementary school teachers in STEM disciplines needed in Washington DC area. We use physics and math in a hands-on enquiry based setting and make extensive use of imagery from NASA space missions (SDO, SOHO, STEREO) to develop instructional modules focusing on grades, PK-8. Our two years of effort culminated in developing three modules: The Sun - the nearest star Students learn about the Sun as the nearest star. Students make outdoor observations during the day and all year round. At night, they observe and record the motion of the moon and stars. Students learn these bodies move in regular and predictable ways. Electricity & Magnetism - From your classroom to the Sun Students investigate electricity and magnetism in the classroom and see large scale examples of these concepts on the Sun's surface, interplanetary space, and the Earth's magnetosphere as revealed from NASA space missions. Solar Energy The Sun is the primary source of energy for Earth's climate system. Students learn about wavelength and frequency and develop skills to do scientific inquiry, including how to use math as a tool. They use optical, UV, EUV, and X-ray images to trace out the energetic processes of the Sun. Each module includes at least one lesson plan, vocabulary, activities and children book for each grade range PK-3; 4-5; 6-8

  3. A Solution Space for a System of Null-State Partial Differential Equations: Part 3

    NASA Astrophysics Data System (ADS)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the third of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Extending these results, we prove in this article that dim and entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in , whose components we find as inner products of elements in a Temperley-Lieb algebra. We gather these vectors together as columns of a symmetric matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014; Commun Math Phys, arXiv:1405.2747, 2014) is completely rigorous.

  4. A Comparison of Online and Classroom-Based Developmental Math Courses

    ERIC Educational Resources Information Center

    Eggert, Jeanette Gibeson

    2009-01-01

    Effectiveness was operationalized as a combination of successful developmental course completion, high student satisfaction at the end of the course, and high academic achievement in a subsequent college-level math course. Instructional methodologies were similar to the extent that the instructional delivery systems allowed. With a sample size of…

  5. Searching for the Golden Model of Education: Cross-National Analysis of Math Achievement

    ERIC Educational Resources Information Center

    Bodovski, Katerina; Byun, Soo-yong; Chykina, Volha; Chung, Hee Jin

    2017-01-01

    We utilised four waves of TIMSS data in addition to the information we have collected on countries' educational systems to examine whether different degrees of standardisation, differentiation, proportion of students in private schools and governmental spending on education influence students' math achievement, its variation and socioeconomic…

  6. "Lettuce" Learn Math: Teaching Mathematics with Seeds and Centimeters

    ERIC Educational Resources Information Center

    Rickard, Laura N.; Wilson, Colette

    2006-01-01

    "Lettuce Learn Math" is an interdisciplinary program that has effectively linked a small-scale agricultural production system to a sixth-grade mathematics and science curriculum. The mathematical concepts and skills, including measurement and geometry, taught in this project met and often exceeded the standards set by New York state for…

  7. Comet C/2012 S1 (ISON): Observations of the Dust Grains from SOFIA and of the Atomic Gas from NSO Dunn and McMath-Pierce Solar Telescopes (Invited)

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Sitko, M.; Reach, W. T.; De Pater, I.; Gehrz, R. D.; Kolokolova, L.; Cochran, A. L.; McKay, A. J.; Reardon, K.; Cauzzi, G.; Tozzi, G.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.; Lisse, C. M.; Morgenthaler, J. P.; Knight, M. M.

    2013-12-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our early results. SOFIA (+FORCAST [1]) mid- to far-IR images and spectroscopy (~5-35 μm) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h≈1.18 AU). Dust characteristics, identified through the 10 μm silicate emission feature and its strength [2], as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 μm, and near 16, 19, 23.5, 27.5, and 33 μm are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) [3,4,5] and C/2001 Q4 (NEAT) [6]) to large and/or compact grains (e.g., C/2007 N4 (Lulin) [7] and C/2006 P1 (McNaught) [8]). Measurement of the crystalline peaks in contrast to the broad 10 and 20 μm amorphous silicate features yields the cometary silicate crystalline mass fraction [9], which is a benchmark for radial transport in our protoplanetary disk [10]. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals [11]. Only SOFIA can look for cometary organics in the 5-8 μm region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20--Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) [12,13] suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [O I] as a proxy for activity from water [14] (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS [15], which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB) [16], which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R~21,000, r_h<0.3 AU). Assuming survival, the intent is to target ISON over r_h<0.4 AU, characteristic of prior Na detections [12,13,17,18,19]. References: [1] Adams, J.D., et al. 2012, SPIE, 8446, 16; [2] Kelley, M.S., Wooden, D.H. 2009, PSS, 57, 1133; [3] Harker et al. 2002, ApJ, 580, 579; [4] Hayward et al. 2000, ApJ, 538, 428; [5] Hadamcik, E., Levasseur-Regourd, A.C. 2003, JQSRT, 79-80, 661; [6] Wooden, D.H. 2004, ApJL, 612, L77; [7] Woodward et al. 2011, AJ, 141, 181; [8] Kelley et al. 2010, LPSC, 41, #2375; [9] Kelley, M.S. et al. 2011, AAS, 211, 560; [10] Wooden, D.H. 2008, SSRv, 138, 75; [11] Lindsay et al. 2013, ApJ, 766, 54; [12] Preston, G. W. 1967, ApJ, 147, 718; [13] Slaughter, C.D. 1969, AJ, 74, 929; [14] McKay et al. 2012, Icarus, 222, 684; [15] Cavallini, F., 2006, Solar Phys., 236, 415; [16] Jess et al., 2010, Solar Phys, 261, 363; [17] Watanabe, J-I. et al. 2003, ApJ, 585, L159; [18] Leblanc, F. et al. 2008, A&A, 482, 293; [19] Fulle, M. et al. 2013, ApJL, 771, L21

  8. Reviews

    NASA Astrophysics Data System (ADS)

    2005-11-01

    WE RECOMMEND Joule and Watt Meter This versatile tool is aimed at low-voltage DC devices. Wireless datalogger Bluetooth enables data to be downloaded to your computer. WORTH A LOOK Amusement Park Physics This handbook contains teaching materials to excite students. Copper in the Curriculum Two free CDs cover aspects of Key Stages 3, 4 and 5. Launchpad A kit for making 25 devices that fire ping-pong balls. Solar water-heating kit This kit provides a good introduction to green energy. Solar voltaic cell The unit is ideal for Key Stages 1, 2 and 3. Wind turbine kit An impressive turbine that has many educational uses. HANDLE WITH CARE Hurdles and Strategies in the Teaching of Algebra A collection of tips that is really just for maths teachers. WEB WATCH A wealth of resources on the Internet support physics activities for students at amusement parks.

  9. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    PubMed Central

    Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID:26528210

  10. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance.

    PubMed

    Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.

  11. Classification of constraints and degrees of freedom for quadratic discrete actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhn, Philipp A., E-mail: phoehn@perimeterinstitute.ca

    2014-11-15

    We provide a comprehensive classification of constraints and degrees of freedom for variational discrete systems governed by quadratic actions. This classification is based on the different types of null vectors of the Lagrangian two-form and employs the canonical formalism developed in Dittrich and Höhn [“Constraint analysis for variational discrete systems,” J. Math. Phys. 54, 093505 (2013); e-print http://arxiv.org/abs/arXiv:1303.4294 [math-ph

  12. Students Achieve More in New York Integrated Math AB with TI Graphing Calculators and the TI-Navigator[TM] System. Case Study 3

    ERIC Educational Resources Information Center

    Morse, Dana F.

    2007-01-01

    This study took place at Skaneateles High School in Skaneateles, New York in a grade 10 Integrated Math AB course with 52 students in 3 sections using the TI-84 Plus family graphing calculators and the TI-Navigator classroom learning system with a projector and interactive whiteboard. New York State is phasing in a new curriculum that integrates…

  13. Spectroscopic planetary detection

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    1988-01-01

    One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approximately 10 meters/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar-type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this investigation is to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight are made in the near infrared (approximately 2 micrometer), using the Kitt Peak McMath Fourier transform spectrometer, with an N2O gas absorption cell for calibration. Researchers currently achieve an accuracy of approximately 5 meters/sec. Solar rotation velocities vary by plus or minus 2000 meters/sec across the solar disk, and imperfect optical integration of these velocities is the principal source of error. We have been monitoring the apparent velocity of integrated sunlight since 1983. They initially saw a decrease of approximately 30 meters/sec in the integrated light velocity from 1983 through 1985, but in 1987 to 1988 the integrated light velocity returned to its 1983 level. It is too early to say whether these changes are solar-cycle related. Although the FTS, unlike a slit spectrograph, has a large field of view, researchers are always looking for ways to improve the optical integration of the solar disk. They recently made an improvement in the method used to optically collimate the FTS, and this has reduced the error level, eliminating some systematic effects seen earlier.

  14. SIMPLIFIED CALCULATION OF SOLAR FLUX ON THE SIDE WALL OF CYLINDRICAL CAVITY SOLAR RECEIVERS

    NASA Technical Reports Server (NTRS)

    Bhandari, P.

    1994-01-01

    The Simplified Calculation of Solar Flux Distribution on the Side Wall of Cylindrical Cavity Solar Receivers program employs a simple solar flux calculation algorithm for a cylindrical cavity type solar receiver. Applications of this program include the study of solar energy, heat transfer, and space power-solar dynamics engineering. The aperture plate of the receiver is assumed to be located in the focal plane of a paraboloidal concentrator, and the geometry is assumed to be axisymmetric. The concentrator slope error is assumed to be the only surface error; it is assumed that there are no pointing or misalignment errors. Using cone optics, the contour error method is utilized to handle the slope error of the concentrator. The flux distribution on the side wall is calculated by integration of the energy incident from cones emanating from all the differential elements on the concentrator. The calculations are done for any set of dimensions and properties of the receiver and the concentrator, and account for any spillover on the aperture plate. The results of this algorithm compared excellently with those predicted by more complicated programs. Because of the utilization of axial symmetry and overall simplification, it is extremely fast. It can be easily extended to other axi-symmetric receiver geometries. The program was written in Fortran 77, compiled using a Ryan McFarland compiler, and run on an IBM PC-AT with a math coprocessor. It requires 60K of memory and has been implemented under MS-DOS 3.2.1. The program was developed in 1988.

  15. Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument

    NASA Astrophysics Data System (ADS)

    Xia, Yonghui; Huang, Zhenkun; Han, Maoan

    2007-09-01

    Certain almost periodic forced perturbed systems with piecewise argument are considered in this paper. By using the contraction mapping principle and some new analysis technique, some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution of these systems. Furthermore, we study the harmonic and subharmonic solutions of these systems. The obtained results generalize the previous known results such as [A.M. Fink, Almost Periodic Differential Equation, Lecture Notes in Math., volE 377, Springer-Verlag, Berlin, 1974; C.Y. He, Almost Periodic Differential Equations, Higher Education Press, Beijing, 1992 (in Chinese); Z.S. Lin, The existence of almost periodic solution of linear system, Acta Math. Sinica 22 (5) (1979) 515-528 (in Chinese); C.Y. He, Existence of almost periodic solutions of perturbation systems, Ann. Differential Equations 9 (2) (1992) 173-181; Y.H. Xia, M. Lin, J. Cao, The existence of almost periodic solutions of certain perturbation system, J. Math. Anal. Appl. 310 (1) (2005) 81-96]. Finally, a tangible example and its numeric simulations show the feasibility of our results, the comparison between non-perturbed system and perturbed system, the relation between systems with and without piecewise argument.

  16. Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.

    PubMed

    Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L

    2015-09-01

    A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.

  17. Radical Computing II

    DTIC Science & Technology

    1984-06-01

    A.Arays, G.V.Sibiriskov. The AVTO -ANALTZE J. Comput. Math. and Mth. Phys., v. 11, N.4, Progrn eg System. J. Comput. Math. and Cinpur. 1971, pp. 1071...1075. Mach., No.3, Kharkov, 1972. 2. S.A.Abhrmov. On Sam Algorithms for Algebraic 13. Z.A.Arays, C.V.Sibiriakov. AVTO -AALM.K. Novo- Transformstions of

  18. Math Model for Naval Ship Handling Trainer.

    ERIC Educational Resources Information Center

    Golovcsenko, Igor V.

    The report describes the math model for an experimental ship handling trainer. The training task is that of a replenishment operation at sea. The model includes equations for ship dynamics of a destroyer, propeller-engine response times, ship separation, interaction effects between supply ship and destroyer, and outputs to a visual display system.…

  19. The State of State Science Standards, 2005

    ERIC Educational Resources Information Center

    Gross, Paul R.

    2005-01-01

    Until now, the No Child Left Behind Act of 2001 (NCLB) has focused everyone's attention on reading and math--and on whether schools are making "adequate yearly progress" in those two core subjects. Although some states incorporate additional subjects into their own accountability systems, reading and math have dominated most discussions of state…

  20. Test Bank. NetNews. Volume 8, Number 1, Winter 2008

    ERIC Educational Resources Information Center

    LDA of Minnesota, 2008

    2008-01-01

    Minnesota Adult Basic Education (ABE) providers are mandated to use CASAS (Comprehensive Adult Student Assessment System) Reading or Math or TABE (Tests for Adult Basic Education) Reading or Math. This issue of "NetNews" introduces the Test Bank: a variety of informal reading, spelling, and writing assessments available for Minnesota ABE…

  1. Magic SEED? A New Approach to Teaching Math Produces Some Eye-Popping Results.

    ERIC Educational Resources Information Center

    Shore, Debra

    1991-01-01

    Project SEED is a successful program that teaches elementary school students advanced math. Specialists conduct 45-minute lessons, asking questions designed to help students discover mathematical logic. Students respond with a system of SEED hand signals which allow everyone to participate and be monitored at once. (SM)

  2. Grading A-Level Double Subject Mathematicians and the Implications for Selection.

    ERIC Educational Resources Information Center

    Newbould, Charles A.

    1981-01-01

    Test data were used to compare the grading of two forms of double mathematics: pure and applied math, and regular and advanced math. Results confirm expectations that in the former system, the grading is comparable, and in the latter, it is not necessarily comparable. Implications for student admission are discussed. (MSE)

  3. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes

    PubMed Central

    Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000

  4. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.

    PubMed

    Casad, Bettina J; Hale, Patricia; Wachs, Faye L

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.

  5. Application of nonlinear adaptive motion washout to transport ground-handling simulation

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Martin, D. J., Jr.

    1983-01-01

    The application of a nonlinear coordinated adaptive motion washout to the transport ground-handling environment is documented. Additions to both the aircraft math model and the motion washout system are discussed. The additions to the simulated-aircraft math model provided improved modeling fidelity for braking and reverse-thrust application, and the additions to the motion-base washout system allowed transition from the desired flight parameters to the less restrictive ground parameters of the washout.

  6. Mathematical models for space shuttle ground systems

    NASA Technical Reports Server (NTRS)

    Tory, E. G.

    1985-01-01

    Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.

  7. Science, Technology, Engineering and Math Readiness: Ethno-linguistic and gender differences in high-school course selection patterns

    NASA Astrophysics Data System (ADS)

    Adamuti-Trache, Maria; Sweet, Robert

    2014-03-01

    The study examines science-related course choices of high-school students in the culturally diverse schools of the province of British Columbia, Canada. The analysis employs K-12 provincial data and includes over 44,000 students born in 1990 who graduated from high school by 2009. The research sample reflects the presence of about 27% of students for whom English is not a first language. We construct an empirical model that examines ethno-linguistic and gender differences in Grade 12 course choices while accounting for personal and situational differences among students. The study employs a course selection typology that emphasizes readiness for science, technology, engineering and math fields of study. Findings indicate that math- and science-related course selection patterns are strongly associated with ethnicity, qualified not only by gender and prior math and science achievement but also by the individual's grade level at entry to the system and enrollment in English as a Second Language program. Students who are more likely to engage in math and science courses belong to Asian ethno-linguistic groups and entered the provincial school system during the senior high-school years. We suggest that ethnic diversity and broader academic exposure may play a crucial role in changing the gender composition of science classrooms, university fields of study and science-related occupations.

  8. How education systems shape cross-national ethnic inequality in math competence scores: Moving beyond mean differences

    PubMed Central

    Spörlein, Christoph

    2018-01-01

    Here we examine a conceptualization of immigrant assimilation that is based on the more general notion that distributional differences erode across generations. We explore this idea by reinvestigating the efficiency-equality trade-off hypothesis, which posits that stratified education systems educate students more efficiently at the cost of increasing inequality in overall levels of competence. In the context of ethnic inequality in math achievement, this study explores the extent to which an education system’s characteristics are associated with ethnic inequality in terms of both the group means and group variances in achievement. Based on data from the 2012 PISA and mixed-effect location scale models, our analyses revealed two effects: on average, minority students had lower math scores than majority students, and minority students’ scores were more concentrated at the lower end of the distribution. However, the ethnic inequality in the distribution of scores declined across generations. We did not find compelling evidence that stratified education systems increase mean differences in competency between minority and majority students. However, our analyses revealed that in countries with early educational tracking, minority students’ math scores tended to cluster at the lower end of the distribution, regardless of compositional and school differences between majority and minority students. PMID:29494677

  9. Exorcising the ghost of the Sputnik crisis.

    PubMed

    Kolberg, Espen Skarstein; Holt, Heidi Marie; Klevan, Ingvild

    2017-10-01

    Drug calculation is not immune to the undesirable impact of math anxiety and negative attitudes on test outcomes in nursing studies, and several studies indicate that math anxiety is present in the student population at such a degree that it is likely to interfere with these students' mathematical ability. Examining the educational system through the lens of history and adding a dash of cultural theory, a contributing cause to the math anxiety may be found in the Sputnik Crisis of the late 1950s, the ghostly remnants of which are still present in the stereotypes of mathematics promoted by mass media. In an effort to reshape the culturally conditioned attitudes which may be responsible for math anxiety, we suggest using elements from popular culture to diversify the perception and image of mathematics in drug calculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Affective and Motivational Factors Mediate the Relation between Math Skills and Use of Math in Everyday Life

    PubMed Central

    Jansen, Brenda R. J.; Schmitz, Eva A.; van der Maas, Han L. J.

    2016-01-01

    This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life. PMID:27148122

  11. The Student Voice: A Study of Learning Experiences Enriched by Mobile Technologies

    ERIC Educational Resources Information Center

    Nelson, Laura L.

    2012-01-01

    This study reports the opinions of Illinois Math and Science Academy (IMSA) students to facilitate positive change in our educational system as we prepare our students for a competitive global economy. IMSA is a recognized leader in math and science education through exemplary inquiry-based methodologies. Students need new skills for citizenship,…

  12. D.C. Student Test Scores Show Uneven Progress. Data Snapshot

    ERIC Educational Resources Information Center

    DuPre, Mary

    2011-01-01

    Over the past five years, both DC Public Schools (DCPS) and public charter schools (PCS) have seen significant growth in secondary reading and math scores on the state test known as the District of Columbia Comprehensive Assessment System (DC CAS). However, scores have not improved as much at the elementary level. Reading and math scores for DCPS…

  13. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) Structural Math Model - A1

    NASA Technical Reports Server (NTRS)

    Ely, W.

    1996-01-01

    This report presents the description for the NASTRAN finite element for the AMSU-A1 module. The purpose of this report is to document the NASTRAN bulk data deck, transmitted under separate cover. The structural Math Model is to be used by the spacecraft contractor for dynamic loads analysis.

  14. Accelerated Mathematics and High-Ability Students' Math Achievement in Grades Three and Four

    ERIC Educational Resources Information Center

    Stanley, Ashley M.

    2011-01-01

    The purpose of this study was to explore the relationship between the use of a computer-managed integrated learning system entitled Accelerated Math (AM) as a supplement to traditional mathematics instruction on achievement as measured by TerraNova achievement tests of third and fourth grade high-ability students. Gender, socioeconomic status, and…

  15. What Adds Up?: Math Enrollment and Graduation

    ERIC Educational Resources Information Center

    Utah System of Higher Education, 2015

    2015-01-01

    College students struggling to pass a college level math course required for Quantitative Literacy (QL) credit1 has been a common issue facing many institutions in higher education. In the fall of 2014, the Utah State Board of Regents solidified a statewide initiative that set goals for each of the Utah System of Higher Education institutions (UU,…

  16. Recalibrating Reference within a Dual-Space Interaction Environment

    ERIC Educational Resources Information Center

    Zemel, Alan; Koschmann, Timothy

    2013-01-01

    In this paper we examine how two groups of middle school students arrive at shared understandings of and solutions to mathematical problems. Our data consists of logs of student participation in the Virtual Math Teams (VMT) system as they work on math problems. The project supports interaction both through chat and through a virtual whiteboard. We…

  17. Math Carnival Nights (Planting the Seeds for Engineers in Elementary School)

    DTIC Science & Technology

    1992-06-01

    ONLY (Leave b:jnk) 2 .. OW’ CdATE I"bruarv 1993 I ’. . 4 TITLE AND SUSTITJI-. MATH CARNIVAL NIGFhS (Pl.ANTIN(; THE SEEDS FOR t:NGINI-2.ILS IN...CARNIVAL NIGHTS (PLANTING THE SEEDS FOR ENGINEERS IN ELEMENTARY SCHOOLft-. ... Fly Ui THERESE DOUGHERTY -,;,b.tI.. Systems Engineer Naval Command

  18. A Districtwide Study of Automaticity When Included in Concept-Based Elementary School Mathematics Instruction

    ERIC Educational Resources Information Center

    McGee, Daniel; Richardson, Patrick; Brewer, Meredith; Gonulates, Funda; Hodgson, Theodore; Weinel, Rebecca

    2017-01-01

    While conceptual understanding of properties, operations, and the base-ten number system is certainly associated with the ability to access math facts fluently, the role of math fact memorization to promote conceptual understanding remains contested. In order to gain insight into this question, this study looks at the results when one of three…

  19. Assessing the Assessment: Access to Algebra in an Era of API

    ERIC Educational Resources Information Center

    Lloyd, Jayson D.

    2010-01-01

    A high school education, which includes access to advanced math courses, has a positive effect on students. Math classes taken in high school show a relationship to higher salaries and college graduation rates. However, the high-stakes accountability system in California, redesigned in 2003 to meet the requirements of the No Child Left Behind Act…

  20. Applied Math & Science Levels Utilized in Selected Trade & Industrial Vocational Education. Final Report.

    ERIC Educational Resources Information Center

    Gray, James R.

    Research identified and evaluated the level of applied mathematics and science used in selected trade and industrial (T&I) subjects taught in the Kentucky Vocational Education System. The random sample was composed of 52 programs: 21 carpentry, 20 electricity/electronics, and 11 machine shop. The 96 math content items that were identified as…

  1. Working memory, math performance, and math anxiety.

    PubMed

    Ashcraft, Mark H; Krause, Jeremy A

    2007-04-01

    The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.

  2. Reduction of quantum systems and the local Gauss law

    NASA Astrophysics Data System (ADS)

    Stienstra, Ruben; van Suijlekom, Walter D.

    2018-05-01

    We give an operator-algebraic interpretation of the notion of an ideal generated by the unbounded operators associated with the elements of the Lie algebra of a Lie group that implements the symmetries of a quantum system. We use this interpretation to establish a link between Rieffel induction and the implementation of a local Gauss law in lattice gauge theories similar to the method discussed by Kijowski and Rudolph (J Math Phys 43:1796-1808, 2002; J Math Phys 46:032303, 2004).

  3. Mathematics anxiety: separating the math from the anxiety.

    PubMed

    Lyons, Ian M; Beilock, Sian L

    2012-09-01

    Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.

  4. Measurements of Lorentz air-broadening coefficients and relative intensities in the H2O-16 pure rotational and nu2 bands from long horizontal path atmospheric spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Goldman, Aaron; Malathy Devi, V.

    1991-01-01

    Lorentz air-broadening coefficients and relative intensities have been measured for forty-three lines in the pure rotational band and twenty lines in the nu2 band of H2O-16 between 800 and 1150/cm. The results were derived from analysis of nine 0.017/cm-resolution atmospheric absorption spectra recorded over horizontal paths of 0.5-1.5 km with the McMath Fourier transform spectrometer and main solar telescope operated on Kitt Peak by the National Solar Observatory. A nonlinear least-squares spectral fitting technique was used in the spectral analysis. The results are compared with previous measurements and calculations. In most cases, the measured pressure-broadening coefficients and intensities are significantly different from the values in the 1986 HITRAN line parameters compilation.

  5. News and Views: Kleopatra a pile of rubble, shedding moons; Did plasma flow falter to stretch solar minimum? Amateurs hit 20 million variable-star observations; Climate maths; Planetary priorities; New roles in BGA

    NASA Astrophysics Data System (ADS)

    2011-04-01

    Metallic asteroid 216 Kleopatra is shaped like a dog's bone and has two tiny moons - which came from the asteroid itself - according to a team of astronomers from France and the US, who also measured its surprisingly low density and concluded that it is a collection of rubble. The recent solar minimum was longer and lower than expected, with a low polar field and an unusually large number of days with no sunspots visible. Models of the magnetic field and plasma flow within the Sun suggest that fast, then slow meridional flow could account for this pattern. Variable stars are a significant scientific target for amateur astronomers. The American Association of Variable Star Observers runs the world's largest database of variable star observations, from volunteers, and reached 20 million observations in February.

  6. Identification and analysis of structures in the corona from X-ray photography

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.; Krieger, A. S.; Timothy, A. F.

    1973-01-01

    This paper summarizes the results of a program of rocket observations of the solar corona with grazing incidence X-ray telescopes. A series of five flights of a Kanigen-surfaced telescope with a few arc seconds resolution, together with the first flight of a newer telescope have resulted in the identification of six classes of coronal structures observable in the X-ray photographs. These are: active regions, active region interconnections, large loop structures associated with unipolar magnetic regions, coronal holes, coronal bright points, and the structures surrounding filament cavities. Two solar flares have been observed. The methods involved in deriving coronal temperature and density information from X-ray photographs are described and the analysis of a bright active region (McMath plage 11035) observed at the west limb on November 24, 1970 is presented as an example of these techniques.

  7. Measurements of air-broadened and nitrogen-broadened Lorentz width coefficients and pressure shift coefficients in the nu4 and nu2 bands of C-12H4

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    1988-01-01

    Air-broadened and N2-broadened halfwidth and pressure shift coefficients of 294 transitions in the nu4 and nu2 bands of C-12H4 have been measured from laboratory absorption spectra recorded at room temperature with the Fourier transform spectrometer in the McMath solar telescope facility of the National Solar Observatory. Total pressures of up to 551 Torr were employed with absorption paths of 5-150 cm, CH4 volume mixing ratios of 2.6 percent or less, and resolutions of 0.005 and 0.01/cm. A nonlinear least-squares spectral fitting technique has been utilized in the analysis of the twenty-five measured spectra. Lines up to J double-prime = 18 in the nu4 band and J double-prime = 15 in the nu2 band have been analyzed.

