Science.gov

Sample records for solar thermal decomposition

  1. Solar thermal decomposition of zinc oxide in aerosol flow for renewable hydrogen production

    NASA Astrophysics Data System (ADS)

    Perkins, Christopher Michael

    Hydrogen could be a clean replacement for fossil fuels. The Zn/ZnO solar thermochemical water-splitting cycle provides a renewable path to this fuel. Thermodynamic simulations showed that the Zn/ZnO cycle has the lowest temperature of all two-step metal oxide cycles, and the prediction of relatively high efficiency based on its lower temperature and number of steps led to its selection for further study. A rapid aerosol configuration for ZnO decomposition was chosen based on expectation of high reaction rates and small product particle production, and proof-of-concept experiments confirmed this assumption. Thermogravimetric studies of the thermal decomposition kinetics of ZnO showed that the rate followed a 2/3 order L'vov kinetic expression. The activation energy was found to be 353 +/- 25.9 kJ/mol, and a simple electrostatic model was used to describe the reaction mechanism. The pre-exponential factor was found, as expected, to vary inversely with the distance to a product concentration sink. Investigation of the aerosol decomposition of ZnO showed high forward conversion (˜60%) but low net yield (18%) of zinc due to recombination of product oxygen with nucleated zinc particles. Products that were initially converted had high surface area (15.5 +/- 0.13 g/m2), small particle size (5-70 nm), and relatively spherical morphology, properties desirable when considering the hydrolysis step of the water-splitting cycle. Rates in the aerosol reactor were found to be three orders of magnitude greater than those in a stationary configuration. Computational fluid dynamics (CFD) simulations of the aerosol reaction showed rapid particle heating and high forward conversion (>90%) in short residence times (<1.5s). Results could be used to scale a commercial size reactor, and the recommended particle size based on conversion and handling considerations was 1 mum. Reactor materials sensitive to oxidation were shown to be inappropriate for application due to high corrosion rates

  2. Pt deposited TiO2 catalyst fabricated by thermal decomposition of titanium complex for solar hydrogen production

    NASA Astrophysics Data System (ADS)

    Truong, Quang Duc; Le, Thanh Son; Ling, Yong-Chien

    2014-12-01

    C, N codoped TiO2 catalyst has been synthesized by thermal decomposition of a novel water-soluble titanium complex. The structure, morphology, and optical properties of the synthesized TiO2 catalyst were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Pt deposited TiO2 catalysts synthesized at different temperatures was evaluated by means of hydrogen evolution reaction under both UV-vis and visible light irradiation. The investigation results reveal that the photocatalytic H2 evolution rate strongly depended on the crystalline grain size as well as specific surface area of the synthesized catalyst. Our studies successfully demonstrate a simple method for the synthesis of visible-light responsive Pt deposited TiO2 catalyst for solar hydrogen production.

  3. Solar-thermal hydrogen production

    SciTech Connect

    Bowman, M.G.

    1981-01-01

    Since hydrogen is not only an eventual and attractive fuel but is also a prime intermediate in the production of many fuels and chemicals, one extremely valuable utilization of a solar thermal facility would be its operation as a system for hydrogen production. Such a use would also fulfill the important requirement for energy storage. Solar thermal systems appear to offer the only practical method for significant hydrogen production from solar energy. The production could utilize advanced methods of water electrolysis if highly efficient generation of solar electricity were developed. Thermochemical cycles for water decomposition appear to be more promising if cycles that match the characteristics of solar heat sources can be developed. Advanced cycles based on solid sulfate or solid oxide decomposition reactions should interface advantageously with solar thermal systems. Sulfuric acid cycles can serve as standards of comparison for these new cycles as they are discovered and developed.

  4. Thermal decomposition products of butyraldehyde

    NASA Astrophysics Data System (ADS)

    Hatten, Courtney D.; Kaskey, Kevin R.; Warner, Brian J.; Wright, Emily M.; McCunn, Laura R.

    2013-12-01

    The thermal decomposition of gas-phase butyraldehyde, CH3CH2CH2CHO, was studied in the 1300-1600 K range with a hyperthermal nozzle. Products were identified via matrix-isolation Fourier transform infrared spectroscopy and photoionization mass spectrometry in separate experiments. There are at least six major initial reactions contributing to the decomposition of butyraldehyde: a radical decomposition channel leading to propyl radical + CO + H; molecular elimination to form H2 + ethylketene; a keto-enol tautomerism followed by elimination of H2O producing 1-butyne; an intramolecular hydrogen shift and elimination producing vinyl alcohol and ethylene, a β-C-C bond scission yielding ethyl and vinoxy radicals; and a γ-C-C bond scission yielding methyl and CH2CH2CHO radicals. The first three reactions are analogous to those observed in the thermal decomposition of acetaldehyde, but the latter three reactions are made possible by the longer alkyl chain structure of butyraldehyde. The products identified following thermal decomposition of butyraldehyde are CO, HCO, CH3CH2CH2, CH3CH2CH=C=O, H2O, CH3CH2C≡CH, CH2CH2, CH2=CHOH, CH2CHO, CH3, HC≡CH, CH2CCH, CH3C≡CH, CH3CH=CH2, H2C=C=O, CH3CH2CH3, CH2=CHCHO, C4H2, C4H4, and C4H8. The first ten products listed are direct products of the six reactions listed above. The remaining products can be attributed to further decomposition reactions or bimolecular reactions in the nozzle.

  5. Thermal decomposition of silver acetate in silver paste for solar cell metallization: An effective route to reduce contact resistance

    NASA Astrophysics Data System (ADS)

    Jun Kim, Suk; Yun Kim, Se; Man Park, Jin; Hwan Park, Keum; Ho Lee, Jun; Mock Lee, Sang; Taek Han, In; Hyang Kim, Do; Ram Lim, Ka; Tae Kim, Won; Cheol Park, Ju; Soo Jee, Sang; Lee, Eun-Sung

    2013-08-01

    A screen printed silver/metallic glass (MG) paste formulated with Ag acetate resulted in a specific contact resistance in the range of 0.6-0.7 mΩ.cm2 on both the n- and p-type Si emitters of interdigitated back-contact solar cells. Silver nanocrystallites resulting from thermally decomposed Ag acetate prevented the Al MG frits from directly interacting with the Si emitter, thus reducing the amount of Al diffused into the Si emitters, and subsequently, the contact resistance. A photovoltaic conversion efficiency of 20.3% was achieved using this technique.

  6. Solar Thermal Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  7. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  8. Unimolecular thermal decomposition of dimethoxybenzenes

    SciTech Connect

    Robichaud, David J. Mukarakate, Calvin; Nimlos, Mark R.; Scheer, Adam M.; Ormond, Thomas K.; Buckingham, Grant T.; Ellison, G. Barney

    2014-06-21

    The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}) have been studied using a high temperature, microtubular (μtubular) SiC reactor with a residence time of 100 μs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C{sub 6}H{sub 4}-CHO) and phenol (C{sub 6}H{sub 5}OH). Para-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C{sub 5}H{sub 4}=O). Finally, the m-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C{sub 5}H{sub 4}=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.

  9. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    PubMed Central

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-01-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200–400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process. PMID:27827402

  10. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    NASA Astrophysics Data System (ADS)

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200–400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  11. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells.

    PubMed

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-09

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  12. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  13. Thermal decomposition and non-isothermal decomposition kinetics of carbamazepine

    NASA Astrophysics Data System (ADS)

    Qi, Zhen-li; Zhang, Duan-feng; Chen, Fei-xiong; Miao, Jun-yan; Ren, Bao-zeng

    2014-12-01

    The thermal stability and kinetics of isothermal decomposition of carbamazepine were studied under isothermal conditions by thermogravimetry (TGA) and differential scanning calorimetry (DSC) at three heating rates. Particularly, transformation of crystal forms occurs at 153.75°C. The activation energy of this thermal decomposition process was calculated from the analysis of TG curves by Flynn-Wall-Ozawa, Doyle, distributed activation energy model, Šatava-Šesták and Kissinger methods. There were two different stages of thermal decomposition process. For the first stage, E and log A [s-1] were determined to be 42.51 kJ mol-1 and 3.45, respectively. In the second stage, E and log A [s-1] were 47.75 kJ mol-1 and 3.80. The mechanism of thermal decomposition was Avrami-Erofeev (the reaction order, n = 1/3), with integral form G(α) = [-ln(1 - α)]1/3 (α = ˜0.1-0.8) in the first stage and Avrami-Erofeev (the reaction order, n = 1) with integral form G(α) = -ln(1 - α) (α = ˜0.9-0.99) in the second stage. Moreover, Δ H ≠, Δ S ≠, Δ G ≠ values were 37.84 kJ mol-1, -192.41 J mol-1 K-1, 146.32 kJ mol-1 and 42.68 kJ mol-1, -186.41 J mol-1 K-1, 156.26 kJ mol-1 for the first and second stage, respectively.

  14. Thermal Decomposition Behavior of Poly(3-nitratooxetane)

    NASA Astrophysics Data System (ADS)

    Mason, Brian; Cruz, Aliza; Stoltz, Chad

    2009-06-01

    Poly(3-nitratooxetane), or PNO, is a new high-energy density polymer that is expected to increase formulation energy output without sacrificing binder stability. It is anticipated that using PNO in propellant formulations will be advantageous compared to other energetic binders such as its structural isomer poly(glycidyl nitrate) (PGN). In an effort to understand the combustion behavior of this new energetic polymer, thermal decomposition of PNO has been investigated. Differential scanning calorimetry coupled with thermal gravimetric analysis shows that this material is thermally stable to at least 150^oC and that exothermic decomposition peaks near 203^oC. T- Jump/FTIR was used under various conditions to identify gas- phase thermal decomposition products, including H2O, CH2O, CO2, CO, N2O, NO, NO2, and HONO (cis and trans). Additional time- resolved T-Jump/FTIR experiments suggest immediate dissociation of NO2 as the obvious first step in PNO decomposition, while previous work on the PGN polymer system suggests that the entire CH2ONO2 side chain breaks from the PGN backbone before dissociation. It is likely that different decomposition pathways are followed for each binder system due to location of available C-O and N-O moieties on each polymer.

  15. Thermal Decomposition of Poly(methylphenylsilane)

    NASA Astrophysics Data System (ADS)

    Pan, Lujun; Zhang, Mei; Nakayama, Yoshikazu

    2000-03-01

    The thermal decomposition of poly(methylphenylsilane) was performed at constant heating rates and isothermal conditions. The evolved gases were studied by ionization-threshold mass spectroscopy. Pyrolysis under isothermal conditions reveals that the decomposition of poly(methylphenylsilane) is a type of depolymerization that has a first-order reaction. Kinetic analysis of the evolution spectra of CH3-Si-C6H5 radicals, phenyl and methyl substituents reveals the mechanism and activation energies of the decomposition reactions in main chains and substituents. It is found that the decomposition of main chains is a dominant reaction and results in the weight loss of approximately 90%. The effusion of phenyl and methyl substituents occurs in the two processes of rearrangement of main chains and the formation of stable Si-C containing residuals.

  16. Solar Thermal Conversion

    SciTech Connect

    Kreith, F.; Meyer, R. T.

    1982-11-01

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  17. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOEpatents

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  18. Solar thermal power towers

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Meyer, R. T.

    1984-07-01

    The solar thermal central receiver technology, known as solar power towers, is rapidly evolving to a state of near-term energy availability for electrical power generation and industrial process heat applications. The systems consist of field arrays of heliostat reflectors, a central receiver boiler, short term thermal storage devices, and either turbine-generators or heat exchangers. Fluid temperatures up to 550 C are currently achievable, and technology developments are underway to reach 1100 C. Six solar power towers are now under construction or in test operation in five countries around the world.

  19. Thermal Decomposition of IMX-104: Ingredient Interactions Govern Thermal Insensitivity

    SciTech Connect

    Maharrey, Sean; Wiese-Smith, Deneille; Highley, Aaron M.; Steill, Jeffrey D.; Behrens, Richard; Kay, Jeffrey J.

    2015-04-01

    This report summarizes initial studies into the chemical basis of the thermal insensitivity of INMX-104. The work follows upon similar efforts investigating this behavior for another DNAN-based insensitive explosive, IMX-101. The experiments described demonstrate a clear similarity between the ingredient interactions that were shown to lead to the thermal insensitivity observed in IMX-101 and those that are active in IMX-104 at elevated temperatures. Specifically, the onset of decomposition of RDX is shifted to a lower temperature based on the interaction of the RDX with liquid DNAN. This early onset of decomposition dissipates some stored energy that is then unavailable for a delayed, more violent release.

  20. Solar thermal financing guidebook

    SciTech Connect

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  1. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  2. Treatment of nitrocellulose by thermal decomposition

    SciTech Connect

    Campbell, R.K.; Freedman, D.L.; Kim, B.J.

    1999-07-01

    Waste fines generated during the manufacture of nitrocellulose (NC) are classified as a RCRA K044 hazardous waste due to their explosive properties. The objective of this study was to evaluate controlled thermal treatment of NC in order to render it nonhazardous and allow for more economical ultimate disposal. The results indicate that controlled thermal decomposition at 130--150 C is a technically feasible process. Rates improved significantly at higher temperatures. At 150 C, only 10 hours were needed to reduce the nitrogen content of NC from 13.7% to below 10% (versus 105 h at 130 C), a level found in many commercial, nonhazardous grades of NC. The air flow rate over the heated NC, and the moisture content of the NC or air above it had no discernible effect on rates of nitrogen removal. Greater mass loss from the NC than what was attributable to the nitro groups alone indicated that decomposition of the polymer backbone also occurred. This was confirmed by FTIR analyses, the appearance of CO{sub 2} in the off-gas, and a lack of correlation between percent nitrogen and heat of combustion. Samples of thermally treated NC containing 9.7% nitrogen failed three of the basic tests used by the Bureau of Explosives to ascertain explosive characteristics, indicating that the product was no longer hazardous based on its energetic properties. Although technically feasible, use of thermal decomposition to treat NC fines will most likely be restricted by safety concerns. Operating close to 130 C would mitigate the risk, but considerably extends the time required for treatment. The most suitable application of this technology may instead by treatment of NC-contaminated soils.

  3. Solar Thermal Power.

    ERIC Educational Resources Information Center

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  4. Solar thermal system engineering guidebook

    NASA Astrophysics Data System (ADS)

    Selcuk, M. K.; Bluhm, S. A.

    1983-05-01

    This report presents a graphical methodology for the preliminary evaluation of solar thermal energy plants by Air Force base civil engineers. The report is organized as a Guidebook with worksheets and nomograms provided for rapid estimation of solar collector area, land area, energy output, and thermal power output of a solar thermal plant. Flat plate, evacuated tube, parabolic trough, and parabolic dish solar thermal technologies are considered.

  5. Solar thermal energy receiver

    NASA Technical Reports Server (NTRS)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  6. Concentrating solar thermal power.

    PubMed

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  7. Solar thermal technology

    NASA Astrophysics Data System (ADS)

    1986-08-01

    This annual evaluation report provides the accomplishments and progress of government-funded activities initiated, renewed, or completed during Fiscal Year 1985 (October 1, 1984 through September 30, 1985). It highlights the program tasks conducted by participating national laboratories and by contracting industrial academic, or other research institutions. The focus of the STT Program is research and development leading to the commercial readiness of four primary solar thermal concepts: (1) central receiver; (2) parabolic dish; (3) parabolic trough; and (4) hemispherical bowl.

  8. Thermal Decomposition of Radiation-Damaged Polystyrene

    SciTech Connect

    J Abrefah GS Klinger

    2000-09-26

    The radiation-damaged polystyrene material (''polycube'') used in this study was synthesized by mixing a high-density polystyrene (''Dylene Fines No. 100'') with plutonium and uranium oxides. The polycubes were used on the Hanford Site in the 1960s for criticality studies to determine the hydrogen-to-fissile atom ratios for neutron moderation during processing of spent nuclear fuel. Upon completion of the studies, two methods were developed to reclaim the transuranic (TRU) oxides from the polymer matrix: (1) burning the polycubes in air at 873 K; and (2) heating the polycubes in the absence of oxygen and scrubbing the released monomer and other volatile organics using carbon tetrachloride. Neither of these methods was satisfactory in separating the TRU oxides from the polystyrene. Consequently, the remaining polycubes were sent to the Hanford Plutonium Finishing Plant (PFP) for storage. Over time, the high dose of alpha and gamma radiation has resulted in a polystyrene matrix that is highly cross-linked and hydrogen deficient and a stabilization process is being developed in support of Defense Nuclear Facility Safety Board Recommendation 94-1. Baseline processes involve thermal treatment to pyrolyze the polycubes in a furnace to decompose the polystyrene and separate out the TRU oxides. Thermal decomposition products from this degraded polystyrene matrix were characterized by Pacific Northwest National Laboratory to provide information for determining the environmental impact of the process and for optimizing the process parameters. A gas chromatography/mass spectrometry (GC/MS) system coupled to a horizontal tube furnace was used for the characterization studies. The decomposition studies were performed both in air and helium atmospheres at 773 K, the planned processing temperature. The volatile and semi-volatile organic products identified for the radiation-damaged polystyrene were different from those observed for virgin polystyrene. The differences were in the

  9. Thermal Decomposition of Radiation-Damaged Polystyrene

    SciTech Connect

    Abrefah, John; Klinger, George S.

    2000-09-26

    The radiation-damaged polystyrene (given the identification name of 'polycube') was fabricated by mixing high-density polystyrene material ("Dylene Fines # 100") with plutonium and uranium oxides. The polycubes were used in the 1960s for criticality studies during processing of spent nuclear fuel. The polycubes have since been stored for almost 40 years at the Hanford Plutonium Finishing Plant (PFP) after failure of two processes to reclaim the plutonium and uranium oxides from the polystyrene matrix. Thermal decomposition products from this highly cross-linked polystyrene matrix were characterized using Gas Chromatograph/Mass Spectroscopy (GC/MS) system coupled to a horizontal furnace. The decomposition studies were performed in air and helium atmospheres at about 773 K. The volatile and semi-volatile organic products for the radiation-damaged polystyrene were different compared to virgin polystyrene. The differences were in the number of organic species generated and their concentrations. In the inert (i.e., helium) atmosphere, the major volatile organic products identified (in order of decreasing concentrations) were styrene, benzene, toluene, ethylbenzene, xylene, nathphalene, propane, .alpha.-methylbenzene, indene and 1,2,3-trimethylbenzene. But in air, the major volatile organic species identified changed slightly. Concentrations of the organic species in the inert atmosphere were significantly higher than those for the air atmosphere processing. Overall, 38 volatile organic species were identified in the inert atmosphere compared to 49 species in air. Twenty of the 38 species in the inert conditions were also products in the air atmosphere. Twenty-two oxidized organic products were identified during thermal processing in air.

  10. The Thermal Decomposition of Basic Copper(II) Sulfate.

    ERIC Educational Resources Information Center

    Tanaka, Haruhiko; Koga, Nobuyoshi

    1990-01-01

    Discussed is the preparation of synthetic brochantite from solution and a thermogravimetric-differential thermal analysis study of the thermal decomposition of this compound. Other analyses included are chemical analysis and IR spectroscopy. Experimental procedures and results are presented. (CW)

  11. Solar Thermal Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Hawk, Clark W.; Bonometti, Joseph A.

    1995-01-01

    Concentrated solar thermal energy can be utilized in a variety of high temperature applications for both terrestrial and space environments. In each application, knowledge of the collector and absorber's heat exchange interaction is required. To understand this coupled mechanism, various concentrator types and geometries, as well as, their relationship to the physical absorber mechanics were investigated. To conduct experimental tests various parts of a 5,000 watt, thermal concentrator, facility were made and evaluated. This was in anticipation at a larger NASA facility proposed for construction. Although much of the work centered on solar thermal propulsion for an upper stage (less than one pound thrust range), the information generated and the facility's capabilities are applicable to material processing, power generation and similar uses. The numerical calculations used to design the laboratory mirror and the procedure for evaluating other solar collectors are presented here. The mirror design is based on a hexagonal faceted system, which uses a spherical approximation to the parabolic surface. The work began with a few two dimensional estimates and continued with a full, three dimensional, numerical algorithm written in FORTRAN code. This was compared to a full geometry, ray trace program, BEAM 4, which optimizes the curvatures, based on purely optical considerations. Founded on numerical results, the characteristics of a faceted concentrator were construed. The numerical methodologies themselves were evaluated and categorized. As a result, the three-dimensional FORTRAN code was the method chosen to construct the mirrors, due to its overall accuracy and superior results to the ray trace program. This information is being used to fabricate and subsequently, laser map the actual mirror surfaces. Evaluation of concentrator mirrors, thermal applications and scaling the results of the 10 foot diameter mirror to a much larger concentrator, were studied. Evaluations

  12. Solar thermal power system

    DOEpatents

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  13. Solar thermal collectors

    NASA Astrophysics Data System (ADS)

    Aranovitch, E.

    Thermal processes in solar flat plate collectors are described and evaluated analytically, and numerical models are presented for evaluating the performance of various designs. A flat plate collector consists of a black absorber plate which transfers absorbed heat to a fluid, a cover which limits thermal losses, and insulation to prevent backlosses. Calculated efficiencies for the collectors depend on the radiation absorbed, as well as IR losses due to natural convection, conduction, and radiation out of the collector. Formulations for the global emittance and heat transfer, as well as losses and their dependence on the Nusselt number and Grashof number are defined. Consideration is given to radiation transmission through transparent covers and Fresnel reflections at interfaces in the cover material. Finally, the performance coefficients for double-glazed and selective surface flat plate collectors are examined.

  14. Ultralow friction of carbonate faults caused by thermal decomposition.

    PubMed

    Han, Raehee; Shimamoto, Toshihiko; Hirose, Takehiro; Ree, Jin-Han; Ando, Jun-Ichi

    2007-05-11

    High-velocity weakening of faults may drive fault motion during large earthquakes. Experiments on simulated faults in Carrara marble at slip rates up to 1.3 meters per second demonstrate that thermal decomposition of calcite due to frictional heating induces pronounced fault weakening with steady-state friction coefficients as low as 0.06. Decomposition produces particles of tens of nanometers in size, and the ultralow friction appears to be associated with the flash heating on an ultrafine decomposition product. Thus, thermal decomposition may be an important process for the dynamic weakening of faults.

  15. Solar thermal electricity generation

    NASA Astrophysics Data System (ADS)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  16. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  17. High temperature solar thermal technology

    NASA Astrophysics Data System (ADS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-11-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  18. Solar thermal electric hybridization issues

    SciTech Connect

    Williams, T A; Bohn, M S; Price, H W

    1994-10-01

    Solar thermal electric systems have an advantage over many other renewable energy technologies because the former use heat as an intermediate energy carrier. This is an advantage as it allows for a relatively simple method of hybridization by using heat from fossil-fuel. Hybridization of solar thermal electric systems is a topic that has recently generated significant interest and controversy and has led to many diverse opinions. This paper discusses many of the issues associated with hybridization of solar thermal electric systems such as what role hybridization should play; how it should be implemented; what are the efficiency, environmental, and cost implications; what solar fraction is appropriate; how hybrid systems compete with solar-only systems; and how hybridization can impact commercialization efforts for solar thermal electric systems.

  19. Thermal Decomposition of Lanthanide, Yttrium, and Scandium Oxalates and Carbonates

    NASA Astrophysics Data System (ADS)

    Sharov, Vyacheslav A.; Bezdenezhnykh, G. V.

    1981-07-01

    Data concerning the thermal decomposition of lanthanide, yttrium, and scandium oxalates and carbonates are surveyed. The complexity of the process, the large number of stages involved, and the dependence of the composition of the intermediates in the thermal transformations on the experimental conditions is noted. Certain process characteristics have been discovered and it is concluded that the decomposition process depends on the ionic radius of the metal. The bibliography includes 83 references.

  20. Effect of mechanical dispersion of lignite on its thermal decomposition

    SciTech Connect

    Yusupov, T.S.; Shumskaya, L.G.; Burdukov, A.P.

    2007-09-15

    It is studied how the high-rate mechanical grinding affects thermal decomposition of lignite extracted from the Kansk-Achinsk Coal Basin. It has been shown that dispersion of lignite in the high energy intensive vibration-centrifugal and planetary mills causes formation of structures exhibiting lower thermal stability. That results in the shift of primary decomposition phenomena into the low-temperature region and, thus, in the higher reactivity of coals.

  1. USAF solar thermal applications overview

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.; Simpson, J. A.

    1981-01-01

    Process heat applications were compared to solar thermal technologies. The generic process heat applications were analyzed for solar thermal technology utilization, using SERI's PROSYS/ECONOMAT model in an end use matching analysis and a separate analysis was made for solar ponds. Solar technologies appear attractive in a large number of applications. Low temperature applications at sites with high insolation and high fuel costs were found to be most attractive. No one solar thermal technology emerges as a clearly universal or preferred technology, however,, solar ponds offer a potential high payoff in a few, selected applications. It was shown that troughs and flat plate systems are cost effective in a large number of applications.

  2. Thermal Decomposition Characteristics of Orthorhombic Ammonium Perchlorate (o-AP)

    SciTech Connect

    Behrens, R.; Minier, L.

    1999-03-01

    Preliminary STMBMS and SEM results of the thermal decomposition of AP in the orthorhombic phase are presented. The overall decomposition is shown to be complex and controlled by both physical and chemical processes. The data show that the physical and chemical processes can be probed and characterized utilizing SEM and STMBMS. The overall decomposition is characterized by three distinguishing features: an induction period, and accelerator period and a deceleratory period. The major decomposition event occurs in the subsurface of the AP particles and propagates towards the center of the particle with time. The amount of total decomposition is dependent upon particle size and increases from 23% for {approximately}50{micro}m-diameter AP to 33% for {approximately}200{micro}m-diameter AP. A conceptual model of the physical processes is presented. Insight into the chemical processes is provided by the gas formation rates that are measured for the gaseous products. To our knowledge, this is the first presentation of data showing that the chemical and physical decomposition processes can be identified from one another, probed and characterized at the level that is required to better understand the thermal decomposition behavior of AP. Future work is planned with the goal of obtaining data that can be used to develop a mathematical description for the thermal decomposition of o-AP.

  3. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  4. Solar Thermal Demonstration Project

    SciTech Connect

    Biesinger, K; Cuppett, D; Dyer, D

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with Kalwall building panels. An added feature of the Kalwall system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  5. Scattering Solar Thermal Concentrators

    SciTech Connect

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  6. Analysis of cured carbon-phenolic decomposition products to investigate the thermal decomposition of nozzle materials

    NASA Technical Reports Server (NTRS)

    Thompson, James M.; Daniel, Janice D.

    1989-01-01

    The development of a mass spectrometer/thermal analyzer/computer (MS/TA/Computer) system capable of providing simultaneous thermogravimetry (TG), differential thermal analysis (DTA), derivative thermogravimetry (DTG) and evolved gas detection and analysis (EGD and EGA) under both atmospheric and high pressure conditions is described. The combined system was used to study the thermal decomposition of the nozzle material that constitutes the throat of the solid rocket boosters (SRB).

  7. Mechanism of thermal decomposition of hydrated copper nitrate in vacuo

    NASA Astrophysics Data System (ADS)

    L'vov, Boris V.; Novichikhin, Alexander V.

    1995-10-01

    The general scheme of three-stage thermal decomposition of Cu(NO 3) 2·3H 2O to CuO has been refined based on evolved-gas-analysis data with a quadrupole mass analyzer (Jackson et al., Spectrochim. Acta Part B, 50 (1995) 1423). Quantitative evaluation of the composition of the gaseous products shows that the first stage involves primarily deaquation, and the second stage, primarily denitration of the original hydrated nitrate. The basic nitrate formed in the second stage most probably has the formula Cu(NO 3) 2·3Cu(OH) 2. It has been established that the molecular oxygen observed in the third stage of decomposition is produced by catalytic decomposition of NO 2 on the surface of CuO. The presence of Cu-containing ions in all stages of the process is consistent with the gasification mechanism of thermal decomposition.

  8. Solar mechanics thermal response capabilities.

    SciTech Connect

    Dobranich, Dean D.

    2009-07-01

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  9. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  10. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  11. Thermal Decomposition of Copper (II) Calcium (II) Formate

    NASA Astrophysics Data System (ADS)

    Leyva, A. G.; Polla, G.; de Perazzo, P. K.; Lanza, H.; de Benyacar, M. A. R.

    1996-05-01

    The presence of different stages in the thermal decomposition process of CuCa(HCOO) 4has been established by means of TGA at different heating rates, X-ray powder diffraction of quenched samples, and DSC methods. During the first stage, decomposition of one of the two copper formate structural units contained in the unit cell takes place. The presence of CuCa 2(HCOO) 6has been detected. Calcium formate structural units break down at higher temperatures; the last decomposition peak corresponds to the appearance of different calcium-copper oxides.

  12. The Products of the Thermal Decomposition of CH3CHO

    SciTech Connect

    Vasiliou, AnGayle; Piech, Krzysztof M.; Zhang, Xu; Nimlos, Mark R.; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L.; Daily, John W.; Stanton, John F.; Ellison, G. Barney

    2011-04-06

    We have used a heated 2 cm x 1 mm SiC microtubular (mu tubular) reactor to decompose acetaldehyde: CH3CHO + DELTA --> products. Thermal decomposition is followed at pressures of 75 - 150 Torr and at temperatures up to 1700 K, conditions that correspond to residence times of roughly 50 - 100 mu sec in the mu tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: VUV photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3(PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC=CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO: Radical decomposition: CH3CHO + DELTA --> CH3 + [HCO] --> CH3 + H + CO Elimination: CH3CHO + DELTA --> H2 + CH2=C=O. Isomerization/elimination: CH3CHO + DELTA --> [CH2=CH-OH] --> HC=CH + H2O. Both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alchohol: CH2=CH-OH + DELTA --> [CH2=C:] + H2O --> HC=CH + H2O.

  13. THERMAL FRONTS IN SOLAR FLARES

    SciTech Connect

    Karlický, Marian

    2015-12-01

    We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.

  14. Thermal decomposition of 2-phenylethanol: A computational study on mechanism

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuyuki; Ando, Hiromitsu; Oguchi, Tatsuo; Murakami, Yoshinori

    2013-01-01

    Quantum mechanical calculations for the thermal decomposition of 2-phenylethanol have been performed using the CBS-QB3 method. Based on the potential energy surfaces at the CBS-QB3 level of theory, the preferred reaction channel for the thermal decomposition of 2-phenylethanol was the six-membered cyclic rearrangement reaction and the dehydration reaction to form styrene and H2O. Further quantum chemical calculations of the subsequent reactions followed by the six-membered cyclic rearrange reaction of 2-phenylethanol were carried out and it was revealed that the barrier height for the ring opening reaction was the lowest among all of the other subsequent reactions.

  15. Thermal Decomposition Chemistry of Amine Borane (U)

    SciTech Connect

    Stowe, A. C.; Feigerle, J.; Smyrl, N. R.; Morrell, J. S.

    2010-01-29

    The conclusions of this presentation are: (1) Amine boranes potentially can be used as a vehicular hydrogen storage material. (2) Purity of the hydrogen stream is critical for use with a fuel cell. Pure H{sub 2} can be provided by carefully conditioning the fuel (encapsulation, drying, heating rate, impurities). (3) Thermodynamics and kinetics can be controlled by conditioning as well. (4) Regeneration of the spent amine borane fuel is still the greatest challenge to its potential use. (5) Addition of hydrocarbon-substituted amine boranes alter the chemistry dramatically. (6) Decomposition of the substituted amine borane mixed system favors reaction products that are more potentially easier to regenerate the hydrogenated fuel. (7) t-butylamine borane is not the best substituted amine borane to use since it releases isobutane; however, formation of CNBH{sub x} products does occur.

  16. Thermal decomposition of substituted phenols in supercritical water

    SciTech Connect

    Martino, C.J.; Savage, P.E.

    1997-05-01

    The thermal decomposition of cresols, hydroxybenzaldehydes, nitrophenols, and benzenediols was studied in dilute aqueous solutions and in the absence of oxygen at 460 C and 250 atm for residence times around 10 s. Thermolysis under these conditions produced conversions of less than 10% for o-, m-, and p-cresol, whereas hydroxybenzaldehydes and nitrophenols were much more reactive. Global rate expressions are reported for the thermolysis of each hydroxybenzaldehyde and nitrophenol isomer. Phenol was a major product from the decomposition of all of the substituted phenols studied. For a given substituent, ortho-substituted phenols reacted more rapidly than the other isomers. For a given substituted position, nitrophenols reacted more rapidly than hydroxybenzaldehydes, which in turn reacted more rapidly than cresols. These results demonstrate that the treatment of CHO- and NO{sub 2}-substituted phenols by oxidation in supercritical water will involve the oxidation of thermal decomposition products in addition to the oxidation of the original compounds.

  17. Thermal decomposition of silane to form hydrogenated amorphous Si film

    DOEpatents

    Strongin, Myron; Ghosh, Arup K.; Wiesmann, Harold J.; Rock, Edward B.; Lutz, III, Harry A.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silano (SiH.sub.4) or other gases comprising H and Si, at elevated temperatures of about 1700.degree.-2300.degree. C., and preferably in a vacuum of about 10.sup.-8 to 10.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseous mixture onto a substrate outside said source of thermal decomposition to form hydrogenated amorphous silicon.

  18. Solar thermal repowering

    SciTech Connect

    1980-08-01

    Solar central receiver technology is developing steadily with a promise of becoming a real commercial alternative for energy generation in the late 1980s. Significant potential markets have been identified, research and development of important components is proceeding well, and the first full-system verification experiment at Barstow, California, is under construction. However, much work still lies ahead. A big step toward the realization of large-scale commercial use of solar energy was taken when the Department of Energy (DOE) issued a solicitation in March 1979 for utility repowering/industrial retrofit system conceptual design studies employing solar central receivers. Twenty-two responses were evaluated, and twelve were selected for funding. The results of the twelve studies, plus one study completed earlier and one privately funded, are sufficiently encouraging to warrant proceeding to the next stage of the program: cost-shared projects chosen through open competition. Eight of he fourteen studies are for electric utility repowering of existing oil or natural gas generating plants. The other six are the first site-specific studies of the use of solar central receiver systems for industrial process heat. The industrial processes include gypsum board drying, oil refining, enhanced oil recovery, uranium ore processing, natural gas processing, and ammonia production. Site descriptions, project summaries, conceptual designs, and functional descriptions are given for each of these 14 studies.

  19. Solar-thermal engine testing

    NASA Astrophysics Data System (ADS)

    Tucker, Stephen; Salvail, Pat

    2002-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle, collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 °F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (Isp). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemically vapor deposited (CVD) rhenium. The engine ``module'' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine Isp. In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects

  20. Thermal Decomposition of Copper (II) Dicalcium (II) Formate

    NASA Astrophysics Data System (ADS)

    de Perazzo, P. K.; Leyva, A. G.; Polla, G.; Parisi, F.; de Benyacar, M. A. R.; Smichowski, P.; Lanza, H.

    1997-09-01

    The unit cell obtained through X-ray single crystal analysis of the synthetized CuCa 2(HCOO) 6crystals corresponds to a supercell of the basic structure described by M. Sanchis et al.( Inorg. Chem.31, 2915 (1992)). Thermal decomposition of this sample shows two stages up to 300°C; the first can be related to the superstructure, and the second corresponds to the breaking down of the remaining copper formate structural units and the simultaneous decomposition of the sample.

  1. Reaction kinetics of paddy husk thermal decomposition

    SciTech Connect

    Jain, A.K.; Sharma, S.K.; Singh, D.

    1996-12-31

    Paddy husk production in world is estimated to be around 80 million tons. It has a calorific value of 15 MJ/kg and thus has a tremendous potential as a renewable energy source. Its current uses are: cattle feed, raw material for paper and board, furfural production and silica industries. A large quantity of paddy husk is used in husk fired boiler furnaces at a very low efficiency. For efficient design of husk fired furnaces, reliable data on thermal characteristics of rice husk is essential which is lacking in the literature. In the present study, paddy husk was subjected to Thermogravimetric Analysis at heating rates of 10 and 100 C/min. in a thermal analyzer. The analysis was carried out in air and mixture of oxygen and nitrogen (5:95%) atmosphere. Reaction kinetic parameters such as activation energy, frequency factor and order of reaction have been evaluated and reported. These are relevant to the design of paddy husk fired gasifiers, furnaces and other thermochemical conversion equipment. The results of the thermochemical studies and their potential applications are presented in the paper.

  2. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde.

    PubMed

    Sivaramakrishnan, Raghu; Michael, Joe V; Harding, Lawrence B; Klippenstein, Stephen J

    2015-07-16

    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature microtubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation reanalysis of the CH3CHO potential energy surface (PES). The lowest-energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a reisomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory-based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (∼10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water, and acetylene in the recent microtubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms and have no bearing on

  3. Thermal decomposition of PMC for fiber recovery

    SciTech Connect

    Jody, B. J.; Daniels, E. J.; Pomykala, J. A.

    1999-10-22

    This paper describes efforts by Argonne National Laboratory to develop a process to recover carbon fibers from polymer matrix composite (PMC) materials. The polymer material in the matrix maybe a thermoplastic or a thermoset. Samples of panels containing PMC fibers were obtained and used in the bench-scale testing program. The authors tested three different methods for recovering these PMC fibers: thermal treatment, chemical degradation, and cryogenic methods (thermal shock treatment). The first two methods were effective in separating the carbon fibers from the polymeric substrate; the third method was not satisfactory. Carbon fibers separated from the polymer substrate using the thermal treatment method were submitted to Oak Ridge National Laboratory for analysis and evaluation. The results indicated that the carbon fibers had been cleanly separated from the polymer matrix. Their intrinsic density was 1.8473 g/cm{sup 3} and their electrical resistivity was 0.001847 ohm-cm, compared to an intrinsic density of 1.75--1.9 gm/cm{sup 3} and an electrical resistivity of 0.0002--0.002 ohm-cm for virgin fibers produced from polyacrylonitrile (PAN). Although they were not sure that the samples they processed were originally produced from PAN, they used the PAN fibers for comparison. It was also demonstrated that the surface of the recovered fibers could be reactivated to energy levels equivalent to those of reactivated virgin fibers from PAN. A comparison of the mechanical properties of the recovered fibers (without surface treatment) with those of surface-treated virgin fibers from PAN revealed that the ultimate tensile strength and the elongation at brake values are about 1/3 the values for the virgin fibers. The modulus for the recycled fibers (31.4 million pounds per square inch [psi]) was about the same as that for the virgin PAN fibers (31.2 million psi). The reason for the lower tensile strength and elongation is not clear; the authors plan to investigate it further

  4. Mechanism of the Thermal Decomposition of Ethanethiol and Dimethylsulfide

    NASA Astrophysics Data System (ADS)

    Melhado, William Francis; Whitman, Jared Connor; Kong, Jessica; Anderson, Daniel Easton; Vasiliou, AnGayle (AJ)

    2016-06-01

    Combustion of organosulfur contaminants in petroleum-based fuels and biofuels produces sulfur oxides (SO_x). These pollutants are highly regulated by the EPA because they have been linked to poor respiratory health and negative environmental impacts. Therefore much effort has been made to remove sulfur compounds in petroleum-based fuels and biofuels. Currently desulfurization methods used in the fuel industry are costly and inefficient. Research of the thermal decomposition mechanisms of organosulfur species can be implemented via engineering simulations to modify existing refining technologies to design more efficient sulfur removal processes. We have used a resistively-heated SiC tubular reactor to study the thermal decomposition of ethanethiol (CH_3CH_2SH) and dimethylsulfide (CH_3SCH_3). The decomposition products are identified by two independent techniques: 118.2 nm VUV photoionization mass spectroscopy and infrared spectroscopy. The thermal cracking products for CH_3CH_2SH are CH_2CH_2, SH, and H_2S and the thermal cracking products from CH_3SCH_3 are CH_3S, CH_2S, and CH_3.

  5. Sandia Laboratories in-house activities in support of solar thermal large power applications

    NASA Technical Reports Server (NTRS)

    Mar, R. W.

    1980-01-01

    The development of thermal energy storage subsystems for solar thermal large power applications is described. The emphasis is on characterizing the behavior of molten nitrate salts with regard to thermal decomposition, environmental interactions, and corrosion. Electrochemical techniques to determine the ionic species in the melt and for use in real time studies of corrosion are also briefly discussed.

  6. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    A major constraint to the evolution of solar thermal power systems is the need to provide continuous operation during periods of solar outage. A number of high temperature thermal energy storage technologies which have the potential to meet this need are currently under development. The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  7. Strain localization driven by thermal decomposition during seismic shear

    NASA Astrophysics Data System (ADS)

    Platt, J. D.; Brantut, N.; Rice, J. R.

    2011-12-01

    De Paola et al. [2008] analyzed a series of faults in the Northern Apennines, Italy, hosted in anhydrite and dolomite rocks. They found a highly localized band of less than 100 microns, contained within a broader damage zone. Recent High-Velocity Friction (HVF) experiments on kaolinite-bearing gouge samples (Brantut et al. [2008]) have also shown extreme localization in samples undergoing thermal decomposition. They performed microstructural analysis on HVF samples and found an "ultralocalized deformation zone", less than ten microns wide, interpreted to be the main slipping zone in the experiment. By measuring relative humidity in the sample chamber they were also able to observe the thermal dehydration of kaolinite. These laboratory and field observations indicate that straining is extremely localized in fault materials where thermal decomposition reactions may occur. During thermal decomposition reactions pore fluid is released, leading to increases in pore pressure, and a corresponding drop in frictional heating. The reactions are endothermic, so heat is also absorbed as the reactions progress. Previous work by Sulem and Famin [2009] has investigated how these effects influence the evolution of pore pressure and temperature in a uniformly sheared gouge layer. They found that accounting for thermal decomposition reactions leads to significant pore pressure increases, and that the endothermic nature of the reaction acts to cap the maximum temperature achieved. In previous work (Platt, Rudnicki and Rice [2010]) we investigated strain localization using a model for shearing of a fluid-saturated gouge material, finding a formula for the localized zone width as a function of physical properties of the gouge. We now extend this model to include thermal decomposition. Using linear stability methods and an idealized reaction kinetic we infer a new localized zone width when decomposition is accounted for. Numerical simulations then allow us to compare this prediction to

  8. More Efficient Solar Thermal-Energy Receiver

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1987-01-01

    Thermal stresses and reradiation reduced. Improved design for solar thermal-energy receiver overcomes three major deficiencies of solar dynamic receivers described in literature. Concentrator and receiver part of solar-thermal-energy system. Receiver divided into radiation section and storage section. Concentrated solar radiation falls on boiling ends of heat pipes, which transmit heat to thermal-energy-storage medium. Receiver used in number of applications to produce thermal energy directly for use or to store thermal energy for subsequent use in heat engine.

  9. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  10. Thermal decomposition of dolomite under CO2-air atmosphere

    NASA Astrophysics Data System (ADS)

    Subagjo, Wulandari, Winny; Adinata, Pratitis Mega; Fajrin, Anita

    2017-01-01

    This paper reports a study on thermal decomposition of dolomite under CO2-air. Calcination was carried out non-isothermally by using thermogravimetry analysis-differential scanning calorimetry (TGA-DSC) with a heating rate of 10°C/minute in an air atmosphere as well as 10 vol% CO2 and 90 vol% air atmosphere from 25 to 950°C. In addition, a thermodynamic modeling was also carried out to simulate dolomite calcination in different level of CO2-air atmosphere by using FactSage® 7.0. The the main constituents of typical dolomite from Gresik, East Java include MgCO3 (magnesite), CaCO3 (calcite), Ca(OH)2, CaO, MgO, and less than 1% of metal impurities. Based on the kinetics analysis from TGA results, it is found that non-isothermal dolomite calcination in 10 vol% CO2 atmosphere is occurred in a two-stage reaction; the first stage is the decomposition of magnesite at 650-740 °C with activation energy of 161.23 kJ/mol, and the second stage is the decomposition of calcite at 775-820 °C with activation energy of 162.46 kJ/mol. The magnesite decomposition is found to follow nucleation reaction mechanism of Avrami Eroveyef (A3), while calcite decomposition follows second order chemical reaction equation. Thermodynamic modeling supports these kinetic analyses. The results of this research give insight to the kinetics of dolomite decomposition in CO2-air atmosphere.

  11. Condensed-phase decomposition in thermally-aged explosives

    SciTech Connect

    Erickson, K.L.; Trott, W.M.; Renlund, A.M.

