Solar tracking control system Sun Chaser
NASA Technical Reports Server (NTRS)
Scott, D. R.; White, P. R.
1978-01-01
The solar tracking control system, Sun Chaser, a method of tracking the Sun in all types of weather conditions is described. The Sun Chaser follows the Sun from east to west in clear or cloudy weather, and resets itself to the east position after sundown in readiness for the next sunrise.
Low-cost solar tracking system
NASA Technical Reports Server (NTRS)
Miller, C. G.; Stephens, J. B.
1975-01-01
Smaller heat-collector is moved to stay in focus with the sun, instead of moving reflector. Tracking can be controlled by storing data of predicted solar positions or by applying conventional sun-sensing devices to follow solar movement.
NASA Astrophysics Data System (ADS)
Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Della, M.; Aillerie, M.
2017-02-01
Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP), which depends on the environmental factors, such as temperature and irradiation. In order to continuously harvest maximum power from the solar panels, they have to operate at their MPP despite the inevitable changes in the environment. Various methods for maximum power point tracking (MPPT) were developed and finally implemented in solar power electronic controllers to increase the efficiency in the electricity production originate from renewables. In this paper we compare using Matlab tools Simulink, two different MPP tracking methods, which are, fuzzy logic control (FL) and sliding mode control (SMC), considering their efficiency in solar energy production.
Dynamic kirigami structures for integrated solar tracking.
Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max
2015-09-08
Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.
Dynamic kirigami structures for integrated solar tracking
Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max
2015-01-01
Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820
Fuzzy attitude control of solar sail via linear matrix inequalities
NASA Astrophysics Data System (ADS)
Baculi, Joshua; Ayoubi, Mohammad A.
2017-09-01
This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.
Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, JT; Park, S; Chen, CL
2013-03-01
We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as themore » sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.« less
Research on regional intrusion prevention and control system based on target tracking
NASA Astrophysics Data System (ADS)
Liu, Yanfei; Wang, Jieling; Jiang, Ke; He, Yanhui; Wu, Zhilin
2017-08-01
In view of the fact that China’s border is very long and the border prevention and control measures are single, we designed a regional intrusion prevention and control system which based on target-tracking. The system consists of four parts: solar panel, radar, electro-optical equipment, unmanned aerial vehicle and intelligent tracking platform. The solar panel provides independent power for the entire system. The radar detects the target in real time and realizes the high precision positioning of suspicious targets, then through the linkage of electro-optical equipment, it can achieve full-time automatic precise tracking of targets. When the target appears within the range of detection, the drone will be launched to continue the tracking. The system is mainly to realize the full time, full coverage, whole process integration and active realtime control of the border area.
NASA Astrophysics Data System (ADS)
Chak, Yew-Chung; Varatharajoo, Renuganth
2016-07-01
Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to the actual angular velocity. Numerical results are presented to demonstrate the effectiveness of the proposed scheme in tracking the desired attitude, as well as suppressing the elastic deflection effects of solar arrays during maneuver.
A photodiode based on PbS nanocrystallites for FYTRONIX solar panel automatic tracking controller
NASA Astrophysics Data System (ADS)
Wageh, S.; Farooq, W. A.; Tataroğlu, A.; Dere, A.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed A.; Yakuphanoglu, F.
2017-12-01
The structural, optical and photoelectrical properties of the fabricated Al/PbS/p-Si/Al photodiode based on PbS nanocrystallites were investigated. The PbS nanocrystallites were characterized by X-ray diffraction (XRD), UV-VIS-NIR, Infrared and Raman spectroscopy. The XRD diffraction peaks show that the prepared PbS nanostructure is in high crystalline state. Various electrical parameters of the prepared photodiode were analyzed from the electrical characteristics based on I-V and C-V-G. The photodiode has a high rectification ratio of 5.85×104 at dark and ±4 V. Moreover, The photocurrent results indicate a strong photovoltaic behavior. The frequency dependence of capacitance and conductance characteristics was attributed to depletion region behavior of the photodiode. The diode was used to control solar panel power automatic tracking controller in dual axis. The fabricated photodiode works as a photosensor to control Solar tracking systems.
Solar Collector Control System.
A system for controlling the movement in azimuth and elevation of a large number of sun following solor energy collectors from a single controller...The system utilizes servo signal generators, a modulator and a demodulator for transmitting the servo signals, and stepping motors for controlling...remotely located solar collectors. The system allows precise tracking of the sun by a series of solar collectors without the necessity or expense of individualized solar trackers. (Author)
NASA Astrophysics Data System (ADS)
Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.
2016-03-01
Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.
Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts
NASA Technical Reports Server (NTRS)
Lim, Tae W.; Cooper, Paul A.; Ayers, J. Kirk
1992-01-01
The sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts are addressed. The significant components of the space station pertaining to the SARJ control are described and the tracking control system design is presented. Finite element models representing two evolutionary concepts, enhanced operations capability (EOC) and extended operations capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration. Performance limitations caused by the low frequency of the dominant flexible mode are discussed.
A Solar Position Sensor Based on Image Vision.
Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Acuña, Alexis; Rosales, Pedro; Suastegui, José
2017-07-29
Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors' evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays' direction as well as the tilt and sensor position. The sensor's characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors.
A Solar Position Sensor Based on Image Vision
Ruelas, Adolfo; Velázquez, Nicolás; Villa-Angulo, Carlos; Rosales, Pedro; Suastegui, José
2017-01-01
Solar collector technologies operate with better performance when the Sun beam direction is normal to the capturing surface, and for that to happen despite the relative movement of the Sun, solar tracking systems are used, therefore, there are rules and standards that need minimum accuracy for these tracking systems to be used in solar collectors’ evaluation. Obtaining accuracy is not an easy job, hence in this document the design, construction and characterization of a sensor based on a visual system that finds the relative azimuth error and height of the solar surface of interest, is presented. With these characteristics, the sensor can be used as a reference in control systems and their evaluation. The proposed sensor is based on a microcontroller with a real-time clock, inertial measurement sensors, geolocation and a vision sensor, that obtains the angle of incidence from the sunrays’ direction as well as the tilt and sensor position. The sensor’s characterization proved how a measurement of a focus error or a Sun position can be made, with an accuracy of 0.0426° and an uncertainty of 0.986%, which can be modified to reach an accuracy under 0.01°. The validation of this sensor was determined showing the focus error on one of the best commercial solar tracking systems, a Kipp & Zonen SOLYS 2. To conclude, the solar tracking sensor based on a vision system meets the Sun detection requirements and components that meet the accuracy conditions to be used in solar tracking systems and their evaluation or, as a tracking and orientation tool, on photovoltaic installations and solar collectors. PMID:28758935
Efficient Solar Concentrators: Affordable Energy from Water and Sunlight
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledyne’s liquid prism panel has no bulky and heavy supporting parts—instead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlightmore » to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.« less
The design and development of a solar tracking unit
NASA Technical Reports Server (NTRS)
Jones, I. W.; Miller, J. B.
1984-01-01
The solar tracking unit was developed to support the Laser Heterodyne Spectrometer (LHS) airborne instrument, but has application to a general class of airborne solar occultation research instruments. The unit consists of a mirror mounted on two gimbals, one of which is hollow. The mirror reflects a 7.6 cm (3.0 in.) diameter beam of sunlight through the hollow gimbal into the research instrument optical axis. A portion of the reflected sunlight is directed into a tracking telescope which uses a four quadrant silicon detector to produce the servo error signals. The colinearity of the tracker output beam and the research instrument optical axis is maintained to better than + or - 1 arc-minute. The unit is microcomputer controlled and is capable of stand alone operation, including automatic Sun acquisition or operation under the control of the research instrument.
Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster
NASA Technical Reports Server (NTRS)
Gruber, R. P.
1977-01-01
A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.
A novel open-loop tracking strategy for photovoltaic systems.
Alexandru, Cătălin
2013-01-01
This paper approaches a dual-axis equatorial tracking system that is used to increase the photovoltaic efficiency by maximizing the degree of use of the solar radiation. The innovative aspect in the solar tracker design consists in considering the tracking mechanism as a perturbation for the DC motors. The goal is to control the DC motors, which are perturbed with the motor torques whose computation is based on the dynamic model of the mechanical structure on which external forces act. The daily and elevation angles of the PV module represent the input parameters in the mechanical device, while the outputs transmitted to the controller are the motor torques. The controller tuning is approached by a parametric optimization process, using design of experiments and response surface methodology techniques, in a multiple regression. The simulation and experimental results demonstrate the operational performance of the tracking system.
A Novel Open-Loop Tracking Strategy for Photovoltaic Systems
Alexandru, Cătălin
2013-01-01
This paper approaches a dual-axis equatorial tracking system that is used to increase the photovoltaic efficiency by maximizing the degree of use of the solar radiation. The innovative aspect in the solar tracker design consists in considering the tracking mechanism as a perturbation for the DC motors. The goal is to control the DC motors, which are perturbed with the motor torques whose computation is based on the dynamic model of the mechanical structure on which external forces act. The daily and elevation angles of the PV module represent the input parameters in the mechanical device, while the outputs transmitted to the controller are the motor torques. The controller tuning is approached by a parametric optimization process, using design of experiments and response surface methodology techniques, in a multiple regression. The simulation and experimental results demonstrate the operational performance of the tracking system. PMID:24327803
PSO Based PI Controller Design for a Solar Charger System
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713
PSO based PI controller design for a solar charger system.
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J; Kuhlman, J
1981-01-31
The tracker uses a single photo sensor, and a rotating aperature to obtain tracking accuracies better than 1.5 mrads (0.1 degs). Peak signal detection is used to eliminate tracking of false sources, i.e., clouds, etc. A prism is employed to obtain an extended field of view (150 degs axially - 360 degs radially). The tracker digitally measures the Suns displacement angle relative to the concentrator axis, and repositions it incrementally. This arrangement permits the use of low cost non-servo motors. The local controller contains microprocessor based electronics, incorporating digital signal processing. A single controller may be time shared by amore » maximum of sixteen trackers, providing a high performance, cost effective solar tracking system, suitable for both line and point focus concentrators. An installation may have the local controller programmed as a standalone unit or slaved to a central controller. When used with a central controller, dynamic data monitoring and logging is available, together with the ability to change system modes and parameters, as desired.« less
Analysis and simulation tools for solar array power systems
NASA Astrophysics Data System (ADS)
Pongratananukul, Nattorn
This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.
Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power
NASA Technical Reports Server (NTRS)
Soeder, James F.; Button, Robert M.
1999-01-01
A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak power point through various load transients, including sunlight discharge transients when the total load exceeded the maximum solar array output power.
TOPEX/POSEIDON orbit maintenance maneuver design
NASA Technical Reports Server (NTRS)
Bhat, R. S.; Frauenholz, R. B.; Cannell, Patrick E.
1990-01-01
The Ocean Topography Experiment (TOPEX/POSEIDON) mission orbit requirements are outlined, as well as its control and maneuver spacing requirements including longitude and time targeting. A ground-track prediction model dealing with geopotential, luni-solar gravity, and atmospheric-drag perturbations is considered. Targeting with all modeled perturbations is discussed, and such ground-track prediction errors as initial semimajor axis, orbit-determination, maneuver-execution, and atmospheric-density modeling errors are assessed. A longitude targeting strategy for two extreme situations is investigated employing all modeled perturbations and prediction errors. It is concluded that atmospheric-drag modeling errors are the prevailing ground-track prediction error source early in the mission during high solar flux, and that low solar-flux levels expected late in the experiment stipulate smaller maneuver magnitudes.
SOLARTRAK. Solar Array Tracking Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manish, A.B.; Dudley, J.
1995-06-01
SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board`s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maish, Alexander
1995-06-22
SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board''s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less
NASA Astrophysics Data System (ADS)
Zhu, D.; Henaut, J.; Beeby, S. P.
2014-11-01
This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved.
Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor
Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi
2016-01-01
Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time. PMID:27898002
Design of a Solar Tracking System Using the Brightest Region in the Sky Image Sensor.
Wei, Ching-Chuan; Song, Yu-Chang; Chang, Chia-Chi; Lin, Chuan-Bi
2016-11-25
Solar energy is certainly an energy source worth exploring and utilizing because of the environmental protection it offers. However, the conversion efficiency of solar energy is still low. If the photovoltaic panel perpendicularly tracks the sun, the solar energy conversion efficiency will be improved. In this article, we propose an innovative method to track the sun using an image sensor. In our method, it is logical to assume the points of the brightest region in the sky image representing the location of the sun. Then, the center of the brightest region is assumed to be the solar-center, and is mathematically calculated using an embedded processor (Raspberry Pi). Finally, the location information on the sun center is sent to the embedded processor to control two servo motors that are capable of moving both horizontally and vertically to track the sun. In comparison with the existing sun tracking methods using image sensors, such as the Hough transform method, our method based on the brightest region in the sky image remains accurate under conditions such as a sunny day and building shelter. The practical sun tracking system using our method was implemented and tested. The results reveal that the system successfully captured the real sun center in most weather conditions, and the servo motor system was able to direct the photovoltaic panel perpendicularly to the sun center. In addition, our system can be easily and practically integrated, and can operate in real-time.
Okandan, Murat; Nielson, Gregory N.
2016-07-12
Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.
Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.
2015-09-08
A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
Photovoltaic solar concentrator
Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.
2016-03-15
A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
Photovoltaic solar concentrator
Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis
2012-12-11
A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.
Galen, Candace
2006-06-01
Solar tracking or heliotropism simultaneously raises organ temperature and light interception. For leaves and flowers carbon gain is maximized at the expense of water loss. In this study I explore how costs and benefits associated with water use by solar-tracking flowers of the alpine snow buttercup, Ranunculus adoneus change with ambient temperature. First, I test whether heliotropism increases the water cost of reproduction in the snow buttercup under extant alpine conditions. I then explore whether water use for evaporative cooling in solar-tracking flowers reduces the risk of over-heating as temperatures increase. Solar tracking, by elevating floral temperature and irradiance causes a 29% increase in water uptake by flowers. Gas exchange measurements suggest that the extra water taken up by solar-tracking flowers is released through transpiration. Transpirational cooling in turn allows solar-tracking flowers to gain advantages of enhanced light interception and warmth while reducing the risk of over-heating. Transpiration reduces excess temperature in solar-tracking flowers, but at a water cost. Results show that even in cool alpine habitats, flower heliotropism has water costs to balance its reproductive advantages. Plants with solar-tracking flowers may tolerate hotter conditions if soil moisture is plentiful, but not under drought.
Dithering Digital Ripple Correlation Control for Photovoltaic Maximum Power Point Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, C; Pilawa-Podgurski, RCN
This study demonstrates a new method for rapid and precise maximum power point tracking in photovoltaic (PV) applications using dithered PWM control. Constraints imposed by efficiency, cost, and component size limit the available PWM resolution of a power converter, and may in turn limit the MPP tracking efficiency of the PV system. In these scenarios, PWM dithering can be used to improve average PWM resolution. In this study, we present a control technique that uses ripple correlation control (RCC) on the dithering ripple, thereby achieving simultaneous fast tracking speed and high tracking accuracy. Moreover, the proposed method solves some ofmore » the practical challenges that have to date limited the effectiveness of RCC in solar PV applications. We present a theoretical derivation of the principles behind dithering digital ripple correlation control, as well as experimental results that show excellent tracking speed and accuracy with basic hardware requirements.« less
Gimbal Control Algorithms for the Global Precipitation Measurement Core Observatory
NASA Technical Reports Server (NTRS)
Welter, Gary L.; Liu, Kuo Chia; Blaurock, Carl
2012-01-01
There are two gimbaled systems on the Global Precipitation Measurement Core Observatory: two single-degree-of-freedom solar arrays (SAs) and one two-degree-of-freedom high gain antenna (HGA). The guidance, navigation, and control analysis team was presented with the following challenges regarding SA orientation control during periods of normal mission science: (1) maximize solar flux on the SAs during orbit day, subject to battery charging limits, (2) minimize atmospheric drag during orbit night to reduce frequency of orbit maintenance thruster usage, (3) minimize atmospheric drag during orbits for which solar flux is nearly independent of SA orientation, and (4) keep array-induced spacecraft attitude disturbances within allocated tolerances. The team was presented with the following challenges regarding HGA control during mission science periods: (1) while tracking a ground-selected Tracking Data and Relay Satellite (TDRS), keep HGA control error below about 4', (2) keep array-induced spacecraft attitude disturbances small, and (3) minimize transition time between TDRSs subject to constraints imposed by item 2. This paper describes the control algorithms developed to achieve these goals and certain analysis done as part of that work.
NASA Technical Reports Server (NTRS)
Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)
1991-01-01
A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.
A ground track control algorithm for the Topographic Mapping Laser Altimeter (TMLA)
NASA Technical Reports Server (NTRS)
Blaes, V.; Mcintosh, R.; Roszman, L.; Cooley, J.
1993-01-01
The results of an analysis of an algorithm that will provide autonomous onboard orbit control using orbits determined with Global Positioning System (GPS) data. The algorithm uses the GPS data to (1) compute the ground track error relative to a fixed longitude grid, and (2) determine the altitude adjustment required to correct the longitude error. A program was written on a personal computer (PC) to test the concept for numerous altitudes and values of solar flux using a simplified orbit model including only the J sub 2 zonal harmonic and simple orbit decay computations. The algorithm was then implemented in a precision orbit propagation program having a full range of perturbations. The analysis showed that, even with all perturbations (including actual time histories of solar flux variation), the algorithm could effectively control the spacecraft ground track and yield more than 99 percent Earth coverage in the time required to complete one coverage cycle on the fixed grid (220 to 230 days depending on altitude and overlap allowance).
Cleaning Robot for Solar Panels in Solar Power Station
NASA Astrophysics Data System (ADS)
Hang, Lu-Bin; Shen, Cheng-Wei; Bian, Huai-Qiang; Wang, Yan
2016-05-01
The dust particles on solar panel surface have been a serious problem for the photovoltaic industry, a new monorail-tracked robot used for automatic cleaning of solar panel is presented in this paper. To meet the requirement of comprehensive and stable cleaning of PV array, the monorail-tracked pattern of robot is introduced based on the monorail structure technique. The running and striding mechanism are designed for mobility of robot on the solar panels. According to the carrying capacity and water circulation mechanism, a type of self-cleaning device with filtering system is developed. Combined with the computer software and communications technology, the control system is built in this robot, which can realize the functions of autonomous operation, positioning and monitoring. The application of this developed cleaning robot can actualize the Industrialization of automatic cleaning for PV components and have wide market prospect.
Image motion compensation by area correlation and centroid tracking of solar surface features
NASA Technical Reports Server (NTRS)
Nein, M. E.; Mcintosh, W. R.; Cumings, N. P.
1983-01-01
An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated; mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz.
NASA Technical Reports Server (NTRS)
White, P. R.; Scott, D. R. (Inventor)
1981-01-01
A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition; a second corresponding to light intensity lying in an intermediate range; and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position; the second enables the motor to be driven westerly at the Earth rotational rate; and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun.
2002-12-01
applications, vibration sources are numerous such as: ! Launch Loading ! Man-induced accelerations like on the Shuttle or space station ! Solar ...However, the lack of significant tracking errors during times when other actuators were stationary, and the fact that the local maximum tracking...
Solar receiver heliostat reflector having a linear drive and position information system
Horton, Richard H.
1980-01-01
A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.
Development of a solar-powered infrared injection laser microminiature transmitting system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falter, D.D.; Alley, G.T.; Falter, K.G.
1989-01-01
A solar-powered infrared microminiature transmitting system is being developed to provide scientists with a tool to continuously track and study Africanized bees. Present tracking methods have limited ranges and lack the capability of continuously tracking individual insects. Preliminary field tests of a stationary prototypic transmitter have demonstrated a range of 1.1 km. The basic design consists of an array of nine 1-mm{sup 2} solar cells, which collect energy for storage in a 1.0-{mu}F tantalum chip capacitor. When the capacitor has been charged to a sufficient level, the circuitry that monitors the capacitor voltage level wakes up'' and fires a 5-{mu}smore » pulse through an 840-nm GaAlAs injection laser diode. The process is then repeated, making the signal frequency (which ranges from 50 to 300 Hz) dependent on solar luminance. The solar cells, capacitor, and laser diode are mounted in hybrid microcircuit fashion directly on the silicon substrate containing the CMOS control and driver circuitry. The transmitter measures {approximately}4 {times} 6 mm and weighs {approximately}65 mg. The receiving system is based on an 8-in. telescope and a Si PIN diode detector. 8 refs., 10 figs.« less
Operation of Direct Drive Systems: Experiments in Peak Power Tracking and Multi-Thruster Control
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Brophy, John R.
2013-01-01
Direct-drive power and propulsion systems have the potential to significantly reduce the mass of high-power solar electric propulsion spacecraft, among other advantages. Recent experimental direct-drive work has significantly mitigated or retired the technical risks associated with single-thruster operation, so attention is now moving toward systems-level areas of interest. One of those areas is the use of a Hall thruster system as a peak power tracker to fully use the available power from a solar array. A simple and elegant control based on the incremental conductance method, enhanced by combining it with the unique properties of Hall thruster systems, is derived here and it is shown to track peak solar array power very well. Another area of interest is multi-thruster operation and control. Dualthruster operation was investigated in a parallel electrical configuration, with both thrusters operating from discharge power provided by a single solar array. Startup and shutdown sequences are discussed, and it is shown that multi-thruster operation and control is as simple as for a single thruster. Some system architectures require operation of multiple cathodes while they are electrically connected together. Four different methods to control the discharge current emitted by individual cathodes in this configuration are investigated, with cathode flow rate control appearing to be advantageous. Dual-parallel thruster operation with equal cathode current sharing at total powers up to 10 kW is presented.
Design of a solar tracking interactive kiosk
NASA Astrophysics Data System (ADS)
Greene, Nathaniel R.; Brunskill, Jeffrey C.
2017-01-01
A two-axis solar tracker and its interactive kiosk were designed by an interdisciplinary team of students and faculty. The objective was to develop a publicly accessible kiosk that would facilitate the study of energy usage and production on campus. Tracking is accomplished by an open-loop algorithm, microcontroller, and ham radio rotator. Solar panel output is monitored in real time and displayed to the public with lights and digits that can be read by the casual passersby. While maximum power point tracking is the most accurate means of quantifying the output power of a photovoltaic panel, simplicity and design constraints dictated the use of short-circuit current as a proxy for power. A touchscreen display allows kiosk visitors to compare two solar panels, an automatic tracker that faces the sun, and an identical panel whose elevation and azimuth can be controlled with a virtual joystick. This project was a capstone experience for students in physics/engineering, computer science, and instructional technology. We discuss technical challenges and design choices, as well as the educational goals of the kiosk.
Thermal Simulation Facilities Handbook.
1983-02-01
tower provide incident radiation angles of 900 or less. Since each heliostat Is Individually controlled, the size of a test Item depends on application...designed such that it can be used for many other applications. (See also Section 3.) The solar furnace uses both a flat mirror ( heliostat ) that track...type solar thermal facility. It consists of four main components: (1) heliostat , (2) attenua- tor, (3) concentrator, and (4) test and control chamber
Correlation tracking study for meter-class solar telescope on space shuttle. [solar granulation
NASA Technical Reports Server (NTRS)
Smithson, R. C.; Tarbell, T. D.
1977-01-01
The theory and expected performance level of correlation trackers used to control the pointing of a solar telescope in space using white light granulation as a target were studied. Three specific trackers were modeled and their performance levels predicted for telescopes of various apertures. The performance of the computer model trackers on computer enhanced granulation photographs was evaluated. Parametric equations for predicting tracker performance are presented.
NASA Astrophysics Data System (ADS)
Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan
2016-02-01
Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.
Orbital and angular motion construction for low thrust interplanetary flight
NASA Astrophysics Data System (ADS)
Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.
2016-11-01
Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.
Restructured Freedom configuration characteristics
NASA Technical Reports Server (NTRS)
Troutman, Patrick A.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.
1991-01-01
In Jan. 1991, the LaRc SSFO performed an assessment of the configuration characteristics of the proposed pre-integrated Space Station Freedom (SSF) concept. Of particular concern was the relationship of solar array operation and orientation with respect to spacecraft controllability. For the man-tended configuration (MTC), it was determined that torque equilibrium attitude (TEA) seeking Control Moment Gyroscope (CMG) control laws could not always maintain attitude. The control problems occurred when the solar arrays were tracking the sun to produce full power while flying in an arrow or gravity gradient flight mode. The large solar array articulations that sometimes result from having the functions of the alpha and beta joints reversed on MTC induced large product of inertia changes that can invalidate the control system gains during an orbit. Several modified sun tracking techniques were evaluated with respect to producing a controllable configuration requiring no modifications to the CMG control algorithms. Another assessment involved the permanently manned configuration (PMC) which has a third asymmetric PV unit on one side of the transverse boom. Recommendations include constraining alpha rotations for MTC in the arrow and gravity gradient flight modes and perhaps developing new non-TEA seeking control laws. Recommendations for PMC include raising the operational altitude and moving to a symmetric configuration as soon as possible.
Control-structure interaction study for the Space Station solar dynamic power module
NASA Technical Reports Server (NTRS)
Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.
1991-01-01
The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.
Wang, Jing-Min; Lu, Chia-Liang
2013-03-06
The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV) system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR) sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications.
Wang, Jing-Min; Lu, Chia-Liang
2013-01-01
The dual threats of energy depletion and global warming place the development of methods for harnessing renewable energy resources at the center of public interest. Solar energy is one of the most promising renewable energy resources. Sun trackers can substantially improve the electricity production of a photovoltaic (PV) system. This paper proposes a novel design of a dual-axis solar tracking PV system which utilizes the feedback control theory along with a four-quadrant light dependent resistor (LDR) sensor and simple electronic circuits to provide robust system performance. The proposed system uses a unique dual-axis AC motor and a stand-alone PV inverter to accomplish solar tracking. The control implementation is a technical innovation that is a simple and effective design. In addition, a scaled-down laboratory prototype is constructed to verify the feasibility of the scheme. The effectiveness of the Sun tracker is confirmed experimentally. To conclude, the results of this study may serve as valuable references for future solar energy applications. PMID:23467030
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
NASA Astrophysics Data System (ADS)
Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman
2016-02-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.
German-Korean cooperation for erection and test of industrialized solar technologies
NASA Astrophysics Data System (ADS)
Pfeiffer, H.
1986-01-01
A combined small solar-wind power station and a solar-thermal experimental plant were built. The plants are designed to demonstrate the effective exploitation of solar energy and wind energy and enhanced availability achievable through combination of these two energy sources. A 14 kW wind energy converter and a 2.5 kW solar-cell generator were operated in parallel. The biaxial tracking system used on the solar generator leads to increased and constant generation of electricity throughout the day. A consumer control system switches the energy generators and the consumers in autonomous mode according to changing supply and demand. The solar powered air conditioning unit operates with an absorption type refrigerating unit, high-output flat collectors and an automatic control system. All design values are achieved on start-up of the plant.
Backward-gazing method for measuring solar concentrators shape errors.
Coquand, Mathieu; Henault, François; Caliot, Cyril
2017-03-01
This paper describes a backward-gazing method for measuring the optomechanical errors of solar concentrating surfaces. It makes use of four cameras placed near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. Simple data processing then allows reconstructing the slope and shape errors of the surfaces. The originality of the method is enforced by the use of generalized quad-cell formulas and approximate mathematical relations between the slope errors of the mirrors and their reflected wavefront in the case of sun-tracking heliostats at high-incidence angles. Numerical simulations demonstrate that the measurement accuracy is compliant with standard requirements of solar concentrating optics in the presence of noise or calibration errors. The method is suited to fine characterization of the optical and mechanical errors of heliostats and their facets, or to provide better control for real-time sun tracking.
Design study for LANDSAT D attitude control system
NASA Technical Reports Server (NTRS)
Iwens, R. P.; Bernier, G. E.; Hofstadter, R. F.
1976-01-01
A design and performance evaluation is presented for the LANDSAT D attitude control system (ACS). Control and configuration of the gimballed Ku-band antenna system for communication with the tracking and data relay satellite (TDRS). Control of the solar array drive considered part of the ACS is also addressed.
Design of Solar Street Lamp Control System Based on MPPT
NASA Astrophysics Data System (ADS)
Cui, Fengying
This paper proposes a new solar street lamp control system which is composed of photovoltaic cell, controller, battery and load. In this system controller as the key part applies the microchip to achieve many functions. According to the nonlinear output characteristics of solar cell and the influence of environment, it uses the perturbation and observation (P&O) method to realize the maximum power point tracking (MPPT) and promotes the efficiency. In order to prolong the battery life the pulse width modulation (PWM) charge mode is selected to control the battery capacity and provent the battery from the state of over-charge and over-discharge. Meanwhile the function of temperature compensation, charge and discharge protection are set to improve the running safety and stability.
Computing Satellite Maneuvers For A Repeating Ground Track
NASA Technical Reports Server (NTRS)
Shapiro, Bruce
1994-01-01
TOPEX/POSEIDON Ground Track Maintenance Maneuver Targeting Program (GTARG) assists in designing maneuvers to maintain orbit of TOPEX/POSEIDON satellite. Targeting strategies used either maximize time between maneuvers or force control band exit to occur at specified intervals. Runout mode allows for ground-track propagation without targeting. GTARG incorporates analytic mean-element propagation algorithm accounting for all perturbations known to cause significant variations in ground track. Perturbations include oblateness of Earth, luni-solar gravitation, drag, thrusts associated with impulsive maneuvers, and unspecified fixed forces acting on satellite in direction along trajectory. Written in VAX-FORTRAN.
NASA Astrophysics Data System (ADS)
Wang, Hongrui; Wang, Yupeng; Ye, Xin; Yang, Dongjun; Wang, Kai; Li, Huiduan; Fang, Wei
2017-01-01
The Total Solar Irradiance Monitor (TSIM) onboard the nadir Feng Yun-3C (FY-3C) satellite provides measurements of the total solar irradiance with accurate solar tracking and sound thermal stability of its heat sink. TSIM/FY-3C mainly consists of the pointing system, the radiometer package, the thermal control system, and the electronics. Accurate solar tracking is achieved by the pointing system, which greatly improves the science data quality when compared with the previous TSIM/FY-3A and TSIM/FY-3B. The total solar irradiance (TSI) is recorded by TSIM/FY-3C about 26 times each day, using a two-channel radiometer package. One channel is used to perform routine observation, and the other channel is used to monitor the degradation of the cavity detector in the routine channel. From the results of the ground test, the incoming irradiance is measured by the routine channel (AR1) with a relative uncertainty of 592 ppm. A general description of the TSIM, including the instrument modules, uncertainty evaluation, and its operation, is given in this article.
Implementation of Maximum Power Point Tracking (MPPT) Solar Charge Controller using Arduino
NASA Astrophysics Data System (ADS)
Abdelilah, B.; Mouna, A.; KouiderM’Sirdi, N.; El Hossain, A.
2018-05-01
the platform Arduino with a number of sensors standard can be used as components of an electronic system for acquiring measures and controls. This paper presents the design of a low-cost and effective solar charge controller. This system includes several elements such as the solar panel converter DC/DC, battery, circuit MPPT using Microcontroller, sensors, and the MPPT algorithm. The MPPT (Maximum Power Point Tracker) algorithm has been implemented using an Arduino Nano with the preferred program. The voltage and current of the Panel are taken where the program implemented will work and using this algorithm that MPP will be reached. This paper provides details on the solar charge control device at the maximum power point. The results include the change of the duty cycle with the change in load and thus mean the variation of the buck converter output voltage and current controlled by the MPPT algorithm.
Hammons, Burrell E.
1980-01-01
The invention relates to a solar tracking device which tracks the position of the sun using paired, partially-shaded photocells. Auxiliary photocells are used for initial acquisition of the sun and for the suppression of false tracking when the sun is obscured by clouds.
Hammons, B.E.
The invention relates to a solar tracking device which tracks the position of the sun using paired, partially-shaded photocells. Auxilliary photocells are used for initial acquisition of the sun and for the suppression of false tracking when the sun is obscured by clouds.
NASA Astrophysics Data System (ADS)
Wang, Hongrui; Fang, Wei; Li, Huiduan
2015-04-01
Solar driving mechanism for Earth climate has been a controversial problem for centuries. Long-time data of solar activity is required by the investigations of the solar driving mechanism, such as Total Solar Irradiance (TSI) record. Three Total Solar Irradiance Monitors (TSIM) have been developed by Changchun Institute of Optics, Fine Mechanics and Physics for China Meteorological Administration to maintain continuities of TSI data series which lasted for nearly 4 decades.The newest TSIM has recorded TSI daily with accurate solar pointing on the FY-3C meteorological satellite since Oct 2013. TSIM/FY-3C has a pointing system for automatic solar tracking, onboard the satellite designed mainly for Earth observing. Most payloads of FY-3C are developed for observation of land, ocean and atmosphere. Consequently, the FY-3C satellite is a nadir-pointing spacecraft with its z axis to be pointed at the center of the Earth. Previous TSIMs onboard the FY-3A and FY-3B satellites had no pointing system, solar observations were only performed when the sun swept through field-of-view of the instruments. And TSI measurements are influenced inevitably by the solar pointing errors. Corrections of the solar pointing errors were complex. The problem is now removed by TSIM/FY-3C.TSIM/FY-3C follows the sun accurately by itself using its pointing system based on scheme of visual servo control. The pointing system is consisted of a radiometer package, two motors for solar tracking, a sun sensor and etc. TSIM/FY-3C has made daily observations of TSI for more than one year, with nearly zero solar pointing errors. Short time-scale variations in TSI detected by TSIM/FY-3C are nearly the same with VIRGO/SOHO and TIM/SORCE.Instrument details, primary results of solar pointing control, solar observations and etc will be given in the presentation.
Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.
2015-09-02
The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error.more » The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.« less
NASA Astrophysics Data System (ADS)
Fan, Li; Jiang, Chao; Hu, Min
2017-02-01
Eight inclined geosynchronous satellite orbit (IGSO) satellites in the Chinese BeiDou Navigation Satellite System (BDS) have been put in orbit until now. IGSO is a special class of geosynchronous circular orbit, with the inclination not equal to zero. It can provide high elevation angle coverage to high-latitude areas. The geography longitude of the ground track cross node is the main factor to affect the ground coverage areas of the IGSO satellites. In order to ensure the navigation performance of the IGSO satellites, the maintenance control of the ground track cross node is required. Considering the tesseral resonances and the luni-solar perturbations, a control approach is proposed to maintain the ground track for the long-term evolution. The drifts of the ground track cross node of the IGSO satellites are analyzed, which is formulated as a function of the bias of the orbit elements and time. Based on the derived function, a method by offsetting the semi-major axis is put forward to maintain the longitude of the ground track cross node, and the offset calculation equation is presented as well. Moreover, the orbit inclination is adjusted to maintain the location angle intervals between each two IGSO satellites. Finally, the precision of the offset calculation equation is analyzed to achieve the operational deployment. Simulation results show that the semi-major axis offset method is effective, and its calculation equation is accurate. The proposed approach has been applied to the maintenance control of BeiDou IGSO satellites.
Issues regarding the usage of MPPT techniques in micro grid systems
NASA Astrophysics Data System (ADS)
Szeidert, I.; Filip, I.; Dragan, F.; Gal, A.
2018-01-01
The main objective of the control strategies applied at hybrid micro grid systems (wind/hydro/solar), that function based on maximum power point tracking (MPPT) techniques is to improve the conversion system’s efficiency and to preserve the quality of the generated electrical energy (voltage and power factor). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a certain time period. In order to implement the control strategies for micro grid, there are typically required specific transducers (sensor for wind speed, optical rotational transducers, etc.). In the technical literature, several variants of the MPPT techniques are presented and particularized at some applications (wind energy conversion systems, solar systems, hydro plants, micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The lower level controls the main variable and the superior level represents the MPPT control structure. The paper presents micro grid structures developed at Politehnica University Timisoara (PUT) within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.
Efficiency degradation due to tracking errors for point focusing solar collectors
NASA Technical Reports Server (NTRS)
Hughes, R. O.
1978-01-01
An important parameter in the design of point focusing solar collectors is the intercept factor which is a measure of efficiency and of energy available for use in the receiver. Using statistical methods, an expression of the expected value of the intercept factor is derived for various configurations and control law implementations. The analysis assumes that a radially symmetric flux distribution (not necessarily Gaussian) is generated at the focal plane due to the sun's finite image and various reflector errors. The time-varying tracking errors are assumed to be uniformly distributed within the threshold limits and allows the expected value calculation.
Two-axis tracking solar collector mechanism
Johnson, Kenneth C.
1992-01-01
This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.
Two-axis tracking solar collector mechanism
Johnson, Kenneth C.
1990-01-01
This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.
Two-axis tracking solar collector mechanism
Johnson, K.C.
1992-12-08
This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.
Beam tracking strategies for studies of kinetic scales in the solar wind with THOR-CSW
NASA Astrophysics Data System (ADS)
De Keyser, Johan; Lavraud, Benoit; Neefs, Eddy; Berkenbosch, Sophie; Anciaux, Michel; Maggiolo, Romain
2016-04-01
Modern plasma spectrometers for monitoring the solar wind attempt to intelligently track the energy and direction of the solar wind beam in order to obtain solar wind velocity distributions more efficiently. Such beam tracking strategies offer some benefits, but also have their limitations and drawbacks. Benefits include an improved resolution and/or a faster velocity distribution function acquisition time. Limitations are due to instrument characteristics that tend to be optimized for a particular range of particle energies and arrival directions. A drawback is the risk to miss an important part of the velocity distribution or to lose track of the beam altogether. A comparison is presented of different beam tracking strategies under consideration for the THOR-CSW instrument in order to highlight a number of design decisions and their impact on the acquired velocity distributions. The gain offered by beam tracking in terms of increased time resolution turns out to be essential for studies of solar wind physics at kinetic scales.
Using a Fuzzy Light Sensor to Improve the Efficiency of Solar Panels
NASA Astrophysics Data System (ADS)
Suryono; Suseno, Jatmiko Endro; Sulistiati, Ainie Khuriati Riza; Prahara, Tahan
2018-02-01
Solar panel efficiency can be increased by improving the quality of photovoltaic material, the effectiveness of electronic circuit, and the light source tracking model. This research is aimed at improving the quality of solar panels by tracking light source using a fuzzy logic sensor. A fuzzy light sensor property is obtained from two LDR (light dependent resistor) light sensors installed in parallel to each other and is given a light separator in between them. Both sensors are mounted on a solar panel. Sensor output is acquired using a 12 bit ADC from an ATSAM3XE microcontroller and is then sent to a computer using WIFI radio. A PID (Proportional-Integral-Derivative) control algorithm is used to manage the position of the solar panel in line with the input given by the fuzzy light sensor. This control mechanism works based on the margin of fuzzy membership from both sensors that is used to move a motor DC that in turn moves the solar panel. Experimental results show a characteristically symmetrical fuzzy membership of both sensors with a reflected correlation of R=0.9981 after gains from both sensors are arranged with a program. Upon being tested in the field, this system was capable of improving the performance of solar panels in gaining power compared to their original fixed position. The discrepancy was evident when the angle of incoming sunlight approached both 0° and 180°. Further calculations of data acquired by the fuzzy light sensor show increased solar panel power efficiency by up to 5.6%.
Freeform solar concentrator with a highly asymmetric acceptance cone
NASA Astrophysics Data System (ADS)
Wheelwright, Brian; Angel, J. Roger P.; Coughenour, Blake; Hammer, Kimberly
2014-10-01
A solar concentrator with a highly asymmetric acceptance cone is investigated. Concentrating photovoltaic systems require dual-axis sun tracking to maintain nominal concentration throughout the day. In addition to collecting direct rays from the solar disk, which subtends ~0.53 degrees, concentrating optics must allow for in-field tracking errors due to mechanical misalignment of the module, wind loading, and control loop biases. The angular range over which the concentrator maintains <90% of on-axis throughput is defined as the optical acceptance angle. Concentrators with substantial rotational symmetry likewise exhibit rotationally symmetric acceptance angles. In the field, this is sometimes a poor match with azimuth-elevation trackers, which have inherently asymmetric tracking performance. Pedestal-mounted trackers with low torsional stiffness about the vertical axis have better elevation tracking than azimuthal tracking. Conversely, trackers which rotate on large-footprint circular tracks are often limited by elevation tracking performance. We show that a line-focus concentrator, composed of a parabolic trough primary reflector and freeform refractive secondary, can be tailored to have a highly asymmetric acceptance angle. The design is suitable for a tracker with excellent tracking accuracy in the elevation direction, and poor accuracy in the azimuthal direction. In the 1000X design given, when trough optical errors (2mrad rms slope deviation) are accounted for, the azimuthal acceptance angle is +/- 1.65°, while the elevation acceptance angle is only +/-0.29°. This acceptance angle does not include the angular width of the sun, which consumes nearly all of the elevation tolerance at this concentration level. By decreasing the average concentration, the elevation acceptance angle can be increased. This is well-suited for a pedestal alt-azimuth tracker with a low cost slew bearing (without anti-backlash features).