  8. Photopolarimetric Observations of CI(1657 Angstroms) and Dust Continuum Emissions from Comet Hale-Bopp with the WISP Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Harris, W. M.; Nordsieck, K. H.; Scherb, F.; Mierkiewicz, E. J.

    1997-07-01

    We report on photopolarimetric observations of resonant emission from Carbon [CI(1657 Angstroms)] and scattered solar continuum from dust at 2800 Angstroms using the Wisconsin Imaging Survey Polarimeter (WISP). The WISP is a wide field (1.5deg x 4.8deg ) sounding rocket telescope originally designed for polarimetric observations of diffuse galactic light at a 1% photometric level. We will describe the initial results of our launch on 8 April, 1997 from the White Sands Missile range, including a discussion of the images obtained, and the results from supporting visible/near-infrared measurements of gas and dust from the Burrell Schmidt telescope, and spectroscopic observations of the CI(9850 Angstroms) metastable line from the McMath Pierce Solar Telescope. This research was supported by NASA grant NAG5-5091 and NSF grant AST-9615625.

  9. Spatial but not temporal numerosity thresholds correlate with formal math skills in children.

    PubMed

    Anobile, Giovanni; Arrighi, Roberto; Castaldi, Elisa; Grassi, Eleonora; Pedonese, Lara; Moscoso, Paula A M; Burr, David C

    2018-03-01

    Humans and other animals are able to make rough estimations of quantities using what has been termed the approximate number system (ANS). Much evidence suggests that sensitivity to numerosity correlates with symbolic math capacity, leading to the suggestion that the ANS may serve as a start-up tool to develop symbolic math. Many experiments have demonstrated that numerosity perception transcends the sensory modality of stimuli and their presentation format (sequential or simultaneous), but it remains an open question whether the relationship between numerosity and math generalizes over stimulus format and modality. Here we measured precision for estimating the numerosity of clouds of dots and sequences of flashes or clicks, as well as for paired comparisons of the numerosity of clouds of dots. Our results show that in children, formal math abilities correlate positively with sensitivity for estimation and paired-comparisons of the numerosity of visual arrays of dots. However, precision of numerosity estimation for sequences of flashes or sounds did not correlate with math, although sensitivities in all estimations tasks (for sequential or simultaneous stimuli) were strongly correlated with each other. In adults, we found no significant correlations between math scores and sensitivity to any of the psychophysical tasks. Taken together these results support the existence of a generalized number sense, and go on to demonstrate an intrinsic link between mathematics and perception of spatial, but not temporal numerosity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Female teachers' math anxiety affects girls' math achievement.

    PubMed

    Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C

    2010-02-02

    People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.

  11. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    PubMed

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.

  12. Universals and Specifics of Math Self-Concept, Math Self-Efficacy, and Math Anxiety across 41 PISA 2003 Participating Countries

    ERIC Educational Resources Information Center

    Lee, Jihyun

    2009-01-01

    The overarching goal of the present study is to investigate the factorial structure of three closely related constructs: math self-concept, math self-efficacy, and math anxiety. The factorial structure consisting of three factors, each representing math self-concept, math self-efficacy, and math anxiety, is supported in all 41 countries employed…

  13. Wind energy system time-domain (WEST) analyzers

    NASA Technical Reports Server (NTRS)

    Dreier, M. E.; Hoffman, J. A.

    1981-01-01

    A portable analyzer which simulates in real time the complex nonlinear dynamics of horizontal axis wind energy systems was constructed. Math models for an aeroelastic rotor featuring nonlinear aerodynamic and inertial terms were implemented with high speed digital controllers and analog calculation. This model was combined with other math models of elastic supports, control systems, a power train and gimballed rotor kinematics. A stroboscopic display system graphically depicting distributed blade loads, motion, and other aerodynamic functions on a cathode ray tube is included. Limited correlation efforts showed good comparison between the results of this analyzer and other sophisticated digital simulations. The digital simulation results were successfully correlated with test data.

  14. The Effects of DI Flashcards and Math Racetrack on Multiplication Facts for Two Elementary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Lund, Kaitlyn; McLaughlin, T. F.; Neyman, Jen; Everson, Mary

    2012-01-01

    The purpose of this study was to evaluate the effects of a Direct Instruction (DI) flashcard system paired with a math racetrack to teach basic multiplication facts to two elementary students diagnosed with learning disabilities. The study was conducted in a resource room which served intermediate aged elementary students. The school was located…

  15. No Work Like Rework: Issues in the Design of a Math Test Sign-Up Application

    ERIC Educational Resources Information Center

    Alkadi, Ghassan; Beaubouef, Theresa

    2012-01-01

    This paper introduces a test sign-up application developed for a math department at a university. The requirements, design, and final software product are presented, along with one very important unexpected problem that arose after completion of the work--the system to be implemented and maintained by the client was not compatible with the…

  16. Do Teacher-Coaches Make the Cut? The Effectiveness of Athletic Coaches as Math and Reading Teachers

    ERIC Educational Resources Information Center

    Egalite, Anna J.; Bowen, Daniel H.; Trivitt, Julie R.

    2015-01-01

    Math and reading teachers who also coach athletics in the public school system are challenged to balance the responsibilities that come with fulfilling dual occupational roles. While many studies have examined teacher-coaches' stress levels and job perception in the context of role strain, there is no evidence of how student achievement in tested…

  17. Middle School Math Acceleration and Equitable Access to Eighth-Grade Algebra: Evidence from the Wake County Public School System

    ERIC Educational Resources Information Center

    Dougherty, Shaun M.; Goodman, Joshua S.; Hill, Darryl V.; Litke, Erica G.; Page, Lindsay C.

    2015-01-01

    Taking algebra by eighth grade is considered an important milestone on the pathway to college readiness. We highlight a collaboration to investigate one district's effort to increase middle school algebra course-taking. In 2010, the Wake County Public Schools began assigning middle school students to accelerated math and eighth-grade algebra based…

  18. Using Automatic Speech Recognition to Dictate Mathematical Expressions: The Development of the "TalkMaths" Application at Kingston University

    ERIC Educational Resources Information Center

    Wigmore, Angela; Hunter, Gordon; Pflugel, Eckhard; Denholm-Price, James; Binelli, Vincent

    2009-01-01

    Speech technology--especially automatic speech recognition--has now advanced to a level where it can be of great benefit both to able-bodied people and those with various disabilities. In this paper we describe an application "TalkMaths" which, using the output from a commonly-used conventional automatic speech recognition system,…

  19. The Uncomplicated Elementary Career Education System for the "Real" Classroom. Career Corners--Math for 7-8.

    ERIC Educational Resources Information Center

    Illinois State Office of Education, Springfield. Div. of Adult Vocational and Technical Education.

    Prepared by classroom teachers for the infusion of career education into existing curriculum, this notebook contains career-related student worksheets in a number of math skills. The activities are suitable for use with a variety of ability levels and learning styles. These worksheets for grades 7 and 8 are divided into seven major mathematics…

  20. The Use of Authentic Assessment to Report Accountability Data on Young Children's Language, Literacy and Pre-Math Competency

    ERIC Educational Resources Information Center

    Gao, Xin; Grisham-Brown, Jennifer

    2011-01-01

    This validity study examined the validity of Assessment, Evaluation, and Programming System, 2nd Edition (AEPS®), a curriculum-based, authentic assessment for infants and young children. The primary purposes were to: a) examine whether the AEPS® is a concurrently valid tool for measuring young children's language, literacy and pre-math skills for…

  1. On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies.

    PubMed

    Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L

    2016-01-01

    Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.

    PubMed

    Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A

    2015-12-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.

  3. Principals in Partnership with Math Coaches

    ERIC Educational Resources Information Center

    Grant, Catherine Miles; Davenport, Linda Ruiz

    2009-01-01

    One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…

  4. When math hurts: math anxiety predicts pain network activation in anticipation of doing math.

    PubMed

    Lyons, Ian M; Beilock, Sian L

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

  5. Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation

    PubMed Central

    Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.

    2015-01-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438

  6. Math anxiety and math performance in children: The mediating roles of working memory and math self-concept.

    PubMed

    Justicia-Galiano, M José; Martín-Puga, M Eva; Linares, Rocío; Pelegrina, Santiago

    2017-12-01

    Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. This study aimed to investigate the role of two possible mediational mechanisms between math anxiety and math performance. Specifically, we sought to test the simultaneous mediating role of working memory and math self-concept. A total of 167 children aged 8-12 years participated in this study. Children completed a set of questionnaires used to assess math and trait anxiety, math self-concept as well as measures of math fluency and math problem-solving. Teachers were asked to rate each student's math achievement. As measures of working memory, two backward span tasks were administered to the children. A series of multiple mediation analyses were conducted. Results indicated that both mediators (working memory and math self-concept) contributed to explaining the relationship between math anxiety and math achievement. Results suggest that working memory and self-concept could be worth considering when designing interventions aimed at helping students with math anxiety. Longitudinal designs could also be used to better understand the mediational mechanisms that may explain the relationship between math anxiety and math performance. © 2017 The British Psychological Society.

  7. White House Science Fair

    NASA Image and Video Library

    2014-05-27

    Crystal Brockington and Aaron Barron, both 18 years old, designed a more efficient and cost effective solar cell that harnesses energy without cadmium, which has been shown to be harmful to the environment. They were selected to participate in the White House Science Fair after they were awarded the High School Grand Prize at the Siemens We Can Change the World Challenge. The fourth White House Science Fair was held at the White House on May 27, 2014 and included 100 students from more than 30 different states who competed in science, technology, engineering, and math (STEM) competitions. (Photo Credit: NASA/Aubrey Gemignani)

  8. A Day at the Races: NREL Hosts Colorado Middle School Students With STEM Skills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lung, Linda

    Technology and imagination came together at the National Renewable Energy Laboratory on May 20 when 53 teams from 18 Colorado middle schools turned a parking lot into a raceway. The students used the technological know-how picked up in science, technology, engineering, and math (STEM) classes to design and build model electric cars. Powered either by a solar panel or a lithium-ion battery, each car competed in time trials and double elimination races. The final races, between eight cars competing in each category, were over in less than 10 seconds.

  9. Evolutionary Charts of Solar Activity (Calcium Plages) as Functions of Heliographic Longitude and Time 1964-1979

    DTIC Science & Technology

    1981-08-01

    Colorado, USA 80303 Dl tr lutiofl/ ’Availmbtty Code3 "resTso Dist Special ;:n:3: clor.. , " . ... L~’n’ rroduot. ’ ii:.’ ;;:.2 ~o j L.ck and ~ L__...proton emission. ROT. Lo McMATH REGION YEAR NO. (DEG) PLAGE CMP LAT. PROFILE ARI 1976 1639 38 14143 Mar 31 S07 14322 12 1640 46 14179 Apr 27 S08 02100 3...The greatest activity of the year 1976 occurred in the two southern regions 14143 and 14179 , in a longitude zone which has been free of any major

  10. Comet C2012 S1 (ISON): Observations of the Dust Grains From SOFIA and of the Atomic Gas From NSO Dunn and Mcmath-Pierce Solar Telescopes

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Woodward, Charles E.; Harker, David E.; Kelley, Michael S. P.; Sitko, Michael; Reach, William T.; De Pater, Imke; Gehrz, Robert D.; Kolokolova, Ludmilla; Cochran, Anita L.; hide

    2013-01-01

    Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our SOFIA (+FORCAST) mid- to far-IR images and spectroscopy (approx. 5-35 microns) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h approx. = 1.18 AU). Dust characteristics, identified through the 10 micron silicate emission feature and its strength, as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 microns, and near 16, 19, 23.5, 27.5, and 33 microns are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) to large and/or compact grains (e.g., C/2007 N4 (Lulin) and C/2006 P1 (McNaught)). Measurement of the crystalline peaks in contrast to the broad 10 and 20 micron amorphous silicate features yields the cometary silicate crystalline mass fraction, which is a benchmark for radial transport in our protoplanetary disk. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals. Only SOFIA can look for cometary organics in the 5-8 micron region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h< 0.4 AU, near Nov-20-Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [OI] as a proxy for activity from water (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS, which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB), which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R approx. 21,000, r_h<0.3 AU). Assuming survival, the intent is to target ISON over r_h<0.4 AU, characteristic of prior Na detections.

  11. Contact dynamics math model

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  12. A Temperature-Dependent Phase-Field Model for Phase Separation and Damage

    NASA Astrophysics Data System (ADS)

    Heinemann, Christian; Kraus, Christiane; Rocca, Elisabetta; Rossi, Riccarda

    2017-07-01

    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature concerning phase separation and damage processes in elastic media, in our model we encompass thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More particularly, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in Feireisl (Comput Math Appl 53:461-490, 2007) in the framework of Fourier-Navier-Stokes systems and then recently employed in Feireisl et al. (Math Methods Appl Sci 32:1345-1369, 2009) and Rocca and Rossi (Math Models Methods Appl Sci 24:1265-1341, 2014) for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.

  13. High contrast observations of bright stars with a starshade

    NASA Astrophysics Data System (ADS)

    Harness, Anthony; Cash, Webster; Warwick, Steve

    2017-11-01

    Starshades are a leading technology to enable the direct detection and spectroscopic characterization of Earth-like exoplanets. In an effort to advance starshade technology through system level demonstrations, the McMath-Pierce Solar Telescope was adapted to enable the suppression of astronomical sources with a starshade. The long baselines achievable with the heliostat provide measurements of starshade performance at a flight-like Fresnel number and resolution, aspects critical to the validation of optical models. The heliostat has provided the opportunity to perform the first astronomical observations with a starshade and has made science accessible in a unique parameter space, high contrast at moderate inner working angles. On-sky images are valuable for developing the experience and tools needed to extract science results from future starshade observations. We report on high contrast observations of nearby stars provided by a starshade. We achieve 5.6 × 10- 7 contrast at 30 arcseconds inner working angle on the star Vega and provide new photometric constraints on background stars near Vega.

  14. Measurement of math beliefs and their associations with math behaviors in college students.

    PubMed

    Hendy, Helen M; Schorschinsky, Nancy; Wade, Barbara

    2014-12-01

    Our purpose in the present study was to expand understanding of math beliefs in college students by developing 3 new psychometrically tested scales as guided by expectancy-value theory, self-efficacy theory, and health belief model. Additionally, we identified which math beliefs (and which theory) best explained variance in math behaviors and performance by college students and which students were most likely to have problematic math beliefs. Study participants included 368 college math students who completed questionnaires to report math behaviors (attending class, doing homework, reading textbooks, asking for help) and used a 5-point rating scale to indicate a variety of math beliefs. For a subset of 84 students, math professors provided final math grades. Factor analyses produced a 10-item Math Value Scale with 2 subscales (Class Devaluation, No Future Value), a 7-item single-dimension Math Confidence Scale, and an 11-item Math Barriers Scale with 2 subscales (Math Anxiety, Discouraging Words). Hierarchical multiple regression revealed that high levels of the newly discovered class devaluation belief (guided by expectancy-value theory) were most consistently associated with poor math behaviors in college students, with high math anxiety (guided by health belief model) and low math confidence (guided by self-efficacy theory) also found to be significant. Analyses of covariance revealed that younger and male students were at increased risk for class devaluation and older students were at increased risk for poor math confidence. (c) 2014 APA, all rights reserved.

  15. When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math

    PubMed Central

    Lyons, Ian M.; Beilock, Sian L.

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929

  16. A latent profile analysis of math achievement, numerosity, and math anxiety in twins

    PubMed Central

    Hart, Sara A.; Logan, Jessica A.R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.

    2015-01-01

    Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity and math anxiety. Latent profile analysis indicated five groupings of individuals representing different patterns of math achievement, numerosity and math anxiety, coupled with differing degrees of familial transmission. These results suggest that there may be distinct profiles of math achievement, numerosity and anxiety; particularly for students who struggle in math. PMID:26957650

  17. A latent profile analysis of math achievement, numerosity, and math anxiety in twins.

    PubMed

    Hart, Sara A; Logan, Jessica A R; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A

    2016-02-01

    Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity and math anxiety. Latent profile analysis indicated five groupings of individuals representing different patterns of math achievement, numerosity and math anxiety, coupled with differing degrees of familial transmission. These results suggest that there may be distinct profiles of math achievement, numerosity and anxiety; particularly for students who struggle in math.

  18. Effective pedagogies for teaching math to nursing students: a literature review.

    PubMed

    Hunter Revell, Susan M; McCurry, Mary K

    2013-11-01

    Improving mathematical competency and problem-solving skills in undergraduate nursing students has been an enduring challenge for nurse educators. A number of teaching strategies have been used to address this problem with varying degrees of success. This paper discusses a literature review which examined undergraduate nursing student challenges to learning math, methods used to teach math and problem-solving skills, and the use of innovative pedagogies for teaching. The literature was searched using the Cumulative Index of Nursing and Allied Health Literature and Education Resource Information Center databases. Key search terms included: math*, nurs*, nursing student, calculation, technology, medication administration, challenges, problem-solving, personal response system, clickers, computer and multi-media. Studies included in the review were published in English from 1990 to 2011. Results support four major themes which include: student challenges to learning, traditional pedagogies, curriculum strategies, and technology and integrative methods as pedagogy. The review concludes that there is a need for more innovative pedagogical strategies for teaching math to student nurses. Nurse educators in particular play a central role in helping students learn the conceptual basis, as well as practical hands-on methods, to problem solving and math competency. It is recommended that an integrated approach inclusive of technology will benefit students through better performance, increased understanding, and improved student satisfaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness. REL 2015-096

    ERIC Educational Resources Information Center

    Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal

    2015-01-01

    The Effects of the Elevate Math summer program on math achievement and algebra readiness: This randomized trial examined the effects of the Elevate Math summer program on math achievement and algebra readiness, as well as math interest and self-efficacy, among rising 8th grade students in California's Silicon Valley. The Elevate Math summer math…

  20. Line parameters of methanol (CH3OH) at 10 microns

    NASA Astrophysics Data System (ADS)

    Lees, R. M.; Xu, L.-H.; Wang, P.; Brown, L. R.; Kleiner, I.; Johns, J. W. C.

    2003-05-01

    Laboratory spectra of methanol have been measured at high resolution and analyzed to provide spectroscopic information required for astrophysics and solar system studies. Line positions and quantum assignments have been obtained using spectra recorded at 0.002 cm-1 resolution using a modified Bomem DA3,002 spectrometer. Line intensities have been retrieved using laboratory scans from the McMath-Pierce Fourier-transform spectrometer located at the National Solar Observatory. The 10 micron region methanol absorption arises mainly from the fundamental CO-stretch mode (nu8) at 1033 cm-1, along with occasional transitions perturbed in the region by several nearby interacting states of the methyl rock (nu7), methyl bends (nu5, nu10, nu4) and the OH-bending (nu6) in combination with the torsion (nu12). Overall, the nu8 CO-stretch mode follows the traditional torsion-rotational pattern. We modeled the line positions and intensities for the CO-stretch mode with the one-dimensional torsional Hamiltonian and produced a HITRAN line list for cometary studies. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. RML and LHXu wish to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. IK would like to thank the French Programme National de Planétologie (PNP) for funding this research.

  1. Memorizing Is Not a Dirty Word: What Should a Mathematics Teacher Know to Use It Effectively in Teaching and Learning Mathematics?

    ERIC Educational Resources Information Center

    Sharma, Mahesh C.

    1985-01-01

    This bulletin concerns the role of memorization in mathematics instruction. Sections of the bulletin are devoted to discussions of: old math vs. new math; the importance of memorization ability on mathematics learning; misconceptions about memory; how to enhance the memory, including short-term vs. long-term memory systems, attention, interest,…

  2. The Job Assessment Software System (JASS) and a Strategy for Integrating Output into the Improved Performance Research Integration Tool (IMPRINT)

    DTIC Science & Technology

    2018-01-01

    4.2 Listen to a news broadcast during a dinner conversation 5.5 Study for a math exam in a house of noisy, young children Selective Attention Is...news broadcast during a dinner conversation 5.5 Study for a math exam in a house of noisy, young children Is information about location

  3. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students

    ERIC Educational Resources Information Center

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L.

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend…

  4. Teacher Factors Associated with Innovative Curriculum Goals and Pedagogical Practices: Differences between Extensive and Non-Extensive ICT-Using Science Teachers

    ERIC Educational Resources Information Center

    Voogt, J.

    2010-01-01

    Second Information Technology in Education Study (SITES) 2006 was an international study about pedagogical practices and the use of information and communication technology (ICT) in math and science classrooms. One of the findings of SITES 2006 was that--across educational systems--a proportion of the math and science teachers in the 22 countries…

  5. Differences in Reading and Math Achievement among Students Who Are Hispanic, Limited English Proficient, or White: A Multi-Year Study

    ERIC Educational Resources Information Center

    Rojas-LeBouef, Ana M.

    2010-01-01

    Purpose. The purpose of this study was to examine differences in academic achievement among students who were Hispanic, Limited English Proficient (LEP), or White, using archival data from the Texas Education Agency's (TEA) Academic Excellence Indicator System (AEIS). Data examined were fifth grade reading and math passing rates from the 1993…

  6. "Four and Twenty Blackbirds": How Transcoding Ability Mediates the Relationship between Visuospatial Working Memory and Math in a Language with Inversion

    ERIC Educational Resources Information Center

    van der Ven, Sanne H. G.; Klaiber, Jonathan D.; van der Maas, Han L. J.

    2017-01-01

    Writing down spoken number words (transcoding) is an ability that is predictive of math performance and related to working memory ability. We analysed these relationships in a large sample of over 25,000 children, from kindergarten to the end of primary school, who solved transcoding items with a computer adaptive system. Furthermore, we…

  7. Math and numeracy in young adults with spina bifida and hydrocephalus.

    PubMed

    Dennis, Maureen; Barnes, Marcia

    2002-01-01

    The developmental stability of poor math skill was studied in 31 young adults with spina bifida and hydrocephalus (SBH), a neurodevelopmental disorder involving malformations of the brain and spinal cord. Longitudinally, individuals with poor math problem solving as children grew into adults with poor problem solving and limited functional numeracy. As a group, young adults with SBH had poor computation accuracy, computation speed, problem solving, a ndfunctional numeracy. Computation accuracy was related to a supporting cognitive system (working memory for numbers), and functional numeracy was related to one medical history variable (number of lifetime shunt revisions). Adult functional numeracy, but not functional literacy, was predictive of higher levels of social, personal, and community independence.

  8. Space shuttle plume/simulation application: Results and math model supersonic data

    NASA Technical Reports Server (NTRS)

    Boyle, W.; Conine, B.; Bell, G.

    1979-01-01

    The analysis of pressure and gage wind tunnel data from space shuttle wind tunnel test IA138 was performed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes on the total vehicles, elements, and components of the space shuttle vehicle during the supersonic portion of ascent flight. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach numbers from 1.55 to 2.5.

  9. Identifying Maths Anxiety in Student Nurses and Focusing Remedial Work

    ERIC Educational Resources Information Center

    Bull, Heather

    2009-01-01

    Maths anxiety interferes with maths cognition and thereby increases the risk of maths errors. To initiate strategies for preventing anxiety-related errors progressing into nursing practice, this study explored the hypothesis that student nurses experience high maths anxiety in association with poor maths performance, and that high maths anxiety is…

  10. Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement

    PubMed Central

    Wu, Sarah S.; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod

    2012-01-01

    Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children. PMID:22701105

  11. Math anxiety in second and third graders and its relation to mathematics achievement.

    PubMed

    Wu, Sarah S; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod

    2012-01-01

    Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children.

  12. Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.

    PubMed

    Buelow, Melissa T; Frakey, Laura L

    2013-06-01

    Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.

  13. Constraints on Mercury's Na Exosphere: Combined MESSENGER and Ground-Based Data

    NASA Technical Reports Server (NTRS)

    Mouawad, Nelly; Burger, Matthew H.; Killen, Rosemary M.; Potter, Andrew E.; McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Benna, Mehdi; Naidu, Shantanu

    2010-01-01

    We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury's sodium exosphere, The distribution of sodium in Mercury's exosphere during the period January 12-15. 2008. was mapped using the McMath-Pierce solar telescope with the 5" X 5" image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury's anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD. but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization, We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 x 10(exp 6) sq cm/s, The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.

  14. Self-Regulation and Math Attitudes: Effects on Academic Performance in Developmental Math Courses at a Community College

    ERIC Educational Resources Information Center

    Otts, Cynthia D.

    2010-01-01

    The purpose of the study was to investigate the relationship among math attitudes, self-regulated learning, and course outcomes in developmental math. Math attitudes involved perceived usefulness of math and math anxiety. Self-regulated learning represented the ability of students to control cognitive, metacognitive, and behavioral aspects of…

  15. College Math Assessment: SAT Scores vs. College Math Placement Scores

    ERIC Educational Resources Information Center

    Foley-Peres, Kathleen; Poirier, Dawn

    2008-01-01

    Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…

  16. Mathematical learning instruction and teacher motivation factors affecting science technology engineering and math (STEM) major choices in 4-year colleges and universities: Multilevel structural equation modeling

    NASA Astrophysics Data System (ADS)

    Lee, Ahlam

    2011-12-01

    Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students should receive all possible opportunities to use computers to enhance their math self-efficacy, be encouraged to review math materials, and concentrate on listening to math teachers' lectures. While all selected math-learning activities should be embraced in math instruction, computer and individual-based learning activities, which reflect student-driven learning, should be emphasized in the high school instruction. Likewise, students should be encouraged to frequently engage in individual-based learning activities to improve their math performance.

  17. Is math anxiety in the secondary classroom limiting physics mastery? A study of math anxiety and physics performance

    NASA Astrophysics Data System (ADS)

    Mercer, Gary J.

    This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.

  18. Line Bisector Variations in Stars with Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Povich, M. S.; Giampapa, M. S.; Valenti, J. A.; Tilleman, T.

    1999-12-01

    We present the results from a high-resolution, synoptic spectroscopic program of observation of ten F- and G-type stars, seven of which exhibit periodic radial velocity variations attributed to the presence of one or more substellar companions. The observations were obtained from 1998 March to 1999 February using the 1.52-m NSO McMath-Pierce Solar Telescope Facility on Kitt Peak in conjunction with the solar-stellar spectrograph. The spectra were acquired with a resolving power of approximately 1.2 x 105. The line bisector was then derived from unblended photospheric features. In particular, we define the velocity displacement of the spectral line bisector and determine the bisector amplitude for the Fe I absorption line at 625.26 nm in order to search for variations in the line asymmetry over time. Such variations could mimic Doppler shifts in observations with lower spectral resolution. Examination of the bisector velocity displacement over the time span of our observations reveals no substantial difference between stars with planetary companions and those without reported companions. We find no correlation between the bisector variations and the orbital phase of a substellar companion in any of our target stars. Simulations of a periodic signal with noise levels based on our measurement errors suggest that we can exclude bisector variations with amplitudes greater than about 20 m s-1. These results support the conclusion that extrasolar planets best explain the observed periodic variations in radial velocity. This work was supported by a NASA grant to the NOAO under the auspices of the Origins of Solar Systems Program. MP gratefully acknowledges support from the NSF-sponsored Research Experience for Undergraduates (REU) program at the NOAO. The NOAO is operated by AURA, Inc., under a cooperative agreement with the NSF.