    1995-12-01

    In previous work, the isothermal decomposition of nitrocellulose (NC) was examined using two substantially different experimental techniques that are being developed to investigate condensed-phase chemistry occurring during the thermal decomposition of a variety of explosives. The confined isothermal aging technique involved confined thin-film samples heated to temperatures of 150 to 170{degrees}C, for 1 to 72 hours. Condensed-phase chemistry was monitored real-time using FTIR. Results indicated that the first step in decomposition was scission of the O-NO{sub 2} bond and subsequent formation of carbonyl and hydroxyl products. Scission of the O-NO{sub 2} bond appeared to occur by a first-order reaction. Additional unconfined rapid isothermal decomposition experiments with NC have been completed and are described in this paper. Those additional experiments extended the previous work and investigated the effect of varying film thickness (from about 0.2 to 0.6 microns), varying temperature (from about 420 to 640{degrees}C), and using {sup 15}NO{sub 2}-labled NC. The results indicated that decomposition of NC appears to involve at least two principal mechanisms: (1) O-NO{sub 2} bond scission, which is accompanied by carbonyl or hydroxyl formation, and (2) polymer fragmentation. These two mechanisms occur simultaneously. At temperatures of 170{degrees}C, or lower, polymer fragmentation appears negligible, but at temperatures of 420{degrees}C, or higher, polymer fragmentation is appreciable and occurs at rates comparable to those for O-NO{sub 2} bond scission. While polymer fragmentation may be associated with O-NO{sub 2} bond scission, at higher temperatures, additional steps must be involved in the fragmentation mechanism. At each end of the temperatures range from about 150 to 420{degrees}C, the rate of O-NO{sub 2} bond scission appears reasonably consistent with a mechanism dominated by a first-order decomposition step.

  12. Solar-Thermal Engine Testing

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational

  13. Production and analysis of thermal decomposition products from polymeric materials

    NASA Technical Reports Server (NTRS)

    Chatfield, D. A.; Einhorn, I. N.; Hileman, F. D.; Futrell, J. H.; Voorhees, K. J.

    1978-01-01

    A description is presented of a strategy for analyzing the combustion process and the degradation products which are formed. One of three primary objectives in the study of polymer degradation is related to the characterization of the material to be studied and the investigation of the thermal behavior of the material. Another objective is concerned with the definition of the nature of the decomposition process by identification and quantitation of the degradation products. The third objective involves the determination of the mechanism and kinetics of the decomposition process. The methods of sample degradation include pyrolysis, oxidative degradation, flaming combustion, and the use of large-scale combustion chambers. Methods of chemical separation and identification are considered, taking into account low-boiling volatiles, high-boiling volatiles, and ancillary techniques.

  14. Theoretical study of the thermal decomposition of dimethyl disulfide.

    PubMed

    Vandeputte, Aäron G; Reyniers, Marie-Françoise; Marin, Guy B

    2010-10-07

    Despite its use in a wide variety of industrially important thermochemical processes, little is known about the thermal decomposition mechanism of dimethyl disulfide (DMDS). To obtain more insight, the radical decomposition mechanism of DMDS is studied theoretically and a kinetic model is developed accounting for the formation of all the decomposition products observed in the experimental studies available in literature. Thermochemical data and rate coefficients are obtained using the high-level CBS-QB3 composite method. Among five methods tested (BMK/6-311G(2d,d,p), MPW1PW91/6-311G(2d,d,p), G3, G3B3, and CBS-QB3), the CBS-QB3 method was found to reproduce most accurately the experimental standard enthalpies of formation for a set of 17 small organosulfur compounds and the bond dissociation energies for a set of 10 sulfur bonds. Enthalpies of formation were predicted within 4 kJ mol(-1) while the mean absolute deviation on the bond dissociation enthalpies amounts to 7 kJ mol(-1). From the theoretical study, a new reaction path is identified for the formation of carbon disulfide via dithiirane (CH(2)S(2)). A reaction mechanism was constructed containing 36 reactions among 25 species accounting for the formation of all the decomposition products reported in literature. High-pressure limit rate coefficients for the 36 reactions in the reaction mechanism are presented. The kinetic model is able to grasp the experimental observations. With the recombination of thiyl radicals treated as being in the low-pressure limit, the experimentally reported first-order rate coefficients for the decomposition of DMDS are reproduced within 1 order of magnitude, while the observed product selectivities of most compounds are reproduced satisfactory. Simulations indicate that at high conversions most of the carbon disulfide forms according to the newly identified reaction path involving the formation of dithiirane.

  15. Solar energy thermalization and storage device

    DOEpatents

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  16. Solar energy thermalization and storage device

    DOEpatents

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  17. Solar wind thermal electron distributions

    SciTech Connect

    Phillips, J.L.; Gosling, J.T.

    1991-01-01

    Solar wind thermal electron distributions exhibit distinctive trends which suggest Coulomb collisions and geometric expansion in the interplanetary magnetic field play keys roles in electron transport. We introduce a simple numerical model incorporating these mechanisms, discuss the ramifications of model results, and assess the validity of the model in terms of ISEE-3 and Ulysses observations. Although the model duplicates the shape of the electron distributions, and explains certain other observational features, observed gradients in total electron temperature indicate the importance of additional heating mechanisms. 5 refs., 7 figs.

  18. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  19. Thermal Decomposition of Copper Ore Concentrate and Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Szyszka, Danuta; Wieckowska, Jadwiga

    2016-10-01

    Thermal analyses (TGA and DTA) of the composite, comprised of 10% polyethylene (PE) scrap and 90% copper ore concentrate, enabled determination of the temperature range and decomposition degree of the organic matters in argon atmosphere. Products of pyrolysis were qualitatively and quantitatively determined. The results were compared to those obtained for products of pyrolysis of the composite in air. Products of pyrolysis were identified by means of the gas chromatography (GC) method alone or supported with results of mass spectrometry analyses (GC-MS).

  20. Effects of Metallo-Organic Decomposition Agents on Thermal Decomposition and Electrical Conductivity of Low-Temperature-Curing Silver Paste

    NASA Astrophysics Data System (ADS)

    Lu, Chun-An; Lin, Pang; Lin, Hong-Ching; Wang, Sea-Fue

    2006-09-01

    Six low-temperature-curing silver pastes were prepared from silver flake, α-terpineol and various metallo-organic decomposition (MOD) compounds. The thermal decomposition behaviors of the pastes were determined. The microstructures and resistivities of screen-printed films on alumina substrate after thermal treatment were characterized and discussed. Results indicated that 2-ethylhexanoate possesses the lowest decomposition temperature (190.3 °C) among the MOD agents studied, and it forms silver particles to promote the linking of silver flake powders and thus reduces the resistivity to <13 μΩ\\cdotcm at a temperature as low as 200 °C.

  1. Mercer's spectral decomposition for the characterization of thermal parameters

    NASA Astrophysics Data System (ADS)

    Ahusborde, E.; Azaïez, M.; Belgacem, F. Ben; Palomo Del Barrio, E.

    2015-08-01

    We investigate a tractable Singular Value Decomposition (SVD) method used in thermography for the characterization of thermal parameters. The inverse problem to solve is based on the model of transient heat transfer. The most significant advantage is the transformation of the dynamic identification problem into a steady identification equation. The time dependence is accounted for by the SVD in a performing way. We lay down a mathematical foundation well fitted to this approach, which relies on the spectral expansion of Mercer kernels. This enables us to shed more light on most of its important features. Given its potentialities, the analysis we propose here might help users understanding the way the SVD algorithm, or the TSVD, its truncated version, operate in the thermal parameters estimation and why it is relevant and attractive. When useful, the study is complemented by some analytical and numerical illustrations realized within MATLAB's code.

  2. Average thermal characteristics of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Montgomery, M. D.

    1972-01-01

    Average solar wind electron properties based on a 1 year Vela 4 data sample-from May 1967 to May 1968 are presented. Frequency distributions of electron-to-ion temperature ratio, electron thermal anisotropy, and thermal energy flux are presented. The resulting evidence concerning heat transport in the solar wind is discussed.

  3. Pv-Thermal Solar Power Assembly

    DOEpatents

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2001-10-02

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  4. The DOE Solar Thermal Electric Program

    SciTech Connect

    Mancini, T.R.

    1994-06-01

    The Department of Energy`s Solar Thermal Electric Program is managed by the Solar thermal and biomass Power division which is part of the Office of utility Technologies. The focus of the Program is to commercialize solar electric technologies. In this regard, three major projects are currently being pursued in trough, central receiver, and dish/Stirling electric power generation. This paper describes these three projects and the activities at the National laboratories that support them.

  5. Thermal Decomposition of 3-Bromopropene. A Theoretical Kinetic Investigation.

    PubMed

    Tucceri, María E; Badenes, María P; Bracco, Larisa L B; Cobos, Carlos J

    2016-04-21

    A detailed kinetic study of the gas-phase thermal decomposition of 3-bromopropene over wide temperature and pressure ranges was performed. Quantum chemical calculations employing the density functional theory methods B3LYP, BMK, and M06-2X and the CBS-QB3 and G4 ab initio composite models provide the relevant part of the potential energy surfaces and the molecular properties of the species involved in the CH2═CH-CH2Br → CH2═C═CH2 + HBr (1) and CH2═CH-CH2Br → CH2═CH-CH2 + Br (2) reaction channels. Transition-state theory and unimolecular reaction rate theory calculations show that the simple bond fission reaction ( 2 ) is the predominant decomposition channel and that all reported experimental studies are very close to the high-pressure limit of this process. Over the 500-1400 K range a rate constant for the primary dissociation of k2,∞ = 4.8 × 10(14) exp(-55.0 kcal mol(-1)/RT) s(-1) is predicted at the G4 level. The calculated k1,∞ values lie between 50 to 260 times smaller. A value of 10.6 ± 1.5 kcal mol(-1) for the standard enthalpy of formation of 3-bromopropene at 298 K was estimated from G4 thermochemical calculations.

  6. Investigation of the thermal decomposition of sulfuric acid containing inorganic impurities

    SciTech Connect

    Kogtev, S.E.; Nikandrov, I.S.; Borisenko, A.S.; Peretrutov, A.A.

    1986-09-20

    Oleum is recovered by thermal decomposition of sulfuric acid wastes to sulfur dioxide with conversion of the sulfur dioxide to oleum. The organic substances in sulfuric acid wastes can affect the thermal-decomposition indexes of sulfuric acid wastes. They studied the effect of toluene, nitrotoluene, benzoic acid, and carbon on the yield of sulfur dioxide and also the possibility of reduction of acid vapors by products of pyrolysis and incomplete combustion of hydrocarbons. It is shown that the yield of sulfur dioxide in thermal decomposition of hydrocarbon-containing sulfuric acid wastes can be increased if the process assumes the nature of reductive decomposition.

  7. Analysis of Siderite Thermal Decomposition by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Lin, I.-C.; McKay, D. S.

    2000-01-01

    Characterization of carbonate devolitilization has important implications for atmospheric interactions and climatic effects related to large meteorite impacts in platform sediments. On a smaller scale, meteorites contain carbonates which have witnessed shock metamorphic events and may record pressure/temperature histories of impact(s). ALH84001 meteorite contains zoned Ca-Mg-Fe-carbonates which formed on Mars. Magnetite crystals are found in the rims and cores of these carbonates and some are associated with void spaces leading to the suggestion by Brearley et al. that the crystals were produced by thermal decomposition of the carbonate at high temperature, possibly by incipient shock melting or devolitilization. Golden et al. recently synthesized spherical Mg-Fe-Ca-carbonates from solution under mild hydrothermal conditions that have similar carbonate compositional zoning to those of ALH84001. They have shown experimental evidence that the carbonate-sulfide-magnetite assemblage in ALH84001 can result from a multistep inorganic process involving heating possibly due to shock events. Experimental shock studies on calcium carbonate prove its stability to approx. 60 GPa, well in excess of the approx. 45 GPa peak pressures indicated by other shock features in ALH84001. In addition, Raman spectroscopy of carbonate globules in ALH84001 indicates no presence of CaO and MgO. Such oxide phases should be found associated with the magnetites in voids if these magnetites are high temperature shock products, the voids resulting from devolitilization of CO2 from calcium or magnesium carbonate. However, if the starting material was siderite (FeCO3), thermal breakdown of the ALH84001 carbonate at 470 C would produce iron oxide + CO2. As no documentation of shock effects in siderite exists, we have begun shock experiments to determine whether or not magnetite is produced by the decomposition of siderite within the < 45GPa pressure window and by the resultant thermal pulse to approx

  8. An analysis of the thermal decomposition reactions of organic electrolytes used in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Campion, Christopher Lawrence

    The thermal decomposition of LiPF6 in solution with carbonate solvents has been investigated. The thermal dissociation of LiPF6 into LiF and PF5 is known. In solution, PF 5 reacts with carbonates to form a variety of decomposition products including: carbon dioxide (CO2), ethers (R2O), alkylfluorides (RF), phosphorus oxyfluoride (OPF3), and fluorophosphates (OPF 2OR, OPF(OR)2), assignment of structure is supported by Nuclear Magnetic Resonance (NMR) spectroscopy and Gas Chromatography with Mass Selective Detection (GC-MS). Similar decomposition products are observed during the thermal decomposition of carbonate solutions of LiPF6. Since solutions of LiPF6 are widely used as Li-ion battery electrolytes, there is interest among battery manufacturers and researchers as to the thermal decomposition of this electrolyte. Here we describe the structural and mechanistic investigations of the thermal decomposition of lithium-ion battery electrolytes. The electrolyte undergoes autocatalytic decomposition reactions at moderately elevated temperatures (80--100°C) to produce a large number of decomposition products. Results indicate that the thermal decomposition reactions are suppressed by the electrode, particularly the cathode, or intended stabilizing additives.

  9. Thermal decomposition of fullerene nanowhiskers protected by amorphous carbon mask

    PubMed Central

    Guo, Hongxuan; Wang, Chengxiang; Miyazawa, Kun’ichi; Wang, Hongxin; Masuda, Hideki; Fujita, Daisuke

    2016-01-01

    Fullerene nanostructures are well known for their unique morphology, physical and mechanical properties. The thermal stability of fullerene nanostructures, such as their sublimation at high temperature is also very important for studying their structures and applications. In this work, We observed fullerene nanowhiskers (FNWs) in situ with scanning helium ion microscopy (HIM) at elevated temperatures. The FNWs exhibited different stabilities with different thermal histories during the observation. The pristine FNWs were decomposed at the temperatures higher than 300 °C in a vacuum environment. Other FNWs were protected from decomposition with an amorphous carbon (aC) film deposited on the surface. Based on high spacial resolution, aC film with periodic structure was deposited by helium ion beam induced deposition (IBID) on the surface of FNWs. Annealed at the high temperature, the fullerene molecules were selectively sublimated from the FNWs. The periodic structure was formed on the surface of FNWs and observed by HIM. Monte Carlo simulation and Raman characterization proved that the morphology of the FNWs was changed by helium IBID at high temperature. This work provides a new method of fabricating artificial structure on the surface of FNWs with periodic aC film as a mask. PMID:27991498

  10. Thermal decomposition of fullerene nanowhiskers protected by amorphous carbon mask

    NASA Astrophysics Data System (ADS)

    Guo, Hongxuan; Wang, Chengxiang; Miyazawa, Kun’Ichi; Wang, Hongxin; Masuda, Hideki; Fujita, Daisuke

    2016-12-01

    Fullerene nanostructures are well known for their unique morphology, physical and mechanical properties. The thermal stability of fullerene nanostructures, such as their sublimation at high temperature is also very important for studying their structures and applications. In this work, We observed fullerene nanowhiskers (FNWs) in situ with scanning helium ion microscopy (HIM) at elevated temperatures. The FNWs exhibited different stabilities with different thermal histories during the observation. The pristine FNWs were decomposed at the temperatures higher than 300 °C in a vacuum environment. Other FNWs were protected from decomposition with an amorphous carbon (aC) film deposited on the surface. Based on high spacial resolution, aC film with periodic structure was deposited by helium ion beam induced deposition (IBID) on the surface of FNWs. Annealed at the high temperature, the fullerene molecules were selectively sublimated from the FNWs. The periodic structure was formed on the surface of FNWs and observed by HIM. Monte Carlo simulation and Raman characterization proved that the morphology of the FNWs was changed by helium IBID at high temperature. This work provides a new method of fabricating artificial structure on the surface of FNWs with periodic aC film as a mask.

  11. Thermal Decomposition of Almandine Garnet: Mössbauer Study

    NASA Astrophysics Data System (ADS)

    Barcova, K.; Mashlan, M.; Zboril, R.; Martinec, P.; Kula, P.

    2001-07-01

    The thermal decomposition of almandine garnet from Zoltye Vody, Ukraine, has been studied using57Fe Mössbauer spectroscopy. Room temperature Mössbauer spectrum of the initial powdered sample is characterised by one doublet corresponding to Fe2+ in dodecahedral position 24c. In the room temperature spectra of all heated almandine samples, a doublet corresponding to γ-Fe2O3 nanoparticles appeared. Depending on experimental conditions (heating temperature and time), the additional spectral lines of α-Fe2O3 and ɛ-Fe2O3 were observed in Mössbauer spectra. It is obvious that the thermal transformation of almandine garnet in air is related to the primary formation of γ-Fe2O3 superparamagnetic nanoparticles. γ-Fe2O3 nanoparticles are transformed into ɛ-Fe2O3 and consequently into α-Fe2O3 at higher temperatures. The mechanism and kinetics of the individual structural transformations depend on experimental conditions — mainly on the heating temperature and size of the particles.

  12. The response of the HMX-based material PBXN-9 to thermal insults: thermal decomposition kinetics and morphological changes

    SciTech Connect

    Glascoe, E A; Hsu, P C; Springer, H K; DeHaven, M R; Tan, N; Turner, H C

    2010-12-10

    PBXN-9, an HMX-formulation, is thermally damaged and thermally decomposed in order to determine the morphological changes and decomposition kinetics that occur in the material after mild to moderate heating. The material and its constituents were decomposed using standard thermal analysis techniques (DSC and TGA) and the decomposition kinetics are reported using different kinetic models. Pressed parts and prill were thermally damaged, i.e. heated to temperatures that resulted in material changes but did not result in significant decomposition or explosion, and analyzed. In general, the thermally damaged samples showed a significant increase in porosity and decrease in density and a small amount of weight loss. These PBXN-9 samples appear to sustain more thermal damage than similar HMX-Viton A formulations and the most likely reasons are the decomposition/evaporation of a volatile plasticizer and a polymorphic transition of the HMX from {beta} to {delta} phase.

  13. Performance of a solar-thermal collector

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1975-01-01

    Possible means of achieving the technology required for field application of solar thermal power systems are discussed. Simplifications in construction techniques as well as in measurement techniques for parabolic trough collectors are described. Actual measurement data is also given.

  14. Solar thermal power systems. Summary report

    SciTech Connect

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  15. PV/thermal solar power assembly

    DOEpatents

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  16. The small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1982-01-01

    the objectives and current status of the Small Community Solar Thermal Power Experiment are discussed. The adjustments in programs goals made in response to the changing emphasis in the area of solar energy in national policy are addressed. Planned fabrication and testing activities for the test bed concentrator, power conversion assembly, and control system are outlined.

  17. Thermal decomposition of acetate: III. Catalysis by mineral surfaces

    NASA Astrophysics Data System (ADS)

    Bell, Julie L. S.; Palmer, Donald A.; Barnes, H. L.; Drummond, S. E.

    1994-10-01

    The kinetics of thermal decarboxylation of aqueous solutions of acetic acid and sodium acetate were evaluated at 335 and 355°C in contact with various surfaces as potential catalysts. Quartz, fused quartz, calcite, natural pyrite, titanium oxide, and Au apparently do not catalyze aqueous decarboxylation reactions, in contrast to Pyrex, Ca-montmorillonite, Fe-bearing montmorillonite, hematite, synthetic pyrite, and magnetite. The dependence of the rate of acetic acid decarboxylation on the surface area of pyrite per unit solution volume was also studied. The results show that the decarboxylation of acetic acid and acetate is catalyzed heterogeneously, with the cleavage of the C-C bond occurring while the acetate molecule is adsorbed onto a surface. Entropies and enthalpies of activation obtained from these experiments are compatible with the isokinetic relationship established previously for acetic acid and acetate under similar experimental conditions, indicating the existence of a common rate-determining step. Experimental evidence indicates that oxidation of acetic acid can occur with hematite and defected magnetite. These oxidative decomposition reactions differ from the decarboxylation reaction in that CO 2 and polycondensates are produced instead of CO 2 and CH 4.

  18. Refractive Secondary Concentrators for Solar Thermal Applications

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Macosko, Robert P.

    1999-01-01

    The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.

  19. Thermal Decomposition of New and Aged LX-04 and PBX 9501

    SciTech Connect

    Tran, T D; Tarver, C; Idar, D J; Rodin, W A

    2002-04-09

    One-Dimensional-Time-To-Explosion (ODTX) experiments were conducted to study the thermal decomposition of new and aged LX-04, PBX 9501, HMX class 1 and class 2, Estane and EstaneBDNPA-F (PBX 950 1 plasticized-binder) materials. New and aged LX-04 showed comparable decomposition kinetics. The data for aged PBX 9501 showed slightly longer explosion times at equivalent temperatures. Analysis of the error in time measurement is complicated by several experimental factors but the small time change appears to be experimentally significant. The results suggest that aged PBX 9501 is slightly more thermally stable. The thermal decomposition of these materials were modeled using a coupled thermal and heat transport code (chemical TOPAZ) using separate kinetics for HMX and binder decomposition. The current kinetic models describe the longer explosion times by the loss of plasticizer-binder constituent, which was more thermally reactive.

  20. USAF solar thermal applications case studies

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The potential of solar energy technologies to meet mission related applications for process heat was investigated. The reduction of the dependence of military installations on fossil fuels by promoting the use of more abundant resources where liquid hydrocarbons and natural gas are now used is examined. The evaluation and utilization of renewable energy systems to provide process heat and space heating are emphasized. The application of thermal energy systems is divided into four steps: (1) investigation of the potential operational cost effectiveness of selected thermal technologies; (2) selection of a site and preliminary design of point focussing solar thermal plant; (3) construction and test of an engineering prototype; and (4) installation and operation of a solar thermal energy plant.

  1. Thermal decomposition and oxidation of CH3OH.

    PubMed

    Lee, Pei-Fang; Matsui, Hiroyuki; Xu, Ding-Wei; Wang, Niann-Shiah

    2013-01-24

    Thermal decomposition of CH(3)OH diluted in Ar has been studied by monitoring H atoms behind reflected shock waves of 100 ppm CH(3)OH + Ar. The total decomposition rate k(1) for CH(3)OH + M → products obtained in this study is expressed as, ln(k(1)/cm(3) molecule(-1) s(-1)) = -(14.81 ± 1.22) - (38.86 ± 1.82) × 10(3)/T, over 1359-1644 K. The present result on k(1) is indicated to be substantially smaller than the extrapolation of the most of the previous experimental data but consistent with the published theoretical results [Faraday Discuss. 2002, 119, 191-205 and J. Phys. Chem. A 2007, 111, 3932-3950]. Oxidation of CH(3)OH has been studied also by monitoring H atoms behind shock waves of (0.35-100) ppm CH(3)OH + (100-400) ppm O(2) + Ar. For the low concentration CH(3)OH (below 10 ppm) + O(2) mixtures, the initial concentration of CH(3)OH is evaluated by comparing evolutions of H atoms in the same concentration of CH(3)OH with addition of 300 ppm H(2) diluted in Ar. The branching fraction for CH(3)OH + Ar → (1)CH(2) + H(2)O + Ar has been quantitatively evaluated from this comparative measurements with using recent experimental result on the yield of H atoms in the reaction of (1,3)CH(2) + O(2) [J. Phys. Chem. A 2012, 116, 9245-9254]; i.e., the branching fraction for the above reaction is evaluated as, φ(1a) = 0.20 ± 0.04 at T = 1880-2050 K, in the 1.3 and 3.5 ppm CH(3)OH + 100 ppm O(2) samples. An extended reaction mechanism for the pyrolysis and oxidation of CH(3)OH is constructed based on the results of the present study combined with the oxidation mechanism of natural gas [GRI-Mech 3.0]; evolution of H atoms can be predicted very well with this new reaction scheme over a wide concentration range for the pyrolysis (0.36-100 ppm CH(3)OH), and oxidation (0.36-100 ppm CH(3)OH + 100/400 ppm O(2)) of methanol.

  2. Solar Thermal Propulsion Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  3. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant.

    PubMed

    Yi, Jian-Hua; Zhao, Feng-Qi; Wang, Bo-Zhou; Liu, Qian; Zhou, Cheng; Hu, Rong-Zu; Ren, Ying-Hui; Xu, Si-Yu; Xu, Kang-Zhen; Ren, Xiao-Ning

    2010-09-15

    The composite modified double base (CMDB) propellants (nos. RB0601 and RB0602) containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz) without and with the ballistic modifier were prepared and their thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates were investigated. The results show that there are three mass-loss stages in TG curve and two exothermic peaks in DSC curve for the BTATz-CMDB propellant. The first two mass-loss stages occur in succession and the temperature ranges are near apart, and the decomposition peaks of the two stages overlap each other, inducing only one visible exothermic peak appear in DSC curve during 350-550 K. The reaction mechanisms of the main exothermal decomposition processes of RB0601 and RB0602 are all classified as chemical reaction, the mechanism functions are f(alpha)=(1-alpha)(2), and the kinetic equations are dalpha/dt = 10(19.24)(1-alpha)(2)e(-2.32x10(4)/T) and dalpha/dt = 10(20.32)(1-alpha)(2)e(-2.32x10(4)/T). The thermal safety evaluation on the BTATz-CMDB propellants was obtained. With the substitution of 26% RDX by BTATz and with the help of the ballistic modifier in the CMDB propellant formulation, the burning rate can be improved by 89.0% at 8 MPa and 47.1% at 22 MPa, the pressure exponent can be reduced to 0.353 at 14-20 MPa.

  4. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  5. Solar thermal electric power information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  6. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids.

    PubMed

    Lovelock, Kevin R J; Armstrong, James P; Licence, Peter; Jones, Robert G

    2014-01-28

    Vaporisation and liquid phase thermal decomposition, TD, of two halide ion ionic liquids, 1-octyl-3-methylimidazolium chloride, [C8C1Im]Cl, and 1-octyl-3-methylimidazolium iodide, [C8C1Im]I, are investigated using temperature programmed desorption (TPD) line of sight mass spectrometry (LOSMS) at ultra-high vacuum (UHV). The ability to use MS to distinguish between vaporisation and TD allows the thermodynamics/kinetics of both vaporisation and TD to be investigated within the same experiments. Vaporisation of both halide ion ionic liquids is demonstrated. For both [C8C1Im]Cl and [C8C1Im]I the vapour is shown to be composed of neutral ion pairs (NIPs). The enthalpy of vaporisation at temperature T, ΔvapHT, was experimentally determined as ΔvapH455 = 151 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH480 = 149 ± 8 kJ mol(-1) for [C8C1Im]I. Extrapolation of ΔvapHT to the reference temperature, 298 K, gave ΔvapH298 = 166 ± 10 kJ mol(-1) for [C8C1Im]Cl and ΔvapH298 = 167 ± 8 kJ mol(-1) for [C8C1Im]I, higher than most ΔvapH298 values measured to date for other [C8C1Im](+)-containing ionic liquids. In addition, predictions of ΔvapH298 for other halide ion ionic liquids are made. Liquid phase TD is shown to proceed via nucleophilic substitution to give two sets of products: 1-octylimidazole and methylhalide, and 1-methylimidazole and 1-octylhalide. The activation energy of TD at a temperature T, Ea,TD,T, is measured for the nucleophilic substitution of [C8C1Im]I to give methyliodide; Ea,TD,480 = 136 ± 15 kJ mol(-1). Ea,TD,T is measured for the nucleophilic substitution of [C8C1Im]Cl to give methylchloride; Ea,TD,455 = 132 ± 10 kJ mol(-1). The fact that ΔvapHT and Ea,TD,T are the same (within error) for both ionic liquids is commented upon, and conclusions are drawn as to the thermal stability of these ionic liquids.

  7. The thermal decomposition of methane in a tubular reactor

    SciTech Connect

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The reaction rate of methane decomposition using a tubular reactor having a 1 inch inside diameter with an 8 foot long heated zone was investigated in the temperature range of 700 to 900 C with pressures ranging from 28.2 to 56.1 atm. Representing the rate by a conventional model, {minus}dC{sub CH4}/dt= k1 C{sub CH4} {minus}k2 C{sub H2}{sup 2}, the rate constant k1 for methane decomposition was determined. The activation energy, 31.3 kcal/mol, calculated by an Arrhenius Plot was lower than for previously published results for methane decomposition. This result indicates that submicron particles found in the reactor adhere to the inside of the reactor and these submicron high surface area carbon particles tend to catalyze the methane decomposition. The rate constant has been found to be approximately constant at 900 C with pressure range cited above. The rate of methane decomposition increases with methane partial pressure in first-order. The rate of the methane decomposition is favored by higher temperatures and pressures while the thermochemical equilibrium of methane decomposition is favored by lower pressures. 8 refs., 7 figs., 2 tabs.

  8. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  9. Solar thermal propulsion for planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1985-01-01

    Previous studies have shown that many desirable planetary exploration missions require large injection delta-V. Solar Thermal Rocket (STR) propulsion, under study for orbit-raising applications may enhance or enable such high-energy missions. The required technology of thermal control for liquid hydrogen propellant is available for the required storage duration. Self-deploying, inflatable solar concentrators are under study. The mass penalty for passive cryogenic thermal control, liquid hydrogen tanks and solar concentrators does not compromise the specific impulse advantage afforded by the STR as compared to chemical propulsion systems. An STR injection module is characterized and performance is evaluated by comparison to electric propulsion options for the Saturn Orbiter Titan Probe (SOTP) and Uranus Flyby Uranus Probe (UFUP) missions.

  10. Studying the thermal/non-thermal crossover in solar flares

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.

    1994-01-01

    This report describes work performed under contract NAS5-32584 for Phase 3 of the Compton Gamma Ray Observatory (CGRO) from 1 November 1993 through 1 November 1994. We have made spectral observations of the hard x-ray and gamma-ray bremsstrahlung emissions from solar flares using the Burst and Transit Source Experiment (BASTE) on CGRO. These measurements of their spectrum and time profile provided valuable information on the fundamental flare processes of energy release, particle acceleration, and energy transport. Our scientific objective was to study both the thermal and non-thermal sources of solar flare hard x-ray and gamma-ray emission.

  11. Electrical field-assisted thermal decomposition of boron nitride nanotube: Experiments and first principle calculations

    NASA Astrophysics Data System (ADS)

    Xu, Zhi; Golberg, Dmitri; Bando, Yoshio

    2009-09-01

    We directly observed the Joule-heating-induced decomposition of multiwalled BN nanotubes using a transmission electron microscope equipped with a scanning tunneling microscope unit. The decomposition temperature is found to be dependent on an applied electrical field. We propose a model that due to the partially ionic nature of the B-N bond, the decomposition energy is both temperature- and electrical field-related: it is named as electrical field-assisted thermal decomposition. The model fits the experimental data very well and is considered to be general for all nanostructures with polar bonds.

  12. Solar thermal vacuum tests of Magellan spacecraft

    NASA Technical Reports Server (NTRS)

    Neuman, James C.

    1990-01-01

    The Magellen solar/thermal/vacuum test involved a number of unique requirements and approaches. Because of the need to operate in orbit around Venus, the solar intensity requirement ranged up to 2.3 suns or Earth equivalent solar constants. Extensive modification to the solar simulator portion of the test facility were required to achieve this solar intensity. Venus albedo and infrared emission were simulated using temperature controlled movable louver panels to allow the spacecraft to view either a selectable temperature black heat source with closed louvers, or the chamber coldwall behind open louvers. The test conditions included widely varying solar intensities, multiple sun angles, alternate hardware configurations, steady state and transient cases, and cruise and orbital power profiles. Margin testing was also performed, wherein supplemental heaters were mounted to internal thermal blankets to verify spacecraft performance at higher than expected temperatures. The test was successful, uncovering some spacecraft anomalies and verifying the thermal design. The test support equipment experienced some anomalous behavior and a significant failure during the test.

  13. Solar thermal components. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Bozman, W. R. (Editor)

    1979-01-01

    This bibliographic series cites and abstracts literature and technical papers on components applied to solar thermal energy utilization. The quarterly volumes are divided into ten categories: material properties; flat plat collectors; concentrating collectors; thermal storage; heat pumps; coolers and heat exchangers; solar ponds and distillation; greenhouses; process pleat; and irrigation pumps. Each quarterly volume is compiled from a wide variety of data bases, report literature, technical briefs, journal articles and other traditional and non traditional sources. The Technology Application Center maintains a library containing many of the articles and publications referenced in the series.

  14. Proceedings of the Solar Thermal Technology Conference

    NASA Astrophysics Data System (ADS)

    Tyner, C. E.

    1987-08-01

    The Solar Thermal Technology Conference was held on August 26 to 28, 1987, at the Marriott Hotel, Albuquerque, New Mexico. The meeting was sponsored by the United States Department of Energy and Sandia National Laboratories. Topics covered during the conference included a status summary of the Sandia Solar Thermal Development Project, perspectives on central and distributed receiver technology including energy collection and conversion technologies, systems analyses and applications experiments. The proceedings contain summaries (abstracts and principal visual aids) of the presentations made at the conference.

  15. Proceedings of the Solar Thermal Technology Conference

    NASA Astrophysics Data System (ADS)

    Diver, R. B.

    1986-06-01

    The Solar Thermal Technology Conference was held on June 17 to 19, 1986 at the Marriott Hotel, Albuquerque, New Mexico. The meeting was sponsored by the United States Department of Energy and Sandia National Laboratories. Topics covered during the conference included a status summary of the Sandia Solar Thermal Development Project, perspectives on central and distributed receiver technology including energy collection and conversion technologies, systems analyses and applications experiments. The proceedings contain summaries (abstracts plus principal visual aids) of the presentations made at the conference.

  16. Thermal decomposition studies of explosives for component applications. [hns

    SciTech Connect

    Jungst, R.G.

    1988-01-01

    The explosives PETN and HNS are currently found in a variety of Sandia devices. We have carried out a number of special studies to measure decomposition rates of these materials in hardware at moderate temperatures. The goal of this work was to generate information to enable predictions of component lifetimes to be made. This presentation will discuss sampling and measurement techniques for decomposition products and show results of their application to components containing PETN and HNS.

  17. The correlation between elongation at break and thermal decomposition of aged EPDM cable polymer

    NASA Astrophysics Data System (ADS)

    Šarac, T.; Devaux, J.; Quiévy, N.; Gusarov, A.; Konstantinović, M. J.

    2017-03-01

    The effect of simultaneous thermal and gamma irradiation ageing on the mechanical and physicochemical properties of industrial EPDM was investigated. Accelerated ageing, covering a wide range of dose rates, doses and temperatures, was preformed in stagnant air on EPDM polymer samples extracted from the cables in use in the Belgian nuclear power plants. The mechanical properties, ultimate tensile stress and elongation at break, are found to exhibit the strong dependence on the dose, ageing temperature and dose rate. The thermal decomposition of aged polymer is observed to be the dose dependent when thermogravimetry test is performed under air atmosphere. No dose dependence is observed when thermal decomposition is performed under nitrogen atmosphere. The thermal decomposition rates are found to fully mimic the reduction of elongation at break for all dose rates and ageing temperatures. This effect is argued to be the result of thermal and radiation mediated oxidation degradation process.

  18. The solar thermal report. Volume 3, Number 5

    SciTech Connect

    1982-09-01

    This report is published by the Jet Propulsion Laboratory for the DOE Solar Thermal Technology Division to provide an account of work sponsored by the Division and to aid the community of people interested in solar thermal technology in gaining access to technical information. Contents include articles entitled the following: Solar system supplies thermal energy for producing chemicals at USS plant; Solar thermal power module designed for small community market; Roof-mounted trough system supplies process heat for Caterpillar plant; Solar thermal update -- 10 MW(e) pilot plant and 3-MW(t) total energy system; Solar steam processes crude oil; New York investigates solar ponds as a source of thermal energy; On-farm solar -- Finding new uses for the sun; and Topical index of solar thermal report articles.

  19. Decomposition

    USGS Publications Warehouse

    Middleton, Beth A.

    2014-01-01

    A cornerstone of ecosystem ecology, decomposition was recognized as a fundamental process driving the exchange of energy in ecosystems by early ecologists such as Lindeman 1942 and Odum 1960). In the history of ecology, studies of decomposition were incorporated into the International Biological Program in the 1960s to compare the nature of organic matter breakdown in various ecosystem types. Such studies still have an important role in ecological studies of today. More recent refinements have brought debates on the relative role microbes, invertebrates and environment in the breakdown and release of carbon into the atmosphere, as well as how nutrient cycling, production and other ecosystem processes regulated by decomposition may shift with climate change. Therefore, this bibliography examines the primary literature related to organic matter breakdown, but it also explores topics in which decomposition plays a key supporting role including vegetation composition, latitudinal gradients, altered ecosystems, anthropogenic impacts, carbon storage, and climate change models. Knowledge of these topics is relevant to both the study of ecosystem ecology as well projections of future conditions for human societies.

  20. Borohydride Catalysis of Nitramine Thermal Decomposition and Combustion. 2. Thermal Decomposition of Catalyzed and Uncatalyzed HMX Propellant Formulations

    DTIC Science & Technology

    1990-02-01

    decomposition temperature. Aaded catalyst appears to decrease m/e 70 (1,2,4- oxadiazole ?) formation at low temperature, but to increase it slightly at...Unknown A (1,2,4- oxadiazole ?), from HMX Decomposition......................................................... 17 18 Typical Mass Spectrum of...formation of 1,3,5-triazine and Unknown A (1,2,4- oxadiazole ?) were also studied. II. EXPERIMENTAL The HMX-GAP and HMX-PEG compositions were prepared at

  1. Solar thermal plant impact analysis and requirements definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The technology and economics of solar thermal electric systems (STES) for electric power production is discussed. The impacts of and requirements for solar thermal electric power systems were evaluated.

  2. Thermal effects testing at the National Solar Thermal Test Facility

    NASA Astrophysics Data System (ADS)

    Ralph, M. E.; Cameron, C. P.; Ghanbari, C. M.

    1992-11-01

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm(sup 2) that is uniform over a 15-cm diameter with a total beam power of over 5 MW(sub t). The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m (times) 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm(sup 2) over and delivers a 6-mm diameter and total power of 16 kW(sub t). A second furnace produces flux levels up to 1000 W/cm(sup 2) over a 4 cm diameter and total power of 60 kW(sub t). Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm(sup 2) over a 2.5 cm diameter and total power of 75 kW(sub t). High-speed shutters have been used to produce square pulses.

  3. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  4. ROSET. Solar Thermal Electric Power Simulation

    SciTech Connect

    O`Doherty, R.

    1982-01-01

    ROSET consists of five programs to calculate the energy output of a solar thermal electric power system. The ROSET programs provide two distinct functions. The first four (WTPREAD, FIELD, POWERT, and POWERE) use hourly weather data for a year to calculate hourly electric energy output for a solar thermal system. The last program (HISTO) uses one or more electric energy output files created by the first four programs to provide an energy distribution for each hour of a typical day. The output of ROSET is a set of energy distributions that can be used by program ULMOD as part of the overall utility value determination process. While ROSET is set up to simulate one system at a time, its constituent programs are also capable of performing parametric trade studies in a stand-alone mode. The trade studies can yield valuable information on sizing a solar thermal electric power system. Only when a single system is simulated, however, are the outputs of the various programs compatible and able to produce input for ULMOD. Auxiliary program FINAM performs an economic analysis to determine the value of solar thermal energy systems to electric utilities.

  5. Thermal Decomposition Behavior of Ammonium Perchlorate and of an Ammonium-Perchlorate-Based Composite Propellant

    NASA Technical Reports Server (NTRS)

    Behrens, R.; Minier, L.

    1998-01-01

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H2O, O2, Cl2, N2O and HCl, and is shown to occur in the solid phase within the AP particles. 200(micro) diameter AP particles undergo 25% decomposition in the solid phase, whereas 20(micro) diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH3 + HClO4 followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  6. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    SciTech Connect

    Behrens, R.; Minier, L.

    1998-03-24

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  7. Decomposition mechanisms in thermally-aged thin-film explosives

    SciTech Connect

    Erickson, K.L.; Trott, W.M.; Renlund, A.M.

    1994-10-01

    The isothermal decomposition of nitrocellulose (NC) has been examined using two substantially different experimental techniques, involving both confined and unconfined samples. The confined isothermal aging technique involved confined thin-film samples heated to temperatures of 150 to 170{degrees}C, for 1 to 72 hours. Condensed-phase chemistry was monitored real-time using FTIR. Results indicated that the first step in decomposition was scission of the O-NO{sub 2} bond and subsequent formation of carbonyl and hydroxyl products. Scission of the O-NO{sub 2} bond appeared to occur by a first-order reaction. The Arrhenius expression for the first-order reaction rate constant was evaluated from the experimental data. The unconfined rapid isothermal decomposition technique involved both high speed-photography and time-of-flight mass spectrometry (TOFMS). Mass spectra obtained from experiments at 420{degrees}C indicated that NO{sub 2} formation and, therefore, scission of the O-NO{sub 2} bond occurred by a first order reaction, the rate constant for which was evaluated from the experimental data. The rate constant for global pseudo-first order decomposition of NC at 450{degrees}C was also estimated from high speed photography results. Rate constants at 420 and 450{degrees}C were predicted using the Arrhenius expression developed from the confined isothermal aging results and were in good agreement with the rate constants obtained at those temperatures in the unconfined rapid decomposition experiments using TOFMS and high-speed photography. Results from these substantially different measurements gave consistent results over a temperature range of about 300{degrees}C, in which reaction rates vary by nine orders of magnitude, and indicate that the two experimental techniques being developed have good potential for studying condensed-phase decomposition of energetic materials.

  8. Thermal Decomposition of New and Aged LX-04 and PBX 9501

    SciTech Connect

    Tran, T D; Tarver, C; Idar, D J

    2002-03-25

    One-Dimensional-Time-To-Explosion (ODTX) experiments were conducted to study the thermal decomposition of aged LX-04, aged PBX 9501, HMX class 1 and class 2, Estane and Estane/BDNPA-F (PBX 950 1 plasticized-binder) materials. The tests involved heating 12.7 mm diameter spherical samples in pre-heated aluminum anvils until explosion. The times to explosion at different heating temperatures were compared to historical data on new LX-04 and PBX 9501 compounds to study any changes to their thermal stability. New and aged LX-04 showed comparable decomposition kinetics. The data for aged PBX 9501 showed slightly longer explosion times at equivalent temperatures. Analysis of the error in time measurement is limited and complicated by several experimental factors but the small time change appears to be experimentally significant. The thermal decomposition of these PBXs were modeled using a coupled thermal and heat transport code (chemical TOPAZ) using separate kinetics for HMX and binder decomposition. Separate decomposition models were developed for HMX and the reactive PBX 9501 binder component (1:1 Estane:BDNPA/F) based on the measured explosion times. Thermal aging models can describe longer explosion times by the loss of plasticizer-binder constituent which was more thermally reactive.

  9. Solar Thermal Propulsion Investigation Activities in NAL

    NASA Astrophysics Data System (ADS)

    Sahara, Hironori; Shimizu, Morio

    2004-03-01

    We successfully developed the ultra-light single shell paraboloidal concentrators made of a sheet of aluminized or silvered polymer membrane, formed via plastic deformation due to stress relaxation under high temperature condition by means of Straight Formation Method. Furthermore, we improved the precision of the concentrators by taking the elastic deformation of residual stress into consideration, and obtained the best concentration performance equivalent to a highly precise paraboloidal glass mirror. In solar concentration, the diameter of solar focal image via the single shell polymer concentrator is almost equal to that via the glass mirror and they are twice as large as that of the theoretical. The ultra-light single shell polymer concentrators are very useful for the concentrator in solar thermal propulsion system and solar power station in particular, and also promising item for beamed energy propulsion.

  10. Flexible thermal cycle test equipment for concentrator solar cells

    DOEpatents

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  11. Low-temperature thermal decomposition of crystalline partly and completely deuterated ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Majda, Dorota; Korobov, Alexander; Filek, Urszula; Sulikowski, Bogdan; Midgley, Paul; Nicol, David A.; Klinowski, Jacek

    2011-03-01

    Although ammonium perchlorate, widely used as a rocket propellant, has been extensively investigated for many years, the mechanism of its thermal decomposition at low temperatures remains controversial. Examination of the thermal behaviour of large crystals of partly and completely deuterated ammonium perchlorate by DSC, SEM, TG and QMS reveals that the rates of thermal decomposition depend on the degree of deuteration and decrease in the sequence N[H/D] 4ClO 4 > NH 4ClO 4 > ND 4ClO 4.

  12. Preparation, X-ray crystallography, and thermal decomposition of some transition metal perchlorate complexes of hexamethylenetetramine.

    PubMed

    Singh, Gurdip; Baranwal, B P; Kapoor, I P S; Kumar, Dinesh; Fröhlich, Roland

    2007-12-20

    The perchlorate complexes of manganese, nickel, and zinc with hexamethylenetetramine (HMTA) of the general formula [M(H2O-HMTA-H2O)2(H2O-ClO4)2(H2O)2] (where M=Mn, Ni, and Zn) have been prepared and characterized by X-ray crystallography. Thermal studies were undertaken using thermogravimetry (TG), differential thermal analysis (DTA), and explosion delay (DE) measurements. The kinetics of thermal decomposition of these complexes was investigated using isothermal TG data by applying isoconversional method. The decomposition pathways of the complexes have also been proposed. These were found to explode when subjected to higher temperatures.