NASA Astrophysics Data System (ADS)
Liu, Zhilong; Wang, Biao; Tong, Weichao
2015-08-01
This paper designs a solar automatic tracking wireless charging system based on the four quadrant photoelectric sensor. The system track the sun's rays automatically in real time to received the maximum energy and wireless charging to the load through electromagnetic coupling. Four quadrant photoelectric sensor responsive to the solar spectrum, the system could get the current azimuth and elevation angle of the light by calculating the solar energy incident on the sensor profile. System driver the solar panels by the biaxial movement mechanism to rotate and tilt movement until the battery plate and light perpendicular to each other. Maximize the use of solar energy, and does not require external power supply to achieve energy self-sufficiency. Solar energy can be collected for portable devices and load wireless charging by close electromagnetic field coupling. Experimental data show that: Four quadrant photoelectric sensor more sensitive to light angle measurement. when track positioning solar light, Azimuth deviation is less than 0.8°, Elevation angle deviation is less than 0.6°. Use efficiency of a conventional solar cell is only 10% -20%.The system uses a Four quadrant dual-axis tracking to raise the utilization rate of 25% -35%.Wireless charging electromagnetic coupling efficiency reached 60%.
NASA Astrophysics Data System (ADS)
Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi
This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.
NASA Technical Reports Server (NTRS)
Mauldin, L. E., III; Moore, A. S.; Stump, C. S.; Mayo, L. S.
1985-01-01
The optical and electronic design of the Halogen Occultation Experiment (HALOE) elevation sunsensor is described. This system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned, monolithic charge coupled device. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the HALOE science instantaneous-field-of-view (IFOV) across the vertical solar diameter during instrument calibration, and then maintain the science IFOV four arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 0.7 micrometer operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability. The HALOE instrument is a gas correlation radiometer that is now being developed by NASA Langley Research Center for the Upper Atmospheric Research Satellite.
An automated method for the evaluation of the pointing accuracy of Sun-tracking devices
NASA Astrophysics Data System (ADS)
Baumgartner, Dietmar J.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz; Veronig, Astrid M.; Rieder, Harald E.
2017-03-01
The accuracy of solar radiation measurements, for direct (DIR) and diffuse (DIF) radiation, depends significantly on the precision of the operational Sun-tracking device. Thus, rigid targets for instrument performance and operation have been specified for international monitoring networks, e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices that fulfill these accuracy requirements are available from various instrument manufacturers; however, none of the commercially available systems comprise an automatic accuracy control system allowing platform operators to independently validate the pointing accuracy of Sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system-independent, and cost-effective system for evaluating the pointing accuracy of Sun-tracking devices. We detail the monitoring system setup, its design and specifications, and the results from its application to the Sun-tracking system operated at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site. The results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies within BSRN specifications (i.e., 0.1° tracking accuracy) for the vast majority of observations (99.8 %). The evaluation of manufacturer-specified active-tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m-2, shows that these are satisfied in 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement; in these cases, we obtain the complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer-specified active-tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and periods of partial solar-limb coverage by clouds. On days with variable cloud cover, 78.1 % (99.9 %) of observations meet active-tracking (BSRN) accuracy requirements while for days with prevailing overcast conditions these numbers reduce to 64.3 % (99.5 %).
NASA Astrophysics Data System (ADS)
Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin
2017-06-01
Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.
Performance comparison of single axis tracking and 40° solar panels for sunny weather
NASA Astrophysics Data System (ADS)
Chua, Yaw Long; Yong, Yoon Kuang; Koh, Yit Yan
2017-09-01
The rapid increment in human population and economy growth had led to the rise of the energy demand globally. With the rapid diminishing fossil fuels based energy sources, renewable energy sources had been introduced due to its unlimited availability especially solar energy which is a sustainable and reliable energy. This research was conducted to study and compare the efficiency of the single axis tracking solar panel with a 40° inclined angle solar panel in sunny weather condition. The results indicated that the output generated by the solar panel was directly affected by the angle which the solar panel facing the sun. In terms of performance the single axis tracking solar panel emerged to be more efficient with greater energy generated.
Controlling Attitude of a Solar-Sail Spacecraft Using Vanes
NASA Technical Reports Server (NTRS)
Mettler, Edward; Acikmese, Ahmet; Ploen, Scott
2006-01-01
A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.
Nutation and precession control of the High Energy Solar Physics (HESP) satellite
NASA Technical Reports Server (NTRS)
Jayaraman, C. P.; Robertson, B. P.
1993-01-01
The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.
Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Wie, Bong; Roithmayr, Carlos M.
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
An automated method for the evaluation of the pointing accuracy of sun-tracking devices
NASA Astrophysics Data System (ADS)
Baumgartner, Dietmar J.; Rieder, Harald E.; Pötzi, Werner; Freislich, Heinrich; Strutzmann, Heinz
2016-04-01
The accuracy of measurements of solar radiation (direct and diffuse radiation) depends significantly on the accuracy of the operational sun-tracking device. Thus rigid targets for instrument performance and operation are specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy targets are available from various instrument manufacturers, however none of the commercially available systems comprises a secondary accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from KSO-STREAMS (for mid-March to mid-June 2015) show that the tracking accuracy of the device operated at KSO lies well within BSRN specifications (i.e. 0.1 degree accuracy). We contrast results during clear-sky and partly cloudy conditions documenting sun-tracking performance at manufacturer specified accuracies for active tracking (0.02 degrees) and highlight accuracies achieved during passive tracking i.e. periods with less than 300 W m-2 direct radiation. Furthermore we detail limitations to tracking surveillance during overcast conditions and periods of partial solar limb coverage by clouds.
Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter
NASA Astrophysics Data System (ADS)
Moamaei, Parvin
Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.
The stellar and solar tracking system of the Geneva Observatory gondola
NASA Technical Reports Server (NTRS)
Huguenin, D.
1974-01-01
Sun and star trackers have been added to the latest version of the Geneva Observatory gondola. They perform an image motion compensation with an accuracy of plus or minus 1 minute of arc. The structure is held in the vertical position by gravity; the azimuth is controlled by a torque motor in the suspension bearing using solar or geomagnetic references. The image motion compensation is performed by a flat mirror, located in front of the telescope, controlled by pitch and yaw servo-loops. Offset pointing is possible within the solar disc and in a 3 degree by 3 degree stellar field. A T.V. camera facilitates the star identification and acquisition.
Solar micro-power system for self-powered wireless sensor nodes
NASA Astrophysics Data System (ADS)
He, Yongtai; Li, Yangqiu; Liu, Lihui; Wang, Lei
2008-10-01
In self-powered wireless sensor nodes, the efficiency for environmental energy harvesting, storage and management determines the lifetime and environmental adaptability of the sensor nodes. However, the method of improving output efficiency for traditional photovoltaic power generation is not suitable for a solar micro-power system due to the special requirements for its application. This paper presents a solar micro-power system designed for a solar self-powered wireless sensor node. The Maximum Power Point Tracking (MPPT) of solar cells and energy storage are realized by the hybrid energy storage structure and "window" control. Meanwhile, the mathematical model of energy harvesting, storing and management is formulated. In the novel system, the output conversion efficiency of solar cells is 12%.
NASA Astrophysics Data System (ADS)
Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury
2017-04-01
This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.
Pointing and tracking control for freedom's Solar Dynamic modules and vibration control of freedom
NASA Technical Reports Server (NTRS)
Quinn, Roger D.; Chen, Jiunn-Liang
1992-01-01
A control strategy is presented for pointing particular modules of flexible multibody space structures while simultaneously attenuating structural vibrations. The application that is addressed is the planned Space Station Freedom in a growth configuration with Solar Dynamic (SD) module. A NASTRAN model of Freedom is used to demonstrate the control strategy. Two cases of SD concentrator fine-pointing controller bandwidths are studied with examples. The effect of limiting the controller motor torques to realistic baseline values is examined. SD pointing and station vibration control is accomplished during realistic disturbances due to aerodynamic drag, Shuttle docking, and Shuttle reaction control system plume impingement on SD. Gravity gradient induced torques on SD are relatively small and pseudo-steady.
Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants.
Dicker, M P M; Rossiter, J M; Bond, I P; Weaver, P M
2014-09-01
Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation-actuation induced by, and controlled with light-through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex-yet extremely elegant-process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices.
Solar photovoltaic power stations
NASA Technical Reports Server (NTRS)
Chowaniec, C. R.; Pittman, P. F.; Ferber, R. R.; Marshall, B. W.
1977-01-01
The subsystems of a solar photovoltaic central power system are identified and the cost of major components are estimated. The central power system, which would have a peak power capability in the range of 50 to 1000 MW, utilizes two types of subsystems - a power conditioner and a solar array. Despite differences in costs of inverters, the overall cost of the total power conditioning subsystem is about the same for all approaches considered. A combination of two inverters operating from balanced dc buses as a pair of 6-pulse groups is recommended. A number of different solar cell modules and tracking array structures were analyzed. It is concluded that when solar cell costs are high (greater than $500/kW), high concentration modules are more cost effective than those with low concentration. Vertical-axis tracking is the most effective of the studied tracking modes. For less expensive solar cells (less than $400/kW), fixed tilt collector/reflector modules are more cost effective than those which track.
The 18th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1984-01-01
Topics concerning aerospace mechanisms, their functional performance, and design specifications are presented. Discussed subjects include the design and development of release mechanisms, actuators, linear driver/rate controllers, antenna and appendage deployment systems, position control systems, and tracking mechanisms for antennas and solar arrays. Engine design, spaceborne experiments, and large space structure technology are also examined.
Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.
Hindersin, Stefan; Leupold, Marco; Kerner, Martin; Hanelt, Dieter
2013-03-01
Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m(-2) d(-1) on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m(-2) d(-1) (by rotation out of direct irradiance) to 79 mol photons m(-2) d(-1) (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L(-1), photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m(-2) s(-1) photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L(-1)), the culture was irradiated up to 2,000 μmol photons m(-2) s(-1) to overcome light limitation with biomass yields of 0.7 g CDW mol photons(-1) and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.
Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter
NASA Astrophysics Data System (ADS)
Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim
2016-08-01
This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.
Control strategy of grid-connected photovoltaic generation system based on GMPPT method
NASA Astrophysics Data System (ADS)
Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen
2018-02-01
There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.
NASA Astrophysics Data System (ADS)
Filik, Tansu; Başaran Filik, Ümmühan; Nezih Gerek, Ömer
2017-11-01
In this study, new analytic models are proposed for mapping on-site global solar radiation values to electrical power output values in solar photovoltaic (PV) panels. The model extraction is achieved by simultaneously recording solar radiation and generated power from fixed and tracking panels, each with capacity of 3 kW, in Eskisehir (Turkey) region. It is shown that the relation between the solar radiation and the corresponding electric power is not only nonlinear, but it also exhibits an interesting time-varying characteristic in the form of a hysteresis function. This observed radiation-to-power relation is, then, analytically modelled with three piece-wise function parts (corresponding to morning, noon and evening times), which is another novel contribution of this work. The model is determined for both fixed panels and panels with a tracking system. Especially the panel system with a dynamic tracker produces a harmonically richer (with higher values in general) characteristic, so higher order polynomial models are necessary for the construction of analytical solar radiation models. The presented models, characteristics of the hysteresis functions, and differences in the fixed versus solar-tracking panels are expected to provide valuable insight for further model based researches.
Self-tracking solar concentrator with an acceptance angle of 32°.
Zagolla, Volker; Dominé, Didier; Tremblay, Eric; Moser, Christophe
2014-12-15
Solar concentration has the potential to decrease the cost associated with solar cells by replacing the receiving surface aperture with cheaper optics that concentrate light onto a smaller cell aperture. However a mechanical tracker has to be added to the system to keep the concentrated light on the size reduced solar cell at all times. The tracking device itself uses energy to follow the sun's position during the day. We have previously shown a mechanism for self-tracking that works by making use of the infrared energy of the solar spectrum, to activate a phase change material. In this paper, we show an implementation of a working 53 x 53 mm(2) self-tracking system with an acceptance angle of 32° ( ± 16°). This paper describes the design optimizations and upscaling process to extend the proof-of-principle self-tracking mechanism to a working demonstration device including the incorporation of custom photodiodes for system characterization. The current version demonstrates an effective concentration of 3.5x (compared to 8x theoretical) over 80% of the desired acceptance angle. Further improvements are expected to increase the efficiency of the system and open the possibility to expand the device to concentrations as high as 200x (C(geo) = 400x, η = 50%, for a solar cell matched spectrum).
Attitude and Translation Control of a Solar Sail Vehicle
NASA Technical Reports Server (NTRS)
Singh, Gurkirpal
2008-01-01
A report discusses the ability to control the attitude and translation degrees-of-freedom of a solar sail vehicle by changing its center of gravity. A movement of the spacecraft s center of mass causes solar-pressure force to apply a torque to the vehicle. At the compact core of the solar-sail vehicle lies the spacecraft bus which is a large fraction of the total vehicle mass. In this concept, the bus is attached to the spacecraft by two single degree-of-freedom linear tracks. This allows relative movement of the bus in the sail plane. At the null position, the resulting solar pressure applies no torque to the vehicle. But any deviation of the bus from the null creates an offset between the spacecraft center of mass and center of solar radiation pressure, resulting in a solar-pressure torque on the vehicle which changes the vehicle attitude. Two of the three vehicle degrees of freedom can be actively controlled in this manner. The third, the roll about the sunline, requires a low-authority vane/propulsive subsystem. Translation control of the vehicle is achieved by directing the solar-pressure-induced force in the proper inertial direction. This requires attitude control. Attitude and translation degrees-of-freedom are therefore coupled. A guidance law is proposed, which allows the vehicle to stationkeep at an appropriate point on the inertially-rotating Sun-Earth line. Power requirements for moving the bus are minimal. Extensive software simulations have been performed to demonstrate the feasibility of this concept.
Georgia | Midmarket Solar Policies in the United States | Solar Research |
Distributed Generation Act Community solar Georgia Public Service Commission: Approval of Georgia Power's . Carve-out: None Tracking system: No formally adopted tracking system The Georgia Public Service . Midmarket customers in the Georgia Power and Tennessee Valley Authority (TVA) service territories may be
Kentucky | Midmarket Solar Policies in the United States | Solar Research |
NREL Kentucky Kentucky No renewable portfolio standard Carve-out: None Tracking system Attribute Tracking System (PJM-GATS) Kentucky currently has no state renewable portfolio standard or goal and no demand for renewable energy certificates (RECs). However, solar customers may sell RECs to the
NASA Astrophysics Data System (ADS)
Rice, M. P.
1982-07-01
The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.
NASA Technical Reports Server (NTRS)
Rice, M. P.
1982-01-01
The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.
Performance Evaluation of Dual-axis Tracking System of Parabolic Trough Solar Collector
NASA Astrophysics Data System (ADS)
Ullah, Fahim; Min, Kang
2018-01-01
A parabolic trough solar collector with the concentration ratio of 24 was developed in the College of Engineering; Nanjing Agricultural University, China with the using of the TracePro software an optical model built. Effects of single-axis and dual-axis tracking modes, azimuth and elevating angle tracking errors on the optical performance were investigated and the thermal performance of the solar collector was experimentally measured. The results showed that the optical efficiency of the dual-axis tracking was 0.813% and its year average value was 14.3% and 40.9% higher than that of the eat-west tracking mode and north-south tracking mode respectively. Further, form the results of the experiment, it was concluded that the optical efficiency was affected significantly by the elevation angle tracking errors which should be kept below 0.6o. High optical efficiency could be attained by using dual-tracking mode even though the tracking precision of one axis was degraded. The real-time instantaneous thermal efficiency of the collector reached to 0.775%. In addition, the linearity of the normalized efficiency was favorable. The curve of the calculated thermal efficiency agreed well with the normalized instantaneous efficiency curve derived from the experimental data and the maximum difference between them was 10.3%. This type of solar collector should be applied in middle-scale thermal collection systems.
Design and development of a brushless, direct drive solar array reorientation system
NASA Technical Reports Server (NTRS)
Jessee, R. D.
1972-01-01
This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.
CPV for the rooftop market: novel approaches to tracking integration in photovoltaic modules
NASA Astrophysics Data System (ADS)
Apostoleris, Harry; Stefancich, Marco; Alexander-Katz, Alfredo; Chiesa, Matteo
2016-03-01
Concentrated photovoltaics (CPV) has long been recognized as an effective approach to enabling the use of high cost, high-efficiency solar cells for enhanced solar energy conversion, but is excluded from the domestic rooftop market due to the requirement that solar concentrators track the sun. This market may be opened up by integrating of the tracking mechanism into the module itself. Tracking integration may take the form of a miniaturization of a conventional tracking apparatus, or optical tracking, in which tracking is achieved through variation of optical properties such as refractive index or transparency rather than mechanical movement of the receiver. We have demonstrated a simple system using a heat-responsive transparency switching material to create a moving aperture that tracks the position of a moving light spot. We use this behavior to create a concentrating light trap with a moving aperture that reactively tracks the sun. Taking the other approach, we have fabricated 3D-printed parabolic mini-concentrators which can track the sun using small motors in a low-profile geometry. We characterize the performance of the concentrators and consider the impact of tracking integration on the broader PV market.
Solar Radiation on Mars: Tracking Photovoltaic Array
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos
1994-01-01
A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.
NASA Astrophysics Data System (ADS)
Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.
1997-02-01
Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.
Acurex Parabolic Dish Concentrator (PDC-2)
NASA Technical Reports Server (NTRS)
Overly, P.; Bedard, R.
1982-01-01
The design approach, rationale for the selected configuration, and the development status of a cost effective point-focus solar concentrator are discussed. The low-cost concentrator reflective surface design is based on the use of a thin, backsilvered mirror glass reflector bonded to a molded structural plastic substrate. The foundation, support, and drive subassembles are described. A hybrid, two-axis, Sun tracking control system based on microprocessor technology was selected. Coarse synthetic tracking is achieved through a microcomputer-based control system to calculate Sun position for transient periods of cloud cover as well as sundown and sunrise positioning. Accurate active tracking is achieved by two-axis optical sensors. Results of the reflective panel demonstration tests investigating slope error, hail impact survivability, temperature/humidity cycling, longitudinal strength/bending stiffness, and torsional stiffness are discussed.
Adaptive beam tracking and steering via electrowetting-controlled liquid prism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, JT; Chen, CL
2011-11-07
We report an electrowetting-controlled optofluidic system for adaptive beam tracking and agile steering. With two immiscible fluids in a transparent cell, we can actively control the contact angle along the fluid-fluid-solid tri-junction line and hence the orientation of the fluid-fluid interface via electrowetting. The naturally formed meniscus between the two liquids can function as an optical prism. We have fabricated a liquid prism module with an aperture size of 10 mm -10mm. With 1 wt.% KCl and 1 wt.% Sodium Dodecyl Sulfate added into deionized water, the orientation of the water-silicone oil interface has been modulated between -26 degrees andmore » 26 degrees that can deflect and steer beam within the incidence angle of 0 degrees-15 degrees. The wide-range beam tracking and steering enables the liquid prism work as an electrowetting solar cell. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3660578]« less
Adaptive beam tracking and steering via electrowetting-controlled liquid prism
NASA Astrophysics Data System (ADS)
Cheng, Jiangtao; Chen, Chung-Lung
2011-11-01
We report an electrowetting-controlled optofluidic system for adaptive beam tracking and agile steering. With two immiscible fluids in a transparent cell, we can actively control the contact angle along the fluid-fluid-solid tri-junction line and hence the orientation of the fluid-fluid interface via electrowetting. The naturally formed meniscus between the two liquids can function as an optical prism. We have fabricated a liquid prism module with an aperture size of 10 mm × 10mm. With 1 wt. % KCl and 1 wt. % Sodium Dodecyl Sulfate added into deionized water, the orientation of the water-silicone oil interface has been modulated between -26° and 26° that can deflect and steer beam within the incidence angle of 0°-15°. The wide-range beam tracking and steering enables the liquid prism work as an electrowetting solar cell.
Automated transient detection in the STEREO Heliospheric Imagers.
NASA Astrophysics Data System (ADS)
Barnard, Luke; Scott, Chris; Owens, Mat; Lockwood, Mike; Tucker-Hood, Kim; Davies, Jackie
2014-05-01
Since the launch of the twin STEREO satellites, the heliospheric imagers (HI) have been used, with good results, in tracking transients of solar origin, such as Coronal Mass Ejections (CMEs), out far into the heliosphere. A frequently used approach is to build a "J-map", in which multiple elongation profiles along a constant position angle are stacked in time, building an image in which radially propagating transients form curved tracks in the J-map. From this the time-elongation profile of a solar transient can be manually identified. This is a time consuming and laborious process, and the results are subjective, depending on the skill and expertise of the investigator. Therefore, it is desirable to develop an automated algorithm for the detection and tracking of the transient features observed in HI data. This is to some extent previously covered ground, as similar problems have been encountered in the analysis of coronagraph data and have led to the development of products such as CACtus etc. We present the results of our investigation into the automated detection of solar transients observed in J-maps formed from HI data. We use edge and line detection methods to identify transients in the J-maps, and then use kinematic models of the solar transient propagation (such as the fixed-phi and harmonic mean geometric models) to estimate the solar transients properties, such as transient speed and propagation direction, from the time-elongation profile. The effectiveness of this process is assessed by comparison of our results with a set of manually identified CMEs, extracted and analysed by the Solar Storm Watch Project. Solar Storm Watch is a citizen science project in which solar transients are identified in J-maps formed from HI data and tracked multiple times by different users. This allows the calculation of a consensus time-elongation profile for each event, and therefore does not suffer from the potential subjectivity of an individual researcher tracking an event. Furthermore, we present preliminary results regarding the estimation of the ambient solar wind speed from the automated analysis of the HI J-maps, by the tracking of numerous small scale features entrained into the ambient solar wind, which can only be tracked out to small elongations.
Control device for automatic orientation of a solar panel based on a microcontroller (PIC16f628a)
NASA Astrophysics Data System (ADS)
Rezoug, M. R.; Krama, A.
2016-07-01
This work proposes a control device for autonomous solar tracker based on one axis, It consists of two main parts; the control part which is based on "the PIC16f628a"; it has the role of controlling, measuring and plotting responses. The second part is a mechanical device, which has the role of making the solar panel follows the day-night change of the sun throughout the year. Both parties are established to improve energy generation of the photovoltaic panels. In this paper, we will explain the main operating principles of our system. Also, we will provide experimental results which demonstrate the good performance and the efficiency of this system. This innovation is different from what has been proposed in previous studies. The important points of this system are maximum output energy and minimum energy consumption of solar tracker, its cost is relatively low with simplicity in implementation. The average power increase produced by using the tracking system for a particular day, is over 30 % compared with the static panel.
NASA Technical Reports Server (NTRS)
Bredvik, Gordon D.
1990-01-01
We are currently experiencing a period of high solar radiation combined with wide short-term fluctuations in the radiation. The short-term fluctuations, especially when combined with highly energetic solar flares, can adversely affect the mission of U.S. Space Command's Space Surveillance Center (SSC) which catalogs and tracks the satellites in orbit around the Earth. Rapidly increasing levels of solar electromagnetic and/or particle radiation (solar wind) causes atmospheric warming, which, in turn, causes the upper-most portions of the atmosphere to expand outward, into the regime of low altitude satellites. The increased drag on satellites from this expansion can cause large, unmodeled, in-track displacements, thus undermining the SSC's ability to track and predict satellite position. On 13 March 1989, high solar radiation levels, combined with a high-energy solar flare, caused an exceptional amount of short-term atmospheric warming. The SSC temporarily lost track of over 1300 low altitude satellites--nearly half of the low altitude satellite population. Observational data on satellites that became lost during the days following the 13 March 'solar event' was analyzed and compared with the satellites' last element set prior to the event (referred to as a geomagnetic storm because of the large increase in magnetic flux in the upper atmosphere). The analysis led to a set of procedures for reducing the impact of future geomagnetic storms. These procedures adjust selected software limit parameters in the differential correction of element sets and in the observation association process and must be manually initiated at the onset of a geomagnetic storm. Sensor tasking procedures must be adjusted to ensure that a minimum of four observations per day are received for low altitude satellites. These procedures have been implemented and, thus far, appear to be successful in minimizing the effect of subsequent geomagnetic storms on satellite tracking and ephemeris computation.
Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong
2009-01-01
A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m2 prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad. PMID:22408483
NASA Technical Reports Server (NTRS)
Gordon, Steven C.
1993-01-01
Spacecraft in orbit near libration point L1 in the Sun-Earth system are excellent platforms for research concerning solar effects on the terrestrial environment. One spacecraft mission launched in 1978 used an L1 orbit for nearly 4 years, and future L1 orbital missions are also being planned. Orbit determination and station-keeping are, however, required for these orbits. In particular, orbit determination error analysis may be used to compute the state uncertainty after a predetermined tracking period; the predicted state uncertainty levels then will impact the control costs computed in station-keeping simulations. Error sources, such as solar radiation pressure and planetary mass uncertainties, are also incorporated. For future missions, there may be some flexibility in the type and size of the spacecraft's nominal trajectory, but different orbits may produce varying error analysis and station-keeping results. The nominal path, for instance, can be (nearly) periodic or distinctly quasi-periodic. A periodic 'halo' orbit may be constructed to be significantly larger than a quasi-periodic 'Lissajous' path; both may meet mission requirements, but perhaps the required control costs for these orbits are probably different. Also for this spacecraft tracking and control simulation problem, experimental design methods can be used to determine the most significant uncertainties. That is, these methods can determine the error sources in the tracking and control problem that most impact the control cost (output); it also produces an equation that gives the approximate functional relationship between the error inputs and the output.
NASA Technical Reports Server (NTRS)
1987-01-01
Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.
Development of Non-Tracking Solar Thermal Technology
NASA Astrophysics Data System (ADS)
Winston, Roland; Johnston, Bruce; Balkowski, Kevin
2011-11-01
The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non-imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200 ° C and can be readily manufactured at a cost between 15 and 18 per square foot.
Comparison of Photovoltaic Energy Systems for the Solar Village
1988-08-01
power -point-trackIng ( MPPT ) for the array. It also Includes AC and DC contactors, an isolation transformer, and a control system that fully automates...the day when the array is producing power , the battery controller uses excess array power , not needed for household use , to recharge the batteries. As...alone design) The battery controller used Is the Balance of System Specialists, Inc. Power Control Series model *8104820 rated at 48 volt, 20 amp. This
Controllability of Large SEP for Earth Orbit Raising
NASA Technical Reports Server (NTRS)
Woodcock, Gordon
2004-01-01
A six-degree-of-freedom (6DOF) simulation was constructed and exercised for a large solar electric propulsion (SEP) vehicle operating in low Earth orbit Nominal power was 500 kWe, with the large array sizes implied. Controllability issues, including gravity gradient, roll maneuvering for Sun tracking, and flexible arrays, and flight control methods, were investigated. Initial findings are that a SEP vehicle of this size is controllable and could be used for orbit raising of heavy payloads.
Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.; Christoffersen, R.
2015-01-01
We use the observed effects of solar wind ion irradiation and the accumulation of solar flare particle tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics. The track densities are consistent with exposure at mm depths for 104-105 years. The solar wind damaged rims form on a much faster timescale, <10(exp 3) years.
Analysis of spacecraft battery charger systems
NASA Astrophysics Data System (ADS)
Kim, Seong J.; Cho, Bo H.
In spacecraft battery charger systems, switching regulators are widely used for bus voltage regulation, charge current regulation, and peak power tracking. Small-signal dynamic characteristics of the battery charging subsystem of direct energy transfer (DET) and peak power tracking (PPT) systems are analyzed to facilitate design of the control loop for optimum performance and stability. Control loop designs of the charger in various modes of operation are discussed. Analyses are verified through simulations. It is shown that when the charger operates in the bus voltage regulation mode, the control-to-voltage transfer function has a negative DC gain and two LHP zeros in both the DET and PPT systems. The control-to-inductor current transfer function also has a negative DC gain and a RHP zero. Thus, in the current-mode control, the current loop can no longer be used to stabilize the system. When the system operates in the charge current regulation mode, the charger operates with a fixed duty cycle which is determined by the regulated bus voltage and the battery voltage. Without an input filter, the converter becomes a first-order system. When the peak power tracker is inactive, the operating point of the solar array output moves to the voltage source region. Thus, the solar array behaves as a stiff voltage source to a constant power load.
Actively Learning about the Active Sun: Using JHelioviewer in Undergraduate Astronomy
NASA Astrophysics Data System (ADS)
Stage, Michael D.
2018-06-01
Solar phenomena of the chromosphere, corona and photosphere are only truly revealed through multi-wavelength and time-dependent study. While one can show slides of models of the solar convection zone, videos of granulation, and magnetogram and UV images, it is now possible to engage students much more fully in learning about dynamic solar phenomena such as the evolution of sunspots and the magentic field. JHelioviewer is professional solar visualization tool developed by an international team as part of the ESA/NASA Helioviewer project (Muller et al., 2017, A&A 606, A10), which allows users to select and overlay movies of solar data from multiple instruments of multiple satellite and ground-based observatories, with complete control over time-sequencing, image overlays, solar coordinate grids, rotational tracking, and export functions. I developed materials using the viewer for my sophomore-level undergraduate solar astronomy course to introduce students to the dynamics of the solar surface and atmosphere. The lab-like projects, suitable for in-class, labs, or home-work assignments, allow students to watch the formation, strengthening, movement, and dissipation of sunspots; to classify spots; to study the magnetic flux tubes connecting spots; to see reconnection; to learn about the solar coordinate systems (Stonyhurst, Carrington, etc.); to see how line emission (H-alpha, C, Fe and He UV lines from SDO, etc.) traces the structure of the atmosphere at different heights and temperatures; to observe the Wilson effect; and to measure motions such as moat flow and photospheric flow by tracking individual elements in magnetograms. In this presentation I share my activities and approach, which can be tailored to suit gen-ed, intermediate, or advanced astrophysics majors. (The author has no connection with the JHelioviewer project or team.)
Improving maximum power point tracking of partially shaded photovoltaic system by using IPSO-BELBIC
NASA Astrophysics Data System (ADS)
Al-Alim El-Garhy, M. Abd; Mubarak, R. I.; El-Bably, M.
2017-08-01
Solar photovoltaic (PV) arrays in remote applications are often related to the rapid changes in the partial shading pattern. Rapid changes of the partial shading pattern make the tracking of maximum power point (MPP) of the global peak through the local ones too difficult. An essential need to make a fast and efficient algorithm to detect the peaks values which always vary as the sun irradiance changes. This paper presents two algorithms based on the improved particle swarm optimization technique one of them with PID controller (IPSO-PID), and the other one with Brain Emotional Learning Based Intelligent Controller (IPSO-BELBIC). These techniques improve the maximum power point (MPP) tracking capabilities for photovoltaic (PV) system under partial shading circumstances. The main aim of these improved algorithms is to accelerate the velocity of IPSO to reach to (MPP) and increase its efficiency. These algorithms also improve the tracking time under complex irradiance conditions. Based on these conditions, the tracking time of these presented techniques improves to 2 msec, with an efficiency of 100%.
Advanced Receiver tracking of Voyager 2 near solar conjunction
NASA Technical Reports Server (NTRS)
Brown, D. H.; Hurd, W. J.; Vilnrotter, V. A.; Wiggins, J. D.
1988-01-01
The Advanced Receiver (ARX) was used to track the Voyager 2 spacecraft at low Sun-Earth-Probe (SEP) angles near solar conjunction in December of 1987. The received carrier signal exhibited strong fluctuations in both phase and amplitude. The ARX used spectral estimation and mathematical modeling of the phase and receiver noise processes to set an optimum carrier tracking bandwidth. This minimized the mean square phase error in tracking carrier phase and thus minimized the loss in the telemetry signal-to-noise ratio due to the carrier loop. Recovered symbol SNRs and errors in decoded engineering data for the ARX are compared with those for the current Block 3 telemetry stream. Optimum bandwidths are plotted against SEP angle. Measurements of the power spectral density of the solar phase and amplitude fluctuations are also given.
Solar Sail Attitude Control Performance Comparison
NASA Technical Reports Server (NTRS)
Bladt, Jeff J.; Lawrence, Dale A.
2005-01-01
Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.
Sun Tracking Systems: A Review
Lee, Chia-Yen; Chou, Po-Cheng; Chiang, Che-Ming; Lin, Chiu-Feng
2009-01-01
The output power produced by high-concentration solar thermal and photovoltaic systems is directly related to the amount of solar energy acquired by the system, and it is therefore necessary to track the sun's position with a high degree of accuracy. Many systems have been proposed to facilitate this task over the past 20 years. Accordingly, this paper commences by providing a high level overview of the sun tracking system field and then describes some of the more significant proposals for closed-loop and open-loop types of sun tracking systems. PMID:22412341
2014-09-01
These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources, photovoltaic (PV) arrays...renewable energy source [1]. These renewable energy sources can include solar, wind, geothermal , biomass, hydroelectric, and nuclear. Of these sources...26, May 2011. [6] H. G. Xu, J. P. He, Y. Qin, and Y. H. Li, “Energy management and control strategy for DC micro-grid in data center,” China
The Astronomical Low-Frequency Array
NASA Technical Reports Server (NTRS)
Jones, D. L.; Allen, R. J.; Blume, W. H.; Desch, M. M.; Erickson, W. C.; Kaiser, M. L.; Kassim, N. E.; Kuiper, T. B. H.; Mahoney, M. J.; Marsh, K. A.;
1996-01-01
An array of satellites is proposed to make astronomic observations in the low frequency range of a few tens of MHz down to roughly 100 kHz, a range that cannot be observed through the ionosphere. The array would be in a solar orbit to avoid radio interference from Earth and to simplify trajectory tracking and control.
Lissajous Orbit Control for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission
NASA Technical Reports Server (NTRS)
Roberts, Craig; Case, Sarah; Reagoso, John
2015-01-01
DSCOVR Lissajous Orbit sized such that orbit track never extends beyond 15 degrees from Earth-Sun line (as seen from Earth). Requiring delta-V maneuvers, control orbit to obey a Solar Exclusion Zone (SEZ) cone of half-angle 4 degrees about the Earth-Sun line. Spacecraft should never be less than 4 degrees from solar center as seen from Earth. Following Lissajous Orbit Insertion (LOI), DSCOVR should be in an opening phase that just skirts the 4-degree SEZ. Maximizes time to the point where a closing Lissajous will require avoidance maneuvers to keep it out of the SEZ. Station keeping maneuvers should take no more than 15 minutes.
NASA Technical Reports Server (NTRS)
Obrien, David L.
1994-01-01
This paper presents the design and developmental testing associated with the bearing, motor, and roll ring module (BMRRM) used for the beta rotation axis on International Space Station Alpha (ISSA). The BMRRM with its controllers located in the electronic control unit (ECU), provides for the solar array pointing and tracking functions as well as power and signal transfer across a rotating interface.
GRIN planar waveguide concentrator used with a single axis tracker.
Bouchard, Sébastien; Thibault, Simon
2014-03-10
It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray's path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.
GRIN planar waveguide concentrator used with a single axis tracker.
Bouchard, Sébastien; Thibault, Simon
2014-03-10
It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray’s path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.
Non-linear control of the output stage of a solar microinverter
NASA Astrophysics Data System (ADS)
Lopez-Santos, Oswaldo; Garcia, Germain; Martinez-Salamero, Luis; Avila-Martinez, Juan C.; Seguier, Lionel
2017-01-01
This paper presents a proposal to control the output stage of a two-stage solar microinverter to inject real power into the grid. The input stage of the microinverter is used to extract the maximum available power of a photovoltaic module enforcing a power source behavior in the DC-link to feed the output stage. The work here reported is devoted to control a grid-connected power source inverter with a high power quality level at the grid side ensuring the power balance of the microinverter regulating the voltage of the DC-link. The proposed control is composed of a sinusoidal current reference generator and a cascade type controller composed by a current tracking loop and a voltage regulation loop. The current reference is obtained using a synchronized generator based on phase locked loop (PLL) which gives the shape, the frequency and phase of the current signal. The amplitude of the reference is obtained from a simple controller regulating the DC-link voltage. The tracking of the current reference is accomplished by means of a first-order sliding mode control law. The solution takes advantage of the rapidity and inherent robustness of the sliding mode current controller allowing a robust behavior in the regulation of the DC-link using a simple linear controller. The analytical expression to determine the power quality indicators of the micro-inverter's output is theoretically solved giving expressions relating the converter parameters. The theoretical approach is validated using simulation and experimental results.
Facilities | Concentrating Solar Power | NREL
sun in elevation and azimuth. Concentrating collectors require 2-axis tracking to focus sunlight on a would imply tracking to minimize variation in solar resource during on-sun testing. As applicable, the . Hexagonal mirrors of the HFSF's primary system concentrate the sun, which can be further concentrated as
Automated identification and tracking of polar-cap plasma patches at solar minimum
NASA Astrophysics Data System (ADS)
Burston, R.; Hodges, K.; Astin, I.; Jayachandran, P. T.
2014-03-01
A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.
Evaluation of beam tracking strategies for the THOR-CSW solar wind instrument
NASA Astrophysics Data System (ADS)
De Keyser, Johan; Lavraud, Benoit; Prech, Lubomir; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent
2017-04-01
We compare different beam tracking strategies for the Cold Solar Wind (CSW) plasma spectrometer on the ESA M4 THOR mission candidate. The goal is to intelligently select the energy and angular windows the instrument is sampling and to adapt these windows as the solar wind properties evolve, with the aim to maximize the velocity distribution acquisition rate while maintaining excellent energy and angular resolution. Using synthetic data constructed using high-cadence measurements by the Faraday cup instrument on the Spektr-R mission (30 ms resolution), we test the performance of energy beam tracking with or without angular beam tracking. The algorithm can be fed both by data acquired by the plasma spectrometer during the previous measurement cycle, or by data from another instrument, in casu the Faraday Cup (FAR) instrument foreseen on THOR. We verify how these beam tracking algorithms behave for different sizes of the energy and angular windows, and for different data integration times, in order to assess the limitations of the algorithm and to avoid situations in which the algorithm loses track of the beam.
Solar concentration properties of flat fresnel lenses with large F-numbers
NASA Technical Reports Server (NTRS)
Cosby, R. M.
1978-01-01
The solar concentration performances of flat, line-focusing sun-tracking Fresnel lenses with selected f-numbers between 0.9 and 2.0 were analyzed. Lens transmittance was found to have a weak dependence on f-number, with a 2% increase occuring as the f-number is increased from 0.9 to 2.0. The geometric concentration ratio for perfectly tracking lenses peaked for an f-number near 1.35. Intensity profiles were more uniform over the image extent for large f-number lenses when compared to the f/0.9 lens results. Substantial decreases in geometri concentration ratios were observed for transverse tracking errors equal to or below 1 degree for all f-number lenses. With respect to tracking errors, the solar performance is optimum for f-numbers between 1.25 and 1.5.
Flexible wearable sensor nodes with solar energy harvesting.
Taiyang Wu; Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit
2017-07-01
Wearable sensor nodes have gained a lot of attention during the past few years as they can monitor and record people's physical parameters in real time. Wearable sensor nodes can promote healthy lifestyles and prevent the occurrence of potential illness or injuries. This paper presents a flexible wearable sensor system powered by an efficient solar energy harvesting technique. It can measure the subject's heartbeats using a photoplethysmography (PPG) sensor and perform activity monitoring using an accelerometer. The solar energy harvester adopts an output current based maximum power point tracking (MPPT) algorithm, which controls the solar panel to operate within its high output power range. The power consumption of the flexible sensor nodes has been investigated under different operation conditions. Experimental results demonstrate that wearable sensor nodes can work for more than 12 hours when they are powered by the solar energy harvester for 3 hours in the bright sunlight.
Solar central receiver heliostat reflector assembly
Horton, Richard H.; Zdeb, John J.
1980-01-01
A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.
Two-axis tracking using translation stages for a lens-to-channel waveguide solar concentrator.
Liu, Yuxiao; Huang, Ran; Madsen, Christi K
2014-10-20
A two-axis tracking scheme designed for <250x concentration realized by a single-axis mechanical tracker and a translation stage is discussed. The translation stage is used for adjusting positions for seasonal sun movement. It has two-dimensional x-y tracking instead of horizontal movement x-only. This tracking method is compatible with planar waveguide solar concentrators. A prototype system with 50x concentration shows >75% optical efficiency throughout the year in simulation and >65% efficiency experimentally. This efficiency can be further improved by the use of anti-reflection layers and a larger waveguide refractive index.