  19. Math practice and its influence on math skills and executive functions in adolescents with mild to borderline intellectual disability.

    PubMed

    Jansen, Brenda R J; De Lange, Eva; Van der Molen, Mariët J

    2013-05-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an MBID-sample using computerized math training. Also, it was investigated whether EF and math performance were related and whether computerized math training had beneficial effects on EF. The sample consisted of a total of 58 adolescents (12-15 years) from special education. Participants were randomly assigned to either the experimental group or a treatment as usual (TAU) group. In the experimental condition, participants received 5 weeks of training. Math performance and EF were assessed before and after the training period. Math performance improved equally in both groups. However, frequently practicing participants improved more than participants in the control group. Visuo-spatial memory skills were positively related to addition and subtraction skills. Transfer effects from math training to EF were absent. It is concluded that math skills may increase if a reasonable effort in practicing math skills is made. The relation between visuo-spatial memory skills provides opportunities for improving math performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Math anxiety in Thai early adolescents: a cognitive-behavioral perspective.

    PubMed

    Wangsiriwech, Tawatchai; Pisitsungkagarn, Kullaya; Jarukasemthawee, Somboon

    2017-08-29

    With its high prevalence and debilitating impact on students, math anxiety is well studied within the educational context. However, the problem has yet to be examined from the psychological perspective, which is necessary in order to produce a more comprehensive perspective and to pave the way for therapeutic intervention. The current study, therefore, was conducted to identify cognitive and behavioral factors relevant to the occurrence and maintenance of math anxiety. Data were collected from 300 grade 9 students (150 females and 150 males) from public and private schools in Bangkok, Thailand. Participants responded to the measures of math anxiety, negative math beliefs, negative math appraisals and math avoidance. Structural equation modeling was conducted. Model fit indices obtained consistently suggested the good fitness of the model to the data [e.g. χ2/df = 0.42, root mean square error of approximation (RMSEA) = 0.00]. Negative math beliefs, negative math appraisals and math avoidance had a significant direct effect on math anxiety. Additionally, the indirect effect of negative math appraisal was observed between negative math beliefs and math anxiety. In summary, the proposed model accounted for 84.5% of the variance in the anxiety. The findings are discussed with particular focus on implications for therapeutic intervention for math anxiety.

  1. Does Math Self-Efficacy Mediate the Effect of the Perceived Classroom Environment on Standardized Math Test Performance?

    ERIC Educational Resources Information Center

    Fast, Lisa A.; Lewis, James L.; Bryant, Michael J.; Bocian, Kathleen A.; Cardullo, Richard A.; Rettig, Michael; Hammond, Kimberly A.

    2010-01-01

    We examined the effect of the perceived classroom environment on math self-efficacy and the effect of math self-efficacy on standardized math test performance. Upper elementary school students (N = 1,163) provided self-reports of their perceived math self-efficacy and the degree to which their math classroom environment was mastery oriented,…

  2. The role of expressive writing in math anxiety.

    PubMed

    Park, Daeun; Ramirez, Gerardo; Beilock, Sian L

    2014-06-01

    Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Middle school students' attitudes toward math and STEM career interests: A 4-year follow-up study

    NASA Astrophysics Data System (ADS)

    Schneider, Madalyn R.

    The purpose of the current study is to examine middle school students' attitudes toward math, intent to pursue STEM-related education and occupations, and STEM interest from middle school to high school. The data used in this study are from a larger, on-going National Science Foundation (NSF) grant-funded study that is investigating middle school students' disengagement while using the Assistments system (Baker, Heffernan & San Pedro, 2012), a computer-based math tutoring system. The NSF grant study aims to explore how disengagement with STEM material can aid in the prediction of students' college enrollment as well as how it may interact with other factors affecting students' career choices (San Pedro, Baker, Bowers, Heffernan, 2013). Participants are students from urban and suburban schools in Massachusetts measured first in middle school and again four years later. Measures at Time 1 included: various items related to attitudes toward mathematics, occupations they could see themselves doing as adults, and the Brief Self-Control Scale (Tangney, Baumeister, & Luzio Boone, 2004). Measures at Time 2 included: items requesting the students' current mathematics and science courses and intended majors or occupations following high school graduation. Exploratory factor analysis, multiple regression and logistic regression analyses were used to test the following four hypotheses: I. There will be several distinct factors that emerge to provide information about middle school students' attitudes toward math; II. Students' attitudes toward math will correlate positively and significantly with students' intent to pursue STEM-related careers at Time 1 with a medium effect; III. Middle school attitudes toward mathematics will relate positively and significantly to level of high school mathematics and science courses with a medium effect; IV. Middle school intent to pursue STEM will correlate positively and significantly with high school intent to pursue STEM majors/careers with a medium effect. Results supported a 2-factor model of Attitudes toward Mathematics consisting of Math Self-Concept and Attitudes toward Assistments. Other significant findings include: a positive relationship between students' Attitudes toward Assistments and level of math class taken in high school; a positive relationship between students' Math Self-Concept and Self Control; a positive relationship between Self Control and students' endorsement of STEM careers while in middle school, and discrepancy between male and female students' endorsement of STEM careers as early as middle school. Although many of the study's primary hypotheses were not supported, the present study provides a framework and baseline for several important considerations. Limitations, including those related to the present study's small sample size, and future implications of the present study, which add to career development literature in STEM, are discussed in regard to both research and practice. Keywords: career development, middle school, attitudes, math, STEM, self-concept

  4. Approximate number and approximate time discrimination each correlate with school math abilities in young children.

    PubMed

    Odic, Darko; Lisboa, Juan Valle; Eisinger, Robert; Olivera, Magdalena Gonzalez; Maiche, Alejandro; Halberda, Justin

    2016-01-01

    What is the relationship between our intuitive sense of number (e.g., when estimating how many marbles are in a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational neuroscience has suggested that our representations of approximate number, time, and spatial extent are fundamentally linked and constitute a "generalized magnitude system". But, the shared behavioral and neural signatures between number, time, and space may alternatively be due to similar encoding and decision-making processes, rather than due to shared domain-general representations. In this study, we investigate the relationship between approximate number and time in a large sample of 6-8 year-old children in Uruguay by examining how individual differences in the precision of number and time estimation correlate with school mathematics performance. Over four testing days, each child completed an approximate number discrimination task, an approximate time discrimination task, a digit span task, and a large battery of symbolic math tests. We replicate previous reports showing that symbolic math abilities correlate with approximate number precision and extend those findings by showing that math abilities also correlate with approximate time precision. But, contrary to approximate number and time sharing common representations, we find that each of these dimensions uniquely correlates with formal math: approximate number correlates more strongly with formal math compared to time and continues to correlate with math even when precision in time and individual differences in working memory are controlled for. These results suggest that there are important differences in the mental representations of approximate number and approximate time and further clarify the relationship between quantity representations and mathematics. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Preventing the storm from gathering? A case study of the California State University Math and Science Teacher Initiative

    NASA Astrophysics Data System (ADS)

    Moss, Kirran Jane

    This study was performed on the initial systemwide response by the California State University (CSU) to California's Math and Science Teacher Initiative (CMSTI). The data collected tracked, measured, and reported the scope and range of recruitment and programmatic strategies developed and implemented among the first cohort of campuses funded with MSTI dollars with the intent to attract and increase the number of mathematic and science teachers produced. These findings suggest that the California State University Math and Science Teacher Initiative displays early signs of system effectiveness. These data collected indicate that MSTI funds have resulted in an increased number of diverse credentialing pathways being introduced that may operate to attract and recruit increased numbers of candidates into the math and science credentialing programs. Additionally, findings produced indicate that MSTI funds have resulted in new relationships being established with local Community Colleges, an increase in hybrid online subject-matter courses being offered, and new strategies that expedite the credentialing process.

  6. Neurobiological Underpinnings of Math and Reading Learning Disabilities

    PubMed Central

    Ashkenazi, Sarit; Black, Jessica M.; Abrams, Daniel A.; Hoeft, Fumiko; Menon, Vinod

    2013-01-01

    The primary goal of this review is to highlight current research and theories describing the neurobiological basis of math (MD), reading (RD), and comorbid math and reading disability (MD+RD). We first describe the unique brain and cognitive processes involved in acquisition of math and reading skills, emphasizing similarities and differences in each domain. Next we review functional imaging studies of MD and RD in children, integrating relevant theories from experimental psychology and cognitive neuroscience to characterize the functional neuroanatomy of cognitive dysfunction in MD and RD. We then review recent research on the anatomical correlates of MD and RD. Converging evidence from morphometry and tractography studies are presented to highlight distinct patterns of white matter pathways which are disrupted in MD and RD. Finally, we examine how the intersection of MD and RD provides a unique opportunity to clarify the unique and shared brain systems which adversely impact learning and skill acquisition in MD and RD, and point out important areas for future work on comorbid learning disabilities. PMID:23572008

  7. Math anxiety and its relationship with basic arithmetic skills among primary school children.

    PubMed

    Sorvo, Riikka; Koponen, Tuire; Viholainen, Helena; Aro, Tuija; Räikkönen, Eija; Peura, Pilvi; Dowker, Ann; Aro, Mikko

    2017-09-01

    Children have been found to report and demonstrate math anxiety as early as the first grade. However, previous results concerning the relationship between math anxiety and performance are contradictory, with some studies establishing a correlation between them while others do not. These contradictory results might be related to varying operationalizations of math anxiety. In this study, we aimed to examine the prevalence of math anxiety and its relationship with basic arithmetic skills in primary school children, with explicit focus on two aspects of math anxiety: anxiety about failure in mathematics and anxiety in math-related situations. The participants comprised 1,327 children at grades 2-5. Math anxiety was assessed using six items, and basic arithmetic skills were assessed using three assessment tasks. Around one-third of the participants reported anxiety about being unable to do math, one-fifth about having to answer teachers' questions, and one tenth about having to do math. Confirmatory factor analysis indicated that anxiety about math-related situations and anxiety about failure in mathematics are separable aspects of math anxiety. Structural equation modelling suggested that anxiety about math-related situations was more strongly associated with arithmetic fluency than anxiety about failure. Anxiety about math-related situations was most common among second graders and least common among fifth graders. As math anxiety, particularly about math-related situations, was related to arithmetic fluency even as early as the second grade, children's negative feelings and math anxiety should be identified and addressed from the early primary school years. © 2017 The British Psychological Society.

  8. Enjoying mathematics or feeling competent in mathematics? Reciprocal effects on mathematics achievement and perceived math effort expenditure.

    PubMed

    Pinxten, Maarten; Marsh, Herbert W; De Fraine, Bieke; Van Den Noortgate, Wim; Van Damme, Jan

    2014-03-01

    The multidimensionality of the academic self-concept in terms of domain specificity has been well established in previous studies, whereas its multidimensionality in terms of motivational functions (the so-called affect-competence separation) needs further examination. This study aims at exploring differential effects of enjoyment and competence beliefs on two external validity criteria in the field of mathematics. Data analysed in this study were part of a large-scale longitudinal research project. Following a five-wave design, math enjoyment, math competence beliefs, math achievement, and perceived math effort expenditure measures were repeatedly collected from a cohort of 4,724 pupils in Grades 3-7. Confirmatory factor analysis (CFA) was used to test the internal factor structure of the math self-concept. Additionally, a series of nested models was tested using structural equation modelling to examine longitudinal reciprocal interrelations between math competence beliefs and math enjoyment on the one hand and math achievement and perceived math effort expenditure on the other. Our results showed that CFA models with separate factors for math enjoyment and math competence beliefs fit the data substantially better than models without it. Furthermore, differential relationships between both constructs and the two educational outcomes were observed. Math competence beliefs had positive effects on math achievement and negative effects on perceived math effort expenditure. Math enjoyment had (mild) positive effects on subsequent perceived effort expenditure and math competence beliefs. This study provides further support for the affect-competence separation. Theoretical issues regarding adequate conceptualization and practical consequences for practitioners are discussed. © 2013 The British Psychological Society.

  9. Neural correlates of math anxiety - an overview and implications.

    PubMed

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.

  10. Neural correlates of math anxiety – an overview and implications

    PubMed Central

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824

  11. The Sum of All Fears: The Effects of Math Anxiety on Math Achievement in Fifth Grade Students and the Implications for School Counselors

    ERIC Educational Resources Information Center

    Ruff, Sarah E.; Boes, Susan R.

    2014-01-01

    Low math achievement is a recurring weakness in many students. Math anxiety is a persistent and significant theme to math avoidance and low achievement. Causes for math anxiety include social, cognitive, and academic factors. Interventions to reduce math anxiety are limited as they exclude the expert skills of professional school counselors to…

  12. A Study of Perceptions of Math Mindset, Math Anxiety, and View of Math by Young Adults

    ERIC Educational Resources Information Center

    Hocker, Tami

    2017-01-01

    This study's purpose was to determine whether instruction in growth math mindset led to change in perceptions of 18-22-year-old at-risk students in math mindset, math anxiety, and view of math. The experimental curriculum was created by the researcher with the guidance of experts in mathematics and education and focused on the impact of brain…

  13. Errors in Multi-Digit Arithmetic and Behavioral Inattention in Children With Math Difficulties

    PubMed Central

    Raghubar, Kimberly; Cirino, Paul; Barnes, Marcia; Ewing-Cobbs, Linda; Fletcher, Jack; Fuchs, Lynn

    2009-01-01

    Errors in written multi-digit computation were investigated in children with math difficulties. Third-and fourth-grade children (n = 291) with coexisting math and reading difficulties, math difficulties, reading difficulties, or no learning difficulties were compared. A second analysis compared those with severe math learning difficulties, low average achievement in math, and no learning difficulties. Math fact errors were related to the severity of the math difficulties, not to reading status. Contrary to predictions, children with poorer reading, regardless of math achievement, committed more visually based errors. Operation switch errors were not systematically related to group membership. Teacher ratings of behavioral inattention were related to accuracy, math fact errors, and procedural bugs. The findings are discussed with respect to hypotheses about the cognitive origins of arithmetic errors and in relation to current discussions about how to conceptualize math disabilities. PMID:19380494

  14. Effects of methylphenidate on acute math performance in children with attention-deficit hyperactivity disorder.

    PubMed

    Grizenko, Natalie; Cai, Emmy; Jolicoeur, Claude; Ter-Stepanian, Mariam; Joober, Ridha

    2013-11-01

    Examine the short-term (acute) effects of methylphenidate (MPH) on math performance in children with attention-deficit hyperactivity disorder (ADHD) and what factors predict improvement in math performance. One hundred ninety-eight children with ADHD participated in a double-blind, placebo-controlled, randomized crossover MPH trial. Math response to MPH was determined through administration of math problems adjusted to their academic level during the Restricted Academic Situation Scale (RASS). Student t tests were conducted to assess change in math performance with psychostimulants. Correlation between change on the RASS and change on the math performance was also examined. Linear regression was performed to determine predictor variables. Children with ADHD improved significantly in their math with MPH (P < 0.001). The degree of improvement on the RASS (which evaluates motor activity and orientation to task) and on math performance on MPH was highly correlated. A child's age at baseline and Wechsler Individual Achievement Test (WIAT)-Numerical Operations standard scores at baseline accounted for 15% of variances for acute math improvement. MPH improves acute math performance in children with ADHD. Younger children with lower math scores (as assessed by the WIAT) improved most on math scores when given psychostimulants. NCT00483106.

  15. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.

    1990-01-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  16. Near IR observations of Quiet Chromosphere

    NASA Astrophysics Data System (ADS)

    Prasad Choudhary, Debi; Deng, N.; Tejamoortula, U.; Penn, M. J.

    2009-05-01

    We have carried out the observations of quiet solar limb during April 29 to May 1, 2008, March 9-13, 2009 using the vertical spectrograph at the focal plane of McMath-Pierce telescope at Kitt Peak National Observatory. The solar limb was mostly featureless during the observations. The New Infrared Array (NAC) at the exit port of the spectrograph has been used to record the limb spectrum at HeI 1083.0 nm, Hydrogen Paschen beta at 1281.8 nm and Brackett gamma 2165.5 nm wavelength regions. The NAC is a 1024 x 1024 InSb Alladin III Detector operating over 1-5 micron range with high density sampling at 0.018 arc second/pixel. The all-reflective optical train minimizes number of surfaces and eliminates ghosts leading to low scatter, ghost-free optics. The close-cycle cryogenic provides a stable cooling environment over six hour period with an accuracy of about 0.01K leading to low dark current. The low read out noise combined with low scattered light and dark current makes NAC an ideal detector for making high quality infrared spectral observations of solar limb. In this presentation, we shall compare the line parameters of these lines around the solar disk. Acknowledgements: This work is supported by NSF under grant ATM 05-48952 and by NASA under grant NNX08AQ32G.

  17. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik; Bannon, Erika; Bower, Chad

    2009-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system.. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat being rejected by a radiator. Coupon level tests were performed to test the feasibility of the technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios during a mission profile for Altair Lunar Lander. This paper summarizes results from coupon level tests as well as thermal math models developed to investigate how electrochromics can be used to provide the largest turn down ratio for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  18. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    NASA Technical Reports Server (NTRS)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan

    2010-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  19. Absolute wind velocities in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.; Mumma, Michael J.; Kostiuk, Theodor; Deming, Drake; Espenak, Fred; Zipoy, David

    1991-01-01

    NASA's IR Telescope Facility and the McMath Solar Telescope have yielded absolute wind velocities in the Venus thermosphere for December 1985 to March 1987 with sufficient spatial resolution for circulation model discrimination. A qualitative analysis of beam-integrated winds indicates subsolar-to-antisolar circulation in the lower thermosphere; horizontal wind velocity was derived from a two-parameter model wind field of subsolar-antisolar and zonal components. A unique model fit common to all observing periods possessed 120 m/sec subsolar-antisolar and 25 m/sec zonal retrograde components, consistent with the Bougher et al. (1986, 1988) hydrodynamical models for 110 km.

  20. Math anxiety and exposure to statistics in messages about genetically modified foods: effects of numeracy, math self-efficacy, and form of presentation.

    PubMed

    Silk, Kami J; Parrott, Roxanne L

    2014-01-01

    Health risks are often communicated to the lay public in statistical formats even though low math skills, or innumeracy, have been found to be prevalent among lay individuals. Although numeracy has been a topic of much research investigation, the role of math self-efficacy and math anxiety on health and risk communication processing has received scant attention from health communication researchers. To advance theoretical and applied understanding regarding health message processing, the authors consider the role of math anxiety, including the effects of math self-efficacy, numeracy, and form of presenting statistics on math anxiety, and the potential effects for comprehension, yielding, and behavioral intentions. The authors also examine math anxiety in a health risk context through an evaluation of the effects of exposure to a message about genetically modified foods on levels of math anxiety. Participants (N = 323) were randomly assigned to read a message that varied the presentation of statistical evidence about potential risks associated with genetically modified foods. Findings reveal that exposure increased levels of math anxiety, with increases in math anxiety limiting yielding. Moreover, math anxiety impaired comprehension but was mediated by perceivers' math confidence and skills. Last, math anxiety facilitated behavioral intentions. Participants who received a text-based message with percentages were more likely to yield than participants who received either a bar graph with percentages or a combined form. Implications are discussed as they relate to math competence and its role in processing health and risk messages.

  1. Motivation and Math Anxiety for Ability Grouped College Math Students

    ERIC Educational Resources Information Center

    Helming, Luralyn

    2013-01-01

    The author studied how math anxiety, motivation, and ability group interact to affect performance in college math courses. This clarified the effects of math anxiety and ability grouping on performance. It clarified the interrelationships between math anxiety, motivation, and ability grouping by considering them in a single analysis. It introduces…

  2. All Students Need Advanced Mathematics. Math Works

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  3. Math Anxiety, Working Memory, and Math Achievement in Early Elementary School

    ERIC Educational Resources Information Center

    Ramirez, Gerardo; Gunderson, Elizabeth A.; Levine, Susan C.; Beilock, Sian L.

    2013-01-01

    Although math anxiety is associated with poor mathematical knowledge and low course grades (Ashcraft & Krause, 2007), research establishing a connection between math anxiety and math achievement has generally been conducted with young adults, ignoring the emergence of math anxiety in young children. In the current study, we explored whether…

  4. A Real Fear

    ERIC Educational Resources Information Center

    Ruffins, Paul

    2007-01-01

    For years, mainstream thinking about math anxiety assumed that people fear math because they are bad at it. However, a growing body of research shows a much more complicated relationship between math ability and anxiety. It is true that people who fear math have a tendency to avoid math-related classes, which decreases their math competence.…

  5. Math Anxiety Is Related to Some, but Not All, Experiences with Math

    PubMed Central

    O'Leary, Krystle; Fitzpatrick, Cheryll L.; Hallett, Darcy

    2017-01-01

    Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not. PMID:29375410

  6. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School

    PubMed Central

    Daches Cohen, Lital; Rubinsten, Orly

    2017-01-01

    Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother’s math anxiety and maternal behaviors (environmental factors); (b) children’s arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed. PMID:29180973

  7. Math Anxiety Is Related to Some, but Not All, Experiences with Math.

    PubMed

    O'Leary, Krystle; Fitzpatrick, Cheryll L; Hallett, Darcy

    2017-01-01

    Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.

  8. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School.

    PubMed

    Daches Cohen, Lital; Rubinsten, Orly

    2017-01-01

    Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother's math anxiety and maternal behaviors (environmental factors); (b) children's arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children's math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers' attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children's skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.

  9. Neurocognitive and Behavioral Predictors of Math Performance in Children with and without ADHD

    PubMed Central

    Antonini, Tanya N.; O’Brien, Kathleen M.; Narad, Megan E.; Langberg, Joshua M.; Tamm, Leanne; Epstein, Jeff N.

    2014-01-01

    Objective: This study examined neurocognitive and behavioral predictors of math performance in children with and without attention-deficit/hyperactivity disorder (ADHD). Method: Neurocognitive and behavioral variables were examined as predictors of 1) standardized mathematics achievement scores,2) productivity on an analog math task, and 3) accuracy on an analog math task. Results: Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the Attentional Network Task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Conclusion: Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. PMID:24071774

  10. Neurocognitive and Behavioral Predictors of Math Performance in Children With and Without ADHD.

    PubMed

    Antonini, Tanya N; Kingery, Kathleen M; Narad, Megan E; Langberg, Joshua M; Tamm, Leanne; Epstein, Jeffery N

    2016-02-01

    This study examined neurocognitive and behavioral predictors of math performance in children with and without ADHD. Neurocognitive and behavioral variables were examined as predictors of (a) standardized mathematics achievement scores, (b) productivity on an analog math task, and (c) accuracy on an analog math task. Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the attentional network task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. © The Author(s) 2013.

  11. Math-gender stereotypes in elementary school children.

    PubMed

    Cvencek, Dario; Meltzoff, Andrew N; Greenwald, Anthony G

    2011-01-01

    A total of 247 American children between 6 and 10 years of age (126 girls and 121 boys) completed Implicit Association Tests and explicit self-report measures assessing the association of (a) me with male (gender identity), (b) male with math (math-gender stereotype), and (c) me with math (math self-concept). Two findings emerged. First, as early as second grade, the children demonstrated the American cultural stereotype that math is for boys on both implicit and explicit measures. Second, elementary school boys identified with math more strongly than did girls on both implicit and self-report measures. The findings suggest that the math-gender stereotype is acquired early and influences emerging math self-concepts prior to ages at which there are actual differences in math achievement. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  12. Classroom Observations: Documenting Shifts in Instruction for Districtwide Improvement. Formative Evaluation Cycle Report for the Math in Common Initiative, Volume 2

    ERIC Educational Resources Information Center

    Perry, Rebecca R.; Seago, Nanette M.; Burr, Elizabeth; Broek, Marie; Finkelstein, Neal D.

    2015-01-01

    Math in Common® (MiC) is a five-year initiative that supports a formal network of 10 California school districts as they implement the Common Core State Standards in Mathematics (CCSS-M) across grades K-8. This research brief explores how best to select or develop and use classroom observation systems in order to document instructional shifts and…

  13. Nonlinear Wave Propagation

    DTIC Science & Technology

    1984-09-01

    Asymptotic Results for a Model Equation for Low Reynolds Number Flow, SIAM J. Appi. Math., 35, July 1978. 3. A. S. Yokes : Group Theoretical Aspects of...Quadratic and Cubic Invariants in’ Classical Mechanics, J. Math. Anal. Appl.,’ 74, 342, (1980). 5. A. S. Pokas , P. A. Lagerstrom: On the Use of Lie...Mathematical Methods in Hydrodynamics and %Integrability in Dynamical System, pp. 237-241. 24. 14. J. Ablovitz and A. S. Pokas : A Direct Linearization

  14. NASA Lewis' IITA K-12 Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center's Information Infrastructure Technology and Applications for Kindergarten to 12th Grade (IITA K-12) Program is designed to introduce into school systems computing and communications technology that benefits math and science studies. By incorporating this technology into K-12 curriculums, we hope to increase the proficiency and interest in math and science subjects by K-12 students so that they continue to study technical subjects after their high school careers are over.

  15. Number-specific and general cognitive markers of preschoolers' math ability profiles.

    PubMed

    Gray, Sarah A; Reeve, Robert A

    2016-07-01

    Different number-specific and general cognitive markers have been claimed to underlie preschoolers' math ability. It is unclear, however, whether similar/different cognitive markers, or combinations of them, are associated with different patterns of emerging math abilities (i.e., different patterns of strength and weakness). To examine this question, 103 preschoolers (40-60 months of age) completed six math tasks (count sequence, object counting, give a number, naming numbers, ordinal relations, and arithmetic), three number-specific markers of math ability (dot enumeration, magnitude comparison, and spontaneous focusing on numerosity), and four general markers (working memory, response inhibition, attention, and vocabulary). A three-step latent profile modeling procedure identified five math ability profiles that differed in their patterns of math strengths and weaknesses; specifically, the profiles were characterized by (a) excellent math ability on all math tasks, (b) good arithmetic ability, (c) good math ability but relatively poor count sequence recitation ability, (d) average ability on all math tasks, and (e) poor ability on all math tasks. After controlling for age, only dot enumeration and spontaneous focusing on numerosity were associated with the math ability profiles, whereas vocabulary was also marginally significant, and these markers were differentially associated with different profiles; that is, different cognitive markers were associated with different patterns of strengths and weaknesses in math abilities. Findings are discussed in terms of their implications for the development of math cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Fluid-line math model

    NASA Technical Reports Server (NTRS)

    Kandelman, A.; Nelson, D. J.

    1977-01-01

    Simplified mathematical model simulates large hydraulic systems on either analog or digital computers. Models of pumps, servoactuators, reservoirs, accumulators, and valves are connected generating systems containing six hundred elements.