  13. Solar thermal power storage applications lead laboratory overview

    NASA Technical Reports Server (NTRS)

    Radosevich, L. G.

    1980-01-01

    The implementation of the applications elements of the thermal energy storage for Solar Thermal Applications program is described. The program includes the accelerated development of thermal storage technologies matched to solar thermal power system requirements and scheduled milestones. The program concentrates on storage development in the FY80 to 85 time period with emphasis on the more near-term solar thermal power system application.

  14. Determination of the Thermal Decomposition Products of Terephthalic Acid by Using Curie-Point Pyrolyzer

    NASA Astrophysics Data System (ADS)

    Begüm Elmas Kimyonok, A.; Ulutürk, Mehmet

    2016-04-01

    The thermal decomposition behavior of terephthalic acid (TA) was investigated by thermogravimetry/differential thermal analysis (TG/DTA) and Curie-point pyrolysis. TG/DTA analysis showed that TA is sublimed at 276°C prior to decomposition. Pyrolysis studies were carried out at various temperatures ranging from 160 to 764°C. Decomposition products were analyzed and their structures were determined by gas chromatography-mass spectrometry (GC-MS). A total of 11 degradation products were identified at 764°C, whereas no peak was observed below 445°C. Benzene, benzoic acid, and 1,1‧-biphenyl were identified as the major decomposition products, and other degradation products such as toluene, benzophenone, diphenylmethane, styrene, benzaldehyde, phenol, 9H-fluorene, and 9-phenyl 9H-fluorene were also detected. A pyrolysis mechanism was proposed based on the findings.

  15. Thermal decomposition of gaseous ammonium nitrate at low pressure: kinetic modeling of product formation and heterogeneous decomposition of nitric acid.

    PubMed

    Park, J; Lin, M C

    2009-12-03

    The thermal decomposition of ammonium nitrate, NH(4)NO(3) (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH(4)NO(3) at 423 K was proposed to produce equal amounts of NH(3) and HNO(3), followed by the decomposition reaction of HNO(3), HNO(3) + M --> OH + NO(2) + M (where M = third-body and reactor surface). The absolute yields of N(2), N(2)O, H(2)O, and NH(3), which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH(3)-NO(2) (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO(3) itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO(3) in our kinetic modeling. The heterogeneous decomposition rate of HNO(3), HNO(3) + (B(2)O(3)/SiO(2)) --> OH + NO(2) + (B(2)O(3)/SiO(2)), was determined by varying its rate to match the modeled result to the measured concentrations of NH(3) and H(2)O; the rate could be represented by k(2b) = 7.91 x 10(7) exp(-12 600/T) s(-1), which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO(3) decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  16. Thermal Decomposition of Gaseous Ammonium Nitrate at Low Pressure: Kinetic Modeling of Product Formation and Heterogeneous Decomposition of Nitric Acid

    NASA Astrophysics Data System (ADS)

    Park, J.; Lin, M. C.

    2009-10-01

    The thermal decomposition of ammonium nitrate, NH4NO3 (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH4NO3 at 423 K was proposed to produce equal amounts of NH3 and HNO3, followed by the decomposition reaction of HNO3, HNO3 + M → OH + NO2 + M (where M = third-body and reactor surface). The absolute yields of N2, N2O, H2O, and NH3, which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH3-NO2 (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO3 itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO3 in our kinetic modeling. The heterogeneous decomposition rate of HNO3, HNO3 + (B2O3/SiO2) → OH + NO2 + (B2O3/SiO2), was determined by varying its rate to match the modeled result to the measured concentrations of NH3 and H2O; the rate could be represented by k2b = 7.91 × 107 exp(-12 600/T) s-1, which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO3 decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  17. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells

    PubMed Central

    Brinkmann, K.O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T

    2017-01-01

    The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and—more importantly—it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability. PMID:28067308

  18. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells

    NASA Astrophysics Data System (ADS)

    Brinkmann, K. O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T.

    2017-01-01

    The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and--more importantly--it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability.

  19. Thermal decomposition of energetic materials viewed via dynamic x-ray radiography

    SciTech Connect

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Oschwald, D.

    2014-01-13

    We describe the evolution of solid density, leading up to ignition in the slow thermal decomposition of the solid organic secondary explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. This work describes an x-ray radiographic diagnostic, allowing the study of solid density in a fully encased explosive heated to thermal explosion. The result of this study is the ability to observe and manipulate the ignition volume in a thermal explosion.

  20. Structural change of metallofullerene: an easier thermal decomposition.

    PubMed

    Zhao, Shixiong; Zhang, Jun; Guo, Xihong; Qiu, Xiaohui; Dong, Jinquan; Yuan, Bingkai; Ibrahim, Kurash; Wang, Jiaou; Qian, Haijie; Zhao, Yuliang; Yang, Shangyuan; Hao, Jian; Zhang, Hong; Yuan, Hui; Xing, Gengmei; Sun, Baoyun

    2011-10-05

    We have studied for the first time the structural change of high-purity metallofullerene (Gd@C(82)) upon heat treatment in an ultra-high vacuum system (10(-10) Torr) and examined the decomposition product through successive analysis with MS, IR, Raman, TEM, EDS and XPS. It was found that metallofullerene (Gd@C(82)) had fully collapsed at 580 °C which was lower than that for the complete destruction of C(60). The easier decomposition should be ascribed to the encapsulated metal in the carbon cage which could induce the deformation of the C-C bond. The analysis indicated that the broken metallofullerene (Gd@C(82)) became a kind of graphite-like material with a lot of defects. The Gd atoms leaked out from the carbon cage and aggregated together to form a regular arrangement.

  1. Structural change of metallofullerene: an easier thermal decomposition

    NASA Astrophysics Data System (ADS)

    Zhao, Shixiong; Zhang, Jun; Guo, Xihong; Qiu, Xiaohui; Dong, Jinquan; Yuan, Bingkai; Ibrahim, Kurash; Wang, Jiaou; Qian, Haijie; Zhao, Yuliang; Yang, Shangyuan; Hao, Jian; Zhang, Hong; Yuan, Hui; Xing, Gengmei; Sun, Baoyun

    2011-10-01

    We have studied for the first time the structural change of high-purity metallofullerene (Gd@C82) upon heat treatment in an ultra-high vacuum system (10-10 Torr) and examined the decomposition product through successive analysis with MS, IR, Raman, TEM, EDS and XPS. It was found that metallofullerene (Gd@C82) had fully collapsed at 580 °C which was lower than that for the complete destruction of C60. The easier decomposition should be ascribed to the encapsulated metal in the carbon cage which could induce the deformation of the C-C bond. The analysis indicated that the broken metallofullerene (Gd@C82) became a kind of graphite-like material with a lot of defects. The Gd atoms leaked out from the carbon cage and aggregated together to form a regular arrangement.

  2. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  3. Mass spectral studies of thermal decomposition of metal nitrates

    NASA Astrophysics Data System (ADS)

    Jackson, Jason G.; Fonseca, Rodney W.; Holcombe, James A.

    1995-10-01

    Residual gas analysis and static secondary ion mass spectrometry are used in an attempt to elucidate the process responsible for the appearance of metal oxides in the gas phase during low temperature nitrate decomposition of Pb, Cu, Cd and Ag nitrates in vacuo. Observed signals for MO, MNO 3+ together with M 2+ species in the gas phase during the decomposition of some of the metal nitrates indicate that a physical expulsion mechanism is probably responsible for the low temperature production of these metal-containing species. The "gasification mechanism" provided by L'vov states that metal nitrates decompose in a single mechanistic step to product MO(g), O 2 and NO 2 and that the temperature of the decomposition is predictable from thermodynamics. The observation of unexplained gas phase species, the absence of O 2 during CuO + production, and the lack of agreement between activation energies and appearance temperatures fail to support the gasification model. Instead, it is suggested that during the decomposition, which is governed by the kinetics of the process, the evolution of the gaseous products, such as O 2 and NO 2, carry the observed metal-containing species into the vapor phase when the liquid state is present on the surface (e.g. AgNO 3, Cu(NO 3) 2 or Cd(NO 3) 2). The crystal rearrangement of the solid (e.g. conversion of Pb(NO 3) 2 to PbO) and subsequent loss of integrity of the crystal lattice results in the dislocation of the metal-containing species, which are swept from the surface during the O 2 and NO 2 evolution.

  4. Investigation of the effect of intensive milling in a planetary ball mill on the thermal decomposition of basic nickel carbonate

    NASA Astrophysics Data System (ADS)

    Książek, K.; Wacke, S.; Górecki, T.; Górecki, Cz

    2011-04-01

    The kinetics of thermal decomposition of basic nickel carbonate NiCO3Ni·(OH)2·nH2O and the effect of intensive milling in a planetary ball mill on its parameters, have been investigated. The values of the reaction heat and of the activation energy of thermal decomposition have been determined. Investigations of the thermal decomposition of the products of ball milling of investigated compound revealed a distinct effect of milling on the reaction temperature and heat consumed during the thermal decomposition of investigated compound.

  5. Thermal decomposition of mono- and bimetallic magnesium amidoborane complexes.

    PubMed

    Spielmann, Jan; Piesik, Dirk F-J; Harder, Sjoerd

    2010-07-26

    Complexes of the type [(DIPPnacnac)MgNH(R)BH(3)] have been prepared (DIPPnacnac=CH{(CMe)(2,6-iPr(2)C(6)H(3)N)}(2)). The following substituents R have been used: H, Me, iPr, DIPP (DIPP=2,6-diisopropylphenyl). Complexes [(DIPPnac- nac)MgNH(2)BH(3)].THF, [{(DIPPnac- nac)MgNH(iPr)BH(3)}(2)] and [(DIPPnacnac)MgNH(DIPP)BH(3)] were structurally characterised. The Mg amidoborane complexes decompose at a significantly higher temperature (90-110 degrees C) than the corresponding Ca amidoborane complexes (20-110 degrees C). The complexes with the smaller R substituents (H, Me) gave a mixture of decomposition products of which one could be structurally characterised as [{(DIPPnacnac)Mg}(2)(H(3)B-NMe-BH-NMe)].THF. [{(DIPP- nacnac)MgNH(iPr)BH(3)}(2)] cleanly decomposed to [(DIPPnacnac)MgH], which was characterised as a dimeric THF adduct. The amidoborane complex with the larger DIPP-substituent decomposed into a borylamide complex [(DIPPnacnac)MgN(DIPP)BH(2)], which was structurally characterised as its THF adduct. Bimetallic Mg amidoborane complexes decompose at lower temperatures (60-90 degrees C) and show a different decomposition pathway. The dinuclear Mg amidoborane complexes presented here are based on DIPPnacnac units that are either directly coupled through N-N bonding (abbreviated NN) or through a 2,6-pyridylene bridge (abbreviated PYR). Crystal structures of [PYR-{Mg(nBu)}(2)], [PYR-{MgNH(iPr)BH(3)}(2)], [NN-{MgNH(iPr)BH(3)}(2)]THF and the decomposition products [PYR-Mg(2)(iPrN-BH-iPrN-BH(3))] and [NN-Mg(2)(iPrN-BH-iPrN-BH(3))].THF are presented. The following conclusions can be drawn from these studies: i) The first step in the decomposition of a metal amidoborane complex is beta-hydride elimination, which results in formation of a metal hydride complex and R(H)N=BH(2), ii) depending on the nature of the metal, the metal hydride is either stable and can be isolated or it reacts further, iii) amidoborane anions with small R substituents decompose into the dianionic

  6. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  7. Thermal decomposition and vibrational spectroscopic aspects of pyridinium hexafluorophosphate (C5H5NHPF6)

    NASA Astrophysics Data System (ADS)

    Lekgoathi, M. D. S.; Kock, L. D.

    2016-12-01

    Thermal decomposition and vibrational spectroscopic properties of pyridinium hexafluorophosphate (C5H5NHPF6) have been studied. The structure of the compound is better interpreted as having a cubic space group, based on Raman and infrared vibrational spectroscopy experiments and group theoretical correlation data between site symmetry species and the spectroscopic space group. The 13C NMR data shows three significant signals corresponding to the three chemical environments expected on the pyridinium ring i.e. γ, β and α carbons, suggesting that the position of the anion must be symmetrical with respect to the pyridinium ring's C2v symmetry. The process of thermal decomposition of the compound using TGA methods was found to follow a contracting volume model. The activation energy associated with the thermal decomposition reaction of the compound is 108.5 kJ mol-1, while the pre exponential factor is 1.51 × 109 sec-1.

  8. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Gao, Yupeng; Wang, Libo; Li, Zhengyang; Zhou, Aiguo; Hu, Qianku; Cao, Xinxin

    2014-09-01

    MXenes are novel graphene-like 2-D materials. Cu2O is an effective additive for thermal decomposition of ammonium perchlorate (AP). We reported the synthesis of MXene (Ti3C2), Cu2O and MXene-Cu2O respectively. The samples were characterized by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Results indicate that the MXene is composed of lots of nano-sheets and the thickness is 30 ± 10 nm, and Cu2O nanoparticles nucleate and grow heterogeneously directly on the surface of MXene. The effect of these MXene, Cu2O and MXene-Cu2O samples on the thermal decomposition of AP were investigated using TG-DSC. The results revealed that MXene-Cu2O have a great influence on the thermal decomposition of AP than that of pure MXene and Cu2O.

  9. Operational Experience from Solar Thermal Energy Projects

    NASA Technical Reports Server (NTRS)

    Cameron, C. P.

    1984-01-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  10. Operational experience from solar thermal energy projects

    NASA Astrophysics Data System (ADS)

    Cameron, C. P.

    1984-03-01

    Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.

  11. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications

    PubMed Central

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang; Chalbot, Marie-Cecile G.; Spielman-Sun, Eleanor; Hoering, Lutz; Kavouras, Ilias G.; Lowry, Gregory V.; Wohlleben, Wendel; Demokritou, Philip

    2015-01-01

    Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of a widely used NEP, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications. PMID:26642449

  12. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications.

    PubMed

    Sotiriou, Georgios A; Singh, Dilpreet; Zhang, Fang; Chalbot, Marie-Cecile G; Spielman-Sun, Eleanor; Hoering, Lutz; Kavouras, Ilias G; Lowry, Gregory V; Wohlleben, Wendel; Demokritou, Philip

    2016-03-15

    Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of widely used NEPs, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications.

  13. Results of Evaluation of Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave

    2003-01-01

    The solar thermal propulsion evaluation reported here relied on prior research for all information on solar thermal propulsion technology and performance. Sources included personal contacts with experts in the field in addition to published reports and papers. Mission performance models were created based on this information in order to estimate performance and mass characteristics of solar thermal propulsion systems. Mission analysis was performed for a set of reference missions to assess the capabilities and benefits of solar thermal propulsion in comparison with alternative in-space propulsion systems such as chemical and electric propulsion. Mission analysis included estimation of delta V requirements as well as payload capabilities for a range of missions. Launch requirements and costs, and integration into launch vehicles, were also considered. The mission set included representative robotic scientific missions, and potential future NASA human missions beyond low Earth orbit. Commercial communications satellite delivery missions were also included, because if STP technology were selected for that application, frequent use is implied and this would help amortize costs for technology advancement and systems development. A C3 Topper mission was defined, calling for a relatively small STP. The application is to augment the launch energy (C3) available from launch vehicles with their built-in upper stages. Payload masses were obtained from references where available. The communications satellite masses represent the range of payload capabilities for the Delta IV Medium and/or Atlas launch vehicle family. Results indicated that STP could improve payload capability over current systems, but that this advantage cannot be realized except in a few cases because of payload fairing volume limitations on current launch vehicles. It was also found that acquiring a more capable (existing) launch vehicle, rather than adding an STP stage, is the most economical in most cases.

  14. Solar thermal program summary, fiscal year 1989

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The nation faces many difficult challenges in energy supply and use. These challenges involve numerous national issues, including energy security, energy cost, international balance-of-trade, and international competitiveness. Energy use directly affects environmental quality as well. Growing, pervasive problems with atmospheric pollution, water resources, acid rain, and the greenhouse effect may ultimately limit the burning of fossil fuels. We need to find ways to ameliorate these environmental problems while maintaining assured access to the energy resources our nation requires. Concentrated sunlight is a versatile and high-quality form of energy that can help us meet our energy needs. Solar thermal energy systems concentrate the sun's radiation to generate electricity, produce high-temperature heat for industrial and commercial uses, and carry out various chemical reactions that take advantage of the unique attributes of highly concentrated sunlight. Solar thermal technology has many applications, including electrical power generation, hazardous waste destruction, and other advanced applications such as materials processing and the pumping of lasers using very high concentration. Solar thermal technology is a desirable energy supply option for several reasons.

  15. The comparative extinguishment performance and thermal decomposition products of halon alternative agents

    NASA Astrophysics Data System (ADS)

    Filipczak, Robert A.

    1994-12-01

    Halon 1301, Halon 1211, and eleven alternative fire-fighting agents were compared for extinguishment effectiveness and thermal decomposition product generation, using a laboratory-scale test apparatus having methane as the fuel. Chemical analysis was conducted using a magnetic sector mass spectrometer with simultaneous measurement of oxygen consumption and carbon dioxide, water, and acid gas production. Chemical mechanisms are advanced to explain how halogenated hydrocarbons extinguish fires. The major conclusion was that the alternative agents were not as effective at fighting fires as Halons and that greater amounts of acid gases were produced during extinguishment. Hydrogen fluoride was found to be the predominant thermal decomposition product for all agents.

  16. Ab Initio Kinetics and Thermal Decomposition Mechanism of Mononitrobiuret and 1,5- Dinitrobiuret

    SciTech Connect

    Sun, Hongyan; Vaghjiani, Ghanshyam G.

    2015-05-26

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which reveal the

  17. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret.

    PubMed

    Sun, Hongyan; Vaghjiani, Ghanshyam L

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation

  18. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    NASA Astrophysics Data System (ADS)

    Sun, Hongyan; Vaghjiani, Ghanshyam L.

    2015-05-01

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation

  19. Decomposition Behavior of Curcumin during Solar Irradiation when Contact with Inorganic Particles

    NASA Astrophysics Data System (ADS)

    Nandiyanto, A. B. D.; Wiryani, A. S.; Rusli, A.; Purnamasari, A.; Abdullah, A. G.; Riza, L. S.

    2017-03-01

    Curcumin is one of materials which have been widely used in medicine, Asian cuisine, and traditional cosmetic. Therefore, understanding the stability of curcumin has been widely studied. The purpose of this study was to investigate the stability of curcumin solution against solar irradiation when making contact with inorganic material. As a model for the inorganic material, titanium dioxide (TiO2) was used. In the experimental method, the curcumin solution was irradiated using a solar irradiation. To confirm the stability of curcumin when contact with inorganic material, we added TiO2 micro particles with different concentrations. The results showed that the concentration of curcumin decreased during solar irradiation. The less concentration of curcumin affected the more decomposition rate obtained. The decomposition rate was increased greatly when TiO2 was added, in which the more TiO2 concentration added allowed the faster decomposition rate. Based on the result, we conclude that the curcumin is relatively stable as long as using higher concentration of curcumin and is no inorganic material existed. Then, the decomposition can be minimized by avoiding contact with inorganic material.

  20. Solar decomposition of cadmium oxide for hydrogen production. Final subcontract report

    SciTech Connect

    Schreiber, J. D.; Yudow, B. D.; Carty, R. H.; Whaley, T. P.; Pangborn, J. B.

    1981-11-01

    The reactor developed for this study performed satisfactorily in establishing the feasibility of cadmium oxide decomposition under the realistic conditions of the solar-furnace environment. The solar-furnace environment is very appropriate for the evaluation of design concepts. However, the solar furnace probably cannot give precise rate data. The flux is too nonuniform, so temperatures of reactant and corresponding reaction rates are also nonuniform. One of the most important results of this project was the recovery of samples from the quench heat exchanger that contained a surprisingly large amount of metallic cadmium. The fact that the sample taken from the quench heat exchanger was metallic in appearance and contained between 67% and 84% metallic cadmium would tend to indicate recombination of cadmium vapor and oxygen can be effectively prevented by the quenching operation. It would also tend to confirm recent studies that show cadmium oxide does not sublime appreciably. Determination of the decomposition rate of cadmium oxide was severely limited by fluctuating and nonuniform reactant temperatures and baseline drift in the oxygen sensor. However, the estimated rate based on a single run seemed to follow a typical solid decomposition rate pattern with an initial acceleratory period, followed by a longer deceleratory period. From a preliminary flowsheet analysis of the cadmium-cadmium oxide cycle, it was determined that at a cadmium oxide decomposition temperature of 1400/sup 0/C and a requirement of 0.2 V in the electrolyzer the efficiency was 41%, assuming total quenching of the cadmium oxide decomposition products. This efficiency could increase to a maximum of 59% if total recovery of the latent heats of vaporization and fusion of the decomposition products is possible.

  1. The Autocatalytic Behavior of Trimethylindium During Thermal Decomposition

    SciTech Connect

    Anthony H. McDaniel; M. D. Allendorf

    2000-02-02

    Pyrolysis of trimethylindium (TMIn) in a hot-wall flow-tube reactor has been investigated at temperatures between 573 and 723 K using a modulated molecular-beam mass-sampling technique and detailed numerical modeling. The TMIn was exposed to various mixtures of carrier gases: He, H{sub 2}, D{sub 2}, and C{sub 2}H{sub 4}, in an effort to elucidate the behavior exhibited by this compound in different chemical environments. The decomposition of TMIn is a heterogeneous, autocatalytic process with an induction period that is carrier-gas dependent and lasts on the order of minutes. After activation of the tube wall, the thermolysis exhibits a steady-state behavior that is surface mediated. This result is contrary to prior literature reports, which state that decomposition occurs in the gas phase via successive loss of the CH{sub 3} ligands. This finding also suggests that the bond dissociation energy for the (CH{sub 3}){sub 2}In-CH{sub 3} bond derived from flow-tube investigations is erroneous and should be reevaluated.

  2. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    PubMed

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  3. Solar photovoltaic/thermal (hybrid) energy project

    NASA Astrophysics Data System (ADS)

    Sheldon, D. B.

    1981-09-01

    Development of photovoltaic/thermal (PV/T) collectors and residential heat pump systems is reported. Candidate collector and residential heat pump systems were evaluated using the TRNSYS computer program. It is found that combined heat pump and PV array is a promising method for achieving economical solar cooling. Where the cooling load is dominant, exclusively PV collectors rather than PV/T collectors are preferred. Where the heating load is dominant, the thermal component of PV/T collectors makes a significant contribution to heating a residence. PV/T collectors were developed whose combined efficiency approaches the efficiency of a double glazed, exclusively thermal collector. The design and operational problems of air source heat pumps are reviewed. Possible effects of compressor startup transients on PV power system operation are discussed.

  4. Nonlocal thermal transport in solar flares

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; Devore, C. Richard

    1987-01-01

    A flaring solar atmosphere is modeled assuming classical thermal transport, locally limited thermal transport, and nonlocal thermal transport. The classical, local, and nonlocal expressions for the heat flux yield significantly different temperature, density, and velocity profiles throughout the rise phase of the flare. Evaporation of chromospheric material begins earlier in the nonlocal case than in the classical or local calculations, but reaches much lower upward velocities. Much higher coronal temperatures are achieved in the nonlocal calculations owing to the combined effects of delocalization and flux limiting. The peak velocity and momentum are roughly the same in all three cases. A more impulsive energy release influences the evolution of the nonlocal model more than the classical and locally limited cases.

  5. An overview of SERI solar thermal research facilities

    NASA Astrophysics Data System (ADS)

    Kreith, F.

    1980-12-01

    A brief overview of the four Solar Energy Research Institute in-house solar thermal research laboratories is presented, including advanced component research and mid-temperature collector research field facilities, which have been combined into a single unit, the Thermal Conversion Research Station. The facility for solar energy research and applications in process heat, which is currently under construction, is also described.

  6. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  7. Polytypic transformations during the thermal decomposition of cobalt hydroxide and cobalt hydroxynitrate

    SciTech Connect

    Ramesh, Thimmasandra Narayan

    2010-06-15

    The isothermal decomposition of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature leads to the formation of Co{sub 3}O{sub 4}. The phase evolution during the decomposition process was monitored using powder X-ray diffraction. The transformation of cobalt hydroxide to cobalt oxide occurs via three phase mixture while cobalt hydroxynitrate to cobalt oxide occurs through a two phase mixture. The nature of the sample and its preparation method controls the decomposition mechanism. The comparison of topotactical relationship between the precursors to the decomposed product has been reported in relation to polytypism. - Graphical abstract: Isothermal thermal decomposition studies of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature show the metastable phase formed prior to Co{sub 3}O{sub 4} phase.

  8. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    SciTech Connect

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui; Zhou, Yong; Pei, Chonghua

    2014-02-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS {sup 13}C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effect of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g.

  9. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  10. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, B. J.; Zhang, Y.; Zuo, X.; Martinez, R. E.; Walker, M. J.; Kreisberg, N. M.; Goldstein, A. H.; Docherty, K. S.; Jimenez, J. L.

    2015-12-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality, and often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a GC column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer (MS). Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG

  11. Thermal effects testing at the National Solar Thermal Test Facility

    NASA Astrophysics Data System (ADS)

    Ralph, Mark E.; Cameron, Christopher P.; Ghanbari, Cheryl M.

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirtland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/sq cm that is uniform over a 15-cm diameter with a total beam power of over 5 MWt. One solar furnace produces flux levels of 270 W/sq cm over and delivers a 6-mm diameter and total power of 16 kWt. A second furnace produces flux levels up to 1000 W/sq cm over a 4 cm diameter and total power of 60 kWt. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11-m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/sq cm over a 2.5-cm diameter and total power of 75 kWt. High-speed shutters have been used to produce square pulses.

  12. Solar Probe thermal shield design and testing

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Miyake, Robert N.; Rainen, Richard A.

    1992-01-01

    This paper discusses the major thermal shield subsystem development activities in support of the Solar Probe study being conducted at JPL. The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center to perform fundamental experiments in space physics. Exposure to 2900 earth suns at perihelion requires the spacecraft to be protected within the shadow envelope of a protective shield. In addition, the mass loss rate off of the shield at elevated temperature must comply with plasma instrument requirements and has become the driver of the shield design. This paper will focus on the analytical design work to size the shield and control the shield mass loss rate for the various spacecraft options under study, the application of carbon-carbon materials for shield components, development and preparation of carbon-carbon samples for materials testing, and a materials testing program for carbon-carbon and tungsten alloys to investigate thermal/optical properties, mass loss (carbon-carbon only), material integrity, and high velocity impact behavior.

  13. Solar Thermal : Solar Electric Propulsion Hybrid Orbit Transfer Analysis

    NASA Astrophysics Data System (ADS)

    McFall, Keith A.

    2000-07-01

    This effort examined the payoffs associated with the joint application of solar thermal propulsion (STP) and electric propulsion (EP) for orbit raising. The combined use of STP (800 second specific impulse) and EP (1800 second specific impulse) for a single orbit transfer mission is motivated by the desire to leverage the higher thrust of STP with the higher specific impulse of EP to maximize mission capability. The primary objectives of this analysis were to quantify the payload, mission duration, and hydrogen propellant to payload mass ratio for a range of combined STP and EP orbit transfer missions to geosynchronous Earth orbit (GEO), and contrast them to results for STP only. For STP, the hydrogen propellant to payload mass ratio is of particular interest due to payload fairing size constraints and the relatively low density of liquid hydrogen, which limit the mass of the STP propellant, and therefore the amount of payload that can be delivered. The results of the analysis include an 18% payload improvement associated with STP-EP hybrid propulsion over STP alone. The trip time needed for the STP-EP transfer varied from 101 to 143 days, compared to 41 days for the Solar only case. In addition, the amount of hydrogen propellant needed to accomplish the orbit raising to GEO per unit mass of payload decreased by 29% when the Solar Thermal - Solar Electric hybrid was used. While comprehensive comparisons of STP-EP to chemical propulsion (CP) only and to CP with EP orbit topping were also of interest, they were beyond the scope of this effort. However, a comparison of reference missions was performed. In comparison to the reference CP (328 second specific impulse) and CP-EP missions the STP-EP system provided 67% and 39% payload increases. respectively. The trip time for the CP-EP cases varied from 55 to 106 days.

  14. Solar thermal heating and cooling. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  15. Effect of phosphorus and nitrogen on thermal decomposition kinetics of flame retardant cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four kinetic methods, Kissinger, Friedman, Flynn-Wall-Ozawa, and modified Coats-Redfern, were used to study the activation energy, Ea, of the thermal decomposition of greige cotton nonwoven fabric treated with diammonium phosphate (DAP) and urea. The results show that the Ea is significantly influen...

  16. Thermal decomposition reactions of cotton fabric treated with piperazine-phosphonates derivatives as a flame retardant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There has been a great scientific interest in exploring the great potential of the piperazine-phosphonates in flame retardant (FR) application on cotton fabric by investigating the thermal decomposition of cotton fabric treated with them. This research tries to understand the mode of action of the t...

  17. Method of forming semiconducting amorphous silicon films from the thermal decomposition of fluorohydridodisilanes

    DOEpatents

    Sharp, Kenneth G.; D'Errico, John J.

    1988-01-01

    The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.

  18. A study of the process of nonisothermal decomposition of phenolformaldehyde polymers by differential thermal analysis

    SciTech Connect

    Petrova, O.M.; Fedoseev, S.D.; Komarova, T.V.

    1984-01-01

    A calculation has been made of the activation energy of the thermal decomposition of phenol-formaldehyde polymers. It has been established that for nonisothermal conditions the rate of performance of the process does not affect the effective activation energy calculated by means of Piloyan's equation.

  19. Evaluation of solar thermal storage for base load electricity generation

    NASA Astrophysics Data System (ADS)

    Adinberg, R.

    2012-10-01

    In order to stabilize solar electric power production during the day and prolong the daily operating cycle for several hours in the nighttime, solar thermal power plants have the options of using either or both solar thermal storage and fossil fuel hybridization. The share of solar energy in the annual electricity production capacity of hybrid solar-fossil power plants without energy storage is only about 20%. As it follows from the computer simulations performed for base load electricity demand, a solar annual capacity as high as 70% can be attained by use of a reasonably large thermal storage capacity of 22 full load operating hours. In this study, the overall power system performance is analyzed with emphasis on energy storage characteristics promoting a high level of sustainability for solar termal electricity production. The basic system parameters, including thermal storage capacity, solar collector size, and annual average daily discharge time, are presented and discussed.

  20. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species

    PubMed Central

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K.; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H.C.

    2015-01-01

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation. PMID:26282711

  1. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species.

    PubMed

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C

    2015-08-18

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation.

  2. [Characteristics of the biochemical composition of plant litter at different stages of decomposition (according to thermal analysis data)].

    PubMed

    Kosheleva, Iu P; Trofimov, S Ia

    2008-01-01

    The composition of samples of needles, leaves, sheaved cottongrass (Eriophorum vaginatum) tissues, and the L horizon of the forest floor of different degree of decomposition, isolated from the plant litter in southern taiga ecosystems, was studied by thermal analysis. It was established that plant litter decomposition is accompanied by structural changes in celluloses and that the decomposition rates of hemicellulose and structured cellulose vary at different stages of decomposition. The structural specificity and incongruent thermal decomposition of grass lignocellulose were observed in all samples of plant material. The rates at which the content of components of the plant litter decreased depended on the type and stage of decomposition of plant material. The decomposition rate of biochemical components tended to increase in better drained soils.

  3. The Thermal Decomposition of Some Organic Lead Compounds

    DTIC Science & Technology

    1957-11-01

    5» Results 4 6. Discussion of Results 5 6.1 The Lead Salts of Aliphatic Aoids 5 6.2 The Lead Compounds of Aromatic Acids 7 6.3 Thermal...aliphatic carboxylic acids decompose to lead oxide in one stage which, in air, is largely oxidative in character. The compounds of the aromatic hydroxy... acids , however, first yield intermediate basio compounds of varying stability and these ultimately decompose to lead oxide at high temperatures

  4. Thermal decomposition of silane to form hydrogenated amorphous Si

    DOEpatents

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  5. Kinetics and Mechanisms of Thermal Decomposition of Nitroaromatic Explosives

    DTIC Science & Technology

    1993-04-20

    2,4,6-trinitrophenylmethylnitramine HNS: hexanitrostilbene TACOT: tetranitrodibenzo-l,3a,4,6a-tetrazapentalene 2, 4- DNAn : 2,4-dinitroanthranil DSC... DNAn ) (References 51,59), an ill-defined explosive "coke" from long-term thermal degradation (Reference 20), and elemental carbon (Reference 62). The...report of Maksimov, at al. (Reference 59) who suggested that 2,4- DNAn or 2,4,6-trinitrobenzaldehyde (equation (27)) was the catalyst. Maksimov, &t Al

  6. A numerical study of transient, thermally-conductive solar wind

    NASA Technical Reports Server (NTRS)

    Han, S. M.; Wu, S. T.; Dryer, M.

    1987-01-01

    A numerical analysis of transient solar wind starting at the solar surface and arriving at 1 AU is performed by an implicit numerical method. The model hydrodynamic equations include thermal conduction terms for both steady and unsteady simulations. Simulation results show significant influence of thermal conduction on both steady and time-dependent solar wind. Higher thermal conduction results in higher solar wind speed, higher temperature, but lower plasma density at 1 AU. Higher base temperature at the solar surface gives lower plasma speed, lower temperature, but higher density at 1 AU. Higher base density, on the other hand, gives lower velocity, lower temperature, but higher density at 1 AU.

  7. Thermal Characterization of a Direct Gain Solar Thermal Engine

    NASA Technical Reports Server (NTRS)

    Alexander, Reginald A.; Coleman, Hugh W.

    1999-01-01

    A thermal/fluids analysis of a direct gain solar thermal upper stage engine is presented and the results are discussed. The engine was designed and constructed at the NASA Marshall Space Flight Center for ground testing in a facility that can provide about 10 kilowatts of concentrated solar energy to the engine. The engine transfers energy to a coolant (hydrogen) that is heated and accelerated through a nozzle to produce thrust. For the nominal design values and a hydrogen flowrate of 2 lb./hr., the results of the analysis show that the hydrogen temperature in the chamber (nozzle entrance) reaches about 3800 F after 30 minutes of heating and about 3850 F at steady-state (slightly below the desired design temperature of about 4100 F. Sensitivity analyses showed these results to be relatively insensitive to the values used for the absorber surface infrared emissivity and the convection coefficient within the cooling ducts but very sensitive to the hydrogen flowrate. Decreasing the hydrogen flowrate to 1 lb./hr. increases the hydrogen steady-state chamber temperature to about 4700 F, but also of course causes a decrease in thrust.

  8. Thermal Characterization of a Direct Gain Solar Thermal Engine

    NASA Technical Reports Server (NTRS)

    Alexander, Reginald A.; Coleman, Hugh W.

    1998-01-01

    A thermal/fluids analysis of a direct gain solar thermal upper stage engine is presented and the results are discussed. The engine has been designed and constructed at the NASA Marshall Space Flight Center for ground testing in a facility that can provide about 10 kilowatts of concentrated solar energy to the engine. The engine transfers that energy to a coolant (hydrogen) that is heated and accelerated through a nozzle to produce thrust. For the nominal design values and a hydrogen flowrate of 2 lb/hr., the results of the analysis show that the hydrogen temperature in the chamber (nozzle entrance) reaches about 3800 F after 30 minutes of heating and about 3850 F at steady-state (slightly below the desired design temperature of about 4100 F). Sensitivity analyses showed these results to be relatively insensitive to the values used for the absorber surface infrared emissivity and the convection coefficient within the cooling ducts but very sensitive to the hydrogen flowrate. Decreasing the hydrogen flowrate to 1 lb/hr. increases the hydrogen steady-state chamber temperature to about 4700 F, but also causes an undesirable decrease in thrust.

  9. Numerical analysis of thermal decomposition for RDX, TNT, and Composition B.

    PubMed

    Kim, Shin Hyuk; Nyande, Baggie W; Kim, Hyoun Soo; Park, Jung Su; Lee, Woo Jin; Oh, Min

    2016-05-05

    Demilitarization of waste explosives on a commercial scale has become an important issue in many countries, and this has created a need for research in this area. TNT, RDX and Composition B have been used as military explosives, and they are very sensitive to thermal shock. For the safe waste treatment of these high-energy and highly sensitive explosives, the most plausible candidate suggested has been thermal decomposition in a rotary kiln. This research examines the safe treatment of waste TNT, RDX and Composition B in a rotary kiln type incinerator with regard to suitable operating conditions. Thermal decomposition in this study includes melting, 3 condensed phase reactions in the liquid phase and 263 gas phase reactions. Rigorous mathematical modeling and dynamic simulation for thermal decomposition were carried out for analysis of dynamic behavior in the reactor. The results showed time transient changes of the temperature, components and mass of the explosives and comparisons were made for the 3 explosives. It was concluded that waste explosives subject to heat supplied by hot air at 523.15K were incinerated safely without any thermal detonation.

  10. Extraction of Curcumin Pigment from Indonesian Local Turmeric with Its Infrared Spectra and Thermal Decomposition Properties

    NASA Astrophysics Data System (ADS)

    Nandiyanto, A. B. D.; Wiryani, A. S.; Rusli, A.; Purnamasari, A.; Abdullah, A. G.; Ana; Widiaty, I.; Hurriyati, R.

    2017-03-01

    Curcumin is one of the pigments which is used as a spice in Asian cuisine, traditional cosmetic, and medicine. Therefore, process for getting curcumin has been widely studied. Here, the purpose of this study was to demonstrate the simple method for extracting curcumin from Indonesian local turmeric and investigate the infrared spectra and thermal decomposition properties. In the experimental procedure, the washed turmeric was dissolved into an ethanol solution, and then put into a rotary evaporator to enrich curcumin concentration. The result showed that the present method is effective to isolate curcumin compound from Indonesian local turmeric. Since the process is very simple, this method can be used for home industrial application. Further, understanding the thermal decomposition properties of curcumin give information, specifically relating to the selection of treatment when curcumin must face the thermal-related process.

  11. gamma-Irradiation effects on the thermal decomposition behaviour and IR absorption spectra of piperacillin

    NASA Astrophysics Data System (ADS)

    Mahfouz, R. M.; Gaffar, M. A.; Abu El-Fadl, A.; Hamad, Ar. G. K.

    2003-11-01

    The thermal decomposition behaviour of unirradiated and pre-gamma-irradiated piperacillin (pipril) as a semi-synthetic penicillin antibiotic has been studied in the temperature range of (273-1072 K). The decomposition was found to proceed through three major steps both for unirradiated and gamma-irradiated samples. Neither appearance nor disappearance of new bands in the IR spectrum of piperacillin was recorded as a result of gamma-irradiation but only a decrease in the intensity of most bands was observed. A degradation mechanism was suggested to explain the bond rupture and the decrease in the intensities of IR bands of gamma-irradiated piperacillin.

  12. Thermal Decomposition and Stabilisation of Poly(vinyl Chloride)

    NASA Astrophysics Data System (ADS)

    Troitskii, B. B.; Troitskaya, L. S.

    1985-08-01

    The kinetics and mechanism of the thermal dehydrochlorination of poly(vinyl chloride) and low-molecular-weight chlorohydrocarbons which model various fragments of the polymer molecule, are discussed. Studies designed to determine the qualitative and quantitative compositions of the unstable fragments in poly(vinyl chloride) macromolecules by 13C NMR are examined. Attention is concentrated on the consideration of the mechanism of the action of the most effective thermostabilisers for the polymer - organotin compounds. The principal features of synergism in the stabilisation of poly(vinyl chloride) and the mechanism of the action of synergistic mixtures are analysed. The bibliography includes 107 references.

  13. Thermal Decomposition of RP-2 with Stabilizing Additives

    DTIC Science & Technology

    2010-04-01

    RP-2 are that the allowed sulfur content is much lower in RP-2 (0.1 mg/kg, compared to 30 mg/kg in RP-1), the allowed olefin concentration is lower...28,30-35 decahydronaphthalene (decalin), 33,35 and benzyl alcohol . 28,36-38 In related work, a major research effort initiated by the U.S. Air Force...additives (e.g., benzyl alcohol ). We would also like to test the effect of different reactor materials, particularly copper, on the thermal stability of

  14. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  15. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect

    2012-01-09

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  16. Solar Thermal Propulsion Optical Figure Measuring and Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph

    1997-01-01

    Solar thermal propulsion has been an important area of study for four years at the Propulsion Research Center. Significant resources have been devoted to the development of the UAH Solar Thermal Laboratory that provides unique, high temperature, test capabilities. The facility is fully operational and has successfully conducted a series of solar thruster shell experiments. Although presently dedicated to solar thermal propulsion, the facility has application to a variety of material processing, power generation, environmental clean-up, and other fundamental research studies. Additionally, the UAH Physics Department has joined the Center in support of an in-depth experimental investigation on Solar Thermal Upper Stage (STUS) concentrators. Laboratory space has been dedicated to the concentrator evaluation in the UAH Optics Building which includes a vertical light tunnel. Two, on-going, research efforts are being sponsored through NASA MSFC (Shooting Star Flight Experiment) and the McDonnell Douglas Corporation (Solar Thermal Upper Stage Technology Ground Demonstrator).

  17. Thermal Decomposition of Thermoelectric Material CoSb3: A Thermogravimetry Kinetic Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Fang; He, Qingli; Hu, Dinxu; Gao, Feng; Song, Hongzhang; Jia, Jianfeng; Hu, Xing

    2013-08-01

    The thermal decomposition of the thermoelectric CoSb3 alloy was investigated using thermogravimetry (TG). TG curves obtained in inert gas flow with different heating rates were used to perform kinetic analysis based on the Arrhenius equation. Kinetic parameters, such as the effective activation energy, the pre-exponential factor, and the kinetic model function f(α ) , were obtained using the Freeman-Carroll method, the multiheating rates method, and the Coats-Redfern equation. The activation energy was found to be around 200 kJ/mol, and the reaction mechanism for the decomposition of CoSb3 alloy mostly obeys the second-order chemical decomposition process f(α ) = (1 - α )2.

  18. Mechanistic and kinetic studies of the thermal decomposition of TNAZ and NDNAZ

    SciTech Connect

    Anderson, K.; Homsy, J.; Behrens, R.; Bulusu, S.

    1998-12-31

    The authors have studied the mechanism and detailed reaction kinetics of the thermal decomposition of 1,3,3-trinitroazetidine (TNAZ), and separately, its key decomposition intermediate, 1-nitroso-3,3-dinitroacetidine (NDNAZ), using a simultaneous thermogravimetric modulated beam mass spectrometer (STMBMS). These decompositions were conducted in a sealed alumina cell with a 2.5 {micro}m orifice, at varying temperatures and at a range of isothermal temperatures (at 10 C intervals from 120--160 C for NDNAZ and 160--210 C for TNAZ). The gaseous products have been identified and their rates of formation have been measured as a function of time, temperature, and pressure. This system is complex, with TNAZ decomposing by four separate routes, one of which leads to NDNAZ, which itself decomposes by at least two distinct routes.

  19. THE THERMAL INSTABILITY OF SOLAR PROMINENCE THREADS

    SciTech Connect

    Soler, R.; Goossens, M.; Ballester, J. L.

    2011-04-10

    The fine structure of solar prominences and filaments appears as thin and long threads in high-resolution images. In H{alpha} observations of filaments, some threads can be observed for only 5-20 minutes before they seem to fade and eventually disappear, suggesting that these threads may have very short lifetimes. The presence of an instability might be the cause of this quick disappearance. Here, we study the thermal instability of prominence threads as an explanation of their sudden disappearance from H{alpha} observations. We model a prominence thread as a magnetic tube with prominence conditions embedded in a coronal environment. We assume a variation of the physical properties in the transverse direction so that the temperature and density continuously change from internal to external values in an inhomogeneous transitional layer representing the particular prominence-corona transition region (PCTR) of the thread. We use the nonadiabatic and resistive magnetohydrodynamic equations, which include terms due to thermal conduction parallel and perpendicular to the magnetic field, radiative losses, heating, and magnetic diffusion. We combine both analytical and numerical methods to study linear perturbations from the equilibrium state, focusing on unstable thermal solutions. We find that thermal modes are unstable in the PCTR for temperatures higher than 80,000 K, approximately. These modes are related to temperature disturbances that can lead to changes in the equilibrium due to rapid plasma heating or cooling. For typical prominence parameters, the instability timescale is of the order of a few minutes and is independent of the form of the temperature profile within the PCTR of the thread. This result indicates that thermal instability may play an important role for the short lifetimes of threads in the observations.

  20. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite.

    PubMed

    Gunawan, Richard; Zhang, Dongke

    2009-06-15

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol(-1) and 4.55 x 10(7)s(-1) without the presence of pyrite and 101.8 kJ mol(-1) and 2.57 x 10(9)s(-1) with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  1. Non-Equilibrium Iron Clusters Coagulation and Thermal Decomposition at High Temperatures

    NASA Astrophysics Data System (ADS)

    Starikovskii, A. Yu.; Zaslonko, I. S.