NASA Astrophysics Data System (ADS)
Smith, A. R. A.; Beggan, C. D.; Macmillan, S.; Whaler, K. A.
2017-10-01
The auroral electrojets (AEJs) are complex and dynamic horizontal ionospheric electric currents which form ovals around Earth's poles, being controlled by the morphology of the main magnetic field and the energy input from the solar wind interaction with the magnetosphere. The strength and location of the AEJ varies with solar wind conditions and the solar cycle but should also be controlled on decadal timescales by main field secular variation. To determine the AEJ climatology, we use data from four polar Low Earth Orbit magnetic satellite missions: POGO, Magsat, CHAMP, and Swarm. A simple estimation of the AEJ strength and latitude is made from each pass of the satellites, from peaks in the along-track gradient of the magnetic field intensity after subtracting a core and crustal magnetic field model. This measure of the AEJ activity is used to study the response in different sectors of magnetic local time (MLT) during different seasons and directions of the interplanetary magnetic field (IMF). We find a season-dependent hemispherical asymmetry in the AEJ response to IMF By, with a tendency toward stronger (weaker) AEJ currents in the north than the south during By>0 (By<0) around local winter. This effect disappears during local summer when we find a tendency toward stronger currents in the south than the north. The solar cycle modulation of the AEJ and the long-term shifting of its position and strength due to the core field variation are presented as challenges to internal field modeling.
NASA Technical Reports Server (NTRS)
Quinn, Roger D.; Kerslake, Thomas W.
1992-01-01
Dynamic simulations of Space Station Freedom (SSF) configured with solar dynamic (SD) power modules were performed. The structure was subjected to Space Shuttle docking disturbances, while being controlled with a 'natural' vibration and tracking control approach. Three control cases were investigated for the purpose of investigating the relationship between actuator effort, SD pointing, and thermal loading on the receiver aperture plate. Transient, one-dimensional heat transfer analyses were performed to conservatively predict temperatures of the multi-layered receiver aperture plate assembly and thermal stresses in its shield layer. Results indicate that the proposed aperture plate is tolerant of concentrated flux impingement during short-lived structural disturbances. Pointing requirements may be loosened and the requirement control torques lessened from that previously specified. Downsizing and simplifying the joint drive system should result in a considerable savings mass.
NASA Technical Reports Server (NTRS)
Menkin, Evgeny; Juillerat, Robert
2015-01-01
With the International Space Station Program transition from assembly to utilization, focus has been placed on the optimization of essential resources. This includes resources both resupplied from the ground and also resources produced by the ISS. In an effort to improve the use of two of these, the ISS Engineering teams, led by the ISS Program Systems Engineering and Integration Office, undertook an effort to modify the techniques use to perform several key on-orbit events. The primary purposes of this endeavor was to make the ISS more efficient in the use of the Russian-supplied fuel for the propulsive attitude control system and also to minimize the impacts to available ISS power due to the positioning of the ISS solar arrays. Because the ISS solar arrays are sensitive to several factors that are present when propulsive attitude control is used, they must be operated in a manner to protect them from damage. This results in periods of time where the arrays must be positioned, rather than autonomously tracking the sun, resulting in negative impacts to power generated by the solar arrays and consumed by both the ISS core systems and payload customers. A reduction in the number and extent of the events each year that require the ISS to use propulsive attitude control simultaneously accomplishes both these goals. Each instance where the ISS solar arrays normal sun tracking mode must be interrupted represent a need for some level of powerdown of equipment. As the magnitude of payload power requirements increases, and the efficiency of the ISS solar arrays decreases, these powerdowns caused by array positioning, will likely become more significant and could begin to negatively impact the payload operations. Through efforts such as this, the total number of events each year that require positioning of the arrays to unfavorable positions for power generation, in order to protect them against other constraints, are reduced. Optimization of propulsive events and transitioning some of them to non-propulsive CMG control significantly reduces propellant usage on the ISS leading to the reduction of the propellant delivery requirement. This results in move available upmass that can be used for delivering critical dry cargo, additional water, air, crew supplies and science experiments.
Design of a Solar Tracking Interactive Kiosk
ERIC Educational Resources Information Center
Greene, Nathaniel R.; Brunskill, Jeffrey C.
2017-01-01
A two-axis solar tracker and its interactive kiosk were designed by an interdisciplinary team of students and faculty. The objective was to develop a publicly accessible kiosk that would facilitate the study of energy usage and production on campus. Tracking is accomplished by an open-loop algorithm, microcontroller, and ham radio rotator. Solar…
Theory and design of line-to-point focus solar concentrators with tracking secondary optics.
Cooper, Thomas; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo
2013-12-10
The two-stage line-to-point focus solar concentrator with tracking secondary optics is introduced. Its design aims to reduce the cost per m(2) of collecting aperture by maintaining a one-axis tracking trough as the primary concentrator, while allowing the thermodynamic limit of concentration in 2D of 215× to be significantly surpassed by the implementation of a tracking secondary stage. The limits of overall geometric concentration are found to exceed 4000× when hollow secondary concentrators are used, and 6000× when the receiver is immersed in a dielectric material of refractive index n=1.5. Three exemplary collectors, with geometric concentrations in the range of 500-1500× are explored and their geometric performance is ascertained by Monte Carlo ray-tracing. The proposed solar concentrator design is well-suited for large-scale applications with discrete, flat receivers requiring concentration ratios in the range 500-2000×.
NASA Technical Reports Server (NTRS)
Forward, R. L.
1975-01-01
Solar electric propulsion (SEP) and laser electric propulsion (LEP) was compared. The LEP system configuration consists of an 80 kW visible laser source on earth, transmitting via an 8 m diameter adaptively controlled phased array through the atmosphere to a 4 m diameter synchronous relay mirror that tracks the LEP spacecraft. The only significant change in the SEP spacecraft for an LEP mission is the replacement of the two 3.7 m by 33.5 m solar cell arrays with a single 8 m diameter laser photovoltaic array. The solar cell array weight is decreased from 320 kg to 120 kg for an increase in payload of 200 kg and a decrease in specific mass of the power system from 20.5 kg/kW to 7.8 kg/kW.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1990-01-01
Archival reports on developments in programs managed by the JPL Office of Telecommunications and Data Acquisition (TDA) are provided. Topics covered include: DSN advanced systems (tracking and ground-based navigation; communications, spacecraft-ground; and station control and system technology) and DSN systems implementation (capabilities for existing projects; capabilities for new projects; TDA program management and analysis; and Goldstone solar system radar).
NASA Technical Reports Server (NTRS)
Zook, H. A.
1980-01-01
Data from lunar materials which may be interpreted as suggesting an increase in solar cosmic ray activity approximately 20,000 years ago is examined. The evidence includes the iron track within pit data of Hartung and Storzer (1974), the lunar whole rock pit and track data, lunar C-14 radioactivity data, lunar Ni-59 radioactivity data, the impact pit and iron track data of Morrison and Zinner (1975, 1977) and the lunar thermoluminescence data. While numerous explanations are possible for each set of data, it is shown that the first four data sets may be explained by a past increase in solar cosmic ray activity, and the remaining data sets are not necessarily incompatible with solar activity a factor of 20 to 40 times higher than at present for several thousand years prior to about 20,000 years ago.
NASA Astrophysics Data System (ADS)
Hull, J. R.
Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.
3D cloud detection and tracking system for solar forecast using multiple sky imagers
Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...
2015-06-23
We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less
Adaptive control for solar energy based DC microgrid system development
NASA Astrophysics Data System (ADS)
Zhang, Qinhao
During the upgrading of current electric power grid, it is expected to develop smarter, more robust and more reliable power systems integrated with distributed generations. To realize these objectives, traditional control techniques are no longer effective in either stabilizing systems or delivering optimal and robust performances. Therefore, development of advanced control methods has received increasing attention in power engineering. This work addresses two specific problems in the control of solar panel based microgrid systems. First, a new control scheme is proposed for the microgrid systems to achieve optimal energy conversion ratio in the solar panels. The control system can optimize the efficiency of the maximum power point tracking (MPPT) algorithm by implementing two layers of adaptive control. Such a hierarchical control architecture has greatly improved the system performance, which is validated through both mathematical analysis and computer simulation. Second, in the development of the microgrid transmission system, the issues related to the tele-communication delay and constant power load (CPL)'s negative incremental impedance are investigated. A reference model based method is proposed for pole and zero placements that address the challenges of the time delay and CPL in closed-loop control. The effectiveness of the proposed modeling and control design methods are demonstrated in a simulation testbed. Practical aspects of the proposed methods for general microgrid systems are also discussed.
NASA Astrophysics Data System (ADS)
Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro
2017-11-01
The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.
Seasonal and circadian biases in bird tracking with solar GPS-tags.
Silva, Rafa; Afán, Isabel; Gil, Juan A; Bustamante, Javier
2017-01-01
Global Positioning System (GPS) tags are nowadays widely used in wildlife tracking. This geolocation technique can suffer from fix loss biases due to poor satellite GPS geometry, that result in tracking data gaps leading to wrong research conclusions. In addition, new solar-powered GPS tags deployed on birds can suffer from a new "battery drain bias" currently ignored in movement ecology analyses. We use a GPS tracking dataset of bearded vultures (Gypaetus barbatus), tracked for several years with solar GPS tags, to evaluate the causes and triggers of fix and data retrieval loss biases. We compare two models of solar GPS tags using different data retrieval systems (Argos vs GSM-GPRS), and programmed with different duty cycles. Neither of the models was able to accomplish the duty cycle programed initially. Fix and data retrieval loss rates were always greater than expected, and showed non-random gaps in GPS locations. Number of fixes per month of tracking was a bad criterion to identify tags with smaller biases. Fix-loss rates were four times higher due to battery drain than due to poor GPS satellite geometry. Both tag models were biased due to the uneven solar energy available for the recharge of the tag throughout the annual cycle, resulting in greater fix-loss rates in winter compared to summer. In addition, we suggest that the bias found along the diurnal cycle is linked to a complex three-factor interaction of bird flight behavior, topography and fix interval. More fixes were lost when vultures were perching compared to flying, in rugged versus flat topography. But long fix-intervals caused greater loss of fixes in dynamic (flying) versus static situations (perching). To conclude, we emphasize the importance of evaluating fix-loss bias in current tracking projects, and deploying GPS tags that allow remote duty cycle updates so that the most appropriate fix and data retrieval intervals can be selected.
Seasonal and circadian biases in bird tracking with solar GPS-tags
Afán, Isabel; Gil, Juan A.; Bustamante, Javier
2017-01-01
Global Positioning System (GPS) tags are nowadays widely used in wildlife tracking. This geolocation technique can suffer from fix loss biases due to poor satellite GPS geometry, that result in tracking data gaps leading to wrong research conclusions. In addition, new solar-powered GPS tags deployed on birds can suffer from a new “battery drain bias” currently ignored in movement ecology analyses. We use a GPS tracking dataset of bearded vultures (Gypaetus barbatus), tracked for several years with solar GPS tags, to evaluate the causes and triggers of fix and data retrieval loss biases. We compare two models of solar GPS tags using different data retrieval systems (Argos vs GSM-GPRS), and programmed with different duty cycles. Neither of the models was able to accomplish the duty cycle programed initially. Fix and data retrieval loss rates were always greater than expected, and showed non-random gaps in GPS locations. Number of fixes per month of tracking was a bad criterion to identify tags with smaller biases. Fix-loss rates were four times higher due to battery drain than due to poor GPS satellite geometry. Both tag models were biased due to the uneven solar energy available for the recharge of the tag throughout the annual cycle, resulting in greater fix-loss rates in winter compared to summer. In addition, we suggest that the bias found along the diurnal cycle is linked to a complex three-factor interaction of bird flight behavior, topography and fix interval. More fixes were lost when vultures were perching compared to flying, in rugged versus flat topography. But long fix-intervals caused greater loss of fixes in dynamic (flying) versus static situations (perching). To conclude, we emphasize the importance of evaluating fix-loss bias in current tracking projects, and deploying GPS tags that allow remote duty cycle updates so that the most appropriate fix and data retrieval intervals can be selected. PMID:29020062
Three-dimensional tracking solar energy concentrator and method for making same
NASA Technical Reports Server (NTRS)
Miller, C. G.; Pohl, J. G. (Inventor)
1977-01-01
A three dimensional tracking solar energy concentrator, consisting of a stretched aluminized polymeric membrane supported by a hoop, was presented. The system is sturdy enough to withstand expected windage forces and precipitation. It can provide the high temperature output needed by central station power plants for power production in the multi-megawatt range.
Solar Tracking Error Analysis of Fresnel Reflector
Zheng, Jiantao; Yan, Junjie; Pei, Jie; Liu, Guanjie
2014-01-01
Depending on the rotational structure of Fresnel reflector, the rotation angle of the mirror was deduced under the eccentric condition. By analyzing the influence of the sun tracking rotation angle error caused by main factors, the change rule and extent of the influence were revealed. It is concluded that the tracking errors caused by the difference between the rotation axis and true north meridian, at noon, were maximum under certain conditions and reduced at morning and afternoon gradually. The tracking error caused by other deviations such as rotating eccentric, latitude, and solar altitude was positive at morning, negative at afternoon, and zero at a certain moment of noon. PMID:24895664
Deployment/retraction ground testing of a large flexible solar array
NASA Technical Reports Server (NTRS)
Chung, D. T.
1982-01-01
The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.
Ma, Hongcai; Wu, Lin
2015-07-10
We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.
Compact, semi-passive beam steering prism array for solar concentrators.
Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A
2017-05-10
In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.
Doppler tracking in time-dependent cosmological spacetimes
NASA Astrophysics Data System (ADS)
Giulini, Domenico; Carrera, Matteo
I will discuss the theoretical problems associated with Doppler tracking in time dependent background geometries, where ordinary Newtonian kinematics fails. A derivation of an exact general-relativistic formula for the two-way Doppler tracking of a spacecraft in homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes is presented, as well as a controlled approximation in McVittie spacetimes representing an FLRW background with a single spherically-symmetric inhomogeneity (e.g. a single star or black hole). The leading-order corrections of the acceleration as compared to the Newtonian expression are calculated, which are due to retardation and cosmological expansion and which in the Solar System turn out to be significantly below the scale (nanometer per square-second) set by the Pioneer Anomaly. Last, but not least, I discuss kinematical ambiguities connected with notions of "simultaneity" and "spatial distance", which, in principle, also lead to tracking corrections.
Nanometer-scale anatomy of entire Stardust tracks
NASA Astrophysics Data System (ADS)
Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.; Messenger, Scott; Ito, Motoo
2011-07-01
We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on "carrot" and "bulbous" tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg-rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O-rich forsteritic grain that may have formed in a similar environment as Ca-, Al-rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron-sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.
Characterization of MODIS and SeaWiFS Solar Diffuser On-Orbit Degradation
NASA Technical Reports Server (NTRS)
Xiong, X.; Eplee, R. E., Jr.; Sun, J.; Patt, F. S.; Angal, A.; McClain, C. R.
2009-01-01
MODIS has 20 reflective solar bands (RSB), covering the VIS, NIR, and SWIR spectral regions. They are calibrated on-orbit using a solar diffuser (SD) panel, made of space-grade Spectralon. The SD bi-directional reflectance factor (BRF) was characterized pre-launch by the instrument vendor reference to the NIST reflectance standard. Its on-orbit degradation is tracked by an on-board solar diffuser stability monitor (SDSM). The SeaWifS on-orbit calibration strategy uses monthly lunar observations to monitor the long-term radiometric stability of the instrument and applies daily observations of its solar diffuser (an aluminum plate coated with YB71 paint) to track the short-term changes in the instrument response. This paper provides an overview of MODIS and SeaWiFS SD observations, applications, and approaches used to track their on-orbit degradations. Results from sensors are presented with emphasis on the spectral dependence and temporal trends of the SD degradation. Lessons and challenges from the use of SD for sensor on-orbit calibration are also discussed.
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.; Christoffersen, Roy
2016-01-01
Samples returned from the moon and Asteroid Itokawa by NASA's Apollo Missions and JAXA's Hayabusa Mission, respectively, provide a unique record of their interaction with the space environment. Space weathering effects result from micrometeorite impact activity and interactions with the solar wind. While the effects of solar wind interactions, ion implantation and solar flare particle track accumulation, have been studied extensively, the rate at which these effects accumulate in samples on airless bodies has not been conclusively determined. Results of numerical modeling and experimental simulations do not converge with observations from natural samples. We measured track densities and rim thicknesses of three olivine grains from Itokawa and multiple olivine and anorthite grains from lunar soils of varying exposure ages. Samples were prepared for analysis using a Leica EM UC6 ultramicrotome and an FEI Quanta 3D dual beam focused ion beam scanning electron microscope (FIB-SEM). Transmission electron microscope (TEM) analyses were performed on the JEOL 2500SE 200kV field emission STEM. The solar wind damaged rims on lunar anorthite grains are amorphous, lack inclusions, and are compositionally similar to the host grain. The rim width increases as a smooth function of exposure age until it levels off at approximately 180 nm after approximately 20 My (Fig. 1). While solar wind ion damage can only accumulate while the grain is in a direct line of sight to the Sun, solar flare particles can penetrate to mm-depths. To assess whether the track density accurately predicts surface exposure, we measured the rim width and track density in olivine and anorthite from the surface of rock 64455, which was never buried and has a surface exposure age of 2 My based on isotopic measurements. The rim width from 64455 (60-70nm) plots within error of the well-defined trend for solar wind amorphized rims in Fig. 1. Measured solar flare track densities are accurately reflecting the surface exposure of the grains. Track densities correlate with the amorphous rim thicknesses. While the space-weathered rims of anorthite grains are amorphous, the space-weathered rims on both Itokawa and lunar olivine grains show solar wind damaged rims that are not amorphous. Instead, the rims are nanocrystalline with high dislocation densities and sparse inclusions of nanophase Fe metal. The rim thicknesses on the olivine grains also correlate with track density. The Itokawa olivine grains have track densities that indicate surface exposures of approximately 10(exp 5) years. Longer exposures (up to approximately 10(exp 7) years) do not amorphize the rims, as evidenced by lunar soil olivines with high track densities (approximately 10(exp 11) cm(exp -2)). From the combined data, shown in Fig. 1, it is clear that olivine is damaged (but not amorphized) more rapidly by the solar wind compared to anorthite. The olivine damaged rim forms quickly (in approximately 10(exp 6) y) and saturates at approximately 120nm with longer exposure time. The anorthite damaged rims form more slowly, amorphize, and grow thicker than the olivine rims. This is in agreement with numerical modeling data which predicts that solar wind damaged rims on anorthite will be thicker than olivine. However, the models predict that both olivine and anorthite rims will amorphize and reach equilibrium widths in less than 10(exp 3) y, in contrast to what is observed for natural samples. Laboratory irradiation experiments, which show rapid formation of fully amorphous and blistered surfaces from simulated solar wind exposures are also in contrast to observations of natural samples. These results suggest that there is a flux dependence on the type and extent of irradiation damage that develops in olivine. This flux dependence suggests that great caution be used in extrapolating between high-flux laboratory experiments and the natural case, as demonstrated by. We constrain the space weathering rate through analysis of returned samples. Provided that the track densities and the solar wind damaged rim widths exhibited by the Itokawa grains are typical of the fine-grained regions of Itokawa, then the space weathering rate is on the order of 10(exp 5) y. Space weathering effects in lunar soils saturate within a few My of exposure while those in Itokawa regolith grains formed in approximately 10(exp 5) y. Olivine and anorthite respond differently to solar wind irradiation. The space weathering effects in olivine are particularly difficult to reconcile with laboratory irradiation studies and numerical models. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind amorphization of different minerals on airless bodies.
Design of a photovoltaic system for a southwest all-electric residence
NASA Astrophysics Data System (ADS)
Mehalick, E. M.; Obrien, G.; Tully, G. F.; Johnson, J.; Parker, J.
1980-04-01
The grid connected residential photovoltaic system for the Southwest is designed to meet both space conditioning requirements and all conventional electrical load requirements for an all-electric residence. The system is comprised of two major subsystems, the solar array and the power conditioning subsystem (PCS). An 8 kW peak photovoltaic array been designed for the house. The 93 square meters solar array uses a shingle solar cell module in a highly redundant series/parallel matrix. The photovoltaic generated power is supplied to a 10kVA power conversion subsystem which is controlled to track the solar array maximum power operating point and feed the 240 Vac output power directly to the house loads or back to the utility when excess power is generated. The photovoltaic power is isolated from the utility by a 15 kVA transformer. The house design and subsystem specifications are given in detail.
Digital solar edge tracker for the Halogen Occultation Experiment
NASA Technical Reports Server (NTRS)
Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.
1987-01-01
The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.
Rau, Scott James
2013-01-29
Concepts and technologies described herein provide for an accurate and cost-effective method for rotating a solar array disk for tracking the movement of the sun. According to various aspects, a motor includes a fixed caliper and a translating caliper positioned adjacent to one another. Electromagnetically controlled brakes on the translating caliper grip the solar array disk while adjacent, but spaced apart, electromagnets on the fixed caliper and the translating caliper are energized to create an attractive force that pulls the translating caliper with the solar array disk toward the fixed caliper. After reaching the fixed caliper, brakes on the fixed caliper are engaged with the disk, brakes on the translating caliper are released from the disk, and the translating caliper is pushed back to the starting location where the process repeats until the desired rotation is completed.
Development of a digital solar simulator based on full-bridge converter
NASA Astrophysics Data System (ADS)
Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo
2014-02-01
With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.
Methods to Improve the Maintenance of the Earth Catalog of Satellites During Severe Solar Storms
NASA Technical Reports Server (NTRS)
Wilkin, Paul G.; Tolson, Robert H.
1998-01-01
The objective of this thesis is to investigate methods to improve the ability to maintain the inventory of orbital elements of Earth satellites during periods of atmospheric disturbance brought on by severe solar activity. Existing techniques do not account for such atmospheric dynamics, resulting in tracking errors of several seconds in predicted crossing time. Two techniques are examined to reduce of these tracking errors. First, density predicted from various atmospheric models is fit to the orbital decay rate for a number of satellites. An orbital decay model is then developed that could be used to reduce tracking errors by accounting for atmospheric changes. The second approach utilizes a Kalman filter to estimate the orbital decay rate of a satellite after every observation. The new information is used to predict the next observation. Results from the first approach demonstrated the feasibility of building an orbital decay model based on predicted atmospheric density. Correlation of atmospheric density to orbital decay was as high as 0.88. However, it is clear that contemporary: atmospheric models need further improvement in modeling density perturbations polar region brought on by solar activity. The second approach resulted in a dramatic reduction in tracking errors for certain satellites during severe solar Storms. For example, in the limited cases studied, the reduction in tracking errors ranged from 79 to 25 percent.
NASA Astrophysics Data System (ADS)
Rajaee, Meraj; Ghorashi, Seyed Mohamad Bagher
2015-08-01
Concentrator photovoltaic modules are a promising technology for highly efficient solar energy conversion. This system presents several advantages due to additional degrees of freedom that has been provided by the spectral separation such as cost and mass reduction, increase in the incident solar flux on PV cells and performances. This paper has proposed a unique photovoltaic solar cell system that consists of semi-Fresnel lens convergent structure and a novel two axis sun tracking module to enhance the efficiency of solar cell by using less cell area and energy losses. The grooves of this lens are calculated according to the refraction and convergent angles of the light easy for perpendicular incidence angle. The update time interval during tracking causes misalignment of the lens' optical axis versus the sunrays. Then an inventive sun-tracking method is introduced to adjust the module so that the incident rays are always perpendicular to the module's surface. As a result, all rays will be refracted with the predetermined angles. This way the focus area is reduced and smaller cells can be used. We also mentioned different module connections in order to provide compensation method during losses, for networks and power systems. Experimental results show that using semi-Fresnel lens, along with the sun-tracking method increases the efficiency of PV panel.
Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto
2015-06-01
Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.
Very heavy solar cosmic rays: Energy spectrum and implications for lunar erosion
NASA Technical Reports Server (NTRS)
Fleischer, R. L.; Hart, H. R., Jr.; Comstock, G. M.
1972-01-01
Particle tracks were investigated in the glass plate of a neutral density (clear flint) optical filter housed in the Surveyor 3 TV camera but exposed directly to space. The track density vs depth curve was determined and descends sharply from approximately 2.6 million tracks/sq cm at a depth of 3.6 mg/sq cm to about 35/sq cm at 700 mg/sq cm. Several tracks were of V-shapes characteristic of high energy induced fission. The erosion rate on the moon due to solar wind ions was determined from the energy spectrum, and was found to be low (0 to 2 x 10 to the minus 8th power cm/yr).
Lightweight DC-DC Converter with Partial Power Processing and MPPT for a Solar Powered Aircraft
NASA Astrophysics Data System (ADS)
Diab-Marzouk, Ahmad
A lightweight dc-dc partial power processing converter is demonstrated for solar aerospace applications. A system-level model is conceived to determine conformity to payload and target distance objectives, with the Solarship aircraft used as an application example. The concept of partial power processing is utilized to realize a high efficiency lightweight converter that performs Max Peak Power Tracking (MPPT) to transfer power from the aircraft solar array to the high-voltage battery bus. The isolated Cuk is determined to be a suitable converter topology for the application. A small-signal model is derived for control design. The operation of a 400V, 2.7 kW prototype is verified at high frequency (200 kHz), high efficiency (> 98%), small mass (0.604 kg), and uses no electrolytic capacitors. MPPT operation is verified on a 376 V commercial solar installation at The University of Toronto. The prototype serves as an enabling technology for solar aerospace applications.
Management experience of an international venture in space The Ulysses mission
NASA Technical Reports Server (NTRS)
Yoshida, Ronald Y.; Meeks, Willis G.
1986-01-01
The management of the Ulysses project, a probe which will fly a solar polar orbit, is described. The 5-yr mission will feature a flyby of Jupiter to deflect the spacecraft into a high-inclination orbit. Data on the solar corona, solar wind, the sun-wind interface, the heliospheric magnetic field, solar and nonsolar cosmic rays, etc., will be gathered as a function of the solar latitude. NASA will track and control the probe with the Deep Space Network. JPL provides project management for NASA while the Directorate of Scientific Programs performs ESA management functions. The DOE will provide a radioisotope thermoelectric generator while NASA and ESA each supply half the scientific payload. A NASA-ESA Joint Working Group meets about twice per year to monitor the project and discuss the technical and scientific requirements. Safety issues and measures which are being addressed due to the presence of the Pu-238 heat source for the RTG are discussed.
Search for Cm-248 in the early solar system
NASA Technical Reports Server (NTRS)
Lavielle, B.; Marti, K.; Pellas, P.; Perron, C.
1992-01-01
Possible evidence for the presence of Cm-248 in the early solar system was reported from fission gas studies (Rao and Gopalan, 1973) and recently from studies of very high nuclear track densities (not less than 5 x 10 exp 8/sq cm) in the merrillite of the H4 chondrite Forest Vale (F.V.) (Pellas et al., 1987). We report here an analysis of the isotopic abundances of xenon in F.V. phosphates and results of track studies in phosphate/pyroxene contacts. The fission xenon isotopic signature clearly identifies Pu-244 as the extinct progenitor. We calculate an upper limit Cm-248/Pu-244 to be less than 0.0015 at the beginning of Xe retention in F.V. phosphates. This corresponds to an upper limit of the ratio Cm-248/U-235 of not greater than 5 x 10 exp -5 further constraining the evidence for any late addition of freshly synthesized actinide elements just prior to solar system formation. The fission track density observed after annealing the phosphates at 290C (1 hr, which essentially erases spallation recoil tracks) is also in agreement with the Pu-244 abundance inferred from fission Xe. The spallation recoil tracks produced during the 76 Ma cosmic-ray exposure account for the very high track density in merrillites.
Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control
NASA Astrophysics Data System (ADS)
Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed
2012-12-01
In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.
Fabrication of solar beam steering electrowetting devices—present status and future prospects
NASA Astrophysics Data System (ADS)
Khan, I.; Castelletto, S.; Rosengarten, G.
2017-10-01
Many different technologies are used to track the movement of the sun to both enable concentration of its energy and maximize the yearly energy capture. Their present main limitations are the cost, size, visual impact and wind loading, particularly for applications involving mounting to a building. A parabolic concentrator, for example, along with its steering equipment is heavy and bulky, and is not suitable for rooftop applications. Instead, thin and flat solar concentration devices are required for hassle-free rooftop applications. The use of electrowetting-controlled liquid lenses has emerged as a novel approach for solar tracking and concentration. By steering sunlight using thin electrowetting cell arrays, bulky mechanical equipment is not required. The basic concept of this technology is to change the shape of a liquid interface that is formed by two immiscible fluids of different refractive indices, by simply applying an electric field. An important challenge in electrowetting beam steering devices is the optimization of the design and fabrication process for each of their main constituent components, to maximize optical efficiency. In this paper, we report on the state-of-the-art fabrication methods for electrowetting devices for solar beam steering. We have reviewed the present status of different components types and related fabrication methods, and how they affect the efficiency and performance of such devices. The work identifies future prospects in using electrowetting beam steering devices for solar energy applications. This paper will help researchers and developers in the field to determine the components and fabrication process that affect the development of efficient beam steering electrowetting devices.
NASA Technical Reports Server (NTRS)
1979-01-01
The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.
Early Mission Maneuver Operations for the Deep Space Climate Observatory
NASA Technical Reports Server (NTRS)
Roberts, Craig; Case, Sara; Reagoso, John
2015-01-01
DSCOVR Lissajous Orbit sized such that orbit track never extends beyond 15 degrees from Earth-Sun line (as seen from Earth). Requiring delta-V maneuvers, control orbit to obey a Solar Exclusion Zone (SEZ) cone of half-angle 4 degrees about the Earth-Sun line. Spacecraft should never be less than 4 degrees from solar center as seen from Earth. Following Lissajous Orbit Insertion (LOI), DSCOVR should be in an opening phase that just skirts the 4-degree SEZ. Maximizes time to the point where a closing Lissajous will require avoidance maneuvers to keep it out of the SEZ. Station keeping maneuvers should take no more than 15 minutes
NASA Technical Reports Server (NTRS)
Atkinson, J. H.; Hobgood, J. M.
1984-01-01
The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.
Solar internal lighting using optical collectors and fibers
NASA Astrophysics Data System (ADS)
Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.
2006-08-01
A system exploiting solar energy, by means of optical collectors and fibres, has been applied for indoor illumination. The project has been called "The Sunflowers" for the property of solar collectors to track solar position during the day. Every "sunflower" contains several solar collectors, each of which is coupled to an optical fibre. The "Sunflower" is provided of mechanical systems and electric accessories for solar tracking. The light focused by the solar collector can be used in two possible ways: for internal illumination with direct solar light; otherwise it can be accumulated for lighting when the sun is not present. The first function is obtained coupling the optical collector to an optical fibre, which transports the solar light in selected points within the showcases. The second one consists in focusing solar light on a photovoltaic cell of the last generation type with high efficiency. In this configuration the photovoltaic cell converts the focused light into electric energy to be used for illumination in case of sun absence. A demonstrative installation has been realised applying this solar illumination system to museum lighting: a prototype has been tested in a prestigious museum in Florence.
Enhanced emission of iron nuclei in solar flares
NASA Technical Reports Server (NTRS)
Price, P. B.; Hutcheon, I. D.; Cowsik, R.; Barber, D. J.
1972-01-01
A silica glass window from Apollo 12 CM and a piece of flint glass from the Surveyor 3 camera filter were examined for Fe nuclei tracks. A large difference between observed and predicted track densitites was found. At low rigidity (or energy), the solar particle Fe/He ratio is much higher than the photospheric abundance ratio, but decreases with increasing rigidity until it approaches the photospheric value at a rigidity of about 500 MV. It is felt that the low-energy Fe tracks are of solar origin. The implications that heavy nuclei can be preferentially emitted from a source of energetic particles are discussed. Other conclusions are the following: Rocks exposed on the lunar surface for 10 million yr would accumulate about 6 x 10 to the 12th power tracks/sq cm, and the rate of radiation-induced erosion is about 10 to the -9 cm/yr. The lunar soil should contain heavily irradiated small grains, some with track densities of about 10 to the 12th power/sq cm that have flaked from radiation-damaged rock surfaces and some that were irradiated while at the top of the soil layer.
NASA Technical Reports Server (NTRS)
Price, P. B.; Sullivan, J. D.
1972-01-01
Tracks of 1000 solar particles with charge Z not less than 10 and tracks of about 150 particles with Z equal to 8 have been analyzed in a stack of plastic detectors exposed in a rocket during the solar flare of Jan. 25, 1971. The energy spectra peak at about 1.5 MeV/nuc, with the flux falling to zero at about 0.4 MeV/nuc. Fe, Si, and O appear to have similar energy spectra for energies between 2 and 12 MeV/nuc.
Tracking and shape errors measurement of concentrating heliostats
NASA Astrophysics Data System (ADS)
Coquand, Mathieu; Caliot, Cyril; Hénault, François
2017-09-01
In solar tower power plants, factors such as tracking accuracy, facets misalignment and surface shape errors of concentrating heliostats are of prime importance on the efficiency of the system. At industrial scale, one critical issue is the time and effort required to adjust the different mirrors of the faceted heliostats, which could take several months using current techniques. Thus, methods enabling quick adjustment of a field with a huge number of heliostats are essential for the rise of solar tower technology. In this communication is described a new method for heliostat characterization that makes use of four cameras located near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. From knowledge of a measured sun profile, data processing of the acquired images allows reconstructing the slope and shape errors of the heliostats, including tracking and canting errors. The mathematical basis of this shape reconstruction process is explained comprehensively. Numerical simulations demonstrate that the measurement accuracy of this "backward-gazing method" is compliant with the requirements of solar concentrating optics. Finally, we present our first experimental results obtained at the THEMIS experimental solar tower plant in Targasonne, France.
Two degrees of freedom parallel linkageto track solarthermal platforms installed on ships
NASA Astrophysics Data System (ADS)
Visa, I.; Cotorcea, A.; Moldovan, M.; Neagoe, M.
2016-08-01
Transportation is responsible at global level for one third of the total energy consumption. Solutions to reduce conventional fuel consumption are under research, to improve the systems’ efficiency and to replace the current fossil fuels. There already are several applications, usually onsmall maritime vehicles, using photovoltaic systems to cover the electric energy demand on-board andto support the owners’ commitment towards sustainability. In most cases, these systems are fixed, parallely aligned with the deck; thus, the amount of solar energy received is heavily reduced (down to 50%) as compared to the available irradiance. Large scale, feasible applications require to maximize the energy output of the solar convertors implemented on ships; using solar tracking systems is an obvious path, allowing a gain up to 35...40% in the output energy, as compared to fixed systems. Spatial limitations, continuous movement of the ship and harsh navigation condition are the main barriers in implementation. This paper proposes a solar tracking system with two degrees of freedom, for a solar thermal platform, based on a parallel linkage with sphericaljoints, considered as Multibody System. The analytical model for mobile platform position, pressure angles and a numerical example are given in the paper.
Vehicle Tracking System using Nanotechnology Satellites and Tags
NASA Technical Reports Server (NTRS)
Lorenzini, Dino A.; Tubis, Chris
1995-01-01
This paper describes a joint project to design, develop, and deploy a satellite based tracking system incorporating micro-nanotechnology components. The system consists of a constellation of 'nanosats', a satellite command station and data collection sites, and a large number of low-cost electronic 'tags'. Both government and commercial applications are envisioned for the satellite based tracking system. The projected low price for the tracking service is made possible by the lightweight nanosats and inexpensive electronic tags which use high production volume single chip transceivers and microprocessor devices. The nanosat consists of a five inch aluminum cube with body mounted solar panels (GaAs solar cells) on all six faces. A UHF turnstile antenna and a simple, spring release mechanism complete the external configuration of the spacecraft.
Measurements of heavy solar wind and higher energy solar particles during the Apollo 17 mission
NASA Technical Reports Server (NTRS)
Walker, R. M.; Zinner, E.; Maurette, M.
1973-01-01
The lunar surface cosmic ray experiment, consisting of sets of mica, glass, plastic, and metal foil detectors, was successfully deployed on the Apollo 17 mission. One set of detectors was exposed directly to sunlight and another set was placed in shade. Preliminary scanning of the mica detectors shows the expected registration of heavy solar wind ions in the sample exposed directly to the sun. The initial results indicate a depletion of very-heavy solar wind ions. The effect is probably not real but is caused by scanning inefficiencies. Despite the lack of any pronounced solar activity, energetic heavy particles with energies extending to 1 MeV/nucleon were observed. Equal track densities of approximately 6000 tracks/cm sq 0.5 microns in length were measured in mica samples exposed in both sunlight and shade.
Helios-1 Faraday rotation experiment - Results and interpretations of the solar occultations in 1975
NASA Technical Reports Server (NTRS)
Volland, H.; Bird, M. K.; Levy, G. S.; Stelzried, C. T.; Seidel, B. L.
1977-01-01
The first of two solar occultations of the satellite Helios-1 in 1975 occurred in April when the satellite's ray path approached the west limb of the sun to a minimum distance of 1.63 solar radii. The second occultation took place in late August/early September when Helios-1 was totally eclipsed by the photosphere. Measurements of the polarization angle of the linearly polarized telemetry signal were performed with automatic tracking polarimeters at the 64 m Goldstone Tracking Station in California and also at the 100 m radio telescope in Effelsberg, West Germany. The coronal Faraday rotation as a function of the solar offset for both occultations is shown in graphs. The theoretical significance of the observations is investigated.
Novel imaging closed loop control strategy for heliostats
NASA Astrophysics Data System (ADS)
Bern, Gregor; Schöttl, Peter; Heimsath, Anna; Nitz, Peter
2017-06-01
Central Receiver Systems use up to thousands of heliostats to concentrate solar radiation. The precise control of heliostat aiming points is crucial not only for efficiency but also for reliable plant operation. Besides the calibration of open loop control systems, closed loop tracking strategies are developed to address a precise and efficient aiming strategy. The need for cost reductions in the heliostat field intensifies the motivation for economic closed loop control systems. This work introduces an approach for a closed loop heliostat tracking strategy using image analysis and signal modulation. The approach aims at the extraction of heliostat focal spot position within the receiver domain by means of a centralized remote vision system decoupled from the rough conditions close to the focal area. Taking an image sequence of the receiver while modulating a signal on different heliostats, their aiming points are retrieved. The work describes the methodology and shows first results from simulations and practical tests performed in small scale, motivating further investigation and deployment.
Fixed Nadir Focus Concentrated Solar Power Applying Reflective Array Tracking Method
NASA Astrophysics Data System (ADS)
Setiawan, B.; DAMayanti, A. M.; Murdani, A.; Habibi, I. I. A.; Wakidah, R. N.
2018-04-01
The Sun is one of the most potential renewable energy develoPMent to be utilized, one of its utilization is for solar thermal concentrators, CSP (Concentrated Solar Power). In CSP energy conversion, the concentrator is as moving the object by tracking the sunlight to reach the focus point. This method need quite energy consumption, because the unit of the concentrators has considerable weight, and use large CSP, means the existence of the usage unit will appear to be wider and heavier. The addition of weight and width of the unit will increase the torque to drive the concentrator and hold the wind gusts. One method to reduce energy consumption is direct the sunlight by the reflective array to nadir through CSP with Reflective Fresnel Lens concentrator. The focus will be below the nadir direction, and the position of concentrator will be fixed position even the angle of the sun’s elevation changes from morning to afternoon. So, the energy concentrated maximally, because it has been protected from wind gusts. And then, the possibility of dAMage and changes in focus construction will not occur. The research study and simulation of the reflective array (mechanical method) will show the reflective angle movement. The distance between reflectors and their angle are controlled by mechatronics. From the simulation using fresnel 1m2, and efficiency of solar energy is 60.88%. In restriction, the intensity of sunlight at the tropical circles 1KW/peak, from 6 AM until 6 PM.
Deployed Base Solar Power (BRIEFING SLIDES)
2009-09-01
various time intervals. Data Acquisitions and Components: FieldPoint Current, Voltage, and Power Transducers POA Pyranometers Solar...Tracking Pyranometer Weather Station kWh Meter Parameters being monitored: Solar Module Temperatures Ambient Temperature Wind Speed Wind
Single-axle, double-axis solar tracker
NASA Technical Reports Server (NTRS)
Brantley, L. W.; Lawson, B. D.