  17. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety

    PubMed Central

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed. PMID:27788235

  18. The role of early language abilities on math skills among Chinese children.

    PubMed

    Zhang, Juan; Fan, Xitao; Cheung, Sum Kwing; Meng, Yaxuan; Cai, Zhihui; Hu, Bi Ying

    2017-01-01

    The present study investigated the role of early language abilities in the development of math skills among Chinese K-3 students. About 2000 children in China, who were on average aged 6 years, were assessed for both informal math (e.g., basic number concepts such as counting objects) and formal math (calculations including addition and subtraction) skills, language abilities and nonverbal intelligence. Correlation analysis showed that language abilities were more strongly associated with informal than formal math skills, and regression analyses revealed that children's language abilities could uniquely predict both informal and formal math skills with age, gender, and nonverbal intelligence controlled. Mediation analyses demonstrated that the relationship between children's language abilities and formal math skills was partially mediated by informal math skills. The current findings indicate 1) Children's language abilities are of strong predictive values for both informal and formal math skills; 2) Language abilities impacts formal math skills partially through the mediation of informal math skills.

  19. The role of early language abilities on math skills among Chinese children

    PubMed Central

    Fan, Xitao; Cheung, Sum Kwing; Cai, Zhihui; Hu, Bi Ying

    2017-01-01

    Background The present study investigated the role of early language abilities in the development of math skills among Chinese K-3 students. About 2000 children in China, who were on average aged 6 years, were assessed for both informal math (e.g., basic number concepts such as counting objects) and formal math (calculations including addition and subtraction) skills, language abilities and nonverbal intelligence. Methodology Correlation analysis showed that language abilities were more strongly associated with informal than formal math skills, and regression analyses revealed that children’s language abilities could uniquely predict both informal and formal math skills with age, gender, and nonverbal intelligence controlled. Mediation analyses demonstrated that the relationship between children’s language abilities and formal math skills was partially mediated by informal math skills. Results The current findings indicate 1) Children’s language abilities are of strong predictive values for both informal and formal math skills; 2) Language abilities impacts formal math skills partially through the mediation of informal math skills. PMID:28749950

  20. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    PubMed

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  1. Nurses' maths: researching a practical approach.

    PubMed

    Wilson, Ann

    To compare a new practical maths test with a written maths test. The tests were undertaken by qualified nurses training for intravenous drug administration, a skill dependent on maths accuracy. The literature showed that the higher education institutes (HEIs) that provide nurse training use traditional maths tests, a practical way of testing maths had not been described. Fifty five nurses undertook two maths tests based on intravenous drug calculations. One was a traditional written test. The second was a new type of test using a simulated clinical environment. All participants were also interviewed one week later to ascertain their thoughts and feelings about the tests. There was a significant improvement in maths test scores for those nurses who took the practical maths test first. It is suggested that this is because it improved their conceptualisation skills and thus helped them to achieve accuracy in their calculations. Written maths tests are not the best way to help and support nurses in acquiring and improving their maths skills and should be replaced by a more practical approach.

  2. Parametric studies and orbital analysis for an electric orbit transfer vehicle space flight demonstration

    NASA Astrophysics Data System (ADS)

    Avila, Edward R.

    The Electric Insertion Transfer Experiment (ELITE) is an Air Force Advanced Technology Transition Demonstration which is being executed as a cooperative Research and Development Agreement between the Phillips Lab and TRW. The objective is to build, test, and fly a solar-electric orbit transfer and orbit maneuvering vehicle, as a precursor to an operational electric orbit transfer vehicle (EOTV). This paper surveys some of the analysis tools used to do parametric studies and discusses the study results. The primary analysis tool was the Electric Vehicle Analyzer (EVA) developed by the Phillips Lab and modified by The Aerospace Corporation. It uses a simple orbit averaging approach to model low-thrust transfer performance, and runs in a PC environment. The assumptions used in deriving the EVA math model are presented. This tool and others surveyed were used to size the solar array power required for the spacecraft, and develop a baseline mission profile that meets the requirements of the ELITE mission.

  3. Reciprocal Relations among Motivational Frameworks, Math Anxiety, and Math Achievement in Early Elementary School

    ERIC Educational Resources Information Center

    Gunderson, Elizabeth A.; Park, Daeun; Maloney, Erin A.; Beilock, Sian L.; Levine, Susan C.

    2018-01-01

    School-entry math achievement is a strong predictor of math achievement through high school. We asked whether reciprocal relations among math achievement, math anxiety, and entity motivational frameworks (believing that ability is fixed and a focus on performance) can help explain these persistent individual differences. We assessed 1st and 2nd…

  4. A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins

    ERIC Educational Resources Information Center

    Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.

    2016-01-01

    Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…

  5. Singapore Math: Problem-Solving Secrets from the World's Math Leader

    ERIC Educational Resources Information Center

    Hogan, Bob

    2005-01-01

    Using this four CD-ROM disc set, teachers can have their very own math problem solving mentor as a leading expert in Singapore Math guides them through a lively presentation, working through math problems and explaining how Singapore has become the world's leading method in math. The expert's explanation of how to use Singapore's model-drawing…

  6. A Longitudinal Analysis of Sex Differences in Math and Spatial Skills in Primary School Age Children

    ERIC Educational Resources Information Center

    Lachance, Jennifer A.; Mazzocco, Michele M. M.

    2006-01-01

    We report on a longitudinal study designed to assess possible sex differences in math achievement, math ability, and math-related tasks during the primary school age years. Participants included over 200 children from one public school district. Annual assessments included measures of math ability, math calculation achievement scores, rapid naming…

  7. Math at home adds up to achievement in school.

    PubMed

    Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L

    2015-10-09

    With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.

  8. Upward Bound: An Untapped Fountain Of Youth Wanting To Learn About Math And Science

    NASA Astrophysics Data System (ADS)

    Gillis-Davis, J. J.; Sherman, S. B.; Gillis-Davis, L. C.; Svelling, K. L.

    2009-12-01

    We developed a two-phased curricula aimed at high school students in Hawaii’s Upward Bound (UB) programs. The course, called “Tour Through the Solar System”, was tested in the summer 2008-2009 programs of two of the four Hawaii UB programs. Authorized by Congress in 1965, UB is a federal program funded by the U.S. Department of Education to serve students underrepresented in higher education. Students enrolled in UB are predominantly low income, or from families in which neither parent holds a bachelor’s degree. UB programs make a measurable improvement in retaining high school students in the education pipeline in part by using innovative educational and outreach programs to spark students’ interest in learning while building academic self-confidence. Curricula developed for UB are sustainable because there are 964 programs in the United States, and U territories. Education and outreach products can be presented at regional and national meetings, which directors of the UB programs attend. Broad regulations and varied instruction formats allow curriculum developers a flexible and creative framework for developing classes. For instance, regulations stipulate that programs must provide participants with academic instruction in mathematics, laboratory sciences, composition, literature, and foreign languages in preparation for college entrance. UB meets these guidelines through school-year academic activities and a six-week summer school program. In designing our curricula the primary goals were to help students learn how to learn and encourage them to develop an interest in the fields of science, technology, engineering and math using NASA planetary data sets in a Problem-Based Learning (PBL) environment. Our focus on planetary science stems from our familiarity with the data sets, our view that NASA data sets are a naturally inspirational tool to engage high school students, and its cross-disciplinary character: encompassing geology, chemistry, astronomy, physics, math, and engineering. In addition, learning science through inquiry and experimentation lends tangible examples to abstract principles. Our curricula (available on-line for sharing) are comprised of (1) modular classroom lesson plans, (2) teacher tutorials, and (3) hands-on laboratory experiments. Each set of summer classes has a theme; the first set of summer classes centered on factors that affect climate on any planet. For example, students measured solar activity by counting sunspots and learned about the greenhouse effect by conducting experiments with colored bottles. The second summer focused on how the electromagnetic spectrum is fundamental to remote sensing. During our summer 2009 program the Lunar Reconnaissance Orbiter launched, and with its many instruments served as a shining example of how the electromagnetic spectrum is used to study planetary bodies. Thus, NASA archived and student-collected data sets used in a PBL setting provide the basic foundation for helping students learn science and math concepts, while the UB programs ensure sustainability by providing a fountain of youth who want to learn.

  9. Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math-anxiety.

    PubMed

    Mattarella-Micke, Andrew; Mateo, Jill; Kozak, Megan N; Foster, Katherine; Beilock, Sian L

    2011-08-01

    In the current study, we explored how a person's physiological arousal relates to their performance in a challenging math situation as a function of individual differences in working memory (WM) capacity and math-anxiety. Participants completed demanding math problems before and after which salivary cortisol, an index of arousal, was measured. The performance of lower WM individuals did not depend on cortisol concentration or math-anxiety. For higher WM individuals high in math-anxiety, the higher their concentration of salivary cortisol following the math task, the worse their performance. In contrast, for higher WM individuals lower in math-anxiety, the higher their salivary cortisol concentrations, the better their performance. For individuals who have the capacity to perform at a high-level (higher WMs), whether physiological arousal will lead an individual to choke or thrive depends on math-anxiety. 2011 APA, all rights reserved

  10. Math Anxiety and Math Ability in Early Primary School Years.

    PubMed

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2009-06-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa-contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development.

  11. Promotive and Corrosive Factors in African American Students' Math Beliefs and Achievement.

    PubMed

    Diemer, Matthew A; Marchand, Aixa D; McKellar, Sarah E; Malanchuk, Oksana

    2016-06-01

    Framed by expectancy-value theory (which posits that beliefs about and the subjective valuation of a domain predict achievement and decision-making in that domain), this study examined the relationships among teacher differential treatment and relevant math instruction on African American students' self-concept of math ability, math task value, and math achievement. These questions were examined by applying structural equation modeling to 618 African American youth (45.6 % female) followed from 7th to 11th grade in the Maryland Adolescent Development in Context Study. While controlling for gender and prior math achievement, relevant math instruction promoted and teacher differential treatment corroded students' math beliefs and achievement over time. Further, teacher discrimination undermined students' perceptions of their teachers, a mediating process under-examined in previous inquiry. These findings suggest policy and practice levers to narrow opportunity gaps, as well as foster math achievement and science, technology, engineering and math success.

  12. Math Anxiety and Math Ability in Early Primary School Years

    PubMed Central

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2010-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa—contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development. PMID:20401159

  13. Research on an expert system for database operation of simulation-emulation math models. Volume 1, Phase 1: Results

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G. O.; Schaffer, J. D.; Hsieh, B. J.; Padalkar, S.; Rodriguez-Moscoso, J. J.

    1985-01-01

    The results of the first phase of Research on an Expert System for Database Operation of Simulation/Emulation Math Models, is described. Techniques from artificial intelligence (AI) were to bear on task domains of interest to NASA Marshall Space Flight Center. One such domain is simulation of spacecraft attitude control systems. Two related software systems were developed to and delivered to NASA. One was a generic simulation model for spacecraft attitude control, written in FORTRAN. The second was an expert system which understands the usage of a class of spacecraft attitude control simulation software and can assist the user in running the software. This NASA Expert Simulation System (NESS), written in LISP, contains general knowledge about digital simulation, specific knowledge about the simulation software, and self knowledge.

  14. Citizen CATE: Evaluating Outcomes of a Solar Eclipse Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Penn, M. J.; Haden, C.

    2017-12-01

    On August 21, 2017, a total solar eclipse will be visible along a path of totality from Oregon to South Carolina. The Citizen Continental-America Telescopic Eclipse Experiment (CATE) will use scientists, students and volunteers to take images of the solar corona using 68 identical telescopes, software and instrument packages along the 2,500-mile path of totality. CATE partners include National Solar Observatory scientists, university faculty and students, high school students, and professional and amateur astronomers. NASA funded CATE educational components including training undergraduates and volunteers on solar imaging software and equipment. The National Science Foundation and corporations including DayStar, MathWorks, Celestron and ColorMaker funded equipment. Undergraduates participated in summer research experiences to build their capacity for gathering eclipse data, and subsequently trained volunteers across the U.S. Aligned to NASA education goals, CATE goals range from providing an authentic research experience for students and lifelong learners, to making state-of-the-art solar coronal observations, to increasing scientific literacy of the public. While project investigators are examining the wealth of scientific data that will come from CATE, evaluators are examining impacts on participants. Through mixed methods, evaluators are examining outcomes related to changes in volunteers' knowledge, skills and attitudes. Additionally, the study will examine how citizen science astronomy using CATE equipment will continue after the eclipse to sustain project impacts. Preliminary findings for undergraduates indicate that they are gaining knowledge and skills related to studying solar coronal phenomena, conducting rigorous scientific research, and interfacing with the public to conduct outreach. Preliminary findings for citizen scientists indicate a high level of engagement in the research, and that they are gaining new knowledge and skills related to solar science and eclipses. Volunteers also reported learning a great deal about safety while observing the Sun. This evaluation study will add to the body of knowledge about the effectiveness and utility of citizen science programs. Findings will be updated with data collected during and immediately after the eclipse events.

  15. The Influence of Experiencing Success in Math on Math Anxiety, Perceived Math Competence, and Math Performance

    ERIC Educational Resources Information Center

    Jansen, Brenda R. J.; Louwerse, Jolien; Straatemeier, Marthe; Van der Ven, Sanne H. G.; Klinkenberg, Sharon; Van der Maas, Han L. J.

    2013-01-01

    It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a computer-adaptive program. A total of 207 children (grades 3-6)…

  16. Math Practice and Its Influence on Math Skills and Executive Functions in Adolescents with Mild to Borderline Intellectual Disability

    ERIC Educational Resources Information Center

    Jansen, Brenda R. J.; De Lange, Eva; Van der Molen, Mariet J.

    2013-01-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an…

  17. Students' Mathematics Self-Efficacy, Anxiety, and Course Level at a Community College

    ERIC Educational Resources Information Center

    Spaniol, Scott R.

    2017-01-01

    Research suggests that student success in mathematics is positively correlated to math self-efficacy and negatively correlated to math anxiety. At a Hispanic serving community college in the Midwest, developmental math students had a lower pass rate than did college-level math students, but the role of math self-efficacy and math anxiety on these…

  18. Turning Negatives into Positives: The Role of an Instructional Math Course on Preservice Teachers' Math Beliefs

    ERIC Educational Resources Information Center

    Looney, Lisa; Perry, David; Steck, Andy

    2017-01-01

    Teachers' beliefs about mathematics can play a role in their teaching effectiveness (Bandura, 1993). Negative attitudes toward math (e.g., math anxiety) or low self-efficacy beliefs for teaching math can act as barriers to the teaching process, impacting the achievement and math beliefs of students (Beilock, Gunderson, Ramirez, & Levine, 2010;…

  19. On the Leaky Math Pipeline: Comparing Implicit Math-Gender Stereotypes and Math Withdrawal in Female and Male Children and Adolescents

    ERIC Educational Resources Information Center

    Steffens, Melanie C.; Jelenec, Petra; Noack, Peter

    2010-01-01

    Many models assume that habitual human behavior is guided by spontaneous, automatic, or implicit processes rather than by deliberate, rule-based, or explicit processes. Thus, math-ability self-concepts and math performance could be related to implicit math-gender stereotypes in addition to explicit stereotypes. Two studies assessed at what age…

  20. Three brief assessments of math achievement.

    PubMed

    Steiner, Eric T; Ashcraft, Mark H

    2012-12-01

    Because of wide disparities in college students' math knowledge-that is, their math achievement-studies of cognitive processing in math tasks also need to assess their individual level of math achievement. For many research settings, however, using existing math achievement tests is either too costly or too time consuming. To solve this dilemma, we present three brief tests of math achievement here, two drawn from the Wide Range Achievement Test and one composed of noncopyrighted items. All three correlated substantially with the full achievement test and with math anxiety, our original focus, and all show acceptable to excellent reliability. When lengthy testing is not feasible, one of these brief tests can be substituted.

  1. Mathematics achievement and anxiety and their relation to internalizing and externalizing behaviors.

    PubMed

    Wu, Sarah S; Willcutt, Erik G; Escovar, Emily; Menon, Vinod

    2014-01-01

    Although behavioral difficulties are well documented in reading disabilities, little is known about the relationship between math ability and internalizing and externalizing behaviors. Here, we use standardized measures to investigate the relation among early math ability, math anxiety, and internalizing and externalizing behaviors in a group of 366 second and third graders. Math achievement was significantly correlated with attentional difficulties and social problems but not with internalizing symptoms. The relation between math achievement and externalizing behavioral problems was stronger in girls than in boys. Math achievement was not correlated with trait anxiety but was negatively correlated with math anxiety. Critically, math anxiety differed significantly between children classified as math learning disabled (MLD), low achieving (LA), and typically developing (TD), with math anxiety significantly higher in the MLD and LA groups compared to the TD group. Our findings suggest that, even in nonclinical samples, math difficulties at the earliest stages of formal math learning are associated with attentional difficulties and domain-specific anxiety. These findings underscore the need for further examination of the shared cognitive, neural, and genetic influences underlying problem solving and nonverbal learning difficulties and accompanying internalizing and externalizing behaviors. © Hammill Institute on Disabilities 2013.

  2. Mathematics Achievement and Anxiety and Their Relation to Internalizing and Externalizing Behaviors

    PubMed Central

    Wu, Sarah S.; Willcutt, Erik G.; Escovar, Emily; Menon, Vinod

    2013-01-01

    Although behavioral difficulties are well documented in reading disabilities, little is known about the relationship between math ability and internalizing and externalizing behaviors. Here, we use standardized measures to investigate the relation among early math ability, math anxiety, and internalizing and externalizing behaviors in a group of 366 second and third graders. Math achievement was significantly correlated with attentional difficulties and social problems but not with internalizing symptoms. The relation between math achievement and externalizing behavioral problems was stronger in girls than in boys. Math achievement was not correlated with trait anxiety but was negatively correlated with math anxiety. Critically, math anxiety differed significantly between children classified as math learning disabled (MLD), low achieving (LA), and typically developing (TD), with math anxiety significantly higher in the MLD and LA groups compared to the TD group. Our findings suggest that, even in nonclinical samples, math difficulties at the earliest stages of formal math learning are associated with attentional difficulties and domain-specific anxiety. These findings underscore the need for further examination of the shared cognitive, neural, and genetic influences underlying problem solving and nonverbal learning difficulties and accompanying internalizing and externalizing behaviors. PMID:23313869

  3. The ABCs of Math: A Genetic Analysis of Mathematics and Its Links With Reading Ability and General Cognitive Ability

    PubMed Central

    Hart, Sara A.; Petrill, Stephen A.; Thompson, Lee A.; Plomin, Robert

    2009-01-01

    The goal of this first major report from the Western Reserve Reading Project Math component is to explore the etiology of the relationship among tester-administered measures of mathematics ability, reading ability, and general cognitive ability. Data are available on 314 pairs of monozygotic and same-sex dizygotic twins analyzed across 5 waves of assessment. Univariate analyses provide a range of estimates of genetic (h2 = .00 –.63) and shared (c2 = .15–.52) environmental influences across math calculation, fluency, and problem solving measures. Multivariate analyses indicate genetic overlap between math problem solving with general cognitive ability and reading decoding, whereas math fluency shares significant genetic overlap with reading fluency and general cognitive ability. Further, math fluency has unique genetic influences. In general, math ability has shared environmental overlap with general cognitive ability and decoding. These results indicate that aspects of math that include problem solving have different genetic and environmental influences than math calculation. Moreover, math fluency, a timed measure of calculation, is the only measured math ability with unique genetic influences. PMID:20157630

  4. A Quantitative Examination of Title I and Non-Title I Elementary Schools in District 8 of North Alabama Using Fourth Grade Math and Reading Standardized Test Results

    ERIC Educational Resources Information Center

    Headen, Renee Ashley

    2014-01-01

    The purpose of this study was to determine if there is a difference over time on standardized test scores for reading and math between fourth grade students attending Title I and Non-Title I schools in three select school systems within District 8 of North Alabama. In an effort to determine if Title I schools are successfully closing the…

  5. Longitudinal Study of Career Cluster Persistence from 8th Grade to 12th Grade with a Focus on the Science, Technology, Engineering, & Math Career Cluster

    NASA Astrophysics Data System (ADS)

    Wagner, Judson

    Today's technology driven global economy has put pressure on the American education system to produce more students who are prepared for careers in Science, Technology, Engineering, and Math (STEM). Adding to this pressure is the demand for a more diverse workforce that can stimulate the development of new ideas and innovation. This in turn requires more female and under represented minority groups to pursue future careers in STEM. Though STEM careers include many of the highest paid professionals, school systems are dealing with exceptionally high numbers of students, especially female and under represented minorities, who begin but do not persist to STEM degree completion. Using the Expectancy-Value Theory (EVT) framework that attributes student motivation to a combination of intrinsic, utility, and attainment values, this study analyzed readily available survey data to gauge students' career related values. These values were indirectly investigated through a longitudinal approach, spanning five years, on the predictive nature of 8 th grade survey-derived recommendations for students to pursue a future in a particular career cluster. Using logistic regression analysis, it was determined that this 8 th grade data, particularly in STEM, provides significantly high probabilities of a 12th grader's average grade, SAT-Math score, the math and science elective courses they take, and most importantly, interest in the same career cluster.

  6. An Investigation of Boys' and Girls' Emotional Experience of Math, Their Math Performance, and the Relation between These Variables

    ERIC Educational Resources Information Center

    Erturan, Selin; Jansen, Brenda

    2015-01-01

    Gender differences in children's emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages 7-15 years). In Study 2, perceived math…

  7. Trajectories of Self-Perceived Math Ability, Utility Value and Interest across Middle School as Predictors of High School Math Performance

    ERIC Educational Resources Information Center

    Petersen, Jennifer Lee; Hyde, Janet Shibley

    2017-01-01

    Although many studies have documented developmental change in mathematics motivation, little is known about how these trends predict math performance. A sample of 288 participants from the United States reported their perceived math ability, math utility value and math interest in 5th, 7th and 9th grades. Latent growth curve models estimated…

  8. A longitudinal analysis of sex differences in math and spatial skills in primary school age children☆

    PubMed Central

    Lachance, Jennifer A.; Mazzocco, Michèle M.M.

    2009-01-01

    We report on a longitudinal study designed to assess possible sex differences in math achievement, math ability, and math-related tasks during the primary school age years. Participants included over 200 children from one public school district. Annual assessments included measures of math ability, math calculation achievement scores, rapid naming and decoding tasks, visual perception tests, visual motor tasks, and reading skills. During select years of the study we also administered tests of counting and math facts skills. We examined whether girls or boys were overrepresented among the bottom or top performers on any of these tasks, relative to their peers, and whether growth rates or predictors of math-related skills differed for boys and girls. Our findings support the notion that sex differences in math are minimal or nonexistent on standardized psychometric tests routinely given in assessments of primary school age children. There was no persistent finding suggesting a male or female advantage in math performance overall, during any single year of the study, or in any one area of math or spatial skills. Growth rates for all skills, and early correlates of later math performance, were comparable for boys and girls. The findings fail to support either persistent or emerging sex differences on non-specialized math ability measures during the primary school age years. PMID:20463851

  9. Apollo oxygen tank stratification analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Barton, J. E.; Patterson, H. W.

    1972-01-01

    An analysis of flight performance of the Apollo 15 cryogenic oxygen tanks was conducted with the variable grid stratification math model developed earlier in the program. Flight conditions investigated were the CMP-EVA and one passive thermal control period which exhibited heater temperature characteristics not previously observed. Heater temperatures for these periods were simulated with the math model using flight acceleration data. Simulation results (heater temperature and tank pressure) compared favorably with the Apollo 15 flight data, and it was concluded that tank performance was nominal. Math model modifications were also made to improve the simulation accuracy. The modifications included the addition of the effects of the tank wall thermal mass and an improved system flow distribution model. The modifications improved the accuracy of simulated pressure response based on comparisons with flight data.

  10. Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers

    PubMed Central

    Szkudlarek, Emily; Brannon, Elizabeth M.

    2018-01-01

    Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children (n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills. PMID:29867624

  11. Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers.

    PubMed

    Szkudlarek, Emily; Brannon, Elizabeth M

    2018-01-01

    Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children ( n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills.

  12. Connecting Io's volcanic activity to the Io plasma torus: comparison of Galileo/NIMS volcanic and ground-based torus observations

    NASA Astrophysics Data System (ADS)

    Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.

    2015-12-01

    Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.

  13. Effects of Math Anxiety and Perfectionism on Timed versus Untimed Math Testing in Mathematically Gifted Sixth Graders

    PubMed Central

    Tsui, Joanne M.; Mazzocco, Michèle M. M.

    2009-01-01

    This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition preceded the untimed condition. We also found that children with higher levels of either math anxiety or perfectionism had a smaller performance discrepancy during timed versus untimed testing, relative to children with lower levels of math anxiety or perfectionism. There were no statistically significant gender differences in overall test performance, nor in levels of math anxiety or perfectionism; however, the difference between performance on timed and untimed math testing was statistically significant for girls, but not for boys. Implications for educators are discussed. PMID:20084180

  14. A descriptive study of high school Latino and Caucasian students' values about math, perceived math achievement and STEM career choice

    NASA Astrophysics Data System (ADS)

    Rodriguez Flecha, Samuel

    The purpose of this study was to examine high school students' math values, perceived math achievement, and STEM career choice. Participants (N=515) were rural high school students from the U.S. Northwest. Data was collected by administering the "To Do or Not to Do:" STEM pilot survey. Most participants (n=294) were Latinos, followed by Caucasians (n=142). Fifty-three percent of the students rated their math achievement as C or below. Of high math students, 57% were male. Females were 53% of low math students. Caucasians (61%) rated themselves as high in math in a greater proportion than Latinos (39%). Latinos (58%) rated themselves as low in math in a greater proportion than Caucasians (39%). Math Values play a significant role in students' perceived math achievement. Internal math values (r =.68, R2 =.46, p =.001) influenced perceived math achievement regardless of gender (males: r =.70, R2 =.49, p =.001; females: r =.65, R2 =.43, p =.001), for Latinos (r =.66, R2 =.44, p =.001), and Caucasians (r =.72, R2 =.51, p =.001). External math values (r =.53, R2 =.28, p =.001) influenced perceived math achievement regardless of gender (males: r =.54, R2 =.30, p =.001; females: r =.49, R2 =.24, p =.001), for Latinos (r =.47, R2 =.22, p =.001), and Caucasians (r =.58, R2 =.33, p =.001). Most high-math students indicated an awareness of being good at math at around 11 years old. Low-math students said that they realized that math was difficult for them at approximately 13 years of age. The influence of parents, teachers, and peers may vary at different academic stages. Approximately half of the participants said there was not a person who had significantly impacted their career choice; only a minority said their parents and teachers were influencing them to a STEM career. Parents and teachers are the most influential relationships in students' career choice. More exposure to STEM role models and in a variety of professions is needed. Possible strategies to impact students' career choice, future directions and recommendations are provided. In sum, positive experiences in STEM can favorably contribute to students' sense of competence and satisfaction.