    The fast thermal decomposition of Fe(CO)5 (1000-8000 ppm) behind reflected shock waves was used as source of iron atoms. The growth and decomposition of iron clusters was observed using light absorption technique at λ = 632.8 nm. The iron cluster formation was studied behind incident shock waves (T = 1200 — 2000 K, p = 5 — 50 bar) and cluster decomposition behind reflected shock waves (T = 2600 — 3000 K, p = 10 — 100 bar). The temperature and pressure dependencies of observable rate constants for iron cluster growth and thermal decomposition has been obtained. The experimental data were treated using master equation solution for the cluster size distribution function. The light absorption in the system is shown to depend on the total atoms amount in the clusters with n* < n < n **, were n* ~ 3 — 5, n** ~ 104. When coagulation time is rather small that the concentration of clusters with n > n** is negligible and concentration of small clusters (n < n*) permanently decreases, light absorption increase. After that number of atoms enclosed into the clusters with n* < n < n** became decreasing and the total light-absorption cross section decreases. So, observations of the absorption gives us an important information about streams through the particle size axes, and observable rate constant kobs = dln(D)/dt is a good parameter for the description of the kinetic behavior at the broad variations of temperature and pressure for an iron cluster ensemble.

  2. Application of vacuum stability test to determine thermal decomposition kinetics of nitramines bonded by polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Elbeih, Ahmed; Abd-Elghany, Mohamed; Elshenawy, Tamer

    2017-03-01

    Vacuum stability test (VST) is mainly used to study compatibility and stability of energetic materials. In this work, VST has been investigated to study thermal decomposition kinetics of four cyclic nitramines, 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (ε-HNIW, CL-20), bonded by polyurethane matrix based on hydroxyl terminated polybutadiene (HTPB). Model fitting and model free (isoconversional) methods have been applied to determine the decomposition kinetics from VST results. For comparison, the decomposition kinetics were determined isothermally by ignition delay technique and non-isothermally by Advanced Kinetics and Technology Solution (AKTS) software. The activation energies for thermolysis obtained by isoconversional method based on VST technique of RDX/HTPB, HMX/HTPB, BCHMX/HTPB and CL20/HTPB were 157.1, 203.1, 190.0 and 176.8 kJ mol-1 respectively. Model fitting method proved that the mechanism of thermal decomposition of BCHMX/HTPB is controlled by the nucleation model while all the other studied PBXs are controlled by the diffusion models. A linear relationship between the ignition temperatures and the activation energies was observed. BCHMX/HTPB is interesting new PBX in the research stage.

  3. Thermal, solution and reductive decomposition of Cu-Al layered double hydroxides into oxide products

    SciTech Connect

    Britto, Sylvia; Vishnu Kamath, P.

    2009-05-15

    Cu-Al layered double hydroxides (LDHs) with [Cu]/[Al] ratio 2 adopt a structure with monoclinic symmetry while that with the ratio 0.25 adopt a structure with orthorhombic symmetry. The poor thermodynamic stability of the Cu-Al LDHs is due in part to the low enthalpies of formation of Cu(OH){sub 2} and CuCO{sub 3} and in part to the higher solubility of the LDH. Consequently, the Cu-Al LDH can be decomposed thermally (150 deg. C), hydrothermally (150 deg. C) and reductively (ascorbic acid, ambient temperature) to yield a variety of oxide products. Thermal decomposition at low (400 deg. C) temperature yields an X-ray amorphous residue, which reconstructs back to the LDH on soaking in water or standing in the ambient. Solution decomposition under hydrothermal conditions yields tenorite at 150 deg. C itself. Reductive decomposition yields a composite of Cu{sub 2}O and Al(OH){sub 3}, which on alkali-leaching of the latter, leads to the formation of fine particles of Cu{sub 2}O (<1 {mu}m). - Graphical abstract: SEM image of (a) the Cu{sub 2}O-Al(OH){sub 3} composite obtained on reductive decomposition of CuAl{sub 4}-LDH and (b) Cu{sub 2}O obtained on leaching of Al(OH){sub 3} from (a).

  4. Kinetics of Thermal Decomposition of Ammonium Perchlorate by TG/DSC-MS-FTIR

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Li; Huang, Hao; Ren, Hui; Jiao, Qing-Jie

    2014-01-01

    The method of thermogravimetry/differential scanning calorimetry-mass spectrometry-Fourier transform infrared (TG/DSC-MS-FTIR) simultaneous analysis has been used to study thermal decomposition of ammonium perchlorate (AP). The processing of nonisothermal data at various heating rates was performed using NETZSCH Thermokinetics. The MS-FTIR spectra showed that N2O and NO2 were the main gaseous products of the thermal decomposition of AP, and there was a competition between the formation reaction of N2O and that of NO2 during the process with an iso-concentration point of N2O and NO2. The dependence of the activation energy calculated by Friedman's iso-conversional method on the degree of conversion indicated that the AP decomposition process can be divided into three stages, which are autocatalytic, low-temperature diffusion and high-temperature, stable-phase reaction. The corresponding kinetic parameters were determined by multivariate nonlinear regression and the mechanism of the AP decomposition process was proposed.

  5. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  6. General theme report: Working session 2, solar thermal systems

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Kolb, G. J.

    1991-01-01

    Currently, over 90 percent of the world's large-scale solar electric energy is generated with concentrating solar thermal power plants. Such plants have the potential to meet many of the world's future energy needs. Research efforts are generally focused on generating electricity, though a variety of other applications are being pursued. Today, the technology for using solar thermal energy is well developed, cost competitive, and in many cases, ready for widespread application. The current state of each of the solar thermal technologies and their applications is reviewed, and recommendations for increasing their use are presented. The technologies reviewed in detail are: parabolic trough systems, central tower systems, and parabolic dish systems.

  7. Rankline-Brayton engine powered solar thermal aircraft

    SciTech Connect

    Bennett, Charles L

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  8. Rankine-Brayton engine powered solar thermal aircraft

    SciTech Connect

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  9. First-Principles Thermochemistry for the Thermal Decomposition of Titanium Tetraisopropoxide.

    PubMed

    Buerger, Philipp; Nurkowski, Daniel; Akroyd, Jethro; Mosbach, Sebastian; Kraft, Markus

    2015-07-30

    The thermal decomposition of titanium tetraisopropoxide (TTIP) is investigated using quantum chemistry, statistical thermodynamics, and equilibrium composition analysis. A set of 981 Ti-containing candidate species are proposed systematically on the basis of the thermal breakage of bonds within a TTIP molecule. The ground state geometry, vibrational frequencies and hindrance potentials are calculated for each species at the B97-1/6-311+G(d,p) level of theory. Thermochemical data are computed by applying statistical thermodynamics and, if unknown, the standard enthalpy of formation is estimated using balanced reactions. Equilibrium composition calculations are performed under typical combustion conditions for premixed flames. The thermodynamically stable decomposition products for different fuel mixtures are identified. A strong positive correlation is found between the mole fractions of Ti species containing carbon and the TTIP precursor concentration.

  10. Communication: Thermal unimolecular decomposition of syn-CH3CHOO: A kinetic study

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Lam; McCaslin, Laura; McCarthy, Michael C.; Stanton, John F.

    2016-10-01

    The thermal decomposition of syn-ethanal-oxide (syn-CH3CHOO) through vinyl hydrogen peroxide (VHP) leading to hydroxyl radical is characterized using a modification of the HEAT thermochemical protocol. The isomerization step of syn-CH3CHOO to VHP via a 1,4 H-shift, which involves a moderate barrier of 72 kJ/mol, is found to be rate determining. A two-dimensional master equation approach, in combination with semi-classical transition state theory, is employed to calculate the time evolution of various species as well as to obtain phenomenological rate coefficients. This work suggests that, under boundary layer conditions in the atmosphere, thermal unimolecular decomposition is the most important sink of syn-CH3CHOO. Thus, the title reaction should be included into atmospheric modeling. The fate of cold VHP, the intermediate stabilized by collisions with a third body, has also been investigated.

  11. Communication: Thermal unimolecular decomposition of syn-CH3CHOO: A kinetic study.

    PubMed

    Nguyen, Thanh Lam; McCaslin, Laura; McCarthy, Michael C; Stanton, John F

    2016-10-07

    The thermal decomposition of syn-ethanal-oxide (syn-CH3CHOO) through vinyl hydrogen peroxide (VHP) leading to hydroxyl radical is characterized using a modification of the HEAT thermochemical protocol. The isomerization step of syn-CH3CHOO to VHP via a 1,4 H-shift, which involves a moderate barrier of 72 kJ/mol, is found to be rate determining. A two-dimensional master equation approach, in combination with semi-classical transition state theory, is employed to calculate the time evolution of various species as well as to obtain phenomenological rate coefficients. This work suggests that, under boundary layer conditions in the atmosphere, thermal unimolecular decomposition is the most important sink of syn-CH3CHOO. Thus, the title reaction should be included into atmospheric modeling. The fate of cold VHP, the intermediate stabilized by collisions with a third body, has also been investigated.

  12. The thermal decomposition of methanol and methanethiol on the clean and modified Fe(110) surface

    SciTech Connect

    Batteas, J.D.; Rufael, T.S.; Friend, C.M.

    1996-10-01

    The thermal decomposition of methanol and methanethiol on the clean and modified Fe(110) surface has been examined using X-ray photoelectron spectroscopy, low-energy electron diffraction and temperature programmed reaction spectroscopy. Both methanethiol and methanol adsorb on the Fe(110) surface at 100 K with immediate cleavage of the terminal hydrogen to produce methylthiolate (CH{sub 3}S) and methoxy (CH{sub 3}O) coadsorbed with atomic hydrogen on the Fe surface. Heating the sample to 800 K produces gas phase methane and hydrogen, leaving a chemisorbed S overlayer in the case of methylthiolate, while methoxy decomposes via desorbing hydrogen and CO to leave a clean Fe surface. The influence of oxygen and sulfur pre-adsorption on the thermal decomposition of these species will also be described.

  13. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    SciTech Connect

    Sun, Hongyan E-mail: ghanshyam.vaghjiani@us.af.mil; Vaghjiani, Ghanshyam L. E-mail: ghanshyam.vaghjiani@us.af.mil

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH{sub 2} group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C{sub 2v} symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which

  14. Development of Non-Tracking Solar Thermal Technology

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Johnston, Bruce; Balkowski, Kevin

    2011-11-01

    The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non-imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200 ° C and can be readily manufactured at a cost between 15 and 18 per square foot.

  15. Ceramic technology for solar thermal receivers

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Smoak, R. H.

    1981-01-01

    The high-temperature capability, resistance to corrosive environments and non-strategic nature of ceramics have prompted applications in the solar thermal field whose advantages over metallic devices of comparable performance may begin to be assessed. It is shown by a survey of point-focusing receiver designs employing a variety of ceramic compositions and fabrication methods that the state-of-the-art in structural ceramics is not sufficiently advanced to fully realize the promised benefits of higher temperature capabilities at lower cost than metallic alternatives. The ceramics considered include alumina, berylia, magnesia, stabilized zirconia, fused silica, silicon nitride, silicon carbide, mullite and cordierite, processed by such methods as isostatic pressing, dry pressing, slip casting, extrusion, calendaring and injection molding.

  16. The small community solar thermal power experiment

    NASA Astrophysics Data System (ADS)

    Kiceniuk, T.

    1981-05-01

    Contractors were asked to develop a preferred system concept, to perform sensitivity analyses, and to outline recommended approaches for the follow-on design program of a one-megawatt solar thermal demonstration plant. The systems recommended by the contractors in each of the categories were: (1) McDonnell-Douglas Astronautics Company: Central tower with field of south-facing heliostats; (2) General Electric Company: Field of parabolic dishes with steam piped to a central turbine-generator unit; and (3) Ford Aerospace and Communications Corporation: Field of parabolic dishes with a Stirling cycle engine/generator unit at the focus of each dish. A description of each of the proposed experimental plants is given.

  17. Solar-thermal fluid-wall reaction processing

    DOEpatents

    Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  18. Solar-Thermal Fluid-Wall Reaction Processing

    DOEpatents

    Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  19. Physical pretreatments of wastewater algae to reduce ash content and improve thermal decomposition characteristics.

    PubMed

    Chen, Wan-Ting; Ma, Junchao; Zhang, Yuanhui; Gai, Chao; Qian, Wanyi

    2014-10-01

    Previous study showed high ash content in wastewater algae (WA) has a negative effect on bio-crude oil formation in hydrothermal liquefaction (HTL). This study explored the effect of different pretreatments on ash reduction and the thermal decomposition of WA. Single-stage (e.g. centrifugation) and two-stage pretreatments (e.g. centrifugation followed by ultrasonication, C+U) were used. The apparent activation energy of the thermal decomposition (E(a)) of pretreated algae was determined. HTL was conducted to study how different pretreatments may impact on bio-crude oil formation. Compared to untreated samples, the ash content of algae with centrifugation was reduced from 28.6% to 18.6%. With C+U pretreatments, E(a) was decreased from 50.2 kJ/mol to 35.9 kJ/mol and the bio-crude oil yield was increased from 30% to 55%. These results demonstrate that pretreatments of C+U can improve the thermal decomposition behavior of WA and enhance the bio-crude oil conversion efficiency.

  20. Kinetic and chemical characterization of thermal decomposition of dicumylperoxide in cumene.

    PubMed

    Di Somma, Ilaria; Marotta, Raffaele; Andreozzi, Roberto; Caprio, Vincenzo

    2011-03-15

    Dicumylperoxide (DCP) is one of the most used peroxides in the polymer industry. It has been reported that its thermal decomposition can result in runaway phenomena and thermal explosions with significant economic losses and injuries to people. In the present paper thermal behaviour of dicumylperoxide in cumene was investigated over the temperature range of 393-433 K under aerated and de-aerated conditions. The results indicated that when oxygen was present, the decomposition rate did not follow a simple pseudo-first order kinetic as previously reported in literature. A satisfactory fit of the experimental data was, in this case, achieved by means of kinetic expression derived under the assumption of an autocatalytic scheme of reaction. The reaction rate was, on the contrary, correctly described by a pseudo-first order kinetic in absence of oxygen. Under both aerated and de-aerated conditions, chemical analysis showed that the decomposition mainly resulted in the formation of acetophenone and dimethylphenylcarbinol with minor occurrence of 2,3-dimethyl-2,3-diphenylbutane. The formation of methane and ethane was also invariably observed while the appearance of cumylhydroperoxide as a reaction intermediate was detected under only aerated conditions. Therefore, two reaction schemes were proposed to explain system behaviour in the presence of oxygen and after its purging.

  1. Study on the thermal decomposition kinetics of nano-sized calcium carbonate.

    PubMed

    Li, Dai-Xi; Shi, Hong-Yun; Jie, Deng; Xu, Yuan-Zhi

    2003-01-01

    This study of the thermal decomposition kinetics of various average diameter nano-particles of calcium carbonate by means of TG-DTA ( thermogravimetry and differential thermal analysis) showed that the thermal decomposition kinetic mechanisms of the same crystal type of calcium carbonate samples do not vary with decreasing of their average diameters; their pseudo-active energy (a); and that the top-temperature of decomposition T(p) decreases gently in the scope of micron-sized diameter, but decreases sharply when the average diameter decreases from micron region to nanometer region. The extraordinary properties of nano-particles were explored by comparing the varying regularity of the mechanisms and kinetic parameters of the solid-phase reactions as well as their structural characterization with the variation of average diameters of particles. These show that the aggregation, surface effect as well as internal aberrance and stress of the nano-particles are the main reason causing both E(a) and T(p) to decline sharply with the decrease of the average diameter of nano-particles.

  2. Ultrafast Preparation of Monodisperse Fe3 O4 Nanoparticles by Microwave-Assisted Thermal Decomposition.

    PubMed

    Liang, Yi-Jun; Zhang, Yu; Guo, Zhirui; Xie, Jun; Bai, Tingting; Zou, Jiemeng; Gu, Ning

    2016-08-08

    Thermal decomposition, as the main synthetic procedure for the synthesis of magnetic nanoparticles (NPs), is facing several problems, such as high reaction temperatures and time consumption. An improved a microwave-assisted thermal decomposition procedure has been developed by which monodisperse Fe3 O4 NPs could be rapidly produced at a low aging temperature with high yield (90.1 %). The as-synthesized NPs show excellent inductive heating and MRI properties in vitro. In contrast, Fe3 O4 NPs synthesized by classical thermal decomposition were obtained in very low yield (20.3 %) with an overall poor quality. It was found for the first time that, besides precursors and solvents, magnetic NPs themselves could be heated by microwave irradiation during the synthetic process. These findings were demonstrated by a series of microwave-heating experiments, Raman spectroscopy and vector-network analysis, indicating that the initially formed magnetic Fe3 O4 particles were able to transform microwave energy into heat directly and, thus, contribute to the nanoparticle growth.

  3. Thermal and carbothermic decomposition of Na2CO3 and Li2CO3

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Wan; Lee, Hae-Geon

    2001-02-01

    In order to elucidate the decomposition mechanism of Na2CO3 and Li2CO3 in mold-powder systems employed in the continuous casting of steel, decompositions of Na2CO3 and Li2CO3 were investigated using thermogravimetric (TG) and differential scanning calorimetric (DSC) methods at temperatures up to 1200 °C, under a flow of argon gas. For the case of pure Na2CO3, the thermal decomposition started from its melting point and continued as the temperature was increased, but at a very slow rate. For Li2CO3, however, the decomposition occurred at much faster rates than that for Na2CO3. When carbon black was added to the carbonate particles, the decomposition rates of both Na2CO3 and Li2CO3 were significantly enhanced. From mass-balanced calulations and X-ray diffraction (XRD) analyses of the reaction products, it is concluded that decompositions of Na2CO3 and Li2CO3 with carbon black take place according to the respective reactions of Na2CO3 (1) + 2C (s) = 2Na (g) + 3CO (g) and Li2CO3 (l) + C (s) = Li2O (s) + 2CO (g). It was found that liquid droplets of Na2CO3 were initially isolated due to carbon particles surrounding them, but, as the carbon particles were consumed, the liquid droplets were gradually agglomerated. This effected a reduction of the total surface area of the carbonate, resulting in a dependence of the decomposition rate on the amount of carbon black. For the case of Li2CO3, on the other hand, hardly any agglomeration occurred up to the completion of decomposition, and, hence, the rate was almost independent of the amount of carbon black mixed. The apparent activation energies for the decomposition of Na2CO3 and Li2CO3 with carbon black were found to be similar and were estimated to be 180 to 223 kJ mole-1.

  4. Solar radiation uncorks the lignin bottleneck on plant litter decomposition in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Austin, A.; Ballare, C. L.; Méndez, M. S.

    2015-12-01

    Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.

  5. Flow pyrolysis and direct and silicon tetrafluoride-sensitized laser-induced decomposition of tetralin. Identification of retro-[2 + 4] cleavage as the primary homogeneous thermal decomposition channel

    SciTech Connect

    Berman, Michael R.; Comita, Paul B.; Moore, C. Bradley; Bergman, Robert G.

    1980-08-01

    In an effort to determine the products and mechanism of the truly homogeneous thermal decomposition of the aromatic hydrocarbon tetralin, we have examined the products formed from this compound upon energization by conventional flow pyrolysis, infrared multiphoton excitation, and SiF{sub 4}-sensitized infrared laser thermal activation. Six major products are formed in these reactions, but the product ratios depend upon the mode of energization. Flow pyrolysis gives a result analogous to those observed earlier; i.e. almost exclusive dehydrogenation, leading to dihydronaphthalene and naphthalene. Direct and sensitized IR laser-induced decomposition, however, leads to ethylene loss (presumably by an initial retro-[2+4] reaction) as the predominent decomposition mode, giving benzocyclobutene. We believe these results are due to the fact that direct thermal decomposition, both in our experiments as well as in previous studies, involves predominant surface-catalysis. In the laser-induced reactions, which are uncomplicated by problems due to surface-catalysis, the true homogeneous decomposition takes place, and this involves retro-[2+4] cleavage. Mechanistic details of these processes were studied by examining the isotope distribution in the products formed on SiF{sub 4}-sensitized laser photolysis of 1,1,4,4-tetradeuteriotetralin.

  6. Convex Decompositions of Thermal Equilibrium for Non-interacting Non-relativistic Particles

    NASA Astrophysics Data System (ADS)

    Chenu, Aurelia; Branczyk, Agata; Sipe, John

    2016-05-01

    We provide convex decompositions of thermal equilibrium for non-interacting non-relativistic particles in terms of localized wave packets. These quantum representations offer a new tool and provide insights that can help relate to the classical picture. Considering that thermal states are ubiquitous in a wide diversity of fields, studying different convex decompositions of the canonical ensemble is an interesting problem by itself. The usual classical and quantum pictures of thermal equilibrium of N non-interacting, non-relativistic particles in a box of volume V are quite different. The picture in classical statistical mechanics is about (localized) particles with a range of positions and velocities; in quantum statistical mechanics, one considers the particles (bosons or fermions) associated with energy eigenstates that are delocalized through the whole box. Here we provide a representation of thermal equilibrium in quantum statistical mechanics involving wave packets with a localized coordinate representation and an expectation value of velocity. In addition to derive a formalism that may help simplify particular calculations, our results can be expected to provide insights into the transition from quantum to classical features of the fully quantum thermal state.

  7. Solid-phase thermal decomposition of 2,4-dinitroimidazole (2,4-DNI)

    SciTech Connect

    Minier, L.; Behrens, R. Jr.; Bulusu, S.

    1996-07-01

    The solid-phase thermal decomposition of the insensitive energetic aromatic heterocycle 2,4-dinitroimidazole (2,4-DNI: mp 265--274 C) is studied utilizing simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) between 200 and 247 C. The pyrolysis products have been identified using perdeuterated and {sup 15}N-labeled isotopomers. The products consist of low molecular-weight gases and a thermally stable solid residue. The major gaseous products are NO, CO{sub 2}, CO, N{sub 2}, HNCO and H{sub 2}O. Minor gaseous products are HCN, C{sub 2}N{sub 2}, NO{sub 2}, C{sub 3}H{sub 4}N{sub 2}, C{sub 3}H{sub 3}N{sub 3}O and NH{sub 3}. The elemental formula of the residue is C{sub 2}HN{sub 2}O and FTIR analysis suggests that it is polyurea- and polycarbamate-like in nature. The rates of formation of the gaseous products and their respective quantities have been determined for a typical isothermal decomposition experiment at 235 C. The temporal behaviors of the gas formation rates indicate that the overall decomposition is characterized by a sequence of four events: (1) an early decomposition period induced by impurities and H{sub 2}O, (2) an induction period where CO{sub 2} and NO are the primary products formed at relatively constant rates, (3) an autoacceleratory period that peaks when the sample is depleted and (4) a final period in which the residue decomposes. Arrhenius parameters for the induction period are E{sub a} = 46.9 {+-} 0.7 kcal/mol and Log(A) = 16.3 {+-} 0.3. Decomposition pathways that are consistent with the data are presented.

  8. Solid-phase thermal decomposition of 2,4-dinitroimidazole (2,4-DNI)

    SciTech Connect

    Minier, L.; Behrens, R. Jr.; Bulusu, S.

    1996-12-31

    The solid-phase thermal decomposition of the insensitive energetic nitroaromatic heterocycle 2,4-dinitroimidazole (2,4-DNI: mp 265--274C) is studied utilizing simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) between 200 and 247C. The pyrolysis products have been identified using perdeuterated and {sup 15}N-labeled isotopomers. The products consist of low molecular-weight gases and a thermally stable solid residue. The major gaseous products are NO, CO{sub 2}, CO, N{sub 2}, HNCO and H{sub 2}O. Minor gaseous products are HCN, C{sub 2}N{sub 2}, NO{sub 2}, C{sub 3}H{sub 4}N{sub 2}, C{sub 3}H{sub 3}N{sub 3}O and NH{sub 3}. The elemental formula of the residue is C{sub 2}HN{sub 2}O and FTIR analysis suggests that it is polyurea- and polycarbamate-like in nature. Rates of formation of the gaseous products and their respective quantities have been determined for a typical isothermal decomposition experiment at 235C. The temporal behaviors of the gas formation rates indicate that the overall decomposition is characterized by a sequence of four events; (1) an early decomposition period induced by impurities and water, (2) an induction period where C0{sub 2} and NO are the primary products formed at relatively constant rates, (3) an autoacceleratory period that peaks when the sample is depleted and (4) a final period in which the residue decomposes. Arrhenius parameters for the induction period are E{sub a} = 46.9 {plus_minus} 0.7 kcal/mol and Log(A) = 16.3 {plus_minus} 0.3. Decomposition pathways that are consistent with the data are presented.

  9. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    DOE PAGES

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; ...

    2016-04-11

    Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completionmore » of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z  53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS

  10. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    SciTech Connect

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-11

    Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z  53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate

  11. Solar synthetic fuel production

    NASA Astrophysics Data System (ADS)

    Bilgen, E.; Bilgen, C.

    In this paper, a thermodynamic study is presented on solar hydrogen production using concentrated solar energy. In the first part, the direct decomposition process has been studied. The temperature requirements at various partial pressures of H2O, H2 and H yields, thermal efficiency and separation of products are discussed. In the second part, using consistent costing bases, the cost of hydrogen is estimated for solar-direct decomposition process and solar-electrolysis process. It has been found that the solar-direct decomposition process concept provides hydrogen costs in the range of $22/GJ which are lower by $15-$26 than those provided by a solar electrolysis process.

  12. The decomposition of methanol on Ru(001) studied using laser induced thermal desorption

    NASA Astrophysics Data System (ADS)

    Deckert, A. A.; Brand, J. L.; Mak, C. H.; Koehler, B. G.; George, S. M.

    1987-08-01

    The decomposition reaction of methanol on Ru(001) was studied using laser induced thermal desorption (LITD). The LITD studies, combined with temperature programmed desorption and Auger electron spectroscopy measurements, allowed absolute product yields for the three competing surface pathways to be determined over the entire range of chemisorbed methanol coverages at a heating rate of β=2.6 K/s. At the lowest methanol coverages of θ≤0.07θs, where θs is the surface coverage of a saturated chemisorbed layer, all the methanol reacted between 220-280 K. This methanol decomposition reaction yielded desorption-limited H2 and CO as reaction products. At higher coverages, molecular desorption and the second methanol decomposition reaction involving C-O bond breakage became increasingly important. At θ=θs, 50% of the initial methanol coverage desorbed, 24% produced H2 and CO and 26% left C on the surface. Isothermal LITD kinetic measurements were carried out at low methanol coverages of θ≤0.07θs at various temperatures from 180 to 220 K. The initial decomposition rates obtained from the isothermal LITD studies displayed first order kinetics. The decomposition kinetics at later times could not be fit by first order kinetics and suggested a self-poisoned reaction. Subsequent LITD studies revealed that CO inhibited the decomposition reaction. The product CO inhibition was modeled by first order kinetics with a CO-coverage dependent activation barrier. The observed first order reaction kinetics at low methanol coverage could be expressed by the pre-exponential ν=106 s-1 and the coverage-dependent activation barrier E=7 kcal/mol+αθCO/θCO,s, where α=20 kcal/mol and θCO/θCO,s is the dimensionless CO coverage normalized to the CO saturation coverage θCO,s. Isotopic LITD studies revealed that the decomposition kinetics of CH3OH, CD3OH, and CH3OD were identical. This equivalence suggested that the hindered rotation of the surface methoxy species is the reaction

  13. Beam-Forming Concentrating Solar Thermal Array Power Systems

    NASA Technical Reports Server (NTRS)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  14. Thermal decomposition of wood and cellulose in the presence of solvent vapors

    SciTech Connect

    Jakab, E.; Liu, K.; Meuzelaar, H.L.C.

    1997-06-01

    The thermal decomposition of white birch wood and filter pulp was studied in water and methanol vapor at 2 MPa pressure in a flow-through reactor. The abundance of the volatile products was monitored by on-line GC/MS using repetitive sampling in combination with fast separation on a short capillary column. The reactor was heated to 400 C at 20 C/min and the intensity profile of the product ions within the 30--200 amu range recorded. The system was capable of separating the profiles of typical hemicellulose products evolved at lower temperature from the characteristic cellulose and lignin products detected from wood. Char yields in methanol were similar to those in an inert gas atmosphere; however, the presence of water markedly increased the amount of char produced. The product distribution of cellulose was strongly affected by the solvents. In methanol, pyran derivatives dominate besides levoglucosan and glycolaldehyde, whereas the relative abundance of 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde increased in the presence of water. Water catalysis was also indicated by lowering the decomposition temperatures of cellulose. High-pressure (6.5 MPa) thermogravimetric experiments in helium or hydrogen atmospheres were also found to lower the reaction temperature of wood. This observation can be explained by the catalytic effect of reaction water released during the thermal decomposition of wood.

  15. Prediction of the thermal decomposition of organic peroxides by validated QSPR models.

    PubMed

    Prana, Vinca; Rotureau, Patricia; Fayet, Guillaume; André, David; Hub, Serge; Vicot, Patricia; Rao, Li; Adamo, Carlo

    2014-07-15

    Organic peroxides are unstable chemicals which can easily decompose and may lead to explosion. Such a process can be characterized by physico-chemical parameters such as heat and temperature of decomposition, whose determination is crucial to manage related hazards. These thermal stability properties are also required within many regulatory frameworks related to chemicals in order to assess their hazardous properties. In this work, new quantitative structure-property relationships (QSPR) models were developed to predict accurately the thermal stability of organic peroxides from their molecular structure respecting the OECD guidelines for regulatory acceptability of QSPRs. Based on the acquisition of 38 reference experimental data using DSC (differential scanning calorimetry) apparatus in homogenous experimental conditions, multi-linear models were derived for the prediction of the decomposition heat and the onset temperature using different types of molecular descriptors. Models were tested by internal and external validation tests and their applicability domains were defined and analyzed. Being rigorously validated, they presented the best performances in terms of fitting, robustness and predictive power and the descriptors used in these models were linked to the peroxide bond whose breaking represents the main decomposition mechanism of organic peroxides.

  16. Applicability of advanced automotive heat engines to solar thermal power

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    1981-01-01

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  17. Non-isothermal kinetic analysis of thermal decomposition of the Ca-bentonite from Santai, China

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-hui; He, Chuan; Wang, Ling; Li, Zhong-quan; Deng, Miao; Liu, Jing; Li, Hong-kui; Feng, Qian

    2015-06-01

    The thermal decompositions of Ca-bentonites (CaB) from Santai, Shichuan Province, China, over the temperature range of 30-1,100 °C were investigated by simultaneous thermal analyzer. Non-isothermal kinetic analysis was employed to study the thermal decomposition mechanism by using Netzsch Thermokinetics software. Flynn-Wall-Ozawa and Friedman isoconversional methods were used to calculate the activation energy and analyze the reaction steps. The probable mechanism and the corresponding kinetic parameters were determined by multivariate non-linear regression program. The results show that the thermal decomposition process of CaB over the temperature range of 30-800 °C is a kind of six-step, competitive reaction ( F 1 D 3 F n C 1E F n F n model). The dehydration reaction is controlled by two consecutive mechanisms, nucleation and growth, followed by a diffusion-controlled reaction ( F 1 D 3 model), the first step: E = 61.68 kJ mol-1, log A = 6.75 s-1; the second step: E = 50.73 kJ mol-1, log A = 3.11 s-1. The dehydroxylation reaction is controlled by three-step competitive mechanisms, an autocatalytically activated, initial reaction followed by n-order competitive reaction ( C 1E F n F n model), the first step: E = 124.74 kJ mol-1, log A = 5.67 s-1; the second step: E = 245.29 kJ mol-1, log A = 11.69 s-1; the third step : E = 261.73 kJ mol-1, log A = 11.23 s-1. A combination reaction of the dehydration and dehydroxylation is observed, and controlled by one n-order reaction ( F n model), E = 8.99 kJ mol-1, log A = -1.91 s-1.

  18. Effects of pressure on the thermal decomposition kinetics, chemical reactivity and phase behavior of RDX

    SciTech Connect

    Miller, P.J. ); Block, S.; Piermarini, G.J. )

    1991-01-01

    The effects of pressure on the thermal decomposition kinetics, chemical reactivity, and phase behavior of RDX have been studied by a combination of measurement techniques in conjunction with a high-pressure diamond anvil cell. These techniques include Fourier transform infrared (FTIR) spectroscopy for kinetic measurements and phase identification, energy dispersive x-ray powder diffraction for identification of the observed polymorphic forms and also compression measurements, and optical polarizing microscopy for visual detection and confirmation of phase transformations and determinations of transition pressures. The ruby method of pressure measurement was used in all methods employed. Studies were generally limited to the region where decomposition rates could be measured within reasonable laboratory time, i.e., below 10 GPa and 573 K. The P-T phase diagram for RDX was determined to 573 K and 7.0/GPa, delineating the stability fields of three solid phases, and the liquidus.

  19. Solar coronal non-thermal processes (Solar Maximum Mission)

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1983-01-01

    The Solar Maximum Mission was used to study solar coronal phenomena in hard X-radiation, since its instrument complement included the first solar hard X-ray telescope. Phenomena related to those discovered from OSO-5 and OSO-7 observations were emphasized.

  20. Solar thermal program summary. Volume 2: Research summaries

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The Federal government has conducted the National Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. More than a decade of research and development has brought solar thermal systems to a point where they have proven useful for generating electricity and process heat. Improvements to these during the 1980s led to reductions in capital and energy costs of 80 percent. Parabolic trough systems are now considered technically mature and are being used in the world's largest solar electric systems, generating electricity for less than $0.12/kWh. Central receiver and dish technologies have also been demonstrated in several plants throughout the world. The cost of concentrators, the largest cost component of solar thermal systems, has dropped from $900 to $1300/sq m in 1978 to $70 to $16/sq m today, while performance has improved significantly. Solar thermal technology has also shown strong potential for advanced applications, such as destroying hazardous wastes and processing materials and chemicals. This annual summary provides an overview of the government-funded activities within the National Solar Thermal Technology Program. Tasks conducted in house by the participating national laboratories or under contract to industry and academic and other research institutions are highlighted. This document covers those activities initiated, renewed, or completed during FY 1989.

  1. Solar Orbiter- Solar Array- Thermal Design for an Extreme Temperature Mission

    NASA Astrophysics Data System (ADS)

    Muller, Jens; Paarmann, Carola; Lindner, Anton; Kreutz, Martin; Oberhuttinger, Carola; Costello, Ian; Icardi, Lidia

    2014-08-01

    The Solar Orbiter mission is an interdisciplinary mission to the sun, carried out by ESA in collaboration with NASA. The spacecraft will approach the sun close to 0.28 AU. At this distance, the solar array has to be operated under high solar array inclination angles to limit the temperatures to a maximum qualification temperature of 200°C for the photo voltaic assembly (PVA). Nevertheless, extreme temperatures appear at specific locations of the solar array which require purpose-built temperature protection measures. A very specific thermal protection is needed to keep the PVA and its supporting structures within the qualified temperature range and simultaneously minimize the thermal flux into the spacecraft.This paper describes the Solar Orbiter solar array design in general and its specific thermal design in particular. It describes the interdisciplinary steps between thermal- and mechanical analysis as well as design engineering necessary to result to the different shielding methods.

  2. CP: AN INVESTIGATION OF COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO VARIOUS STIMULI

    SciTech Connect

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-23

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  3. Kinetic and microstructural studies of thermal decomposition in uranium mononitride compacts subjected to heating in high-purity helium

    NASA Astrophysics Data System (ADS)

    Lunev, A. V.; Mikhalchik, V. V.; Tenishev, A. V.; Baranov, V. G.

    2016-07-01

    Although uranium mononitride has a high melting point (≈3100 K), it often decomposes well below this temperature. The threshold and kinetics of thermal decomposition depend on samples' chemical content and on gas environment. However, most experiments with uranium nitride samples were done so far in vacuum conditions and did not allow thorough examination of reaction kinetics at high temperatures. This research focuses on studying the different stages of thermal decomposition in uranium nitride samples subjected to heating in helium. Mass loss and thermal effects are identified with simultaneous thermal analysis (STA), while scanning electron microscopy (SEM) and X-ray diffraction (XRD) are used to register phase and compositional changes. Thermal decomposition in uranium nitride samples is found to be a multi-stage process with the final stage characterized by uranium vaporization. The results are useful for estimating the high-temperature behaviour of uranium nitride fuel during its fabrication and performance in some of Gen IV reactors.

  4. A quasimechanism of melt acceleration in the thermal decomposition of crystalline organic solids

    SciTech Connect

    Henson, Bryan F

    2009-01-01

    It has been know for half a century that many crystalline organic solids undergo an acceleration in the rate of thermal decomposition as the melting temperature is approached. This acceleration terminates at the melting point, exhibiting an Arrhenius-like temperature dependence in the faster decomposition rate from the liquid phase. This observation has been modeled previously using various premelting behaviors based on e.g. freezing point depression induced by decomposition products or solvent impurities. These models do not, however, indicate a mechanism for liquid formation and acceleration which is an inherent function of the bulk thermodynamics of the molecule. Here we show that such an inherent thermodynamic mechanism for liquid formation exists in the form of the so-called quasi-liquid layer at the solid surface. We explore a kinetic mechanism which describes the acceleration of rate and is a function of the free energies of sublimation and vaporization. We construct a differential rate law from these thermodynamic free energies and a normalized progress variable. We further construct a reduced variable formulation of the model which is a simple function of the metastable liquid activity below the melting point, and show that it is applicable to the observed melt acceleration in several common organic crystalline solids. A component of the differential rate law, zero order in the progress variable, is shown to be proportional to the thickness of the quasiliquid layer predicted by a recent thermodynamic theory for this phenomenon. This work therefore serves not only to provide new insight into thermal decomposition in a broad class or organic crystalline solids, but also further validates the underlying thermodynamic nature of the phenomenon of liquid formation on the molecular surface at temperatures below the melting point.

  5. Solar-thermal conversion and thermal energy storage of graphene foam-based composites

    NASA Astrophysics Data System (ADS)

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-07-01

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a

  6. A learning curve for solar thermal power

    NASA Astrophysics Data System (ADS)

    Platzer, Werner J.; Dinter, Frank

    2016-05-01

    Photovoltaics started its success story by predicting the cost degression depending on cumulated installed capacity. This so-called learning curve was published and used for predictions for PV modules first, then predictions of system cost decrease also were developed. This approach is less sensitive to political decisions and changing market situations than predictions on the time axis. Cost degression due to innovation, use of scaling effects, improved project management, standardised procedures including the search for better sites and optimization of project size are learning effects which can only be utilised when projects are developed. Therefore a presentation of CAPEX versus cumulated installed capacity is proposed in order to show the possible future advancement of the technology to politics and market. However from a wide range of publications on cost for CSP it is difficult to derive a learning curve. A logical cost structure for direct and indirect capital expenditure is needed as the basis for further analysis. Using derived reference cost for typical power plant configurations predictions of future cost have been derived. Only on the basis of that cost structure and the learning curve levelised cost of electricity for solar thermal power plants should be calculated for individual projects with different capacity factors in various locations.

  7. Mass Spectrometry Characterization of the Thermal Decomposition/Digestion (TDD) at Cysteine in Peptides and Proteins in the Condensed Phase

    NASA Astrophysics Data System (ADS)

    Basile, Franco; Zhang, Shaofeng; Kandar, Sujit Kumar; Lu, Liang

    2011-11-01

    We report on the characterization by mass spectrometry (MS) of a rapid, reagentless and site-specific cleavage at the N-terminus of the amino acid cysteine (C) in peptides and proteins induced by the thermal decomposition at 220-250 °C for 10 s in solid samples. This thermally induced cleavage at C occurs under the same conditions and simultaneously to our previously reported thermally induced site-specific cleavage at the C-terminus of aspartic acid (D) (Zhang, S.; Basile, F. J. Proteome Res. 2007, 6, (5), 1700-1704). The C cleavage proceeds through cleavage of the nitrogen and α-carbon bond (N-terminus) of cysteine and produces modifications at the cleavage site with an amidation (-1 Da) of the N-terminal thermal decomposition product and a -32 Da mass change of the C-terminal thermal decomposition product, the latter yielding either an alanine or β-alanine residue at the N-terminus site. These modifications were confirmed by off-line thermal decomposition electrospray ionization (ESI)-MS, tandem MS (MS/MS) analyses and accurate mass measurements of standard peptides. Molecular oxygen was found to be required for the thermal decomposition and cleavage at C as it induced an initial cysteine thiol side chain oxidation to sulfinic acid. Similar to the thermally induced D cleavage, missed cleavages at C were also observed. The combined thermally induced digestion process at D and C, termed thermal decomposition/digestion (TDD), was observed on several model proteins tested under ambient conditions and the site-specificity of the method confirmed by MS/MS.

  8. Differential Scanning Calorimetry of Volatile-bearing Iron Minerals Under Mars-like Pressures: New Insights into Energetics and Mechanisms of Thermal Decomposition

    NASA Technical Reports Server (NTRS)

    Lin, I-C.; Lauer, H. V., Jr.; Golden, D. C.; Ming, D. W.

    2000-01-01

    Lepidocrocite and siderite both exhibit different enthalpic events during their decomposition at reduced pressures when compared to those at ambient pressure, allowing us looking into the mechanisms of thermal decomposition at Mars-like pressures.

  9. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    NASA Technical Reports Server (NTRS)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  10. Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.

  11. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    PubMed

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  12. Solar thermal power generation. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics.

  13. Structure-Activity Relationship Analysis of the Thermal Stabilities of Nitroaromatic Compounds Following Different Decomposition Mechanisms.

    PubMed

    Li, Jiazhong; Liu, Huanxiang; Huo, Xing; Gramatica, Paola

    2013-02-01

    The decomposition behavior of energetic materials is very important for the safety problems concerning their production, transportation, use and storage, because molecular decomposition is intimately connected to their explosive properties. Nitroaromatic compounds, particularly nitrobenzene derivatives, are often considered as prototypical energetic molecules, and some of them are commonly used as high explosives. Quantitative structure-activity relationship (QSAR) represents a potential tool for predicting the thermal stability properties of energetic materials. But it is reported that constructing general reliable models to predict their stability and their potential explosive properties is a very difficult task. In this work, we make our efforts to investigate the relationship between the molecular structures and corresponding thermal stabilities of 77 nitrobenzene derivatives with various substituent functional groups (in ortho, meta and/or para positions). The proposed best MLR model, developed by the new software QSARINS, based on Genetic Algorithm for variable selection and with various validation tools, is robust, stable and predictive with R(2) of 0.86, QLOO (2) of 0.79 and CCC of 0.90. The results indicated that, though difficult, it is possible to build predictive, externally validated QSAR models to estimate the thermal stability of nitroaromatic compounds.

  14. Kinetics of switch grass pellet thermal decomposition under inert and oxidizing atmospheres.

    PubMed

    Chandrasekaran, Sriraam R; Hopke, Philip K

    2012-12-01

    Grass pellets are a renewable resource that have energy content similar to that of wood. However, the higher ash and chlorine content affects combustion. Thermal degradation analysis of a fuel is useful in developing effective combustion. Thermogravimetric analysis (TGA) of the thermal degradation of grass pellets under inert (nitrogen) and oxidizing (air) atmospheres was conducted. Non-isothermal conditions were employed with 4 different heating rates. Kinetic parameters (activation energy and pre-exponential factors) were estimated using the iso-conversional method. Both pyrolysis and oxidative atmospheric thermal degradation exhibited two major loss process: volatilization of cellulose, hemicelluloses and lignin and burning or slow oxidation of the residual char. The activation energy and pre-exponential factors were high for the oxidizing environment. During pyrolysis, major decomposition occurred with 40% to 75% conversion of the mass to gas with an activation energy of 314 kJ/mol. In air the decomposition occurred with 30% to 55% conversion with an activation energy of 556 kJ/mol. There was a substantial effect of heating rate on mass loss and mass loss rate. The TG shifted to higher temperature ranges on increasing the heating rate. In both pyrolyzing and oxidizing conditions, average combustion and devolatilization rates increased. Enhanced combustion takes place with higher activation energy in oxidizing atmosphere compared to the inert atmosphere due to presence of air.

  15. PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K

    2005-09-28

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1-7 C min{sup -1} in perforated pans and of 0.1-1.0 C min{sup -1} in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 and 240 C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity.

  16. Thermal Decomposition of Trinitrotoluene (TNT) with a New One-Dimensional Time to Explosion (ODTX) Apparatus

    SciTech Connect

    Tran, T D; Simpson, R L; Maienschein, J; Tarver, C

    2001-03-23

    The thermal explosion of trinitrotoluene (TNT) is used as a basis for evaluating the performance of a new One-Dimensional-Time-to-Explosion (ODTX) apparatus. The ODTX experiment involves holding a 12.7 mm-diameter spherical explosive sample under confinement (150 MPa) at a constant elevated temperature until the confining pressure is exceeded by the evolution of gases during chemical decomposition. The resulting time to explosion as a function of temperature provides valuable decomposition kinetic information. A comparative analysis of the measurements obtained from the new unit and an older system is presented. Discussion on selected performance aspects of the new unit will also be presented. The thermal explosion of TNT is highly dependent on the material. Analysis of the time to explosion is complicated by historical and experimental factors such as material variability, sample preparation, temperature measurement and system errors. Many of these factors will be addressed. Finally, a kinetic model using a coupled thermal and heat transport code (chemical TOPAZ) was used to match the experimental data.