1979-01-01
Solar concentrator tracking mechanism consisting of angular axle and two synchronized drive motors, follows seasonal as well as diurnal changes in earth's orientation with respect to incoming sunlight.
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong; Turchi, Craig
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
Zhu, Guangdong; Turchi, Craig
2017-01-27
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Renewable Energy Finance Tracking Initiative (REFTI) Solar Trend Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbell, R.; Lowder, T.; Mendelsohn, M.
This report is a summary of the finance trends for small-scale solar photovoltaic (PV) projects (PV <1 MW), large-scale PV projects (PV greater than or equal to 1 MW), and concentrated solar power projects as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The report presents REFTI data during the five quarterly periods from the fourth quarter of 2009 to the first half of 2011. The REFTI project relies exclusively on the voluntary participation of industry stakeholders for its data; therefore, it does not offer a comprehensive view of the technologies it tracks. Despite thismore » limitation, REFTI is the only publicly available resource for renewable energy project financial terms. REFTI analysis offers usable inputs into the project economic evaluations of developers and investors, as well as the policy assessments of public utility commissions and others in the renewable energy industry.« less
Automated enclosure and protection system for compact solar-tracking spectrometers
NASA Astrophysics Data System (ADS)
Heinle, Ludwig; Chen, Jia
2018-04-01
A novel automated enclosure for protecting solar-tracking atmospheric instruments was designed, constructed, and successfully tested under various weather conditions. A complete automated measurement system, consisting of a compact solar-tracking Fourier transform infrared (FTIR) spectrometer (EM27/SUN) and the enclosure, has been deployed in central Munich to monitor greenhouse gases since 2016 and withstood all critical weather conditions, including rain, storms, and snow. It provided ground-based measurements of column-averaged concentrations of CO2, CH4, O2, and H2O throughout this time.The enclosure protects the instrument from harmful environmental influences while allowing open-path measurements in sunny weather. The newly developed and patented cover, a key component of the enclosure, permits unblocked solar measurements while reliably protecting the instrument. This enables dynamic decision regarding taking measurements, and thus increases the number of data samples. This enclosure leads to a fully automated measurement system, which collects data whenever possible without any human interaction. In the long term, the enclosure will provide the foundation for a permanent greenhouse gas monitoring sensor network.
Investigation on the Maximum Power Point in Solar Panel Characteristics Due to Irradiance Changes
NASA Astrophysics Data System (ADS)
Abdullah, M. A.; Fauziah Toha, Siti; Ahmad, Salmiah
2017-03-01
One of the disadvantages of the photovoltaic module as compared to other renewable resources is the dynamic characteristics of solar irradiance due to inconsistency weather condition and surrounding temperature. Commonly, a photovoltaic power generation systems consist of an embedded control system to maximize the power generation due to the inconsistency in irradiance. In order to improve the simplicity of the power optimization control, this paper present the characteristic of Maximum Power Point with various irradiance levels for Maximum Power Point Tracking (MPPT). The technique requires a set of data from photovoltaic simulation model to be extrapolated as a standard relationship between irradiance and maximum power. The result shows that the relationship between irradiance and maximum power can be represented by a simplified quadratic equation. The first section in your paper
A novel power converter for photovoltaic applications
NASA Astrophysics Data System (ADS)
Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang
A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.
Solar concentrator with integrated tracking and light delivery system with summation
Maxey, Lonnie Curt
2015-05-05
A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.
Solar concentrator with integrated tracking and light delivery system with collimation
Maxey, Lonnie Curt
2015-06-09
A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.
NASA Technical Reports Server (NTRS)
1974-01-01
The objectives, functions, and organization, of the Deep Space Network are summarized. Deep Space stations, ground communications, and network operations control capabilities are described. The network is designed for two-way communications with unmanned spacecraft traveling approximately 1600 km from earth to the farthest planets in the solar system. It has provided tracking and data acquisition support for the following projects: Ranger, Surveyor, Mariner, Pioneer, Apollo, Helios, Viking, and the Lunar Orbiter.
Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie
2016-01-01
Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works.
Wang, Yajie; Shi, Yunbo; Yu, Xiaoyu; Liu, Yongjie
2016-01-01
Currently, tracking in photovoltaic (PV) systems suffers from some problems such as high energy consumption, poor anti-interference performance, and large tracking errors. This paper presents a solar PV tracking system on the basis of an improved perturbation and observation method, which maximizes photoelectric conversion efficiency. According to the projection principle, we design a sensor module with a light-intensity-detection module for environmental light-intensity measurement. The effect of environmental factors on the system operation is reduced, and intelligent identification of the weather is realized. This system adopts the discrete-type tracking method to reduce power consumption. A mechanical structure with a level-pitch double-degree-of-freedom is designed, and attitude correction is performed by closed-loop control. A worm-and-gear mechanism is added, and the reliability, stability, and precision of the system are improved. Finally, the perturbation and observation method designed and improved by this study was tested by simulated experiments. The experiments verified that the photoelectric sensor resolution can reach 0.344°, the tracking error is less than 2.5°, the largest improvement in the charge efficiency can reach 44.5%, and the system steadily and reliably works. PMID:27327657
Non-tracking solar energy collector system
NASA Technical Reports Server (NTRS)
Selcuk, M. K. (Inventor)
1978-01-01
A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.
HelioTrope: An innovative and efficient prototype for solar power production
NASA Astrophysics Data System (ADS)
Papageorgiou, George; Maimaris, Athanasios; Hadjixenophontos, Savvas; Ioannou, Petros
2014-12-01
The solar energy alternative could provide us with all the energy we need as it exist in vast quantities all around us. We only should be innovative enough in order to improve the efficiency of our systems in capturing and converting solar energy in usable forms of power. By making a case for the solar energy alternative, we identify areas where efficiency can be improved and thereby Solar Energy can become a competitive energy source. This paper suggests an innovative approach to solar energy power production, which is manifested in a prototype given the name HelioTrope. The Heliotrope Solar Energy Production prototype is tested on its' capabilities to efficiently covert solar energy to generation of electricity and other forms of energy for storage or direct use. HelioTrope involves an innovative Stirling engine design and a parabolic concentrating dish with a sun tracking system implementing a control algorithm to maximize the capturing of solar energy. Further, it utilizes a patent developed by the authors where a mechanism is designed for the transmission of reciprocating motion of variable amplitude into unidirectional circular motion. This is employed in our prototype for converting linear reciprocating motion into circular for electricity production, which gives a significant increase in efficiency and reduces maintenance costs. Preliminary calculations indicate that the Heliotrope approach constitutes a competitive solution to solar power production.
Iron and molecular opacities and the evolution of Population I stars
NASA Technical Reports Server (NTRS)
Stothers, Richard B.; Chin, Chao-Wen
1993-01-01
Effects of recent opacity revisions on the evolution of Population I stars are explored over the range 1.5-60 solar masses. Opacity parameters considered include the angular momentum coupling scheme for iron, the relative iron abundance, the total metal abundance, and diatomic and triatomic molecular sources. Only the total metal abundance exerts an important control over the evolutionary tracks. Blue loops on the H-R diagram during core helium burning can be very sensitive to opacity, but only insofar as the simple formation or suppression of a blue loop is concerned. The blue loops are most robust for stellar masses around 10 solar masses. We confirm, from a comparison of stellar models with observational data, that the total metal abundance is close to solar and that convective core overshooting is likely to be very slight. The new models predict the existence of an iron convection zone in the envelope and a great widening of the main-sequence band in the H-R diagram at luminosities brighter than 100,000 solar luminosities.
Design of MPPT Controller Monitoring Software Based on QT Framework
NASA Astrophysics Data System (ADS)
Meng, X. Z.; Lu, P. G.
2017-10-01
The MPPT controller was a hardware device for tracking the maximum power point of solar photovoltaic array. Multiple controllers could be working as networking mode by specific communicating protocol. In this article, based on C++ GUI programming with Qt frame, we designed one sort of desktop application for monitoring and analyzing operational parameter of MPPT controller. The type of communicating protocol for building network was Modbus protocol which using Remote Terminal Unit mode and The desktop application of host computer was connected with all the controllers in the network through RS485 communication or ZigBee wireless communication. Using this application, user could monitor the parameter of controller wherever they were by internet.
Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI)
NASA Technical Reports Server (NTRS)
Swenson, Charles; Hunter, Roger C.; Baker, Christopher E.
2018-01-01
The Active Thermal Architecture for Cryogenic Optical Instrumentation (ATACOI) project will demonstrate an advanced thermal control system for CubeSats and enable the use of cryogenic electro-optical instrumentation on small satellite platforms. Specifically, the project focuses on the development of a deployable solar tracking radiator, a rotationally flexible rotary union fluid joint, and a thermal/vibrational isolation system for miniature cryogenic detectors. This technology will represent a significant improvement over the current state of the art for CubeSat thermal control, which generally relies on simple passive and conductive methods.
Differential Rotation via Tracking of Coronal Bright Points.
NASA Astrophysics Data System (ADS)
McAteer, James; Boucheron, Laura E.; Osorno, Marcy
2016-05-01
The accurate computation of solar differential rotation is important both as a constraint for, and evidence towards, support of models of the solar dynamo. As such, the use of Xray and Extreme Ultraviolet bright points to elucidate differential rotation has been studied in recent years. In this work, we propose the automated detection and tracking of coronal bright points (CBPs) in a large set of SDO data for re-evaluation of solar differential rotation and comparison to other results. The big data aspects, and high cadence, of SDO data mitigate a few issues common to detection and tracking of objects in image sequences and allow us to focus on the use of CBPs to determine differential rotation. The high cadence of the data allows to disambiguate individual CBPs between subsequent images by allowing for significant spatial overlap, i.e., by the fact that the CBPs will rotate a short distance relative to their size. The significant spatial overlap minimizes the effects of incorrectly detected CBPs by reducing the occurrence of outlier values of differential rotation. The big data aspects of the data allows to be more conservative in our detection of CBPs (i.e., to err on the side of missing CBPs rather than detecting extraneous CBPs) while still maintaining statistically larger populations over which to study characteristics. The ability to compute solar differential rotation through the automated detection and tracking of a large population of CBPs will allow for further analyses such as the N-S asymmetry of differential rotation, variation of differential rotation over the solar cycle, and a detailed study of the magnetic flux underlying the CBPs.
Solar receiver with integrated optics
NASA Astrophysics Data System (ADS)
Jiang, Lun; Winston, Roland
2012-10-01
The current challenge for PV/Thermal (PV/T) systems is the reduction of radiation heat loss. Compared to solar thermal selective coating, the solar cells cannot be used as an efficient thermal absorber due to their large emissivity of the encapsulation material. Many commercial PV/T products therefore require a high concentration (more than 10x) to reach an acceptable thermal efficiency for their receivers. Such a concentration system inevitably has to track or semi-track, which induces additional cost and collects only the direct radiation from the sun. We propose a new PV/T design using a vacuum encapsulated thin film cell to solve this problem. The proposed design also collects the diffuse sun light efficiently by using an external compound parabolic concentrator (XCPC). Since the transparent electrode (TCO) of thin film cell is inherently transparent in visible light and reflective beyond infrared, this design uses this layer instead of the conventional solar cell encapsulation as the outmost heat loss surface. By integrating such a vacuum design with a tube shaped absorber, we reduce the complexity of conducting the heat energy and electricity out of the device. A low concentration standalone non-tracking solar collector is proposed in this paper. We also analyzed the thermosyphon system configuration using heat transfer and ray tracing models. The economics of such a receiver are presented.
NASA Technical Reports Server (NTRS)
Reichert, J. D.
1980-01-01
The Analog Design Verification System (ADVS), the largest single solar collector built, was tested. Referred to as the Solar Gridiron or Bowl Concept, it employs a stationary mirror, with tracking accomplished by the mirror.
Rates of Space Weathering in Lunar Regolith Grains
NASA Technical Reports Server (NTRS)
Zhang, S.; Keller, L. P.
2012-01-01
While the processes and products of lunar space weathering are reasonably well-studied, their accumulation rates in lunar soils are poorly constrained. Previously, we showed that the thickness of solar wind irradiated rims on soil grains is a smooth function of their solar flare particle track density, whereas the thickness of vapor-deposited rims was largely independent of track density [1]. Here, we have extended these preliminary results with data on additional grains from other mature soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wainwright, K.
1999-10-01
Solar technologies and indigenous materials are used in this remote Texas ranch house. Passive solar, thermal mass of adobe walls, photovoltaics, wood stoves, native stone, a ventilated roof, reflective barrier, and porch overhangs surrounding the house combine to keep the house comfortable all summer. The PV system used a passive solar tracking system that increased the electrical output by an overall 29 percent.
Tracking Waves from Sunspots Gives New Solar Insight
2017-12-08
While it often seems unvarying from our viewpoint on Earth, the sun is constantly changing. Material courses through not only the star itself, but throughout its expansive atmosphere. Understanding the dance of this charged gas is a key part of better understanding our sun – how it heats up its atmosphere, how it creates a steady flow of solar wind streaming outward in all directions, and how magnetic fields twist and turn to create regions that can explode in giant eruptions. Now, for the first time, researchers have tracked a particular kind of solar wave as it swept upward from the sun's surface through its atmosphere, adding to our understanding of how solar material travels throughout the sun. Scientists analyzed sunspot images from a trio of observatories -- including the Big Bear Solar Observatory, which captured this footage -- to make the first-ever observations of a solar wave traveling up into the sun’s atmosphere from a sunspot. Tracking solar waves like this provides a novel tool for scientists to study the atmosphere of the sun. The imagery of the journey also confirms existing ideas, helping to nail down the existence of a mechanism that moves energy – and therefore heat – into the sun’s mysteriously-hot upper atmosphere, called the corona. A study on these results was published Oct. 11, 2016, in The Astrophysical Journal Letters. Image credit: Zhao et al/NASA/SDO/IRIS/BBSO Read more: go.nasa.gov/2dRv80g NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.; Christoffersen, R.; Zhang, S.
2016-01-01
Space weathering effects on airless bodies result largely from micrometeorite impacts and solar wind interactions. Decades of research have provided insights into space weathering processes and their effects, but a major unanswered question still remains: what is the rate at which these space weathering effects are acquired in lunar and asteroidal regolith materials? To determine the space weathering rate for the formation of rims on lunar anorthite grains, we combine the rim width and type with the exposure ages of the grains, as determined by the accumulation of solar flare particle tracks. From these analyses, we recently showed that space weathering effects in mature lunar soils (both vapor-deposited rims and solar wind amorphized rims) accumulate and attain steady state in 10(sup 6)-10(sup 7) y. Regolith grains from Itokawa also show evidence for space weathering effects, but in these samples, solar wind interactions appear to dominate over impactrelated effects such as vapor-deposition. While in our lunar work, we focused on anorthite, given its high abundance on the lunar surface, for the Itokawa grains, we focused on olivine. We previously studied 3 olivine grains from Itokawa and determined their solar flare track densities and described their solar wind damaged rims]. We also analyzed olivine grains from lunar soils, measured their track densities and rim widths, and used this data along with the Itokawa results to constrain the space weathering rate on Itokawa. We observe that olivine and anorthite have different responses to solar wind irradiation.
NASA Astrophysics Data System (ADS)
De Keyser, Johan; Lavraud, Benoit; Neefs, Eddy; Berkenbosch, Sophie; Beeckman, Bram; Maggiolo, Romain; Gamby, Emmanuel; Fedorov, Andrei; Baruah, Rituparna; Wong, King-Wah; Amoros, Carine; Mathon, Romain; Génot, Vincent; Marcucci, Federica; Brienza, Daniele
2017-04-01
Modern plasma spectrometers require intelligent software that is able to exploit their capabilities to the fullest. While the low-level control of the instrument and basic tasks such as performing the basic measurement, temperature control, and production of housekeeping data are to be done by software that is executed on an FPGA and/or processor inside the instrument, higher level tasks such as control of measurement sequences, on-board moment calculation, beam tracking decisions, and data compression, may be performed by the instrument or in the payload data processing unit. Such design decisions, as well as an assessment of the workload on the different processing components, require early prototyping. We have developed a generic simulation testbed for the design of plasma spectrometer control software that allows an early evaluation of the level of resources that is needed at each level. Early prototyping can pinpoint bottlenecks in the design allowing timely remediation. We have applied this tool to the THOR Cold Solar Wind (CSW) plasma spectrometer. Some examples illustrating the usefulness of the tool are given.
Space Station Freedom photovoltaic power module design status
NASA Technical Reports Server (NTRS)
Jimenez, Amador P.; Hoberecht, Mark A.
1989-01-01
Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.
Space Station Freedom photovoltaic power module design status
NASA Technical Reports Server (NTRS)
Jimenez, Amador P.; Hoberecht, Mark A.
1989-01-01
Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.
Stoffel, T.; Andreas, A.
1981-07-15
The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).
Inertial Energy Storage for Spacecraft
NASA Technical Reports Server (NTRS)
Rodriguez, G. E.
1984-01-01
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.
The solar cycle variation of coronal mass ejections and the solar wind mass flux
NASA Technical Reports Server (NTRS)
Webb, David F.; Howard, Russell A.
1994-01-01
Coronal mass ejections (CMEs) are an important aspect of coronal physics and a potentially significant contributor to perturbations of the solar wind, such as its mass flux. Sufficient data on CMEs are now available to permit study of their longer-term occurrency patterns. Here we present the results of a study of CME occurrence rates over more than a complete 11-year solar sunspot cycle and a comparison of these rates with those of other activity related to CMEs and with the solar wind particle flux at 1 AU. The study includes an evaluation of correlations to the CME rates, which include instrument duty cycles, visibility functions, mass detection thresholds, and geometrical considerations. The main results are as follows: (1) The frequency of occurrence of CMEs tends to track the solar activity cycle in both amplitude and phase; (2) the CME rates from different instruments, when corrected for both duty cycles and visibility functions, are reasonably consistent; (3) considering only longer-term averages, no one class of solar activity is better correlated with CME rate than any other; (4) the ratio of the annualized CME to solar wind mass flux tends to track the solar cycle; and (5) near solar maximum, CMEs can provide a significant fraction (i.e., approximately equals 15%) of the average mass flux to the near-ecliptic solar wind.
NASA Solar Array Demonstrates Commercial Potential
NASA Technical Reports Server (NTRS)
Creech, Gray
2006-01-01
A state-of-the-art solar-panel array demonstration site at NASA's Dryden Flight Research Center provides a unique opportunity for studying the latest in high-efficiency solar photovoltaic cells. This five-kilowatt solar-array site (see Figure 1) is a technology-transfer and commercialization success for NASA. Among the solar cells at this site are cells of a type that was developed in Dryden Flight Research Center s Environmental Research Aircraft and Sensor Technology (ERAST) program for use in NASA s Helios solar-powered airplane. This cell type, now denoted as A-300, has since been transferred to SunPower Corporation of Sunnyvale, California, enabling mass production of the cells for the commercial market. High efficiency separates these advanced cells from typical previously commercially available solar cells: Whereas typical previously commercially available cells are 12 to 15 percent efficient at converting sunlight to electricity, these advanced cells exhibit efficiencies approaching 23 percent. The increase in efficiency is due largely to the routing of electrical connections behind the cells (see Figure 2). This approach to increasing efficiency originated as a solution to the problem of maximizing the degree of utilization of the limited space available atop the wing of the Helios airplane. In retrospect, the solar cells in use at this site could be used on Helios, but the best cells otherwise commercially available could not be so used, because of their lower efficiencies. Historically, solar cells have been fabricated by use of methods that are common in the semiconductor industry. One of these methods includes the use of photolithography to define the rear electrical-contact features - diffusions, contact openings, and fingers. SunPower uses these methods to produce the advanced cells. To reduce fabrication costs, SunPower continues to explore new methods to define the rear electrical-contact features. The equipment at the demonstration site includes two fixed-angle solar arrays and one single-axis Sun-tracking array. One of the fixed arrays contains typical less-efficient commercial solar cells and is being used as a baseline for comparison of the other fixed array, which contains the advanced cells. The Sun-tracking array tilts to follow the Sun, using an advanced, real-time tracking device rather than customary pre-programmed mechanisms. Part of the purpose served by the demonstration is to enable determination of any potential advantage of a tracking array over a fixed array. The arrays are monitored remotely on a computer that displays pertinent information regarding the functioning of the arrays.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-06-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-03-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
Mars Thermospheric Temperature Sensitivity to Solar EUV Forcing from the MAVEN EUV Monitor
NASA Astrophysics Data System (ADS)
Thiemann, Ed; Eparvier, Francis; Andersson, Laila; Pilinski, Marcin; Chamberlin, Phillip; Fowler, Christopher; MAVEN Extreme Ultraviolet Monitor Team, MAVEN Langmuir Probe and Waves Team
2017-10-01
Solar extreme ultraviolet (EUV) radiation is the primary heat source for the Mars thermosphere, and the primary source of long-term temperature variability. The Mars obliquity, dust cycle, tides and waves also drive thermospheric temperature variability; and it is important to quantify the role of each in order to understand processes in the upper atmosphere today and, ultimately, the evolution of Mars climate over time. Although EUV radiation is the dominant heating mechanism, accurately measuring the thermospheric temperature sensitivity to EUV forcing has remained elusive, in part, because Mars thermospheric temperature varies dramatically with latitude and local time (LT), ranging from 150K on the nightside to 300K on the dayside. It follows that studies of thermospheric variability must control for location.Instruments onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter have begun to characterize thermospheric temperature sensitivity to EUV forcing. Bougher et al. [2017] used measurements from the Imaging Ultraviolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) to characterize solar activity trends in the thermosphere with some success. However, aside from restricting measurements to solar zenith angles (SZAs) below 75 degrees, they were unable to control for latitude and LT because repeat-track observations from either instrument were limited or unavailable.The MAVEN EUV Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These new density measurements are ideal for tracking the long-term thermospheric temperature variability because they are inherently constrained to either 06:00 or 18:00 LT, and the orbit has precessed to include a range of ecliptic latitudes, a number of which have been revisited multiple times over 2.5 years. In this study we present, for the first-time, measurements of thermospheric temperature sensitivity to EUV forcing derived from the EUVM measurements. These results include sensitives measured at the poles and near the equator for both terminators; therefore, we will also discuss the role of latitude on EUV temperature sensitivity.
An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space
NASA Astrophysics Data System (ADS)
Kwan, Trevor Hocksun; Wu, Xiaofeng
2017-03-01
Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.
Four-Formation In-Track Configuration Maintenance Strategy
NASA Technical Reports Server (NTRS)
Lamy, Alain; Costes, Thierry
2007-01-01
The aim of this paper is to present the analysis conducted by CNES for the maintenance of a formation made of several LEO satellites (typically 4) in several planes (typically 2), 100 km or so apart from each other. The along-track separations between the satellites have to be controlled to within 15 km thanks to orbit correction maneuvers supposed to be performed every 2 weeks. The main difficulty is related to solar activity which is expected to be close to its maximum for the entire mission s lifespan. As a matter of fact, a high solar activity makes orbit prediction harder, and makes it impossible to keep the altitude of the formation constant. Thus, a specific relative maintenance strategy had to be devised in order to meet the mission's requirements. The first part provides a few elements on the mission analysis process that has taken place. The method used for the evaluation of the maneuver frequency is detailed, based on the evaluation of the effects of atmospheric drag on the orbit. The second part is dedicated to the maintenance strategy that has been designed, and particularly to the computation of the reference orbits and of the velocity increments that enable the in-track inter-satellite distances to be maintained within the desired bounds. Finally a few simulation results are presented; they enable the performance of the maintenance strategy to be checked in a more realistic context.
Lighting Condition Analysis for Mars' Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul
2016-01-01
This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, and radiant exposure for both sun tracking and fixed solar arrays. The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian northern spring and fall seasons and no eclipses during the Martian northern summer and winter seasons; solar radiation intensity is close to minimum in late spring and close to maximum in late fall; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.
Xiao, Bailu; Hang, Lijun; Mei, Jun; ...
2014-09-04
This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less
NASA Astrophysics Data System (ADS)
Ian, Richard; King, Elisabeth
1988-01-01
Proposed is an exploratory study to verify the feasibility of an inexpensive micro-climate control system for both marine and freshwater pond and tank aquaculture, offering good control over water temperature, incident light flux, and bandwidth, combined with good energy efficiency. The proposed control system utilizes some familiar components of passive solar design, together with a new holographic glazing system which is currently being developed by, and proprietary to Advanced Environmental Research Group (AERG). The use of solar algae ponds and tanks to warm and purify water for fish and attached macroscopic marine algae culture is an ancient and effective technique, but limited seasonally and geographically by the availability of sunlight. Holographic Diffracting Structures (HDSs) can be made which passively track, accept and/or reject sunlight from a wide range of altitude and azimuth angles, and redirect and distribute light energy as desired (either directly or indirectly over water surface in an enclosed, insulated structure), effectively increasing insolation values by accepting sunlight which would not otherwise enter the structure.
Backward-gazing method for heliostats shape errors measurement and calibration
NASA Astrophysics Data System (ADS)
Coquand, Mathieu; Caliot, Cyril; Hénault, François
2017-06-01
The pointing and canting accuracies and the surface shape of the heliostats have a great influence on the solar tower power plant efficiency. At the industrial scale, one of the issues to solve is the time and the efforts devoted to adjust the different mirrors of the faceted heliostats, which could take several months if the current methods were used. Accurate control of heliostat tracking requires complicated and onerous devices. Thus, methods used to adjust quickly the whole field of a plant are essential for the rise of solar tower technology with a huge number of heliostats. Wavefront detection is widely use in adaptive optics and shape error reconstruction. Such systems can be sources of inspiration for the measurement of solar facets misalignment and tracking errors. We propose a new method of heliostat characterization inspired by adaptive optics devices. This method aims at observing the brightness distributions on heliostat's surface, from different points of view close to the receiver of the power plant, in order to calculate the wavefront of the reflection of the sun on the concentrated surface to determine its errors. The originality of this new method is to use the profile of the sun to determine the defects of the mirrors. In addition, this method would be easy to set-up and could be implemented without sophisticated apparatus: only four cameras would be used to perform the acquisitions.
Solar Activity Seen at Sunspot Site Tracked by Mars Rover
2015-07-10
An eruption from the surface of the sun is conspicuous in the lower left portion of this July 6, 2015, image from NASA's Earth-orbiting Solar Dynamics Observatory (SDO). It originates from a location on the surface where NASA's Curiosity Mars rover had been tracking a sunspot in late June and early July. This image was taken by the Atmosphere Imaging Assembly on SDO using the instrument's 131-Angstrom wavelength channel, which is sensitive to hot solar flares. The sun completes a rotation about once a month -- faster near its equator than near its poles. This summer, Mars has a view of the opposite side of the sun from what's facing Earth. Images from Curiosity tracking a southern-hemisphere sunspot until it rotated out of view during the July 4 weekend are in an animation at PIA19801. This location on the sun rotated into position to be seen from Earth a few days later. The eruption visible in this image was linked to a coronal mass ejection observed by SDO and NASA's Solar and Heliospheric Observatory. The coronal mass ejection affected interplanetary space weather, as shown at http://go.nasa.gov/1JSXLF3. http://photojournal.jpl.nasa.gov/catalog/PIA19680
Sizing procedures for sun-tracking PV system with batteries
NASA Astrophysics Data System (ADS)
Nezih Gerek, Ömer; Başaran Filik, Ümmühan; Filik, Tansu
2017-11-01
Deciding optimum number of PV panels, wind turbines and batteries (i.e. a complete renewable energy system) for minimum cost and complete energy balance is a challenging and interesting problem. In the literature, some rough data models or limited recorded data together with low resolution hourly averaged meteorological values are used to test the sizing strategies. In this study, active sun tracking and fixed PV solar power generation values of ready-to-serve commercial products are recorded throughout 2015-2016. Simultaneously several outdoor parameters (solar radiation, temperature, humidity, wind speed/direction, pressure) are recorded with high resolution. The hourly energy consumption values of a standard 4-person household, which is constructed in our campus in Eskisehir, Turkey, are also recorded for the same period. During sizing, novel parametric random process models for wind speed, temperature, solar radiation, energy demand and electricity generation curves are achieved and it is observed that these models provide sizing results with lower LLP through Monte Carlo experiments that consider average and minimum performance cases. Furthermore, another novel cost optimization strategy is adopted to show that solar tracking PV panels provide lower costs by enabling reduced number of installed batteries. Results are verified over real recorded data.
South Carolina Solar Development - Tracking the Effects of Act 236 (2014-2017)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, E.; Edwards, Thomas B.; Drory, Michael D.
Since 2014, the installed solar capacity in South Carolina (SC) has mushroomed from 5.5 megawatts to more than 354 megawatts today. Concurrently, the number of customer-sited, load-centered solar generation was expected to grow from less than 600 statewide to as many over 10,000 today. This growth was the direct result of a landmark state policy initiative, Act 236, passed by the SC General Assembly and signed into law by the Governor in June of 2014. Local policy makers in SC were ill-equipped to handle the onslaught of solar permitting and zoning requests expected by 2021. Similarly, the state’s building inspectors,more » first responders, and tax assessors know little about photovoltaic (PV) technology and best practices. Finally, SC’s workforce and workforce trainers were underprepared to benefit from the tremendous opportunity created by the passage of Act 236. Each of these deficits in knowledge of and preparedness for solar PV translated into higher “soft costs” of installed solar PV in SC. The Savannah River National Laboratory (SRNL), together with almost a dozen electricity stakeholders in the Southeast, has studied the ability of Act 236 to serve as replicable model for solar PV cost reduction. In 2015, this study began with a focus on the effects of Act 236 to offer a unique perspective and understanding of the actual impact of rapidly integrating solar energy into the electric grid. This study would analyze the impact of starting at a solar PV penetration of 0.1% and increasing to over 2%, while expanding access, developing regional specific training and educational materials, and developing datasets to support expanding solar markets. Through targeted tracking and analysis, the team developed a baseline of the current market, identified the major obstacles in soft cost reduction, and cooperatively developed stakeholder-centric strategies. This work has enabled us to directly track and report on the growth and effects of recently enacted solar legislation on the industry. This report marks the final in a series of reports examining the effects of Act 236 on the solar economy in SC since 2014.« less
NASA Astrophysics Data System (ADS)
Ghosal, Ashitava; Shyam, R. B. Ashith
2016-05-01
There is an increased thrust to harvest solar energy in India to meet increasing energy requirements and to minimize imported fossil fuels. In a solar power tower system, an array of tracking mirrors or heliostats are used to concentrate the incident solar energy on an elevated stationary receiver and then the thermal energy converted to electricity using a heat engine. The conventional method of tracking are the Azimuth-Elevation (Az-El) or Target-Aligned (T-A) mount. In both the cases, the mirror is rotated about two mutually perpendicular axes and is supported at the center using a pedestal which is fixed to the ground. In this paper, a three degree-of-freedom parallel manipulator, namely the 3-RPS, is proposed for tracking the sun in a solar power tower system. We present modeling, simulation and design of the 3-RPS parallel manipulator and show its advantages over conventional Az-El and T-A mounts. The 3-RPS manipulator consists of three rotary (R), three prismatic (P) and three spherical (S) joints and the mirror assembly is mounted at three points in contrast to the Az-El and T-A mounts. The kinematic equations for sun tracking are derived for the 3-RPS manipulator and from the simulations, we obtain the range of motion of the rotary, prismatic and spherical joints. Since the mirror assembly is mounted at three points, the wind load and self-weight are distributed and as a consequence, the deflections due to loading are smaller than in conventional mounts. It is shown that the weight of the supporting structure is between 15% and 65% less than that of conventional systems. Hence, even though one additional actuator is used, the larger area mirrors can be used and costs can be reduced.
Addressing Systematic Errors in Correlation Tracking on HMI Magnetograms
NASA Astrophysics Data System (ADS)
Mahajan, Sushant S.; Hathaway, David H.; Munoz-Jaramillo, Andres; Martens, Petrus C.
2017-08-01
Correlation tracking in solar magnetograms is an effective method to measure the differential rotation and meridional flow on the solar surface. However, since the tracking accuracy required to successfully measure meridional flow is very high, small systematic errors have a noticeable impact on measured meridional flow profiles. Additionally, the uncertainties of this kind of measurements have been historically underestimated, leading to controversy regarding flow profiles at high latitudes extracted from measurements which are unreliable near the solar limb.Here we present a set of systematic errors we have identified (and potential solutions), including bias caused by physical pixel sizes, center-to-limb systematics, and discrepancies between measurements performed using different time intervals. We have developed numerical techniques to get rid of these systematic errors and in the process improve the accuracy of the measurements by an order of magnitude.We also present a detailed analysis of uncertainties in these measurements using synthetic magnetograms and the quantification of an upper limit below which meridional flow measurements cannot be trusted as a function of latitude.
Cylindrically symmetric Fresnel lens for high concentration photovoltaic
NASA Astrophysics Data System (ADS)
Hung, Yu-Ting; Su, Guo-Dung
2009-08-01
High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.
SONTRAC: A solar neutron track chamber detector
NASA Technical Reports Server (NTRS)
Frye, G. M., Jr.; Jenkins, T. L.; Owens, A.
1985-01-01
The recent detection on the solar maximum mission (SMM) satellite of high energy neutrons emitted during large solar flares has provided renewed incentive to design a neutron detector which has the sensitivity, energy resolution, and time resolution to measure the neutron time and energy spectra with sufficient precision to improve our understanding of the basic flare processes. Over the past two decades a variety of neutron detectors has been flown to measure the atmospheric neutron intensity above 10 MeV and to search for solar neutrons. The SONTRAC (Solar Neutron Track Chamber) detector, a new type of neutron detector which utilizes n-p scattering and has a sensitivity 1-3 orders of magnitude greater than previous instruments in the 20-200 MeV range is described. The energy resolution is 1% for neutron kinetic energy, T sub n 50 MeV. When used with a coded aperture mask at 50 m (as would be possible on the space station) an angular resolution of approx. 4 arc sec could be achieved, thereby locating the sites of high energy nuclear interactions with an angular precision comparable to the existing x-ray experiments on SMM. The scintillation chamber is investigated as a track chamber for high energy physics, either by using arrays of scintillating optical fibers or by optical imaging of particle trajectories in a block of scintillator.
A Lyapunov based approach to energy maximization in renewable energy technologies
NASA Astrophysics Data System (ADS)
Iyasere, Erhun
This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.
Fundamental and practical limits of planar tracking solar concentrators.
Grede, Alex J; Price, Jared S; Giebink, Noel C
2016-12-26
Planar microtracking provides an alternate paradigm for solar concentration that offers the possibility of realizing high-efficiency embedded concentrating photovoltaic systems in the form factor of standard photovoltaic panels. Here, we investigate the thermodynamic limit of planar tracking optical concentrators and establish that they can, in principal, achieve the sine limit of their orientationally-tracked counterparts provided that the receiver translates a minimum distance set by the field of view half-angle. We develop a phase space methodology to optimize practical planar tracking concentrators and apply it to the design of a two surface, catadioptric system that operates with > 90% optical efficiency over a 140° field of view at geometric gains exceeding 1000×. These results provide a reference point for subsequent developments in the field and indicate that planar microtracking can achieve the high optical concentration ratio required in commercial concentrating photovoltaic systems.
Discovery of nuclear tracks in interplanetary dust
NASA Technical Reports Server (NTRS)
Bradley, J. P.; Brownlee, D. E.; Fraundorf, P.
1984-01-01
Nuclear tracks have been identified in interplanetary dust particles (IDP's) collected from the stratosphere. The presence of tracks unambiguously confirms the extraterrestrial nature of IDP's, and the high track densities (10 to the 10th to 10 to the 11th per square centimeter) suggest an exposure age of approximately 10,000 years within the inner solar system. Tracks also provide an upper temperature limit for the heating of IDP's during atmospheric entry, thereby making it possible to distinguish between pristine and thermally modified micrometeorites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Liu, Guopeng; Huang, Sen
Renewable energy resources such as wind and solar power have a high degree of uncertainty. Large-scale integration of these variable generation sources into the grid is a big challenge for power system operators. Buildings, in which we live and work, consume about 75% of the total electricity in the United States. They also have a large capacity of power flexibility due to their massive thermal capacitance. Therefore, they present a great opportunity to help the grid to manage power balance. In this report, we study coordination and control of flexible building loads for renewable integration. We first present the motivationmore » and background, and conduct a literature review on building-to-grid integration. We also compile a catalog of flexible building loads that have great potential for renewable integration, and discuss their characteristics. We next collect solar generation data from a photovoltaic panel on Pacific Northwest National Laboratory campus, and conduct data analysis to study their characteristics. We find that solar generation output has a strong uncertainty, and the uncertainty occurs at almost all time scales. Additional data from other sources are also used to verify our study. We propose two transactive coordination strategies to manage flexible building loads for renewable integration. We prove the theories that support the two transactive coordination strategies and discuss their pros and cons. In this report, we select three types of flexible building loads—air-handling unit, rooftop unit, and a population of WHs—for which we demonstrate control of the flexible load to track a dispatch signal (e.g., renewable generation fluctuation) using experiment, simulation, or hardware-in-the-loop study. More specifically, we present the system description, model identification, controller design, test bed setup, and experiment results for each demonstration. We show that coordination and control of flexible loads has a great potential to integrate variable generation sources. The flexible loads can successfully track a power dispatch signal from the coordinator, while having little impact on the quality of service to the end-users.« less
NASA Astrophysics Data System (ADS)
Roudier, Th.; Švanda, M.; Ballot, J.; Malherbe, J. M.; Rieutord, M.
2018-04-01
Context. Large-scale flows in the Sun play an important role in the dynamo process linked to the solar cycle. The important large-scale flows are the differential rotation and the meridional circulation with an amplitude of km s-1 and few m s-1, respectively. These flows also have a cycle-related components, namely the torsional oscillations. Aim. Our attempt is to determine large-scale plasma flows on the solar surface by deriving horizontal flow velocities using the techniques of solar granule tracking, dopplergrams, and time-distance helioseismology. Methods: Coherent structure tracking (CST) and time-distance helioseismology were used to investigate the solar differential rotation and meridional circulation at the solar surface on a 30-day HMI/SDO sequence. The influence of a large sunspot on these large-scale flows with a specific 7-day HMI/SDO sequence has been also studied. Results: The large-scale flows measured by the CST on the solar surface and the same flow determined from the same data with the helioseismology in the first 1 Mm below the surface are in good agreement in amplitude and direction. The torsional waves are also located at the same latitudes with amplitude of the same order. We are able to measure the meridional circulation correctly using the CST method with only 3 days of data and after averaging between ± 15° in longitude. Conclusions: We conclude that the combination of CST and Doppler velocities allows us to detect properly the differential solar rotation and also smaller amplitude flows such as the meridional circulation and torsional waves. The results of our methods are in good agreement with helioseismic measurements.