  15. Cognitive consistency and math-gender stereotypes in Singaporean children.

    PubMed

    Cvencek, Dario; Meltzoff, Andrew N; Kapur, Manu

    2014-01-01

    In social psychology, cognitive consistency is a powerful principle for organizing psychological concepts. There have been few tests of cognitive consistency in children and no research about cognitive consistency in children from Asian cultures, who pose an interesting developmental case. A sample of 172 Singaporean elementary school children completed implicit and explicit measures of math-gender stereotype (male=math), gender identity (me=male), and math self-concept (me=math). Results showed strong evidence for cognitive consistency; the strength of children's math-gender stereotypes, together with their gender identity, significantly predicted their math self-concepts. Cognitive consistency may be culturally universal and a key mechanism for developmental change in social cognition. We also discovered that Singaporean children's math-gender stereotypes increased as a function of age and that boys identified with math more strongly than did girls despite Singaporean girls' excelling in math. The results reveal both cultural universals and cultural variation in developing social cognition. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Attentional bias in high math-anxious individuals: evidence from an emotional Stroop task

    PubMed Central

    Suárez-Pellicioni, Macarena; Núñez-Peña, Maria Isabel; Colomé, Àngels

    2015-01-01

    Attentional bias toward threatening or emotional information is considered a cognitive marker of anxiety, and it has been described in various clinical and subclinical populations. This study used an emotional Stroop task to investigate whether math anxiety is characterized by an attentional bias toward math-related words. Two previous studies failed to observe such an effect in math-anxious individuals, although the authors acknowledged certain methodological limitations that the present study seeks to avoid. Twenty high math-anxious (HMA) and 20 low math-anxious (LMA) individuals were presented with an emotional Stroop task including math-related and neutral words. Participants in the two groups did not differ in trait anxiety or depression. We found that the HMA group showed slower response times to math-related words than to neutral words, as well as a greater attentional bias (math-related – neutral difference score) than the LMA one, which constitutes the first demonstration of an attentional bias toward math-related words in HMA individuals. PMID:26539137

  17. Sodium Velocity Maps on Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  18. Can Low-Cost Online Summer Math Programs Improve Student Preparation for College-Level Math? Evidence from Randomized Experiments at Three Universities

    ERIC Educational Resources Information Center

    Chingos, Matthew M.; Griffiths, Rebecca J.; Mulhern, Christine

    2017-01-01

    Every year many students enter college without the math preparation needed to succeed in their desired programs of study. Many of these students struggle to catch up, especially those who are required to take remedial math courses before entering college-level math. Increasing the number of students who begin at the appropriate level of math has…

  19. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    NASA Astrophysics Data System (ADS)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  20. Space shuttle plume simulation application. Results and math model. [Ames unitary plan wind tunnel test

    NASA Technical Reports Server (NTRS)

    Boyle, W.; Conine, B.

    1978-01-01

    Pressure and gauge wind tunnel data from a transonic test of a 0.02 scale model of the space shuttle launch vehicle was analyzed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes during the transonic portion of ascent flight. Air was used as a simulant gas to develop the model exhaust plumes. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach number from 0.6 to 1.4 Element and component base and forebody aerodynamic characteristics are presented for Mach numbers of 0.6, 1.05, 1.1, 1.25 and 1.4. The forebody data is available at Mach 1.55. Tolerances for all plume induced aerodynamic characteristics are developed in terms of a math model.

  1. The effects of anxious responding on mental arithmetic and lexical decision task performance.

    PubMed

    Hopko, Derek R; McNeil, Daniel W; Lejuez, C W; Ashcraft, Mark H; Eifert, Georg H; Riel, Jim

    2003-01-01

    Anxiety-related responding and skill deficits historically are associated with performance-based problems such as mathematics anxiety, yet the relative contribution of these variables to substandard performance remains poorly understood. Utilizing a 7% carbon dioxide (CO2) gas to induce anxiety, the present study examined the impact of anxious responding on two performance tasks, mental arithmetic and lexical decision. Independent variables included math anxiety group, gender, and gas condition. Dependent variables included task performance and physiological and self-report indices of anxiety. A total of 64 university undergraduate students participated. Physiological and verbal-report measures of anxiety supported the utility of 7% carbon dioxide-enriched air as an anxiety-inducing stimulus. Behavioral disruption on performance tasks, however, did not differ as a function of carbon dioxide inhalation. Performance did differ as a function of math anxiety. High math anxious individuals generally exhibited higher error rates on mathematical tasks, particularly on tasks designed to measure advanced math skill and those requiring working memory resources. These findings are discussed with reference to processing efficiency theory, discordance among anxiety response systems, and the intricacies associated with skill measurement.

  2. The Effects of Math Anxiety

    ERIC Educational Resources Information Center

    Andrews, Amanda; Brown, Jennifer

    2015-01-01

    Math anxiety is a reoccurring problem for many students, and the effects of this anxiety on college students are increasing. The purpose of this study was to examine the association between pre-enrollment math anxiety, standardized test scores, math placement scores, and academic success during freshman math coursework (i.e., pre-algebra, college…

  3. Math Exchanges: Guiding Young Mathematicians in Small-Group Meetings

    ERIC Educational Resources Information Center

    Wedekind, Kassia Omohundro

    2011-01-01

    Traditionally, small-group math instruction has been used as a format for reaching children who struggle to understand. Math coach Kassia Omohundro Wedekind uses small-group instruction as the centerpiece of her math workshop approach, engaging all students in rigorous "math exchanges." The key characteristics of these mathematical conversations…

  4. Math Intervention Teachers' Pedagogical Content Knowledge and Student Achievement

    ERIC Educational Resources Information Center

    Waller, Lisa Ivey

    2012-01-01

    This research investigated the relationship of math intervention teachers' (MITs) pedagogical content knowledge (PCK) and students' math achievement gains in primary math interventions. The Kentucky Center for Mathematics gathered data on the MITs and primary math intervention students included in this study. Longitudinal data were analyzed for a…

  5. Some Recent Results on Graph Matching,

    DTIC Science & Technology

    1987-06-01

    V. CHVATAL, Tough graphs and Hamiltonian circuits, Discrete Math . 5, 1973, 215-228. [El] J. EDMONDS, Paths, trees and flowers, Canad. J. Math. 17...Theory, Ann. Discrete Math . 29, North-Holland, Amsterdam, 1986. [N] D. NADDEF, Rank of maximum matchings in a graph, Math. Programming 22, 52-70. [NP...Optimization, Ann. Discrete Math . 16, North-Holland, Amsterdam, 1982, 241-260. [P1] M.D. PLUMMER, On n-extendable graphs, Discrete Math . 31, 1980, 201-210

  6. Advanced Math Course Taking: Effects on Math Achievement and College Enrollment

    PubMed Central

    Byun, Soo-yong; Irvin, Matthew J.; Bell, Bethany A.

    2014-01-01

    Using data from the Educational Longitudinal Study of 2002–2006 (ELS:02/06), this study investigated the effects of advanced math course taking on math achievement and college enrollment and how such effects varied by socioeconomic status (SES) and race/ethnicity. Results from propensity score matching and sensitivity analyses showed that advanced math course taking had positive effects on math achievement and college enrollment. Results also demonstrated that the effect of advanced math course taking on math achievement was greater for low SES students than for high SES students, but smaller for Black students than for White students. No interaction effects were found for college enrollment. Limitations, policy implications, and future research directions are discussed. PMID:26508803

  7. How is anxiety related to math performance in young students? A longitudinal study of Grade 2 to Grade 3 children.

    PubMed

    Cargnelutti, Elisa; Tomasetto, Carlo; Passolunghi, Maria Chiara

    2017-06-01

    Both general and math-specific anxiety are related to proficiency in mathematics. However, it is not clear when math anxiety arises in young children, nor how it relates to early math performance. This study therefore investigated the early association between math anxiety and math performance in Grades 2 and 3, by accounting for general anxiety and by further inspecting the prevalent directionality of the anxiety-performance link. Results revealed that this link was significant in Grade 3, with a prevalent direction from math anxiety to performance, rather than the reverse. Longitudinal analyses also showed an indirect effect of math anxiety in Grade 2 on subsequent math performance in Grade 3. Overall, these findings highlight the importance of monitoring anxiety from the early stages of schooling in order to promote proficient academic performance.

  8. A Systematic Review of Longitudinal Studies of Mathematics Difficulty.

    PubMed

    Nelson, Gena; Powell, Sarah R

    2017-06-01

    Some students may be diagnosed with a learning disability in mathematics or dyscalculia, whereas other students may demonstrate below-grade-level mathematics performance without a disability diagnosis. In the literature, researchers often identify students in both groups as experiencing math difficulty. To understand the performance of students with math difficulty, we examined 35 studies that reported longitudinal results of mathematics achievement (i.e., mathematics performance measured across at least a 12-month span). Our primary goal was to conduct a systematic review of these studies and to understand whether the growth of students with math difficulty was comparable or stagnant when compared with that of students without math difficulty. We also analyzed whether identification of math difficulty was predictive of mathematics achievement in later grades and whether a diagnosis of math difficulty was stable across grade levels. Results indicate that students with math difficulty demonstrate growth on mathematics measures, but this growth still leads to lower performance than that of students without math difficulty. Identification of math difficulty is strongly related to math performance in subsequent grades, and this diagnosis is often stable. Collectively, this literature indicates that students with math difficulty continue to struggle with mathematics in later grades.

  9. Simple arithmetic: not so simple for highly math anxious individuals.

    PubMed

    Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-12-01

    Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.

  10. Simple arithmetic: not so simple for highly math anxious individuals

    PubMed Central

    Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-01-01

    Abstract Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low—compared to high—math anxious individuals perform better when they activate this network less—a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. PMID:29140499

  11. Math Roots: The Beginnings of the Metric System

    ERIC Educational Resources Information Center

    Johnson, Art; Norris, Kit; Adams,Thomasina Lott, Ed.

    2007-01-01

    This article reviews the history of the metric system, from a proposal of a sixteenth-century mathematician to its implementation in Revolutionary France some 200 years later. Recent developments in the metric system are also discussed.

  12. Establishing Mandatory Academic Degree Guidance for AFROTC (Air Force Reserve Officer Training Corps) Rated Officer Accessions

    DTIC Science & Technology

    1984-04-01

    Scientific- Architecture 4% 4% Technical Computer Sci 38% 37% Math 40% 40% Meteorology 6% 6% Physics 12 % 13% Nontechnical Quality Freeflow 2/ Quality...Architecture 4 Computer Sci 48 43 40 Math 30 35 38 Meteorology 6 6 6 Physics 12 12 12 Engineer Electrical 40% 50% 50% Aero Group 25 25 30 Other / 35 25 20...with Technical Degrees by Major Weapon System. . . 12 FIGURE 4 - Pilots with Technical Degrees by Category . . . . . . 13 FIGURE 5 - Regression

  13. Remediation of Childhood Math Anxiety and Associated Neural Circuits through Cognitive Tutoring

    PubMed Central

    Iuculano, Teresa; Chen, Lang

    2015-01-01

    Math anxiety is a negative emotional reaction that is characterized by feelings of stress and anxiety in situations involving mathematical problem solving. High math-anxious individuals tend to avoid situations involving mathematics and are less likely to pursue science, technology, engineering, and math-related careers than those with low math anxiety. Math anxiety during childhood, in particular, has adverse long-term consequences for academic and professional success. Identifying cognitive interventions and brain mechanisms by which math anxiety can be ameliorated in children is therefore critical. Here we investigate whether an intensive 8 week one-to-one cognitive tutoring program designed to improve mathematical skills reduces childhood math anxiety, and we identify the neurobiological mechanisms by which math anxiety can be reduced in affected children. Forty-six children in grade 3, a critical early-onset period for math anxiety, participated in the cognitive tutoring program. High math-anxious children showed a significant reduction in math anxiety after tutoring. Remarkably, tutoring remediated aberrant functional responses and connectivity in emotion-related circuits anchored in the basolateral amygdala. Crucially, children with greater tutoring-induced decreases in amygdala reactivity had larger reductions in math anxiety. Our study demonstrates that sustained exposure to mathematical stimuli can reduce math anxiety and highlights the key role of the amygdala in this process. Our findings are consistent with models of exposure-based therapy for anxiety disorders and have the potential to inform the early treatment of a disability that, if left untreated in childhood, can lead to significant lifelong educational and socioeconomic consequences in affected individuals. SIGNIFICANCE STATEMENT Math anxiety during early childhood has adverse long-term consequences for academic and professional success. It is therefore important to identify ways to alleviate math anxiety in young children. Surprisingly, there have been no studies of cognitive interventions and the underlying neurobiological mechanisms by which math anxiety can be ameliorated in young children. Here, we demonstrate that intensive 8 week one-to-one cognitive tutoring not only reduces math anxiety but also remarkably remediates aberrant functional responses and connectivity in emotion-related circuits anchored in the amygdala. Our findings are likely to propel new ways of thinking about early treatment of a disability that has significant implications for improving each individual's academic and professional chances of success in today's technological society that increasingly demands strong quantitative skills. PMID:26354922

  14. Motivated Forgetting in Early Mathematics: A Proof-of-Concept Study

    PubMed Central

    Ramirez, Gerardo

    2017-01-01

    Educators assume that students are motivated to retain what they are taught. Yet, students commonly report that they forget most of what they learn, especially in mathematics. In the current study I ask whether students may be motivated to forget mathematics because of academic experiences threaten the self-perceptions they are committed to maintaining. Using a large dataset of 1st and 2nd grade children (N = 812), I hypothesize that math anxiety creates negative experiences in the classroom that threaten children’s positive math self-perceptions, which in turn spurs a motivation to forget mathematics. I argue that this motivation to forget is activated during the winter break, which in turn reduces the extent to which children grow in achievement across the school year. Children were assessed for math self-perceptions, math anxiety and math achievement in the fall before going into winter break. During the spring, children’s math achievement was measured once again. A math achievement growth score was devised from a regression model of fall math achievement predicting spring achievement. Results show that children with higher math self-perceptions showed reduced growth in math achievement across the school year as a function of math anxiety. Children with lower math interest self-perceptions did not show this relationship. Results serve as a proof-of-concept for a scientific account of motivated forgetting within the context of education. PMID:29255439

  15. Motivated Forgetting in Early Mathematics: A Proof-of-Concept Study.

    PubMed

    Ramirez, Gerardo

    2017-01-01

    Educators assume that students are motivated to retain what they are taught. Yet, students commonly report that they forget most of what they learn, especially in mathematics. In the current study I ask whether students may be motivated to forget mathematics because of academic experiences threaten the self-perceptions they are committed to maintaining. Using a large dataset of 1st and 2nd grade children ( N = 812), I hypothesize that math anxiety creates negative experiences in the classroom that threaten children's positive math self-perceptions, which in turn spurs a motivation to forget mathematics. I argue that this motivation to forget is activated during the winter break, which in turn reduces the extent to which children grow in achievement across the school year. Children were assessed for math self-perceptions, math anxiety and math achievement in the fall before going into winter break. During the spring, children's math achievement was measured once again. A math achievement growth score was devised from a regression model of fall math achievement predicting spring achievement. Results show that children with higher math self-perceptions showed reduced growth in math achievement across the school year as a function of math anxiety. Children with lower math interest self-perceptions did not show this relationship. Results serve as a proof-of-concept for a scientific account of motivated forgetting within the context of education.

  16. Helping Students Get Past Math Anxiety

    ERIC Educational Resources Information Center

    Scarpello, Gary

    2007-01-01

    Math anxiety can begin as early as the fourth grade and peaks in middle school and high school. It can be caused by past classroom experiences, parental influences, and remembering poor past math performance. Math anxiety can cause students to avoid challenging math courses and may limit their career choices. It is important for teachers, parents…

  17. Incremental Beliefs of Ability, Achievement Emotions and Learning of Singapore Students

    ERIC Educational Resources Information Center

    Luo, Wenshu; Lee, Kerry; Ng, Pak Tee; Ong, Joanne Xiao Wei

    2014-01-01

    This study investigated the relationships of students' incremental beliefs of math ability to their achievement emotions, classroom engagement and math achievement. A sample of 273 secondary students in Singapore were administered measures of incremental beliefs of math ability, math enjoyment, pride, boredom and anxiety, as well as math classroom…

  18. Adults' Views on Mathematics Education: A Midwest Sample

    ERIC Educational Resources Information Center

    Brez, Caitlin C.; Allen, Jessica J.

    2016-01-01

    Currently, few studies have addressed public opinions regarding math education. The current study surveyed adults in a Midwestern town in the United States to assess opinions regarding math and math education. Overall, we found that adults believe that math is useful and that math education is important. We found that parents who currently have a…

  19. 1982 Maths Investigation: Technical Report. Mt. Druitt Longitudinal Study.

    ERIC Educational Resources Information Center

    Houghton, Karen; Low, Brian

    Aims of this phase of a longitudinal mathematics achievement investigation were to (1) detect individual and group differences in math achievement among a sample of fourth-year children, (2) monitor changes in math skills since a 1981 math investigation, and (3) identify limits of children's understanding of mathematical concepts. (The math test…

  20. Math at Work: Using Numbers on the Job

    ERIC Educational Resources Information Center

    Torpey, Elka

    2012-01-01

    Math is used in many occupations. And, experts say, workers with a strong background in mathematics are increasingly in demand. That equals prime opportunity for career-minded math enthusiasts. This article describes how math factors into careers. The first section talks about some of the ways workers use math in the workplace. The second section…

  1. Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance

    ERIC Educational Resources Information Center

    Arroyo, Ivon; Royer, James M.; Woolf, Beverly P.

    2011-01-01

    This article integrates research in intelligent tutors with psychology studies of memory and math fluency (the speed to retrieve or calculate answers to basic math operations). It describes the impact of computer software designed to improve either strategic behavior or math fluency. Both competencies are key to improved performance and both…

  2. Supporting English Language Learners in Math Class, Grades 6-8

    ERIC Educational Resources Information Center

    Melanese, Kathy; Chung, Luz; Forbes, Cheryl

    2011-01-01

    This new addition to Math Solutions "Supporting English Language Learners in Math Class series" offers a wealth of lessons and strategies for modifying grades 6-8 instruction. Section I presents an overview of teaching math to English learners: the research, the challenges, the linguistic demands of a math lesson, and specific strategies and…

  3. Math-Gender Stereotypes in Elementary School Children

    ERIC Educational Resources Information Center

    Cvencek, Dario; Meltzoff, Andrew N.; Greenwald, Anthony G.

    2011-01-01

    A total of 247 American children between 6 and 10 years of age (126 girls and 121 boys) completed Implicit Association Tests and explicit self-report measures assessing the association of (a) "me" with "male" (gender identity), (b) "male" with "math" (math-gender stereotype), and (c) "me" with "math" (math self-concept). Two findings emerged.…

  4. Enhancing Mathematical Communication for Virtual Math Teams

    ERIC Educational Resources Information Center

    Stahl, Gerry; Çakir, Murat Perit; Weimar, Stephen; Weusijana, Baba Kofi; Ou, Jimmy Xiantong

    2010-01-01

    The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies…

  5. Advanced Math Course Taking: Effects on Math Achievement and College Enrollment

    ERIC Educational Resources Information Center

    Byun, Soo-yong; Irvin, Matthew J.; Bell, Bethany A.

    2015-01-01

    Using data from the Educational Longitudinal Study of 2002-2006, the authors investigated the effects of advanced math course taking on math achievement and college enrollment and how such effects varied by socioeconomic status and race/ethnicity. Results from propensity score matching and sensitivity analyses showed that advanced math course…

  6. Gender compatibility, math-gender stereotypes, and self-concepts in math and physics

    NASA Astrophysics Data System (ADS)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.

  7. Counseling the Math Anxious

    ERIC Educational Resources Information Center

    Tobias, Sheila; Donady, Bonnie

    1977-01-01

    Describes the rationale and mode of operations for a Math Clinic at Wellesley University and Wesleyan College where counselors and math specialists work together to combat "math anxiety," particularly in female students. (HMV)

  8. Nighttime and daytime variation of atmospheric NO2 from ground-based infrared measurements

    NASA Technical Reports Server (NTRS)

    Flaud, J.-M.; Camy-Peyret, C.; Brault, J. W.; Rinsland, C. P.; Cariolle, D.

    1988-01-01

    During the period of Feb. 28 to Mar. 2, 1986, 19 high resolution atmospheric spectra have been recorded during the night using the moon or during the day using the sun as a source with the Fourier transform spectrometer at the McMath Solar telescope on Kitt Peak. The NO2 absorption peak located at 2914.65/cm has been used to derive from the spectra the total vertical column densities of atmospheric NO2. A rather rapid decrease of the NO2 amount during the night has been observed, and its daytime increase from sunrise to sunset has been confirmed. A comparison with the predictions of a photochemical model is given.

  9. Multi-decade Measurements of the Long-Term Trends of Atmospheric Species by High-Spectral-Resolution Infrared Solar Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Chiou, Linda; Goldman, Aaron; Hannigan, James W.

    2010-01-01

    Solar absorption spectra were recorded for the first time in 5 years with the McMath Fourier transform spectrometer at the US National solar Observatory on Kitt Peak in southern Arizona, USA (31.91 N latitude, 111.61 W longitude, 2.09 km altitude). The solar absorption spectra cover 750-1300 and 1850-5000 cm(sup -1) and were recorded on 20 days during March-June 2009. The measurements mark the continuation of a long-term record of atmospheric chemical composition measurements that have been used to quantify seasonal cycles and long-term trends of both tropospheric and stratospheric species from observations that began i 1977. Fits to the measured spectra have been performed, and they indicate the spectra obtained since return to operational status are nearly free of channeling and the instrument line shape function is well reproduced taking into account the measurement parameters. We report updated time series measurements of total columns for six atmospheric species and their analysis for seasonal cycles and long-term trends. An sn example, the time series fit shows a decrease in the annual increase rate i Montreal-Protocol-regulated chlorofluorocarbon CCL2F2 from 1.51 plus or minus 0.38% yr(sup -1) at the beginning of the time span to -1.54 plus or minus 1.28 yr(sup -1) at the end of the time span, 1 sigma, and hence provides evidence for the impact of those regulations on the trend.

  10. The Effects of a Summer Math Program on Academic Achievement

    ERIC Educational Resources Information Center

    Snyder, Kermit

    2016-01-01

    The math achievement of students is low in a small rural district in Colorado. The purpose of this study was to explore the efficacy of a summer third through fifth grade math program in improving math scores. Piaget's theory of cognitive development was used as the theoretical foundation for the math instructional resource delivered to the…

  11. Taking Math Anxiety out of Math Instruction

    ERIC Educational Resources Information Center

    Shields, Darla J.

    2007-01-01

    To take math anxiety out of math instruction, teachers need to first know how to easily diagnose it in their students and second, how to analyze causes. Results of a recent study revealed that while students believed that their math anxiety was largely related to a lack of mathematical understanding, they often blamed their teachers for causing…

  12. Tips for Teaching Math to Elementary Students

    ERIC Educational Resources Information Center

    Scarpello, Gary

    2010-01-01

    Since most elementary school teachers do not hold a degree in mathematics, teaching math may be a daunting task for some. Following are a few techniques to help make teaching and learning math easier and less stressful. First, know that math is a difficult subject to teach--even for math teachers. The subject matter itself is challenging. Second,…

  13. Effects of Math Anxiety and Perfectionism on Timed versus Untimed Math Testing in Mathematically Gifted Sixth Graders

    ERIC Educational Resources Information Center

    Tsui, Joanne M.; Mazzocco, Michele M. M.

    2006-01-01

    This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition…

  14. Teachers and Counselors: Building Math Confidence in Schools

    ERIC Educational Resources Information Center

    Furner, Joseph M.

    2017-01-01

    Mathematics teachers need to take on the role of counselors in addressing the math anxious in today's math classrooms. This paper looks at the impact math anxiety has on the future of young adults in our high-tech society. Teachers and professional school counselors are encouraged to work together to prevent and reduce math anxiety. It is…

  15. Math Anxiety and Math Performance in Children: The Mediating Roles of Working Memory and Math Self-Concept

    ERIC Educational Resources Information Center

    Justicia-Galiano, M. José; Martín-Puga, M. Eva; Linares, Rocío; Pelegrina, Santiago

    2017-01-01

    Background: Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. Aims: This study aimed to investigate the role of two possible…

  16. Contextual Factors Related to Math Anxiety in Second-Grade Children

    ERIC Educational Resources Information Center

    Jameson, Molly M.

    2014-01-01

    As the United States falls farther behind other countries in standardized math assessments, the author seeks to understand why U.S. students perform so poorly. One of the possible explanations to U.S. students' poor math performance may be math anxiety. However, math anxiety in elementary school children is a neglected area in the research. The…

  17. Opportunities for Learning Math in Elementary School: Implications for SES Disparities in Procedural and Conceptual Math Skills

    ERIC Educational Resources Information Center

    Bachman, Heather J.; Votruba-Drzal, Elizabeth; El Nokali, Nermeen E.; Castle Heatly, Melissa

    2015-01-01

    The present study examined whether multiple opportunities to learn math were associated with smaller socioeconomic status (SES) disparities in fifth-grade math achievement using data from the NICHD Study of Early Child Care and Youth Development (SECCYD; N = 1,364). High amounts of procedural math instruction were associated with higher…

  18. Spatial Temporal Mathematics at Scale: An Innovative and Fully Developed Paradigm to Boost Math Achievement among All Learners

    ERIC Educational Resources Information Center

    Rutherford, Teomara; Kibrick, Melissa; Burchinal, Margaret; Richland, Lindsey; Conley, AnneMarie; Osborne, Keara; Schneider, Stephanie; Duran, Lauren; Coulson, Andrew; Antenore, Fran; Daniels, Abby; Martinez, Michael E.

    2010-01-01

    This paper describes the background, methodology, preliminary findings, and anticipated future directions of a large-scale multi-year randomized field experiment addressing the efficacy of ST Math [Spatial-Temporal Math], a fully-developed math curriculum that uses interactive animated software. ST Math's unique approach minimizes the use of…

  19. Mathematics for the Eighties: A Study of Two Effective Math Programs.

    ERIC Educational Resources Information Center

    O'Connor, Patrick J.