  17. The effects of solar radiation on thermal comfort.

    PubMed

    Hodder, Simon G; Parsons, Ken

    2007-01-01

    The aim of this study was to investigate the relationship between simulated solar radiation and thermal comfort. Three studies investigated the effects of (1) the intensity of direct simulated solar radiation, (2) spectral content of simulated solar radiation and (3) glazing type on human thermal sensation responses. Eight male subjects were exposed in each of the three studies. In Study 1, subjects were exposed to four levels of simulated solar radiation: 0, 200, 400 and 600 Wm(-2). In Study 2, subjects were exposed to simulated solar radiation with four different spectral contents, each with a total intensity of 400 Wm(-2) on the subject. In Study 3, subjects were exposed through glass to radiation caused by 1,000 Wm(-2) of simulated solar radiation on the exterior surface of four different glazing types. The environment was otherwise thermally neutral where there was no direct radiation, predicted mean vote (PMV)=0+/-0.5, [International Standards Organisation (ISO) standard 7730]. Ratings of thermal sensation, comfort, stickiness and preference and measures of mean skin temperature (t(sk)) were taken. Increase in the total intensity of simulated solar radiation rather than the specific wavelength of the radiation is the critical factor affecting thermal comfort. Thermal sensation votes showed that there was a sensation scale increase of 1 scale unit for each increase of direct radiation of around 200 Wm(-2). The specific spectral content of the radiation has no direct effect on thermal sensation. The results contribute to models for determining the effects of solar radiation on thermal comfort in vehicles, buildings and outdoors.

  18. Thermal degradation kinetics and decomposition mechanism of PBSu nanocomposites with silica-nanotubes and strontium hydroxyapatite nanorods.

    PubMed

    Papageorgiou, D G; Roumeli, E; Chrissafis, K; Lioutas, Ch; Triantafyllidis, K; Bikiaris, D; Boccaccini, A R

    2014-03-14

    Novel poly(butylene succinate) (PBSu) nanocomposites containing 5 and 20 wt% mesoporous strontium hydroxyapatite nanorods (SrHNRs) and silica nanotubes (SiNTs) were prepared by melt-mixing. A systematic investigation of the thermal stability and decomposition kinetics of PBSu was performed using pyrolysis-gas chromatography-mass spectroscopy (Py-GC-MS) and thermogravimetry (TG). Thorough studies of evolving decomposition compounds along with the isoconversional and model-fitting analysis of mass loss data led to the proposal of a decomposition mechanism for PBSu. Moreover, the effects of SrHNRs and SiNTs on the thermal stability and decomposition kinetics of PBSu were also examined in detail. The complementary use of these techniques revealed that the incorporation of SiNTs in PBSu does not induce significant effects neither on its thermal stability nor on its decomposition mechanism. In contrast, the addition of SrHNRs resulted in the catalysis of the initial decomposition steps of PBSu and also in modified decomposition mechanisms and activation energies. The evolving gaseous products of PBSu and their evolution pattern in the SiNT nanocomposites were the same as in neat PBSu, while they were slightly modified for the SrHNR nanocomposites, confirming the findings from thermogravimetric analysis.

  19. The spectral properties of uranium hexafluoride and its thermal decomposition products

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    This investigation was initiated to provide basic spectral data for gases of interest to the plasma core reactor concept. The attenuation of vacuum ultraviolet (VUV) radiation by helium at pressures up to 20 atm over path lengths of about 61 cm and in the approximate wavelength range between 80 and 300 nm was studied. Measurements were also conducted to provide basic VUV data with respect to UF6 and UF6/argon mixtures in the wavelength range between 80 and 120 nm. Finally, an investigation was initiated to provide basic spectral emission and absorption data for UF6 and possible thermal decomposition products of UF6 at elevated temperatures.

  20. Dynamic weakening and thermal decomposition during the Heart Mountain mega-landslide

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Smith, S. A.; Anders, M. H.; Di Toro, G.

    2012-12-01

    The 3400-km2 Heart Mountain landslide of northwestern Wyoming and southwestern Montana is the largest subaerial landslide known. This Eocene age slide slid ˜50 km on a carbonate rich basal layer ranging in thickness from a few tens of centimeters to several meters, along a shallow 2° slope, posing a long-standing question regarding its emplacement mechanism. It has recently been suggested that such large displacement was aided by strong dynamic weakening mechanism, thermal pressurization due to shear heating and thermal decomposition in the basal layer slip zone, with theoretical simulations suggesting slip velocities ranging between tens of meters per second to more than 100 ms-1. In this study, we present the results of a suite of high velocity friction experiments in a rotary shear configuration on initially intact carbonates collected from the Heart Mountain region, in attempt to reproduce conditions experienced in the slip zone of the basal section during emplacement of the landslide. Gouges were prepared from initially intact hostrocks of Madison limestone and Bighorn dolomite, and were sheared for a range of displacements up to 6 metres at normal stresses up to 25 MPa at slip rates up to 2 m/s. Mechanical results generally show strong dynamic weakening with peak friction dropping from 0.7 to a steady state friction as low as 0.1. Microstructural observations of the highly polished slip surfaces produced show localization of the principal slip surface to less than 100 microns thick. Thermal decomposition is evidenced by degassing bubbles in the rims of dolomite clasts, and the release of CO2 as measured by mass spectrometer during experiments, indicating that temperatures in the slip zone quickly reached the decomposition temperature of carbonates (at least 700 degrees) within just a few metres of slip. These results compare favorably with theoretical calculations and ample field evidence for carbonate decomposition during the emplacement. Independent

  1. Non-chemically Pure Magnetites Produced from Thermal Decomposition of Ankerites

    NASA Astrophysics Data System (ADS)

    Jiménez López, C.; Romanek, C.; Rodríguez-Navarro, A.; Pérez-González, T.; Rodríguez Navarro, C.

    2008-12-01

    It has been claimed that chemically pure magnetites (Fe3O4) can be obtained from thermal decomposition of (Fe, Mg, Ca)CO3 (Golden et al., 2004). Such an observation is critical, since it opens the possibility of an inorganic way of formation of the magnetites found on Martian meteorite ALH84001. Such a chemical purity is one of the parameters used, so far, to recognize bacterial origin of natural magnetites (Thomas-Keptra et al., 2001), since it has been demonstrated that biologically-controlled magnetites are chemically pure (Bazylinski and Frankel, 2004) . However, while Golden et al. (2004) obtained pure magnetite from an almost pure precursor, the ankerite cores in ALH84001 in which magnetites are embedded are far from being chemically pure, since they contain considerable amounts of Ca and Mg (Kopp and Humayun, 2003). In this study we have performed several experiments to analyze the chemical purity of magnetites produced by thermal decomposition of four ankerite samples sinthetized in the laboratory, and containing different amounts of Ca, Fe and Mg. Such a thermal decomposition was achieved by two procedures: (1) by heating the samples at 470°C under CO2 pressure and (2) by decomposing the ankerite "in situ" under the TEM (Transmission electron Microscopy) electron beam. Magnetite produced by the first procedure was analyzed by XRD to determine whether or not the resulting solid was a mixture of oxides or rather a solid solution of (Ca, Fe and Mg)oxide. Magnetites formed by the two methods were studied by High Resolution TEM. The chemical composition of about 20 crystals of each experiment was analyzed by EDAX. Under our experimental conditions, ankerites decomposed in magnetite crystals of about 5 nanometers in size. Magentite crystals arranged to keep the morphology of the precursor. Our results confirm that any of these magnetites is chemically pure, but rather, each one of them is a solid solution of Ca and Mg. Therefore, chemically pure magnetites

  2. Solar thermal program summary. Volume 1: Overview, fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1989-02-01

    The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology, energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.

  3. Thermal efficiency of single-pass solar air collector

    SciTech Connect

    Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin; Ruslan, Mohd Hafidz

    2013-11-27

    Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

  4. ERDA's central receiver solar thermal power system studies

    NASA Technical Reports Server (NTRS)

    Lippy, L. J.; Heaton, T. R.

    1977-01-01

    The utilization of solar energy for electrical power production was studied. Efforts underway on the central receiver solar thermal power system are presented. Preliminary designs are included of pilot plant utilizing large numbers of heliostats in a collector field. Safety hazards are also discussed, as well as the most beneficial location of such a plant within the United States.

  5. Thermal performance trade-offs for point focusing solar collectors

    NASA Technical Reports Server (NTRS)

    Wen, L.

    1978-01-01

    Solar thermal conversion performance is assessed in this paper for representative point focusing distributed systems. Trade-off comparisons are made in terms of concentrator quality, solar receiver operating temperature, and power conversion efficiency. Normalized system performance is presented on a unit concentrator area basis for integrated annual electric energy production.

  6. Solar-thermal experimental projects on the Spanish Plataforma Solar

    NASA Astrophysics Data System (ADS)

    Grasse, W.

    1981-11-01

    The Plataforma Solar with an area of 1,000,000 sq m is located in Spain at a distance of approximately 50 km from the Mediterranean. In May 1979, nine members of the International Energy Agency (IEA) decided to support the construction of Small Solar Power Systems (SSPS). The countries involved include West Germany, the U.S., Spain, and Italy. The SSPS are to demonstrate the operational feasibility of solar technologies which have been mainly developed in Germany and the U.S. In addition, data are to be obtained regarding the relative competitive position of two different operational concepts for SSPS. The concepts are related to the central receiver system (solar tower) and the distributed collector system. Attention is also given to the Spanish solar power station CESA-1 and the German-Spanish technology program GAST, which is to explore the technological limits of solar-energy systems.

  7. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    NASA Astrophysics Data System (ADS)

    Cavaignac, A. L. O.; Lima, R. J. C.; Façanha Filho, P. F.; Moreno, A. J. D.; Freire, P. T. C.

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  8. A Review of Study on Thermal Energy Transport System by Synthesis and Decomposition Reactions of Methanol

    NASA Astrophysics Data System (ADS)

    Liu, Qiusheng; Yabe, Akira; Kajiyama, Shiro; Fukuda, Katsuya

    The study on thermal energy transport system by synthesis and decomposition reactions of methanol was reviewed. To promote energy conservation and global environment protection, a two-step liquid-phase methanol synthesis process, which starts with carbonylation of methanol to methyl formate, then followed by the hydrogenolysis of the formate, was studied to recover wasted or unused discharged heat from industrial sources for the thermal energy demands of residential and commercial areas by chemical reactions. The research and development of the system were focused on the following three points. (1) Development of low-temperature decomposition and synthetic catalysts, (2) Development of liquid phase reactor (heat exchanger accompanying chemical reaction), (3) Simulation of the energy transport efficiency of entire system which contains heat recovery and supply sections. As the result of the development of catalyst, promising catalysts which agree with the development purposes for the methyl formate decomposition reaction and the synthetic reaction are being developed though some studies remain for the methanol decomposition and synthetic reactions. In the fundamental development of liquid phase reactor, the solubilities of CO and H2 gases in methanol and methyl formate were measured by the method of total pressure decrease due to absorption under pressures up to 1500kPa and temperatures up to 140°C. The diffusivity of CO gas in methanol was determined by measuring the diameter and solution time of single CO bubbles in methanol. The chemical reaction rate of methanol synthesis by hydrogenolysis of methyl formate was measured using a plate-type of Raney copper catalyst in a reactor with rectangular channel and in an autoclave reactor. The reaction characteristics were investigated by carrying out the experiments at various temperatures, flow rates and at various catalyst development conditions. We focused on the effect of Raney copper catalyst thickness on the liquid

  9. Solar Thermal Radiant Heating at Pohakuloa Training Area

    DTIC Science & Technology

    2010-06-01

    Solar collector panels. • Sizing the array: Using thermal storage of 256,000 BTU/day and 4’ x 10’ flat panel collectors with output of...be arranged side-by-side on the south- facing pitch of roof. – Racked at 30 angle to maximize winter sun. Flat plate solar collectors E2S2– June 2010...radiant heat flooring project will combine solar thermal hot water system with in-floor radiant heating. – Flooring heat only; no domestic water. – Flat

  10. Proceedings of the Fifth Parabolic Dish Solar Thermal Power Program

    NASA Technical Reports Server (NTRS)

    Lucas, J. W. (Editor)

    1984-01-01

    The proceedings of the Fifth Parabolic Dish Solar Thermal Power Program Annual Review are presented. The results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program were emphasized. Among the topics discussed were: overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development along with associated hardware and test results; distributed systems operating experience; international parabolic dish development activities; and non-DOE-sponsored domestic dish activities. Solar electric generation was also addressed.

  11. Increasing the efficiency of solar thermal panels

    NASA Astrophysics Data System (ADS)

    Dobrnjac, M.; Latinović, T.; Dobrnjac, S.; Živković, P.

    2016-08-01

    The popularity of solar heating systems is increasing for several reasons. These systems are reliable, adaptable and pollution-free, because the renewable solar energy is used. There are many variants of solar systems in the market mainly constructed with copper pipes and absorbers with different quality of absorption surface. Taking into account the advantages and disadvantages of existing solutions, in order to increase efficiency and improve the design of solar panel, the innovative solution has been done. This new solar panel presents connection of an attractive design and the use of constructive appropriate materials with special geometric shapes. Hydraulic and thermotechnical tests that have been performed on this panel showed high hydraulic and structural stability. Further development of the solar panel will be done in the future in order to improve some noticed disadvantages.

  12. Validation of Heat Transfer Thermal Decomposition and Container Pressurization of Polyurethane Foam.

    SciTech Connect

    Scott, Sarah Nicole; Dodd, Amanda B.; Larsen, Marvin E.; Suo-Anttila, Jill M.; Erickson, Kenneth L

    2014-09-01

    Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. In fire environments, gas pressure from thermal decomposition of polymers can cause mechanical failure of sealed systems. In this work, a detailed uncertainty quantification study of PMDI-based polyurethane foam is presented to assess the validity of the computational model. Both experimental measurement uncertainty and model prediction uncertainty are examined and compared. Both the mean value method and Latin hypercube sampling approach are used to propagate the uncertainty through the model. In addition to comparing computational and experimental results, the importance of each input parameter on the simulation result is also investigated. These results show that further development in the physics model of the foam and appropriate associated material testing are necessary to improve model accuracy.

  13. Pyrolytic and Kinetic Characteristics of the Thermal Decomposition of Perilla frutescens Polysaccharide

    PubMed Central

    Zhou, Quancheng; Sheng, Guihua

    2012-01-01

    The thermal decomposition of Perilla frutescens polysaccharide was examined by thermogravimetry, differential thermogravimetry, and differential thermal analysis. The results showed that the mass loss of the substance proceeded in three steps. The first stage can be attributed to the expulsion of the water from ambient temperature to 182°C. The second stage corresponded to devolatilization from 182°C to 439°C. The residue slowly degraded in the third stage. The weight loss in air is faster than that in nitrogen, because the oxygen in air accelerated the pyrolytic reaction speed reaction. The heating rate significantly affected the pyrolysis of the sample. Similar activation energies of the degradation process (210–211 kJ mol−1) were obtained by the FWO, KAS, and Popescu techniques. According to Popescu mechanism functions, the possible kinetic model was estimated to be Avrami–Erofeev 20 g(α) = [−ln(1–α)]4. PMID:23300715

  14. Solar-thermal conversion and thermal energy storage of graphene foam-based composites.

    PubMed

    Zhang, Lianbin; Li, Renyuan; Tang, Bo; Wang, Peng

    2016-08-14

    Among various utilizations of solar energy, solar-thermal conversion has recently gained renewed research interest due to its extremely high energy efficiency. However, one limiting factor common to all solar-based energy conversion technologies is the intermittent nature of solar irradiation, which makes them unable to stand-alone to satisfy the continuous energy need. Herein, we report a three-dimensional (3D) graphene foam and phase change material (PCM) composite for the seamlessly combined solar-thermal conversion and thermal storage for sustained energy release. The composite is obtained by infiltrating the 3D graphene foam with a commonly used PCM, paraffin wax. The high macroporosity and low density of the graphene foam allow for high weight fraction of the PCM to be incorporated, which enhances the heat storage capacity of the composite. The interconnected graphene sheets in the composite provide (1) the solar-thermal conversion capability, (2) high thermal conductivity and (3) form stability of the composite. Under light irradiation, the composite effectively collects and converts the light energy into thermal energy, and the converted thermal energy is stored in the PCM and released in an elongated period of time for sustained utilization. This study provides a promising route for sustainable utilization of solar energy.

  15. Improved thermal storage module for solar dynamic receivers

    SciTech Connect

    Beatty, R.L.; Lauf, R.J.

    1990-01-01

    This invention relates to a thermal storage apparatus and more particularly to an apparatus for use in conjunction with solar dynamic energy storage systems. The invention is comprised of a thermal energy storage system comprising a germanium phase change material and a graphite container.

  16. Thermal performance of a hot-air solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Report contains procedures and results of thermal-performance tests on double-glazed air solar collector. Four types of tests were carried out including thermal-efficiency and stagnation tests, collector time-constant tests to assess effects of transients, and incident-angle modifier tests. Data are presented in tables and as graphs and are discussed and analyzed.

  17. Mechanism of thermal decomposition of K2FeO4 and BaFeO4: A review

    NASA Astrophysics Data System (ADS)

    Sharma, Virender K.; Machala, Libor

    2016-12-01

    This paper presents thermal decomposition of potassium ferrate(VI) (K2FeO4) and barium ferrate(VI) (BaFeO4) in air and nitrogen atmosphere. Mössbauer spectroscopy and nuclear forward scattering (NFS) synchrotron radiation approaches are reviewed to advance understanding of electron-transfer processes involved in reduction of ferrate(VI) to Fe(III) phases. Direct evidences of Fe V and Fe IV as intermediate iron species using the applied techniques are given. Thermal decomposition of K2FeO4 involved Fe V, Fe IV, and K3FeO3 as intermediate species while BaFeO3 (i.e. Fe IV) was the only intermediate species during the decomposition of BaFeO4. Nature of ferrite species, formed as final Fe(III) species, of thermal decomposition of K2FeO4 and BaFeO4 under different conditions are evaluated. Steps of the mechanisms of thermal decomposition of ferrate(VI), which reasonably explained experimental observations of applied approaches in conjunction with thermal and surface techniques, are summarized.

  18. Materials characterization and design for solar-thermal propulsion

    NASA Astrophysics Data System (ADS)

    Delarosa, M. J.; Tuffias, R. H.

    1993-11-01

    Solar-thermal propulsion relies on the convection of concentrated solar energy into kinetic energy (in the exhaust gases) in order to provide thrust. Solar radiation is focused into a blackbody cavity in which the heat is absorbed and transferred to the hydrogen fuel through a thermal absorber/heat exchanger. Performance increases are obtained by increasing the efficiency of the absorber, thereby increasing the heat transfer to the hydrogen fuel. The absorber/exchanger itself provides structural properties, which involves the severe structural constraint of needing to withstand the high internal hydrogen pressure. Thus, the absorber/exchanger becomes the critical component in the thruster, and the enabling technology for the development of a successful solar-heated hydrogen propulsion system is a combination of materials and processing. The maximum operating temperature of a solar-thermal propulsion devices is governed primarily by the strength and resistance of hydrogen degradation of the constituent materials at the operating temperature of 3000 K and above. Six candidate refractory materials were selected for investigation with regard to their potential for use in solar-thermal propulsion, with the aim of developing a properties and processing database in advance of designing, fabricating, and testing a solar-powered rocket engine (SPRE).

  19. Focal Point Inside the Vacuum Chamber for Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This photograph is a close-up view of a 4-in focal point inside the vacuum chamber at the MSFC Solar Thermal Propulsion Test facility. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  20. Recombination Reactions in the Thermal Decomposition of Anisole: An Investigation of Benzene and Naphthalene Formation

    NASA Astrophysics Data System (ADS)

    Scheer, Adam; Ellison, Barney; Mukarakate, Calvin; Robichaud, David; Nimlos, Mark

    2010-03-01

    Thermal decompositions of anisole (C6H5OCH3) and methyl-deuterated anisole (C6H5OCD3) are studied using a hyperthermal tubular reactor and photoionization reflectron time-of-flight mass spectrometer. Gas exiting the reactor is subject to a supersonic expansion after a residence time of 65 μs, allowing detection of highly chemically reactive radical species. Anisole decomposes through loss of a methyl group (CH3) to form phenoxy radical (C6H5O), followed by ejection of a CO to form cyclopentadienyl radical (c-C5H5; CPDR). Benzene is generated primarily by thermal decomposition of methylcyclopentadiene (C5H5CH3; MCPD). The MCPD results from methyl radical recombination with CPDR. The MCPD then undergoes two hydrogen atom losses and a ring expansion resulting in benzene. At Twall = 1200 C -- 1300 C a large amount of propargyl radical (CH2CCH) is observed. Propargyl radical recombination accounts for a small fraction of the observed benzene. Naphthalene and its precursor intermediates (C10H10, C10H9), resulting from CPDR recombination, are also observed. The presence of benzene and naphthalene is confirmed with resonance-enhanced multiphoton ionization (REMPI).

  1. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds.

    PubMed

    Kim, Yong Sang; Kim, Young Seok; Kim, Sung Hyun

    2010-07-01

    Thermal decomposition properties of plastic waste-waste lube oil compounds were investigated under nonisothermal conditions. Polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) were selected as representative household plastic wastes. A plastic waste mixture (PWM) and waste lube oil (WLO) were mixed with mixing ratios of 33, 50, and 67 (w/w) % on a PWM weight basis, and thermogravimetric (TG) experiments were performed from 25 to 600 degrees C. The Flynn-Wall method and the Ozawa-Flynn-Wall method were used for analyses of thermodynamic parameters. In this study, activation energies of PWM/WLO compounds ranged from 73.4 to 229.6 kJ/mol between 0.2 and 0.8 of normalized mass conversions, and the 50% PWM/WLO compound had lower activation energies and enthalpies among the PWM/WLO samples at each mass conversion. At the point of maximum differential mass conversion, the analyzed activation energies, enthalpies, entropies, and Gibbs free energies indicated that mixing PWM and WLO has advantages in reducing energy to decrease the degree of disorder. However, no difference in overall energy that would require overcoming both thermal decomposition reactions and degree of disorder was observed among PWM/WLO compounds under these experimental conditions.

  2. In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus.

    PubMed

    Liu, Xiaolong; Wood, Joshua D; Chen, Kan-Sheng; Cho, EunKyung; Hersam, Mark C

    2015-03-05

    With a semiconducting band gap and high charge carrier mobility, two-dimensional (2D) black phosphorus (BP)—often referred to as phosphorene—holds significant promise for next generation electronics and optoelectronics. However, as a 2D material, it possesses a higher surface area to volume ratio than bulk BP, suggesting that its chemical and thermal stability will be modified. Herein, an atomic-scale microscopic and spectroscopic study is performed to characterize the thermal degradation of mechanically exfoliated 2D BP. From in situ scanning/transmission electron microscopy, decomposition of 2D BP is observed to occur at ∼400 °C in vacuum, in contrast to the 550 °C bulk BP sublimation temperature. This decomposition initiates via eye-shaped cracks along the [001] direction and then continues until only a thin, amorphous red phosphorus like skeleton remains. In situ electron energy loss spectroscopy, energy-dispersive X-ray spectroscopy, and energy-loss near-edge structure changes provide quantitative insight into this chemical transformation process.

  3. An investigation on the modelling of kinetics of thermal decomposition of hazardous mercury wastes.

    PubMed

    Busto, Yailen; M G Tack, Filip; Peralta, Luis M; Cabrera, Xiomara; Arteaga-Pérez, Luis E

    2013-09-15

    The kinetics of mercury removal from solid wastes generated by chlor-alkali plants were studied. The reaction order and model-free method with an isoconversional approach were used to estimate the kinetic parameters and reaction mechanism that apply to the thermal decomposition of hazardous mercury wastes. As a first approach to the understanding of thermal decomposition for this type of systems (poly-disperse and multi-component), a novel scheme of six reactions was proposed to represent the behaviour of mercury compounds in the solid matrix during the treatment. An integration-optimization algorithm was used in the screening of nine mechanistic models to develop kinetic expressions that best describe the process. The kinetic parameters were calculated by fitting each of these models to the experimental data. It was demonstrated that the D₁-diffusion mechanism appeared to govern the process at 250°C and high residence times, whereas at 450°C a combination of the diffusion mechanism (D₁) and the third order reaction mechanism (F3) fitted the kinetics of the conversions. The developed models can be applied in engineering calculations to dimension the installations and determine the optimal conditions to treat a mercury containing sludge.

  4. Synthesis and Thermal Decomposition Mechanism of the Energetic Compound 3,5-Dinitro-4-nitroxypyrazole

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Qin; Cao, Duan-Lin; Cui, Jian-Lan

    2016-07-01

    A novel energetic material, 3,5-dinitro-4-nitroxypyrazole (DNNP), was synthesized via nitration and nucleophilic substitution reaction using 4-chloropyrazole as raw material. The structure of DNNP was characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. Its detonation properties were calculated and compared with those of other commonly used energetic compounds. The thermal decomposition mechanism of DNNP was studied by means of thermogravimetry and differential scanning calorimetry coupled with a mass spectrometry (DSC-MS). The results show that the detonation properties of DNNP were better than those of TNT and comparable to those of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). In addition, the thermal decomposition mechanism of DNNP was supposed. Initially, the O-NO2 bond was broken, thereby producing a nitropyrazole oxygen radical. Subsequently, the nitropyrazole oxygen radical was decomposed by free radical cleavage of nitro or isomerized to nitritepyrazole and subsequently decomposed by free radical cleavage of the nitroso group. Finally, pyrazole ring fission occurred and produced N2, NO, N2O, and CO2.

  5. Solar thermal organic rankine cycle for micro-generation

    NASA Astrophysics Data System (ADS)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  6. Transient Thermal Analysis of a Refractive Secondary Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Macosko, Robert P.

    1999-01-01

    A secondary concentrator is an optical device that accepts solar energy from a primary concentrator and further intensifies and directs the solar flux. The refractive secondary is one such device; fabricated from an optically clear solid material that can efficiently transmit the solar energy by way of refraction and total internal reflection. When combined with a large state-of-the-art rigid or inflatable primary concentrator, the refractive secondary enables solar concentration ratios of 10,000 to 1. In support of potential space solar thermal power and propulsion applications, the NASA Glenn Research Center is developing a single-crystal refractive secondary concentrator for use at temperatures exceeding 2000K. Candidate optically clear single-crystal materials like sapphire and zirconia are being evaluated for this application. To support this evaluation, a three-dimensional transient thermal model of a refractive secondary concentrator in a typical solar thermal propulsion application was developed. This paper describes the model and presents thermal predictions for both sapphire and zirconia prototypes. These predictions are then used to establish parameters for analyzing and testing the materials for their ability to survive thermal shock and stress.

  7. Solar thermal bowl concepts and economic comparisons for electricity generation

    SciTech Connect

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

    1988-04-01

    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

  8. Solar Thermal Power Plants with Parabolic-Trough Collectors

    NASA Astrophysics Data System (ADS)

    Zarza, E.; Valenzuela, L.; León, J.

    2004-12-01

    Parabolic-trough collectors (PTC) are solar concentrating devices suitable to work in the 150°C- 400°C temperature range. Power plants based on this type of solar collectors are a very efficient way to produce electricity with solar energy. At present, there are eight commercial solar plants (called SEGS-II, III,.. IX) producing electricity with parabolic-trough collectors and their total output power is 340 MW. Though all SEGS plants currently in operation use thermal oil as a heat transfer fluid between the solar field and the power block, direct steam generation (DSG) in the receiver tubes is a promising option to reduce the cost of electricity produced with parabolic- trough power plants. Most of technical uncertainties associated to the DSG technology were studied and solved in the DISS project and it is expected that this new technology will be commercially available in a short term. In Spain, the Royal Decree No. 436/204 (March 12th , 2004) has defined a premium of 0,18€/kWh for the electricity produced by solar thermal power plants, thus promoting the installation of solar thermal power plants up to a limit of 200 MW. Due to the current legal and financial framework defined in Spain, several projects to install commercial solar power plants with parabolic-trough collectors are currently underway.

  9. High temperature solar thermal technology: The North Africa Market

    SciTech Connect

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  10. Thermal efficiency evaluation of solar rings in tubes

    NASA Astrophysics Data System (ADS)

    Ghasemi, Seyed Ebrahim; Ranjbar, Ali Akbar

    2016-12-01

    In this article, the thermal efficiency of solar rings in tubes is investigated numerically. The effect of the distance between solar rings and the size of the rings on fluid flow and heat transfer are studied. This numerical simulation is implemented by using Computational Fluid Dynamics (CFD). Characteristics of the Nusselt number, friction factor, and thermal performance factor are investigated. The heat transfer fluid is Therminol 55 oil and the analysis is carried out based on the renormalization-group (RNG) k-ɛ turbulence model. The computation results show that the Nusselt number is augmented in comparison with the smooth tube, which confirms that the solar ring has a good effect of heat transfer enhancement. Also, by decreasing the distance between solar rings, the heat transfer coefficient increases, but by increasing the inner diameter of the solar rings, the Nusselt number decreases.

  11. Crystallinity dependent thermal degradation in organic solar cell

    NASA Astrophysics Data System (ADS)

    Lee, Hyunho; Sohn, Jiho; Tyagi, Priyanka; Lee, Changhee

    2017-01-01

    An operating solar cell undergoes solar heating; thus, the degradation study of organic photo-voltaic (OPV) with a thermal stress is required for their practical applications. We present a thermal degradation study on OPVs fabricated with photo-active polymers having different crystalline phase. Light intensity dependent analysis for different thermal stress duration is performed. In crystalline, the degradation majorly occurs due to drop in open-circuit voltage while in amorphous one it is due to drop in short-circuit current. Physical mechanism in both systems is explained and supported by the X-ray diffraction, morphological and optical characterization.

  12. Performance test procedures for thermal collectors - Solar simulators

    NASA Astrophysics Data System (ADS)

    Gillett, W. B.

    The design and use of solar simulators is reviewed in the light of the experience reported by participants in the collaborative collector testing programmes of Commission of the European Communities and the International Energy Agency. Experience with the Compact Source Iodide lamp at Cardiff is used to illustrate the need for correcting both outdoor and solar simulator test results to reference conditions of solar and thermal irradiance. It is suggested that further work is required on the development of procedures for predicting typical outdoor performance from solar simulator measurements where collectors contain new materials or complex geometries.

  13. Influence of thermal treatment on the formation of zirconia nanostructured powder by thermal decomposition of different precursors

    NASA Astrophysics Data System (ADS)

    Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Negrea, Adina; Barvinschi, Floricica

    2013-10-01

    The paper presents some results concerning the preparation of zirconia powders starting from ZrOCl2·8H2O by using two synthesis methods: (a) precipitation with NH3, at 90 °C, and (b) thermal decomposition of carboxylate precursors, obtained in the reaction of zirconium nitrate and two different alcohols, 1,3-propanediol (PD) and poly(vinyl alcohol) (PVA), at 150 °C. The precursors obtained at different temperatures have been characterized by thermal analysis (TG, DTA) and FT-IR spectroscopy. DTA analysis evidenced very clearly the transition temperatures between zirconia crystalline phases. The precursors have been annealed at different temperatures in order to obtain zirconia powders and the as obtained powders have been characterized by means of X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). In case of precipitation method the presence of the tetragonal phase was observed at 400 °C, while the monoclinic phase appears at temperatures higher than 400 °C, becoming major crystalline phase starting with 700 °C. In case of the powders prepared by thermal decomposition of carboxylate precursors, the tetragonal phase was formed at temperatures below 700 °C, when the monoclinic phase begin to crystallize as secondary phase, in a higher proportion for the samples synthesized with 1,3-propanediol. All powders annealed at 1200 °C are pure monoclinic zirconia. SEM images have evidenced for the zirconia powders annealed at 1000 °C particles with diameters up to 150 nm, agglomerated in micrometer-sized aggregates, more individualized and homogenous than that obtained in the case of zirconia powder synthesized with poly(vinyl alcohol).

  14. Comparison of selective transmitters for solar thermal applications.

    PubMed

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P

    2016-05-10

    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent

  15. Thermal evaluation of advanced solar dynamic heat receiver performance

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1989-01-01

    The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.

  16. Measurements of thermal parameters of solar modules

    NASA Astrophysics Data System (ADS)

    Górecki, K.; Krac, E.

    2016-04-01

    In the paper the methods of measuring thermal parameters of photovoltaic panels - transient thermal impedance and the absorption factor of light-radiation are presented. The manner of realising these methods is described and the results of measurements of the considered thermal parameters of selected photovoltaic panels are presented. The influence of such selected factors as a type of the investigated panel and its mounting manner on transient thermal impedance of the considered panels is also discussed.

  17. Solar simulation test up to 13 solar constants for the thermal balance of the Solar Orbiter EUI instrument

    NASA Astrophysics Data System (ADS)

    Rossi, Laurence; Zhukova, Maria; Jacques, Lionel; Halain, Jean-Philippe; Hellin, Marie-Laure; Jamotton, Pierre; Renotte, Etienne; Rochus, Pierre; Liebecq, Sylvie; Mazzoli, Alexandra

    2014-07-01

    Solar Orbiter EUI instrument was submitted to a high solar flux to correlate the thermal model of the instrument. EUI, the Extreme Ultraviolet Imager, is developed by a European consortium led by the Centre Spatial de Liège for the Solar Orbiter ESA M-class mission. The solar flux that it shall have to withstand will be as high as 13 solar constants when the spacecraft reaches its 0.28AU perihelion. It is essential to verify the thermal design of the instrument, especially the heat evacuation property and to assess the thermo-mechanical behavior of the instrument when submitted to high thermal load. Therefore, a thermal balance test under 13 solar constants was performed on the first model of EUI, the Structural and Thermal Model. The optical analyses and experiments performed to characterize accurately the thermal and divergence parameters of the flux are presented; the set-up of the test, and the correlation with the thermal model performed to deduce the unknown thermal parameters of the instrument and assess its temperature profile under real flight conditions are also presented.

  18. Mathematical simulation of thermal decomposition processes in coking polymers during intense heating

    SciTech Connect

    Shlenskii, O.F.; Polyakov, A.A.

    1994-12-01

    Description of nonstationary heat transfer in heat-shielding materials based on cross-linked polymers, mathematical simulation of chemical engineering processes of treating coking and fiery coals, and designing calculations all require taking thermal destruction kinetics into account. The kinetics of chemical transformations affects the substance density change depending on the temperature, the time, the heat-release function, and other properties of materials. The traditionally accepted description of the thermal destruction kinetics of coking materials is based on formulating a set of kinetic equations, in which only chemical transformations are taken into account. However, such an approach does not necessarily agree with the obtained experimental data for the case of intense heating. The authors propose including the parameters characterizing the decrease of intermolecular interaction in a comparatively narrow temperature interval (20-40 K) into the set of kinetic equations. In the neighborhood of a certain temperature T{sub 1}, which is called the limiting temperature of thermal decomposition, a decrease in intermolecular interaction causes an increase in the rates of chemical and phase transformations. The effect of the enhancement of destruction processes has been found experimentally by the contact thermal analysis method.

  19. Tehachapi solar thermal system first annual report

    SciTech Connect

    Rosenthal, A.

    1993-05-01

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  20. Empirical mode decomposition analysis of random processes in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Kolotkov, D. Y.; Anfinogentov, S. A.; Nakariakov, V. M.

    2016-08-01

    Context. Coloured noisy components with a power law spectral energy distribution are often shown to appear in solar signals of various types. Such a frequency-dependent noise may indicate the operation of various randomly distributed dynamical processes in the solar atmosphere. Aims: We develop a recipe for the correct usage of the empirical mode decomposition (EMD) technique in the presence of coloured noise, allowing for clear distinguishing between quasi-periodic oscillatory phenomena in the solar atmosphere and superimposed random background processes. For illustration, we statistically investigate extreme ultraviolet (EUV) emission intensity variations observed with SDO/AIA in the coronal (171 Å), chromospheric (304 Å), and upper photospheric (1600 Å) layers of the solar atmosphere, from a quiet sun and a sunspot umbrae region. Methods: EMD has been used for analysis because of its adaptive nature and essential applicability to the processing non-stationary and amplitude-modulated time series. For the comparison of the results obtained with EMD, we use the Fourier transform technique as an etalon. Results: We empirically revealed statistical properties of synthetic coloured noises in EMD, and suggested a scheme that allows for the detection of noisy components among the intrinsic modes obtained with EMD in real signals. Application of the method to the solar EUV signals showed that they indeed behave randomly and could be represented as a combination of different coloured noises characterised by a specific value of the power law indices in their spectral energy distributions. On the other hand, 3-min oscillations in the analysed sunspot were detected to have energies significantly above the corresponding noise level. Conclusions: The correct accounting for the background frequency-dependent random processes is essential when using EMD for analysis of oscillations in the solar atmosphere. For the quiet sun region the power law index was found to increase

  1. Long-term goals for solar thermal technology

    SciTech Connect

    Williams, T.A.; Dirks, J.A.; Brown, D.R.

    1985-05-01

    This document describes long-term performance and cost goals for three solar thermal technologies. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of $0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  2. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  3. Long-term goals for solar thermal technology

    NASA Astrophysics Data System (ADS)

    Williams, T. A.; Dirks, J. A.; Brown, D. R.

    1985-05-01

    Long-term performance and cost goals for three solar thermal technologies are discussed. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of 0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  4. Borohydride Catalysis of Nitramine Thermal Decomposition and Combustion. 3. Literature Review and Wrap-Up Discussion of Possible Chemical Mechanisms

    DTIC Science & Technology

    1990-07-01

    NO2 )) forms. ie have already alluded above to the effects of added BroHIO= and BI2HI2 on formation of these products. 5 Initially, formic acid ...TIC 7;LE COPY- TECHNICAL REPORT BRL-TR-3126 co ’-0BRL N N 1 BOROHYDRIDE CATALYSIS OF NITRAMINE THERMAL DECOMPOSITION AND COMBUSTION: "III...SUITITLE O""maI BOROHYDRIDE CATALYSIS OF NITRAMINE THERMAL DECOMPOSITION AND COMBUSTION: 111. LITERATURE REVIEW AND WRAP-UP DISCUSSION OF POSSIBLE

  5. Solar Thermal Propulsion for Microsatellite Manoeuvring

    DTIC Science & Technology

    2004-09-01

    of 14-cm and 56-cm diameter solar concentrating mirrors has clearly validated initial optical ray trace modelling and suggests that there is...concentrating mirror’s focus, permitting multiple mirror inputs to heat a single receiver and allowing the receiver to be placed anywhere on the host...The STE is conceptually simple, relying on a mirror or lens assembly to collect and concentrate incident solar radiation. This energy is focused, by

  6. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  7. Solar thermal electricity in 1998: An IEA/SolarPACES summary of status and future prospects

    SciTech Connect

    Tyner, C.E.; Kolb, G.J.; Meinecke, W.; Trieb, F.

    1998-07-01

    Research and development activities sponsored by countries within the International Energy Agency`s solar thermal working group. SolarPACES, have helped reduce the cost of solar thermal systems to one-fifth that of the early pilot plants. Continued technological improvements are currently being proven in next-generation demonstration plants. These advances, along with cost reductions made possible by scale-up to larger production and construction of a succession of power plants, have made solar thermal systems the lowest-cost solar energy in the world and promise cost-competitiveness with fossil-fuel plants in the future. Solar thermal technologies are appropriate for a wide range of applications, including dispatchable central-station power plants where they can meet peak-load to near-base-load needs of a utility, and distributed, modular power plants for both remote and grid-connected applications. In this paper, the authors present the collective position of the SolarPACES community on solar electricity-generating technology. They discuss the current status of the technology and likely near-term improvements; the needs of target markets; and important technical and financial issues that must be resolved for success in near-term global markets.

  8. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  9. Thermal decomposition rate of MgCO3 as an inorganic astrobiological matrix in meteorites

    NASA Astrophysics Data System (ADS)

    Bisceglia, E.; Longo, G. Micca; Longo, S.

    2017-04-01

    Carbonate minerals, likely of hydrothermal origins and included into orthopyroxenite, have been extensively studied in the ALH84001 meteorite. In this meteorite, nanocrystals comparable with those produced by magnetotactic bacteria have been found into a carbonate matrix. This leads naturally to a discussion of the role of such carbonates in panspermia theories. In this context, the present work sets the basis of a criterion to evaluate whether a carbonate matrix in a meteor entering a planetary atmosphere would be able to reach the surface. As a preliminary step, the composition of carbonate minerals in the ALH84001 meteorite is reviewed; in view of the predominance of Mg in these carbonates, pure magnesite (MgCO3) is proposed as a mineral model. This mineral is much more sensitive to high temperatures reached during an entry process, compared with silicates, due to facile decomposition into MgO and gaseous carbon dioxide (CO2). A most important quantity for further studies is therefore the decomposition rate expressed as CO2 evaporation rate J (molecules/m2 s). An analytical expression for J(T) is given using the Langmuir law, based on CO2 pressure in equilibrium with MgCO3 and MgO at the surface temperature T. Results suggest that carbonate minerals rich in magnesium may offer much better thermal protection to embedded biological matter than silicates and significantly better than limestone, which was considered in previous studies, in view of the heat absorbed by their decomposition even at moderate temperatures. This first study can be extended in the future to account for more complex compositions, including Fe and Ca.

  10. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.

    PubMed

    Valverde, Jose Manuel; Perejon, Antonio; Medina, Santiago; Perez-Maqueda, Luis A

    2015-11-28

    Thermal decomposition of dolomite in the presence of CO2 in a calcination environment is investigated by means of in situ X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The in situ XRD results suggest that dolomite decomposes directly at a temperature around 700 °C into MgO and CaO. Immediate carbonation of nascent CaO crystals leads to the formation of calcite as an intermediate product of decomposition. Subsequently, decarbonation of this poorly crystalline calcite occurs when the reaction is thermodynamically favorable and sufficiently fast at a temperature depending on the CO2 partial pressure in the calcination atmosphere. Decarbonation of this dolomitic calcite occurs at a lower temperature than limestone decarbonation due to the relatively low crystallinity of the former. Full decomposition of dolomite leads also to a relatively low crystalline CaO, which exhibits a high reactivity as compared to limestone derived CaO. Under CO2 capture conditions in the Calcium-Looping (CaL) process, MgO grains remain inert yet favor the carbonation reactivity of dolomitic CaO especially in the solid-state diffusion controlled phase. The fundamental mechanism that drives the crystallographic transformation of dolomite in the presence of CO2 is thus responsible for its fast calcination kinetics and the high carbonation reactivity of dolomitic CaO, which makes natural dolomite a potentially advantageous alternative to limestone for CO2 capture in the CaL technology as well as SO2in situ removal in oxy-combustion fluidized bed reactors.

  11. Unimolecular thermal decomposition of phenol and d5-phenol: Direct observation of cyclopentadiene formation via cyclohexadienone

    NASA Astrophysics Data System (ADS)

    Scheer, Adam M.; Mukarakate, Calvin; Robichaud, David J.; Nimlos, Mark R.; Carstensen, Hans-Heinrich; Barney Ellison, G.

    2012-01-01

    The pyrolyses of phenol and d5-phenol (C6H5OH and C6D5OH) have been studied using a high temperature, microtubular (μtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the μtubular reactor of approximately 50-100 μs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C6H5OH → c-C6H6 = O → c-C5H6 + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C5H6 → c-C5H5 + H → HC≡CH + HCCCH2. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C6H5O-H → C6H5O + H → c-C5H5 + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C6H4-OH) and hydroquinone (p-HO-C6H4-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

  12. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect

    2011-02-01

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  13. Conceptual design and system analysis study for a hybrid solar photovoltaic/solar thermal electric power system. Volume 3: Appendices

    NASA Astrophysics Data System (ADS)

    1981-07-01

    Hybrid photovoltaic/solar thermal electric conversion systems were analyzed. Several types of hybrid systems, photovoltaic only systems, and solar thermal electric systems in terms of performance and cost were compared. The computer code used in the analyses and background information on heat engines, thermal efficiencies of photovoltaic thermal collectors, and optical considerations for central receiver plants is also described.

  14. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate

    SciTech Connect

    Manigandan, R.; Giribabu, K.; Suresh, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2013-10-15

    Graphical abstract: - Highlights: • The cubic Gd{sub 2}O{sub 3} nanobars are synthesized by decomposition of C{sub 6}H{sub 20}Gd{sub 2}O{sub 22}. • The nanoparticles are rectangular bar shape with high porous surface. • The combination of magnetic and optical properties within a single particle. • The Gd{sub 2}O{sub 3} nanobars have tailorable nanostructure, wide bandgap and are paramagnetic. - Abstract: Gadolinium oxide nanobars were obtained by thermal decomposition of gadolinium oxalate, which was synthesized by the chemical precipitation method along with glycerol. The functional group analysis and formation of gadolinium oxide from gadolinium oxalate were characterized by the Fourier transform infrared spectroscopy and thermo gravimetric analyzer. The crystal structure, average crystallite size, and lattice parameter were analyzed by X-ray diffraction technique. Moreover, Raman shifts, elemental composition and morphology of the gadolinium oxide was widely investigated by the laser Raman microscope, X-ray photoelectron spectroscopy, FE-SEM-EDAX and HR-TEM, respectively. Furthermore, the optical properties like band gap, absorbance measurement of the gadolinium oxide were extensively examined. In addition, the paramagnetic property of gadolinium oxide nanobars was explored by the vibrating sample magnetometer.