NASA Astrophysics Data System (ADS)
Warren, Ryan Duwain
Three primary objectives were defined for this work. The first objective was to determine, assess, and compare the performance, heat transfer characteristics, economics, and feasibility of real-world stationary and dual-axis tracking grid-connected photovoltaic (PV) systems in the Upper Midwest. This objective was achieved by installing two grid-connected PV systems with different mounting schemes in central Iowa, implementing extensive data acquisition systems, monitoring operation of the PV systems for one full year, and performing detailed experimental performance and economic studies. The two PV systems that were installed, monitored, and analyzed included a 4.59 kWp roof-mounted stationary system oriented for maximum annual energy production, and a 1.02 kWp pole-mounted actively controlled dual-axis tracking system. The second objective was to demonstrate the actual use and performance of real-world stationary and dual-axis tracking grid-connected PV systems used for building energy generation applications. This objective was achieved by offering the installed PV systems to the public for demonstration purposes and through the development of three computer-based tools: a software interface that has the ability to display real-time and historical performance and meteorological data of both systems side-by-side, a software interface that shows real-time and historical video and photographs of each system, and a calculator that can predict performance and economics of stationary and dual-axis tracking grid-connected PV systems at various locations in the United States. The final objective was to disseminate this work to social, professional, scientific, and academic communities in a way that is applicable, objective, accurate, accessible, and comprehensible. This final objective will be addressed by publishing the results of this work and making the computer-based tools available on a public website (www.energy.iastate.edu/Renewable/solar). Detailed experimental performance analyses were performed for both systems; results were quantified and compared between systems, focusing on measures of solar resource, energy generation, power production, and efficiency. This work also presents heat transfer characteristics of both arrays and quantifies the affects of operating temperature on PV system performance in terms of overall heat transfer coefficients and temperature coefficients for power. To assess potential performance of PV in the Upper Midwest, models were built to predict performance of the PV systems operating at lower temperatures. Economic analyses were performed for both systems focusing on measures of life-cycle cost, payback period, internal rate of return, and average incremental cost of solar energy. The potential economic feasibility of grid-connected stationary PV systems used for building energy generation in the Upper Midwest was assessed under assumptions of higher utility energy costs, lower initial installed costs, and different metering agreements. The annual average daily solar insolation seen by the stationary and dual-axis tracking systems was found to be 4.37 and 5.95 kWh/m2, respectively. In terms of energy generation, the tracking system outperformed the stationary system on annual, monthly, and often daily bases; normalized annual energy generation for the tracking and stationary systems were found to be 1,779 and 1,264 kWh/kWp, respectively. The annual average conversion efficiencies of the tracking and stationary systems were found to be approximately 11 and 10.7 percent, respectively. Annual performance ratio values of the tracking and stationary system were found to be 0.819 and 0.792, respectively. The net present values of both systems under all assumed discount rates were determined to be negative. Further, neither system was found to have a payback period less than the assumed system life of 25 years. The rate-of-return of the stationary and tracking systems were found to be -3.3 and -4.9 percent, respectively. Furthermore, the average incremental cost of energy provided by the stationary and dual-axis tracking systems over their assumed useful life is projected to be 0.31 and 0.37 dollars per kWh, respectively. Results of this study suggest that grid-connected PV systems used for building energy generation in the Upper Midwest are not yet economically feasible when compared to a range of alternative investments; however, PV systems could show feasibility under more favorable economic scenarios. Throughout the year of monitoring, array operating temperatures ranged from -24.7°C (-12.4°F) to 61.7°C (143.1°F) for the stationary system and -23.9 °C (-11°F) to 52.7°C (126.9°F) for the dual-axis tracking system during periods of system operation. The hourly average overall heat transfer coefficients for solar irradiance levels greater than 200 W/m 2 for the stationary and dual-axis tracking systems were found to be 20.8 and 29.4 W/m2°C, respectively. The experimental temperature coefficients for power for the stationary and dual-axis tracking systems at a solar irradiance level of 1,000 W/m2 were -0.30 and -0.38 %/°C, respectively. Simulations of the stationary and dual-axis tracking systems operating at lower temperatures suggest that annual conversion efficiencies could potentially be increased by to up 4.3 and 4.6 percent, respectively.
Chronology: From the Cambridge Field Station to the Air Force Geophysics Laboratory, 1945-1985
1985-09-06
Massachusetts. Early in the year the Air Research and Development Command approved AFCRC’s request for a new site at Plum Island, Newburyport...contained several new de- vices developed at AFCRC, including the light gun and an analog tracking computer (ANTRAC). Sep Establishment of the Upper Air...solar Lyman Alpha radiation from an Aerobee rocket using a new biaxial pointing control developed under contract by the University of Colorado. 29 Dec
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Matsumoto, Taisuke; Ohishi, Yuya
A power storage system using spherical silicon (Si) solar cells, maximum power point tracking charge controller, lithium-ion battery and a direct current-alternating current (DC-AC) inverter was constructed. Performance evaluation of the DC-AC inverter was carried out, and the DC-AC conversion efficiencies of the SiC field-effect transistor (FET) inverter was improved compared with those of the ordinary Si-FET based inverter.
Probing the solar corona with very long baseline interferometry.
Soja, B; Heinkelmann, R; Schuh, H
2014-06-20
Understanding and monitoring the solar corona and solar wind is important for many applications like telecommunications or geomagnetic studies. Coronal electron density models have been derived by various techniques over the last 45 years, principally by analysing the effect of the corona on spacecraft tracking. Here we show that recent observational data from very long baseline interferometry (VLBI), a radio technique crucial for astrophysics and geodesy, could be used to develop electron density models of the Sun's corona. The VLBI results agree well with previous models from spacecraft measurements. They also show that the simple spherical electron density model is violated by regional density variations and that on average the electron density in active regions is about three times that of low-density regions. Unlike spacecraft tracking, a VLBI campaign would be possible on a regular basis and would provide highly resolved spatial-temporal samplings over a complete solar cycle.
NASA Technical Reports Server (NTRS)
Pinter, S.; Dryer, M.
1985-01-01
The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.
NASA Technical Reports Server (NTRS)
Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.
1981-01-01
A computer simulation code was employed to evaluate several generic types of solar power systems (up to 10 MWe). Details of the simulation methodology, and the solar plant concepts are given along with cost and performance results. The Solar Energy Simulation computer code (SESII) was used, which optimizes the size of the collector field and energy storage subsystem for given engine-generator and energy-transport characteristics. Nine plant types were examined which employed combinations of different technology options, such as: distributed or central receivers with one- or two-axis tracking or no tracking; point- or line-focusing concentrator; central or distributed power conversion; Rankin, Brayton, or Stirling thermodynamic cycles; and thermal or electrical storage. Optimal cost curves were plotted as a function of levelized busbar energy cost and annualized plant capacity. Point-focusing distributed receiver systems were found to be most efficient (17-26 percent).
Planar waveguide concentrator used with a seasonal tracker.
Bouchard, Sébastien; Thibault, Simon
2012-10-01
Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east-west orientation. Our new design has an acceptance angle in the north-south direction of ±9° and ±54° in the east-west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.
Establishment of Models and Data Tracking for Small UAV Reliability
2004-06-01
The development of solar powered UAVs is also being supported and funded by NASA. The idea, development, and construction was initiated by the...Aerovironment company, which has been involved in the construction of solar -powered aircraft for 20 years. Solar Challenger, HALSOL, Talon, Pathfinder...Centurion, and Helios with a wingspan of 247 feet, were among the solar -powered UAVs during those efforts.28 New technologies like regenerative fuel
GTARG - THE TOPEX/POSEIDON GROUND TRACK MAINTENANCE MANEUVER TARGETING PROGRAM
NASA Technical Reports Server (NTRS)
Shapiro, B. E.
1994-01-01
GTARG, The TOPEX/POSEIDON Ground Track Maintenance Maneuver Targeting Program, was developed to assist in the designing of orbit maintenance maneuvers for the TOPEX/POSEIDON satellite. These maneuvers ensure that the ground track is kept within 1 km of an approximately 9.9 day exact repeat pattern. Targeting strategies used by GTARG will either maximize the time between maneuvers (longitude targeting) or force control band exit to occur at specified intervals (time targeting). A runout mode allows for ground track propagation without targeting. The analytic mean-element propagation algorithm used in GTARG includes all perturbations that are known to cause significant variations in the satellite ground track. These include earth oblateness, luni-solar gravity, and drag, as well as the thrust due to impulsive maneuvers and unspecified along-track satellite fixed forces. Merson's extension of Grove's theory is used for the computation of the geopotential field. Kaula's disturbing function is used to attain the luni-solar gravitational perturbations. GTARG includes a satellite unique drag model which incorporates an approximate mean orbital Jacchia-Roberts atmosphere and a variable mean area model. Error models include uncertainties due to orbit determination, maneuver execution, drag unpredictability, as well as utilization of the knowledge of along-track satellite fixed forces. Maneuver Delta-v magnitudes are targeted to precisely maintain either the unbiased ground track itself, or a comfortable (3 sigma) error envelope about the unbiased ground track. GTARG is written in VAX-FORTRAN for DEC VAX Series computers running VMS. GTARG output is provided in two forms: an executive report summary which is in tabular form, and a plot file which is formatted as EZPLOT input namelists. Although the EZPLOT program and documentation are included with GTARG, EZPLOT requires PGPLOT, which was written by the California Institute of Technology Astronomy Department. (For non-commercial use, the CalTech-copyrighted program PGPLOT is available via anonymous ftp at the following internet address: deimos.caltech.edu.) GTARG users without access to PGPLOT may want to use a standard spreadsheet program to produce plots of the tabular ground track data stored in the executive report summary. Alternatively, using information provided in the GTARG User's Reference Manual, GTARG users may write a graphics interpreter for the system of their choice. The standard distribution medium for GTARG is a 1600 BPI 9-track magnetic tape in DEC VAX BACKUP format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. GTARG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.
Fusing human and machine skills for remote robotic operations
NASA Technical Reports Server (NTRS)
Schenker, Paul S.; Kim, Won S.; Venema, Steven C.; Bejczy, Antal K.
1991-01-01
The question of how computer assists can improve teleoperator trajectory tracking during both free and force-constrained motions is addressed. Computer graphics techniques which enable the human operator to both visualize and predict detailed 3D trajectories in real-time are reported. Man-machine interactive control procedures for better management of manipulator contact forces and positioning are also described. It is found that collectively, these novel advanced teleoperations techniques both enhance system performance and significantly reduce control problems long associated with teleoperations under time delay. Ongoing robotic simulations of the 1984 space shuttle Solar Maximum EVA Repair Mission are briefly described.
McClellan PV system installation provides key lessons
NASA Astrophysics Data System (ADS)
Kauffman, W. R.
Design features and lessons learned in the installation of a 40 kWp solar cell array to supply power to a market on an airbase are outlined. The fixed-position modules interface with an inverter, ac and dc switchgear, controls, instrumentation, and an energy management system. The power control unit has a peak power tracking feature to maximize output from the 1142 cell modules. The inverter has functioned at over 98 percent efficiency near the 25 kW design range of the array. Moisture sealing to prevent ground faults was found necessary during the installation of the underground cabling.
Solar Panel System for Street Light Using Maximum Power Point Tracking (MPPT) Technique
NASA Astrophysics Data System (ADS)
Wiedjaja, A.; Harta, S.; Josses, L.; Winardi; Rinda, H.
2014-03-01
Solar energy is one form of the renewable energy which is very abundant in regions close to the equator. One application of solar energy is for street light. This research focuses on using the maximum power point tracking technique (MPPT), particularly the perturb and observe (P&O) algorithm, to charge battery for street light system. The proposed charger circuit can achieve 20.73% higher power efficiency compared to that of non-MPPT charger. We also develop the LED driver circuit for the system which can achieve power efficiency up to 91.9% at a current of 1.06 A. The proposed street lightning system can be implemented with a relatively low cost for public areas.
Tracking heat flux sensors for concentrating solar applications
Andraka, Charles E; Diver, Jr., Richard B
2013-06-11
Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.
Stationary nonimaging lenses for solar concentration.
Kotsidas, Panagiotis; Chatzi, Eleni; Modi, Vijay
2010-09-20
A novel approach for the design of refractive lenses is presented, where the lens is mounted on a stationary aperture and the Sun is tracked by a moving solar cell. The purpose of this work is to design a quasi-stationary concentrator by replacing the two-axis tracking of the Sun with internal motion of the miniaturized solar cell inside the module. Families of lenses are designed with a variation of the simultaneous multiple surface technique in which the sawtooth genetic algorithm is implemented to optimize the geometric variables of the optic in order to produce high fluxes for a range of incidence angles. Finally, we show examples of the technique for lenses with 60° and 30° acceptance half-angles, with low to medium attainable concentrations.
Concentrating Solar Power Basics | NREL
concentrating solar power systems uses the sun as a heat source. The three main types of concentrating solar toward the sun, focusing sunlight on tubes (or receivers) that run the length of the mirrors. The mirrors to allow the mirrors greater mobility in tracking the sun. A dish/engine system uses a mirrored
Silicon solar photovoltaic power stations
NASA Technical Reports Server (NTRS)
Chowaniec, C. R.; Ferber, R. R.; Pittman, P. F.; Marshall, B. W.
1977-01-01
Modular design of components and arrays, cost estimates for modules and support structures, and cost/performance analysis of a central solar photovoltaic power plant are discussed. Costs of collector/reflector arrays are judged the dominant element in the total capital investment. High-concentration solar tracking arrays are recommended as the most economic means for producing solar photovoltaic energy when solar cells costs are high ($500 per kW generated). Capital costs for power conditioning subsystem components are itemized and system busbar energy costs are discussed at length.
Step tracking program for concentrator solar collectors
NASA Astrophysics Data System (ADS)
Ciobanu, D.; Jaliu, C.
2016-08-01
The increasing living standards in developed countries lead to increased energy consumption. The fossil fuel consumption and greenhouse gas effect that accompany the energy production can be reduced by using renewable energy. For instance, the solar thermal systems can be used in temperate climates to provide heating during the transient period or cooling during the warmer months. Most used solar thermal systems contain flat plate solar collectors. In order to provide the necessary energy for the house cooling system, the cooling machine uses a working fluid with a high temperature, which can be supplied by dish concentrator collectors. These collectors are continuously rotated towards sun by biaxial tracking systems, process that increases the consumed power. An algorithm for a step tracking program to be used in the orientation of parabolic dish concentrator collectors is proposed in the paper to reduce the consumed power due to actuation. The algorithm is exemplified on a case study: a dish concentrator collector to be implemented in Brasov, Romania, a location with the turbidity factor TR equal to 3. The size of the system is imposed by the environment, the diameter of the dish reflector being of 3 meters. By applying the proposed algorithm, 60 sub-programs are obtained for the step orientation of the parabolic dish collector over the year. Based on the results of the numerical simulations for the step orientation, the efficiency of the direct solar radiation capture on the receptor is up to 99%, while the energy consumption is reduced by almost 80% compared to the continuous actuation of the concentrator solar collector.
Feasibility Study of Economics and Performance of Solar Photovoltaics in Nitro, West Virginia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisell, L.; Mosey, G.
2010-08-01
The study described in this report assessed brownfield sites designated by the City of Nitro, West Virginia for solar photovoltaic (PV) installations. The study analyzed three different types of PV systems for eight sites. The report estimates the cost, performance, and site impacts of thin film technology and crystalline silicon panels (both fixed-axis tracking and single-axis tracking systems). Potential job creation and electrical rate increases were also considered, and the report recommends financing options that could assist in the implementation of a system.
Tracking system for solar collectors
Butler, Barry L.
1984-01-01
A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.
Tracking system for solar collectors
Butler, B.
1980-10-01
A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.
Track structure model for damage to mammalian cell cultures during solar proton events
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.; Shinn, J. L.; Katz, R.
1992-01-01
Solar proton events (SPEs) occur infrequently and unpredictably, thus representing a potential hazard to interplanetary space missions. Biological damage from SPEs will be produced principally through secondary electron production in tissue, including important contributions due to delta rays from nuclear reaction products. We review methods for estimating the biological effectiveness of SPEs using a high energy proton model and the parametric cellular track model. Results of the model are presented for several of the historically largest flares using typical levels and body shielding.
Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.
Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A
2018-05-14
Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.
Installation package for concentrating solar collector panels
NASA Technical Reports Server (NTRS)
1978-01-01
The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.
Low-thrust solar electric propulsion navigation simulation program
NASA Technical Reports Server (NTRS)
Hagar, H. J.; Eller, T. J.
1973-01-01
An interplanetary low-thrust, solar electric propulsion mission simulation program suitable for navigation studies is presented. The mathematical models for trajectory simulation, error compensation, and tracking motion are described. The languages, input-output procedures, and subroutines are included.
NASA Astrophysics Data System (ADS)
Sametoglu, Ferhat; Celikel, Oguz; Witt, Florian
2017-10-01
A differential spectral responsivity (DSR) measurement system has been designed and constructed at National Metrology Institute of Turkey (TUBITAK UME) to determine the spectral responsivity (SR) of a single- or a multi-junction photovoltaic device (solar cell). The DSR setup contains a broad band light bias source composed of a constructed Solar Simulator based on a 1000 W Xe-arc lamp owning a AM-1.5 filter and 250 W quartz-tungsten-halogen lamp, a designed and constructed LED-based Bias Light Sources, a DC voltage bias circuit, and a probe beam optical power tracking and correction circuit controlled with an ADuC847 microcontroller card together with an embedded C based software, designed and constructed in TUBITAK UME under this project. By using the constructed DSR measurement system, the SR calibration of solar cells, the monolitic triple-junction solar cell GaInP/GaInAs/Ge and its corresponding component cells have been performed within the EURAMET Joint Research Project SolCell.
Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging
NASA Astrophysics Data System (ADS)
Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.
2010-04-01
The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.
DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface
NASA Astrophysics Data System (ADS)
Asensio Ramos, A.; Requerey, I. S.; Vitas, N.
2017-07-01
Many phenomena taking place in the solar photosphere are controlled by plasma motions. Although the line-of-sight component of the velocity can be estimated using the Doppler effect, we do not have direct spectroscopic access to the components that are perpendicular to the line of sight. These components are typically estimated using methods based on local correlation tracking. We have designed DeepVel, an end-to-end deep neural network that produces an estimation of the velocity at every single pixel, every time step, and at three different heights in the atmosphere from just two consecutive continuum images. We confront DeepVel with local correlation tracking, pointing out that they give very similar results in the time and spatially averaged cases. We use the network to study the evolution in height of the horizontal velocity field in fragmenting granules, supporting the buoyancy-braking mechanism for the formation of integranular lanes in these granules. We also show that DeepVel can capture very small vortices, so that we can potentially expand the scaling cascade of vortices to very small sizes and durations. The movie attached to Fig. 3 is available at http://www.aanda.org
Spectral and Polarimetric Imagery Collection Experiment
2011-12-01
meter Visibility Smoke, fog, haze Pyranometer Sun and sky radiation Pryheliometer Solar radiation direction Required tracking mount Distrometer(s... Pyranometers measure total sun and sky radiation. If the direction of the solar radiation is an important factor, then use of a normal incidence
Grid-connected wind and photovoltaic system
NASA Astrophysics Data System (ADS)
Devabakthuni, Sindhuja
The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.
2010-01-01
from Sun to Earth • Provide an all-sky view, updated every orbit • Detect signal at 1% of background ( zodiacal light and stars) The SMEI uses 3...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...currently valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 15-06-2010 RF.PRTNT > Q. C 4
DEMONSTRATION AND TESTING OF AN EER OPTIMIZER SYSTEM FOR DX AIR-CONDITIONERS
2017-10-07
Performance-Based Maintenance PCS Power Current Sensor PLC Programmable Logic Controller ppm Parts Per Million PSIG Pounds per Square Inch Gauge PVS Power...all utilities and facilities at Patrick AFB, Cape Canaveral AFS, Jonathan Dickinson Military Tracking Annex, Malabar Annex, Ramey Solar Observatory...Cost 8,057 0 Annual O&M Cost 453 1191 Annual FD&D Monitoring 880 ‐ BLCC LIFE CYCLE RESULTS Energy Savings $12,317 O&M Net Savings $493 PV Life Cycle
Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection
NASA Astrophysics Data System (ADS)
Yi, Zhehan
This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal processing technique based on discrete wavelet transformation (DWT), the first attempt is devised, which extracts the features of both line-to-line (L-L) and line-to-ground (L-G) faults and employs a fuzzy inference system (FIS) for the decision-making stage of fault detection. This scheme is then improved as the second attempt by further studying the system's behaviors during L-L faults, extracting more efficient fault features, and devising a more advanced decision-making stage: the two-stage support vector machine (SVM). For the first time, the two-stage SVM method is proposed in this dissertation to detect L-L faults in PV system with satisfactory accuracies. Numerous simulation and experimental case studies are carried out to verify the proposed control and protection strategies. Simulation environment is set up using the PSCAD/EMTDC and Matlab/Simulink software packages. Experimental case studies are conducted in a PV-battery hybrid microgrid using the dSPACE real-time controller to demonstrate the ease of hardware implementation and the controller performance. Another small-scale grid-connected PV system is set up to verify both fault detection algorithms which demonstrate promising performances and fault detecting accuracies.
Cojocaru, Ludmila; Uchida, Satoshi; Tamaki, Koichi; Jayaweera, Piyankarage V V; Kaneko, Shoji; Nakazaki, Jotaro; Kubo, Takaya; Segawa, Hiroshi
2017-09-18
Energy harvesting at low light intensities has recently attracted a great deal of attention of perovskite solar cells (PSCs) which are regarded as promising candidate for indoor application. Anomalous hysteresis of the PSCs a complex issue for reliable evaluation of the cell performance. In order to address these challenges, we constructed two new evaluation methods to determinate the power conversion efficiencies (PCEs) of PSCs. The first setup is a solar simulator based on light emitting diodes (LEDs) allowing evaluation of the solar cells at wider range of light intensities, ranging from 10 2 to 10 -3 mW·cm -2 . As the overestimate error, we found that the PCEs of dye sensitized solar cell (DSC) and PSCs increase dramatically at low light intensities conditions. Due to the internal capacitance at the interfaces on hybrid solar cells, the measurement of current below 10 -2 mW·cm -2 shows constant value given high PCE, which is related to the capacitive current and origin of the hysteresis. The second setup is a photovoltaic power analyzing system, designed for tracking the maximum power (P max ) with time. The paper suggests the combination of the LED solar simulator and P max tracking technique as a standard to evaluate the PCE of capacitive solar cells.
Lighting Condition Analysis for Mars' Moon Phobos
NASA Technical Reports Server (NTRS)
Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul
2016-01-01
This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, available energy per unit area for sun tracking arrays, and available energy per unit area for fixed arrays (constrained by incident angle). The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian spring and fall seasons and no eclipses during the Martian summer and winter seasons; solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.
A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves
NASA Astrophysics Data System (ADS)
Long, D. M.; Murphy, P.; Graham, G.; Carley, E. P.; Pérez-Suárez, D.
2017-12-01
Solar eruptions are the most spectacular events in our solar system and are associated with many different signatures of energy release including solar flares, coronal mass ejections, global waves, radio emission and accelerated particles. Here, we apply the Coronal Pulse Identification and Tracking Algorithm (CorPITA) to the high-cadence synoptic data provided by the Solar Dynamics Observatory (SDO) to identify and track global waves observed by SDO. 164 of the 362 solar flare events studied (45%) were found to have associated global waves with no waves found for the remaining 198 (55%). A clear linear relationship was found between the median initial velocity and the acceleration of the waves, with faster waves exhibiting a stronger deceleration (consistent with previous results). No clear relationship was found between global waves and type II radio bursts, electrons or protons detected in situ near Earth. While no relationship was found between the wave properties and the associated flare size (with waves produced by flares from B to X-class), more than a quarter of the active regions studied were found to produce more than one wave event. These results suggest that the presence of a global wave in a solar eruption is most likely determined by the structure and connectivity of the erupting active region and the surrounding quiet solar corona rather than by the amount of free energy available within the active region.
Reinventing the Solar Power Satellite
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2004-01-01
The selling price of electrical power varies with time. The economic viability of space solar power is maximum if the power can be sold at peak power rates, instead of baseline rate. Price and demand of electricity was examined from spot-market data from four example markets: New England, New York City, suburban New York, and California. The data was averaged to show the average price and demand for power as a function of time of day and time of year. Demand varies roughly by a factor of two between the early-morning minimum demand, and the afternoon maximum; both the amount of peak power, and the location of the peak, depends significantly on the location and the weather. The demand curves were compared to the availability curves for solar energy and for tracking and non-tracking satellite solar power systems in order to compare the market value of terrestrial and solar electrical power. In part 2, new designs for a space solar power (SSP) system were analyzed to provide electrical power to Earth for economically competitive rates. The approach was to look at innovative power architectures to more practical approaches to space solar power. A significant barrier is the initial investment required before the first power is returned. Three new concepts for solar power satellites were invented and analyzed: a solar power satellite in the Earth-Sun L2 point, a geosynchronous no-moving parts solar power satellite, and a nontracking geosynchronous solar power satellite with integral phased array. The integral-array satellite had several advantages, including an initial investment cost approximately eight times lower than the conventional design.
Orbit Determination Issues for Libration Point Orbits
NASA Technical Reports Server (NTRS)
Beckman, Mark; Bauer, Frank (Technical Monitor)
2002-01-01
Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.
The Solar Stormwatch CME catalogue: Results from the first space weather citizen science project
NASA Astrophysics Data System (ADS)
Barnard, L.; Scott, C.; Owens, M.; Lockwood, M.; Tucker-Hood, K.; Thomas, S.; Crothers, S.; Davies, J. A.; Harrison, R.; Lintott, C.; Simpson, R.; O'Donnell, J.; Smith, A. M.; Waterson, N.; Bamford, S.; Romeo, F.; Kukula, M.; Owens, B.; Savani, N.; Wilkinson, J.; Baeten, E.; Poeffel, L.; Harder, B.
2014-12-01
Solar Stormwatch was the first space weather citizen science project, the aim of which is to identify and track coronal mass ejections (CMEs) observed by the Heliospheric Imagers aboard the STEREO satellites. The project has now been running for approximately 4 years, with input from >16,000 citizen scientists, resulting in a data set of >38,000time-elongation profiles of CME trajectories, observed over 18 preselected position angles. We present our method for reducing this data set into a CME catalogue. The resulting catalogue consists of 144 CMEs over the period January 2007 to February 2010, of which 110 were observed by STEREO-A and 77 were observed by STEREO-B. For each CME, the time-elongation profiles generated by the citizen scientists are averaged into a consensus profile along each position angle that the event was tracked. We consider this catalogue to be unique, being at present the only citizen science-generated CME catalogue, tracking CMEs over an elongation range of 4° out to a maximum of approximately 70°. Using single spacecraft fitting techniques, we estimate the speed, direction, solar source region, and latitudinal width of each CME. This shows that at present, the Solar Stormwatch catalogue (which covers only solar minimum years) contains almost exclusively slow CMEs, with a mean speed of approximately 350 km s-1. The full catalogue is available for public access at www.met.reading.ac.uk/~spate/solarstormwatch. This includes, for each event, the unprocessed time-elongation profiles generated by Solar Stormwatch, the consensus time-elongation profiles, and a set of summary plots, as well as the estimated CME properties.
NASA Technical Reports Server (NTRS)
Kubitschek, Daniel G.; Born, George H.
2000-01-01
Shortly after launch of the TOPEX/POSEIDON (T/P) spacecraft (s/c), the Precision Orbit Determination (POD) Team at NASA's Goddard Space Flight Center (GSFC) and the Center for Space Research at the University of Texas, discovered residual along-track accelerations, which were unexpected. Here, we describe the analysis of radiation pressure forces acting on the T/P s/c for the purpose of understanding and providing an explanation for the anomalous accelerations. The radiation forces acting on the T/P solar army, which experiences warping due to temperature gradients between the front and back surfaces, are analyzed and the resulting along-track accelerations are determined. Characteristics similar to those of the anomalous acceleration are seen. This analysis led to the development of a new radiation form model, which includes solar array warping and a solar array deployment deflection of as large as 2 deg. As a result of this new model estimates of the empirical along-track acceleration are reduced in magnitude when compared to the GSFC tuned macromodel and are less dependent upon beta(prime), the location of the Sun relative to the orbit plane. If these results we believed to reflect the actual orientation of the T/P solar array then motion of the solar array must influence the location of the s/c center of mass. Preliminary estimates indicate that the center of mass can vary by as much as 3 cm in the radial component of the s/c's position due to rotation of the deflected, warped solar array panel .The altimeter measurements rely upon accurate knowledge of the center of mass location relative to the s/c frame of reference. Any radial motion of the center of mass directly affects the altimeter measurements.
NASA Astrophysics Data System (ADS)
Pope, Michael; Waldrip, Matthew; Ferron, Thomas; Collins, Brian
Increased solar power conversion efficiencies to 12% in bulk heterojunction organic photovoltaics (OPVs) continue to brighten their prospects as an economically viable source of solar energy. It is known that OPV performance can be enhanced through processing additives that change the nanostructure. We track these critical structure-property relationships in the OPV system PCPDTBT:PC70BM while varying the amount of DIO additive. Resonant Soft X-ray Scattering reveals domain purity, domain size, and molecular orientation to highlight the system's complex dependence on DIO concentration. We will show the effect the resulting structure has on charge generation and recombination via in-situ transient and steady state optoelectronic measurements. By measuring structure, excited state dynamics and device performance all on the same sample enables direct relationships to be measured. We show that the appropriate balance of crystallinity, domain size and domain purity are important for optimized excited state dynamics and device performance.
NASA Astrophysics Data System (ADS)
Abdulsalam, Alrowashed; Idris, Azni Bin; Ahmad, Thamer; Ahsan, Amimul
2017-01-01
This work overviews the solar radiation basics and insolation of different surfaces is presented. A complete solar radiation modelling and investigation on the effect of horizontal plate, yearly tilt, monthly tilt, and single-axis and double-axis tracking surface on the insolation are carried out to conduct performance evaluation using the case study in Dhahran city of Saudi Arabia. The increments received by insolation for the yearly tilt, monthly tilt, and single-axis and dual-axis tracking surface with respect to traditional flat-plate collector is estimated. The results show that the yearly optimal tilt angle due to the south is close to the 0.913 time latitude of Dhahran. It is found that the yearly irradiation gains using yearly and monthly optimal tilts relative to flat panel installation are 7% and 14%, respectively. The yearly insulation gains made by single-axis and dual-axis continuous tracking surfaces are 33% and 48%, respectively.
NASA Astrophysics Data System (ADS)
El-Zoghby, Helmy M.; Bendary, Ahmed F.
2016-10-01
Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.
Control oriented concentrating solar power (CSP) plant model and its applications
NASA Astrophysics Data System (ADS)
Luo, Qi
Solar receivers in concentrating solar thermal power plants (CSP) undergo over 10,000 start-ups and shutdowns, and over 25,000 rapid rate of change in temperature on receivers due to cloud transients resulting in performance degradation and material fatigue in their expected lifetime of over 30 years. The research proposes to develop a three-level controller that uses multi-input-multi-output (MIMO) control technology to minimize the effect of these disturbances, improve plant performance, and extend plant life. The controller can be readily installed on any vendor supplied state-of-the-art control hardware. We propose a three-level controller architecture using multi-input-multi-output (MIMO) control for CSP plants that can be implemented on existing plants to improve performance, reliability, and extend the life of the plant. This architecture optimizes the performance on multiple time scalesreactive level (regulation to temperature set points), tactical level (adaptation of temperature set points), and strategic level (trading off fatigue life due to thermal cycling and current production). This controller unique to CSP plants operating at temperatures greater than 550 °C, will make CSPs competitive with conventional power plants and contribute significantly towards the Sunshot goal of 0.06/kWh(e), while responding with agility to both market dynamics and changes in solar irradiance such as due to passing clouds. Moreover, our development of control software with performance guarantees will avoid early stage failures and permit smooth grid integration of the CSP power plants. The proposed controller can be implemented with existing control hardware infrastructure with little or no additional equipment. In the thesis, we demonstrate a dynamics model of CSP, of which different components are modelled with different time scales. We also show a real time control strategy of CSP control oriented model in steady state. Furthermore, we shown different controllers design for disturbance rejection and reference tracking to handle complex receiver dynamics under system disturbance and measurement noise. At last, we show different applications of this control oriented CSP model including life cycle enhancement and electricity load forecasting using both neural network and regression tree.
The total solar eclipse of 2010 July 11
NASA Astrophysics Data System (ADS)
McGee, H.; James, N.; Mason, J.
2010-08-01
The solar eclipse of 2010 July 11 always promised to be a logistical nightmare to observe. The Moon's shadow first touched the Earth in the southern Pacific, encountering land at Mangaia in the Cook Islands only after 1450km of open ocean. The narrow track of totality then swung northeast, passing tantalisingly close to the islands of Tahiti and Moorea, which experienced a 98% partial eclipse. Beyond Tahiti the track crossed the Tuamotu archipelago of French Polynesia - thousands of tiny coral atolls, of which very few are inhabited, and even fewer have airstrips that make them accessible to visitors.
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, Eve L.
2017-01-01
Limited samples are available for the study of space weathering effects on airless bodies. The grains returned by the Hayabusa mission to asteroid 25143 Itokawa provide the only samples currently available to study space weathering of ordinary chondrite regolith. We have previously studied olivine-rich Itokawa grains and documented their surface alteration and exposure ages based on the observed density of solar flare particle tracks. Here we focus on the rarer Itokawa plagioclase grains, in order to allow comparisons between Itokawa and lunar soil plagioclase grains for which an extensive data set exists.
NASA Technical Reports Server (NTRS)
Grossman, J. J.; Mukherjee, N. R.; Ryan, J. A.
1972-01-01
Gas adsorption measurements on an Apollo 12 ultrahigh vacuum-stored sample and Apollo 14 and 15 N2-stored samples, show that the cosmic ray track and solar wind damaged surface of lunar soil is very reactive. Room temperature monolayer adsorption of N2 by the Apollo 12 sample at 0.0001 atm was observed. Gas evolution of Apollo 14 lunar soil at liquid nitrogen temperature during adsorption/desorption cycling is probably due to cosmic ray track stored energy release accompanied by solar gas release from depths of 100-200 nm.
High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking
NASA Astrophysics Data System (ADS)
Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.
2016-12-01
High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a wide dynamic range camera that provides a high precision solar position tracking signal as well as an image of the sky in the 45° field of view around the solar axis, which can be of great assistance in flagging data for cloud effects or other factors that might impact data quality.
Pati, Akshaya K; Sahoo, N C
2017-07-01
This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Clues in the rare gas isotopes to early solar system history
NASA Technical Reports Server (NTRS)
Reynolds, J. H.
1974-01-01
Rare gases in meteorites and lunar samples are discussed stimulating the discovery of the solar wind. Radioactive isotopes are examined, making a correlation to the origin of the solar system. It is shown that the heights of the peaks above the horizontal lines represent the spectrum of the fissiogenic sample. Nuclear tracks of iodine, xenon, and plutonium detected in lunar rocks are also explained.
Adaptive sensor-based ultra-high accuracy solar concentrator tracker
NASA Astrophysics Data System (ADS)
Brinkley, Jordyn; Hassanzadeh, Ali
2017-09-01
Conventional solar trackers use information of the sun's position, either by direct sensing or by GPS. Our method uses the shading of the receiver. This, coupled with nonimaging optics design allows us to achieve ultra-high concentration. Incorporating a sensor based shadow tracking method with a two stage concentration solar hybrid parabolic trough allows the system to maintain high concentration with acute accuracy.
Customization of Discriminant Function Analysis for Prediction of Solar Flares
2005-03-01
lives such as telecommunication, commercial airlines, electrical power , wireless services, and terrestrial weather tracking and forecasting...the 1800’s can wreak havoc on today’s power , fuel, and telecommunication lines and finds its origin in solar activity. Enormous amounts of solar...inducing potential differences across large areas of the surface. Earth-bound power , fuel, and telecommunication lines grounded to the Earth provide an
NASA Astrophysics Data System (ADS)
Truitt, Amanda R.
2017-08-01
I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M solar masses at scaled metallicity values of 0.1-1.5 Z solar masses and specific elemental abundance ratio values of 0.44-2.28 O/Fe solar masses, 0.58-1.72 C/Fe solar masses, 0.54-1.84 Mg/Fe solar masses, and 0.5-2.0 Ne/Fe solar masses. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M solar masses (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience. In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real variation in stellar parameters that have been observed in nearby stars.
The role of predicted solar activity in TOPEX/Poseidon orbit maintenance maneuver design
NASA Technical Reports Server (NTRS)
Frauenholz, Raymond B.; Shapiro, Bruce E.
1992-01-01
Following launch in June 1992, the TOPEX/Poseidon satellite will be placed in a near-circular frozen orbit at an altitude of about 1336 km. Orbit maintenance maneuvers are planned to assure all nodes of the 127-orbit 10-day repeat ground track remain within a 2 km equatorial longitude bandwidth. Orbit determination, maneuver execution, and atmospheric drag prediction errors limit overall targeting performance. This paper focuses on the effects of drag modeling errors, with primary emphasis on the role of SESC solar activity predictions, especially the 27-day outlook of the 10.7 cm solar flux and geomagnetic index used by a simplified version of the Jacchia-Roberts density model developed for this TOPEX/Poseidon application. For data evaluated from 1983-90, the SESC outlook performed better than a simpler persistence strategy, especially during the first 7-10 days. A targeting example illustrates the use of ground track biasing to compensate for expected orbit predictions errors, emphasizing the role of solar activity prediction errors.
Evidence for solar flare rare gases in the Khor Temiki aubrite.
NASA Technical Reports Server (NTRS)
Rajan, R. S.; Price, P. B.
1973-01-01
It has been found by studying a number of gas-rich meteorites, including Khor Temiki that there is a correlation between the abundance of 'track-rich' grains and the concentration of trapped rare gases. The amount of solar flare gas in Khor Temiki is examined. It is pointed out that the Khor Temiki enstatite is an ideal sample in which to look for evidence of solar flare gases because there has been little or no diffusion loss of solar wind gases.
NASA Astrophysics Data System (ADS)
Bonnin, X.; Aboudarham, J.; Fuller, N.; Renie, C.; Perez-Suarez, D.; Gallagher, P.; Higgins, P.; Krista, L.; Csillaghy, A.; Bentley, R.
2011-12-01
In the frame of the European project HELIO, the Observatoire de Paris-Meudon is in charge of the Heliophysics Feature Catalogue (HFC), a service which provides access to existing solar and heliospheric feature data. In order to create a catalogue as exhaustive as possible, recognition codes are developed to automatically detect and track features. At the time, HFC contains data of filaments, active regions, coronal holes, sunspots and type III radio bursts for a full solar cycle. The insertion of prominences and type II radio bursts should be done in the short term. We present here an overview of some of the algorithms used to populate HFC. The development of such fast and robust techniques also addresses the needs of the Space Weather community in terms of near real-time monitoring capabilities.
Solar flare activity - Evidence for large-scale changes in the past
NASA Technical Reports Server (NTRS)
Zook, H. A.; Hartung, J. B.; Storzer, D.
1977-01-01
An analysis of radar and photographic meteor data and of spacecraft meteoroid-penetration data indicates that there probably has not been a large increase in meteoroid impact rates in the last 10,000 yr. The solar-flare tracks observed in the glass linings of meteoroid impact pits on lunar rock 15205 are therefore reanalyzed assuming a meteoroid flux that is constant in time. Based on this assumption, the data suggest that the production rate of Fe-group solar-flare tracks may have varied by as much as a factor of 50 on a time scale of about 10,000 yr. No independently obtained data are known to require conflict with this interpretation. Confidence in this conclusion is somewhat qualified by the experimental and analytical uncertainties involved, but the conclusion nevertheless remains the present 'best' explanation for the observed data trends.
Solar System Test of Gravitational Theories
NASA Technical Reports Server (NTRS)
Shapiro, Irwin I.
2003-01-01
We are engaged in testing gravitational theory, mainly using observations of objects in the solar system and mainly on the interplanetary scale. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to place tighter bounds on such departures. For this project, we have analyzed a combination of observational data with our model of the solar system, including primarily planetary radar ranging, lunar laser ranging, and spacecraft tracking, but also including both pulsar timing and pulsar VLBI measurements. In the past year, we have included new data in the analysis, primarily tracking data from the Mars Pathfinder mission. Although these data are relatively few in number, they extend the time span of high-precision tracking on the surface of Mars from six years to over 20. As a result, the statistical standard deviation of our estimate of Mars precession rate has nearly halved, and the rest of the parameters in our solar-system model have experienced a corresponding, albeit smaller, improvement (about 20% for t,he relevant asteroid masses, 10% for the semimajor axis of Mars orbit, and smaller amounts for most other parameters). In the coming year, we plan to continue adding data to our set, as available. Ne 2 expect to use these data and improved models to obtain estimates of the gravitational- theory parameters and to publish these results.
NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuhong; Zhang, Jun; Liu, Zhong
2014-04-01
One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST Hα data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads,more » tracking the twisted flux rope structure. The length of the flux rope is about 75 Mm, the average width of its individual threads is 1.11 Mm, and the estimated twist is 1π. The flux rope appears as a dark structure in Hα images, a partial dark and partial bright structure in 304 Å, and as a bright structure in 171 Å and 131 Å images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.« less
SCR and GCR exposure ages of plagioclase grains from lunar soil
NASA Technical Reports Server (NTRS)
Etique, P.; Baur, H.; Signer, P.; Wieler, R.
1986-01-01
The concentrations of solar wind implanted Ar-36 in mineral grains extracted from lunar soils show that they were exposed to the solar wind on the lunar surface for an integrated time of 10E4 to 10E5 years. From the bulk soil 61501 plagioclase separates of 8 grain size ranges was prepared. The depletion of the implanted gases was achieved by etching aliquot samples of 4 grain sizes to various degrees. The experimental results pertinent to the present discussion are: The spallogenic Ne is, as in most plagioclases from lunar soils, affected by diffusive losses and of no use. The Ar-36 of solar wind origin amounts to (2030 + or - 100) x 10E-8 ccSTP/g in the 150 to 200 mm size fraction and shows that these grains were exposed to the solar wind for at least 10,000 years. The Ne-21/Ne-22 ratio of the spallogenic Ne is 0.75 + or - 0.01 and in very good agreement with the value of this ratio in a plagioclase separate from rock 76535. This rock has had a simple exposure history and its plagioclases have a chemical composition quite similar to those studied. In addition to the noble gases, the heavy particle tracks in an aliquot of the 150 to 200 mm plagioclase separate were investigated and found 92% of the grains to contain more than 10E8 tracks/sq cm. This corresponds to a mean track density of (5 + or - 1) x 10E8 tracks/sq cm. The exploration of the exposure history of the plagioclase separates from the soil 61501 do not contradict the model for the regolith dynamics but also fail to prove it.