    1985-01-01

    This bulletin describes two exemplary mathematics programs in Oregon: the Math Lab at Mountain View Junior High School in Beaverton and the Academy Math Program at Jefferson High School in northeastern Portland. The Math Lab at Mountain View is a weekly supplemental unit that is integrated into general math and pre-algebra courses for seventh and…

  20. Lift the Math Curse

    ERIC Educational Resources Information Center

    Albrecht, Cathlene

    2006-01-01

    "When am I ever going to use this?" This question is heard or thought in every middle-level math class across the land. Teachers struggle to apply math lessons to everyday life and make math meaningful and useful for their students. This author, too, struggled with this problem, until she read the book "Math Curse" by Jon Scieszka (Viking Books,…

  1. The Impact of MOVE IT Math(TM) and Traditional Textbook Instruction on Math Achievement Scores

    ERIC Educational Resources Information Center

    Bennett, Angela Stephens

    2010-01-01

    One recommendation of government, education, and business leaders is an increased emphasis on math and science instruction in public schools. The purpose of this quantitative study using a posttest, quasi-experimental design was to determine if the Math Opportunities, Valuable Experiences, and Innovative Teaching (MOVE IT Math(TM)) program…

  2. Grade-Aligned Math Instruction for Secondary Students with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Browder, Diane M.; Jimenez, Bree A.; Trela, Katherine

    2012-01-01

    The purpose of this study was to examine the effects of grade-aligned math instruction on math skill acquisition of four middle schools with moderate intellectual disability. Teachers were trained to follow a task analysis to teach grade-aligned math to middle school students using adapted math problem stories and graphic organizers. The teacher…

  3. What to Look for in Your Math Classrooms

    ERIC Educational Resources Information Center

    Nelson, Barbara Scott; Sassi, Annette

    2006-01-01

    Principals need to get away from traditional beliefs that equate math success solely with rote knowledge of math facts and the ability to calculate. Today, math instruction also is being directed to student understanding of essential concepts. Principals must learn what to look for when they visit math classrooms to make sure it is being taught…

  4. Math Performance as a Function of Math Anxiety and Arousal Performance Theory

    ERIC Educational Resources Information Center

    Farnsworth, Donald M., Jr.

    2009-01-01

    While research continues to link increased math anxiety with reduced working memory, the exact nature of the relationship remains elusive. In addition, research regarding the extent of the impact math anxiety has on working memory is contradictory. This research clarifies the directional nature of math anxiety as it pertains to working memory, and…

  5. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms.

    PubMed

    Piasta, Shayne B; Logan, Jessica A R; Pelatti, Christina Yeager; Capps, Janet L; Petrill, Stephen A

    2015-05-01

    Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators' provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children ( n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children's math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children's learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age.

  6. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    PubMed Central

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2014-01-01

    Because recent initiatives highlight the need to better support preschool-aged children’s math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators’ provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children (n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children’s math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children’s learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age. PMID:26257434

  7. Shuttle cryogenic supply system optimization study. Volume 5A-1: Users manual for math models

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Integrated Math Model for Cryogenic Systems is a flexible, broadly applicable systems parametric analysis tool. The program will effectively accommodate systems of considerable complexity involving large numbers of performance dependent variables such as are found in the individual and integrated cryogen systems. Basically, the program logic structure pursues an orderly progression path through any given system in much the same fashion as is employed for manual systems analysis. The system configuration schematic is converted to an alpha-numeric formatted configuration data table input starting with the cryogen consumer and identifying all components, such as lines, fittings, and valves, each in its proper order and ending with the cryogen supply source assembly. Then, for each of the constituent component assemblies, such as gas generators, turbo machinery, heat exchangers, and accumulators, the performance requirements are assembled in input data tabulations. Systems operating constraints and duty cycle definitions are further added as input data coded to the configuration operating sequence.

  8. Addressing the Math-Practice Gap in Elementary School: Are Tablets a Feasible Tool for Informal Math Practice?

    PubMed Central

    Stacy, Sara T.; Cartwright, Macey; Arwood, Zjanya; Canfield, James P.; Kloos, Heidi

    2017-01-01

    Students rarely practice math outside of school requirements, which we refer to as the “math-practice gap”. This gap might be the reason why students struggle with math, making it urgent to develop means by which to address it. In the current paper, we propose that math apps offer a viable solution to the math-practice gap: Online apps can provide access to a large number of problems, tied to immediate feedback, and delivered in an engaging way. To substantiate this conversation, we looked at whether tablets are sufficiently engaging to motivate children’s informal math practice. Our approach was to partner with education agencies via a community-based participatory research design. The three participating education agencies serve elementary-school students from low-SES communities, allowing us to look at tablet use by children who are unlikely to have extensive access to online math enrichment programs. At the same time, the agencies differed in several structural details, including whether our intervention took place during school time, after school, or during the summer. This allowed us to shed light on tablet feasibility under different organizational constraints. Our findings show that tablet-based math practice is engaging for young children, independent of the setting, the student’s age, or the math concept that was tackled. At the same time, we found that student engagement was a function of the presence of caring adults to facilitate their online math practice. PMID:28270780

  9. Addressing the Math-Practice Gap in Elementary School: Are Tablets a Feasible Tool for Informal Math Practice?

    PubMed

    Stacy, Sara T; Cartwright, Macey; Arwood, Zjanya; Canfield, James P; Kloos, Heidi

    2017-01-01

    Students rarely practice math outside of school requirements, which we refer to as the "math-practice gap". This gap might be the reason why students struggle with math, making it urgent to develop means by which to address it. In the current paper, we propose that math apps offer a viable solution to the math-practice gap: Online apps can provide access to a large number of problems, tied to immediate feedback, and delivered in an engaging way. To substantiate this conversation, we looked at whether tablets are sufficiently engaging to motivate children's informal math practice. Our approach was to partner with education agencies via a community-based participatory research design. The three participating education agencies serve elementary-school students from low-SES communities, allowing us to look at tablet use by children who are unlikely to have extensive access to online math enrichment programs. At the same time, the agencies differed in several structural details, including whether our intervention took place during school time, after school, or during the summer. This allowed us to shed light on tablet feasibility under different organizational constraints. Our findings show that tablet-based math practice is engaging for young children, independent of the setting, the student's age, or the math concept that was tackled. At the same time, we found that student engagement was a function of the presence of caring adults to facilitate their online math practice.

  10. Remediation of Childhood Math Anxiety and Associated Neural Circuits through Cognitive Tutoring.

    PubMed

    Supekar, Kaustubh; Iuculano, Teresa; Chen, Lang; Menon, Vinod

    2015-09-09

    Math anxiety is a negative emotional reaction that is characterized by feelings of stress and anxiety in situations involving mathematical problem solving. High math-anxious individuals tend to avoid situations involving mathematics and are less likely to pursue science, technology, engineering, and math-related careers than those with low math anxiety. Math anxiety during childhood, in particular, has adverse long-term consequences for academic and professional success. Identifying cognitive interventions and brain mechanisms by which math anxiety can be ameliorated in children is therefore critical. Here we investigate whether an intensive 8 week one-to-one cognitive tutoring program designed to improve mathematical skills reduces childhood math anxiety, and we identify the neurobiological mechanisms by which math anxiety can be reduced in affected children. Forty-six children in grade 3, a critical early-onset period for math anxiety, participated in the cognitive tutoring program. High math-anxious children showed a significant reduction in math anxiety after tutoring. Remarkably, tutoring remediated aberrant functional responses and connectivity in emotion-related circuits anchored in the basolateral amygdala. Crucially, children with greater tutoring-induced decreases in amygdala reactivity had larger reductions in math anxiety. Our study demonstrates that sustained exposure to mathematical stimuli can reduce math anxiety and highlights the key role of the amygdala in this process. Our findings are consistent with models of exposure-based therapy for anxiety disorders and have the potential to inform the early treatment of a disability that, if left untreated in childhood, can lead to significant lifelong educational and socioeconomic consequences in affected individuals. Significance statement: Math anxiety during early childhood has adverse long-term consequences for academic and professional success. It is therefore important to identify ways to alleviate math anxiety in young children. Surprisingly, there have been no studies of cognitive interventions and the underlying neurobiological mechanisms by which math anxiety can be ameliorated in young children. Here, we demonstrate that intensive 8 week one-to-one cognitive tutoring not only reduces math anxiety but also remarkably remediates aberrant functional responses and connectivity in emotion-related circuits anchored in the amygdala. Our findings are likely to propel new ways of thinking about early treatment of a disability that has significant implications for improving each individual's academic and professional chances of success in today's technological society that increasingly demands strong quantitative skills. Copyright © 2015 the authors 0270-6474/15/3512574-10$15.00/0.

  11. Seeking mathematics success for college students: a randomized field trial of an adapted approach

    NASA Astrophysics Data System (ADS)

    Gula, Taras; Hoessler, Carolyn; Maciejewski, Wes

    2015-11-01

    Many students enter the Canadian college system with insufficient mathematical ability and leave the system with little improvement. Those students who enter with poor mathematics ability typically take a developmental mathematics course as their first and possibly only mathematics course. The educational experiences that comprise a developmental mathematics course vary widely and are, too often, ineffective at improving students' ability. This trend is concerning, since low mathematics ability is known to be related to lower rates of success in subsequent courses. To date, little attention has been paid to the selection of an instructional approach to consistently apply across developmental mathematics courses. Prior research suggests that an appropriate instructional method would involve explicit instruction and practising mathematical procedures linked to a mathematical concept. This study reports on a randomized field trial of a developmental mathematics approach at a college in Ontario, Canada. The new approach is an adaptation of the JUMP Math program, an explicit instruction method designed for primary and secondary school curriculae, to the college learning environment. In this study, a subset of courses was assigned to JUMP Math and the remainder was taught in the same style as in the previous years. We found consistent, modest improvement in the JUMP Math sections compared to the non-JUMP sections, after accounting for potential covariates. The findings from this randomized field trial, along with prior research on effective education for developmental mathematics students, suggest that JUMP Math is a promising way to improve college student outcomes.

  12. Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Brenier, Yann

    2009-10-01

    We establish a connection between optimal transport theory (see Villani in Topics in optimal transportation. Graduate studies in mathematics, vol. 58, AMS, Providence, 2003, for instance) and classical convection theory for geophysical flows (Pedlosky, in Geophysical fluid dynamics, Springer, New York, 1979). Our starting point is the model designed few years ago by Angenent, Haker, and Tannenbaum (SIAM J. Math. Anal. 35:61-97, 2003) to solve some optimal transport problems. This model can be seen as a generalization of the Darcy-Boussinesq equations, which is a degenerate version of the Navier-Stokes-Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized hydrostatic-Boussinesq equations) to various models involving optimal transport (and the related Monge-Ampère equation, Brenier in Commun. Pure Appl. Math. 64:375-417, 1991; Caffarelli in Commun. Pure Appl. Math. 45:1141-1151, 1992). This includes the 2D semi-geostrophic equations (Hoskins in Annual review of fluid mechanics, vol. 14, pp. 131-151, Palo Alto, 1982; Cullen et al. in SIAM J. Appl. Math. 51:20-31, 1991, Arch. Ration. Mech. Anal. 185:341-363, 2007; Benamou and Brenier in SIAM J. Appl. Math. 58:1450-1461, 1998; Loeper in SIAM J. Math. Anal. 38:795-823, 2006) and some fully nonlinear versions of the so-called high-field limit of the Vlasov-Poisson system (Nieto et al. in Arch. Ration. Mech. Anal. 158:29-59, 2001) and of the Keller-Segel for Chemotaxis (Keller and Segel in J. Theor. Biol. 30:225-234, 1971; Jäger and Luckhaus in Trans. Am. Math. Soc. 329:819-824, 1992; Chalub et al. in Mon. Math. 142:123-141, 2004). Mathematically speaking, we establish some existence theorems for local smooth, global smooth or global weak solutions of the different models. We also justify that the inertia terms can be rigorously neglected under appropriate scaling assumptions in the generalized Navier-Stokes-Boussinesq equations. Finally, we show how a “stringy” generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology (see Arnold and Khesin in Topological methods in hydrodynamics. Applied mathematical sciences, vol. 125, Springer, Berlin, 1998; Moffatt in J. Fluid Mech. 159:359-378, 1985, Topological aspects of the dynamics of fluids and plasmas. NATO adv. sci. inst. ser. E, appl. sci., vol. 218, Kluwer, Dordrecht, 1992; Schonbek in Theory of the Navier-Stokes equations, Ser. adv. math. appl. sci., vol. 47, pp. 179-184, World Sci., Singapore, 1998; Vladimirov et al. in J. Fluid Mech. 390:127-150, 1999; Nishiyama in Bull. Inst. Math. Acad. Sin. (N.S.) 2:139-154, 2007).

  13. Global Well-Posedness of the Incompressible Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Cai, Yuan; Lei, Zhen

    2018-06-01

    This paper studies the Cauchy problem of the incompressible magnetohydro dynamic systems with or without viscosity ν. Under the assumption that the initial velocity field and the displacement of the initialmagnetic field froma non-zero constant are sufficiently small in certain weighted Sobolev spaces, the Cauchy problem is shown to be globally well-posed for all ν ≧ 0 and all spaces with dimension n ≧ 2. Such a result holds true uniformly in nonnegative viscosity parameters. The proof is based on the inherent strong null structure of the systems introduced by Lei (Commun Pure Appl Math 69(11):2072-2106, 2016) and the ghost weight technique introduced by Alinhac (Invent Math 145(3):597-618, 2001).

  14. Math Achievement in Early Adolescence: The Role of Parental Involvement, Teachers' Behavior, and Students' Motivational Beliefs about Math

    ERIC Educational Resources Information Center

    Levpuscek, Melita Puklek; Zupancic, Maja

    2009-01-01

    Contributions of parental involvement in educational pursuits as well as math teachers' classroom behavior to students' motivation and performance in math were investigated. By the end of the first school term, 365 Slovene eighth graders reported on their parents' academic involvement (pressure, support, and help) and their math teachers' behavior…

  15. Using Brief Guided Imagery to Reduce Math Anxiety and Improve Math Performance: A Pilot Study

    ERIC Educational Resources Information Center

    Henslee, Amber M.; Klein, Brandi A.

    2017-01-01

    The objective of this study was to investigate whether brief guided imagery could provide a short-term reduction in math anxiety and improve math performance. Undergraduates (N = 581) were screened for math anxiety, and the highest and lowest quartiles were recruited to participate in a lab-based study. Participants were assigned to a brief guided…

  16. Is There a Causal Effect of High School Math on Labor Market Outcomes?

    ERIC Educational Resources Information Center

    Joensen, Juanna Schroter; Nielsen, Helena Skyt

    2009-01-01

    In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear evidence of a causal relationship between math and…

  17. Does Geographic Setting Alter the Roles of Academically Supportive Factors? African American Adolescents' Friendships, Math Self-Concept, and Math Performance

    ERIC Educational Resources Information Center

    Jones, Martin H.; Irvin, Matthew J.; Kibe, Grace W.

    2012-01-01

    The study is one of few to examine how living in rural, suburban, or urban settings may alter factors supporting African Americans adolescents' math performance. The study examines the relationship of math self-concept and perceptions of friends' academic behaviors to African American students' math performance. Participants (N = 1,049) are…

  18. Math's Double Standard. Math Works

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    Far too many students in the U.S. give up on math early because it does not come easy and they believe only students with innate ability can really be "good" at mathematics, a notion that is all too often reinforced by adults who believe the same thing. There is a serious gap between how Americans value math generally and how they value math for…

  19. Preparing Prekindergartners with Math Readiness Skills: The Effect of Children's Talk, Focus, and Engagement on Math Achievement

    ERIC Educational Resources Information Center

    Cummings, Tracy; Hofer, Kerry G.; Farran, Dale C.; Lipsey, Mark W.; Bilbrey, Carol; Vorhaus, Elizabeth

    2009-01-01

    The "Building Blocks PreK Math Curriculum" (Clements & Sarama, 2007) was designed to facilitate children's engagement in math and talk about math. Much research investigates the effect of curriculum on classrooms or teacher practices. This study used a mediational model to look at a curriculum's effect on children's achievement gain, operating…

  20. Enhanced learning of proportional math through music training and spatial-temporal training.

    PubMed

    Graziano, A B; Peterson, M; Shaw, G L

    1999-03-01

    It was predicted, based on a mathematical model of the cortex, that early music training would enhance spatial-temporal reasoning. We have demonstrated that preschool children given six months of piano keyboard lessons improved dramatically on spatial-temporal reasoning while children in appropriate control groups did not improve. It was then predicted that the enhanced spatial-temporal reasoning from piano keyboard training could lead to enhanced learning of specific math concepts, in particular proportional math, which is notoriously difficult to teach using the usual language-analytic methods. We report here the development of Spatial-Temporal Math Video Game software designed to teach fractions and proportional math, and its strikingly successful use in a study involving 237 second-grade children (age range six years eight months-eight years five months). Furthermore, as predicted, children given piano keyboard training along with the Math Video Game training scored significantly higher on proportional math and fractions than children given a control training along with the Math Video Game. These results were readily measured using the companion Math Video Game Evaluation Program. The training time necessary for children on the Math Video Game is very short, and they rapidly reach a high level of performance. This suggests that, as predicted, we are tapping into fundamental cortical processes of spatial-temporal reasoning. This spatial-temporal approach is easily generalized to teach other math and science concepts in a complementary manner to traditional language-analytic methods, and at a younger age. The neural mechanisms involved in thinking through fractions and proportional math during training with the Math Video Game might be investigated in EEG coherence studies along with priming by specific music.

  1. James Webb Telescope's Near Infrared Camera: Making Models, Building Understanding

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; McCarthy, D. W.; Higgins, M. L.; Lebofsky, N. R.

    2010-10-01

    The Astronomy Camp for Girl Scout Leaders is a science education program sponsored by NASA's next large space telescope: The James Webb Space Telescope (JWST). The E/PO team for JWST's Near Infrared Camera (NIRCam), in collaboration with the Sahuaro Girl Scout Council, has developed a long-term relationship with adult leaders from all GSUSA Councils that directly benefits troops of all ages, not only in general science education but also specifically in the astronomical and technology concepts relating to JWST. We have been training and equipping these leaders so they can in turn teach young women essential concepts in astronomy, i.e., the night sky environment. We model what astronomers do by engaging trainers in the process of scientific inquiry, and we equip them to host troop-level astronomy-related activities. It is GSUSA's goal to foster girls’ interest and creativity in Science, Technology, Engineering, and Math, creating an environment that encourages their interests early in their lives while creating a safe place for girls to try and fail, and then try again and succeed. To date, we have trained over 158 leaders in 13 camps. These leaders have come from 24 states, DC, Guam, and Japan. While many of the camp activities are related to the "First Light” theme, many of the background activities relate to two of the other JWST and NIRCam themes: "Birth of Stars and Protoplanetary Systems” and "Planetary Systems and the Origin of Life.” The latter includes our own Solar System. Our poster will highlight the Planetary Systems theme: 1. Earth and Moon: Day and Night; Rotation and Revolution. 2. Earth/Moon Comparisons. 3. Size Model: The Diameters of the Planets. 4. Macramé Planetary (Solar) Distance Model. 5.What is a Planet? 6. Planet Sorting Cards. 7. Human Orrery 8. Lookback Time in Our Daily Lives NIRCam E/PO website: http://zeus.as.arizona.edu/ dmccarthy/GSUSA

  2. The effect of visual parameters on neural activation during nonsymbolic number comparison and its relation to math competency.

    PubMed

    Wilkey, Eric D; Barone, Jordan C; Mazzocco, Michèle M M; Vogel, Stephan E; Price, Gavin R

    2017-10-01

    Nonsymbolic numerical comparison task performance (whereby a participant judges which of two groups of objects is numerically larger) is thought to index the efficiency of neural systems supporting numerical magnitude perception, and performance on such tasks has been related to individual differences in math competency. However, a growing body of research suggests task performance is heavily influenced by visual parameters of the stimuli (e.g. surface area and dot size of object sets) such that the correlation with math is driven by performance on trials in which number is incongruent with visual cues. Almost nothing is currently known about whether the neural correlates of nonsymbolic magnitude comparison are also affected by visual congruency. To investigate this issue, we used functional magnetic resonance imaging (fMRI) to analyze neural activity during a nonsymbolic comparison task as a function of visual congruency in a sample of typically developing high school students (n = 36). Further, we investigated the relation to math competency as measured by the preliminary scholastic aptitude test (PSAT) in 10th grade. Our results indicate that neural activity was modulated by the ratio of the dot sets being compared in brain regions previously shown to exhibit an effect of ratio (i.e. left anterior cingulate, left precentral gyrus, left intraparietal sulcus, and right superior parietal lobe) when calculated from the average of congruent and incongruent trials, as it is in most studies, and that the effect of ratio within those regions did not differ as a function of congruency condition. However, there were significant differences in other regions in overall task-related activation, as opposed to the neural ratio effect, when congruent and incongruent conditions were contrasted at the whole-brain level. Math competency negatively correlated with ratio-dependent neural response in the left insula across congruency conditions and showed distinct correlations when split across conditions. There was a positive correlation between math competency in the right supramarginal gyrus during congruent trials and a negative correlation in the left angular gyrus during incongruent trials. Together, these findings support the idea that performance on the nonsymbolic comparison task relates to math competency and ratio-dependent neural activity does not differ by congruency condition. With regards to math competency, congruent and incongruent trials showed distinct relations between math competency and individual differences in ratio-dependent neural activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Functional conservation of atonal and Math1 in the CNS and PNS

    NASA Technical Reports Server (NTRS)

    Ben-Arie, N.; Hassan, B. A.; Bermingham, N. A.; Malicki, D. M.; Armstrong, D.; Matzuk, M.; Bellen, H. J.; Zoghbi, H. Y.

    2000-01-01

    To determine the extent to which atonal and its mouse homolog Math1 exhibit functional conservation, we inserted (beta)-galactosidase (lacZ) into the Math1 locus and analyzed its expression, evaluated consequences of loss of Math1 function, and expressed Math1 in atonal mutant flies. lacZ under the control of Math1 regulatory elements duplicated the previously known expression pattern of Math1 in the CNS (i.e., the neural tube, dorsal spinal cord, brainstem, and cerebellar external granule neurons) but also revealed new sites of expression: PNS mechanoreceptors (inner ear hair cells and Merkel cells) and articular chondrocytes. Expressing Math1 induced ectopic chordotonal organs (CHOs) in wild-type flies and partially rescued CHO loss in atonal mutant embryos. These data demonstrate that both the mouse and fly homologs encode lineage identity information and, more interestingly, that some of the cells dependent on this information serve similar mechanoreceptor functions.

  4. Promoting children's health through physically active math classes: a pilot study.

    PubMed

    Erwin, Heather E; Abel, Mark G; Beighle, Aaron; Beets, Michael W

    2011-03-01

    School-based interventions are encouraged to support youth physical activity (PA). Classroom-based PA has been incorporated as one component of school wellness policies. The purpose of this pilot study is to examine the effects of integrating PA with mathematics content on math class and school day PA levels of elementary students. Participants include four teachers and 75 students. Five math classes are taught without PA integration (i.e., baseline) followed by 13 math classes that integrate PA. Students wear pedometers and accelerometers to track PA during math class and throughout the school day. Students perform significantly more PA on school days and in math classes during the intervention. In addition, students perform higher intensity (step min(-1)) PA during PA integration math classes compared with baseline math classes. Integrating PA into the classroom is an effective alternative approach to improving PA levels among youth and is an important component of school-based wellness policies.

  5. Math and Science Are America's Future. National Math and Science Initiative Annual Report, 2008

    ERIC Educational Resources Information Center

    National Math and Science Initiative, 2008

    2008-01-01

    This paper presents the annual report of the National Math and Science Initiative (NMSI) for 2008. Eighteen months ago, the National Math and Science Initiative did not exist. Today NMSI is helping lead the country forward in math and science. In just 18 months, NMSI has rolled out the first round of grants and has implemented programs in 14…

  6. A Math Intervention for Third Grade Latino English Language Learners at Risk for Math Disabilities

    ERIC Educational Resources Information Center

    Orosco, Michael J.

    2014-01-01

    Word problems for English language learners (ELLs) at risk for math disabilities are challenging in terms of the constant need to develop precise math language and comprehension knowledge. As a result of this, ELLs may not only need math support but also reading and linguistic support. The purpose of this study was to assess the effectiveness of a…

  7. Maximizing Gender Equality by Minimizing Course Choice Options? Effects of Obligatory Coursework in Math on Gender Differences in STEM

    ERIC Educational Resources Information Center

    Hübner, Nicolas; Wille, Eike; Cambria, Jenna; Oschatz, Kerstin; Nagengast, Benjamin; Trautwein, Ulrich

    2017-01-01

    Math achievement, math self-concept, and vocational interests are critical predictors of STEM careers and are closely linked to high school coursework. Young women are less likely to choose advanced math courses in high school, and encouraging young women to enroll in advanced math courses may therefore bring more women into STEM careers. We…

  8. Counting on Early Math Skills: Preliminary Kindergarten Impacts of the Making Pre-K Count and High 5s Programs

    ERIC Educational Resources Information Center

    Mattera, Shira; Morris, Pamela

    2017-01-01

    Early math ability is one of the best predictors of children's math and reading skills into late elementary school. Children with stronger math proficiency in elementary school, in turn, are more likely to graduate from high school and attend college. However, early math skills have not historically been a major focus of instruction in preschool…

  9. Order of Administration of Math and Verbal Tests: An Ecological Intervention to Reduce Stereotype Threat on Girls' Math Performance

    ERIC Educational Resources Information Center

    Smeding, Annique; Dumas, Florence; Loose, Florence; Régner, Isabelle

    2013-01-01

    In 2 field experiments, we relied on the very features of real testing situations--where both math and verbal tests are administered--to examine whether order of test administration can, by itself, create vs. alleviate stereotype threat (ST) effects on girls' math performance. We predicted that taking the math test before the verbal test would be…

  10. Classroom Learning Environment and Gender: Do They Explain Math Self-Efficacy, Math Outcome Expectations, and Math Interest during Early Adolescence?

    ERIC Educational Resources Information Center

    Deacon, Mary M.

    2011-01-01

    Despite initiatives to increase and broaden participation in science, technology, engineering, and mathematics (STEM) fields, women remain underrepresented in STEM. While U.S. girls and women perform as well as, if not better, than boys and men in math, research results indicate that there are significant declines in girls' math self-efficacy,…

  11. Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology

    NASA Astrophysics Data System (ADS)

    Redish, Edward F.; Kuo, Eric

    2015-07-01

    Mathematics is a critical part of much scientific research. Physics in particular weaves math extensively into its instruction beginning in high school. Despite much research on the learning of both physics and math, the problem of how to effectively include math in physics in a way that reaches most students remains unsolved. In this paper, we suggest that a fundamental issue has received insufficient exploration: the fact that in science, we don't just use math, we make meaning with it in a different way than mathematicians do. In this reflective essay, we explore math as a language and consider the language of math in physics through the lens of cognitive linguistics. We begin by offering a number of examples that show how the use of math in physics differs from the use of math as typically found in math classes. We then explore basic concepts in cognitive semantics to show how humans make meaning with language in general. The critical elements are the roles of embodied cognition and interpretation in context. Then, we show how a theoretical framework commonly used in physics education research, resources, is coherent with and extends the ideas of cognitive semantics by connecting embodiment to phenomenological primitives and contextual interpretation to the dynamics of meaning-making with conceptual resources, epistemological resources, and affect. We present these ideas with illustrative case studies of students working on physics problems with math and demonstrate the dynamical nature of student reasoning with math in physics. We conclude with some thoughts about the implications for instruction.