  15. Band gap energy and optical transitions in polyenes formed by thermal decomposition of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Kulak, A. I.; Bondarava, G. V.; Shchurevich, O. A.

    2013-07-01

    The band gap of the ensemble of oligoene clusters formed by thermocatalytic decomposition of polyvinyl alcohol is parametrized using optical absorption spectra. A band gap energy of E gm =1.53 ± 0.02 eV at the end of an infinite polyene chain is found by extrapolating the energies of π → π* transitions in clusters with a number of double bonds varying from 4 to 12. This value is close to the band gap of trans-polyacetylene and the lower bound for the Tauc energy E gT =1.50 eV, which characterizes the minimum interband transition energy. E gT is essentially independent of the concentration of oligoene clusters, which is determined by the concentration of the AlCl3 thermal decomposition catalyst. The Urbach energy determined from the long wavelength edge of the spectrum falls from 2.21 to 0.66 eV as the AlCl3 concentration is raised from 11.1 to 41.7 mmol per mol of polyvinyl alcohol structural units.

  16. Thermal Decomposition of C7H7 Radicals; Benzyl, Tropyl, and Norbornadienyl

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant; Ellison, Barney; Daily, John W.; Ahmed, Musahid

    2015-06-01

    Benzyl radical (C6H5CH2) and two other C7H7 radicals are commonly encountered in the combustion of substituted aromatic compounds found in biofuels and gasoline. High temperature pyrolysis of benzyl radical requires isomerization to other C7H7 radicals that may include cycloheptatrienyl (tropyl) radical (cyc-C7H7) and norbornadienyl radical. The thermal decomposition of all three radicals has now been investigated using a micro-reactor that heats dilute gas-phase samples up to 1600 K and has a residence time of about 100 μ-sec. The pyrolysis products exit the reactor into a supersonic expansion and are detected using synchrotron-based photoionization mass spectrometry and matrix-isolation IR spectroscopy. The products of the pyrolysis of benzyl radical (C6H5CH2) along with three isotopomers (C6H513CH2, C6D5CH2, and C6H5CD2) were detected and identified. The distribution of 13C atoms and D atoms indicate that multiple different decomposition pathways are active. Buckingham, G. T., Ormond, T. K., Porterfield, J. P., Hemberger, P., Kostko, O., Ahmed, M., Robichaud, D. J., Nimlos, M. R., Daily, J. W., Ellison, G. B. 2015, Journal of Chemical Physics 142 044307

  17. Theoretical Study of the Thermal Decomposition of Carboxylic Acids at Pyrolysis Temperature

    SciTech Connect

    Clark, J. M.; Robichaud, D. J.; Nimlos, M. R.

    2013-01-01

    Carboxylic acids are important in the processing of biomass into renewable fuels and chemicals. They are formed from the pretreatment and pyrolysis of hemicellulose biopolymers and are released from the decomposition of sugars. They result from the deconstruction of polyhydroxyalkanoates (bacterial carbon storage polymers) from fatty acids derived from algae, bacteria, and oil crops. The thermal deoxygenation of carboxylic acids is an important step in the conversion of biomass into aliphatic hydrocarbons suitable for use in renewable biofuels and as petrochemical replacements. Decarboxylation, a primary decomposition pathway under pyrolysis conditions, represents an ideal conversion process, because it eliminates two atoms of oxygen for every carbon atom removed. Problematically, additional deoxygenation processes exist (e.g. dehydration) that are in direct competition with decarboxylation and result in the formation of reactive and more fragmented end products. To better understand the competition between decarboxylation and other deoxygenation processes and to gain insight into possible catalysts that would favor decarboxylation, we have investigated the mechanisms and thermochemistry of the various unimolecular and bimolecular deoxygenation pathways for a family of C1-C4 organic acids using electronic structure calculations at the M06-2X/6-311++G(2df,p) level of theory.

  18. High-temperature molten salt solar thermal systems

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.; Leach, J. W.; Stern, G.

    Conceptual designs of a solar thermal central receiver and a thermal storage subsystem were analyzed to estimate thermal losses and to assess the economics of high-temperature applications with molten salt transport fluids. Modifications to a receiver design being developed by the Martin Marietta Corporation were studied to investigate possible means for improving efficiency at high temperatures. Computations were made based on conceptual design of internally insulated high temperature storage tanks to estimate cost and performance. A study of a potential application of the system for thermochemical production of hydrogen indicates that thermal storage at 1100 C will be economically attractive.

  19. Technical use of solar energy: Conversion from solar to thermal energy, solar cooling and thermal energy storage

    NASA Astrophysics Data System (ADS)

    Arafa, A.; Fisch, N.; Hahne, E.; Kraus, K.; Seemann, D.; Seifert, B.; Sohns, J.; Schetter, G.; Schweigerer, W.

    1983-12-01

    Experimental and theoretical studies in the field of solar energy utilization are reviewed. Specific topics considered are: flat plate water collectors, solar absorbers, air collectors, solar absorption cooling, solar simulators, aquifiers, latent heat stores, and space heating systems.

  20. Solar Thermal Energy Storage in a Photochromic Macrocycle.

    PubMed

    Vlasceanu, Alexandru; Broman, Søren L; Hansen, Anne S; Skov, Anders B; Cacciarini, Martina; Kadziola, Anders; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2016-07-25

    The conversion and efficient storage of solar energy is recognized to hold significant potential with regard to future energy solutions. Molecular solar thermal batteries based on photochromic systems exemplify one possible technology able to harness and apply this potential. Herein is described the synthesis of a macrocycle based on a dimer of the dihydroazulene/vinylheptafulvene (DHA/VHF) photo/thermal couple. By taking advantage of conformational strain, this DHA-DHA macrocycle presents an improved ability to absorb and store incident light energy in chemical bonds (VHF-VHF). A stepwise energy release over two sequential ring-closing reactions (VHF→DHA) combines the advantages of an initially fast discharge, hypothetically addressing immediate energy consumption needs, followed by a slow process for consistent, long-term use. This exemplifies another step forward in the molecular engineering and design of functional organic materials towards solar thermal energy storage and release.

  1. Enhanced Thermal Decomposition Properties of CL-20 through Space-Confining in Three-Dimensional Hierarchically Ordered Porous Carbon.

    PubMed

    Chen, Jin; He, Simin; Huang, Bing; Wu, Peng; Qiao, Zhiqiang; Wang, Jun; Zhang, Liyuan; Yang, Guangcheng; Huang, Hui

    2017-03-29

    High energy and low signature properties are the future trend of solid propellant development. As a new and promising oxidizer, hexanitrohexaazaisowurtzitane (CL-20) is expected to replace the conventional oxidizer ammonium perchlorate to reach above goals. However, the high pressure exponent of CL-20 hinders its application in solid propellants so that the development of effective catalysts to improve the thermal decomposition properties of CL-20 still remains challenging. Here, 3D hierarchically ordered porous carbon (3D HOPC) is presented as a catalyst for the thermal decomposition of CL-20 via synthesizing a series of nanostructured CL-20/HOPC composites. In these nanocomposites, CL-20 is homogeneously space-confined into the 3D HOPC scaffold as nanocrystals 9.2-26.5 nm in diameter. The effect of the pore textural parameters and surface modification of 3D HOPC as well as CL-20 loading amount on the thermal decomposition of CL-20 is discussed. A significant improvement of the thermal decomposition properties of CL-20 is achieved with remarkable decrease in decomposition peak temperature (from 247.0 to 174.8 °C) and activation energy (from 165.5 to 115.3 kJ/mol). The exceptional performance of 3D HOPC could be attributed to its well-connected 3D hierarchically ordered porous structure, high surface area, and the confined CL-20 nanocrystals. This work clearly demonstrates that 3D HOPC is a superior catalyst for CL-20 thermal decomposition and opens new potential for further applications of CL-20 in solid propellants.

  2. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    PubMed

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  3. Development of Boundary Condition Independent Reduced Order Thermal Models using Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Raghupathy, Arun; Ghia, Karman; Ghia, Urmila

    2008-11-01

    Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.

  4. Thermal performance of evacuated tube heat pipe solar collector

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  5. China experiments with solar-thermal power production

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2009-04-01

    Construction is due to start later this month on an experimental solar-thermal power plant in the shadow of China's Great Wall that will bring clean energy to 30 000 households by 2010. Built on the outskirts of Beijing at a cost of £10m, the 1.5MW Dahan plant will cover an area the size of 10 football pitches, and will serve as a platform for experiments on different solar-power technologies.

  6. Surface studies of the thermal decomposition of triethylgallium on GaAs (100)

    NASA Astrophysics Data System (ADS)

    Murrell, A. J.; Wee, A. T. S.; Fairbrother, D. H.; Singh, N. K.; Foord, J. S.; Davies, G. J.; Andrews, D. A.

    1990-10-01

    The adsorption and surface decomposition of triethylgallium (TEG) on GaAs (100) has been studied using XPS and thermal desorption techniques. TEG is found to adsorb in a molecular form on the Ga rich (4×1) surface below 150 K. As the surface temperature is raised, this molecular state dissociates to form Ga and adsorbed ethyl species. The overall cracking reaction occurs in competition with the desorption of TEG and diethylgallium (DEG). Under the conditions of our experiments the adsorbed ethyl species formed above are found to dissociate above 600 K to form mainly gas phase ethene and hydrogen with traces of ethane, resulting in the formation of a pure Ga layer within the sensitivity limits imposed by XPS.

  7. Effect of surfactants on the size and shape of cobalt nanoparticles synthesized by thermal decomposition

    NASA Astrophysics Data System (ADS)

    Shao, Huiping; Huang, Yuqiang; Lee, Hyosook; Suh, Yong Jae; Kim, Chongoh

    2006-04-01

    Cobalt nanoparticles with various morphologies were synthesized by thermal decomposition of cobalt acetate in the presence of various surfactants at 260 °C. A combination of surfactants consisting of sufficient amount of oleic acid together with polyvinylpyrrolidone and oleylamine resulted in well-dispersed cubic cobalt nanoparticles of ~25 nm in average size. When 1,2-dodecanediol was added as a reducing agent to the surfactant mixture, triangular-prism-shaped nanoparticles of ~50 nm in average size were synthesized. Furthermore, an injection of trioctylphosphine into the reactor as an additional surfactant decreased the particle size to ~10 nm. The XRD pattern of the prism-like particles corresponded to hexagonal close-packed crystalline phase of cobalt.

  8. Thermal decomposition study of monovarietal extra virgin olive oil by simultaneous thermogravimetry/differential scanning calorimetry: relation with chemical composition.

    PubMed

    Vecchio, Stefano; Cerretani, Lorenzo; Bendini, Alessandra; Chiavaro, Emma

    2009-06-10

    Thermal decomposition of 12 monovarietal extra virgin olive oils from different geographical origins (eight from Italy, two from Spain, and the others from Tunisia) was evaluated by simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses. All extra virgin olive oils showed a complex multistep decomposition pattern with the first step that exhibited a quite different profile among samples. Thermal properties of the two peaks obtained by the deconvolution of the first step of decomposition by DSC were related to the chemical composition of the samples (triacylglycerols, fatty acids, total phenols and antioxidant activity). Onset temperatures of the thermal decomposition transition and T(p) values of both deconvoluted peaks as well as the sum of enthalpy were found to exhibit statistically significant correlations with chemical components of the samples, in particular palmitic and oleic acids and related triacylglycerols. Activation energy values of the second deconvoluted peak obtained by the application of kinetic procedure to the first step of decomposition were also found to be highly statistically correlated to the chemical composition, and a stability scale among samples was proposed on the basis of its values.

  9. Solar photovoltaic/thermal residential experiment, phase 2

    NASA Astrophysics Data System (ADS)

    Kugle, S. T.; Leith, J. R.; Svane, M. S.

    1981-08-01

    Performance and operation of photovoltaic and thermal solar heating and cooling systems were evaluated in order to assess the feasibility of hybrid photovoltaic/thermal collectors. Experiments were carried out at an instrumented single-family dwelling/research facility at the University of Texas at Arlington. The cooling load was the dominant comfort consideration, since the climate at the research site (in north central Texas) is generally regarded as humid subtropical with hot summers. Several solar-assisted heating and cooling configurations were considered for a basic system comprised of the photovoltaic and thermal collectors, a thermal storage tank, and a two-speed heat pump. The photovoltaic array, with an area of 109 sq. m was part of a utility-interactive ('line-stuffing') power system. Average solar-to-dc conversion efficiency of the array was 4.7%. Efficiency of the thermal collectors, with an area of 48.4 sq. m, was 5 to 20% and was dependent upon the difference between the glycol-water collector loop and thermal storage tank temperatures. Design objectives and operational strategies for hybrid photovoltaic/thermal collector systems were developed.

  10. Experimental and modeling study of the thermal decomposition of methyl decanoate

    PubMed Central

    Herbinet, Olivier; Glaude, Pierre-Alexandre; Warth, Valérie; Battin-Leclerc, Frédérique

    2013-01-01

    The experimental study of the thermal decomposition of methyl decanoate was performed in a jet-stirred reactor at temperatures ranging from 773 to 1123 K, at residence times between 1 and 4 s, at a pressure of 800 Torr (106.6 kPa) and at high dilution in helium (fuel inlet mole fraction of 0.0218). Species leaving the reactor were analyzed by gas chromatography. Main reaction products were hydrogen, carbon oxides, small hydrocarbons from C1 to C3, large 1-olefins from 1-butene to 1-nonene, and unsaturated esters with one double bond at the end of the alkyl chain from methyl-2-propenoate to methyl-8-nonenoate. At the highest temperatures, the formation of polyunsaturated species was observed: 1,3-butadiene, 1,3-cyclopentadiene, benzene, toluene, indene, and naphthalene. These results were compared with previous ones about the pyrolysis of n-dodecane, an n-alkane of similar size. The reactivity of both molecules was found to be very close. The alkane produces more olefins while the ester yields unsaturated oxygenated compounds. A detailed kinetic model for the thermal decomposition of methyl decanoate has been generated using the version of software EXGAS which was updated to take into account the specific chemistry involved in the oxidation of methyl esters. This model contains 324 species and 3231 reactions. It provided a very good prediction of the experimental data obtained in jet-stirred reactor. The formation of the major products was analyzed. The kinetic analysis showed that the retro-ene reactions of intermediate unsaturated methyl esters are of importance in low reactivity systems. PMID:23710078

  11. Study of condition-dependent decomposition reactions; Part I. The thermal behaviour and decomposition of 2-nitrobenzoyl chloride.

    PubMed

    Lever, Sarah D; Papadaki, Maria

    2004-11-11

    The risks associated with batch processing in the manufacture of chemicals and pharmaceuticals via highly exothermic reactions are of special interest due to the possibility of runaway reactions. o-Nitrated benzoyl chlorides are intermediates in the production of agrochemicals and are produced via the reaction of o-nitrated carboxylic acids with thionyl chloride in a solvent mixture. ortho-Nitrated acyl chlorides have exploded violently on attempted distillation on numerous occasions. An inadequate investigation of the process prior to large-scale operation is the most likely cause. Here we present preliminary results of studies on the decomposition of 2-nitrobenzoyl chloride. This study has revealed that the decomposition reaction is strongly condition dependent. The heating rate of the sample plays a preponderant role in the course of the decomposition reaction. That renders the interpretation of differential scanning calorimetry (DSC) or adiabatic calorimetry measurements, which are routinely used to assess the thermochemistry and safety of the large-scale reactions, problematic. Following this on-going study, we report here key features of the system that have been identified.

  12. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  13. High Performance Flat Plate Solar Thermal Collector Evaluation

    SciTech Connect

    Rockenbaugh, Caleb; Dean, Jesse; Lovullo, David; Lisell, Lars; Barker, Greg; Hanckock, Ed; Norton, Paul

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  14. Heat engine development for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  15. Analysis of dynamic effects in solar thermal energy conversion systems

    NASA Technical Reports Server (NTRS)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  16. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  17. Semi-transparent solar energy thermal storage device

    DOEpatents

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  18. Large-scale solar thermal collector concepts

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr.

    1975-01-01

    Thermal collector could be used ultimately to power steamplant to produce electricity. Collector would consist of two major subsystems: (1) series of segmented tracking mirrors with two axes of rotation and (2) absorber mounted on centrally located tower.

  19. Solar Thermal Utilization: Past, Present and Future

    DTIC Science & Technology

    2010-09-01

    CANTEENS, HOSTELS ETC ) VIRTUAL POWER STATION “A WATT SAVED IS A WATT GENERATED” 100lpd - DOMESTIC 3000lpd - DHARAMSHILA HOSPITAL 7000lpd –TAJ HOTEL...sq.m Energy SavingsCollector area MARKET UTILIZATION – NALSUN COATINGS – 90% SOLAR WATER HEATING ENERGY SAVINGS Jaideep Malaviya

  20. Ab initio Kinetics of Methylamine Radical Thermal Decomposition and H-abstraction from Monomethylhydrazine by H Atom

    DTIC Science & Technology

    2014-08-01

    Technical Paper 3. DATES COVERED (From - To) December 2013- August 2014 4. TITLE AND SUBTITLE Ab initio Kinetics of Methylamine Radical Thermal...phase kinetics of H-abstraction reactions from CH3NHNH2 by H atoms was further investigated by ab initio second-order multireference perturbation...distribution unlimited Ab initio Kinetics of Methylamine Radical Thermal Decomposition and H-abstraction from Monomethylhydrazine by H Atom

  1. Mechanism of thermal decomposition of a pesticide for safety concerns: case of Mancozeb.

    PubMed

    Giroud, N; Dorge, S; Trouvé, G

    2010-12-15

    Thermal decomposition under both air and inert atmospheres of a commercial Mancozeb product was investigated through thermogravimetric analysis and laboratory scale thermal treatment from 20°C to 950°C, with analysis of gaseous and solid products. The aim of this study is the understanding of the thermal degradation mechanisms of a pesticide under different atmospheres and the chemical identification of the solid and gaseous pollutants which can be emitted during warehouse fires and which can constitute a threat for health and environment. Pyrolysis of Mancozeb takes place between 20°C and 950°C and lead essentially to CS(2) and H(2)S emissions with formation at 950°C of MnS and ZnS. Thermal oxidation of Mancozeb under air occurs between 150°C and 950°C with formation of CO, CO(2) and sulphur gases (CS(2) and SO(2)). The first step (155-226°C) is the loss of CS(2) and the formation of ethylene thiourea, ZnS and MnS. The metallic sulphides are oxidized in ZnO and MnSO(4) between 226°C and 650°C (steps 2 and 3). MnSO(4) is then oxidized in Mn(3)O(4) during the last step (step 4) between 650°C and 950°C. At 950°C, carbon recovery is close to 95%. Sulphur recovery is close to 98% with an equal partition between SO(2) and CS(2).

  2. An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An analytical comparison of the efficiency of solar thermal collector arrays with and without external manifolds is reported. A FORTRAN computer program was written for the computation of the thermal performance of solar thermal collector arrays with and without external manifolds. Arrays constructed from two example solar thermal collectors are computated. Typical external manifold sizes and thermal insulations are presented graphically and are compared with the thermal performance of the collector alone.

  3. Investigation of the effect of intensive ball milling in a planetary ball mill on the thermal decomposition of cadmium carbonate and basic zinc carbonate

    NASA Astrophysics Data System (ADS)

    Ksiadot zek, K.; Wacke, S.; Górecki, T.; Górecki, Cz

    2007-08-01

    The kinetics of thermal decomposition of cadmium carbonate CdCO3 and basic zinc carbonate ZnCO3·nZn(OH)2 and the effect of intensive milling in a planetary ball mill on its parameters, have been investigated. The values of the reaction heat and of the activation energies of thermal decomposition have been determined for both the compounds. Investigations of the thermal decomposition of the products of ball milling of investigated compounds revealed a slight effect of milling conditions on the reaction temperature and heat consumed during the thermal decomposition of ZnCO3·nZn(OH)2. No effect of ball milling on the thermal decomposition of CdCO3 has been found.

  4. Effect of thermal shock on the decomposition of rocks under controlled laboratory conditions

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Vezmar, Tijuana; Kuhn, Nikolaus J.

    2013-04-01

    The major factor determining the rate of weathering of a given rock are the climatic conditions of the surrounding environment, most notably type and amount of precipitation and temperature. For the latter, average annual temperature and where applicable, the frequency of freezing and thawing are often considered to be relevant for weathering. The rate of temperature change is mostly ignored. However, a rapid change in temperature, referred to as thermal shock could have more severe consequences of rock deterioration then gradual heating and cooling of rocks is gradual. Thermal shock induces a stress of such a magnitude that the material is unable to adjust fast enough and so it breaks down. The aim of this study is to examine the importance of mechanical decomposition of rocks when treated with thermal shock by freezing. The rate of decomposition of rocks of various sizes was measured based on their weight loss. In addition, they were immersed in water after freezing and the electrical conductivity and pH of the water were measured as an index for thermal-shock induced micro-fracturing. Samples of three rock types were chosen for the experiment: limestone, tuffaceous rock and basalt. Samples were examined in two separate cycles: (i) 24h immersion in ultra-clean water followed by 24h drying at 30o and (ii) 24h immersion, 24h temperature shock by freezing at -20˚C and 6h thawing. Each cycle was repeated approximately 20 times. In each cycle three different sizes of rock were examined: <16mm, 16-8mm and 8-5mm. Limestone mass decreased for both cycles, although more distinctly after repeated thermal shocks. Furthermore, the rate of decay decreased with increasing rock size. Tuffaceous rock exposed to cycle (i) also showed a significant weight loss. Somewhat surprisingly, the mass of the tuffaceous rock exposed to thermal shock increased by about 13% in all sample size groups. It is possible that pore volume increased during experiment and that the rocks became

  5. Thermal decomposition of HMX: Low temperature reaction kinetics and their use for assessing response in abnormal thermal environments and implications for long-term aging

    SciTech Connect

    Behrens, R.; Bulusu, S.

    1995-12-01

    The thermal decomposition of HMX between 175 and 200{degree}C has been studied using the simultaneous thermogravimetric modulated beam mass spectrometer (STMBMS) apparatus with a focus on the initial stages of the decomposition. The identity of thermal decomposition products is the same as that measured in previous higher temperature experiments. The initial stages of the decomposition are characterized by an induction period followed by two acceleratory periods. The Arrhenius parameters for the induction and two acceleratory periods are (Log(A) = 18.2 {plus_minus} 0.8, Ea = 48.2 {plus_minus} 1.8 kcal/mole), (Log(A) = 17.15 {plus_minus} 1.5 and Ea = 48.9 {plus_minus} 3.2 kcal/mole), (Log A) = 19.1 {plus_minus} 3.0 and Ea = 52.1 {plus_minus} 6.3 kcal/mole), respectively. This data can be used to calculate the time and temperature required to decompose a desired fraction of a sample that is being prepared to test the effect of thermal degradation on its sensitivity or burn rates. It can also be used to estimate the extent of decomposition that may be expected under normal storage conditions for munitions containing HMX. This data, along with previous mechanistic studies conducted at higher temperatures, suggest that the process that controls the early stages of decomposition of HMX in the solid phase is scission of the N-NO{sub 2} bond, reaction of the N0{sub 2} within a ``lattice cage`` to form the mononitroso analogue of HMX and decomposition of the mononitroso HMX within the HMX lattice to form gaseous products that are retained in bubbles or diffuse into the surrounding lattice.

  6. Solar wind thermally induced magnetic fluctuations.

    PubMed

    Navarro, R E; Moya, P S; Muñoz, V; Araneda, J A; F-Viñas, A; Valdivia, J A

    2014-06-20

    A kinetic description of Alfvén-cyclotron magnetic fluctuations for anisotropic electron-proton quasistable plasmas is studied. An analytical treatment, based on the fluctuation-dissipation theorem, consistently shows that spontaneous fluctuations in plasmas with stable distributions significantly contribute to the observed magnetic fluctuations in the solar wind, as seen, for example, in [S. D. Bale et al., Phys. Rev. Lett. 103, 211101 (2009)], even far below from the instability thresholds. Furthermore, these results, which do not require any adjustable parameters or wave excitations, are consistent with the results provided by hybrid simulations. It is expected that this analysis contributes to our understanding of the nature of magnetic fluctuations in the solar wind.

  7. Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method

    PubMed Central

    2013-01-01

    By means of thermal decomposition, we prepared single-phase spherical Ni nanoparticles (23 to 114 nm in diameter) that are face-centered cubic in structure. The magnetic properties of the Ni nanoparticles were experimentally as well as theoretically investigated as a function of particle size. By means of thermogravimetric/differential thermal analysis, the Curie temperature TC of the 23-, 45-, 80-, and 114-nm Ni particles was found to be 335°C, 346°C, 351°C, and 354°C, respectively. Based on the size-and-shape dependence model of cohesive energy, a theoretical model is proposed to explain the size dependence of TC. The measurement of magnetic hysteresis loop reveals that the saturation magnetization MS and remanent magnetization increase and the coercivity decreases monotonously with increasing particle size, indicating a distinct size effect. By adopting a simplified theoretical model, we obtained MS values that are in good agreement with the experimental ones. Furthermore, with increase of surface-to-volume ratio of Ni nanoparticles due to decrease of particle size, there is increase of the percentage of magnetically inactive layer. PMID:24164907

  8. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method.

    PubMed

    Dümichen, Erik; Barthel, Anne-Kathrin; Braun, Ulrike; Bannick, Claus G; Brand, Kathrin; Jekel, Martin; Senz, Rainer

    2015-11-15

    Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification.

  9. Dielectric Properties and Thermal Decomposition of K2Ni(SO4)2 Crystals

    NASA Astrophysics Data System (ADS)

    Marzougui, H.; Sánchez, V.; León-Luis, S. F.; Lozano-Gorrín, A. D.; Lalla, E.; Torres, M. E.; Attia-Essaies, S.; Ben Hassen-Chehimi, D.

    2016-11-01

    The dielectric properties of K2Ni(SO4)2 crystals have been measured as a function of frequency (100 Hz to 1 MHz) and temperature (400 K to 900 K). The results show that the real part of the conductivity follows the universal dielectric response, where the activation energy varies from 0.72 eV up to 1.08 eV for the temperature range studied. On the other hand, the permittivity and conductivity parameters present a change in their frequency dependence at around 620 K, suggesting that a phase transition might be taking place. To understand this unexpected result, complementary study by thermogravimetric and differential thermal analyses, X-ray powder diffraction analysis, and Raman spectroscopy measurements was carried out. The results suggest thermal decomposition of the original compound at 620 K as follows: 2K2Ni(SO4)2 → K2Ni2(SO4)3 + K2SO4.

  10. Perchlorate induced low temperature carbonate decomposition in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA)

    NASA Astrophysics Data System (ADS)

    Cannon, K. M.; Sutter, B.; Ming, D. W.; Boynton, W. V.; Quinn, R.

    2012-07-01

    Simulated Thermal Evolved Gas Analyzer (TEGA) analyses have shown that a CO2 release detected between 400°C and 680°C by the Phoenix Lander's TEGA instrument may have been caused by a reaction between calcium carbonate and hydrated magnesium perchlorate. In our experiments a CO2 release beginning at 385 ± 12°C was attributed to calcite reacting with water vapor and HCl gas from the dehydration and thermal decomposition of Mg-perchlorate. The release of CO2 is consistent with the TEGA detection of CO2 released between 400 and 680°C, with the amount of CO2 increasing linearly with added perchlorate. X-ray diffraction (XRD) experiments confirmed CaCl2 formation from the reaction between calcite and HCl. These results have important implications for the Mars Science Laboratory (MSL) Curiosity rover. Heating soils may cause inorganic release of CO2; therefore, detection of organic fragments, not CO2 alone, should be used as definitive evidence for organics in Martian soils.

  11. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  12. Solar cells based on GaAs: Thermal behavior study

    NASA Astrophysics Data System (ADS)

    Giudicelli, Emmanuel; Martaj, Nadia; Bennacer, Rachid; Dollet, Alain; Perona, Arnaud; Pincemin, Sandrine; Cuminal, Yvan

    2016-03-01

    Current CPV electricity costs are still higher than those of conventional PV (thin films or silicon). This is due to additional components (tracker, Fresnel lens, optical guide…) required for CPV and to a lesser extent, to the very high price of III-V multi-junction solar cells. One way to lower CPV costs is to reduce the size of solar cells and operate at higher concentration [1]. One of the main potential limitations for the use of PV cells at very high solar concentration is cell overheating. The goal of this work is to study and better understand the thermal behavior of PV cells in high solar concentrations conditions (˜ 2000 suns). For that purpose, we have designed and prepared PV cells with platinum resistors included. Temperature measurements performed on these cells in real solar concentration conditions have allowed us to validate thermal simulations of our devices that could be used to optimize the thermal management of the cell under high concentration. At the request of the authors of the paper, an updated version of this article was published on 31 March 2016. In the original article supplied to AIP Publishing an author was omitted as well as a credit line on the last page. These errors have been corrected in the updated republished article.

  13. Solar cells based on GaAs: Thermal behavior study

    NASA Astrophysics Data System (ADS)

    Giudicelli, Emmanuel; Martaj, Nadia; Dollet, Alain; Perona, Arnaud; Pincemin, Sandrine; Cuminal, Yvan

    2015-09-01

    Current CPV electricity costs are still higher than those of conventional PV (thin films or silicon). This is due to additional components (tracker, Fresnel lens, optical guide…) required for CPV and to a lesser extent, to the very high price of III-V multi-junction solar cells. One way to lower CPV costs is to reduce the size of solar cells and operate at higher concentration [1]. One of the main potential limitations for the use of PV cells at very high solar concentration is cell overheating. The goal of this work is to study and better understand the thermal behavior of PV cells in high solar concentrations conditions (˜ 2000 suns). For that purpose, we have designed and prepared PV cells with platinum resistors included. Temperature measurements performed on these cells in real solar concentration conditions have allowed us to validate thermal simulations of our devices that could be used to optimize the thermal management of the cell under high concentration.

  14. Better Thermal Insulation in Solar-Array Laminators

    NASA Technical Reports Server (NTRS)

    Burger, D. R.; Knox, J. F.

    1984-01-01

    Glass marbles improve temperature control. Modified vacuum laminator for photovoltaic solar arrays includes thermal insulation made of conventional glass marbles. Marbles serve as insulation for temperature control of lamination process at cure temperatures as high as 350 degrees F. Used to replace original insulation made of asbestos cement.

  15. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  16. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  17. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  18. CVD Rhenium Engines for Solar-Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Fortini, Arthur J.; Tuffias, Robert H.; Duffy, Andrew J.; Tucker, Stephen P.

    1999-01-01

    Solar-thermal upper-stage propulsion systems have the potential to provide specific impulse approaching 900 seconds, with 760 seconds already demonstrated in ground testing. Such performance levels offer a 100% increase in payload capability compared to state-of-the-art chemical upper-stage systems, at lower cost. Although alternatives such as electric propulsion offer even greater performance, the 6- to 18- month orbital transfer time is a far greater deviation from the state of the art than the one to two months required for solar propulsion. Rhenium metal is the only material that is capable of withstanding the predicted thermal, mechanical, and chemical environment of a solar-thermal propulsion device. Chemical vapor deposition (CVD) is the most well-established and cost-effective process for the fabrication of complex rhenium structures. CVD rhenium engines have been successfully constructed for the Air Force ISUS program (bimodal thrust/electricity) and the NASA Shooting Star program (thrust only), as well as under an Air Force SBIR project (thrust only). The bimodal engine represents a more long-term and versatile approach to solar-thermal propulsion, while the thrust-only engines provide a potentially lower weight/lower cost and more near-term replacement for current upper-stage propulsion systems.

  19. Fuels and chemicals from biomass using solar thermal energy

    NASA Technical Reports Server (NTRS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  20. Fuels and chemicals from biomass using solar thermal energy

    NASA Astrophysics Data System (ADS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-05-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  1. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1982-01-01

    The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.

  2. Buffer thermal energy storage for a solar Brayton engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  3. Thermal effects in the Solar Disk Sextant telescope

    NASA Astrophysics Data System (ADS)

    Spagnesi, Chiara; Vannoni, Maurizio; Molesini, Giuseppe; Righini, Alberto

    2004-02-01

    The Solar Disk Sextant (SDS) is an instrument conceived to monitor the diameter of the Sun and its oscillations. A key component of the SDS is the Beam Splitting Wedge (BSW), whose function is to provide calibration to the geometry of the focal plane. The thermal behavior of the BSW is critical, as it affects the overall performance of the instrument. Modeling the elements of the BSW and the basic thermal processes is shown to account for experimental evidences of defocusing observed in early measurements with a balloon borne prototype. Basic requirements for accurate thermal stabilization on board of the final instrument are derived.

  4. Thermal control of the solar electric propulsion stage

    NASA Technical Reports Server (NTRS)

    Ruttner, L. E.

    1973-01-01

    The thermal control requirements consist of functional requirements related to the various mission phase natural environments, operational requirements of induced power loadings by the solar electric propulsion stage subsystems, and design temperature limits for performance and reliability. The design approach utilizes passive thermal control techniques combining insulation, surface coatings, and sunshields with thermostatically controlled louvers. Heaters are used to regulate certain temperatures for extreme conditions. Details regarding the thruster array thermal control design are discussed, giving attention to the parameters used in the mathematical model, questions of conductive coupling, and thruster estimated power distribution.

  5. Thermal-envelop stone house, solar. Final technical report

    SciTech Connect

    Avery, S.C.

    1982-05-19

    The purpose of this project is to create a comfortable, low-cost heating system for a single-family house, without dependence on non-renewable energy sources. I have attempted to combine a simple solar air-heating collector with the thermal envelop concept (for thermal air circulation) and massive interior stone walls for heat storage. All building materials, with the exception of the solar glazing material and certain other solar components, are inexpensive and locally produced. Examples are: rough-cut hardwood lumber, sandstone (free for the gathering), galvanized roofing for absorberplate, concrete, concrete block, and cellulose insulation. The collector has operated with a relatively high degree of efficiency, though three 0.6 amp duct fans had to be installed in order to increase air circulation. The interior stonework has provided more than adequate heat storage, along with even heat radiation throughout cloudy periods. My main problem has been heat loss around the foundation.

  6. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  7. Terrestrial Solar Thermal Power Plants: On the Verge of Commercialization

    NASA Astrophysics Data System (ADS)

    Romero, M.; Martinez, D.; Zarza, E.

    2004-12-01

    Solar Thermal Power Plants (STPP) with optical concentration technologies are important candidates for providing the bulk solar electricity needed within the next few decades, even though they still suffer from lack of dissemination and confidence among citizens, scientists and decision makers. Concentrating solar power is represented nowadays at pilot-scale and demonstration-scale by four technologies, parabolic troughs, linear Fresnel reflector systems, power towers or central receiver systems, and dish/engine systems, which are ready to start up in early commercial/demonstration plants. Even though, at present those technologies are still three times more expensive than intermediate-load fossil thermal power plants, in ten years from now, STPP may already have reduced production costs to ranges competitive. An important portion of this reduction (up to 42%) will be obtained by R&D and technology advances in materials and components, efficient integration schemes with thermodynamic cycles, highly automated control and low-cost heat storage systems.

  8. A thermal shield concept for the Solar Probe mission

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.

    1991-01-01

    The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.

  9. Effect of Copper Oxide, Titanium Dioxide, and Lithium Fluoride on the Thermal Behavior and Decomposition Kinetics of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi

    2014-07-01

    Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.

  10. Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2016-09-06

    Many countries have gained benefits through the solar cells industry due to its high efficiency and nonpolluting power generation associated with solar energy. Accordingly, the market of solar cell modules is expanding rapidly in recent decade. However, how to environmentally friendly and effectively recycle waste solar cell modules is seldom concerned. Based on nitrogen pyrolysis and vacuum decomposition, this work can successfully recycle useful organic components, glass, and gallium from solar cell modules. The results were summarized as follows: (i) nitrogen pyrolysis process can effectively decompose plastic. Organic conversion rate approached 100% in the condition of 773 K, 30 min, and 0.5 L/min N2 flow rate. But, it should be noted that pyrolysis temperature should not exceed 773 K, and harmful products would be increased with the increasing of temperature, such as benzene and its derivatives by GC-MS measurement; (ii) separation principle, products analysis, and optimization of vacuum decomposition were discussed. Gallium can be well recycled under temperature of 1123 K, system pressure of 1 Pa and reaction time of 40 min. This technology is quite significant in accordance with the "Reduce, Reuse, and Recycle Principle" for solid waste, and provides an opportunity for sustainable development of photovoltaic industry.

  11. The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings

    SciTech Connect

    Buckingham, Grant T.; Ormond, Thomas K.; Porterfield, Jessica P.; Ellison, G. Barney; Hemberger, Patrick; Kostko, Oleg; Ahmed, Musahid; Robichaud, David J.; Nimlos, Mark R.; Daily, John W.

    2015-01-28

    The pyrolysis of the benzyl radical has been studied in a set of heated micro-reactors. A combination of photoionization mass spectrometry (PIMS) and matrix isolation infrared (IR) spectroscopy has been used to identify the decomposition products. Both benzyl bromide and ethyl benzene have been used as precursors of the parent species, C{sub 6}H{sub 5}CH{sub 2}, as well as a set of isotopically labeled radicals: C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2}. The combination of PIMS and IR spectroscopy has been used to identify the earliest pyrolysis products from benzyl radical as: C{sub 5}H{sub 4}=C=CH{sub 2}, H atom, C{sub 5}H{sub 4}—C ≡ CH, C{sub 5}H{sub 5}, HCCCH{sub 2}, and HC ≡ CH. Pyrolysis of the C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2} benzyl radicals produces a set of methyl radicals, cyclopentadienyl radicals, and benzynes that are not predicted by a fulvenallene pathway. Explicit PIMS searches for the cycloheptatrienyl radical were unsuccessful, there is no evidence for the isomerization of benzyl and cycloheptatrienyl radicals: C{sub 6}H{sub 5}CH{sub 2}⇋C{sub 7}H{sub 7}. These labeling studies suggest that there must be other thermal decomposition routes for the C{sub 6}H{sub 5}CH{sub 2} radical that differ from the fulvenallene pathway.

  12. Potential Applications of Concentrated Solar Thermal Technologies in the Australian Minerals Processing and Extractive Metallurgical Industry

    NASA Astrophysics Data System (ADS)

    Eglinton, Thomas; Hinkley, Jim; Beath, Andrew; Dell'Amico, Mark

    2013-12-01

    The Australian minerals processing and extractive metallurgy industries are responsible for about 20% of Australia's total greenhouse gas (GHG) emissions. This article reviews the potential applications of concentrated solar thermal (CST) energy in the Australian minerals processing industry to reduce this impact. Integrating CST energy into these industries would reduce their reliance upon conventional fossil fuels and reduce GHG emissions. As CST technologies become more widely deployed and cheaper, and as fuel prices rise, CST energy will progressively become more competitive with conventional energy sources. Some of the applications identified in this article are expected to become commercially competitive provided the costs for pollution abatement and GHG mitigation are internalized. The areas of potential for CST integration identified in this study can be classed as either medium/low-temperature or high-temperature applications. The most promising medium/low-grade applications are electricity generation and low grade heating of liquids. Electricity generation with CST energy—also known as concentrated solar power—has the greatest potential to reduce GHG emissions out of all the potential applications identified because of the 24/7 dispatchability when integrated with thermal storage. High-temperature applications identified include the thermal decomposition of alumina and the calcination of limestone to lime in solar kilns, as well as the production of syngas from natural gas and carbonaceous materials for various metallurgical processes including nickel and direct reduced iron production. Hybridization and integration with thermal storage could enable CST to sustain these energy-intensive metallurgical processes continuously. High-temperature applications are the focus of this paper.

  13. Unimolecular Thermal Decomposition of Phenol and d5-Phenol: Direct Observation of Cyclopentadiene Formation via Cyclohexadienone

    SciTech Connect

    Scheer, A. M.; Mukarakate, C.; Robichaud, D. J.; Nimlos, M. R.; Carstensen, H. H.; Barney, E. G.

    2012-01-28

    The pyrolyses of phenol and d{sub 5}-phenol (C{sub 6}H{sub 5}OH and C{sub 6}D{sub 5}OH) have been studied using a high temperature, microtubular ({mu}tubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the {mu}tubular reactor of approximately 50-100 {micro}s. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C{sub 6}H{sub 5}OH {yields} c-C{sub 6}H{sub 6} = O {yields} c-C{sub 5}H{sub 6} + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C{sub 5}H{sub 6} {yields} c-C{sub 5}H{sub 5} + H {yields} HC {triple_bond} CH + HCCCH{sub 2}. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C{sub 6}H{sub 5}O-H {yields} C{sub 6}H{sub 5}O + H {yields} c-C{sub 5}H{sub 5} + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C{sub 6}H{sub 4}-OH) and hydroquinone (p-HO-C{sub 6}H{sub 4}-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

  14. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  15. A thermal/nonthermal approach to solar flares

    NASA Technical Reports Server (NTRS)

    Benka, Stephen G.

    1991-01-01

    An approach for modeling solar flare high-energy emissions is developed in which both thermal and nonthermal particles coexist and contribute to the radiation. The thermal/nonthermal distribution function is interpreted physically by postulating the existence of DC sheets in the flare region. The currents then provide both primary plasma heating through Joule dissipation, and runaway electron acceleration. The physics of runaway acceleration is discussed. Several methods are presented for obtaining approximations to the thermal/nonthermal distribution function, both within the current sheets and outside of them. Theoretical hard x ray spectra are calculated, allowing for thermal bremsstrahlung from the heated plasma electrons impinging on the chromosphere. A simple model for hard x ray images of two-ribbon flares is presented. Theoretical microwave gyrosynchrotron spectra are calculated and analyzed, uncovering important new effects caused by the interplay of thermal and nonthermal particles. The theoretical spectra are compared with observed high resolution spectra of solar flares, and excellent agreement is found, in both hard x rays and microwaves. The future detailed application of this approach to solar flares is discussed, as are possible refinements to this theory.

  16. Italy trials solar-thermal power plant

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2008-08-01

    It was in the Sicilian port of Syracuse that in 213 BC the Greek mathematician Archimedes was reputed to have torched an invading Roman fleet by concentrating the Sun's rays onto the enemy ships using large mirrors. Now, on a site very close to where Archimedes set up his putative solar weapon, engineers are building an array of parabolic mirrors to convert the Sun's energy into electricity. It is claimed that the technology, which uses molten salt to transfer energy to turbines, could be competitive with fossil fuels if it is deployed on a large enough scale in sunny climates.

  17. Performance contracting for parabolic trough solar thermal systems

    SciTech Connect

    Brown, H.; Hewett, R.; Walker, A.; Gee, R.; May, K.

    1997-12-31

    Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

  18. Buffer thermal energy storage for an air Brayton solar engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  19. Thermal Decomposition Mechanisms of Lignin Model Compounds: From Phenol to Vanillin

    NASA Astrophysics Data System (ADS)

    Scheer, Adam Michael

    Lignin is a complex, aromatic polymer abundant in cellulosic biomass (trees, switchgrass etc.). Thermochemical breakdown of lignin for liquid fuel production results in undesirable polycyclic aromatic hydrocarbons that lead to tar and soot byproducts. The fundamental chemistry governing these processes is not well understood. We have studied the unimolecular thermal decomposition mechanisms of aromatic lignin model compounds using a miniature SiC tubular reactor. Products are detected and characterized using time-of-flight mass spectrometry with both single photon (118.2 nm; 10.487 eV) and 1 + 1 resonance-enhanced multiphoton ionization (REMPI) as well as matrix isolation infrared spectroscopy. Gas exiting the heated reactor (300 K--1600 K) is subject to a free expansion after a residence time of approximately 100 micros. The expansion into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. By understanding the unimolecular fragmentation patterns of phenol (C6H5OH), anisole (C6H 5OCH3) and benzaldehyde (C6H5CHO), the more complicated thermocracking processes of the catechols (HO-C 6H4-OH), methoxyphenols (HO-C6H4-OCH 3) and hydroxybenzaldehydes (HO-C6H4-CHO) can be interpreted. These studies have resulted in a predictive model that allows the interpretation of vanillin, a complex phenolic ether containing methoxy, hydroxy and aldehyde functional groups. This model will serve as a guide for the pyrolyses of larger systems including lignin monomers such as coniferyl alcohol. The pyrolysis mechanisms of the dimethoxybenzenes (H3C-C 6H4-OCH3) and syringol, a hydroxydimethoxybenzene have also been studied. These results will aid in the understanding of the thermal fragmentation of sinapyl alcohol, the most complex lignin monomer. In addition to the model compound work, pyrolyisis of biomass has been studied via the pulsed laser ablation of poplar wood. With the REMPI scheme, aromatic lignin decomposition

  20. Pursuing reliable thermal analysis techniques for energetic materials: decomposition kinetics and thermal stability of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50).