Phototropic solar tracking in sunflower plants: an integrative perspective
Kutschera, Ulrich; Briggs, Winslow R.
2016-01-01
Background One of the best-known plant movements, phototropic solar tracking in sunflower (Helianthus annuus), has not yet been fully characterized. Two questions are still a matter of debate. (1) Is the adaptive significance solely an optimization of photosynthesis via the exposure of the leaves to the sun? (2) Is shade avoidance involved in this process? In this study, these concepts are discussed from a historical perspective and novel insights are provided. Scope and Methods Results from the primary literature on heliotropic growth movements led to the conclusion that these responses cease before anthesis, so that the flowering heads point to the East. Based on observations on 10-week-old plants, the diurnal East–West oscillations of the upper fifth of the growing stem and leaves in relation to the position of the sun (inclusive of nocturnal re-orientation) were documented, and photon fluence rates on the leaf surfaces on clear, cloudy and rainy days were determined. In addition, the light–response curve of net CO2 assimilation was determined on the upper leaves of the same batch of plants, and evidence for the occurrence of shade-avoidance responses in growing sunflower plants is summarized. Conclusions. Only elongating, vegetative sunflower shoots and the upper leaves perform phototropic solar tracking. Photon fluence response and CO2 assimilation measurements cast doubt on the ‘photosynthesis-optimization hypothesis’ as the sole explanation for the evolution of these plant movements. We suggest that the shade-avoidance response, which maximizes light-driven CO2 assimilation, plays a major role in solar tracking populations of competing sunflower plants, and an integrative scheme of these growth movements is provided. PMID:26420201
Interplanetary Dust Observations by the Juno MAG Investigation
NASA Astrophysics Data System (ADS)
Jørgensen, John; Benn, Mathias; Denver, Troelz; Connerney, Jack; Jørgensen, Peter; Bolton, Scott; Brauer, Peter; Levin, Steven; Oliversen, Ronald
2017-04-01
The spin-stabilized and solar powered Juno spacecraft recently concluded a 5-year voyage through the solar system en route to Jupiter, arriving on July 4th, 2016. During the cruise phase from Earth to the Jovian system, the Magnetometer investigation (MAG) operated two magnetic field sensors and four co-located imaging systems designed to provide accurate attitude knowledge for the MAG sensors. One of these four imaging sensors - camera "D" of the Advanced Stellar Compass (ASC) - was operated in a mode designed to detect all luminous objects in its field of view, recording and characterizing those not found in the on-board star catalog. The capability to detect and track such objects ("non-stellar objects", or NSOs) provides a unique opportunity to sense and characterize interplanetary dust particles. The camera's detection threshold was set to MV9 to minimize false detections and discourage tracking of known objects. On-board filtering algorithms selected only those objects tracked through more than 5 consecutive images and moving with an apparent angular rate between 15"/s and 10,000"/s. The coordinates (RA, DEC), intensity, and apparent velocity of such objects were stored for eventual downlink. Direct detection of proximate dust particles is precluded by their large (10-30 km/s) relative velocity and extreme angular rates, but their presence may be inferred using the collecting area of Juno's large ( 55m2) solar arrays. Dust particles impact the spacecraft at high velocity, creating an expanding plasma cloud and ejecta with modest (few m/s) velocities. These excavated particles are revealed in reflected sunlight and tracked moving away from the spacecraft from the point of impact. Application of this novel detection method during Juno's traversal of the solar system provides new information on the distribution of interplanetary (µm-sized) dust.
Phototropic solar tracking in sunflower plants: an integrative perspective.
Kutschera, Ulrich; Briggs, Winslow R
2016-01-01
One of the best-known plant movements, phototropic solar tracking in sunflower (Helianthus annuus), has not yet been fully characterized. Two questions are still a matter of debate. (1) Is the adaptive significance solely an optimization of photosynthesis via the exposure of the leaves to the sun? (2) Is shade avoidance involved in this process? In this study, these concepts are discussed from a historical perspective and novel insights are provided. Results from the primary literature on heliotropic growth movements led to the conclusion that these responses cease before anthesis, so that the flowering heads point to the East. Based on observations on 10-week-old plants, the diurnal East-West oscillations of the upper fifth of the growing stem and leaves in relation to the position of the sun (inclusive of nocturnal re-orientation) were documented, and photon fluence rates on the leaf surfaces on clear, cloudy and rainy days were determined. In addition, the light-response curve of net CO2 assimilation was determined on the upper leaves of the same batch of plants, and evidence for the occurrence of shade-avoidance responses in growing sunflower plants is summarized. Only elongating, vegetative sunflower shoots and the upper leaves perform phototropic solar tracking. Photon fluence response and CO2 assimilation measurements cast doubt on the 'photosynthesis-optimization hypothesis' as the sole explanation for the evolution of these plant movements. We suggest that the shade-avoidance response, which maximizes light-driven CO2 assimilation, plays a major role in solar tracking populations of competing sunflower plants, and an integrative scheme of these growth movements is provided. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Solar-hydrogen generation and solar concentration (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chinello, Enrico; Modestino, Miguel A.; Schüttauf, Jan-Willem; Lambelet, David; Delfino, Antonio; Dominé, Didier; Faes, Antonin; Despeisse, Matthieu; Bailat, Julien; Psaltis, Demetri; Fernandez Rivas, David; Ballif, Christophe; Moser, Christophe
2016-09-01
We successfully demonstrated and reported the highest solar-to-hydrogen efficiency with crystalline silicon cells and Earth-abundant electrocatalysts under unconcentrated solar radiation. The combination of hetero-junction silicon cells and a 3D printed Platinum/Iridium-Oxide electrolyzer has been proven to work continuously for more than 24 hours in neutral environment, with a stable 13.5% solar-to-fuel efficiency. Since the hydrogen economy is expected to expand to a global scale, we demonstrated the same efficiency with an Earth-abundant electrolyzer based on Nickel in a basic medium. In both cases, electrolyzer and photovoltaic cells have been specifically sized for their characteristic curves to intersect at a stable operating point. This is foreseen to guarantee constant operation over the device lifetime without performance degradation. The next step is to lower the production cost of hydrogen by making use of medium range solar concentration. It permits to limit the photoabsorbing area, shown to be the cost-driver component. We have recently modeled a self-tracking solar concentrator, able to capture sunlight within the acceptance angle range +/-45°, implementing 3 custom lenses. The design allows a fully static device, avoiding the external tracker that was necessary in a previously demonstrated +/-16° angular range concentrator. We will show two self-tracking methods. The first one relies on thermal expansion whereas the second method relies on microfluidics.
An Automated Algorithm for Identifying and Tracking Transverse Waves in Solar Images
NASA Astrophysics Data System (ADS)
Weberg, Micah J.; Morton, Richard J.; McLaughlin, James A.
2018-01-01
Recent instrumentation has demonstrated that the solar atmosphere supports omnipresent transverse waves, which could play a key role in energizing the solar corona. Large-scale studies are required in order to build up an understanding of the general properties of these transverse waves. To help facilitate this, we present an automated algorithm for identifying and tracking features in solar images and extracting the wave properties of any observed transverse oscillations. We test and calibrate our algorithm using a set of synthetic data, which includes noise and rotational effects. The results indicate an accuracy of 1%–2% for displacement amplitudes and 4%–10% for wave periods and velocity amplitudes. We also apply the algorithm to data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and find good agreement with previous studies. Of note, we find that 35%–41% of the observed plumes exhibit multiple wave signatures, which indicates either the superposition of waves or multiple independent wave packets observed at different times within a single structure. The automated methods described in this paper represent a significant improvement on the speed and quality of direct measurements of transverse waves within the solar atmosphere. This algorithm unlocks a wide range of statistical studies that were previously impractical.
Collision management utilizing CCD and remote sensing technology
NASA Technical Reports Server (NTRS)
Mcdaniel, Harvey E., Jr.
1995-01-01
With the threat of damage to aerospace systems (space station, shuttle, hypersonic a/c, solar power satellites, loss of life, etc.) from collision with debris (manmade/artificial), there exists an opportunity for the design of a novel system (collision avoidance) to be incorporated into the overall design. While incorporating techniques from ccd and remote sensing technologies, an integrated system utilized in the infrared/visible spectrum for detection, tracking, localization, and maneuvering from doppler shift measurements is achievable. Other analysis such as impact assessment, station keeping, chemical, and optical tracking/fire control solutions are possible through this system. Utilizing modified field programmable gated arrays (software reconfiguring the hardware) the mission and mission effectiveness can be varied. This paper outlines the theoretical operation of a prototype system as it applies to collision avoidance (to be followed up by research).
Market Research Kristen.Ardani@nrel.gov | 303-384-6461 Kristen is a Solar Program Lead focusing on efforts to reduce soft costs and transfer emerging technologies to market. Her areas of expertise include solar market analysis, PV system price-tracking, and non-hardware cost-reduction strategies. Research
NASA Technical Reports Server (NTRS)
Brenker, Frank E.; Westphal, Andrew J.; Simionovici, Alexandre S.; Flynn, George J.; Gainsforth, Zack; Allen, Carlton C.; Sanford, Scott; Zolensky, Michael E.; Bastien, Ron K.; Frank, David R.
2014-01-01
Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called midnight tracks that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification.
Azar, A D; Finley, E; Harris, K D
2015-01-01
A complete analysis of strain tolerance in a stretchable transparent conductor (TC) should include tracking of both electrical conductivity and transparency during strain; however, transparency is generally neglected in contemporary analyses. In this paper, we describe an apparatus that tracks both parameters while TCs of arbitrary composition are deformed under stretching-mode strain. We demonstrate the tool by recording the electrical resistance and light transmission spectra for indium tin oxide-coated plastic substrates under both linearly increasing strain and complex cyclic strain processes. The optics are sensitive across the visible spectrum and into the near-infrared region (∼400-900 nm), and without specifically optimizing for sampling speed, we achieve a time resolution of ∼200 ms. In our automated analysis routine, we include a calculation of a common TC figure of merit (FOM), and because solar cell electrodes represent a key TC application, we also weigh both our transparency and FOM results against the solar power spectrum to determine "solar transparency" and "solar FOM." Finally, we demonstrate how the apparatus may be adapted to measure the basic performance metrics for complete solar cells under uniaxial strain.
Viewing The Entire Sun With STEREO And SDO
NASA Astrophysics Data System (ADS)
Thompson, William T.; Gurman, J. B.; Kucera, T. A.; Howard, R. A.; Vourlidas, A.; Wuelser, J.; Pesnell, D.
2011-05-01
On 6 February 2011, the two Solar Terrestrial Relations Observatory (STEREO) spacecraft were at 180 degrees separation. This allowed the first-ever simultaneous view of the entire Sun. Combining the STEREO data with corresponding images from the Solar Dynamics Observatory (SDO) allows this full-Sun view to continue for the next eight years. We show how the data from the three viewpoints are combined into a single heliographic map. Processing of the STEREO beacon telemetry allows these full-Sun views to be created in near-real-time, allowing tracking of solar activity even on the far side of the Sun. This is a valuable space-weather tool, not only for anticipating activity before it rotates onto the Earth-view, but also for deep space missions in other parts of the solar system. Scientific use of the data includes the ability to continuously track the entire lifecycle of active regions, filaments, coronal holes, and other solar features. There is also a significant public outreach component to this activity. The STEREO Science Center produces products from the three viewpoints used in iPhone/iPad and Android applications, as well as time sequences for spherical projection systems used in museums, such as Science-on-a-Sphere and Magic Planet.
Accuracy of Estimating Solar Radiation Pressure for GEO Debris with Tumbling Effect
NASA Astrophysics Data System (ADS)
Chao, Chia-Chun George
2009-03-01
The accuracy of estimating solar radiation pressure for GEO debris is examined and demonstrated, via numerical simulations, by fitting a batch (months) of simulated position vectors. These simulated position vectors are generated from a "truth orbit" with added white noise using high-precision numerical integration tools. After the long-arc fit of the simulated observations (position vectors), one can accurately and reliably determine how close the estimated value of solar radiation pressure is to the truth. Results of this study show that the inherent accuracy in estimating the solar radiation pressure coefficient can be as good as 1% if a long-arc fit span up to 180 days is used and the satellite is not tumbling. The corresponding position prediction accuracy can be as good as, in maximum error, 1 km along in-track, 0.3 km along radial and 0.1 km along cross-track up to 30 days. Similar accuracies can be expected when the object is tumbling as long as the rate of attitude change is different from the orbit rate. Results of this study reveal an important phenomenon that the solar radiation pressure significantly affects the orbit motion when the spin rate is equal to the orbit rate.
2006-10-10
KENNEDY SPACE CENTER, FLA. - With a convoy of escorts, the STEREO spacecraft is transported to Launch Pad 17-B on Cape Canaveral Air Force Station. At the pad the spacecraft will be lifted into the mobile service tower. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
SONTRAC: A High Efficiency Solar Neutron Telescope
NASA Astrophysics Data System (ADS)
Wunderer, C. B.; Macri, J.; McConnell, M. L.; Ryan, J. M.; Baltgalvis, J.; Holslin, D.; Polichar, A.; Jenkins, T.
1997-05-01
Solar flare neutron emission between 20 and 100 MeV comes from a portion of the energetic proton spectrum that is poorly sampled by both nuclear-line and pion- decay gamma rays. SONTRAC is a new generation solar neutron telescope/spectrometer consisting of densely packed, alternating orthogonal layers of scintillating plastic fibers. The fibers in both dimensions are viewed by image intensifiers and CCD cameras. Incident neutrons scatter off hydrogen in the plastic scintillator. The resulting ionizing proton tracks can be reconstructed in three dimensions using the two planar CCD track images. Two neutron-proton scatters provide sufficient information to reconstruct the energy and direction of the incident neutron. Photomultiplier tubes view the other sides of the fiber scintillator array. The signals from the PMTs are used to give an additional measure of the proton energies and to provide a trigger for the CCD cameras. Recent technological advances have allowed us to construct an affordable working prototype instrument that consists of all the essential technical elements mentioned above. We will present images of tracks produced by minimum ionizing muons and energetic neutrons. We will also present efficiency estimates for SONTRAC's ability to detect and measure gamma rays above 10 MeV.
Scintillation Effects on Space Shuttle GPS Data
NASA Technical Reports Server (NTRS)
Goodman, John L.; Kramer, Leonard
2001-01-01
Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.
A discussion of the links between solar variability and high-storm-surge events in Venice
NASA Astrophysics Data System (ADS)
Barriopedro, David; GarcíA-Herrera, Ricardo; Lionello, Piero; Pino, Cosimo
2010-07-01
This study explores the long-term frequency variability of high-surge events (HSEs) in the North Adriatic, the so-called acqua alta, which, particularly during autumn, cause flooding of the historical city center of Venice. The period 1948-2008, when hourly observations of sea level are available, is considered. The frequency of HSEs is correlated with the 11 year solar cycle, solar maxima being associated with a significant increase in the October-November-December HSE frequency. The seasonal geopotential height pattern at 1000 hPa (storm surge pattern; SSP) associated with the increased frequency of HSEs is identified for the whole time period and found to be similar to the positive phase of the main variability mode of the regional atmospheric circulation (empirical orthogonal function 1; EOF1). However, further analysis indicates that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Under solar maxima, the occurrence of HSEs is enhanced by the main mode of regional atmospheric variability, namely, a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated with any dominant mode of atmospheric variability during low-solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSEs by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable patterns for HSE occurrence, and their mutual relationships, so that constructive interaction between them is enhanced during solar maxima and inhibited in solar minima.
ASHMET: A computer code for estimating insolation incident on tilted surfaces
NASA Technical Reports Server (NTRS)
Elkin, R. F.; Toelle, R. G.
1980-01-01
A computer code, ASHMET, was developed by MSFC to estimate the amount of solar insolation incident on the surfaces of solar collectors. Both tracking and fixed-position collectors were included. Climatological data for 248 U. S. locations are built into the code. The basic methodology used by ASHMET is the ASHRAE clear-day insolation relationships modified by a clearness index derived from SOLMET-measured solar radiation data to a horizontal surface.
A preliminary assessment of small steam Rankine and Brayton point-focusing solar modules
NASA Technical Reports Server (NTRS)
Roschke, E. J.; Wen, L.; Steele, H.; Elgabalawi, N.; Wang, J.
1979-01-01
A preliminary assessment of three conceptual point-focusing distributed solar modules is presented. The basic power conversion units consist of small Brayton or Rankine engines individually coupled to two-axis, tracking, point-focusing solar collectors. An array of such modules can be linked together, via electric transport, to form a small power station. Each module also can be utilized on a stand-alone basis, as an individual power source.
Design considerations for a Mars solar energy system
NASA Technical Reports Server (NTRS)
Atkinson, David H.; Gwynne, Owen
1992-01-01
The supply, collection and demand for solar power needed for a ten person base on Mars are examined. A detailed discussion is presented for the estimation of the amount of usable solar energy than can reach the surface of Mars. The irradiance is determined for high, middle and low latitudes. In general it was found that the variation of dust in the Martian atmosphere affected the optimal choice for solar power collection mechanisms. Sun tracking systems worked best under clearer conditions and basic horizontal collectors performed best under cloud/hazy conditions.
Prediction of Solar Eruptions Using Filament Metadata
NASA Astrophysics Data System (ADS)
Aggarwal, Ashna; Schanche, Nicole; Reeves, Katharine K.; Kempton, Dustin; Angryk, Rafal
2018-05-01
We perform a statistical analysis of erupting and non-erupting solar filaments to determine the properties related to the eruption potential. In order to perform this study, we correlate filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a spatiotemporal tracking algorithm. The HEK provides metadata about each filament instance, including values for length, area, tilt, and chirality. We add additional metadata properties such as the distance from the nearest active region and the magnetic field decay index. We compare trends in the metadata from erupting and non-erupting filament tracks to discover which properties present signs of an eruption. We find that a change in filament length over time is the most important factor in discriminating between erupting and non-erupting filament tracks, with erupting tracks being more likely to have decreasing length. We attempt to find an ensemble of predictive filament metadata using a Random Forest Classifier approach, but find the probability of correctly predicting an eruption with the current metadata is only slightly better than chance.
NASA Astrophysics Data System (ADS)
Dougherty, K.; Sarkissian, J.
2002-01-01
The recent Australian film, The Dish, highlighted the role played by the Parkes Radio Telescope in tracking and communicating with the Apollo 11 mission. However the events depicted in this film represent only a single snapshot of the role played by Australian radio astronomy and space tracking facilities in the exploration of the Solar System. In 1960, NASA established its first deep space tracking station outside the United States at Island Lagoon, near Woomera in South Australia. From 1961 until 1972, this station was an integral part of the Deep Space Network, responsible for tracking and communicating with NASA's interplanetary spacecraft. It was joined in 1965 by the Tidbinbilla tracking station, located near Canberra in eastern Australia, a major DSN facility that is still in operation today. Other NASA tracking facilities (for the STADAN and Manned Space Flight networks) were also established in Australia during the 1960s, making this country home to the largest number of NASA tracking facilities outside the United States. At the same time as the Island Lagoon station was being established in South Australia, one of the world's major radio telescope facilities was being established at Parkes, in western New South Wales. This 64-metre diameter dish, designed and operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), was also well-suited for deep space tracking work: its design was, in fact, adapted by NASA for the 64-metre dishes of the Deep Space Network. From Mariner II in 1962 until today, the Parkes Radio Telescope has been contracted by NASA on many occasions to support interplanetary spacecraft, as well as the Apollo lunar missions. This paper will outline the role played by both the Parkes Radio Telescope and the NASA facilities based in Australia in the exploration of the Solar System between 1960 and 1976, when the Viking missions landed on Mars. It will outline the establishment and operation of the Deep Space Network in Australia and consider the joint US-Australian agreement under which it was managed. It will also discuss the relationship of the NASA stations to the Parkes Radio Telescope and the integration of Parkes into the NASA network to support specific space missions. The particular involvement of Australian facilities in significant space missions will be highlighted and assessed.
Development status of the PDC-1 Parabolic Dish Concentrator
NASA Technical Reports Server (NTRS)
Thostesen, T.; Soczak, I. F.; Pons, R. L.
1982-01-01
The status of development of the 12 m diameter parabolic dish concentrator which is planned for use with the Small Community Solar Thermal Power System. The PDC-1 unit features the use of plastic reflector film bonded to structural plastic gores supported by front-bracing steel ribs. An elevation-over-azimuth mount arrangement is employed, with a conventional wheel-and-track arrangement; outboard trunnions permit the dish to be stored in the face down position, with the added advantage of easy access to the power conversion assembly. The control system is comprised of a central computer (LSI 1123), a manual control panel, a concentrator control unit, two motor controllers, a Sun sensor, and two angular position resolvers. The system is designed for the simultaneous control of several concentrators. The optical testing of reflective panels is described.
The Sun Radio Imaging Space Experiment (SunRISE) Mission
NASA Astrophysics Data System (ADS)
Lazio, Joseph; Kasper, Justin; Maksimovic, Milan; Alibay, Farah; Amiri, Nikta; Bastian, Tim; Cohen, Christina; Landi, Enrico; Manchester, Ward; Reinard, Alysha; Schwadron, Nathan; Cecconi, Baptiste; Hallinan, Gregg; Hegedus, Alex; Krupar, Vratislav; Zaslavsky, Arnaud
2017-04-01
Radio emission from coronal mass ejections (CMEs) is a direct tracer of particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Energized electrons excite Langmuir waves, which then convert into intense radio emission at the local plasma frequency, with the most intense acceleration thought to occur within 20 RS. The radio emission from CMEs is quite strong such that only a relatively small number of antennas is required to detect and map it, but many aspects of this particle acceleration and transport remain poorly constrained. Ground-based arrays would be quite capable of tracking the radio emission associated with CMEs, but absorption by the Earth's ionosphere limits the frequency coverage of ground-based arrays (ν ≳ 15 MHz), which in turn limits the range of solar distances over which they can track the radio emission (≲ 3RS). The state-of-the-art for tracking such emission from space is defined by single antennas (Wind/WAVES, Stereo/SWAVES), in which the tracking is accomplished by assuming a frequency-to-density mapping; there has been some success in triangulating the emission between the spacecraft, but considerable uncertainties remain. We describe the Sun Radio Imaging Space Experiment (SunRISE) mission concept: A constellation of small spacecraft in a geostationary graveyard orbit designed to localize and track radio emissions in the inner heliosphere. Each spacecraft would carry a receiving system for observations below 25 MHz, and SunRISE would produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
Since the end of the Apollo program in 1972, human space flight has been restricted to altitudes below 600 km above the Earth s surface with most missions restricted to a ceiling below 400 km. An investigation of the tracked satellite population transiting and influencing the human space flight regime during the past 11 years (equivalent to a full solar cycle) has recently been completed. The overall effects of satellite breakups and solar activity are typically less pronounced in the human space flight regime than other regions of low Earth orbit. As of January 2006 nearly 1500 tracked objects resided in or traversed the human space flight regime, although two-thirds of these objects were in orbits of moderate to high eccentricity, significantly reducing their effect on human space flight safety. During the period investigated, the spatial density of tracked objects in the 350-400 km altitude regime of the International Space Station demonstrated a steady decline, actually decreasing by 50% by the end of the period. On the other hand, the region immediately above 600 km experienced a significant increase in its population density. This regime is important for future risk assessments, since this region represents the reservoir of debris which will influence human space flight safety in the future. The paper seeks to put into sharper perspective the risks posed to human space flight by the tracked satellite population, as well as the influences of solar activity and the effects of compliance with orbital debris mitigation guidelines on human space flight missions. Finally, the methods and successes of characterizing the population of smaller debris at human space flight regimes are addressed.
Rakhimberdiev, Eldar; Winkler, David W; Bridge, Eli; Seavy, Nathaniel E; Sheldon, Daniel; Piersma, Theunis; Saveliev, Anatoly
2015-01-01
Solar archival tags (henceforth called geolocators) are tracking devices deployed on animals to reconstruct their long-distance movements on the basis of locations inferred post hoc with reference to the geographical and seasonal variations in the timing and speeds of sunrise and sunset. The increased use of geolocators has created a need for analytical tools to produce accurate and objective estimates of migration routes that are explicit in their uncertainty about the position estimates. We developed a hidden Markov chain model for the analysis of geolocator data. This model estimates tracks for animals with complex migratory behaviour by combining: (1) a shading-insensitive, template-fit physical model, (2) an uncorrelated random walk movement model that includes migratory and sedentary behavioural states, and (3) spatially explicit behavioural masks. The model is implemented in a specially developed open source R package FLightR. We used the particle filter (PF) algorithm to provide relatively fast model posterior computation. We illustrate our modelling approach with analysis of simulated data for stationary tags and of real tracks of both a tree swallow Tachycineta bicolor migrating along the east and a golden-crowned sparrow Zonotrichia atricapilla migrating along the west coast of North America. We provide a model that increases accuracy in analyses of noisy data and movements of animals with complicated migration behaviour. It provides posterior distributions for the positions of animals, their behavioural states (e.g., migrating or sedentary), and distance and direction of movement. Our approach allows biologists to estimate locations of animals with complex migratory behaviour based on raw light data. This model advances the current methods for estimating migration tracks from solar geolocation, and will benefit a fast-growing number of tracking studies with this technology.
The Sun Radio Imaging Space Experiment (SunRISE) Mission
NASA Astrophysics Data System (ADS)
Kasper, J. C.; Lazio, J.; Alibay, F.; Amiri, N.; Bastian, T.; Cohen, C.; Landi, E.; Hegedus, A. M.; Maksimovic, M.; Manchester, W.; Reinard, A.; Schwadron, N.; Cecconi, B.; Hallinan, G.; Krupar, V.
2017-12-01
Radio emission from coronal mass ejections (CMEs) is a direct tracer of particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Energized electrons excite Langmuir waves, which then convert into intense radio emission at the local plasma frequency, with the most intense acceleration thought to occur within 20 R_S. The radio emission from CMEs is quite strong such that only a relatively small number of antennas is required to detect and map it, but many aspects of this particle acceleration and transport remain poorly constrained. Ground-based arrays would be quite capable of tracking the radio emission associated with CMEs, but absorption by the Earth's ionosphere limits the frequency coverage of ground-based arrays (nu > 15 MHz), which in turn limits the range of solar distances over which they can track the radio emission (< 3 R_S). The state-of-the-art for tracking such emission from space is defined by single antennas (Wind/WAVES, Stereo/SWAVES), in which the tracking is accomplished by assuming a frequency-to-density mapping; there has been some success in triangulating the emission between the spacecraft, but considerable uncertainties remain. We describe the Sun Radio Imaging Space Experiment (SunRISE) mission concept: A constellation of small spacecraft in a geostationary graveyard orbit designed to localize and track radio emissions in the inner heliosphere. Each spacecraft would carry a receiving system for observations below 25 MHz, and SunRISE would produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Testing for Dark Matter Trapped in the Solar System
NASA Technical Reports Server (NTRS)
Krisher, Timothy P.
1996-01-01
We consider the possibility of dark matter trapped in the solar system in bound solar orbits. If there exist mechanisms for dissipating excess kinetic energy by an amount sufficient for generating bound solar orbits, then trapping of galactic dark matter might have taken place during formation of the solar system, or could be an ongoing process. Possible locations for acumulation of trapped dark matter are orbital resonances with the planets or regions in the outer solar system. It is posible to test for the presence of unseen matter by detecting its gravitational effects. Current results for dynamical limits obtained from analyses of planetary ephemeris data and spacecraft tracking data are presented. Possible future improvements are discussed.
Berkeley Lab - Lawrence Berkeley National Laboratory
nanoparticles that could make solar panels more efficient by converting light usually missed by solar cells into of Methane's Increasing Greenhouse Effect A Berkeley Lab research team tracked a rise in the warming effect of methane - one of the most important greenhouse gases for the Earth's atmosphere - over a 10
Solar-Heated and Cooled Office Building--Columbus, Ohio
NASA Technical Reports Server (NTRS)
1982-01-01
Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.
Cosmic-ray tracks in plastics: the apollo helmet dosimetry experiment.
Comstock, G M; Fleischer, R L; Giard, W R; Hart, H R; Nichols, G E; Price, P B
1971-04-09
Counts of tracks from heavy cosmic-ray nuclei in helmets from Apollo missions 8 and 12 show variations caused by solar modulation of the galactic cosmic-ray flux. Specific estimates of the biological damage to certain nonreplaceable cells by track-forming particles during these space missions indicate that the fraction of deactivated cells could range from a lower limit of 3 x 10(-7) to an upper limit of 1.4 x 10(-4).
Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations
NASA Astrophysics Data System (ADS)
Kocher, Manan; Landi, Enrico; Lepri, Susan. T.
2018-06-01
In the present work, we analyze a filament eruption associated with an interplanetary coronal mass ejection that arrived at L1 on 2011 August 5. In multiwavelength Solar Dynamic Observatory/Advanced Imaging Assembly (AIA) images, three plasma parcels within the filament were tracked at high cadence along the solar corona. A novel absorption diagnostic technique was applied to the filament material traveling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/Extreme Ultraviolet Imager and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements, we conclude that the core plasma was in near ionization equilibrium, and the ionization states were still evolving at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.
NASA Technical Reports Server (NTRS)
Title, A. M.; Tarbell, T. D.; Acton, L; Duncan, D.; Simon, G. W.
1986-01-01
Initial results are presented on solar granulation, pores and sunspots from the white-light films obtained by the Solar Optical Universal Polarimeter (SOUP) instrument in Spacelab 2. Several hours of movies were taken at various disk and limb positions in quiet and active regions. The images are diffraction-limited at 0.5 arcsec resolution and are, of course, free of atmospheric seeing and distortion. Properties of the granulation in magnetic and nonmagnetic regions are compared and are found to differ significantly in size, rate of intensity variation, and lifetime. In quiet sun, on the order of fifty-percent of the area has at least one 'exploding granule' occurring in it during a 25-min period. Local correlation tracking has detected several types of transverse flows, including systematic outflow from the penumbral boundary of a spot, motion of penumbral filaments, and cellular flow patterns of supergranular and mesogranular size. Feature tracking has shown that, in the quiet sun, the average granule fragment has a velocity of about one kilometer/second.
A history of the deep space network
NASA Technical Reports Server (NTRS)
Corliss, W. R.
1976-01-01
The Deep Space Network (DSN) has been managed and operated by the Jet Propulsion Laboratory (JPL) under NASA contract ever since NASA was formed in late 1958. The Tracking and data acquisition tasks of the DSN are markedly different from those of the other NASA network, STDN. STDN, which is an amalgamation of the satellite tracking network (STADAN) and the Manned Space Flight Network (MSFN), is primarily concerned with supporting manned and unmanned earth satellites. In contrast, the DSN deals with spacecraft that are thousands to hundreds of millions of miles away. The radio signals from these distant craft are many orders of magnitude weaker than those from nearby satellites. Distance also makes precise radio location more difficult; and accurate trajectory data are vital to deep space navigation in the vicinities of the other planets of the solar system. In addition to tracking spacecraft and acquiring data from them, the DSN is required to transmit many thousands of commands to control the sophisticated planetary probes and interplanetary monitoring stations. To meet these demanding requirements, the DSN has been compelled to be in the forefront of technology.
Advanced instrumentation for Solar System gravitational physics
NASA Astrophysics Data System (ADS)
Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.
2010-05-01
The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser tracking, will be discussed.
Recent Developments: PKI Square Dish for the Soleras Project
NASA Technical Reports Server (NTRS)
Rogers, W. E.
1984-01-01
The Square Dish solar collectors are subjected to rigorous design attention regarding corrosion at the site, and certification of the collector structure. The microprocessor controls and tracking mechanisms are improved in the areas of fail safe operations, durability, and low parasitic power requirements. Prototype testing demonstrates performance efficiency of approximately 72% at 730 F outlet temperature. Studies are conducted that include developing formal engineering design studies, developing formal engineering design drawing and fabrication details, establishing subcontracts for fabrication of major components, and developing a rigorous quality control system. The improved design is more cost effective to product and the extensive manuals developed for assembly and operation/maintenance result in faster field assembly and ease of operation.
Recent developments: PKI square dish for the Soleras Project
NASA Astrophysics Data System (ADS)
Rogers, W. E.
1984-03-01
The Square Dish solar collectors are subjected to rigorous design attention regarding corrosion at the site, and certification of the collector structure. The microprocessor controls and tracking mechanisms are improved in the areas of fail safe operations, durability, and low parasitic power requirements. Prototype testing demonstrates performance efficiency of approximately 72% at 730 F outlet temperature. Studies are conducted that include developing formal engineering design studies, developing formal engineering design drawing and fabrication details, establishing subcontracts for fabrication of major components, and developing a rigorous quality control system. The improved design is more cost effective to product and the extensive manuals developed for assembly and operation/maintenance result in faster field assembly and ease of operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.; Landi, E.; Gibson, S. E., E-mail: lzh@umich.edu
2013-08-20
Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum ({approx}2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make itmore » timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier HCS in the north than the south, associated with the early reversal of the polar magnetic field in the north relative to the south.« less
Projected techno-economic improvements for advanced solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.
1979-01-01
The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.
Fuzzy logic control of stand-alone photovoltaic system with battery storage
NASA Astrophysics Data System (ADS)
Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.
Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.
NASA Technical Reports Server (NTRS)
Jackson, Dan E.
2010-01-01
Time-Tag Generation Script (TTaGS) is an application program, written in the AWK scripting language, for generating commands for aiming one Ku-band antenna and two S-band antennas for communicating with spacecraft. TTaGS saves between 2 and 4 person-hours per every 24 hours by automating the repetitious process of building between 150 and 180 antenna-control commands. TTaGS reads a text database of communication satellite schedules and a text database of satellite rise and set times and cross-references items in the two databases. It then compares the scheduled start and stop with the geometric rise and set to compute the times to execute antenna control commands. While so doing, TTaGS determines whether to generate commands for guidance, navigation, and control computers to tell them which satellites to track. To help prevent Ku-band irradiation of the Earth, TTaGS accepts input from the user about horizon tolerance and accordingly restricts activation and effects deactivation of the transmitter. TTaGS can be modified easily to enable tracking of additional satellites and for such other tasks as reading Sun-rise/set tables to generate commands to point the solar photovoltaic arrays of the International Space Station at the Sun.
Data Realities : Citation Equals Funding
NASA Astrophysics Data System (ADS)
Hourclé, Joseph
2015-04-01
Solar physics has a problem with tracking the impact of solar data's use in scientific literature. Data collected by solar-observing missions is used in many other fields, but we do not have good information about who is using our data. Solar data is useful not only in solar physics, but also general astronomy, planetery, space weather, space physics and earth science.The sun is the only star that we can see in high detail; solar data is used to erase moonlight from night-time images; coronagraphs have found more comets than night-observing telescopes; space weather affects life on earth, communications, air traffic, and manned space-flight.As our missions' continued funding is justified through use of our data, missing too many of these uses could decrease our future funding or lead to cancellation. As our current methods of finding data use is through human review of the literature, we are much more likely to miss usage in fields outside of solar physics.To better deal with tracking cross-discipline data usage, a number of groups have come up with guidelines and principles for data citation.[1,2,3] We provide an update on the efforts of multiple groups working on standards to implement both data and software citation.[1] National Research Council, 2012. http://www.nap.edu/catalog.php?record_id=13564[2] CODATA, 2013. http://dx.doi.org/10.2481/dsj.OSOM13-043[3] 2014. http://www.force11.org/datacitation
Low-cost distributed solar-thermal-electric power generation
NASA Astrophysics Data System (ADS)
Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.
2004-01-01
Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.
Tracking formulas and strategies for a receiver oriented dual-axis tracking toroidal heliostat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Minghuan; Wang, Zhifeng; Liang, Wenfeng
2010-06-15
A 4 m x 4 m toroidal heliostat with receiver oriented dual-axis tracking, also called spinning-elevation tracking, was developed as an auxiliary heat source for a hydrogen production system. A series of spinning-elevation tracking formulas have been derived for this heliostat. This included basic tracking formulas, a formula for the elevation angle for heliostat with a mirror-pivot offset, and a more general formula for the biased elevation angle. This paper presents the new tracking formulas in detail and analyzes the accuracy of applying a simplifying approximation. The numerical results show these receiver oriented dual-axis tracking formula approximations are accurate tomore » within 2.5 x 10{sup -6} m in image plane. Some practical tracking strategies are discussed briefly. Solar images from the toroidal heliostat at selected times are also presented. (author)« less
Air Brayton Solar Receiver, phase 1
NASA Technical Reports Server (NTRS)
Zimmerman, D. K.
1979-01-01
A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.
A novel concentrator with zero-index metamaterial for space solar power station
NASA Astrophysics Data System (ADS)
Huang, Jin; Chu, Xue-mei; Fan, Jian-yu; Jin, Qi-bao; Duan, Zhu-zhu
2017-03-01
Space solar power station (SSPS) is a comprehensive system that continuously collects solar energy in space and transmits it to ground with a wireless power transmission (WPT) system. These systems have great potential to provide large-scale energy. To increase the efficiency and reduce the weight and cost of the photovoltaic (PV) components, a huge light-weighted concentrator was introduced in the latest SSPS concepts, such as integrated symmetrical concentrator (ISC) and arbitrarily large phased array (ALPHA). However, for typical SSPS running in Geostationary Earth Orbit (GEO), the sunlight direction varies with time, leading to a great challenge for concentrator design. In ISC, the two-dimensional mast is used to realize sun-tracking. However, a multi-thousand-ton structure is difficult to control precisely in space. For this reason, ALPHA comprises a large number of individually pointed thin-film reflectors to intercept sunlight, mounted on the non-moving structure. However, the real-time adjustment of the thousands of reflectors is still an open problem. Furthermore, the uniformity of the time of the power generation (UTPG) is another factor evaluating the system. Therefore, this paper proposes a novel concentrator based on zero-index metamaterial (ZIM) called Thin-film Energy Terminator (SSPS-TENT). This will aid the control of the massive reflectors while avoiding the rotation of the overall system, the control of the massive reflectors and the influence of the obliquity of the ecliptic. Also, an optimization design method is proposed to increase its solar energy collecting efficiency (ECE) and flux distribution (FD). The ray-tracing simulation results show that the ECE is more than 96% of the day. In terms of the FD, the uniformity varies from 0.3057 to 0.5748. Compared with ALPHA, the UTPG is more stable.
Large-scale use of solar energy with central receivers
NASA Astrophysics Data System (ADS)
Kreith, F.; Meyer, R. T.
1983-12-01
The working principles of solar central receiver power plants are outlined and applications are discussed. Heliostat arrays direct sunlight into a receiver cavity mounted on a tower, heating the working fluid in the tower to temperatures exceeding 500 C. The formulation for the image plane and the geometric concentration ratio for a heliostat field are provided, noting that commercial electric power plants will require concentration ratios of 200-1000. Automated controls consider imperfections in the mirrors, tracking errors, and seasonal insolation intensity and angular variations. Membranes may be used instead of rigid heliostat mirrors to reduce costs, while trade-offs exist between the efficiencies of cavity and exterior receivers on the tower. Sensible heat storage has proved most effective for cloudy or nighttime operations. Details of the DOE Solar One 10 MW plant, which began operation in 1982, are provided, with mention given to the 33.6 continuous hours of power generation that have been achieved. Projected costs of commercial installations are $700/kWt, and possible applications include recovering and refining oil, processing natural gas, uranium ore, and sugar cane, drying gypsum board, and manufacturing ammonia.
Thermal buffering of receivers for parabolic dish solar thermal power plants
NASA Technical Reports Server (NTRS)
Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.
1980-01-01
A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.
Comparing capacity value estimation techniques for photovoltaic solar power
Madaeni, Seyed Hossein; Sioshansi, Ramteen; Denholm, Paul
2012-09-28
In this paper, we estimate the capacity value of photovoltaic (PV) solar plants in the western U.S. Our results show that PV plants have capacity values that range between 52% and 93%, depending on location and sun-tracking capability. We further compare more robust but data- and computationally-intense reliability-based estimation techniques with simpler approximation methods. We show that if implemented properly, these techniques provide accurate approximations of reliability-based methods. Overall, methods that are based on the weighted capacity factor of the plant provide the most accurate estimate. As a result, we also examine the sensitivity of PV capacity value to themore » inclusion of sun-tracking systems.« less
High-precision radiometric tracking for planetary approach and encounter in the inner solar system
NASA Technical Reports Server (NTRS)
Christensen, C. S.; Thurman, S. W.; Davidson, J. M.; Finger, M. H.; Folkner, W. M.