  12. Neuroanatomical correlates of performance in a state-wide test of math achievement.

    PubMed

    Wilkey, Eric D; Cutting, Laurie E; Price, Gavin R

    2018-03-01

    The development of math skills is a critical component of early education and a strong indicator of later school and economic success. Recent research utilizing population-normed, standardized measures of math achievement suggest that structural and functional integrity of parietal regions, especially the intraparietal sulcus, are closely related to the development of math skills. However, it is unknown how these findings relate to in-school math learning. The present study is the first to address this issue by investigating the relationship between regional differences in grey matter (GM) volume and performance in grade-level mathematics as measured by a state-wide, school-based test of math achievement (TCAP math) in children from 3rd to 8th grade. Results show that increased GM volume in the bilateral hippocampal formation and the right inferior frontal gyrus, regions associated with learning and memory, is associated with higher TCAP math scores. Secondary analyses revealed that GM volume in the left angular gyrus had a stronger relationship to TCAP math in grades 3-4 than in grades 5-8 while the relationship between GM volume in the left inferior frontal gyrus and TCAP math was stronger for grades 5-8. These results suggest that the neuroanatomical architecture related to in-school math achievement differs from that related to math achievement measured by standardized tests, and that the most related neural structures differ as a function of grade level. We suggest, therefore, that the use of school-relevant outcome measures is critical if neuroscience is to bridge the gap to education. © 2017 John Wiley & Sons Ltd.

  13. The MP (Materialization Pattern) Model for Representing Math Educational Standards

    NASA Astrophysics Data System (ADS)

    Choi, Namyoun; Song, Il-Yeol; An, Yuan

    Representing natural languages with UML has been an important research issue for various reasons. Little work has been done for modeling imperative mood sentences which are the sentence structure of math educational standard statements. In this paper, we propose the MP (Materialization Pattern) model that captures the semantics of English sentences used in math educational standards. The MP model is based on the Reed-Kellogg sentence diagrams and creates MP schemas with the UML notation. The MP model explicitly represents the semantics of the sentences by extracting math concepts and the cognitive process of math concepts from math educational standard statements, and simplifies modeling. This MP model is also developed to be used for aligning math educational standard statements via schema matching.

  14. Individual differences in nonverbal number skills predict math anxiety.

    PubMed

    Lindskog, Marcus; Winman, Anders; Poom, Leo

    2017-02-01

    Math anxiety (MA) involves negative affect and tension when solving mathematical problems, with potentially life-long consequences. MA has been hypothesized to be a consequence of negative learning experiences and cognitive predispositions. Recent research indicates genetic and neurophysiological links, suggesting that MA stems from a basic level deficiency in symbolic numerical processing. However, the contribution of evolutionary ancient purely nonverbal processes is not fully understood. Here we show that the roots of MA may go beyond symbolic numbers. We demonstrate that MA is correlated with precision of the Approximate Number System (ANS). Individuals high in MA have poorer ANS functioning than those low in MA. This correlation remains significant when controlling for other forms of anxiety and for cognitive variables. We show that MA mediates the documented correlation between ANS precision and math performance, both with ANS and with math performance as independent variable in the mediation model. In light of our results, we discuss the possibility that MA has deep roots, stemming from a non-verbal number processing deficiency. The findings provide new evidence advancing the theoretical understanding of the developmental etiology of MA. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Individualizing Educational Strategies: An Apple Computer Managed System for the Diagnosis and Evaluation of Reading, Math and Behavior.

    ERIC Educational Resources Information Center

    Kern, Richard

    1985-01-01

    A computer-based interactive system for diagnosing academic and school behavior problems is described. Elements include criterion-referenced testing, an instructional management system, and a behavior evaluation tool developed by the author. (JW)

  16. Flight Control System Development for the BURRO Autonomous UAV

    NASA Technical Reports Server (NTRS)

    Colbourne, Jason D.; Frost, Chad R.; Tischler, Mark B.; Ciolani, Luigi; Sahai, Ranjana; Tomoshofski, Chris; LaMontagne, Troy; Rutkowski, Michael (Technical Monitor)

    2000-01-01

    Developing autonomous flying vehicles has been a growing field in aeronautical research within the last decade and will continue into the next century. With concerns about safety, size, and cost of manned aircraft, several autonomous vehicle projects are currently being developed; uninhabited rotorcraft offer solutions to requirements for hover, vertical take-off and landing, as well as slung load transportation capabilities. The newness of the technology requires flight control engineers to question what design approaches, control law architectures, and performance criteria apply to control law development and handling quality evaluation. To help answer these questions, this paper documents the control law design process for Kaman Aerospace BURRO project. This paper will describe the approach taken to design control laws and develop math models which will be used to convert the manned K-MAX into the BURRO autonomous rotorcraft. With the ability of the K-MAX to lift its own weight (6000 lb) the load significantly affects the dynamics of the system; the paper addresses the additional design requirements for slung load autonomous flight. The approach taken in this design was to: 1) generate accurate math models of the K-MAX helicopter with and without slung loads, 2) select design specifications that would deliver good performance as well as satisfy mission criteria, and 3) develop and tune the control system architecture to meet the design specs and mission criteria. An accurate math model was desired for control system development. The Comprehensive Identification from Frequency Responses (CIFER(R)) software package was used to identify a linear math model for unloaded and loaded flight at hover, 50 kts, and 100 kts. The results of an eight degree-of-freedom CIFER(R)-identified linear model for the unloaded hover flight condition are presented herein, and the identification of the two-body slung-load configuration is in progress.

  17. The Role of Parental Math Anxiety and Math Attitude in Their Children's Math Achievement

    ERIC Educational Resources Information Center

    Soni, Akanksha; Kumari, Santha

    2017-01-01

    The present study investigated the antecedents and consequences of children's math anxiety and math attitude. A total of 595 students aged 10 to 15 years (5th to 10th grades) and 1 parent of each (mother or father) participated in the study. The study was conducted in India, with the study sample drawn from schools in South-West Punjab. Math…

  18. Elementary Teachers' Perceptions of Their Professional Teaching Competencies: Differences between Teachers of Math/Science Majors and Non-Math/Science Majors in Taiwan

    ERIC Educational Resources Information Center

    Wu, Li-Chen; Chao, Li-ling; Cheng, Pi-Yun; Tuan, Hsiao-Lin; Guo, Chorng-Jee

    2018-01-01

    The purpose of this study was to probe the differences of perceived professional teaching competence between elementary school math/science teachers in Taiwan who are majored in math/science and those who are not. A researcher-developed Math/Science Teachers' Professional Development Questionnaire was used in a nationwide survey, using a two-stage…

  19. An Exploration of Teachers' Attitudes and Beliefs about the Reform of an Eighth Grade Math Curriculum from an Integrated Math Curriculum to a Core Math Curriculum

    ERIC Educational Resources Information Center

    Marion, Carol

    2010-01-01

    The purpose of this study was to obtain the attitudes and beliefs of mathematics teachers in the School District of Philadelphia regarding an eighth grade middle school mathematics core curriculum. This study explored the attitudes and beliefs of teachers in the reform of an eighth grade math "Core Curriculum, Math In Context" (School…

  20. Effect of Video Assisted Instruction on Parent, Teacher and Student Perceptions of a Quality 5th Grade Math Program

    ERIC Educational Resources Information Center

    Mayes, Donald Roy

    2010-01-01

    This research has been conducted in response to struggling math students and parents who become frustrated while trying to help their student at home. A need remains for a treatment that can increase math success and lower the anxiety level associated with math. The rationale for this research is an attempt to increase students' math success by…

  1. Mathematics anxiety in children with developmental dyscalculia.

    PubMed

    Rubinsten, Orly; Tannock, Rosemary

    2010-07-15

    Math anxiety, defined as a negative affective response to mathematics, is known to have deleterious effects on math performance in the general population. However, the assumption that math anxiety is directly related to math performance, has not yet been validated. Thus, our primary objective was to investigate the effects of math anxiety on numerical processing in children with specific deficits in the acquisition of math skills (Developmental Dyscalculia; DD) by using a novel affective priming task as an indirect measure. Participants (12 children with DD and 11 typically-developing peers) completed a novel priming task in which an arithmetic equation was preceded by one of four types of priming words (positive, neutral, negative or related to mathematics). Children were required to indicate whether the equation (simple math facts based on addition, subtraction, multiplication or division) was true or false. Typically, people respond to target stimuli more quickly after presentation of an affectively-related prime than after one that is unrelated affectively. Participants with DD responded faster to targets that were preceded by both negative primes and math-related primes. A reversed pattern was present in the control group. These results reveal a direct link between emotions, arithmetic and low achievement in math. It is also suggested that arithmetic-affective priming might be used as an indirect measure of math anxiety.

  2. Building on the foundation for an engineering career

    NASA Technical Reports Server (NTRS)

    White, Susan; White, Ruth

    1994-01-01

    A predictable and preventable hurdle stops a majority of young women from entering the scientific and technical fields. This cuts down the individual's career possibilities and cuts in half the pool of potential U.S. engineers later available to industry. The waste of talent does not advance our country's competitive position. The typical American adolescent girl has acquired all the basic mathematical skills needed to pursue science and math, but, from adolescence on, she does not build the foundation of science and math courses that she would need later in life to work in engineering. Several questions are addressed: Why are some young women stopped cold in their mathematical tracks during adolescence? What is the influence of psychology, including discussion of the personality traits quantifiably shared by women in technical fields? and How should the school system adapt to keep their female charges learning math and science?

  3. Fabry-Perot Observations of Comet Hale-Bopp H_2O(+) Velocity Fields

    NASA Astrophysics Data System (ADS)

    Roesler, F. L.; Klinglesmith, D. A., III; Scherb, F.; Mierkiewicz, E. J.; Oliversen, R. J.

    1997-07-01

    We have obtained Doppler-sliced images of H_2O(+) emission from Comet Hale-Bopp, using a 15-cm, dual-etalon, Fabry-Perot/CCD imaging spectrometer at the McMath-Pierce 0.8-meter west auxiliary telescope of the National Solar Observatory on Kitt Peak. The 6-arcmin field of view was centered on the comet nucleus, and the spectral resolution was 0.4 Angstroms (20km/sec). The observations consisted of ``data cubes,'' i.e., a sequence of images of the 6158 Angstroms emission doublet at velocity steps of 12.5 or 25km/sec, covering a range from -75km/sec to +75km/sec in the comet reference frame. We were able to follow the comet for 1 to 1(1/_2) hours each clear night. We obtained useable data cubes on at least ten nights between February 25 and April 16. These data are being examined to investigate the comet-solar wind interaction. We will present both still images and time-lapse movies showing sequences of ion velocities and accelerations on the plane of the sky.

  4. Math Anxiety Assessment with the Abbreviated Math Anxiety Scale: Applicability and Usefulness: Insights from the Polish Adaptation

    PubMed Central

    Cipora, Krzysztof; Szczygieł, Monika; Willmes, Klaus; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS), known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations. We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857) was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance, and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety. The current study shows transcultural validity of math anxiety assessment with the AMAS. PMID:26648893

  5. Math Anxiety Assessment with the Abbreviated Math Anxiety Scale: Applicability and Usefulness: Insights from the Polish Adaptation.

    PubMed

    Cipora, Krzysztof; Szczygieł, Monika; Willmes, Klaus; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS), known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations. We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857) was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance, and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety. The current study shows transcultural validity of math anxiety assessment with the AMAS.

  6. Computer Algebra Systems in Undergraduate Instruction.

    ERIC Educational Resources Information Center

    Small, Don; And Others

    1986-01-01

    Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)

  7. Can I Count on Getting Better? Association between Math Anxiety and Poorer Understanding of Medical Risk Reductions.

    PubMed

    Rolison, Jonathan J; Morsanyi, Kinga; O'Connor, Patrick A

    2016-10-01

    Lower numerical ability is associated with poorer understanding of health statistics, such as risk reductions of medical treatment. For many people, despite good numeracy skills, math provokes anxiety that impedes an ability to evaluate numerical information. Math-anxious individuals also report less confidence in their ability to perform math tasks. We hypothesized that, independent of objective numeracy, math anxiety would be associated with poorer responding and lower confidence when calculating risk reductions of medical treatments. Objective numeracy was assessed using an 11-item objective numeracy scale. A 13-item self-report scale was used to assess math anxiety. In experiment 1, participants were asked to interpret the baseline risk of disease and risk reductions associated with treatment options. Participants in experiment 2 were additionally provided a graphical display designed to facilitate the processing of math information and alleviate effects of math anxiety. Confidence ratings were provided on a 7-point scale. Individuals of higher objective numeracy were more likely to respond correctly to baseline risks and risk reductions associated with treatment options and were more confident in their interpretations. Individuals who scored high in math anxiety were instead less likely to correctly interpret the baseline risks and risk reductions and were less confident in their risk calculations as well as in their assessments of the effectiveness of treatment options. Math anxiety predicted confidence levels but not correct responding when controlling for objective numeracy. The graphical display was most effective in increasing confidence among math-anxious individuals. The findings suggest that math anxiety is associated with poorer medical risk interpretation but is more strongly related to confidence in interpretations. © The Author(s) 2015.

  8. Relation Between Mathematical Performance, Math Anxiety, and Affective Priming in Children With and Without Developmental Dyscalculia.

    PubMed

    Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael

    2018-01-01

    Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (= negative math priming effect ).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.

  9. Relation Between Mathematical Performance, Math Anxiety, and Affective Priming in Children With and Without Developmental Dyscalculia

    PubMed Central

    Kucian, Karin; Zuber, Isabelle; Kohn, Juliane; Poltz, Nadine; Wyschkon, Anne; Esser, Günter; von Aster, Michael

    2018-01-01

    Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (=negative math priming effect).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task. PMID:29755376

  10. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    PubMed

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Web Sitings.

    ERIC Educational Resources Information Center

    Lo, Erika

    2001-01-01

    Presents seven mathematics games, located on the World Wide Web, for elementary students, including: Absurd Math: Pre-Algebra from Another Dimension; The Little Animals Activity Centre; MathDork Game Room (classic video games focusing on algebra); Lemonade Stand (students practice math and business skills); Math Cats (teaches the artistic beauty…

  12. Math Magician.

    ERIC Educational Resources Information Center

    Bailey, Anne Lowrey

    1984-01-01

    Charles Pine, CASE's Professor of the Year, is a professor who gets students to know and love math and physics and who has emerged as a leading teacher of math teachers. It started when Pine found that his students couldn't do the math involved in his physics classes. (MLW)

  13. The Neurodevelopmental Basis of Math Anxiety

    PubMed Central

    Young, Christina B.; Wu, Sarah S.; Menon, Vinod

    2012-01-01

    Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual’s long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment. PMID:22434239

  14. The neurodevelopmental basis of math anxiety.

    PubMed

    Young, Christina B; Wu, Sarah S; Menon, Vinod

    2012-05-01

    Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual's long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment.

  15. Insecure attachment is associated with math anxiety in middle childhood.

    PubMed

    Bosmans, Guy; De Smedt, Bert

    2015-01-01

    Children's anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (M age = 10.34 years; SD age = 0.63) filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex, and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.

  16. Nursing students' confidence in medication calculations predicts math exam performance.

    PubMed

    Andrew, Sharon; Salamonson, Yenna; Halcomb, Elizabeth J

    2009-02-01

    The aim of this study was to examine the psychometric properties, including predictive validity, of the newly-developed nursing self-efficacy for mathematics (NSE-Math). The NSE-Math is a 12 item scale that comprises items related to mathematic and arithmetic concepts underpinning medication calculations. The NSE-Math instrument was administered to second year Bachelor of Nursing students enrolled in a nursing practice subject. Students' academic results for a compulsory medication calculation examination for this subject were collected. One-hundred and twelve students (73%) completed both the NSE-Math instrument and the drug calculation assessment task. The NSE-Math demonstrated two factors 'Confidence in application of mathematic concepts to nursing practice' and 'Confidence in arithmetic concepts' with 63.5% of variance explained. Cronbach alpha for the scale was 0.90. The NSE-Math demonstrated predictive validity with the medication calculation examination results (p=0.009). Psychometric testing suggests the NSE-Math is a valid measure of mathematics self-efficacy of second year nursing students.

  17. Insecure attachment is associated with math anxiety in middle childhood

    PubMed Central

    Bosmans, Guy; De Smedt, Bert

    2015-01-01

    Children’s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (Mage = 10.34 years; SDage = 0.63) filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex, and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent–child attachment relationships. PMID:26528233

  18. The Role of Crop Systems Simulation in Agriculture and Environment

    USDA-ARS?s Scientific Manuscript database

    Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...

  19. Not Just Numbers: Creating a Partnership Climate to Improve Math Proficiency in Schools

    PubMed Central

    Sheldon, Steven B.; Epstein, Joyce L.; Galindo, Claudia L.

    2009-01-01

    Although we know that family involvement is associated with stronger math performance, little is known about what educators are doing to effectively involve families and community members, and whether this measurably improves math achievement at their schools. This study used data from 39 schools to assess the effects of family and community involvement activities on school levels of math achievement. The study found that better implementation of math-related practices of family and community involvement predicted stronger support from parents for schools’ partnership programs, which, in turn, helped estimate the percentage of students scoring proficient on math achievement tests. PMID:20200592

  20. How Math Anxiety Relates to Number-Space Associations.

    PubMed

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.

  1. How Math Anxiety Relates to Number–Space Associations

    PubMed Central

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number–space associations constitute a potential risk factor of math anxiety. PMID:27683570

  2. Avoidance temperament and social-evaluative threat in college students' math performance: a mediation model of math and test anxiety.

    PubMed

    Liew, Jeffrey; Lench, Heather C; Kao, Grace; Yeh, Yu-Chen; Kwok, Oi-man

    2014-01-01

    Standardized testing has become a common form of student evaluation with high stakes, and limited research exists on understanding the roles of students' personality traits and social-evaluative threat on their academic performance. This study examined the roles of avoidance temperament (i.e., fear and behavioral inhibition) and evaluative threat (i.e., fear of failure and being viewed as unintelligent) in standardized math test and course grades in college students. Undergraduate students (N=184) from a large public university were assessed on temperamental fear and behavioral inhibition. They were then given 15 minutes to complete a standardized math test. After the test, students provided data on evaluative threat and their math performance (scores on standardized college entrance exam and average grades in college math courses). Results indicate that avoidance temperament was linked to social-evaluative threat and low standardized math test scores. Furthermore, evaluative threat mediated the influence of avoidance temperament on both types of math performance. Results have educational and clinical implications, particularly for students at risk for test anxiety and underperformance. Interventions targeting emotion regulation and stress management skills may help individuals reduce their math and test anxieties.

  3. Language, reading, and math learning profiles in an epidemiological sample of school age children.

    PubMed

    Archibald, Lisa M D; Oram Cardy, Janis; Joanisse, Marc F; Ansari, Daniel

    2013-01-01

    Dyscalculia, dyslexia, and specific language impairment (SLI) are relatively specific developmental learning disabilities in math, reading, and oral language, respectively, that occur in the context of average intellectual capacity and adequate environmental opportunities. Past research has been dominated by studies focused on single impairments despite the widespread recognition that overlapping and comorbid deficits are common. The present study took an epidemiological approach to study the learning profiles of a large school age sample in language, reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific learning profiles involving either weak language, weak reading, weak math, or weak math and reading were observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or variable phonological awareness was associated with the reading (but not language-based) weaknesses. The low math only group did not show these phonological deficits. These findings may suggest different etiologies for language-based deficits in language, reading, and math, reading-related impairments in reading and math, and isolated math disabilities.

  4. Language, Reading, and Math Learning Profiles in an Epidemiological Sample of School Age Children

    PubMed Central

    Archibald, Lisa M. D.; Oram Cardy, Janis; Joanisse, Marc F.; Ansari, Daniel

    2013-01-01

    Dyscalculia, dyslexia, and specific language impairment (SLI) are relatively specific developmental learning disabilities in math, reading, and oral language, respectively, that occur in the context of average intellectual capacity and adequate environmental opportunities. Past research has been dominated by studies focused on single impairments despite the widespread recognition that overlapping and comorbid deficits are common. The present study took an epidemiological approach to study the learning profiles of a large school age sample in language, reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific learning profiles involving either weak language, weak reading, weak math, or weak math and reading were observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or variable phonological awareness was associated with the reading (but not language-based) weaknesses. The low math only group did not show these phonological deficits. These findings may suggest different etiologies for language-based deficits in language, reading, and math, reading-related impairments in reading and math, and isolated math disabilities. PMID:24155959

  5. Quasi-Hamiltonian structure and Hojman construction

    NASA Astrophysics Data System (ADS)

    Carinena, Jose F.; Guha, Partha; Ranada, Manuel F.

    2007-08-01

    Given a smooth vector field [Gamma] and assuming the knowledge of an infinitesimal symmetry X, Hojman [S. Hojman, The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system, J. Phys. A Math. Gen. 29 (1996) 667-674] proposed a method for finding both a Poisson tensor and a function H such that [Gamma] is the corresponding Hamiltonian system. In this paper, we approach the problem from geometrical point of view. The geometrization leads to the clarification of several concepts and methods used in Hojman's paper. In particular, the relationship between the nonstandard Hamiltonian structure proposed by Hojman and the degenerate quasi-Hamiltonian structures introduced by Crampin and Sarlet [M. Crampin, W. Sarlet, Bi-quasi-Hamiltonian systems, J. Math. Phys. 43 (2002) 2505-2517] is unveiled in this paper. We also provide some applications of our construction.

  6. Destination Math. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    "Destination Math" is a series of computer-based curricula designed to be used for at least 90 minutes a week. Featuring sequenced, prescriptive, step-by-step instruction, "Destination Math" is designed for the development of fluency in critical skills, math reasoning, conceptual understanding, and problem-solving skills.…

  7. Accelerated Math[TM]. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2011

    2011-01-01

    "Accelerated Math"[TM], published by Renaissance Learning, is a software tool used to customize assignments and monitor progress in math for students in grades 1-12. The "Accelerated Math"[TM] software creates individualized assignments aligned with state standards and national guidelines, scores student work, and generates…

  8. Variation of the Mn I 539.4 nm line with the solar cycle

    NASA Astrophysics Data System (ADS)

    Danilovic, S.; Solanki, S. K.; Livingston, W.; Krivova, N.; Vince, I.

    2016-03-01

    Context. As a part of the long-term program at Kitt Peak National Observatory (KPNO), the Mn I 539.4 nm line has been observed for nearly three solar cycles using the McMath telescope and the 13.5 m spectrograph in double-pass mode. These full-disk spectrophotometric observations revealed an unusually strong change of this line's parameters over the solar cycle. Aims: Optical pumping by the Mg II k line was originally proposed to explain these variations. More recent studies have proposed that this is not required and that the magnetic variability (I.e., the changes in solar atmospheric structure due to faculae) might explain these changes. Magnetic variability is also the mechanism that drives the changes in total solar irradiance variations (TSI). With this work we investigate this proposition quantitatively by using the same model that was earlier successfully employed to reconstruct the irradiance. Methods: We reconstructed the changes in the line parameters using the model SATIRE-S, which takes only variations of the daily surface distribution of the magnetic field into account. We applied exactly the same model atmospheres and value of the free parameter as were used in previous solar irradiance reconstructions to now model the variation in the Mn I 539.4 nm line profile and in neighboring Fe I lines. We compared the results of the theoretical model with KPNO observations. Results: The changes in the Mn I 539.4 nm line and a neighbouring Fe I 539.52 nm line over approximately three solar cycles are reproduced well by the model without additionally tweaking the model parameters, if changes made to the instrument setup are taken into account. The model slightly overestimates the change for the strong Fe I 539.32 nm line. Conclusions: Our result confirms that optical pumping of the Mn II 539.4 nm line by Mg II k is not the main cause of its solar cycle change. It also provides independent confirmation of solar irradiance models which are based on the assumption that irradiance variations are caused by the evolution of the solar surface magnetic flux. The result obtained here also supports the spectral irradiance variations computed by these models.

  9. Math-related career aspirations and choices within Eccles et al.'s expectancy-value theory of achievement-related behaviors.

    PubMed

    Lauermann, Fani; Tsai, Yi-Miau; Eccles, Jacquelynne S

    2017-08-01

    Which occupation to pursue is one of the more consequential decisions people make and represents a key developmental task. Yet the underlying developmental processes associated with either individual or group differences in occupational choices are still not well understood. This study contributes toward filling this gap, focusing in particular on the math domain. We examined two aspects of Eccles et al.'s (1983) expectancy-value theory of achievement-related behaviors: (a) the reciprocal associations between adolescents' expectancy and subjective task value beliefs and adolescents' career plans and (b) the multiplicative association between expectancies and values in predicting occupational outcomes in the math domain. Our analyses indicate that adolescents' expectancy and subjective task value beliefs about math and their math- or science-related career plans reported at the beginning and end of high school predict each other over time, with the exception of intrinsic interest in math. Furthermore, multiplicative associations between adolescents' expectancy and subjective task value beliefs about math predict math-related career attainment approximately 15 years after graduation from high school. Gender differences emerged regarding career-related beliefs and career attainment, with male students being more likely than female to both pursue and attain math-related careers. These gender differences could not be explained by differences in beliefs about math as an academic subject. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Mathematics anxiety in children with developmental dyscalculia

    PubMed Central

    2010-01-01

    Background Math anxiety, defined as a negative affective response to mathematics, is known to have deleterious effects on math performance in the general population. However, the assumption that math anxiety is directly related to math performance, has not yet been validated. Thus, our primary objective was to investigate the effects of math anxiety on numerical processing in children with specific deficits in the acquisition of math skills (Developmental Dyscalculia; DD) by using a novel affective priming task as an indirect measure. Methods Participants (12 children with DD and 11 typically-developing peers) completed a novel priming task in which an arithmetic equation was preceded by one of four types of priming words (positive, neutral, negative or related to mathematics). Children were required to indicate whether the equation (simple math facts based on addition, subtraction, multiplication or division) was true or false. Typically, people respond to target stimuli more quickly after presentation of an affectively-related prime than after one that is unrelated affectively. Result Participants with DD responded faster to targets that were preceded by both negative primes and math-related primes. A reversed pattern was present in the control group. Conclusion These results reveal a direct link between emotions, arithmetic and low achievement in math. It is also suggested that arithmetic-affective priming might be used as an indirect measure of math anxiety. PMID:20633269

  11. Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context

    NASA Astrophysics Data System (ADS)

    Myers, J. D.; Lyford, M. E.; Mayes, R. L.