    PubMed

    Muravyev, Nikita V; Monogarov, Konstantin A; Asachenko, Andrey F; Nechaev, Mikhail S; Ananyev, Ivan V; Fomenkov, Igor V; Kiselev, Vitaly G; Pivkina, Alla N

    2016-12-21

    Thermal decomposition of a novel promising high-performance explosive dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) was studied using a number of thermal analysis techniques (thermogravimetry, differential scanning calorimetry, and accelerating rate calorimetry, ARC). To obtain more comprehensive insight into the kinetics and mechanism of TKX-50 decomposition, a variety of complementary thermoanalytical experiments were performed under various conditions. Non-isothermal and isothermal kinetics were obtained at both atmospheric and low (up to 0.3 Torr) pressures. The gas products of thermolysis were detected in situ using IR spectroscopy, and the structure of solid-state decomposition products was determined by X-ray diffraction and scanning electron microscopy. Diammonium 5,5'-bistetrazole-1,1'-diolate (ABTOX) was directly identified to be the most important intermediate of the decomposition process. The important role of bistetrazole diol (BTO) in the mechanism of TKX-50 decomposition was also rationalized by thermolysis experiments with mixtures of TKX-50 and BTO. Several widely used thermoanalytical data processing techniques (Kissinger, isoconversional, formal kinetic approaches, etc.) were independently benchmarked against the ARC data, which are more germane to the real storage and application conditions of energetic materials. Our study revealed that none of the Arrhenius parameters reported before can properly describe the complex two-stage decomposition process of TKX-50. In contrast, we showed the superior performance of the isoconversional methods combined with isothermal measurements, which yielded the most reliable kinetic parameters of TKX-50 thermolysis. In contrast with the existing reports, the thermal stability of TKX-50 was determined in the ARC experiments to be lower than that of hexogen, but close to that of hexanitrohexaazaisowurtzitane (CL-20).

  1. Thermal design of spacecraft solar arrays using a polyimide foam

    NASA Astrophysics Data System (ADS)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  2. Evaluation of spherical ceramic particles for solar thermal transfer media

    SciTech Connect

    Hellmann, J.R.; Eatough, M.O.; Hlava, P.F.; Mahoney, A.R.

    1987-01-01

    Two ceramic materials, spheroidized sintered bauxite and fused zircon, were evaluated for potential use as thermal transfer media in an advanced high temperature solid particle solar receiver. Both materials were sufficiently resistant to aggregation via sintering to permit repeated cycling of the particle charge to temperatures approaching 1400/sup 0/C provided no pressure was applied to the particle bed. Application of pressure dramatically enhanced sintering above 1100/sup 0/C and yielded non-flowable sintered particle masses. This indicates that moving particle bed storage configurations must be employed for temperatures in excess of 1100/sup 0/C. The sintered bauxite material exhibited a higher solar absorptance (0.94) than the fused zircon (0.74) for all conditions investigated. Extended thermal treatments in air markedly degraded the solar absorptance of both materials. Degradation was attributed to modifications in crystalline phase assemblages and distribution of multi-valent iron and titanium cations. High solar absorptances could be restored by reheating the ''oxidized'' specimens in mildly reducing atmospheres. Potential improvements in the solar absorptance of the fused zircon material may be possible through doping the material with higher concentrations of transition metal and rare earth cations.

  3. Infrared spectroscopic study on the thermal decomposition of external and internal gelation products of simulated mixed oxide nuclear fuel.

    PubMed

    Kumar, K Suresh; Bhat, N P

    2004-02-01

    The thermal decomposition of urania-ceria gel corresponding to the composition U(0.7)Ce(0.3)O(2+x) obtained through external and internal gelation routes were studied using infrared spectroscopy (IR). In the case of externally gelated compound, the gel decomposes with the release of H2O and NH3 below 500 degrees C. A part of the NH3 released is entrapped in the solid and above 500 degrees C self reduction occurs in which U(VI) in the gel is reduced to U3O8. The decomposition products were identified to be U3O8 and CeO2. In the case of internally gelated compound, decomposition similar to the one for externally gelated compound occurred below 500 degrees C. Above 500 degrees C the carbon present in the gel reduced U(VI) to UO2 which formed solid solution with CeO2 around 650 degrees C.

  4. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    NASA Technical Reports Server (NTRS)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  5. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  6. Thermal cycling of Mir Cooperative Solar Array (MCSA) test panels

    SciTech Connect

    Hoffman, D.J.; Scheiman, D.A.

    1997-12-31

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994--March 1995), two 15-cell MCSA solar array mini panel test articles were simultaneously put through 24000 thermal cycles (+80 C to {minus}100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24000 thermal cycles (4 years on-orbit).

  7. In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product.

    PubMed

    Gualtieri, Alessandro F; Gualtieri, Magdalena Lassinantti; Tonelli, Massimo

    2008-08-15

    The thermal transformation of asbestos into non-hazardous crystalline phases and their recycling is a promising solution for the "asbestos problem". The most common asbestos-containing industrial material produced worldwide is cement-asbestos. Knowledge of the kinetics of thermal transformation of asbestos fibers in cement-asbestos is of paramount importance for the optimization of the firing process at industrial scale. Here, environmental scanning electron microscopy (ESEM) was used for the first time to follow in situ the thermal transformation of chrysotile fibers present in cement-asbestos. It was found that the reaction kinetics of thermal transformation of chrysotile was highly slowed down in the presence of water vapor in the experimental chamber with respect to He. This was explained by chemisorbed water on the surface of the fibers which affected the dehydroxylation reaction and consequently the recrystallization into Mg-silicates. In the attempt to investigate alternative and faster firing routes for the decomposition of asbestos, a low melting glass was mixed with cement-asbestos and studied in situ to assess to which extent the decomposition of asbestos is favored. It was found that the addition of a low melting glass to cement-asbestos greatly improved the decomposition reaction and decreased the transformation temperatures.

  8. Dynamic Characterization of an Inflatable Concentrator for Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Leigh, Larry M.; Tinker, Michael L.; McConnaughey, Paul (Technical Monitor)

    2002-01-01

    Solar-thermal propulsion is a concept for producing thrust sufficient for orbital transfers and requires innovative, lightweight structures. This note presents a description of an inflatable concentrator that consists of a torus, lens simulator, and three tapered struts. Modal testing was discussed for characterization and verification of the solar concentrator assembly. Finite element shell models of the concentrator were developed using a two-step nonlinear approach, and results were compared to test data. Reasonable model-to-test agreement was achieved for the torus, and results for the concentrator assembly were comparable to the test for several modes.

  9. Photovoltaics and solar thermal conversion to electricity - Status and prospects

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1979-01-01

    Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.

  10. Thermal performance of honeywell double covered liquid solar collector

    NASA Technical Reports Server (NTRS)

    Losey, R.

    1977-01-01

    The test procedures and results obtained during an evaluation test program to determine the outdoor performance characteristics of the Honeywell liquid solar collector are presented. The program was based on the thermal evaluation of a Honeywell double covered liquid solar collection. Initial plans included the simultaneous testing of a single covered Honeywell collector. During the initial testing, the single covered collector failed due to leakage; thus, testing continued on the double covered collector only. To better define the operating characteristics of the collector, several additional data points were obtained beyond those requested.

  11. Synthesis, Crystal Structure, and Thermal Decomposition of the Cobalt(II) Complex with 2-Picolinic Acid

    PubMed Central

    Li, Di

    2014-01-01

    The cobalt(II) complex of 2-picolinic acid (Hpic), namely, [Co(pic)2(H2O)2] · 2H2O, was synthesized with the reaction of cobalt acetate and 2-picolinic acid as the reactants by solid-solid reaction at room temperature. The composition and structure of the complex were characterized by elemental analysis, infrared spectroscopy, single crystal X-ray diffraction, and thermogravimetry-differential scanning calorimetry (TG-DSC). The crystal structure of the complex belongs to monoclinic system and space group P2(1)/n, with cell parameters of a = 9.8468(7) Å, b = 5.2013(4) Å, c = 14.6041(15) Å, β = 111.745(6)°, V = 747.96(11) Å3, Z = 2, Dc = 1.666 g cm−3, R1 = 0.0297, and wR2 = 0.0831. In the title complex, the Co(II) ion is six-coordinated by two pyridine N atoms and two carboxyl O atoms from two 2-picolinic acid anions, and two O atoms from two H2O molecules, and forming a slightly distorted octahedral geometry. The thermal decomposition processes of the complex under nitrogen include dehydration and pyrolysis of the ligand, and the final residue is cobalt oxalate at about 450°C. PMID:24578654

  12. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO sub 4 systems

    SciTech Connect

    Wentworth, W.E. )

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  13. Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments

    NASA Astrophysics Data System (ADS)

    Ball, R.; McIntosh, A. C.; Brindley, J.

    2004-06-01

    A simple dynamical system that models the competitive thermokinetics and chemistry of cellulose decomposition is examined, with reference to evidence from experimental studies indicating that char formation is a low activation energy exothermal process and volatilization is a high activation energy endothermal process. The thermohydrolysis chemistry at the core of the primary competition is described. Essentially, the competition is between two nucleophiles, a molecule of water and an -OH group on C6 of an end glucosyl cation, to form either a reducing chain fragment with the propensity to undergo the bond-forming reactions that ultimately form char, or a levoglucosan end-fragment that depolymerizes to volatile products. The results of this analysis suggest that promotion of char formation under thermal stress can actually increase the production of flammable volatiles. Thus, we would like to convey an important safety message in this paper: in some situations where heat and mass transfer is restricted in cellulosic materials, such as furnishings, insulation, and stockpiles, the use of char-promoting treatments for fire retardation may have the effect of increasing the risk of flaming combustion.

  14. Reduction of nitrous oxide emissions from biological nutrient removal processes by thermal decomposition.

    PubMed

    Pedros, Philip B; Askari, Omid; Metghalchi, Hameed

    2016-12-01

    During the last decade municipal wastewater treatment plants have been regulated with increasingly stringent nutrient removal requirements including nitrogen. Typically biological treatment processes are employed to meet these limits. Although the nitrogen in the wastewater stream is reduced, certain steps in the biological processes allow for the release of gaseous nitrous oxide (N2O), a greenhouse gas (GHG). A comprehensive study was conducted to investigate the potential to mitigate N2O emissions from biological nutrient removal (BNR) processes by means of thermal decomposition. The study examined using the off gases from the biological process, instead of ambient air, as the oxidant gas for the combustion of biomethane. A detailed analysis was done to examine the concentration of N2O and 58 other gases that exited the combustion process. The analysis was based on the assumption that the exhaust gases were in chemical equilibrium since the residence time in the combustor is sufficiently longer than the chemical characteristics. For all inlet N2O concentrations the outlet concentrations were close to zero. Additionally, the emission of hydrogen sulfide (H2S) and ten commonly occurring volatile organic compounds (VOCs) were also examined as a means of odor control for biological secondary treatment processes or as potential emissions from an anaerobic reactor of a BNR process. The sulfur released from the H2S formed sulfur dioxide (SO2) and eight of the ten VOCs were destroyed.

  15. Sulfur speciation in hard coal by means of a thermal decomposition method.

    PubMed

    Spiewok, W; Ciba, J; Trojanowska, J

    2002-02-01

    A new method for the determination of organic and pyritic sulfur in hard coal is presented. The method is based on controlled thermal decomposition of coal sample in oxygen-free and oxygen atmospheres. The results for sulfur liberated in an argon atmosphere at temperatures up to 773 K were close to organic sulfur contents (Sorg), although owing to the definition of 'organic sulfur' the values were not directly comparable. Sorg contents are calculated from the difference between total sulfur content in coal and contents of this element in the form of sulfides, sulfates and pyrites. Sulfur contents, found in the second stage of analysis, were close to pyritic sulfur contents. The difference between total sulfur content and the sum of sulfur values obtained in stages I and II corresponded to sulfur contents in those samples which were neither decomposed nor oxidized at temperatures up to 1173 K. Although not comparable with such conventional concepts for industrial purposes these data are attractive due to the ease and rapidity of the new method for the control of sulfur streams in industrial processes.

  16. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    SciTech Connect

    Hufschmid, Ryan D.; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric M.; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-03

    We present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting properties. Monodisperse superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of three different iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) in organic solvents under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution. In particular, large quantities of excess surfactant (up to 25:1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase is also critical for establishing magnetic properties. As an example, we show the importance of obtaining the required iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled.

  17. Case study for model validation : assessing a model for thermal decomposition of polyurethane foam.

    SciTech Connect

    Dowding, Kevin J.; Leslie, Ian H.; Hobbs, Michael L.; Rutherford, Brian Milne; Hills, Richard Guy; Pilch, Martin M.

    2004-10-01

    A case study is reported to document the details of a validation process to assess the accuracy of a mathematical model to represent experiments involving thermal decomposition of polyurethane foam. The focus of the report is to work through a validation process. The process addresses the following activities. The intended application of mathematical model is discussed to better understand the pertinent parameter space. The parameter space of the validation experiments is mapped to the application parameter space. The mathematical models, computer code to solve the models and its (code) verification are presented. Experimental data from two activities are used to validate mathematical models. The first experiment assesses the chemistry model alone and the second experiment assesses the model of coupled chemistry, conduction, and enclosure radiation. The model results of both experimental activities are summarized and uncertainty of the model to represent each experimental activity is estimated. The comparison between the experiment data and model results is quantified with various metrics. After addressing these activities, an assessment of the process for the case study is given. Weaknesses in the process are discussed and lessons learned are summarized.

  18. Conversion of bromine during thermal decomposition of printed circuit boards at high temperature.

    PubMed

    Jin, Yu-qi; Tao, Lin; Chi, Yong; Yan, Jian-hua

    2011-02-15

    The conversion of bromine during the thermal decomposition of printed circuit boards (PCBs) was investigated at isothermal temperatures ranging from 800°C to 1100°C by using a quartz tube furnace. The influence of temperature, oxygen concentrations (0%, 10% and 21% in the nitrogen-oxygen atmosphere) and content of steam on conversion of bromine was studied. With the increment of temperature, the conversion from organic bromine in the PCBs to inorganic bromine in the gaseous fraction increased from 69.0% to 96.4%. The bromine was mainly evolved as HBr and Br(2) in oxidizing condition and the Br(2)/HBr mass ratio increased at stronger oxidizing atmosphere. The experimental results also indicated that the existence of steam can reduce the formation of Br(2). Furthermore, co-combustion of PCBs with S and CaO, both as addition agents, was investigated, respectively. In the presence of SO(2), Br(2)/HBr mass ratio obviously decreased. Moreover, the utilization of calcium oxide can efficiently promote the conversion of organic bromine to inorganic bromine. According to the experimental results, incinerating PCBs at high temperature can efficiently destroy the organobrominated compounds that are considered to be possible precursors of polybrominated dibenzeo-p-dioxins and dibenzofurans (PBDD/Fs), but the Br(2) and HBr in flue gas should be efficiently controlled.

  19. Thermochemical cycles for energy storage: Thermal decomposition of ZnSO4 systems

    NASA Astrophysics Data System (ADS)

    Wentworth, W. E.

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH4HSO4) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, we have shown that when NH4HSO4 is mixed with ZnO and decomposed, the resulting products can be released stepwise (H2O (gaseous) at approximately 163 C, NH3 (gaseous) at 365-418 C, and a mixture of SO2 (gaseous) and SO3 (gaseous) at approximately 900 C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high, as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally, we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO4). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V2A5, and possibly other metal oxides.

  20. Size Control of ZnO Nano-particles Formed via Thermal-Decomposition Route

    NASA Astrophysics Data System (ADS)

    Zhang, L. Z.; Yi, M. G.; Xiang, L.; Wang, B. Y.

    2010-11-01

    ZnO nano-particles with a particle size of 30-60 nm were fabricated by thermal decomposition of the basic zinc carbonate (2ZnCO3ṡ3Zn(OH)2ṡH2O) precursor at 400-600° C for 1.0-2.0 h, using ZnSO4 and Na2CO3 as the reactants. The particle size of ZnO was connected with the sintering temperature and procedure. The increase of temperature from 300° C to 600° C led to the increase of the crystallinity and the particle size of ZnO. Compared with the one-step sintering, the multi-step sintering favored the formation of dispersive ZnO nano-particles with smaller sizes. The presence of minor amount of sodium dodecyl sulfate (SDS, C12H25NaO4S) inhibited the growth and the agglomeration of the ZnO particles, reducing the primary particle size from 60-100 nm to 30-60 nm.

  1. Synthesis of ferrite nanocrystals stabilized by ionic-liquid molecules through a thermal decomposition route.

    PubMed

    Zhang, Yu; Liu, Dapeng; Wang, Xiao; Song, Shuyan; Zhang, Hongjie

    2011-01-17

    A series of M(x) Fe(3-x) O(4) (M=Fe, Co, Ni, Zn; 0≤x≤1) ferrite nanocrystals stabilized by ionic-liquid molecules have been successfully synthesized through a thermal decomposition route. Instead of the widely used long-chain lipid surfactants and high-boiling solvents, the ionic-liquid molecules not only played the role of surfactants, but also served as reaction and dispersion media simultaneously in the preparation of ferrite nanocrystals. Due to their good fluidity under magnetic fields and high ionic conductivity, the ionic-liquid molecules and M(x) Fe(3-x) O(4) ferrite nanocrystal-based conducting ferrofluids were successfully used as electrolytes in an AC circuit. The open or closed state of the circuit was directly controlled by moving a permanent magnet so as to tune the position of the ferrofluids, and consequently, resulted in the "off" or "on" state of the four indicative yellow-light-emitting diodes. These results demonstrate that the conducting ferrofluids successfully play the role of "magnetic switch".

  2. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  3. Metal hydrides for concentrating solar thermal power energy storage

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  4. Differential Scanning Calorimetry of Volatile-Bearing Iron Minerals Under Mars-Like Pressures: New Insights Into Energetics and Mechanisms of Thermal Decomposition

    NASA Technical Reports Server (NTRS)

    Lin, I.-C.; Lauer, H. V., Jr.; Golden, D. C.; Ming, D. W.

    2000-01-01

    In this study, we have examined the thermal decomposition of two volatile-bearing iron minerals, in particular, lepidocrocite (gamma-FeOOH) and siderite (FeCO3), under Mars-like pressures. Both minerals exhibit different enthalpic events during their decomposition at reduced atmospheric pressures when compared to those at ambient pressure. These differences in energetics are related to the mechanisms of thermal decomposition at Mars-like pressures. Such knowledge regarding the thermal stability of volatile-bearing minerals on Mars will provide useful information for planetary surface processes.

  5. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  6. Phase change thermal storage for a solar total energy system

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  7. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300°C and 850°C using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  8. Kinetic Studies of the Thermal Decomposition of Methylperoxynitrate and of Ozone-Olefin Reactions.

    NASA Astrophysics Data System (ADS)

    Bahta, Abraha

    This research concerns the thermal decomposition kinetics of CH(,3)O(,2)NO(,2) and laboratory kinetic measurements of ozone-olefin reactions. In the first system, the thermal decomposition rate of CH(,3)O(,2)NO(,2) was studied in the temperature range of 256-268 K at (TURN)350 torr total pressure and in the pressure range of 50-720 torr at 263 K by the perturbation of the equilibrium: (UNFORMATTED TABLE FOLLOWS). CH(,3)O(,2) + NO(,2) (+M) (DBLARR) CH(,3)O(,2)NO(,2) (+M) (3,-3). with NO. CH(,3)O(,2) + NO (--->) CH(,3)O + NO(,2) (4). (TABLE ENDS). The CH(,3)O(,2)NO(,2) was generated in situ by the photolysis of Cl(,2) in the presence of O(,2), CH(,4) and NO(,2). The decomposition kinetics were monitored in the presence of NO by the change in ultraviolet absorption at 250 nm. The Arrhenius expression obtained for the thermal decomposition is k(,-3) = 6 x 10('15) exp{-(21,000 (+OR-) 1500)/RT} sec('-1) at (TURNEQ)350 torr total pressure (mostly CH(,4)) where R = 1.987 cal/mole('-) K. The uncertainty in the Arrhenius parameters can be greatly reduced by combining this expression with data for k(,3) and thermodynamics data to give k(,-3) = (6 (+OR-) 3) x 10('15) exp{-(21,300 (+OR-) 300)/RT} sec('-1) at (TURNEQ)350 torr total pressure. Computations based on the pressure dependence of the forward reaction give k(,-3)('(INFIN)) = 2.1 x 10('16) exp{-(21,700 (+OR -) 300)/RT} sec('-1) k(,-3)('(DEGREES)) = 3.3 x 10(' -4) exp{-(20,150 x 300)/RT} cm('3) sec('-1). At 263 K the equilibrium constant K(,3,-3){263 K} is determined to be (2.68 (+OR-) 0.26) x 10('-10) cm('3). In the stratosphere the CH(,3)O(,2)NO(,2) lifetime will be controlled by play a role in the NO(,x) budget of the lower stratosphere. In the second part, the kinetics of the reactions of O(,3) with C(,2)H(,4), C(,3)H(,4), 1,3-C(,4)H(,6), and trans-1,3-C(,5)H(,8) were studied with initial olefin-to -ozone ratios (GREATERTHEQ) 4.9, in the presence of excess O(,2), and over the temperature range 232 to 300 K. The

  9. An integrated methodology for the assessment of environmental health implications during thermal decomposition of nano-enabled products

    PubMed Central

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang; Wohlleben, Wendel; Chalbot, Marie-Cecile G.; Kavouras, Ilias G.; Demokritou, Philip

    2015-01-01

    The proliferation of nano-enabled products (NEPs) renders human exposure to engineered nanomaterials (ENMs) inevitable. Over the last decade, the risk assessment paradigm for nanomaterials focused primarily on potential adverse effect of pristine, as-prepared ENMs. However, the physicochemical properties of ENMs may be drastically altered across their life-cycle (LC), especially when they are embedded in various NEP matrices. Of a particular interest is the end-of-life scenario by thermal decomposition. The main objective of the current study is to develop a standardized, versatile and reproducible methodology that allows for the systematic physicochemical and toxicological characterization of the NEP thermal decomposition. The developed methodology was tested for an industry-relevant NEP in order to verify its versatility for such LC investigations. Results are indicative of potential environmental health risks associated with waste from specific NEP families and prompt for the development of safer-by-design approaches and exposure control strategies. PMID:26200119

  10. Shock tube study on the thermal decomposition of fluoroethane using infrared laser absorption detection of hydrogen fluoride.

    PubMed

    Matsugi, Akira; Shiina, Hiroumi

    2014-08-28

    Motivated by recent shock tube studies on the thermal unimolecular decomposition of fluoroethanes, in which unusual trends have been reported for collisional energy-transfer parameters, the rate constants for the thermal decomposition of fluoroethane were investigated using a shock tube/laser absorption spectroscopy technique. The rate constants were measured behind reflected shock waves by monitoring the formation of HF by IR absorption at the R(1) transition in the fundamental vibrational band near 2476 nm using a distributed-feedback diode laser. The peak absorption cross sections of this absorption line have also been determined and parametrized using the Rautian-Sobel'man line shape function. The rate constant measurements covered a wide temperature range of 1018-1710 K at pressures from 100 to 290 kPa, and the derived rate constants were successfully reproduced by the master equation calculation with an average downward energy transfer, ⟨ΔEdown⟩, of 400 cm(-1).

  11. Mathematical modeling of frontal process in thermal decomposition of a substance with allowance for the finite velocity of heat propagation

    SciTech Connect

    Shlenskii, O.F.; Murashov, G.G.

    1982-05-01

    In describing frontal processes of thermal decomposition of high-energy condensed substances, for example detonation, it is common practice to write the equation for the conservation of energy without any limitations on the heat propagation velocity (HPV). At the same time, it is known that in calculating fast processes of heat conduction, the assumption of an infinitely high HPV is not always justified. In order to evaluate the influence of the HPV on the results from calculations of heat conduction process under conditions of a short-term exothermic decomposition of a condensed substance, the solution of the problem of heating a semiinfinite, thermally unstable solid body with boundary conditions of the third kind on the surface has been examined.

  12. Nanoparticle Microreactor: Application to Synthesis Of Titania by Thermal Decomposition of Titanium Tetraisopropoxide

    NASA Astrophysics Data System (ADS)

    Park, K. Y.; Ullmann, M.; Suh, Y. J.; Friedlander, S. K.

    2001-08-01

    The nanoparticle microreactor (NPMR) is a new concept that we have introduced to describe a very small-scale system capable of converting an aerosol precursor to solid particles. The liquid precursor of about 1 µl is injected by a syringe through a septum into a tubular evaporator of 1.0 cm3 in volume with stopcocks at both ends. The evaporator has been preheated by a heating tape to a temperature sufficiently high for vaporization to occur in half a minute. By opening the stopcocks, the vaporized precursor is transported by a carrier gas stream into a quartz tube which is mounted along the axis of a tubular furnace. The nanoparticle aggregates produced in the reactor are sampled by deposition on an electron micrograph grid at the reactor exit. The NPMR was applied first to the synthesis of TiO2 particles by thermal decomposition of titanium tetraisopropoxide (TTIP) in a nitrogen carrier gas, with TTIP concentrations varying from 1.0 to 7.0 mol% or 2.35×10-6 to 1.65×10-5 in TiO2 volume loading, and decomposition temperatures from 300°C to 1000°C. Studies were made with a 2 mm reaction tube and a 4 mm tube with sheath gas. With the 2 mm tube, a considerable fraction of the TTIP precursor was consumed at the wall by surface reaction, resulting in very small particles. With the 4 mm tube, the primary particle size was comparable to that reported in the literature for steady flow experiments using a 22.2 mm tube. Primary particle sizes ranged from 200 to 400 nm. Depending on TTIP concentration and reactor temperature, the particles exhibited a bimodal size distribution, probably due to a two-stage nucleation. A fourfold increase in the gas flow rate had little effect on particle size, indicating that particle growth ended early, within one-fourth the tube length. Residence time in the reactor was between 0.35 and 1.4 s, and total run time about 1 min. The NPMR has potential for rapid assembly of large databases and is adaptable to combinatorial discovery of

  13. Indoor thermal performance evaluation of Daystar solar collector

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.

  14. Irrigation market for solar thermal parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, H.; Jones, S. C.

    1981-01-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  15. Irrigation market for solar thermal parabolic dish systems

    NASA Astrophysics Data System (ADS)

    Habib-Agahi, H.; Jones, S. C.

    1981-09-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  16. A survey of manufacturers of solar thermal energy systems

    NASA Technical Reports Server (NTRS)

    Levine, N.; Slonski, M. L.

    1982-01-01

    Sixty-seven firms that had received funding for development of solar thermal energy systems (STES) were surveyed. The effect of the solar thermal technology systems program in accelerating (STES) were assessed. The 54 firms still developing STES were grouped into a production typology comparing the three major technologies with three basic functions. It was discovered that large and small firms were developing primarily central receiver systems, but also typically worked on more than one technology. Most medium-sized firms worked only on distributed systems. Federal support of STES was perceived as necessary to allow producers to take otherwise unacceptable risks. Approximately half of the respondents would drop out of STES if support were terminated, including a disproportionate number of medium-sized firms. A differentiated view of the technology, taking into account differing firm sizes and the various stages of technology development, was suggested for policy and planning purposes.

  17. Thermal properties of carbon black aqueous nanofluids for solar absorption

    NASA Astrophysics Data System (ADS)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  18. Thermal properties of carbon black aqueous nanofluids for solar absorption

    PubMed Central

    2011-01-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency. PMID:21767359

  19. Thermal properties of carbon black aqueous nanofluids for solar absorption.

    PubMed

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-18

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  20. THERMALIZATION OF HEAVY IONS IN THE SOLAR WIND

    SciTech Connect

    Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason

    2015-10-20

    Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1–5.5 amu/e and were collected in the time range of 1998–2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H{sup +}) and alpha particles (He{sup 2+}). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He{sup 2+} and C{sup 6+} follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O{sup 6+} shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O{sup 6+} occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.

  1. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  2. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  3. Evaluating thermal performance of a single slope solar still

    NASA Astrophysics Data System (ADS)

    Badran, Omar O.; Abu-Khader, Mazen M.

    2007-08-01

    The distillation is one of the important methods of getting clean water from brackish and sea water using the free energy supply from the sun. An experimental work is conducted on a single slope solar still. The thermal performance of the single slope solar still is examined and evaluated through implementing the following effective parameters: (a) different insulation thicknesses of 1, 2.5 and 5 cm; (b) water depth of 2 and 3.5 cm; (c) solar intensity; (d) Overall heat loss coefficient (e) effective absorbtivity and transmissivity; and (f) ambient, water and vapor temperatures. Different effective parameters should be taken into account to increase the still productivity. A mathematical model is presented and compared with experimental results. The model gives a good match with experimental values.

  4. Solar thermal plant impact analysis and requirements definition

    NASA Technical Reports Server (NTRS)

    Gupta, Y. P.

    1980-01-01

    Progress on a continuing study comprising of ten tasks directed at defining impact and requirements for solar thermal power systems (SPS), 1 to 10 MWe each in capacity, installed during 1985 through year 2000 in a utility or a nonutility load in the United States is summarized. The point focus distributed receiver (PFDR) solar power systems are emphasized. Tasks 1 through 4, completed to date, include the development of a comprehensive data base on SPS configurations, their performance, cost, availability, and potential applications; user loads, regional characteristics, and an analytic methodology that incorporates the generally accepted utility financial planning methods and several unique modifications to treat the significant and specific characteristics of solar power systems deployed in either central or distributed power generation modes, are discussed.

  5. The surface quasiliquid melt acceleration and the role of thermodynamic phase in the thermal decomposition of crystalline organic explosives

    SciTech Connect

    Henson, Bryan F

    2010-01-01

    We show that melt acceleration in the thermal decomposition of crystalline organic solids is a manifestation of the surface quasiliquid phase. We derive a single universal rate law for melt acceleration that is a simple function of the metastable liquid activity below the melting point, and has a zero order term proportional to the quasiliquid thickness. We argue that the underlying mechanisms of this model will provide a molecular definition for the stability of the class of secondary explosives.

  6. Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date; concentrator development and progress; economic analyses; and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.

  7. Dish concentrators for solar thermal energy: Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  8. Study of the solid-phase thermal decomposition of NTO using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS)

    NASA Technical Reports Server (NTRS)

    Minier, L.; Behrens, R.; Burkey, T. J.

    1997-01-01

    The solid phase thermal reaction chemistry of NTO between 190 and 250 C is presently being evaluated by utilizing STMBMS, a technique that enables the authors to measure the vapor pressure of NTO and to explore the reaction mechanisms and chemical kinetics associated with the NTO thermal decomposition process. The vapor pressure of NTO is expressed as Log(sub 10) p(torr) = 12.5137 + 6,296.553(1/t(k)) and the Delta-H(sub subl) = 28.71 +/- 0.07 kcal/mol (120.01 +/- 0.29 kJ/mol). The pyrolysis of NTO results in the formation of gaseous products and a condensed-phase residue. The identity of the major gaseous products and their origin from within the NTO molecules are determined based on the results from pyrolysis of NTO, NTO-3-C-13, NTO-1,2- (15)N2 and NTO-(2)H2. Identification of the products show the major gaseous products to be N2, CO2, NO, HNCO, H2O and some N2O, CO, HCN and NH3. The N2 is mostly derived from the N-1 and N-2 positions with some being from the N-4 and N-1 or N-2 positions. The CO2 is derived from both carbons in the NTO molecule in comparable amounts. The residue has an elemental formula of C(2.1)H(.26)N(2.9)O and FTIR analysis suggests that the residue is polyurea- and polycarbamate- like in nature. The temporal behaviors of the rates of formation of the gaseous products indicate that the overall thermal decomposition of NTO in the temperature range evaluated involves four major processes: (1) NTO sublimation; (2) an apparent solid-solid phase transition between 190 and 195 C; (3) a decomposition regime induced by the presence of exogenous H2O at the onset of decomposition; and (4) a decomposition regime that occurs at the onset of decomposition and continues until the depletion of NTO. Decomposition pathways that are consistent with the data are presented.

  9. A study of the solid-phase thermal decomposition of NTO using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS)

    SciTech Connect

    Minier, L.; Behrens, R.; Burkey, T.J.

    1997-01-01

    The solid phase thermal reaction chemistry of NTO between 190 and 250 C is presently being evaluated by utilizing STMBMS, a technique that enables the authors to measure the vapor pressure of NTO and to explore the reaction mechanisms and chemical kinetics associated with the NTO thermal decomposition process. The vapor pressure of NTO is expressed as Log{sub 10} p(torr) = 12.5137 + 6,296.553(1/t{sub k}) and the {Delta}H{sub subl} = 28.71 {+-} 0.07 kcal/mol (120.01 {+-} 0.29 kJ/mol). The pyrolysis of NTO results in the formation of gaseous products and a condensed-phase residue. The identity of the major gaseous products and their origin from within the NTO molecules are determined based on the results from pyrolysis of NTO, NTO-3-{sup 13}C, NTO-1,2-{sup 15}N{sub 2} and NTO-{sup 2}H{sub 2}. Identification of the products show the major gaseous products to be N{sub 2}, CO{sub 2}, NO, HNCO, H{sub 2}O and some N{sub 2}O, CO, HCN and NH{sub 3}. The N{sub 2} is mostly derived from the N-1 and N-2 positions with some being from the N-4 and N-1 or N-2 positions. The CO{sub 2} is derived from both carbons in the NTO molecule in comparable amounts. The residue has an elemental formula of C{sub 2.1}H{sub .26}N{sub 2.9}O and FTIR analysis suggests that the residue is polyurea- and polycarbamate-like in nature. The temporal behaviors of the rates of formation of the gaseous products indicate that the overall thermal decomposition of NTO in the temperature range evaluated involves four major processes: (1) NTO sublimation; (2) an apparent solid-solid phase transition between 190 and 195 C; (3) a decomposition regime induced by the presence of exogenous H{sub 2}O at the onset of decomposition; and (4) a decomposition regime that occurs at the onset of decomposition and continues until the depletion of NTO. Decomposition pathways that are consistent with the data are presented.

  10. Exergetic analysis of parabolic trough solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Ruperez, B.; San Miguel, G.

    2014-12-01

    A very important component to achieve sustainable development in the energy sector is the improvement of energy efficiency of widely applied thermodynamic processes. Evaluation and optimization methods of energy processes play a crucial role in fulfilling this goal. A suitable method for the evaluation and optimization of energy conversion systems has been proven to be the exergetic analysis. In this work, two parabolic trough solar thermal power plants are simulated in detail using commercial software, and they are further analysed and compared using an exergetic analysis. The first plant uses a thermal fluid to produce the steam required in a steam generator, while the second one produces the steam directly in the solar field. The analysis involves the evaluation of the individual components of the power plants, as well as the performance evaluation of the overall structures. The main goal is to detect thermodynamic inefficiencies of the two different configurations and propose measures to minimize those. We find that the two examined plants have similar main sources of exergy destruction: the solar field (parabolic trough solar collectors), followed by the steam generator. This reveals the importance of an optimal design of these particular components, which could reduce inefficiencies present in the system. The differences in the exergy destruction and exergetic efficiencies of individual components of the two plants are analyzed in detail based on comparable operational conditions.

  11. The role of petrography on the thermal decomposition and burnability of limestones used in industrial cement clinker

    NASA Astrophysics Data System (ADS)

    Marinoni, Nicoletta; Bernasconi, Andrea; Della Porta, Giovanna; Marchi, Maurizio; Pavese, Alessandro

    2015-12-01

    The present research examines the influence of the petrographic features on the thermal decomposition and burnability of three limestones, the main raw materials for Portland cement-making. A detailed characterisation of the limestones has been performed by means of optical microscopy and X-Ray Powder Diffraction. The carbonate thermal decomposition was conducted under isothermal conditions by means of in situ High Temperature X-Ray Powder Diffraction and the heated samples were further investigated by Scanning Electron Microscopy. Three kiln feeds were then prepared and submitted to burning trials and the temperature of occurrence of the main clinker phases was investigated as well as the content of the uncombined CaO in the heated samples was determined by using the Franke method. The results attest that the microfabric, a combination of depositional and diagenetic features, drives the kinetics of the thermal decomposition of the selected limestones as well as it appears to influence the temperature of crystallisation of the main clinker phases and the uncombined CaO content in the final clinker. In particular, the limestone with the lowest micrite to sparite ratio (1) exhibits the lowest Apparent Activation Energy ( E a ) value and the highest rate of calcination and (2) requires a lower temperature for observing the clinker phases crystallisation and has the lowest content of uncombined CaO in the final clinker, thus reflecting a high burnability of the limestone.

  12. Thermal decomposition of HO2NO2 (peroxynitric acid, PNA): rate coefficient and determination of the enthalpy of formation.

    PubMed

    Gierczak, Tomasz; Jiménez, Elena; Riffault, Veronique; Burkholder, James B; Ravishankara, A R

    2005-02-03

    Rate coefficients for the gas-phase thermal decomposition of HO(2)NO(2) (peroxynitric acid, PNA) are reported at temperatures between 331 and 350 K at total pressures of 25 and 50 Torr of N(2). Rate coefficients were determined by measuring the steady-state OH concentration in a mixture of known concentrations of HO(2)NO(2) and NO. The measured thermal decomposition rate coefficients k(-)(1)(T,P) are used in combination with previously published rate coefficient data for the HO(2)NO(2) formation reaction to yield a standard enthalpy for reaction 1 of Delta(r)H degrees (298K) = -24.0 +/- 0.5 kcal mol(-1) (uncertainties are 2sigma values and include estimated systematic errors). A HO(2)NO(2) standard heat of formation, Delta(f)H degrees (298K)(HO(2)NO(2)), of -12.6 +/- 1.0 kcal mol(-1) was calculated from this value. Some of the previously reported data on the thermal decomposition of HO(2)NO(2) have been reanalyzed and shown to be in good agreement with our reported value.

  13. Total control of chromium in tanneries - thermal decomposition of filtration cake from enzymatic hydrolysis of chrome shavings.

    PubMed

    Kocurek, P; Kolomazník, K; Bařinová, M; Hendrych, J

    2016-12-08

    This paper deals with the problem of chromium recovery from chrome-tanned waste and thus with reducing the environmental impact of the leather industry. Chrome-tanned waste was transformed by alkaline enzymatic hydrolysis promoted by magnesium oxide into practically chromium-free, commercially applicable collagen hydrolysate and filtration cake containing a high portion of chromium. The crude and magnesium-deprived chromium cakes were subjected to a process of thermal decomposition at 650°C under oxygen-free conditions to reduce the amount of this waste and to study the effect of magnesium removal on the resulting products. Oxygen-free conditions were applied in order to prevent the oxidation of trivalent chromium into the hazardous hexavalent form. Thermal decomposition products from both crude and magnesium-deprived chrome cakes were characterized by high chromium content over 50%, which occurred as eskolaite (Cr2O3) and magnesiochromite (MgCr2O4) crystal phases, respectively. Thermal decomposition decreased the amount of chrome cake dry feed by 90%. Based on the performed experiments, a scheme for the total control of chromium in the leather industry was designed.

  14. Thermal and X-ray diffraction analysis studies during the decomposition of ammonium uranyl nitrate.

    PubMed

    Kim, B H; Lee, Y B; Prelas, M A; Ghosh, T K

    Two types of ammonium uranyl nitrate (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3, were thermally decomposed and reduced in a TG-DTA unit in nitrogen, air, and hydrogen atmospheres. Various intermediate phases produced by the thermal decomposition and reduction process were investigated by an X-ray diffraction analysis and a TG/DTA analysis. Both (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3 decomposed to amorphous UO3 regardless of the atmosphere used. The amorphous UO3 from (NH4)2UO2(NO3)4·2H2O was crystallized to γ-UO3 regardless of the atmosphere used without a change in weight. The amorphous UO3 obtained from decomposition of NH4UO2(NO3)3 was crystallized to α-UO3 under a nitrogen and air atmosphere, and to β-UO3 under a hydrogen atmosphere without a change in weight. Under each atmosphere, the reaction paths of (NH4)2UO2(NO3)4·2H2O and NH4UO2(NO3)3 were as follows: under a nitrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; under an air atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → U3O8, NH4UO2(NO3)3 → A-UO3 → α-UO3 → U3O8; and under a hydrogen atmosphere: (NH4)2UO2(NO3)4·2H2O → (NH4)2UO2(NO3)4·H2O → (NH4)2UO2(NO3)4 → NH4UO2(NO3)3 → A-UO3 → γ-UO3 → α-U3O8 → UO2, NH4 UO2(NO3)3 → A-UO3 → β-UO3 → α-U3O8 → UO2.

  15. Kinetics of thermal decomposition of hydrated minerals associated with hematite ore in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Beuria, P. C.; Biswal, S. K.; Mishra, B. K.; Roy, G. G.

    2017-03-01

    The kinetics of removal of loss on ignition (LOI) by thermal decomposition of hydrated minerals present in natural iron ores (i.e., kaolinite, gibbsite, and goethite) was investigated in a laboratory-scale vertical fluidized bed reactor (FBR) using isothermal methods of kinetic analysis. Experiments in the FBR in batch processes were carried out at different temperatures (300 to 1200°C) and residence time (1 to 30 min) for four different iron ore samples with various LOIs (2.34wt% to 9.83wt%). The operating velocity was maintained in the range from 1.2 to 1.4 times the minimum fluidization velocity ( U mf). We observed that, below a certain critical temperature, the FBR did not effectively reduce the LOI to a desired level even with increased residence time. The results of this study indicate that the LOI level could be reduced by 90% within 1 min of residence time at 1100°C. The kinetics for low-LOI samples (<6wt%) indicates two different reaction mechanisms in two temperature regimes. At lower temperatures (300 to 700°C), the kinetics is characterized by a lower activation energy (diffusion-controlled physical moisture removal), followed by a higher activation energy (chemically controlled removal of LOI). In the case of high-LOI samples, three different kinetics mechanisms prevail at different temperature regimes. At temperature up to 450°C, diffusion kinetics prevails (removal of physical moisture); at temperature from 450 to 650°C, chemical kinetics dominates during removal of matrix moisture. At temperatures greater than 650°C, nucleation and growth begins to influence the rate of removal of LOI.

  16. The branching ratio in the thermal decomposition of H{sub 2}CO

    SciTech Connect

    Kumaran, S.S.; Carroll, J.J.; Michael, J.V.

    1998-07-01

    The thermal decomposition of H{sub 2}CO has been investigated in reflected shock waves experiments at temperatures between 2,004--2,367 K. The quantitative temporal formation of H-atoms in the reactions, (1a) H{sub 2}CO + Kr {yields} HCO + H + Kr and HCO + Kr {yields} CO + H + Kr, were measured by the atomic resonance absorption spectrometric (ARAS) technique. The product HCO-radicals instantaneously decompose giving a second H-atom. The experiments were carried out under conditions where secondary reaction perturbations were negligible. The observed H-atom profiles could be reproduced using a two step mechanism, reactions (1a) and (1b), H{sub 2}CO + Kr {yields} H{sub 2} + CO + Kr. The resulting values for the branching ratio, k{sub 1a}/(k{sub 1a} + k{sub 1b}) range between 6.7--12.2%. The data yield second-order rate constants, k{sub 1a} = 1.019 {times} 10{sup {minus}9} exp({minus}38706 K/T) and k{sub 1b} = 4.658 {times} 10{sup {minus}9} exp({minus}32110 K/T) cm{sup 3}/molecule s, respectively. The rate data and branching ratio results are compared to earlier determinations. Lastly, the data are theoretically rationalized using three theoretical formalisms. Single channel theoretical calculations are carried out with the semiempirical Troe and with the RRKM-Gorin methods, and these are compared to multichannel RRKM calculations using the Unimol code.

  17. The thermal decomposition of C{sub 2}H{sub 5}I

    SciTech Connect

    Kumaran, S.S.; Su, M.C.; Lim, K.P.; Michael, J.V.

    1996-06-01

    The high temperature thermal dissociation of C{sub 2}H{sub 5}I has been characterized in this study. Kinetics and overall yield experiments were performed over the temperature range, 946--2,046 K, using the atomic resonance absorption spectrometric technique (ARAS) for the temporal detection of both product H- and I-atoms behind reflected shock waves. The C{sub 2}H{sub 5}I decomposition proceeds by both C-I fission and HI elimination. Rate constants for the C-I fission process, measured over the temperature and density ranges, 946--1,303 K and 0.82--4.4 {times} 10{sup 18} cm{sup {minus}3}, respectively, can be well represented to within {+-}37% by the first-order expression: k = 6.34 {times} 10{sup 9} exp({minus}15,894 K/T) s{sup {minus}1}. Overall yield data for atomic product gave a branching ratio for C-I fission of (0.87 {+-} 0.11) suggesting that 13% of the reaction proceeds through molecular HI elimination. This conclusion is consistent with earlier studies that showed C-I fission to be the dominant dissociation channel. The temperature and pressure dependences of the dissociation rate constants and the yield data have been theoretically described using three formulations of unimolecular rate theory. The best description was obtained with a full Master`s equation analysis. However, all three calculations confirm that the HI elimination pathway is lower lying than the C-I fission process by {approximately} 3 kcal/mole.