1989-01-01
The benefits of improved radiometric tracking data have been studied for planetary approach within the inner Solar System using the Mars Rover Sample Return trajectory as a model. It was found that the benefit of improved data to approach and encounter navigation was highly dependent on the a priori uncertainties assumed for several non-estimated parameters, including those for frame-tie, Earth orientation, troposphere delay, and station locations. With these errors at their current levels, navigational performance was found to be insensitive to enhancements in data accuracy. However, when expected improvements in these errors are modeled, performance with current-accuracy data significantly improves, with substantial further improvements possible with enhancements in data accuracy.
Tests of general relativity using Starprobe radio metric tracking data
NASA Technical Reports Server (NTRS)
Mease, K. D.; Anderson, J. D.; Wood, L. J.; White, L. K.
1982-01-01
The potential of a proposed spacecraft mission, called Starprobe, for testing general relativity and providing information on the interior structure and dynamics of the sun is investigated. Parametric, gravitational perturbation terms are derived which represent relativistic effects and effects due to spatial and temporal variations in the solar potential at a given radial distance. A covariance analysis based on Kalman filtering theory predicts the accuracies with which the free parameters in the perturbation terms can be estimated with radio metric tracking data through the process of trajectory reconstruction. It is concluded that Starprobe can contribute significant information on both the nature of gravitation and the structure and dynamics of the solar interior.
Hybrid renewable energy system using doubly-fed induction generator and multilevel inverter
NASA Astrophysics Data System (ADS)
Ahmed, Eshita
The proposed hybrid system generates AC power by combining solar and wind energy converted by a doubly-fed induction generator (DFIG). The DFIG, driven by a wind turbine, needs rotor excitation so the stator can supply a load or the grid. In a variable-speed wind energy system, the stator voltage and its frequency vary with wind speed, and in order to keep them constant, variable-voltage and variable-frequency rotor excitation is to be provided. A power conversion unit supplies the rotor, drawing power either from AC mains or from a PV panel depending on their availability. It consists of a multilevel inverter which gives lower harmonic distortion in the stator voltage. Maximum power point tracking techniques have been implemented for both wind and solar power. The complete hybrid renewable energy system is implemented in a PSIM-Simulink interface and the wind energy conversion portion is realized in hardware using dSPACE controller board.
2006-10-11
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers unlatch the transportation canister segments that enclose the STEREO spacecraft. The spacecraft is being prepared for launch, scheduled for Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann
2006-10-11
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers begin removing the protective cover surrounding the STEREO spacecraft. The spacecraft is being prepared for launch, scheduled for Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann
2006-10-11
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers check the clearance of the STEREO spacecraft as it is moved away from the opening. In the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-10
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the STEREO spacecraft is being moved out of the high bay. A truck will transport the spacecraft to Launch Pad 17-B on Cape Canaveral Air Force Station where it will be lifted into the mobile service tower. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-11
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the transportation canister and protective cover have been removed from the STEREO spacecraft in preparation for launch. The scheduled launch date is Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann
2006-10-11
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station, the STEREO spacecraft is lifted off its transporter alongside the mobile service tower. In the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-10
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the transporter carrying the STEREO spacecraft is secured to the truck that will transport it to Launch Pad 17-B on Cape Canaveral Air Force Station. At the pad, the spacecraft will be lifted into the mobile service tower. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-11
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the transportation canister and protective cover have been removed from the STEREO spacecraft in preparation for launch. The scheduled launch date is Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann
2006-10-11
KENNEDY SPACE CENTER, FLA. - Against a pre-dawn sky on Launch Pad 17-B at Cape Canaveral Air Force Station, the STEREO spacecraft is lifted up toward the platform on the mobile service tower. In the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-11
KENNEDY SPACE CENTER, FLA. - Viewed from inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers watch the progress of the STEREO spacecraft being lifted. Once in the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-11
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station, workers begin maneuvering the STEREO spacecraft into the mobile service tower. Once in the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-11
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers observe the lifting of the upper segment of the transportation canister that encloses the STEREO spacecraft. The spacecraft is being prepared for launch, scheduled for Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann
2006-10-10
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the transporter carrying the STEREO spacecraft is attached to the truck for transportation to Launch Pad 17-B on Cape Canaveral Air Force Station. At the pad the spacecraft will be lifted into the mobile service tower. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-11
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers begin removing the lower segment of the transportation canister that encloses the STEREO spacecraft. The spacecraft is being prepared for launch, scheduled for Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann
2006-10-11
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station, workers observe the progress of the STEREO spacecraft as it glides inside the mobile service tower. After it is in the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-11
KENNEDY SPACE CENTER, FLA. - Against a pre-dawn sky on Launch Pad 17-B at Cape Canaveral Air Force Station, the STEREO spacecraft is lifted alongside the mobile service tower. In the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-11
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers begin removing the protective cover surrounding the STEREO spacecraft. The spacecraft is being prepared for launch, scheduled for Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann
2006-10-11
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers help guide the upper segement of the transportation canister away from the STEREO spacecraft. STEREO is being prepared for launch, scheduled for Oct. 25. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft that will launch in a piggyback mode, separating after reaching the appropriate orbit. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. Photo credit: NASA/Jim Grossmann
2006-10-11
KENNEDY SPACE CENTER, FLA. - After arriving at Launch Pad 17-B on Cape Canaveral Air Force Station, the STEREO spacecraft waits for a crane to be fitted over it and be lifted into the mobile service tower. STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-11
KENNEDY SPACE CENTER, FLA. - After arriving at Launch Pad 17-B on Cape Canaveral Air Force Station, the STEREO spacecraft is fitted with a crane to lift it into the mobile service tower. STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
Design and performance of the halogen occultation experiment (HALOE) remote sensor
NASA Technical Reports Server (NTRS)
Baker, R. L.; Mauldin, L. E., III; Russell, J. M., III
1986-01-01
HALOE is an optical remote sensor that measures extinction of solar radiation caused by the earth's atmosphere in eight channels, ranging in wavelength from 2.5 to 10.1 microns. These measurements, which occur twice each satellite orbit during solar occultation, are inverted to yield vertical distributions of middle atmosphere ozone (O3), water vapor, nitrogen dioxide, nitric oxide, hydrogen fluoride, hydrogen chloride, and methane. A channel located in the 2.7 region is used to infer the tangent point pressure by measuring carbon dioxide absorption. The HALOE instrument consists of a two-axis gimbal system, telescope, spectral discrimination optics and a 12-bit data system. The gimbal system tracks the solar radiometric centroid in the azimuthal plane and tracks the solar limb in the elevation plane, placing the instrument's instantaneous field-of-view 4 arcmin down from the solar top edge. The instrument gathers data for tangent altitudes ranging from 150 km to the earth's horizon. Prior to an orbital sunset and after an orbital sunrise, HALOE automatically performs calibration sequences to enhance data interpretation. The instrument is presently being tested at the NASA Langley Research Center in preparation for launch on the Upper Atmosphere Research Satellite near the end of this decade. This paper describes the instrumenmt design, operation, and functional performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, L. M.; Balasubramaniam, K. S., E-mail: lwinter@aer.com
We present an alternate method of determining the progression of the solar cycle through an analysis of the solar X-ray background. Our results are based on the NOAA Geostationary Operational Environmental Satellites (GOES) X-ray data in the 1-8 Å band from 1986 to the present, covering solar cycles 22, 23, and 24. The X-ray background level tracks the progression of the solar cycle through its maximum and minimum. Using the X-ray data, we can therefore make estimates of the solar cycle progression and the date of solar maximum. Based upon our analysis, we conclude that the Sun reached its hemisphere-averagedmore » maximum in solar cycle 24 in late 2013. This is within six months of the NOAA prediction of a maximum in spring 2013.« less
South Carolina | Midmarket Solar Policies in the United States | Solar
voluntary renewable energy goal of 2% distributed energy in 2021. Carve-out: 0.25% of total generation from energy portfolio standard, but a goal for distributed generation by 2021. The Distributed Energy Resource Fast Track Process Study Process System size limit: Not specified; South Carolina Public Service
NASA Technical Reports Server (NTRS)
Clarke, V. C., Jr.
1977-01-01
Solar collectors on mountainside collect thermal energy for mountaintop powerplant. Sloped arrangement reduces heat-transport problem of level ground-based collector field. Heated air rises without mechanical pumps and buoyancy force supplies pumping power without further cost. Precision tracking requirement of power towers eliminated by butted-together Winston-type concentrator troughs. Low-cost native rock is used for heat storage.
Non-tracking solar concentrator with a high concentration ratio
Hinterberger, Henry
1977-01-01
A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.
A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter
NASA Astrophysics Data System (ADS)
Verma, A. K.; Singh, B.; Kaushika, S. C.
2013-03-01
In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.
The solar spectral irradiances from x ray to radio wavelengths
NASA Technical Reports Server (NTRS)
White, O. R.
1993-01-01
Sources of new measurements of the solar EUV, UV, and visible spectrum are presented together with discussion of formation of the solar spectrum as a problem in stellar atmospheres. Agreement between the data and a modern synthetic spectrum shows that observed radiative variability is a minor perturbation on a photosphere in radiative equilibrium and local thermodynamic equilibrium (LTE). Newly observed solar variability in 1992 defines a magnetic episode on the Sun closely associated with changes in both spectral irradiances and the total irradiance. This episode offers the opportunity to track the relationship between radiation and magnetic flux evolution.
Design and Performance Evaluation of a UWB Communication and Tracking System for Mini-AERCam
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2005-01-01
NASA Johnson Space Center (JSC) is developing a low-volume, low-mass, robotic free-flying camera known as Mini-AERCam (Autonomous Extra-vehicular Robotic Camera) to assist the International Space Station (ISS) operations. Mini-AERCam is designed to provide astronauts and ground control real-time video for camera views of ISS. The system will assist ISS crewmembers and ground personnel to monitor ongoing operations and perform visual inspections of exterior ISS components without requiring extravehicular activity (EAV). Mini-AERCam consists of a great number of subsystems. Many institutions and companies have been involved in the R&D for this project. A Mini-AERCam ground control system has been studied at Texas A&M University [3]. The path planning and control algorithms that direct the motions of Mini-AERCam have been developed through the joint effort of Carnegie Mellon University and the Texas Robotics and Automation Center [5]. NASA JSC has designed a layered control architecture that integrates all functions of Mini-AERCam [8]. The research described in this report is part of a larger effort focused on the communication and tracking subsystem that is designed to perform three major tasks: 1. To transmit commands from ISS to Mini-AERCam for control of robotic camera motions (downlink); 2. To transmit real-time video from Mini-AERCam to ISS for inspections (uplink); 3. To track the position of Mini-AERCam for precise motion control. The ISS propagation environment is unique due to the nature of the ISS structure and multiple RF interference sources [9]. The ISS is composed of various truss segments, solar panels, thermal radiator panels, and modules for laboratories and crew accommodations. A tracking system supplemental to GPS is desirable both to improve accuracy and to eliminate the structural blockage due to the close proximity of the ISS which could at times limit the number of GPS satellites accessible to the Mini-AERCam. Ideally, the tracking system will be a passive component of the communication system which will need to operate in a time-varying multipath environment created as the robot camera moves over the ISS structure. In addition, due to many interference sources located on the ISS, SSO, LEO satellites and ground-based transmitters, selecting a frequency for the ISS and Mini-AERCam link which will coexist with all interferers poses a major design challenge. To meet all of these challenges, ultrawideband (UWB) radio technology is being studied for use in the Mini-AERCam communication and tracking subsystem. The research described in this report is focused on design and evaluation of passive tracking system algorithms based on UWB radio transmissions from mini-AERCam.
Insights into Regolith Evolution from TEM Studies of Space Weathering of Itokawa Particles
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Exposure to solar wind irradiation and micrometeorite impacts alter the properties of regolith materials exposed on airless bodies. However, estimates of space weathering rates for asteroid regoliths span many orders of magnitude. Timescales for space weathering processes on airless bodies can be anchored by analyzing surface samples returned by JAXA's Hayabusa mission to asteroid 25143 Itokawa. Constraints on timescales of solar flare particle track accumulation and formation of solar wind produced ion-damaged rims yield information on regolith dynamics.
Solar Energy Development on DoD Installations in the Mojave & Colorado Deserts
2011-11-30
roof mount • Acreage: – ~6.2 million acres on 9 installations – 250,000 acres with some level of suitability for solar – 120,000 acres are estimated...technologies: thin - film and crystalline PV x fixed and single-axis tracking; trough; dish/Stirling engine. • 2 ownership structures (MILCON and 3rd party...1icfi.com | Solar Energy Development on DoD Installations in the Mojave & Colorado Deserts Bob Kwartin ICF International November 30, 2011 Report
Terrestrial adaptation of the thermal heliotrope.
NASA Technical Reports Server (NTRS)
Fairbanks, J. W.; Morse, F. H.
1971-01-01
The principle of using bimetal helical coils to cause solar arrays to track the sun in space is presently under consideration for array orientation on several spacecraft. Adaptation of this thermal heliotrope to terrestrial applications introduces additional design considerations. The dominance of solar-radiation energy input to the helical coil over convective energy losses has to be ensured, and wind effects must be minimized. As long as the cost of solar cells remains high, orientation will always result in a significant cost saving for the converter.
Long duration exposure facility solar illumination data package
NASA Technical Reports Server (NTRS)
Berrios, William M.; Sampair, Thomas
1990-01-01
A post flight solar illumination data package was created by the LDEF thermal analysis data group in support of the LDEF science office data group. The data presented was prepared with the Thermal Radiation Analysis System (TRASYS) program. Ground tracking data was used to calculate daily orbital beta angles for the calculation of resultant fluxes. This data package will be useful in calculation of solar illumination fluent for a variety of beta angle orbital conditions encountered during the LDEF mission.
Solar Surface Velocity in the Large Scale estimated by Magnetic Element Tracking Method
NASA Astrophysics Data System (ADS)
Fujiyama, M.; Imada, S.; Iijima, H.; Machida, S.
2017-12-01
The 11years variation in the solar activity is one of the important sources of decadal variation in the solar-terrestrial environment. Therefore, predicting the solar cycle activity is crucial for the space weather. To build the prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar cycle activity is intensively discussed. Nowadays, many people believe that the polar magnetic field at the solar minimum is one of the best predictor for the next solar cycle. To estimate polar magnetic field, Surface Flux Transport (SFT) model have been often used. On the other hand, SFT model needs several parameters, for example Meridional circulation, differential rotation, turbulent diffusion etc.. So far, those parameters have not been fully understood, and their uncertainties may affect the accuracy of the prediction. In this study, we try to discuss the parameters which are used in SFT model. We focus on two kinds of the solar surface motions, Differential rotation and Meridional circulation. First, we have developed Magnetic Element Tracking (MET) module, which is able to obtain the surface velocity by using the magnetic field data. We have used SOHO/MDI and SDO/HMI for the magnetic field data. By using MET, we study the solar surface motion over 2 cycle (nearly 24 years), and we found that the velocity variation is related to the active region belt. This result is consistent with [Hathaway et al., 2011]. Further, we apply our module to the Hinode/SOT data which spatial resolution is high. Because of its high resolution, we can discuss the surface motion close to the pole which has not been discussed enough. Further, we discuss the relationship between the surface motion and the magnetic field strength and the location of longitude.
Ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Johnson, Roy R.; Redemann, Jens; Holben, Brent N.; Schmidt, Beat; Flynn, Connor Joseph; Fahey, Lauren; LeBlanc, Samuel; Liss, Jordan; Kacenelenbogen, Meloe S.;
2017-01-01
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to airpollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituentsand determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution.Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds.These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates amodular sun-tracking sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers,permitting miniaturization of the external optical tracking head, and future detector evolution.4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides thebasis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, andexpanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodioderadiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument.
Estimating on-orbit optical properties for GNSS satellites
NASA Astrophysics Data System (ADS)
Rodriguez Solano, M. Sc. Carlos Javier; Hugentobler, Urs; Steigenberger, Peter
One of the major uncertainty sources affecting GNSS satellite orbits is the direct solar radiation pressure. Other important though smaller effects are caused by deviations of the satellite from nominal attitude, Earth radiation pressure and thermal re-radiation forces. To compensate such effects, the IGS Analysis Centers usually estimate empirical parameters which fit best the tracking data obtained from a global network of GNSS ground stations to compute orbits at an accuracy level of 2.5 cm for GPS and of 5 cm for GLONASS. On the other hand, there are also accurate physical models for the above mentioned non-conservative forces affecting the GNSS satellites such as the ROCK models for GPS satellites. However, current models fail to predict the real orbit behaviour with sufficient accuracy, mainly due to deviations from nominal attitude, from inaccurately known optical properties, or from aging of the satellite surfaces. In this context an analytical box-wing model has been derived based on the physical interaction between the direct solar radiation and a satellite consisting of a bus (box shape) and solar panels. Furthermore some of the parameters of the box-wing model can be adjusted to fit the GNSS tracking data, namely the fraction of reflected photons of the corresponding satellite surfaces. For this study GNSS orbits are generated based on one year of tracking data from the global IGS network and involving the box-wing model implemented into the Bernese GPS Software. The processing scheme was derived from the one used at the Center for Orbit Determination in Europe (CODE). The resulting satellite orbits are compared with CODE Final Orbits and validated using SLR (Satellite Laser Ranging) tracking data. Additionally, in the case of GPS satellites, the box-wing model and the obtained optical properties are compared directly with a priori models (e.g. ROCK), which deal with the direct solar radiation impacting the satellites.
Coordinated Analyses of Diverse Components in Whole Stardust Cometary Tracks
NASA Technical Reports Server (NTRS)
Nakamura-Messenger, Keiko; Keller, Lindsay P.; Messenger, Scott R.; Clemett, Simon J.; Nguyen, Lan-Anh N.; Frank, David
2011-01-01
Analyses of samples returned from Comet 81P/Wild-2 by the Stardust spacecraft have resulted in a number of surprising findings that show the origins of comets are more complex than previously suspected. However, these samples pose new experimental challenges because they are diverse and suffered fragmentation, thermal alteration, and fine scale mixing with aerogel. Questions remain about the nature of Wild-2 materials, such as the abundances of organic matter, crystalline materials, and presolar grains. To overcome these challenges, we have developed new sample preparation and analytical techniques tailored for entire aerogel tracks. We have successfully ultramicrotomed entire "carrot" and "bulbous" type tracks along their axis while preserving their original shapes. This innovation allowed us to examine the distribution of fragments along the track from the entrance hole all the way to the terminal particle (TP). We will present results of our coordinated analysis of the "carrot" type aerogel tracks #112 and #148, and the "bulbous" type aerogel tracks #113, #147 and #168 from the nanometer to the millimeter scale. Scanning TEM (STEM) was used for elemental and detailed mineralogy characterization, NanoSIMS was used for isotopic analyses, and ultrafast two-step laser mass spectrometry (ultra L2MS) was used to investigate the nature and distribution of organic phases. The isotopic measurements were performed following detailed TEM characterization for coordinated mineralogy. This approach also enabled spatially resolving the target sample from fine-scale mixtures of compressed aerogel and melt. Eight of the TPs of track #113 are dominated by coarse-grained enstatite (En90) that is largely orthoenstatite with minor, isolated clinoenstatite lamellae. One TP contains minor forsterite (Fo88) and small inclusions of diopside with % levels of Al, Cr and Fe. Two of the TPs contain angular regions of fine-grained nepheline surrounded by enstatite. Their O isotopic compositions are in the range of meteoritic materials, implying that they originated in the inner Solar System. Complex aromatic hydrocarbons are distributed along aerogel tracks and in TPs. These organics are likely cometary but were affected by shock heating. Three TPs of track #147 and two of track 168 have completely different mineralogy. TP2 of track #147 entirely consists of Fe-Ni alloy (5 at% Ni) and TP3 contains Fa28 with partial olivine-pyroxene intergrowth and minor albite. TP4 contains pentlandite, Fe-olivine, albite and high Ca pyroxene with Na and Cr (kosmochlor component). TP1 of #168 contains Fe-olivine, albite and pentlandite, and the concentric TP2 has a core of olivine grains with co-existing indigenous amorphous SiO2 surrounded by a carbon mantle, which in turn is surrounded by a layer of compressed aerogel. The TP of the carrot track #112 is a (16)O-rich forsteritic olivine grain that likely formed in the inner Solar System. The track also contains submicron-sized diamond grains of likely Solar System origin.
Coordinated Analyses of Diverse Components in Whole Stardust Cometary Tracks
NASA Astrophysics Data System (ADS)
Nakamura-Messenger, K.; Keller, L. P.; Messenger, S. R.; Clemett, S. J.; Nguyen, L. N.; Frank, D.
2011-12-01
Analyses of samples returned from Comet 81P/Wild-2 by the Stardust spacecraft have resulted in a number of surprising findings that show the origins of comets are more complex than previously suspected. However, these samples pose new experimental challenges because they are diverse and suffered fragmentation, thermal alteration, and fine scale mixing with aerogel. Questions remain about the nature of Wild-2 materials, such as the abundances of organic matter, crystalline materials, and presolar grains. To overcome these challenges, we have developed new sample preparation and analytical techniques tailored for entire aerogel tracks [Nakamura-Messenger et al. 2011]. We have successfully ultramicrotomed entire "carrot" and "bulbous" type tracks along their axis while preserving their original shapes. This innovation allowed us to examine the distribution of fragments along the track from the entrance hole all the way to the terminal particle (TP). We will present results of our coordinated analysis of the "carrot" type aerogel tracks #112 and #148, and the "bulbous" type aerogel tracks #113, #147 and #168 from the nanometer to the millimeter scale. Scanning TEM (STEM) was used for elemental and detailed mineralogy characterization, NanoSIMS was used for isotopic analyses, and ultrafast two-step laser mass spectrometry (ultra L2MS) was used to investigate the nature and distribution of organic phases. The isotopic measurements were performed following detailed TEM characterization for coordinated mineralogy. This approach also enabled spatially resolving the target sample from fine-scale mixtures of compressed aerogel and melt. Eight of the TPs of track #113 are dominated by coarse-grained enstatite (En90) that is largely orthoenstatite with minor, isolated clinoenstatite lamellae. One TP contains minor forsterite (Fo88) and small inclusions of diopside with % levels of Al, Cr and Fe. Two of the TPs contain angular regions of fine-grained nepheline surrounded by enstatite. Their O isotopic compositions are in the range of meteoritic materials, implying that they originated in the inner Solar System. Complex aromatic hydrocarbons are distributed along aerogel tracks and in TPs. These organics are likely cometary but were affected by shock heating. Three TPs of track #147 and two of track 168 have completely different mineralogy. TP2 of track #147 entirely consists of Fe-Ni alloy (5 at% Ni) and TP3 contains Fa28 with partial olivine-pyroxene intergrowth and minor albite. TP4 contains pentlandite, Fe-olivine, albite and high Ca pyroxene with Na and Cr (kosmochlor component). TP1 of #168 contains Fe-olivine, albite and pentlandite, and the concentric TP2 has a core of olivine grains with co-existing indigenous amorphous SiO2 surrounded by a carbon mantle, which in turn is surrounded by a layer of compressed aerogel. The TP of the carrot track #112 is a 16O-rich forsteritic olivine grain that likely formed in the inner Solar System. The track also contains submicron-sized diamond grains of likely Solar System origin.
NASA Astrophysics Data System (ADS)
Allen, J. W.; Schertz, W. W.; Wantroba, A. S.
1987-03-01
This collector system study is an extension of a previous system study in which Argonne National Laboratory (ANL) compared the performance of three solar energy systems operated side by side for over a year. In the present system study, four solar energy systems were operated side by side for part of a year. Two of the collector systems used commercially available compound parabolic concentrator (CPC) collectors, one used a commercially available flat plate collector, and one used an experimental CPC collector built by The University of Chicago. The collectors were mounted in fixed positions; they did not track the Sun, and their tilt angles were not seasonally adjusted. All of the collector arrays faced south and were tilted at 42 deg with respect to the horizon (to match the 42 deg N latitude at ANL). All four collector systems started each day with their storage temperatures at 90 C. During the day, each system was operated by its own solar controller. At the end of the day, the tanks were mixed and the temperature changes in the tanks were measured. The change in storage energy was calculated from the temperature change, the heat capacity of the storage system, and the pump energy.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models
NASA Astrophysics Data System (ADS)
Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Cantiello, Matteo; Paxton, Bill; Johnson, Benjamin D.
2016-06-01
This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages (5≤slant {log}({Age}) [{year}]≤slant 10.3), masses (0.1≤slant M/{M}⊙ ≤slant 300), and metallicities (-2.0≤slant [{{Z}}/{{H}}]≤slant 0.5). The models are self-consistently and continuously evolved from the pre-main sequence (PMS) to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the PMS to the end of core helium burning for -4.0≤slant [{{Z}}/{{H}}]\\lt -2.0. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at http://waps.cfa.harvard.edu/MIST/.
NASA Astrophysics Data System (ADS)
Xiong, J. P.; Zhang, A. L.; Ji, K. F.; Feng, S.; Deng, H.; Yang, Y. F.
2016-01-01
Photospheric bright points (PBPs) are tiny and short-lived phenomena which can be seen within dark inter-granular lanes. In this paper, we develop a new method to identify and track the PBPs in the three-dimensional data cube. Different from the previous way such as Detection-Before-Tracking, this method is based on the Tracking-While-Detection. Using this method, the whole lifetime of a PBP can be accurately measured while this PBP is possibly separated into several with Laplacian and morphological dilation (LMD) method due to its weak intensity sometimes. With consideration of the G-band PBPs observed by Hinode/SOT (Solar Optical Telescope) for more than two hours, we find that the isolated PBPs have an average lifetime of 3 minutes, and the longest one is up to 27 minutes, which are greater than the values detected by the previous LMD method. Furthermore, we also find that the mean intensity of PBPs is 1.02 times of the mean photospheric intensity, which is less than the values detected by LMD method, and the intensity of PBPs presents a period of oscillation with 2-3 minutes during the whole lifetime.
Anomalous cosmic ray carbon and oxygen tracks in CN-Kodak.
Kondratyeva, M A; Tretyakova, C A; Tretyakova, S P; Zhuravlev, D A
2001-06-01
For observation of low energy cosmic ray particles we used CN-Kodak nuclear track detectors on Cosmos satellites. In solar quiet periods during solar minima conditions the detectors registered anomalous cosmic rays (ACRs). The ACRs are characterized by flux enhancements of several elements and it is known that the carbon enhancement is small compared with that of oxygen. In all of our quiet-time exposures the relation between carbon and oxygen was extremely small (C/O ~ 0.03). But in two quiet-time periods of 14.03.96-11.06.96 and of 15.12.97-14.04.98 we have identified many tracks as carbon in a L-R diagram. As a result the observed C/O ratio appears to be more than 0.5, whereas other experiments show no evidence of enhanced flux of carbon during these periods. The reason for the unexpected response of CN-Kodak is discussed. c2001 Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ohlson, J. E.; Levy, G. S.; Stelzried, C. T.
1974-01-01
A tracking polarimeter implemented on the 64-m NASA/JPL paraboloid antenna at Goldstone, Calif., is described. Its performance is analyzed and compared with measurements. The system was developed to measure Faraday rotation in the solar corona of the telemetry carrier from the Pioneer VI spacecraft as it was occulted by the sun. It also measures rotation in the earth's ionosphere and is an accurate method of determining spacecraft orientation. The new feature of this system is its use of a pair of quarter-wave plates to allow the synthesis of a rotating feed system, while requiring the rotation of only a single section of waveguide. Since the polarization sensing is done at RF and the receiver operates essentially as a null detector, the system's accuracy is superior to other polarization tracking schemes. In addition, the antenna size and maser preamplifier provide unsurpassed sensitivity. The associated instrumentation used in the Pioneer VI experiment is also described.
Line drawing titled 'TDRS Spacecraft On-Orbit Configuration'
NASA Technical Reports Server (NTRS)
1988-01-01
Line drawing titled 'TDRS Spacecraft On-Orbit Configuration' identifies the various tracking and data relay satellite (TDRS) components (solar arrays, C-Band antenna, K-Band antenna, space ground link (SGL) antenna, single access antennas, multiple access antenna, omni antenna, solar sail). A TDRS will be deployed during the STS-26 mission. Including the space shuttle, the TDRS will be equipped to support up to 26 user spacecraft simultaneously. It will provide two types of service: 1) multiple access which can relay data from as many as 20 low data rate (100 bits per second to 50 kilobits per second) user satellites simultaneously and; 2) single access which will provide two high data rate (to 300 megabits per second) communication relays. The TDRS is three-axis stabilizrd with the body fixed antennas pointing constantly at the Earth while the solar arrays track the Sun. TDR satellites do no processing of user traffic in either direction. Rather, they operate as 'bent pipe' repeaters,
Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds
NASA Astrophysics Data System (ADS)
Christensen, M. W.; Suzuki, K.; Zambri, B.; Stephens, G. L.
2014-10-01
Aerosol influences on clouds are a major source of uncertainty to our understanding of forced climate change. Increased aerosol can enhance solar reflection from clouds countering greenhouse gas warming. Recently, this indirect effect has been extended from water droplet clouds to other types including mixed-phase clouds. Aerosol effects on mixed-phase clouds are important because of their fundamental role on sea ice loss and polar climate change, but very little is known about aerosol effects on these clouds. Here we provide the first analysis of the effects of aerosol emitted from ship stacks into mixed-phase clouds. Satellite observations of solar reflection in numerous ship tracks reveal that cloud albedo increases 5 times more in liquid clouds when polluted and persist 2 h longer than in mixed-phase clouds. These results suggest that seeding mixed-phase clouds via shipping aerosol is unlikely to provide any significant counterbalancing solar radiative cooling effects in warming polar regions.
Thermospheric Studies with Mars Global Surveyor
NASA Technical Reports Server (NTRS)
Lemoine, F. G.; Bruinsma, S.; Chin, D. S.; Forbes, J. M.
2006-01-01
The Mars Global Surveyor spacecraft has been located in a near-circular, polar, and low-altitude mapping orbit about Mars for six years, since February 1999. The spacecraft is tracked routinely by the antennae of the Deep Space Network (DSN), using the X Band radio system of the spacecraft. These tracking data have been used for routine spacecraft navigation, and for radio science studies, such as the estimation of the static and time-varying gravity field of Mars. In this paper we describe the methodology for reduction of these data in order to estimate the Mars atmospheric density (normalized to an altitude 380 km) over half a solar cycle, where we discern the correlation of the density with the incident solar flux, and the 27-day solar rotation. The results show that the density at the MGS altitude varies from a mean of 0.7 x 10(exp -17) grams/cu cm near aphelion to a mean of 3.0 x 10(exp -17)grams/cu cm near perihelion.
2017-12-08
Ship tracks above the northern Pacific Ocean. NASA image captured July 3, 2010. Satellite: Aqua NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest To learn more about ship tracks go to: visibleearth.nasa.gov/view_rec.php?id=2370 To watch a video on ship tracks go to: www.youtube.com/watch?v=Vsri2sOAjWo&feature=player_em...! NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
California | Midmarket Solar Policies in the United States | Solar Research
interconnection fee ($75-$150), pay all "non-bypassable" charges for all electricity consumed from the distribution grid, non-export facilities connecting to an IOU's transmission grid and all net-metered systems Interconnection All non-exporting systems or net metering facility Fast track Exporting facility â¤3MW on a 12 kV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-03-01
The certification and verification of the Northrup Model NSC-01-0732 Fresnel lens tracking solar collector are presented. A certification statement is included with signatures and a separate report on the structural analysis of the collector system. System verification against the Interim Performance Criteria are indicated by matrices with verification discussion, analysis, and enclosed test results.
NASA Technical Reports Server (NTRS)
Siegmeth, A. J.; Purdue, R. E.; Ryan, R. E.
1973-01-01
The tracking and data system support of the launch, near-earth, and deep space phases of the Pioneer 10 mission, which sent a Pioneer spacecraft into a flyby of Jupiter that would eventually allow the spacecraft to escape the solar system is discussed. The support through the spacecraft's second trajectory correction is reported. During this period, scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields, and radiometric data generated by the network continued to improve knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.
Dominique, Marie; Mitrofanov, A V; Hochedez, J-F; Apel, P Yu; Schühle, U; Pudonin, F A; Orelovich, O L; Zuev, S Yu; Bolsée, D; Hermans, C; BenMoussa, A
2009-02-10
We describe the fabrication and performance of diffractive filters designed for space-based x-ray and EUV solar observations. Unlike traditional thin film filters, diffractive filters can be made to have a high resistance against the destructive mechanical and acoustic loads of a satellite launch. The filters studied are made of plastic track-etched membranes that are metal-coated on one side only. They have all-through open cylindrical pores with diameters as small as 500 nm, limiting their transmittance to very short wavelengths. The spectral transmittance of various diffractive filters with different pore parameters was measured from the soft x-ray to the near IR range (namely, from 1-1100 nm).
High storm surge events in Venice and the 11-yr solar cycle
NASA Astrophysics Data System (ADS)
Barriopedro, David; García-Herrera, Ricardo; Lionello, Piero; Pino, Cosimo
2010-05-01
In the last years the Venice lagoon has received much attention as a case of coastal vulnerability, mainly because of relative sea level rise and increase frequency of storm surge events, the so-called "aqua alta", which, particularly during autumn, cause the flooding of the Venice historical city center. Long-term fluctuations in solar activity and large-scale climate patterns have been suggested as feasible factors of flooding variability. This study explores the long-term frequency variability of High Surge Events (HSE) in Venice for the period 1948-2008 and its modulation by the 11-yr solar cycle. A significant decadal variability in the frequency of HSE is found in good correspondence with the 11-yr cycle, solar maxima being associated to a significant increase of the October-November-December HSE frequency. A Storm Surge Pattern (SSP), i.e. the seasonal 1000 hPa height pattern associated to increased frequency of HSE, is identified and found similar to the positive phase of the main variability mode of the regional atmospheric circulation (EOF1). However, further analyses indicate that the increase of HSE in solar maxima cannot be simply explained by a higher recurrence of positive EOF1 phases during high solar years. It rather seems that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Thus, under solar maxima, the occurrence of HSE is enhanced by the EOF1, namely a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated to any EOF during low solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSE by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable patterns for HSE occurrence and their mutual relationships, so that constructive interaction between them is enhanced during solar maxima and inhibited in solar minima.
NASA Astrophysics Data System (ADS)
Raouafi, Noureddine; Bernasconi, P. N.; Georgoulis, M. K.
2010-05-01
We present two pattern recognition algorithms, the "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code,” that are among the Feature Finding modules of the Solar Dynamic Observatory: 1) Coronal sigmoids visible in X-rays and the EUV are the result of highly twisted magnetic fields. They can occur anywhere on the solar disk and are closely related to solar eruptive activity (e.g., flares, CMEs). Their appearance is typically synonym of imminent solar eruptions, so they can serve as a tool to forecast solar activity. Automatic X-ray sigmoid identification offers an unbiased way of detecting short-to-mid term CME precursors. The "Sigmoid Sniffer” module is capable of automatically detecting sigmoids in full-disk X-ray images and determining their chirality, as well as other characteristics. It uses multiple thresholds to identify persistent bright structures on a full-disk X-ray image of the Sun. We plan to apply the code to X-ray images from Hinode/XRT, as well as on SDO/AIA images. When implemented in a near real-time environment, the Sigmoid Sniffer could allow 3-7 day forecasts of CMEs and their potential to cause major geomagnetic storms. 2)The "Advanced Automated Solar Filament Detection and Characterization Code” aims to identify, classify, and track solar filaments in full-disk Hα images. The code can reliably identify filaments; determine their chirality and other relevant parameters like filament area, length, and average orientation with respect to the equator. It is also capable of tracking the day-by-day evolution of filaments as they traverse the visible disk. The code was tested by analyzing daily Hα images taken at the Big Bear Solar Observatory from mid-2000 to early-2005. It identified and established the chirality of thousands of filaments without human intervention.
Chemistry and particle track studies of Apollo 14 glasses.
NASA Technical Reports Server (NTRS)
Glass, B. P.; Storzer, D.; Wagner, G. A.
1972-01-01
The abundance and the composition of Apollo 14 glasses have been studied. Glass particles were analyzed for Si, Ti, Al, Fe, Mn, Mg, Na, and K by electron microprobe analysis. The refractive indices of 26 particles were determined by the oil immersion method. Track analyses have been carried out in order to determine the uranium content and the radiation history of glass particles. The proper identification of galactic and solar flare nuclei tracks makes it possible to estimated residence times of the glass particles in the top layer of the lunar soil.
A Real-Time Position-Locating Algorithm for CCD-Based Sunspot Tracking
NASA Technical Reports Server (NTRS)
Taylor, Jaime R.
1996-01-01
NASA Marshall Space Flight Center's (MSFC) EXperimental Vector Magnetograph (EXVM) polarimeter measures the sun's vector magnetic field. These measurements are taken to improve understanding of the sun's magnetic field in the hopes to better predict solar flares. Part of the procedure for the EXVM requires image motion stabilization over a period of a few minutes. A high speed tracker can be used to reduce image motion produced by wind loading on the EXVM, fluctuations in the atmosphere and other vibrations. The tracker consists of two elements, an image motion detector and a control system. The image motion detector determines the image movement from one frame to the next and sends an error signal to the control system. For the ground based application to reduce image motion due to atmospheric fluctuations requires an error determination at the rate of at least 100 hz. It would be desirable to have an error determination rate of 1 kHz to assure that higher rate image motion is reduced and to increase the control system stability. Two algorithms are presented that are typically used for tracking. These algorithms are examined for their applicability for tracking sunspots, specifically their accuracy if only one column and one row of CCD pixels are used. To examine the accuracy of this method two techniques are used. One involves moving a sunspot image a known distance with computer software, then applying the particular algorithm to see how accurately it determines this movement. The second technique involves using a rate table to control the object motion, then applying the algorithms to see how accurately each determines the actual motion. Results from these two techniques are presented.
Tilt assembly for tracking solar collector assembly
Almy, Charles; Peurach, John; Sandler, Reuben
2012-01-24
A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.
ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)
NASA Astrophysics Data System (ADS)
Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Holben, B. N.; Schmid, B.; Flynn, C. J.; Fahey, L.; LeBlanc, S. E.; Liss, J.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Dahlgren, R. P.; Pistone, K.; Karol, Y.
2017-12-01
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds. These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical tracking head, and future detector evolution. 4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides the basis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, and expanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodiode radiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument. Keywords: atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic, polarimetry
Thermal tracking in mobile robots for leak inspection activities.
Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki
2013-10-09
Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.
Thermal Tracking in Mobile Robots for Leak Inspection Activities
Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki
2013-01-01
Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system. PMID:24113684
Advanced solar concentrator mass production, operation, and maintenance cost assessment
NASA Technical Reports Server (NTRS)
Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.
1981-01-01
The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.
A refractory inclusion returned by Stardust from comet 81P/Wild 2
NASA Astrophysics Data System (ADS)
Simon, S. B.; Joswiak, D. J.; Ishii, H. A.; Bradley, J. P.; Chi, M.; Grossman, L.; AlÉOn, J.; Brownlee, D. E.; Fallon, S.; Hutcheon, I. D.; Matrajt, G.; McKeegan, K. D.
2008-11-01
Among the samples returned from comet 81P/Wild 2 by the Stardust spacecraft is a suite of particles from one impact track (Track 25) that are Ca-, Al-rich and FeO-free. We studied three particles from this track that range in size from 5.3 × 3.2 μ to 15 × 10 μ. Scanning and transmission electron microscopy show that they consist of very fine-grained (typically from ˜0.5 to ˜2 μ) Al-rich, Ti-bearing and Ti-free clinopyroxene, Mg-Al spinel and anorthite, with trace amounts of fine perovskite, FeNi metal and osbornite (TiN) grains. In addition to these phases, the terminal particle, named "Inti", also contains melilite. All of these phases, with the exception of osbornite, are common in refractory inclusions and are predicted to condense at high temperature from a gas of solar composition. Osbornite, though very rare, has also been found in meteoritic refractory inclusions, and could have formed in a region of the nebula where carbon became enriched relative to oxygen compared to solar composition. Compositions of Ti-pyroxene in Inti are similar, but not identical, to those of fassaite from Allende inclusions. Electron energy loss spectroscopy shows that Ti-rich pyroxene in Inti has Ti3+/Ti4+within the range of typical meteoritic fassaite, consistent with formation under reducing conditions comparable to those of a system of solar composition. Inti is 16O-rich, with δ18O?δ17O?-40%0, like unaltered phases in refractory inclusions and refractory IDPs. With grain sizes, mineralogy, mineral chemistry, and an oxygen isotopic composition like those of refractory inclusions, we conclude that Inti is a refractory inclusion that formed in the inner solar nebula. Identification of a particle that formed in the inner solar system among the comet samples demonstrates that there was transport of materials from the inner to the outer nebula, probably either in a bipolar outflow or by turbulence.