    2010-12-01

    Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and science teachers from the same school or district. By jointly developing units focused on energy and environment, math and science curricula can be coordinated during the school year. During development, teams present their curricular ideas for peer-review. Throughout the school year, teachers implement their units and collect pre-post data on student learning. Ultimately, science teachers integrate math into their science courses, and math teachers integrate science content in their math courses. Following implementation, participants share their experiences with their peers and faculty. Of central interest during these presentations are: 1) How did the QR-STEM experience change teacher practices in the classroom?; and 2) How did the modification of their teaching practices impact student learning and their ability to successfully master QR? The UW QR-STEM has worked with Wyoming science and math teachers from across the state over the three year grant period.

  12. Mathematics, Information, and Life Sciences

    DTIC Science & Technology

    2012-03-05

    INS • Chip -scale atomic clocks • Ad hoc networks • Polymorphic networks • Agile networks • Laser communications • Frequency-agile RF systems...FY12 BAA Bionavigation (Bio) Neuromorphic Computing (Human) Multi-scale Modeling (Math) Foundations of Information Systems (Info) BRI

  13. Do student self-efficacy and teacher-student interaction quality contribute to emotional and social engagement in fifth grade math?

    PubMed

    Martin, Daniel P; Rimm-Kaufman, Sara E

    2015-10-01

    This study examined (a) the contribution of math self-efficacy to students' perception of their emotional and social engagement in fifth grade math classes, and (b) the extent to which high quality teacher-student interactions compensated for students' low math self-efficacy in contributing to engagement. Teachers (n = 73) were observed three times during the year during math to measure the quality of teacher-student interactions (emotional, organizational, and instructional support). Fifth graders (n = 387) reported on their math self-efficacy at the beginning of the school year and then were surveyed about their feelings of engagement in math class three times during the year immediately after the lessons during which teachers were observed. Results of multi-level models indicated that students initially lower in math self-efficacy reported lower emotional and social engagement during math class than students with higher self-efficacy. However, in classrooms with high levels of teacher emotional support, students reported similar levels of both emotional and social engagement, regardless of their self-efficacy. No comparable findings emerged for organizational and instructional support. The discussion considers the significance of students' own feelings about math in relation to their engagement, as well as the ways in which teacher and classroom supports can compensate for students lack of agency. The work has implications for school psychologists and teachers eager to boost students' engagement in math class. Copyright © 2015 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  14. Recognizing and Nurturing Math Talent in Children

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Firmender, Janine M.; Casa, Tutita M.

    2013-01-01

    What is math talent? Ten different educators will most likely provide 10 different answers. Researchers state that one reason mathematical talent is difficult to describe involves the different ways children manifest math talent. Children can display math talent in three different ways: (a) those who reason abstractly and have an "algebraic…

  15. Solving America's Math Problem

    ERIC Educational Resources Information Center

    Vigdor, Jacob

    2013-01-01

    Concern about students' math achievement is nothing new, and debates about the mathematical training of the nation's youth date back a century or more. In the early 20th century, American high-school students were starkly divided, with rigorous math courses restricted to a college-bound elite. At midcentury, the "new math" movement sought,…

  16. The Menu for Every Young Mathematician's Appetite

    ERIC Educational Resources Information Center

    Legnard, Danielle S.; Austin, Susan L.

    2012-01-01

    Math Workshop offers differentiated instruction to foster a deep understanding of rich, rigorous mathematics that is attainable by all learners. The inquiry-based model provides a menu of multilevel math tasks, within the daily math block, that focus on similar mathematical content. Math Workshop promotes a culture of engagement and…

  17. Group Activities for Math Enthusiasts

    ERIC Educational Resources Information Center

    Holdener, J.; Milnikel, R.

    2016-01-01

    In this article we present three group activities designed for math students: a balloon-twisting workshop, a group proof of the irrationality of p, and a game of Math Bingo. These activities have been particularly successful in building enthusiasm for mathematics and camaraderie among math faculty and students at Kenyon College.

  18. 78 FR 2379 - Agency Information Collection Activities; Comment Request; Impact Evaluation of Math Professional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ...; Comment Request; Impact Evaluation of Math Professional Development AGENCY: IES/NCES, Department of... of Math Professional Development. OMB Control Number: 1850-NEW. Type of Review: New information... requests clearance to recruit and collect data from districts, schools, and teachers for a study of math...

  19. Specific Cognitive Predictors of Early Math Problem Solving

    ERIC Educational Resources Information Center

    Decker, Scott L.; Roberts, Alycia M.

    2015-01-01

    Development of early math skill depends on a prerequisite level of cognitive development. Identification of specific cognitive skills that are important for math development may not only inform instructional approaches but also inform assessment approaches to identifying children with specific learning problems in math. This study investigated the…

  20. Mathematizing: An Emergent Math Curriculum Approach for Young Children

    ERIC Educational Resources Information Center

    Rosales, Allen C.

    2015-01-01

    Based on years of research with early childhood teachers, author Allen Rosales provides an approach to create an emergent math curriculum that integrates children's interests with math concepts. The mathematizing approach is different from traditional math curriculums, as it immerses children in a process that is designed to develop their…

  1. Mix It Up

    ERIC Educational Resources Information Center

    Vasquez-Mireles, Selina; West, Sandra

    2007-01-01

    A correlated science lesson is characterized as an integrated science lesson in that it may incorporate traditionally integrated activities and use math as a tool. However, a correlated math-science lesson also: (1) has the pertinent math and science objectives aligned with state standards; and (2) teaches parallel science and math ideas equally.…

  2. Writing in Math: A Disciplinary Literacy Approach

    ERIC Educational Resources Information Center

    Brozo, William G.; Crain, Sarah

    2018-01-01

    Mathematics teachers often resist generic literacy strategies because they do not seem relevant to math learning. Discipline-specific literacy practices that emerge directly from the math content and processes under study are more likely to be embraced by math teachers. Furthermore, national and state-level mathematics standards as well as Common…

  3. Strategies for Communications, Math with Technology.

    ERIC Educational Resources Information Center

    Wyoming Univ., Laramie. Dept. of Vocational Education.

    This manual was designed for an inservice workshop with business educators on strategies for math communication. The focus is on basic writing and math skills. Technology is incorporated in the curriculum. The manual is divided into six sections; four sections deal with communications skills and two sections with math skills. Each section includes…

  4. SRA Real Math Building Blocks PreK. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "SRA Real Math Building Blocks PreK" (also referred to as "Building Blocks for Math") is a supplemental mathematics curriculum designed to develop preschool children's early mathematical knowledge through various individual and small- and large-group activities. It uses "Building Blocks for Math PreK" software,…

  5. Math and Beyond.

    ERIC Educational Resources Information Center

    Solana Beach Elementary School District, CA.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: MATH AND BEYOND is a schoolwide math incentive program designed to encourage students--and their parents--to investigate and explore the world of mathematics beyond those experiences provided during the school day. The program focuses on experiences and activities in seven different areas of math:…

  6. Gender Compatibility, Math-Gender Stereotypes, and Self-Concepts in Math and Physics

    ERIC Educational Resources Information Center

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-01-01

    Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and…

  7. Theoretical Frameworks for Math Fact Fluency

    ERIC Educational Resources Information Center

    Arnold, Katherine

    2012-01-01

    Recent education statistics indicate persistent low math scores for our nation's students. This drop in math proficiency includes deficits in basic number sense and automaticity of math facts. The decrease has been recorded across all grade levels with the elementary levels showing the greatest loss (National Center for Education Statistics,…

  8. Math Anxiety and Math Ability in Early Primary School Years

    ERIC Educational Resources Information Center

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2009-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported…

  9. Teacher Judgment of Student Mastery of Math Skills.

    ERIC Educational Resources Information Center

    Bentz, Johnell L.; Fuchs, Lynn S.

    1993-01-01

    Information on students' math skill mastery based on curriculum-based measurement was provided to nine special and general education elementary teachers. Teachers were asked to identify the specific math skills their students had mastered. Results indicated that most teachers were not accurate at judging math skill mastery despite having specific…

  10. Fourier transform spectroscopy of the Swan (d(sup 3)pi(sub g) - a(sup 3)pi(sub u)) system of the jet-cooled C2 molecule

    NASA Technical Reports Server (NTRS)

    Prasad, C. V. V.; Bernath, P. F.

    1994-01-01

    The Swan (d(sup 3)pi(sub g) - a(sup 3)pi(sub u)) system of the C2 molecule was produced in a jet-cooled corona excited supersonic expansion of helium using diazoacetonitrile as a percursor molecule. This spectrum was recorded using the McMath Fourier transform spectrometer of the National Solar Observatory at Kitt Peak. A total of nine bands with v prime = 0 to 3 and v prime prime = 0 to 4 in the range 16,570-22,760/cm were observed and rotationally analyzed. The C2 molecules in this source had a rotational temperature of only 90 K so that only the low-J lines were present in the spectrum. In some sense the low temperatures in the jet source simulate conditions in the interstellar medium. The Swan system of C2 was also produced in a composite wall hollow cathode made Al4C3/Cu, and the rotational structure of the 1-0, 2-1, 3-2, 0-0, and 1-1 bands were analyzed. The data obtained from both these spectra were fitted together along with some recently published line positions. The rotational constants, lambda doubling parameters and the vibrational constants were estimated from this global fit. Our work on jet-cooled C2 follows similar work on the violet and red systems of CN. A summary of this CN work is also presented. also presented.

  11. CATE 2016 Indonesia: Camera, Software, and User Interface

    NASA Astrophysics Data System (ADS)

    Kovac, S. A.; Jensen, L.; Hare, H. S.; Mitchell, A. M.; McKay, M. A.; Bosh, R.; Watson, Z.; Penn, M.

    2016-12-01

    The Citizen Continental-America Telescopic Eclipse (Citizen CATE) Experiment will use a fleet of 60 identical telescopes across the United States to image the inner solar corona during the 2017 total solar eclipse. For a proof of concept, five sites were hosted along the path of totality during the 2016 total solar eclipse in Indonesia. Tanjung Pandan, Belitung, Indonesia was the first site to experience totality. This site had the best seeing conditions and focus, resulting in the highest quality images. This site proved that the equipment that is going to be used is capable of recording high quality images of the solar corona. Because 60 sites will be funded, each set up needs to be cost effective. This requires us to use an inexpensive camera, which consequently has a small dynamic range. To compensate for the corona's intensity drop off factor of 1,000, images are taken at seven frames per second, at exposures 0.4ms, 1.3ms, 4.0ms, 13ms, 40ms, 130ms, and 400ms. Using MatLab software, we are able to capture a high dynamic range with an Arduino that controls the 2448 x 2048 CMOS camera. A major component of this project is to train average citizens to use the software, meaning it needs to be as user friendly as possible. The CATE team is currently working with MathWorks to create a graphic user interface (GUI) that will make data collection run smoothly. This interface will include tabs for alignment, focus, calibration data, drift data, GPS, totality, and a quick look function. This work was made possible through the National Solar Observatory Research Experiences for Undergraduates (REU) Program, which is funded by the National Science Foundation (NSF). The NSO Training for 2017 Citizen CATE Experiment, funded by NASA (NASA NNX16AB92A), also provided support for this project. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.

  12. The period function of the generalized Lotka-Volterra centers

    NASA Astrophysics Data System (ADS)

    Villadelprat, J.

    2008-05-01

    The present paper deals with the period function of the quadratic centers. In the literature different terminologies are used to classify these centers, but essentially there are four families: Hamiltonian, reversible , codimension four Q4 and generalized Lotka-Volterra systems . Chicone [C. Chicone, Review in MathSciNet, Ref. 94h:58072] conjectured that the reversible centers have at most two critical periods, and that the centers of the three other families have a monotonic period function. With regard to the second part of this conjecture, only the monotonicity of the Hamiltonian and Q4 families [W.A. Coppel, L. Gavrilov, The period function of a Hamiltonian quadratic system, Differential Integral Equations 6 (1993) 1357-1365; Y. Zhao, The monotonicity of period function for codimension four quadratic system Q4, J. Differential Equations 185 (2002) 370-387] has been proved. Concerning the family, no substantial progress has been made since the middle 80s, when several authors showed independently the monotonicity of the classical Lotka-Volterra centers [F. Rothe, The periods of the Volterra-Lokta system, J. Reine Angew. Math. 355 (1985) 129-138; R. Schaaf, Global behaviour of solution branches for some Neumann problems depending on one or several parameters, J. Reine Angew. Math. 346 (1984) 1-31; J. Waldvogel, The period in the Lotka-Volterra system is monotonic, J. Math. Anal. Appl. 114 (1986) 178-184]. By means of the first period constant one can easily conclude that the period function of the centers in the family is monotone increasing near the inner boundary of its period annulus (i.e., the center itself). Thus, according to Chicone's conjecture, it should be also monotone increasing near the outer boundary, which in the Poincaré disc is a polycycle. In this paper we show that this is true. In addition we prove that, except for a zero measure subset of the parameter plane, there is no bifurcation of critical periods from the outer boundary. Finally we show that the period function is globally (i.e., in the whole period annulus) monotone increasing in two other cases different from the classical one.

  13. Longitudinal relations among parents' reactions to children's negative emotions, effortful control, and math achievement in early elementary school.

    PubMed

    Swanson, Jodi; Valiente, Carlos; Lemery-Chalfant, Kathryn; Bradley, Robert H; Eggum-Wilkens, Natalie D

    2014-01-01

    Panel mediation models and fixed-effects models were used to explore longitudinal relations among parents' reactions to children's displays of negative emotions, children's effortful control (EC), and children's math achievement (N = 291; M age in fall of kindergarten = 5.66 years, SD = .39 year) across kindergarten through second grade. Parents reported their reactions and children's EC. Math achievement was assessed with a standardized achievement test. First-grade EC mediated the relation between parents' reactions at kindergarten and second-grade math achievement, beyond stability in constructs across study years. Panel mediation model results suggested that socialization of EC may be one method of promoting math achievement in early school; however, when all omitted time-invariant covariates of EC and math achievement were controlled, first-grade EC no longer predicted second-grade math achievement. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  14. Mathematics skills in good readers with hydrocephalus.

    PubMed

    Barnes, Marcia A; Pengelly, Sarah; Dennis, Maureen; Wilkinson, Margaret; Rogers, Tracey; Faulkner, Heather

    2002-01-01

    Children with hydrocephalus have poor math skills. We investigated the nature of their arithmetic computation errors by comparing written subtraction errors in good readers with hydrocephalus, typically developing good readers of the same age, and younger children matched for math level to the children with hydrocephalus. Children with hydrocephalus made more procedural errors (although not more fact retrieval or visual-spatial errors) than age-matched controls; they made the same number of procedural errors as younger, math-level matched children. We also investigated a broad range of math abilities, and found that children with hydrocephalus performed more poorly than age-matched controls on tests of geometry and applied math skills such as estimation and problem solving. Computation deficits in children with hydrocephalus reflect delayed development of procedural knowledge. Problems in specific math domains such as geometry and applied math, were associated with deficits in constituent cognitive skills such as visual spatial competence, memory, and general knowledge.

  15. Mathematics/Arithmetic Knowledge-Based Way of Thinking and Its Maintenance Needed for Engineers

    NASA Astrophysics Data System (ADS)

    Harada, Shoji

    Examining curriculum among universities revealed that no significant difference in math class or related subjects can be seen. However, amount and depth of those studies, in general, differed depending on content of curriculum and the level of achievement at entrance to individual university. Universalization of higher education shows that students have many problems in learning higher level of traditional math and that the memory of math they learned quickly fades away after passing in exam. It means that further development of higher math knowledgebased engineer after graduation from universities. Under these circumstances, the present author, as one of fun of math, propose how to maintain way of thinking generated by math knowledge. What necessary for engineer is to pay attention to common books, dealing with elementary mathematics or arithmetic- related matters. This surely leads engineer to nourish math/arithmetic knowledge-based way of thinking.

  16. Girls' math performance under stereotype threat: the moderating role of mothers' gender stereotypes.

    PubMed

    Tomasetto, Carlo; Alparone, Francesca Romana; Cadinu, Mara

    2011-07-01

    Previous research on stereotype threat in children suggests that making gender identity salient disrupts girls' math performance at as early as 5 to 7 years of age. The present study (n = 124) tested the hypothesis that parents' endorsement of gender stereotypes about math moderates girls' susceptibility to stereotype threat. Results confirmed that stereotype threat impaired girls' performance on math tasks among students from kindergarten through 2nd grade. Moreover, mothers' but not fathers' endorsement of gender stereotypes about math moderated girls' vulnerability to stereotype threat: performance of girls whose mothers strongly rejected the gender stereotype about math did not decrease under stereotype threat. These findings are important because they point to the role of mothers' beliefs in the development of girls' vulnerability to the negative effects of gender stereotypes about math. PsycINFO Database Record (c) 2011 APA, all rights reserved

  17. Domain identification moderates the effect of positive stereotypes on Chinese American women's math performance.

    PubMed

    Saad, Carmel S; Meyer, Oanh L; Dhindsa, Manveen; Zane, Nolan

    2015-01-01

    We examined whether an individual difference factor, math domain identification, moderated performance following positive stereotype activation. We hypothesized that positive stereotype activation would improve performance for those more math identified (compared to a control condition), but would hinder performance for those less math identified. We examined 116 Chinese American women (mean age = 19 years). Participants were assigned to the positive stereotype activation condition or to the control condition before completing a math test. Positive stereotype activation led more math identified participants to perform significantly better than the control condition, whereas it led less math identified participants to perform significantly worse than the control condition. Domain identification moderates the effect of positive stereotype activation. Educators should consider how testing situations are constructed, especially when test takers do not identify highly with the domain. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  18. A Case Study of Computer Gaming for Math: Engaged Learning from Gameplay?

    ERIC Educational Resources Information Center

    Ke, Fengfeng

    2008-01-01

    Employing mixed-method approach, this case study examined the in situ use of educational computer games in a summer math program to facilitate 4th and 5th graders' cognitive math achievement, metacognitive awareness, and positive attitudes toward math learning. The results indicated that students developed more positive attitudes toward math…

  19. Training for Fluency and Generalization of Math Facts Using Technology

    ERIC Educational Resources Information Center

    Musti-Rao, Shobana; Lynch, Tom Liam; Plati, Erin

    2015-01-01

    As American students struggle with basic mathematical skills, the importance of math fact fluency has gained the attention of educators and researchers. Generalization of math fact fluency is also important for the transfer of skills to other settings and formats, assisting students in the completion of more varied and complicated math tasks. This…

  20. Math Branding in a Community College Library

    ERIC Educational Resources Information Center

    Brantz, Malcolm; Sadowski, Edward B.

    2010-01-01

    As a strategy to promote the Arapahoe Community College Library's collections and services, the Library undertook to brand itself as a math resource center. In promoting one area of expertise, math was selected to help address the problem of a large portion of high school graduates' inability to work at college-level math. A "Math…

  1. Strategies for Reducing Math Anxiety. Information Capsule. Volume 1102

    ERIC Educational Resources Information Center

    Blazer, Christie

    2011-01-01

    Approximately 93 percent of Americans indicate that they experience some level of math anxiety. Math anxiety is defined as negative emotions that interfere with the solving of mathematical problems. Studies have found that some students who perform poorly on math assessments actually have a full understanding of the concepts being tested; however,…

  2. The Value of the Math Circle for Gifted Middle School Students

    ERIC Educational Resources Information Center

    Burns, Barbara; Henry, Julie; McCarthy, Dianne; Tripp, Jennifer

    2017-01-01

    Math Circles are designed to allow students to explore mathematics using a problem-solving/inquiry approach. Many of the students attending our Math Circle are mathematically talented and curious. This study examines the perspectives of the students and their families in determining why students attend Math Circle, what they enjoy about Math…

  3. Learning to Be a Math Teacher: What Knowledge Is Essential?

    ERIC Educational Resources Information Center

    Reid, Mary; Reid, Steven

    2017-01-01

    This study critically examined the math content knowledge (MCK) of teacher candidates (TCs) enrolled in a two-year Master of Teaching (MT) degree. Teachers require a solid math knowledge base in order to support students' achievement. Provincial and international math assessments have been of major concern in Ontario, Canada, due to declining…

  4. The Groove of Growth: How Early Gains in Math Ability Influence Adolescent Achievement

    ERIC Educational Resources Information Center

    Watts, Tyler W.; Duncan, Greg J.; Siegler, Robert S.; Davis-Kean, Pamela E.

    2014-01-01

    A number of studies, both small scale and of nationally-representative student samples, have reported substantial associations between school entry math ability and later elementary school achievement. However, questions remain regarding the persistence of the association between early growth in math ability and later math achievement due to the…

  5. Singapore Math®. What Works Clearinghouse Intervention Report. Updated December 2015

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2015

    2015-01-01

    This report on "Singapore Math®" updates the 2009 WWC review of the curriculum to include seven new studies. Despite the additional research, no studies meet WWC design standards and therefore, no conclusions can be made about the effectiveness of "Singapore Math®." [For the 2009 report, "Singapore Math," see…

  6. Using Computer-Assisted Instruction to Build Math Fact Fluency: An Implementation Guide

    ERIC Educational Resources Information Center

    Hawkins, Renee O.; Collins, Tai; Hernan, Colleen; Flowers, Emily

    2017-01-01

    Research findings support the use of computer-assisted instruction (CAI) as a curriculum supplement for improving math skills, including math fact fluency. There are a number of websites and mobile applications (i.e., apps) designed to build students' math fact fluency, but the options can become overwhelming. This article provides implementation…

  7. 77 FR 37016 - Applications for New Awards: Upward Bound Math and Science Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... DEPARTMENT OF EDUCATION Applications for New Awards: Upward Bound Math and Science Program AGENCY... Bound Math and Science Program. Notice inviting applications for new awards for fiscal year (FY) 2012.... There are three types of grants under the UB Program: regular UB grants, Veterans UB grants, and UB Math...

  8. Formula for Success: Engaging Families in Early Math Learning

    ERIC Educational Resources Information Center

    Global Family Research Project, 2017

    2017-01-01

    Early math ability is one of the best predictors of children's later success in school. Because children's learning begins in the home, families are fundamental in shaping children's interest and skills in math. The experience of learning and doing math, however, looks different from the instruction that was offered when most adults were in…

  9. Preschool Children's Interest, Social-Emotional Skills, and Emergent Mathematics Skills

    ERIC Educational Resources Information Center

    Doctoroff, Greta L.; Fisher, Paige H.; Burrows, Bethany M.; Edman, Maria Tsepilovan

    2016-01-01

    This cross-sectional study examined the relationship between interest, social-emotional skills, and early math skills in preschool children. Math-specific interest and global interest in learning were measured using teacher report and a play-based observation task. Math skills were assessed with a test of math achievement, and social-emotional…

  10. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ...; Comment Request; Upward Bound and Upward Bound Math Science Annual Performance Report AGENCY: The Office... considered public records. Title of Collection: Upward Bound and Upward Bound Math Science Annual Performance...) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new APR because of...

  11. Early Math Interest and the Development of Math Skills

    ERIC Educational Resources Information Center

    Fisher, Paige H.; Dobbs-Oates, Jennifer; Doctoroff, Greta L.; Arnold, David H.

    2012-01-01

    Prior models suggest that math attitudes and ability might strengthen each other over time in a reciprocal fashion (Ma, 1997). The current study investigated the relationship between math interest and skill both concurrently and over time in a preschool sample. Analyses of concurrent relationships indicated that high levels of interest were…

  12. Upward Bound Math-Science: Program Description and Interim Impact Estimates

    ERIC Educational Resources Information Center

    Olsen, Robert; Seftor, Neil; Silva, Tim; Myers, David; DesRoches, David; Young, Julie

    2007-01-01

    To help address continuing disparities in academic achievement and under-representation of disadvantaged groups in math and science majors and careers, the U.S. Department of Education (ED) established a math and science initiative in 1990 within Upward Bound, a federal grant program known as Upward Bound Math-Science (UBMS) designed to provide…

  13. Neurobiological Underpinnings of Math and Reading Learning Disabilities

    ERIC Educational Resources Information Center

    Ashkenazi, Sarit; Black, Jessica M.; Abrams, Daniel A.; Hoeft, Fumiko; Menon, Vinod

    2013-01-01

    The primary goal of this review is to highlight current research and theories describing the neurobiological basis of math (MD), reading (RD), and comorbid math and reading disability (MD+RD). We first describe the unique brain and cognitive processes involved in acquisition of math and reading skills, emphasizing similarities and differences in…

  14. Integrating Music into Math in a Virtual Reality Game: Learning Fractions

    ERIC Educational Resources Information Center

    Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng

    2016-01-01

    The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…

  15. Saxon Math. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    "Saxon Math" is a curriculum for students in grades K-12. The amount of new math content students receive each day is limited and students practice concepts every day. New concepts are developed, reviewed, and practiced cumulatively rather than in discrete chapters or units. This review focuses on studies of "Saxon Math"'s…

  16. Saxon Middle School Math. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "Saxon Math" curricula and materials are available for grades K through 12, with the content and skills designed to meet National Council of Teachers of Mathematics (NCTM) standards and various state standards. This WWC report focuses on middle school math curricula, defined as all Saxon Math curricula for grades 6 through 9. The…

  17. After-School Math PLUS (ASM+) Final Evaluation Report

    ERIC Educational Resources Information Center

    Academy for Educational Development, 2007

    2007-01-01

    This report summarizes findings from the Academy for Educational Development's (AED's) evaluation of After-School Math PLUS (ASM+). This program was designed to help students find the math in everyday experiences and create awareness about the importance of math skills for future career options. The evaluation was conducted by AED's Center for…

  18. Preliminary Success and Retention Rates in Selected Math Courses. Research Report.

    ERIC Educational Resources Information Center

    Cuesta Coll., San Luis Obispo, CA. Matriculation and Research Services.

    This report presents findings of exploratory research on success, retention, and persistence in math courses at Cuesta College. The following research questions were addressed: (1) How do success rates in Math 23 (elementary algebra) and Math 27 (intermediate algebra) compare with traditional and computer-assisted formats? (2) What are the…

  19. Affordable Online Maths Tuition: Evaluation Report and Executive Summary

    ERIC Educational Resources Information Center

    Torgerson, Carole; Ainsworth, Hannah; Buckley, Hannah; Hampden-Thompson, Gillen; Hewitt, Catherine; Humphry, Deborah; Jefferson, Laura; Mitchell, Natasha; Torgerson, David

    2016-01-01

    "Affordable Online Maths Tuition" is a one-to-one tutoring programme where pupils receive maths tuition over the internet from trained maths graduates in India and Sri Lanka. It is delivered by the organisation Third Space Learning (TSL). Tutors and pupils communicate using video calling and a secure virtual classroom. Before each…

  20. Ideas in Practice: Teaching Mathematics in an "Academic Servicing" Course.

    ERIC Educational Resources Information Center

    Ritsena, Paul

    1981-01-01

    Describes a remedial approach which provides math and communications instruction for applied arts and technology students. Looks at the problems of lack of time and math anxiety. Provides examples of math problems that show "real life" applications of math skills. Recounts how the problems are used in the classroom. (AYC)

Top