  18. Demonstration test results of organic materials' volumetric reduction using bio-ethanol, thermal decomposition and burning

    SciTech Connect

    Tagawa, Akihiro; Watanabe, Masahisa

    2013-07-01

    To discover technologies that can be utilized for decontamination work and verify their effects, economic feasibility, safety, and other factors, the Ministry of the Environment launched the 'FY2011 Decontamination Technology Demonstrations Project' to publicly solicit decontamination technologies that would be verified in demonstration tests and adopted 22 candidates. JAEA was commissioned by the Ministry of the Environment to provide technical assistance related to these demonstrations. This paper describes the volume reduction due to bio-ethanol, thermal decomposition and burning of organic materials in this report. The purpose of this study is that to evaluate a technique that can be used as biomass energy source, while performing volume reduction of contamination organic matter generated by decontamination. An important point of volume reduction technology of contaminated organic matter, is to evaluate the mass balance in the system. Then, confirming the mass balance of radioactive material and where to stay is important. The things that are common to all technologies, are ensuring that the radioactive cesium is not released as exhaust gas, etc.. In addition, it evaluates the cost balance and energy balance in order to understand the applicability to the decontamination of volume reduction technology. The radioactive cesium remains in the carbides when organic materials are carbonized, and radioactive cesium does not transfer to bio-ethanol when organic materials are processed for bio-ethanol production. While plant operating costs are greater if radioactive materials need to be treated, if income is expected by business such as power generation, depreciation may be calculated over approximately 15 years. (authors)

  19. Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.

    PubMed

    Busch, Anna; González-García, Núria; Lendvay, György; Olzmann, Matthias

    2015-07-16

    The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions.

  20. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  1. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  2. Remote Thermal IR Spectroscopy of our Solar System

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra

  3. Fabrication of Powder Metallurgy Pure Ti Material by Using Thermal Decomposition of TiH2

    NASA Astrophysics Data System (ADS)

    Mimoto, Takanori; Nakanishi, Nozomi; Umeda, Junko; Kondoh, Katsuyoshi

    Titanium (Ti) and titanium alloys have been interested as an engineering material because they are widely used across various industrial applications, for example, motorcycle, automotive and aerospace industries, due to their light weight, high specific strength and superior corrosion resistance. Ti materials are particularly significant for the aircraft using carbon/carbon (C/C) composites, for example, carbon fiber reinforced plastics (CFRP), because Ti materials are free from the problem of contact corrosion between C/C composites. However, the applications of Ti materials are limited because of their high cost. From a viewpoint of cost reduction, cost effective process to fabricate Ti materials is strongly required. In the present study, the direct consolidation of titanium hydride (TiH2) raw powders in solid-state was employed to fabricate pure Ti bulk materials by using thermal decomposition of TiH2. In general, the production cost of Ti components is expensive due to using commercially pure (CP) Ti powders after dehydrogenation. On the other hand, the novel process using TiH2 powders as starting materials is a promising low cost approach for powder metallurgy (P/M) Ti products. Furthermore, this new process is also attractive from a viewpoint of energy saving because the dehydrogenation is integrated into the sintering process. In this study, TiH2 raw powders were directly consolidated by conventional press technique at 600 MPa to prepare TiH2 powder compacted billets. To thermally decompose TiH2 and obtain sintered pure Ti billets, the TiH2 powder billets were heated in the integrated sintering process including dehydrogenation. The hot-extruded pure Ti material, which was heat treated at 1273 K for 180 min in argon gas atmosphere, showed tensile strength of 701.8 MPa and elongation of 27.1%. These tensile properties satisfied the requirements for JIS Ti Grade 4. The relationship between microstructures, mechanical properties response and heat treatment

  4. High temperature latent heat thermal energy storage to augment solar thermal propulsion for microsatellites

    NASA Astrophysics Data System (ADS)

    Gilpin, Matthew R.

    Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total DeltaV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test. A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Delta V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s DeltaV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions. Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Delta V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions. For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling

  5. Performance issues in solar thermal energy transport systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, P. W.

    1986-07-01

    Pacific Northwest Laboratory, sponsored by the US Department of Energy through Sandia National Laboratories, is performing an assessment of three solar thermal electricity generating concepts; central receivers, dishes, and troughs. Concepts are being studied over a range of system sizes 0.5 MWe to 100 MWe with solar multiples from 1.0 to 2.8. Central receiver systems using molten salt, sodium, and water-steam working fluids are studied. The dish system selected for study uses a kinematic Stirling engine at the focal point, and the trough system is based on Accurex designed collectors heating a heat transfer oil. Of the three concepts studied, the central receiver and trough systems utilize thermal transport systems. A thermal transport system is the piping and fluid required to transfer thermal energy between receiver, and storage and between storage and steam generator. The literature contains many transport system designs, most of which are optimized with regard to cost and performance. We used the parameters specified from the optimizations to design our systems and scale the designs over the 0.5 MWe to 100 MWe size range. From these designs, thermal losses and pump sizes are derived then combined in a system model to obtain total annual averaged efficiency as a function of plant field size. We found that central receiver transport efficiency improves with field size whereas trough transport efficiency degrades with field size. We found that overnight cooldown accounts for roughly 50% of the total thermal losses for all transport systems. Trough performance is substantially degraded because the receiver tubes are not drained which allows a large overnight heat loss. Trough transport performance was found to be sensitive to fluid velocity.

  6. Thermal decomposition of UO{sub 3}-2H{sub 2}0

    SciTech Connect

    Flament, T.A.

    1998-02-26

    The first part of the report summarizes the literature data regarding the uranium trioxide water system. In the second part, the experimental aspects are presented. An experimental program has been set up to determine the steps and species involved in decomposition of uranium oxide di-hydrate. Particular attention has been paid to determine both loss of free water (moisture in the fuel) and loss of chemically bound water (decomposition of hydrates). The influence of water pressure on decomposition has been taken into account.

  7. Combined solar thermal and photovoltaic power plants - An approach to 24h solar electricity?

    NASA Astrophysics Data System (ADS)

    Platzer, Werner J.

    2016-05-01

    Solar thermal power plants have the advantage of being able to provide dispatchable renewable electricity even when the sun is not shining. Using thermal energy strorage (TES) they may increase the capacity factor (CF) considerably. However in order to increase the operating hours one has to increase both, thermal storage capacity and solar field size, because the additional solar field is needed to charge the storage. This increases investment cost, although levelised electricity cost (LEC) may decrease due to the higher generation. Photovoltaics as a fluctuating source on the other side has arrived at very low generation costs well below 10 ct/kWh even for Central Europe. Aiming at a capacity factor above 70% and at producing dispatchable power it is shown that by a suitable combination of CSP and PV we can arrive at lower costs than by increasing storage and solar field size in CSP plants alone. Although a complete baseload power plant with more than 90% full load hours may not be the most economic choice, power plants approaching a full 24h service in most days of the year seem to be possible at reasonably low tariffs.

  8. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    PubMed

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  9. Heat engine development for solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Pham, H. Q.; Jaffe, L. D.

    1981-01-01

    The technical status of three heat engines (Stirling, high-temperature Brayton, and Combined cycle) for use in solar thermal power systems is presented. Performance goals necessary to develop a system competitive with conventional power requirements include an external heated engine output less than 40 kW, and efficiency power conversion subsystem at least 40% at rated output, and a half-power efficiency of at least 37%. Results show that the Stirling engine can offer a 39% efficiency with 100 hours of life, and a 20% efficiency with 10,000 hours of life, but problems with seals and heater heads exist. With a demonstrated efficiency near 31% at 1500 F and a minimum lifetime of 100,000 hours, the Brayton engine does not offer sufficient engine lifetime, efficiency, and maintenance for solar thermal power systems. Examination of the Rankine bottoming cycle of the Combined cycle engine reveals a 30 year lifetime, but a low efficiency. Additional development of engines for solar use is primarily in the areas of components to provide a long lifetime, high reliability, and low maintenance (no more than $0.001/kW-hr).

  10. Thermal decomposition and kinetic evaluation of decanted 2,4,6-trinitrotoluene (TNT) for reutilization as composite material

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Hussain, A.; Malik, A. Q.

    2016-08-01

    Use of energetic materials has long been considered for only military purposes. However, it is very recent that their practical applications in wide range of commercial fields such as mining, road building, under water blasting and rocket propulsion system have been considered. About 5mg of 2,4,6-trinitrotoluene (TNT) in serviceable (Svc) as well as unserviceable (Unsvc) form were used for their thermal decomposition and kinetic parameters investigation. Thermogravimetric/ differential thermal analysis (TG/DTA), X-ray diffraction (XRD) and Scanning electron microscope (SEM) were used to characterize two types of TNT. Arrhenius kinetic parameters like activation energy (E) and enthalpy (AH) of both TNT samples were determined using TG curves with the help of Horowitz and Metzger method. Simultaneously, thermal decomposition range was evaluated from DTA curves. Distinct diffraction peaks showing crystalline nature were obtained from XRD analysis. SEM results indicated that Unsvc TNT contained a variety of defects like cracks and porosity. Similarly, it is observed that thermal as well as kinetic behavior of both TNT samples vary to a great extent. Likewise, a prominent change in the activation energies (E) of both samples is observed. This in-depth study provides a way forward in finding solutions for the safe reutilization of decanted TNT.

  11. Effect of nanoclay loading on the thermal decomposition of nanoclay polyurethane elastomers obtained by bulk polymerization

    NASA Astrophysics Data System (ADS)

    Quagliano, Javier; Bocchio, Javier

    2014-08-01

    Thermoplastic urethane (TPU) nanocomposite was prepared successfully by dispersion at high shear stress of the nanoclay in polyol and further bulk polymerization. Our results from DSC studies showed an increase in decomposition temperature when nanoclay was loaded at 3,5% on elastomeric PU made from TDI, PTMEG and BDO, while not when nanoclay content was lower (1,5%). The exotherms at 370-375°C could be adscribed to the decomposition of the hard segments according to previous work.

  12. Multiscale computational modeling of a radiantly driven solar thermal collector

    NASA Astrophysics Data System (ADS)

    Ponnuru, Koushik

    The objectives of the master's thesis are to present, discuss and apply sequential multiscale modeling that combines analytical, numerical (finite element-based) and computational fluid dynamic (CFD) analysis to assist in the development of a radiantly driven macroscale solar thermal collector for energy harvesting. The solar thermal collector is a novel green energy system that converts solar energy to heat and utilizes dry air as a working heat transfer fluid (HTF). This energy system has important advantages over competitive technologies: it is self-contained (no energy sources are needed), there are no moving parts, no oil or supplementary fluids are needed and it is environmentally friendly since it is powered by solar radiation. This work focuses on the development of multi-physics and multiscale models for predicting the performance of the solar thermal collector. Model construction and validation is organized around three distinct and complementary levels. The first level involves an analytical analysis of the thermal transpiration phenomenon and models for predicting the associated mass flow pumping that occurs in an aerogel membrane in the presence of a large thermal gradient. Within the aerogel, a combination of convection, conduction and radiation occurs simultaneously in a domain where the pore size is comparable to the mean free path of the gas molecules. CFD modeling of thermal transpiration is not possible because all the available commercial CFD codes solve the Navier Stokes equations only for continuum flow, which is based on the assumption that the net molecular mass diffusion is zero. However, thermal transpiration occurs in a flow regime where a non-zero net molecular mass diffusion exists. Thus these effects are modeled by using Sharipov's [2] analytical expression for gas flow characterized by high Knudsen number. The second level uses a detailed CFD model solving Navier Stokes equations for momentum, heat and mass transfer in the various

  13. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition

    NASA Astrophysics Data System (ADS)

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-01

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L1-L4), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL1ṡDMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO < H < Br < Cl. We also studied the thermodynamics of formation of the complexes and kinetic aspects of their thermal decomposition. The formation constants with various substituents on the aldehyde ring follow the trend 5-OMe > 5-H > 5-Br > 5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL1ṡDMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L1 ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex.

  14. Single crystal Mo solar thermal thruster for microsatellites

    NASA Astrophysics Data System (ADS)

    Shimizu, Mono; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Okamoto, Ken-ichi; Takaoka, Shigehiko; Shiina, Kotaro; Nakamura, Yoshihiro

    1999-09-01

    One potentially attractive propulsion concept offering significant payload gains for orbit transfer from LEO to higher orbits, station keeping and attitude control of spacecraft is thermal propulsion using light gas (typically hydrogen) as propellant and various kinds of heat energy. Solar Thermal Propulsion (STP) is a typical thermal propulsion with high Isp (500 - 1,000 s) in an appropriate thrust magnitude range and provides possibly much less space pollution than conventional chemical propulsion. This paper presents the test results of a 30 mm dia. (medium-sized) windowless type of single crystal Mo thruster for orbit transfer of 50 kg class microsatellites. The cavity dia. is 20 mm, double the size of the previous model, and can apply to a primary solar reflector of up to 3.5 m dia., which is the maximum size containable in the H-II rocket fairing without segmentation. The performed mission analyses indicate that this size of STP is suitable to orbit transfer of 50 kg class microsatellites, such as LEO to GEO, or only multiple apogee kicks from GTO to GEO or deep space missions.

  15. Thermal State-of-Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., Jr.; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  16. Materials for a solar thermal electric power system

    NASA Astrophysics Data System (ADS)

    Myskowski, E. T.; Frankel, H. E.; Woodward, J. R.; Mueller, R. S.

    1980-12-01

    An electric power generating system using solar heat to operate a Stirling engine driven alternator is presented in detail and analyzed. The Dish Stirling Solar Thermal Electric Power System (DSSTEP) is an array of modular generating units consisting of paraboloidal concentrators which focus the incident solar flux at the focal plane to produce the high temperatures needed for efficient operation of the heat engine. The concentrator, made of back silvered glass for superior reflectivity and greater erosion resistance has a diameter of 10 m. The Stirling Engine receives the heat produced by the generating units and through heating and cooling of the working fluid (helium at 1500 F under 2500 psi pressure) drives the piston and generates power. The Dish Stirling Solar Receiver (DSSR) consists of four quadrants, each containing 12 copper tubes (coated with an Alloy 617 shell) 0.265 in O.D. and 0.145 in I.D. Metallographic studies of specimens under simulated operating conditions gave no evidence of problems and a receiver is being constructed for a full system test.

  17. Radiative transport models for solar thermal receiver/reactors

    SciTech Connect

    Bohn, M S; Mehos, M S

    1989-12-01

    Modeling the behavior of solar-driven chemical reactors requires detailed knowledge of the absorbed solar flux throughout the calculation domain. Radiative transport models, which determine the radiative intensity field and absorbed solar flux, are discussed in this paper with special attention given to particular needs for the application of solar thermal receiver/reactors. The geometry of interest is an axisymmetric cylinder with a specified intensity field at one end, diffuse reflection at boundaries, and containing a participating medium. Participating media are of interest because receiver/reactors are expected to have one or more zones containing small particles or monoliths acting as absorbers or catalyst supports, either of which will absorb, emit, and scatter radiation. A general discussion of modeling techniques is given, followed by a more complete discussion of three models -- the two-flux, discrete ordinate, and the Monte Carlo methods. The methods are compared with published benchmark solutions for simplified geometries -- the infinite cylinder and plane slab -- and for geometries more closely related to receiver/reactors. Conclusions are drawn regarding the applicability of the techniques to general receiver/reactor models considering accuracy, ease of implementation, ease of interfacing with solution techniques for the other conservation equations, and numerical efficiency. 23 refs., 6 figs., 2 tabs.

  18. Thermal energy storage for a space solar dynamic power system

    NASA Technical Reports Server (NTRS)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  19. Advanced Technology Solar Telescope lower enclosure thermal system

    NASA Astrophysics Data System (ADS)

    Phelps, L.; Warner, M.

    2008-07-01

    The exterior of the Advanced Technology Solar Telescope enclosure requires cooling to eliminate so-called external dome seeing caused by solar loading during the observing day. This is achieved by way of coolant circulation through external plate coil panels, thereby maintaining the exterior surfaces of the enclosure at or just below ambient air temperature. As the distance from the optical path increases (e.g., on the surface of the lower enclosure), the stringency of the temperature requirement is diminished, thereby allowing a greater difference between the surface temperature and the ambient air temperature. This paper presents a comparison of the modeled performance of an active thermal control strategy on the lower enclosure to a passive strategy that employs concrete panels. A life-cycle cost analysis of each option is also presented.

  20. Fifth parabolic dish solar thermal power program annual review: proceedings

    SciTech Connect

    1984-03-01

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  1. Thermal and cost goal analysis for passive solar heating designs

    SciTech Connect

    Noll, S.A.; Kirschner, C.

    1980-01-01

    Economic methodologies developed over the past several years for the design of residential solar systems have been based on life cycle cost (LCC) minimization. Because of uncertainties involving future economic conditions and the varied decision making processes of home designers, builders, and owners, LCC design approaches are not always appropriate. To deal with some of the constraints that enter the design process, and to narrow the number of variables to those that do not depend on future economic conditions, a simplified thermal and cost goal approach for passive designs is presented. Arithmetic and graphical approaches are presented with examples given for each. Goals discussed include simple payback, solar savings fraction, collection area, maximum allowable construction budget, variable cost goals, and Btu savings.

  2. A dish-Stirling solar-thermal power system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.; Clark, T. B.

    1980-01-01

    This paper presents results of a preliminary design/economic study of a first-generation point focusing distributed receiver solar-thermal electric system optimized for application to industrial and small community power plants at power levels up to 10 MWe. Power conversion is provided by small Stirling cycle engines mounted at the focus of paraboloidal solar concentrators. The output of multiple power modules (concentrator, receiver, engine, and electric generator) is collected by means of a conventional electrical system and interfaced with a utility grid. Based on the United Stirling P-75 engine, a 1 MWe system employing mass-produced components (100,000 modules/year) could produce electricity at costs competitive with those projected for electricity generated by more conventional means, e.g. with fossil fuels.

  3. Thermal performance evaluation of the Calmac (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    Usher, H.

    1978-01-01

    The procedures used and the results obtained during the evaluation test program on the S. N. 1, (liquid) solar collector are presented. The flat plate collector uses water as the working fluid. The absorber plate is aluminum with plastic tubes coated with urethane black. The glazing consists of .040 in fiberglass reinforced polyester. The collector weight is 78.5 pounds with overall external dimensions of approximately 50.3in. x 98.3in. x 3.8in. The following information is given: thermal performance data under simulated conditions, structural behavior under static loading, and the effects of long term exposure to natural weathering. These tests were conducted using the MSFC Solar Simulator.

  4. Solar thermal thruster made of single crystal molybdenum

    NASA Astrophysics Data System (ADS)

    Shimizu, Morio; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Igarashi, Tadashi; Okamoto, Ken-ichi

    1997-07-01

    The heart element of solar thermal propulsion (STP) system is a thruster made of refractory metals such as tungsten, tantalum and molybdenum or advance high temperature ceramics because of the high operating temperature (1000-2500 K) involved. In this paper, design, fabrication and preliminary experimental results in the JSUS Research Plan are presented, using 20 mm diameter of thrusters made of single crystal molybdenum which NRIM has patented and is a perfect (non-defect) material, namely no brittleness due to recrystallization under high operating temperature conditions. The working gas temperature within the thruster chamber reached higher than 1850 K (namely, the Isp is approximately 700 s for hydrogen gas propellant) at 0.2 MPa of the plenum chamber pressure, using the small solar concentrator (1.6 m diameter of half paraboloid and 0.65 m of the focal length).

  5. Turbine sizing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1979-01-01

    Since the insolation is intermittent, thermal energy storage is necessary to extend the time of power generation with solar heat past sunset. There are two approaches to specifying the size of turbine-generator units depending on the system operation. In the first approach, the turbine operates at its full capacity when operating on direct solar heat, and at reduced capacity when operating on collected heat out of energy storage. In the second approach, the turbine will always operate at a uniform level either on derated energy from the receiver or from energy storage. Both of these approaches have certain advantages and disadvantages. In this paper, a simple analysis is outlined and exercised to compare the performance and economics of these two approaches.

  6. Products of thermal decomposition of triethylgallium and trimethylgallium adsorbed on Ga-stabilized GaAs(100)

    NASA Astrophysics Data System (ADS)

    Donnelly, V. M.; McCaulley, J. A.

    1990-11-01

    We report mass spectrometric studies of the products of thermal decomposition of triethylgallium (TEGa), and trimethylgallium (TMGa) adsorbed on Ga-stabilized GaAs(100) in ultrahigh vacuum. Adsorbed layers were prepared by dosing clean GaAs, near room temperature, to either saturated coverage or coverages below saturation. Subsequent heating leads to desorption of products, detected by a differentially pumped quadrupole mass spectrometer. Total carbon coverage was monitored by X-ray photoelectron spectroscopy (XPS). The substrate temperature was measured by infrared laser interferometric thermometry. At saturated coverage, TEGa decomposes upon heating (1-2°C/s) to yield one third Ga-alkyl product (Ga(C 2H 5) 2) between 0 and 300°C, and two thirds hydrocarbon products (mostly C 2H 4 and some C 2H 5) between 250 and 390°C. About 25% of the Ga deposited from TEGa remains on the surface after all products desorb. Below 40% of saturated coverage, only the higher temperature hydrocarbon products desorb, and all adsorbed Ga remains on the surface. TMGa behaves similarly; starting at saturated coverage, Ga-alkyl product (either Ga(CH 3) 2 or a mixture of Ga(CH 3) 2 and TMGa) desorbs at low temperature (50-380°C) and hydrocarbon product (CH 3) desorbs at higher temperature (250-425°C). However, for TMGa the yield of the Ga-alkyl is about twice the CH 3 yield. No ethane, or butane was detected in TEGa decomposition, nor was any ethane found for TMGa decomposition, indicating that association and disproportionation reactions are unimportant. Also no As-alkyl products were detected. The slower rate of desorption of CH 3 for TMGa decomposition, compared to C 2H 4 and C 2H 5 desorption from TEGa decomposition, qualitatively explains higher carbon levels in GaAs films grown with TMGa versus TEGa.

  7. A STUDY OF THE PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS AND REACTION TO SPARK, FRICTION AND IMPACT

    SciTech Connect

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-30

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  8. Crystal structure, thermal decomposition mechanism and explosive properties of [Na(H2TNPG)(H2O)2]n.

    PubMed

    Chen, Hongyan; Zhang, Tonglai; Zhang, Jianguo; Qiao, Xiaojing; Yu, Kaibei

    2006-02-28

    The new coordination polymer of sodium trinitrophloroglucinate, [Na(H2TNPG)(H2O)2]n, was synthesized by reacting trinitrophloroglucinol (H3TNPG) with NaHCO3 in aqueous solution and [Na(H2TNPG)(H2O)2]n was recrystallized to be yellow single crystal. The title compound was characterized by using elemental analysis and Fourier transform infrared (FT-IR) spectrum. Its crystal structure was determined by single crystal X-ray diffraction analysis. The crystalline belongs to monoclinic system and C2/c space group. Each Na+ ion is six-coordinated to one H2TNPG- anion and four water molecules in which the oxygen atoms in the water molecules act as bridging atoms. Coordination bonds, electrostatic interaction and intermolecular hydrogen bonds assemble the ions into network structures. The thermal decomposition mechanism of the complex was studied by using differential scanning calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG) and FT-IR techniques. Under nitrogen atmosphere with a heating rate of 10 degrees C/min the thermal decomposition of the complex contained one endothermic and five exothermic processes. Two intense exothermic decomposition processes were observed in the range of 173-228 degrees C suggesting its energetic nature and the solid decomposition residue at 500 degrees C was sodium isonitrile. Explosive properties revealed that the compound is sensitive to mechanical stimuli. All properties data observed show that the title compound has explosive properties and can act as components of ecologically clean initiating compositions.

  9. Solar Thermal Propulsion Improvements at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P.

    2003-01-01

    Solar Thermal Propulsion (STP) is a concept which operates by transferring solar energy to a propellant, which thermally expands through a nozzle. The specific impulse performance is about twice that of chemical combustions engines, since there is no need for an oxidizer. In orbit, an inflatable concentrator mirror captures sunlight and focuses it inside an engine absorber cavity/heat exchanger, which then heats the propellant. The primary application of STP is with upperstages taking payloads from low earth orbit to geosynchronous earth orbit or earth escape velocities. STP engines are made of high temperature materials since heat exchanger operation requires temperatures greater than 2500K. Refractory metals such as tungsten and rhenium have been examined. The materials must also be compatible with hot hydrogen propellant. MSFC has three different engine designs, made of different refractory metal materials ready to test. Future engines will be made of high temperature carbide materials, which can withstand temperatures greater than 3000K, hot hydrogen, and provide higher performance. A specific impulse greater than 1000 seconds greatly reduces the amount of required propellant. A special 1 OkW solar ground test facility was made at MSFC to test various STP engine designs. The heliostat mirror, with dual-axis gear drive, tracks and reflects sunlight to the 18 ft. diameter concentrator mirror. The concentrator then focuses sunlight through a vacuum chamber window to a small focal point inside the STP engine. The facility closely simulates how the STP engine would function in orbit. The flux intensity at the focal point is equivalent to the intensity at a distance of 7 solar radii from the sun.

  10. Catalytic conversion of 1,2-dichlorobenzene using V2O5/TiO2 catalysts by a thermal decomposition process.

    PubMed

    Chin, Sungmin; Jurng, Jongsoo; Lee, Jae-Heon; Moon, Seung-Jae

    2009-05-01

    This study examined the catalytic oxidation of 1,2-dichlorobenzene on V(2)O(5)/TiO(2) nanoparticles. The V(2)O(5)/TiO(2) nanoparticles were synthesized by the thermal decomposition of vanadium oxytripropoxide and titanium tetraisopropoxide. The effects of the synthesis conditions, such as the synthesis temperature and precursor heating temperature, were investigated. The specific surface areas of V(2)O(5)/TiO(2) nanoparticles increased with increasing synthesis temperature and decreasing precursor heating temperature. The catalytic oxidation rate of the V(2)O(5)/TiO(2) catalyst formed by thermal decomposition process at a catalytic reaction temperature of 150 and 200 degrees C was 46% and 95%, respectively. As a result, it was concluded that the V(2)O(5)/TiO(2) catalysts synthesized by a thermal decomposition process showed good performance for 1,2-DCB decomposition at a lower temperature.

  11. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Henninger, J. H.

    1984-01-01

    Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.

  12. Solar-thermal-energy collection/storage-pond system

    DOEpatents

    Blahnik, D.E.

    1982-03-25

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  13. Advanced solar thermal storage medium test data and analysis

    NASA Technical Reports Server (NTRS)

    Saha, H.

    1981-01-01

    A comparative study has been made of experimentally obtained heat transfer and heat storage characteristics of a solar thermal energy storage bed utilizing containerized water or phase change material (PCM) and rock or brick. It is shown that (1) containers with an L/D ratio of 0.80 and a mass/surface area ratio of 2.74 in a random stacking arrangement have the optimum heat transfer characteristics; and (2) vertical stacking has the least pressure drop across the test bed. It is also found that standard bricks with appropriate holes make an excellent storage medium.

  14. Proceedings of the Distributed Receiver Solar Thermal Technology Conference

    NASA Astrophysics Data System (ADS)

    Muire, J. F.

    1985-04-01

    The Distributed Receiver Solar Thermal Technology Conference was held on April 24 and 25, 1985 at the Classic Hotel, Albuquerque, New Mexico. The meeting was sponsored by the United States Department of Energy and Sandia National Laboratories. Topics covered during the conference included a status summary of the Sandia Distributed Receiver Development project, perspectives on distributed electric technology and distributed receiver energy collection and conversion, technologies, systems analyses and applications experiments. The proceedings contain summaries (abstracts plus principal visual aids) of the presentations made at the conference.

  15. Thermal energy storage units for solar electric power plants

    NASA Astrophysics Data System (ADS)

    Gudkov, V. I.; Chakalev, K. N.

    Several types of heat storage units for solar power plants with thermodynamic cycles of energy conversion are examined, including specific-heat units (particularly water-vapor devices), thermochemical units, and phase-change units. The dependence of specific capital costs for heat storage units upon time of operation is discussed, and particular consideration is give to types of connections of specific-heat units into the thermal circuit of a power plant, and to a phase-change unit that uses a heat pipe for internal heat transport.

  16. SPS market analysis. [small solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Goff, H. C.

    1980-01-01

    A market analysis task included personal interviews by GE personnel and supplemental mail surveys to acquire statistical data and to identify and measure attitudes, reactions and intentions of prospective small solar thermal power systems (SPS) users. Over 500 firms were contacted, including three ownership classes of electric utilities, industrial firms in the top SIC codes for energy consumption, and design engineering firms. A market demand model was developed which utilizes the data base developed by personal interviews and surveys, and projected energy price and consumption data to perform sensitivity analyses and estimate potential markets for SPS.

  17. Electrochemical energy storage systems for solar thermal applications

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  18. An overview: Component development for solar thermal systems

    NASA Astrophysics Data System (ADS)

    Mancini, T. R.

    In this paper, I review the significant issues and the development of solar concentrators and thermal receivers for central-receiver power plants and dish/engine systems. Due to the breadth of the topic area, I have arbitrarily narrowed the content of this paper by choosing not to discuss line-focus (trough) systems and energy storage. I will focus my discussion on the development of heliostats, dishes, and receivers since the 1970s with an emphasis on describing the technologies and their evolution, identifying some key observations and lessons learned, and suggesting what the future in component development may be.

  19. Application of the subatmospheric engine to solar thermal power

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a natural gas-fired Brayton engine is discussed. It is intended to be the prime mover for a 10-ton commercial heat pump. This engine has many attractive features that make it an ideal candidate for solar thermal-power generation applications. The unique feature of this engine is its subatmospheric mode of operation. It operates between atmospheric pressure and a partial vacuum. This means that heat is added to the cycle at atmospheric pressure; this permits the receiver to be unpressurized, greatly simplifying its design and cost.

  20. Thermal performance of a photographic laboratory process: Solar Hot Water System

    NASA Astrophysics Data System (ADS)

    Walker, J. A.; Jensen, R. N.

    1982-04-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  1. Thermal performance of a photographic laboratory process: Solar Hot Water System

    NASA Technical Reports Server (NTRS)

    Walker, J. A.; Jensen, R. N.

    1982-01-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  2. Thermal Decomposition Characteristics of Orthorhombic Ammonium Perchlorate (o-AP) and an 0-AP/HTPB-Based Propellant

    SciTech Connect

    BEHRENS JR.,RICHARD; MINIER,LEANNA M.G.

    1999-10-25

    A study to characterize the low-temperature reactive processes for o-AP and an AP/HTPB-based propellant (class 1.3) is being conducted in the laboratory using the techniques of simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and scanning electron microscopy (SEM). The results presented in this paper are a follow up of the previous work that showed the overall decomposition to be complex and controlled by both physical and chemical processes. The decomposition is characterized by the occurrence of one major event that consumes up to {approx}35% of the AP, depending upon particle size, and leaves behind a porous agglomerate of AP. The major gaseous products released during this event include H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl. The recent efforts provide further insight into the decomposition processes for o-AP. The temporal behaviors of the gas formation rates (GFRs) for the products indicate that the major decomposition event consists of three chemical channels. The first and third channels are affected by the pressure in the reaction cell and occur at the surface or in the gas phase above the surface of the AP particles. The second channel is not affected by pressure and accounts for the solid-phase reactions characteristic of o-AP. The third channel involves the interactions of the decomposition products with the surface of the AP. SEM images of partially decomposed o-AP provide insight to how the morphology changes as the decomposition progresses. A conceptual model has been developed, based upon the STMBMS and SEM results, that provides a basic description of the processes. The thermal decomposition characteristics of the propellant are evaluated from the identities of the products and the temporal behaviors of their GFRs. First, the volatile components in the propellant evolve from the propellant as it is heated. Second, the hot AP (and HClO{sub 4}) at the AP-binder interface oxidize the binder through reactions that

  3. Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.

    PubMed

    Stegmaier, Thomas; Linke, Michael; Planck, Heinrich

    2009-05-13

    Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.

  4. Thermal stability analysis of the fine structure of solar prominences

    NASA Technical Reports Server (NTRS)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  5. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    NASA Astrophysics Data System (ADS)

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and

  6. Exploring the potential of fulvalene dimetals as platforms for molecular solar thermal energy storage: computations, syntheses, structures, kinetics, and catalysis.

    PubMed

    Börjesson, Karl; Ćoso, Dušan; Gray, Victor; Grossman, Jeffrey C; Guan, Jingqi; Harris, Charles B; Hertkorn, Norbert; Hou, Zongrui; Kanai, Yosuke; Lee, Donghwa; Lomont, Justin P; Majumdar, Arun; Meier, Steven K; Moth-Poulsen, Kasper; Myrabo, Randy L; Nguyen, Son C; Segalman, Rachel A; Srinivasan, Varadharajan; Tolman, Willam B; Vinokurov, Nikolai; Vollhardt, K Peter C; Weidman, Timothy W

    2014-11-17

    A study of the scope and limitations of varying the ligand framework around the dinuclear core of FvRu2 in its function as a molecular solar thermal energy storage framework is presented. It includes DFT calculations probing the effect of substituents, other metals, and CO exchange for other ligands on ΔHstorage . Experimentally, the system is shown to be robust in as much as it tolerates a number of variations, except for the identity of the metal and certain substitution patterns. Failures include 1,1',3,3'-tetra-tert-butyl (4), 1,2,2',3'-tetraphenyl (9), diiron (28), diosmium (24), mixed iron-ruthenium (27), dimolybdenum (29), and ditungsten (30) derivatives. An extensive screen of potential catalysts for the thermal reversal identified AgNO3 -SiO2 as a good candidate, although catalyst decomposition remains a challenge.

  7. Exploring the Potential of Fulvalene Dimetals as Platforms for Molecular Solar Thermal Energy Storage: Computations, Syntheses, Structures, Kinetics, and Catalysis

    SciTech Connect

    Borjesson, K; Coso, D; Gray, V; Grossman, JC; Guan, JQ; Harris, CB; Hertkorn, N; Hou, ZR; Kanai, Y; Lee, D; Lomont, JP; Majumdar, A; Meier, SK; Moth-Poulsen, K; Myrabo, RL; Nguyen, SC; Segalman, RA; Srinivasan, V; Tolman, WB; Vinokurov, N; Vollhardt, KPC; Weidman, TW

    2014-10-03

    A study of the scope and limitations of varying the ligand framework around the dinuclear core of FvRu(2) in its function as a molecular solar thermal energy storage framework is presented. It includes DFT calculations probing the effect of substituents, other metals, and CO exchange for other ligands on Delta H-storage. Experimentally, the system is shown to be robust in as much as it tolerates a number of variations, except for the identity of the metal and certain substitution patterns. Failures include 1,1',3,3'-tetra-tert-butyl (4), 1,2,2',3'-tetraphenyl (9), diiron (28), diosmium (24), mixed iron-ruthenium (27), dimolybdenum (29), and di-tungsten (30) derivatives. An extensive screen of potential catalysts for the thermal reversal identified AgNO3-SiO2 as a good candidate, although catalyst decomposition remains a challenge.

  8. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  9. Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface

    SciTech Connect

    Harrison, T.D.

    1981-03-01

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

  10. Second-law efficiency of solar-thermal cavity receivers

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1983-01-01

    Properly quantified performance of a solar-thermal cavity receiver must not only account for the energy gains and losses as dictated by the First Law of thermodynamics, but it must also account for the quality of that energy. However, energy quality can only be determined from the Second Law. An equation for the Second Law efficiency of a cavity receiver is derived from the definition of available energy, which is a thermodynamic property that measures the maximum amount of work obtainable when a system is allowed to come into unrestrained equilibrium with the surrounding environment. The fundamental concepts of the entropy and availability of radiation were explored from which a workable relationship among the reflected cone half-angle, the insolation, and the concentrator geometric characteristics was developed as part of the derivation of the Second Law efficiency. First and Second Law efficiencies were compared for data collected from two receivers that were designed for different purposes. A Second Law approach to quantifying the performance of a solar-thermal cavity receiver lends greater insight into the total performance than does the conventional First Law method.

  11. Kinetics and Mechanism of the CIO + CIO Reaction: Pressure and Temperature Dependences of the Bimolecular and Termolecular Channels andThermal Decomposition of Chlorine Peroxide, CIOOCI

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Friedl, Randall R.; Sander, Stanley P.

    1993-01-01

    The kinetics and mechanism of the CIO + CIO reaction and the thermal decomposition of CIOOCI were studied using the flash photolysis/long path ultraviolet absorption technique. Pressure and temperature dependences were determined for the rate coefficients for the bimolecular and termolecular reaction channels, and for the thermal decompositon of CIOOCI.

  12. Potential benefits from a successful solar thermal program

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Gates, W. R.

    1982-01-01

    Solar energy systems were investigated which complement nuclear and coal technologies as a means of reducing the U.S. dependence on imported petroleum. Solar Thermal Energy Systems (STES) represents an important category of solar energy technologies. STES can be utilized in a broad range of applications servicing a variety of economic sectors, and they can be deployed in both near-term and long-term markets. The net present value of the energy cost savings attributable to electric utility and IPH applications of STES were estimated for a variety of future energy cost scenarios and levels of R&D success. This analysis indicated that the expected net benefits of developing an STES option are significantly greater than the expected costs of completing the required R&D. In addition, transportable fuels and chemical feedstocks represent a substantial future potential market for STES. Due to the basic nature of this R&D activity, however, it is currently impossible to estimate the value of STES in these markets. Despite this fact, private investment in STES R&D is not anticipated due to the high level of uncertainty characterizing the expected payoffs.

  13. Implications of environmental externalities assessments for solar thermal powerplants

    NASA Astrophysics Data System (ADS)

    Lee, A. D.; Baechler, M. C.

    1991-03-01

    Externalities are those impacts of one activity on other activities that are not priced in the marketplace. An externality is said to exist when two conditions hold: (1) the utility or operations of one economic agent, A, include nonmonetary variables whose values are chosen by another economic agent, B, without regard to the effects on A, and (2) B does not pay A compensation equal to the incremental costs inflicted on A. Electricity generation involves a wide range of potential and actual environmental impacts. Legislative, permitting, and regulatory requirements directly or indirectly control certain environmental impacts, implicitly causing them to become internalized in the cost of electricity generation. Electricity generation, however, often produces residual environmental impacts that meet the definition of an externality. Mechanisms have been developed by several states to include the costs associated with externalities in the cost-effectiveness analyses of new powerplants. This paper examines these costs for solar thermal plants and applies two states' scoring methodologies to estimate how including externalities would affect the levelized costs of power from a solar plant in the Pacific Northwest. It concludes that including externalities in the economics can reduce the difference between the levelized cost of a coal and solar plant by between 0.74 and 2.42 cents/kWh.

  14. Thermal buffering of receivers for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.

    1980-01-01

    A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.

  15. Properties and thermal decomposition of the hydro-fluoro-peroxide CH₃OC(O)OOC(O)F.

    PubMed

    Berasategui, Matías; Burgos Paci, Maxi A; Argüello, Gustavo A

    2014-03-27

    The thermal decomposition of methyl fluoroformyl peroxycarbonate CH3OC(O)OOC(O)F was studied in the range of 30- 96 °C using FTIR spectroscopy to follow the course of the reaction in the presence of either N2, O2, or CO as bath gases. The rate constants of the homogeneous first-order process fit the Arrhenius equation k(exp) = (5.4 ± 0.2) × 10(14) exp[-(27.1 ± 0.6 kcal mol(-1)/RT)] (in units of s(-1)). A complete mechanism of decomposition is presented. An experimental O-O bond energy of 27 ± 1 kcal mol(-1) was obtained. The products observed when N2 or O2 are used as bath gases were CO2, CO, HF, and CH3OC(O)H, while in the presence of CO, CH3OC(O)F was also observed. Transition state ab initio calculations were carried out to understand the dynamics of the decomposition. Additionally, thermodynamic properties of the atmospherically relevant CH3OCO2• radical were calculated. The heat of formation, ΔH°(f 298), obtained for CH3OCO2• and CH3OC(O)OOC(O)F, were 78 ± 3 kcal mol(-1) and 191 ± 5 kcal mol(-1), respectively.

  16. ESR studies on the thermal decomposition of trimethylamine oxide to formaldehyde and dimethylamine in jumbo squid (Dosidicus gigas) extract.

    PubMed

    Zhu, Junli; Jia, Jia; Li, Xuepeng; Dong, Liangliang; Li, Jianrong

    2013-12-15

    The effects of ferrous iron, heating temperature and different additives on the decomposition of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA) and generation of free radicals in jumbo squid (Dosidicus gigas) extract during heating were evaluated by electron spin resonance (ESR). The thermal decomposition of TMAO to TMA, DMA and FA and free radical signals was observed in squid extract, whereas no DMA, FA and free radical signals were detected in cod extract or in aqueous TMAO solution in vitro at high temperatures. Significant increase in levels of DMA, FA and radicals intensity were observed in squid extract and TMAO solution in the presence of ferrous iron with increasing temperature. Hydrogen peroxide stimulated the production of DMA, FA and ESR signals in squid extract, while citric acid, trisodium citrate, calcium chloride, tea polyphenols and resveratrol had the opposite effect. Similar ESR spectra of six peaks regarded as amminium radical were detected in the squid extract and TMAO-iron(II) solution, suggesting that the amminium radical was involved in the decomposition of TMAO.

  17. Nonimaging concentrators for solar thermal energy. Final report

    SciTech Connect

    Winston, R.

    1980-03-21

    A small experimental solar collector test facility has been established on the campus of the University of Chicago. This capability has been used to explore applications of nonimaging optics for solar thermal concentration in three substantially different configurations: (1) a single stage system with moderate concentration on an evacuated absorber (a 5.25X evacuated tube Compound Parabolic Concentrator or CPC), (2) a two stage system with high concentration and a non-evacuated absorber (a 16X Fresnel lens/CPC type mirror) and (3) moderate concentration single stage systems with non-evacuated absorbers for lower temperature (a 3X and a 6.5X CPC). Prototypes of each of these systems have been designed, built and tested. The performance characteristics are presented. In addition a 73 m/sup 2/ experimental array of 3X non-evacuated CPC's has been installed in a school heating system on the Navajo Indian Reservation in New Mexico. The full array has a peak noon time efficiency of approx. 50% at ..delta..T = 50/sup 0/C above ambient and has supplied about half the school's heat load for the past two heating seasons. Several theoretical features of nonimaging concentration have been investigated including their long term energy collecting behavior. The measured performance of the different systems shows clearly that non-tracking concentrators can provide solar thermal energy from moderately high low temperature regimes (> 50/sup 0/C above ambient) up into the mid-temperature region (well above 200/sup 0/C above ambient). The measured efficiency at 220/sup 0/C for the 5.25X CPC was as high or higher than that for any of the commercial tracking systems tested.

  18. Solar electric propulsion system thermal analysis. [including heat pipes and multilayer insulation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Thermal control elements applicable to the solar electric propulsion stage are discussed along with thermal control concepts. Boundary conditions are defined, and a thermal analysis was conducted with special emphasis on the power processor and equipment compartment thermal control system. Conclusions and recommendations are included.

  19. Phase decomposition and nano structure evolution of metastable nanocrystalline Cu-Co solid solutions during thermal treatment

    NASA Astrophysics Data System (ADS)

    Bachmaier, A.; Stolpe, M.; Müller, T.; Motz, C.

    2015-08-01

    Nanocrystalline and ultrafine-grained Cu100-xCox (x = 26 and 76) solid solutions have been prepared by severe plastic deformation (SPD) of elemental powder mixtures. For both concentrations a supersaturated solid solution fcc phase was identified after the deformation process with grain sizes of less than 50 nm for Co rich solutions and around 100 nm for Cu rich solutions. Additionally, synthesis of nanocrystalline materials in the Cu-Co alloy system by electrodeposition has been conducted. Microstructural characterization by scanning and transmission electron microscopy, differential scanning calorimetry, and microhardness measurements are used to investigate the structural evolution, the thermal stability and mechanical properties of the different nanocrystalline Cu-Co alloy materials during isothermal and non-isothermal annealing. In this study it is shown that the phase decomposition of the metastable Cu-Co solid solutions has a significant influence on their thermal stability, which can be linked to the underlying microstructure that forms during annealing.

  20. Physical Properties and Thermal Decomposition of Aqueous Solutions of 2-Amino-2-hydroxymethyl-1, 3-propanediol (AHPD)

    NASA Astrophysics Data System (ADS)

    Murshid, Ghulam; Shariff, Azmi Mohd; Lau, K. K.; Bustam, Mohammad Azmi; Ahmad, Faizan

    2011-10-01

    Physical properties such as density, viscosity, refractive index, surface tension, and thermal stability of 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD) were experimentally measured. All the experimental measurements were made over a wide range of temperatures from (298.15 to 333.15) K and AHPD concentrations of (1, 7, 13, 19, and 25) mass%. An overall decrease in all the measured physical properties was observed with increasing temperature. The experimental results are presented as a function of temperature and AHPD mass fraction. All the measured physical properties were correlated as a function of temperature. Thermal decomposition of pure and aqueous solutions of AHPD was investigated using a thermo-gravimetric analyzer (TGA) at a heating rate of 10 K · min-1.