Constraints on Exposure Ages of Lunar and Asteroidal Regolith Particles
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P
2014-01-01
Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Exposure to the solar wind results in implantation effects that are preserved in the rims of grains (typically the outermost 100 nm), while impact processes result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. These processes are collectively referred to as space weathering. A critical element in the study of these processes is to determine the rate at which these effects accumulate in the grains during their space exposure. For small particulate samples, one can use the density of solar flare particle tracks to infer the length of time the particle was at the regolith surface (i.e., its exposure age). We have developed a new technique that enables more accurate determination of solar flare particle track densities in mineral grains <50 micron in size that utilizes focused ion beam (FIB) sample preparation combined with transmission electron microscopy (TEM) imaging. We have applied this technique to lunar soil grains from the Apollo 16 site (soil 64501) and most recently to samples from asteroid 25143 Itokawa returned by the Hayabusa mission. Our preliminary results show that the Hayabusa grains have shorter exposure ages compared to typical lunar soil grains. We will use these techniques to re-examine the track density-exposure age calibration from lunar samples reported by Blanford et al. (1975).
Milestones Toward 50% Efficient Solar Cell Modules
2007-09-01
efficiency, both at solar cells and module level. The optical system consists of a tiled nonimaging concentrating system, coupled with a spectral...which combines a nonimaging optical concentrator (which does not require tracking and is called a static concentrator) with spectral splitting...DESIGN AND RESULTS The optical design is based on non-symmetric, nonimaging optics, tiled into an array. The central issues in the optical system
Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications
NASA Astrophysics Data System (ADS)
Long, C. N.; Riihimaki, L. D.; Berg, L. K.
2012-12-01
Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and variability. This new system could be a long term economical solution for solar energy applications.xample of SW Flux Analysis global hemispheric (light blue) and direct (yellow) clear-sky shortwave (SW) along with corresponding actual global hemispheric (blue) and direct (red) SW, and the corresponding fractional sky cover (black, right Y-axis). Note in afternoon about 40-50% of the global SW is available, yet most times there is no direct SW.
Measurement and Characterization of Concentrator Solar Cells II
NASA Technical Reports Server (NTRS)
Scheiman, Dave; Sater, Bernard L.; Chubb, Donald; Jenkins, Phillip; Snyder, Dave
2005-01-01
Concentrator solar cells are continuing to get more consideration for use in power systems. This interest is because concentrator systems can have a net lower cost per watt in solar cell materials plus ongoing improvements in sun-tracking technology. Quantitatively measuring the efficiency of solar cells under concentration is difficult. Traditionally, the light concentration on solar cells has been determined by using a ratio of the measured solar cell s short circuit current to that at one sun, this assumes that current changes proportionally with light intensity. This works well with low to moderate (<20 suns) concentration levels on "well-behaved" linear cells but does not apply when cells respond superlinearly, current increases faster than intensity, or sublinearly, current increases more slowly than intensity. This paper continues work on using view factors to determine the concentration level and linearity of the solar cell with mathematical view factor analysis and experimental results [1].
Air Brayton Solar Receiver, phase 2
NASA Technical Reports Server (NTRS)
Deanda, L. E.
1981-01-01
An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.
A Geospatial Comparison of Distributed Solar Heat and Power in Europe and the US
Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip
2014-01-01
The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system. PMID:25474632
A geospatial comparison of distributed solar heat and power in Europe and the US.
Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip
2014-01-01
The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system.
NASA Technical Reports Server (NTRS)
Rouillard, A. P.; Sheeley, N.R. Jr.; Tylka, A.; Vourlidas, A.; Ng, C. K.; Rakowski, C.; Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.; Reames, D.;
2012-01-01
We use combined high-cadence, high-resolution, and multi-point imaging by the Solar-Terrestrial Relations Observatory (STEREO) and the Solar and Heliospheric Observatory to investigate the hour-long eruption of a fast and wide coronal mass ejection (CME) on 2011 March 21 when the twin STEREO spacecraft were located beyond the solar limbs. We analyze the relation between the eruption of the CME, the evolution of an Extreme Ultraviolet (EUV) wave, and the onset of a solar energetic particle (SEP) event measured in situ by the STEREO and near-Earth orbiting spacecraft. Combined ultraviolet and white-light images of the lower corona reveal that in an initial CME lateral "expansion phase," the EUV disturbance tracks the laterally expanding flanks of the CME, both moving parallel to the solar surface with speeds of approx 450 km/s. When the lateral expansion of the ejecta ceases, the EUV disturbance carries on propagating parallel to the solar surface but devolves rapidly into a less coherent structure. Multi-point tracking of the CME leading edge and the effects of the launched compression waves (e.g., pushed streamers) give anti-sunward speeds that initially exceed 900 km/s at all measured position angles. We combine our analysis of ultraviolet and white-light images with a comprehensive study of the velocity dispersion of energetic particles measured in situ by particle detectors located at STEREO-A (STA) and first Lagrange point (L1), to demonstrate that the delayed solar particle release times at STA and L1 are consistent with the time required (30-40 minutes) for the CME to perturb the corona over a wide range of longitudes. This study finds an association between the longitudinal extent of the perturbed corona (in EUV and white light) and the longitudinal extent of the SEP event in the heliosphere.
The limits of direct satellite tracking with the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Bertiger, W. I.; Yunck, T. P.
1988-01-01
Recent advances in high precision differential Global Positioning System-based satellite tracking can be applied to the more conventional direct tracking of low earth satellites. To properly evaluate the limiting accuracy of direct GPS-based tracking, it is necessary to account for the correlations between the a-priori errors in GPS states, Y-bias, and solar pressure parameters. These can be obtained by careful analysis of the GPS orbit determination process. The analysis indicates that sub-meter accuracy can be readily achieved for a user above 1000 km altitude, even when the user solution is obtained with data taken 12 hours after the data used in the GPS orbit solutions.
Dual S and Ku-band tracking feed for a TDRS reflector antenna
NASA Technical Reports Server (NTRS)
Pullara, J. C.; Bales, C. W.; Kefalas, G. P.; Uyehara, M.
1974-01-01
The results are presented of a trade study designed to identify a synchronous satellite antenna system suitable for receiving and transmitting data from lower orbiting satellites at both S- and K sub u-bands simultaneously as part of the Tracking and Data Relay Satellite System. All related problems associated with maintaining a data link between two satellites with a K sub u-band half-power beamwidth of 0.4 db are considered including data link maintenance techniques, beam pointing accuracies, gimbal and servo errors, solar heating, angle tracking schemes, acquisition problems and aids, tracking accuracies versus SNR, antenna feed designs, equipment designs, weight and power budgets, and detailed candidate antenna system designs.
NASA Astrophysics Data System (ADS)
Tecpoyotl-Torres, M.; Campos-Alvarez, J.; Tellez-Alanis, F.; Sánchez-Mondragón, J.
2006-08-01
In this work we present the basis of the solar concentrator design, which has is located at Temixco, Morelos, Mexico. For this purpose, this place is ideal due to its geographic and climatic conditions, and in addition, because it accounts with the greatest constant illumination in Mexico. For the construction of the concentrator we use a recycled parabolic plate of a telecommunications satellite dish (NEC). This plate was totally covered with Aluminum. The opening diameter is of 332 cm, the focal length is of 83 cm and the opening angle is of 90°. The geometry of the plate guaranties that the incident beams, will be collected at the focus. The mechanical treatment of the plate produces an average reflectance of 75% in the visible region of the solar spectrum, and of 92% for wavelengths up to 3μm in the infrared region. We obtain up to 2000°C of temperature concentration with this setup. The reflectance can be greatly improved, but did not consider it as typical practical use. The energy obtained can be applied to conditions that require of those high calorific energies. In order to optimize the operation of the concentrator we use a control circuit designed to track the apparent sun position.
Ionospheric Impacts on UHF Space Surveillance
NASA Astrophysics Data System (ADS)
Jones, J. C.
2017-12-01
Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.
Cosmic-ray record in solar system matter
NASA Technical Reports Server (NTRS)
Reedy, R. C.; Arnold, J. R.; Lal, D.
1983-01-01
The interaction of galactic cosmic rays (GCR) and solar cosmic rays (SCR) with bodies in the solar system is discussed, and what the record of that interaction reveals about the history of the solar system is considered. The influence of the energy, charge, and mass of the particles on the interaction is addressed, showing long-term average fluxes of solar protons, predicted production rates for heavy-nuclei tracks and various radionuclides as a function of depth in lunar rock, and integral fluxes of protons emitted by solar flares. The variation of the earth's magnetic field, the gardening of the lunar surface, and the source of meteorites and cosmic dust are studied using the cosmic ray record. The time variation of GCR, SCR, and VH and VVH nuclei is discussed for both the short and the long term.
NASA Astrophysics Data System (ADS)
Huang, Yu
Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.
NASA Astrophysics Data System (ADS)
Kandemir, Ekrem; Borekci, Selim; Cetin, Numan S.
2018-04-01
Photovoltaic (PV) power generation has been widely used in recent years, with techniques for increasing the power efficiency representing one of the most important issues. The available maximum power of a PV panel is dependent on environmental conditions such as solar irradiance and temperature. To extract the maximum available power from a PV panel, various maximum-power-point tracking (MPPT) methods are used. In this work, two different MPPT methods were implemented for a 150-W PV panel. The first method, known as incremental conductance (Inc. Cond.) MPPT, determines the maximum power by measuring the derivative of the PV voltage and current. The other method is based on reduced-rule compressed fuzzy logic control (RR-FLC), using which it is relatively easier to determine the maximum power because a single input variable is used to reduce computing loads. In this study, a 150-W PV panel system model was realized using these MPPT methods in MATLAB and the results compared. According to the simulation results, the proposed RR-FLC-based MPPT could increase the response rate and tracking accuracy by 4.66% under standard test conditions.
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng
2017-01-01
MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versusscan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudo invariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3 at certain AOIs.
Reactive granular optics for passive tracking of the sun
NASA Astrophysics Data System (ADS)
Frenkel, I.; Niv, A.
2017-08-01
The growing need for cost-effective renewable energy sources is hampered by the stagnation in solar cell technology, thus preventing a substantial reduction in the module and energy-production price. Lowering the energy-production cost could be achieved by using modules with efficiency. One of the possible means for increasing the module efficiency is concentrated photovoltaics (CPV). CPV, however, requires complex and accurate active tracking of the sun that reduces much of its cost-effectiveness. Here, we propose a passive tracking scheme based on a reactive optical device. The optical reaction is achieved by a new kind of light activated mechanical force that acts on micron-sized particles. This optical force allows the formation of granular disordered optical media that can be switched from being opaque to become transparent based on the intensity of light it interacts with. Such media gives rise to an efficient passive tracking scheme that when combined with an external optical cavity forms a new solar power conversion approach. Being external to the cell itself, this approach is indifferent to the type of semiconducting material that is used, as well as to other aspects of the cell design. This, in turn, liberates the cell layout from its optical constraints thus paving the way to higher efficiencies at lower module price.
NASA Astrophysics Data System (ADS)
Bhatt, Rajendra; Doelling, David R.; Angal, Amit; Xiong, Xiaoxiong; Scarino, Benjamin; Gopalan, Arun; Haney, Conor; Wu, Aisheng
2017-01-01
MODIS consists of a cross-track, two-sided scan mirror, whose reflectance is not uniform but is a function of angle of incidence (AOI). This feature, known as response versus scan-angle (RVS), was characterized for all reflective solar bands of both MODIS instruments prior to launch. The RVS characteristic has changed on orbit, which must be tracked precisely over time to ensure the quality of MODIS products. The MODIS characterization support team utilizes the onboard calibrators and the earth view responses from multiple pseudoinvariant desert sites to track the RVS changes at different AOIs. The drawback of using deserts is the assumption that these sites are radiometrically stable during the monitoring period. In addition, the 16-day orbit repeat cycle of MODIS allows for only a limited set of AOIs over a given desert. We propose a novel and robust approach of characterizing the MODIS RVS using tropical deep convective clouds (DCC). The method tracks the monthly DCC response at specified sets of AOIs to compute the temporal RVS changes. Initial results have shown that the Aqua-MODIS collection 6 band 1 level 1B radiances show considerable residual RVS dependencies, with long-term drifts up to 2.3% at certain AOIs.
Tracking Photospheric Energy Transport in Active Regions with SDO
NASA Astrophysics Data System (ADS)
Attié, R.; Thompson, B. J.
2017-12-01
The solar photosphere presents flow fields at all observable scales. Where energy-bearing magnetic active regions break through the photosphere these flows are particularly strong, as sheared and twisted magnetic fields come into equilibrium with their surroundings while transporting magnetic energy into the corona. A part of this magnetic energy - the so-called `free energy' stored in the magnetic field in the form of "twisted" and shear of the field - is released in flares and eruptions. We can quantify the energy arrival and build-up in the corona by tracking flow fields and magnetic features at the photosphere as magnetic flux emerges and evolves before and after a flare or eruption.To do this reliably requires two things: a long series of photospheric observations at high sensitivity, spatial and temporal resolution, and an efficient, reliable and robust framework that tracks the photospheric plasma flows and magnetic evolution in both the quiet sun and active regions. SDO/HMI provides the observations, and we present here an innovative high resolution tracking framework that involves the `Balltracking' and `Magnetic Balltracking' algorithms. We show the first results of a systematic, quantitative and comprehensive measurements of the flows and transport of magnetic energy into the solar atmosphere and investigate whether this dynamic view can improve predictions of flares and Coronal Mass Ejections (CMEs).
Development and application of an automated precision solar radiometer
NASA Astrophysics Data System (ADS)
Qiu, Gang-gang; Li, Xin; Zhang, Quan; Zheng, Xiao-bing; Yan, Jing
2016-10-01
Automated filed vicarious calibration is becoming a growing trend for satellite remote sensor, which require a solar radiometer have to automatic measure reliable data for a long time whatever the weather conditions and transfer measurement data to the user office. An automated precision solar radiometer has been developed. It is used in measuring the solar spectral irradiance received at the Earth surface. The instrument consists of 8 parallel separate silicon-photodiode-based channels with narrow band-pass filters from the visible to near-IR regions. Each channel has a 2.0° full-angle Filed of View (FOV). The detectors and filters are temperature stabilized using a Thermal Energy Converter at 30+/-0.2°. The instrument is pointed toward the sun via an auto-tracking system that actively tracks the sun within a +/-0.1°. It collects data automatically and communicates with user terminal through BDS (China's BeiDou Navigation Satellite System) while records data as a redundant in internal memory, including working state and error. The solar radiometer is automated in the sense that it requires no supervision throughout the whole process of working. It calculates start-time and stop-time every day matched with the time of sunrise and sunset, and stop working once the precipitation. Calibrated via Langley curves and simultaneous observed with CE318, the different of Aerosol Optical Depth (AOD) is within 5%. The solar radiometer had run in all kinds of harsh weather condition in Gobi in Dunhuang and obtain the AODs nearly eight months continuously. This paper presents instrument design analysis, atmospheric optical depth retrievals as well as the experiment result.
Solar Array Hysteresis and its Interaction with the MPPT System
NASA Astrophysics Data System (ADS)
Fernandez, A.; Baur, C.; Gomez-Carpintero, F.
2014-08-01
It is well known that solar cells have a capacitance in parallel which value changes with the voltage. Depending on the section arrangement on the Solar Array, the power conversion unit connected to it will see a smaller or larger capacitance value and will have to cope with its adverse effects. In the case of converters with an MPPT, this capacitance gives place to an hysteresis effect that might shift the tracking point, reducing the power extracted from the Solar Array. This paper explores the different sides of this issue, from capacitance modelling to the effects on the MPPT. Additionally, this paper analyses a similar interaction between MPPTs and commercial SAS.
Solar-Electrochemical Power System for a Mars Mission
NASA Technical Reports Server (NTRS)
Withrow, Colleen A.; Morales, Nelson
1994-01-01
This report documents a sizing study of a variety of solar electrochemical power systems for the intercenter NASA study known as 'Mars Exploration Reference Mission'. Power systems are characterized for a variety of rovers, habitation modules, and space transport vehicles based on requirements derived from the reference mission. The mission features a six-person crew living on Mars for 500 days. Mission power requirements range from 4 kWe to 120 kWe. Primary hydrogen and oxygen fuel cells, regenerative hydrogen and oxygen fuel cells, sodium sulfur batteries advanced photovoltaic solar arrays of gallium arsenide on germanium with tracking and nontracking mechanisms, and tent solar arrays of gallium arsenide on germanium are evaluated and compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pittman, P F
1979-03-30
This contract is part of a three phase program to design, fabricate, and operate a solar photovoltaic electric power system with concentrating optics. The system will be located beside a Local Operating Headquarters of the Georgia Power Company in Atlanta, Georgia and will provide part of the power for the on-site load. Fresnel lens concentrators will be used in 2-axis tracking arrays to focus solar energy onto silicon solar cells producing a peak power output of 56 kW. The present contract covers Phase I which has as its objective the complete design of the system and necessary subsystems.
The rise of non-imaging optics for rooftop solar collectors
NASA Astrophysics Data System (ADS)
Rosengarten, Gary; Stanley, Cameron; Ferrari, Dave; Blakers, Andrew; Ratcliff, Tom
2016-09-01
In this paper we explore the use of non-imaging optics for rooftop solar concentrators. Specifically, we focus on compound parabolic concentrators (CPCs), which form an ideal shape for cylindrical thermal absorbers, and for linear PV cells (allowing the use of more expensive but more efficient cells). Rooftops are ideal surfaces for solar collectors as they face the sky and are generally free, unused space. Concentrating solar radiation adds thermodynamic value to thermal collectors (allowing the attainment of higher temperature) and can add efficiency to PV electricity generation. CPCs allow that concentration over the day without the need for tracking. Hence they have become ubiquitous in applications requiring low concentration.
Deep Space Network-Wide Portal Development: Planning Service Pilot Project
NASA Technical Reports Server (NTRS)
Doneva, Silviya
2011-01-01
The Deep Space Network (DSN) is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. DSN provides the vital two-way communications link that guides and controls planetary explorers, and brings back the images and new scientific information they collect. In an attempt to streamline operations and improve overall services provided by the Deep Space Network a DSN-wide portal is under development. The project is one step in a larger effort to centralize the data collected from current missions including user input parameters for spacecraft to be tracked. This information will be placed into a principal repository where all operations related to the DSN are stored. Furthermore, providing statistical characterization of data volumes will help identify technically feasible tracking opportunities and more precise mission planning by providing upfront scheduling proposals. Business intelligence tools are to be incorporated in the output to deliver data visualization.
NASA Technical Reports Server (NTRS)
Hablani, Hari B.
1993-01-01
This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted.
Design and Flood Control Assessment of 5MWp Fishing and Photovoltaic Power Project in Xinghua City
NASA Astrophysics Data System (ADS)
Guo, Liuchao; Hu, Xiaodong; Su, Yuyan; Wu, Peipei; Weng, Songgan
2017-12-01
In order to reduce coal consumption in Jiangsu Province and develop new energy sources, considering on the distribution of geology, solar energy resources, traffic and grid connection in Xinghua City, the aim is to determine the configuration of photovoltaic modules and photovoltaic array tracking mode, design photovoltaic array and layout scheme. But the project is a wading project, it is built in Dong Tan Lake polder I115, it needs scientific and reasonable evaluation to the effect of Dong Tan Lake’s flood storage and discharge. The results can provide guidance for similar engineering’s design.
Deep Space 1 is prepared for launch
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Payload Hazardous Servicing Facility remove a solar panel from Deep Space 1 as part of the preparations for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near- Earth asteroid, 1992 KD, has also been selected for a possible flyby.
1998-09-17
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility remove a solar panel from Deep Space 1 as part of the preparations for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby
The magnificent African eclipse
NASA Astrophysics Data System (ADS)
McGee, H. W.; James, N. D.
2001-08-01
The first total solar eclipse of the new millennium swept across central Africa on 2001 June 21, darkening the sky in a track which took in Angola, Zambia, Zimbabwe, Mozambique and Madagascar. Thousands of visitors from Europe, many of whom were disappointed at home in 1999, converged on the continent to view the event and were rewarded with a magnificent solar-maximum corona, seen for the most part in perfectly clear, dry transparent skies.
Selling solar energy as a cash crop
NASA Technical Reports Server (NTRS)
Brantley, L. W.
1978-01-01
The paper considers solar energy equipment which, besides supplying energy for farmstead needs, would convert excess energy to a transportable form to sell to a power company. It is suggested that a concentrating two-axis tracking spheroidal collector would cost as little as $5/sq ft if mass produced. The proposed system uses 7854 sq ft of collector area (set in about one acre of land), and the cost payback is estimated.
Tracking integration in concentrating photovoltaics using laterally moving optics.
Duerr, Fabian; Meuret, Youri; Thienpont, Hugo
2011-05-09
In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.
Solar energy development and application in Japan - An outsiders assessment
NASA Astrophysics Data System (ADS)
Knopp, E.
1982-04-01
The Sunshine Project was initiated in Japan in 1974 in order to develop energy resources to meet future needs. The solar program consists of three categories; solar home construction, the construction and operation of a 1000 kWe capacity solar thermal power generation plant, and the development of a photovoltaic system with a cost per watt reduced to 1/100 of the present cost. Low interest loans to promote the use of solar systems have resulted in the installation of one million solar collectors. Solar water heaters produced have a 2 sq m collection area and a 200 liters water storage capacity, and an evacuated tube collector with an efficiency of 64% has been developed. Work is being devoted to the production of a 50 times concentrating tracking circular Fresnel-type photovoltaic device, and a solar driven cooling system with a 5.35 kW capacity, which operates with a highly efficient freon vapor expander, has been developed. The problem of collected heat storage is being tested and assessed.
Ultraviolet studies of Cepheids
NASA Technical Reports Server (NTRS)
Boehm-Vitense, Erika
1992-01-01
We discuss whether with new evolutionary tracks we still have a problem fitting the Cepheids and their evolved companions on the appropriate evolutionary tracks. We find that with the Bertelli et al. tracks with convective overshoot by one pressure scale height the problem is essentially removed, though somewhat more mixing would give a better fit. By using the results of recent nonlinear hydrodynamic calculations, we find that we also have no problem matching the observed pulsation periods of the Cepheids with those expected from their new evolutionary masses, provided that Cepheids with periods less than 9 days are overtone pulsators. We investigate possible mass loss of Cepheids from UV studies of the companion spectrum of S Mus and from the ultraviolet spectra of the long period Cepheid l Carinae. For S Mus with a period of 9.6 days we derive an upper limit for the mass loss of M less than 10(exp -9) solar mass, if a standard velocity law is assumed for the wind. For l Carinae with a period of 35.5 days we find a probable mass loss of M is approximately 10(exp -5+/-2) solar mass.
McFee, R H
1975-07-01
The effects of random waviness, curvature, and tracking error of plane-mirror heliostats in a rectangular array around a central-receiver solar power system are determined by subdividing each mirror into 484 elements, assuming the slope of each element to be representative of the surface slope average at its location, and summing the contributions of all elements and then of all mirrors in the array. Total received power and flux density distribution are computed for a given sun location and set of array parameter values. Effects of shading and blocking by adjacent mirrors are included in the calculation. Alt-azimuth mounting of the heliostats is assumed. Representative curves for two receiver diameters and two sun locations indicate a power loss of 20% for random waviness, curvature, and tracking error of 0.1 degrees rms, 0.002 m(-1), and 0.5 degrees , 3sigma, respectively, for an 18.2-m diam receiver and 0.3 degrees rms, 0.005 m(-1), and greater than 1 degrees , respectively, for a 30.4-m diam receiver.
NASA Technical Reports Server (NTRS)
Pepin, R. O. (Editor); Eddy, J. A.; Merrill, R. B.
1980-01-01
Papers are presented concerning theories of solar variability and their consequences for luminosity, particle emission and magnetic field changes within the past 4.5 billion years, and on the records of such solar behavior in lunar, meteoritic and terrestrial materials. Specific topics include the neutrino luminosity of the sun, the relation of sunspots to the terrestrial climate of the past 100 years, solar modulation of galactic cosmic rays, the historical record of solar activity, C-14 variations in terrestrial and marine reservoirs, and solar particle fluxes as indicated by track, thermoluminescence and solar wind measurements in lunar rocks. Attention is also given to the spin-down of the solar interior through circulation currents and fluid instabilities, grain surface exposure models in planetary regoliths, rare gases in the solar wind, nitrogen isotopic variations in the lunar regolith, the influence of solar UV radiation on climate, and the pre-main sequence evolution of the sun and evidence of the primordial solar wind in the electromagnetic induction heating of the asteroids and moon.
Assessment of flywheel energy storage for spacecraft power systems
NASA Technical Reports Server (NTRS)
Rodriguez, G. E.; Studer, P. A.; Baer, D. A.
1983-01-01
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.
SHARPs - A Near-Real-Time Space Weather Data Product from HMI
NASA Astrophysics Data System (ADS)
Bobra, M.; Turmon, M.; Baldner, C.; Sun, X.; Hoeksema, J. T.
2012-12-01
A data product from the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO), called Space-weather HMI Active Region Patches (SHARPs), is now available through the SDO Joint Science Operations Center (JSOC) and the Virtual Solar Observatory. SHARPs are magnetically active regions identified on the solar disk and tracked automatically in time. SHARP data are processed within a few hours of the observation time. The SHARP data series contains active region-sized disambiguated vector magnetic field data in both Lambert Cylindrical Equal-Area and CCD coordinates on a 12 minute cadence. The series also provides simultaneous HMI maps of the line-of-sight magnetic field, continuum intensity, and velocity on the same ~0.5 arc-second pixel grid. In addition, the SHARP data series provides space weather quantities computed on the inverted, disambiguated, and remapped data. The values for each tracked region are computed and updated in near real time. We present space weather results for several X-class flares; furthermore, we compare said space weather quantities with helioseismic quantities calculated using ring-diagram analysis.
Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers
NASA Astrophysics Data System (ADS)
Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.
2018-05-01
This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption
NASA Astrophysics Data System (ADS)
Xu, Shengzhi; Chu, Ian; Zhao, Gengshen; Wang, Qingzhang
2008-03-01
When proceed photovoltaic power system design, engineer needs prepared model of PV cells to evaluate system response, capability performance, and stability, the DC model is not enough, but an accuracy AC model plays a big role. This paper talks first about the AC model of PV cells, and DC model is also introduced in simple. There is a PV controller example explaining the steps to do system simulation in this paper. Two equivalent circuit models are implemented with mixed-signal language verilog-a, one hardware language easy to use and having good speed and high accuracy. Both of two models include solar cell arrays, one buck switched mode DC-DC converter, and the maximum power point tracking algorithm. The difference between them is that Solar cell in one of two models is with ac small signal parameter, another is without. The simulation result is given in comparison. This paper's work shows that ac parameter plays large role in switch-mode PV power system, especially when the switch frequency is higher than 100kHz.
NASA Astrophysics Data System (ADS)
He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O'Neil, Daniel; Szymanski, Paul; Ei-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun
2017-07-01
Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers secure the two halves of the fairing that enclose the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers maneuver the second half of the fairing into place around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the two fairing segments close in around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the first half of the fairing is moved into place around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers help maneuver one segment of the fairing around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers check the placement of the first half of the fairing around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers (background) observe the lifting of the two fairing segments that will encapsulate the STEREO spacecraft (foreground). The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the twin observatories known as STEREO for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the twin observatories known as STEREO for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, one segment of the fairing is lifted toward the STEREO spacecraft in the foreground. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers help maneuver one segment of the fairing around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the twin observatories known as STEREO for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O’Neil, Daniel; Szymanski, Paul; EI-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun
2017-01-01
Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics. PMID:28685751
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.
Solar-System Tests of Gravitational Theories
NASA Technical Reports Server (NTRS)
Shapiro, Irwin I.
2005-01-01
This research is aimed at testing gravitational theory, primarily on an interplanetary scale and using mainly observations of objects in the solar system. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to support this model by placing tighter bounds on any departure from it. For this project, we have analyzed a combination of observational data with our model of the solar system, including planetary radar ranging, lunar laser ranging, and spacecraft tracking, as well as pulsar timing and pulsar VLBI measurements.
An initial comparative assessment of orbital and terrestrial central power systems
NASA Technical Reports Server (NTRS)
Caputo, R.
1977-01-01
Orbital solar power plants, which beam power to earth by microwave, are compared with ground-based solar and conventional baseload power plants. Candidate systems were identified for three types of plants and the selected plant designs were then compared on the basis of economic and social costs. The representative types of plant selected for the comparison are: light water nuclear reactor; turbines using low BTU gas from coal; central receiver with steam turbo-electric conversion and thermal storage; silicon photovoltaic power plant without tracking and including solar concentration and redox battery storage; and silicon photovoltaics.
Coronal Holes and Solar f -Mode Wave Scattering Off Linear Boundaries
NASA Astrophysics Data System (ADS)
Hess Webber, Shea A.
2016-11-01
Coronal holes (CHs) are solar atmospheric features that have reduced emission in the extreme ultraviolet (EUV) spectrum due to decreased plasma density along open magnetic field lines. CHs are the source of the fast solar wind, can influence other solar activity, and track the solar cycle. Our interest in them deals with boundary detection near the solar surface. Detecting CH boundaries is important for estimating their size and tracking their evolution through time, as well as for comparing the physical properties within and outside of the feature. In this thesis, we (1) investigate CHs using statistical properties and image processing techniques on EUV images to detect CH boundaries in the low corona and chromosphere. SOHO/EIT data is used to locate polar CH boundaries on the solar limb, which are then tracked through two solar cycles. Additionally, we develop an edge-detection algorithm that we use on SDO/AIA data of a polar hole extension with an approximately linear boundary. These locations are used later to inform part of the helioseismic investigation; (2) develop a local time-distance (TD) helioseismology technique that can be used to detect CH boundary signatures at the photospheric level. We employ a new averaging scheme that makes use of the quasi-linear topology of elongated scattering regions, and create simulated data to test the new technique and compare results of some associated assumptions. This method enhances the wave propagation signal in the direction perpendicular to the linear feature and reduces the computational time of the TD analysis. We also apply a new statistical analysis of the significance of differences between the TD results; and (3) apply the TD techniques to solar CH data from SDO/HMI. The data correspond to the AIA data used in the edge-detection algorithm on EUV images. We look for statistically significant differences between the TD results inside and outside the CH region. In investigation (1), we found that the polar CH areas did not change significantly between minima, even though the magnetic field strength weakened. The results of (2) indicate that TD helioseismology techniques can be extended to make use of feature symmetry in the domain. The linear technique used here produces results that differ between a linear scattering region and a circular scattering region, shown using the simulated data algorithm. This suggests that using usual TD methods on scattering regions that are radially asymmetric may produce results with signatures of the anisotropy. The results of (1) and (3) indicate that the TD signal within our CH is statistically significantly different compared to unrelated quiet sun results. Surprisingly, the TD results in the quiet sun near the CH boundary also show significant differences compared to the separate quiet sun.
Workshop on Past and Present Solar Radiation: The Record in Meteoritic and Lunar Regolith Material
NASA Technical Reports Server (NTRS)
Pepin, R. O. (Compiler); Mckay, D. S. (Compiler)
1986-01-01
The principal question addressed in the workshop was the extent to which asteroidal and lunar regoliths have collected and preserved, in meteoritic regolith breccias and in lunar soils and regolith breccias, a record of the flux, energy, and compositional history of the solar wind and solar flares. Six central discussion topics were identified. They are: (1)Trapped solar wind and flare gases, tracks, and micrometeorite pits in regolith components; (2)Comparison between lunar regolith breccias, meteoritic regolith breccias, and the lunar soil; (3)The special role of regolith breccias and the challenge of dating their times of compaction; (4)Implications of the data for the flux and compositional history of solar particle emission, composition, and physical mechanisms in the solar source regions, and the composition of the early nebula; (5)How and to what extent have records of incident radiation been altered in various types of grains; (6)Future research directions
Solar flare particles - Energy-dependent composition and relationship to solar composition
NASA Technical Reports Server (NTRS)
Crawford, H. J.; Price, P. B.; Cartwright, B. G.; Sullivan, J. D.
1975-01-01
Plastic and glass track detectors on rockets and Apollo spacecraft have been used to determine the composition of particles from He to Ni at energies from 0.1 to 50 MeV per nucleon in several solar flares of widely varying intensities. At low energies the composition of solar particles is enriched in heavy elements by an amount, relative to the asymptotic high-energy composition, that increases with atomic number from Z = 2 up to at least Z = 50, that decreases with energy, and that varies from flare to flare. At high energies (usually beyond an energy of 5 to 20 MeV per nucleon) the composition becomes independent of energy and, though somewhat variable from flare to flare, approximates the composition of the solar atmosphere. A table of abundances of the even-Z elements from He to Ni (plus N) in solar particles is constructed by averaging the asymptotic high-energy abundances in several flares.
A Python-based interface to examine motions in time series of solar images
NASA Astrophysics Data System (ADS)
Campos-Rozo, J. I.; Vargas Domínguez, S.
2017-10-01
Python is considered to be a mature programming language, besides of being widely accepted as an engaging option for scientific analysis in multiple areas, as will be presented in this work for the particular case of solar physics research. SunPy is an open-source library based on Python that has been recently developed to furnish software tools to solar data analysis and visualization. In this work we present a graphical user interface (GUI) based on Python and Qt to effectively compute proper motions for the analysis of time series of solar data. This user-friendly computing interface, that is intended to be incorporated to the Sunpy library, uses a local correlation tracking technique and some extra tools that allows the selection of different parameters to calculate, vizualize and analyze vector velocity fields of solar data, i.e. time series of solar filtergrams and magnetograms.
NASA Astrophysics Data System (ADS)
Kuchynka, Petr; Folkner, William M.; Konopliv, Alex S.; Parker, Timothy J.; Park, Ryan S.; Le Maistre, Sebastien; Dehant, Veronique
2014-02-01
The Opportunity Mars Exploration Rover remained stationary between January and May 2012 in order to conserve solar energy for running its survival heaters during martian winter. While stationary, extra Doppler tracking was performed in order to allow an improved estimate of the martian precession rate. In this study, we determine Mars rotation by combining the new Opportunity tracking data with historic tracking data from the Viking and Pathfinder landers and tracking data from Mars orbiters (Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter). The estimated rotation parameters are stable in cross-validation tests and compare well with previously published values. In particular, the Mars precession rate is estimated to be -7606.1 ± 3.5 mas/yr. A representation of Mars rotation as a series expansion based on the determined rotation parameters is provided.
Summary of the orbit determination of NOZOMI spacecraft for all the mission period
NASA Astrophysics Data System (ADS)
Yoshikawa, Makoto; Kawaguchi, Jun'Ichiro; Yamakawa, Hiroshi; Kato, Takaji; Ichikawa, Tsutomu; Ohnishi, Takafumi; Ishibashi, Shiro
2005-07-01
Japanese first Mars explorer NOZOMI, which was launched in July 1998, suffered several problems during the operation period of more than five years. It could have reached near Mars at the end of 2003, but it was not put into the orbit around Mars. Although NOZOMI was not able to execute its main mission, it provided us a lot of good experiences from the point of the orbit determination of spacecraft. One of the most difficult works was the orbit determination for the period without the telemetry. In this period, for the most of the time the high gain antenna did not point to the earth because of a constraint of the attitude. Therefore, the quality of the tracking data was not good, and for some period it was impossible to get the tracking data at all. Under such critical condition, we managed to get the solution of the orbit, and in a near-miraculous way, we were able to control NOZOMI and execute two earth swingbys successfully. Other issues related to the orbit determination are the spin modulation, the solar radiation pressure, the small force related to the attitude change, and the solar conjunction. We tried to solve these issues by the conventional way using range and Doppler data. However, we also tried the new method, that is the orbit determination by using the Delta-VLBI method (VLBI: Very Long Baseline Interferometry). In addition to this, we tried optical observations of NOZOMI at the earth swingbys.
Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.
Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J
2008-06-01
Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.
A generic sun-tracking algorithm for on-axis solar collector in mobile platforms
NASA Astrophysics Data System (ADS)
Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han; Ho, Ming-Cheng; Yap, See-Hao; Heng, Chun-Kit; Lee, Jer-Vui; King, Yeong-Jin
2015-04-01
This paper proposes a novel dynamic sun-tracking algorithm which allows accurate tracking of the sun for both non-concentrated and concentrated photovoltaic systems located on mobile platforms to maximize solar energy extraction. The proposed algorithm takes not only the date, time, and geographical information, but also the dynamic changes of coordinates of the mobile platforms into account to calculate the sun position angle relative to ideal azimuth-elevation axes in real time using general sun-tracking formulas derived by Chong and Wong. The algorithm acquires data from open-loop sensors, i.e. global position system (GPS) and digital compass, which are readily available in many off-the-shelf portable gadgets, such as smart phone, to instantly capture the dynamic changes of coordinates of mobile platforms. Our experiments found that a highly accurate GPS is not necessary as the coordinate changes of practical mobile platforms are not fast enough to produce significant differences in the calculation of the incident angle. On the contrary, it is critical to accurately identify the quadrant and angle where the mobile platforms are moving toward in real time, which can be resolved by using digital compass. In our implementation, a noise filtering mechanism is found necessary to remove unexpected spikes in the readings of the digital compass to ensure stability in motor actuations and effectiveness in continuous tracking. Filtering mechanisms being studied include simple moving average and linear regression; the results showed that a compound function of simple moving average and linear regression produces a better outcome. Meanwhile, we found that a sampling interval is useful to avoid excessive motor actuations and power consumption while not sacrificing the accuracy of sun-tracking.
Enrichment of heavy nuclei in the April 17, 1972 solar flare
NASA Technical Reports Server (NTRS)
Fleischer, R. L.; Hart, H. R., Jr.; Renshaw, A.; Woods, R. T.
1974-01-01
Cosmic ray nuclei from the April 17, 1972 solar flare were recorded in polycarbonate plastic and phosphate glass track detectors exposed on the Apollo 16 flight. The energy spectra of iron group nuclei and of carbon and heavier nuclei were measured down to about 0.02 MeV/nucleon, revealing that the enrichment of iron relative to carbon and heavier nuclei increases markedly in this very low energy region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulkerson, P.L.
1988-02-02
In a structure having a roof with a skylight including a glass panel which transmits solar energy, a shutter arrangement supported on the roof is described comprising an insulative flat one-piece solid shutter in the form of a panel selectively and linearly slidable on tracks which conceal the side edges thereof from a position blocking transmittal of solar energy through the glass panel of the skylight into an area within the structure to a position permitting transmittal of solar energy through the glass panel of the skylight into the area within the structure. The skylight presents a space between themore » glass panel and the selectively and linearly slidable insulative flat one-piece solid shutter, where the latter serves as the selective inner wall of the space contiguous with the area within the structure and the glass panel serves as the fixed outer wall of the space, where temperature responsive means is disposed within the space and in direct engagement with the inner surface of the glass panel, where the temperature responsive means is a black thermocouple operating a motor in a driving relationship with the insulative flat one-piece solid shutter. The insulative flat one-piece solid shutter is supported by a cable secured to a rotatable shaft controlled by the motor, where bi-directional movement of the rotatable shaft achieves raising and lowering of the insulative flat one-piece solid shutter to each of the solar energy blocking and transmittal positions, and where the insulative flat one-piece solid shutter includes a reflective surface facing the skylight and a decorative surface facing the area within the structure.« less
NASA Technical Reports Server (NTRS)
Cebula, Richard P.; Deland, Matthew T.; Schlesinger, Barry M.
1992-01-01
The Mg II core to wing index was first developed for the Nimbus 7 solar backscatter ultraviolet (SBUV) instrument as an indicator of solar variability on both solar 27-day rotational and solar cycle time scales. This work extends the Mg II index to the NOAA 9 SBUV 2 instrument and shows that the variations in absolute value between Mg II index data sets caused by interinstrument differences do not affect the ability to track temporal variations. The NOAA 9 Mg II index accurately represents solar rotational modulation but contains more day-to-day noise than the Nimbus 7 Mg II index. Solar variability at other UV wavelengths is estimated by deriving scale factors between the Mg II index rotational variations and at those selected wavelengths. Based on the 27-day average of the NOAA 9 Mg II index and the NOAA 9 scale factors, the solar irradiance change from solar minimum in September 1986 to the beginning of the maximum of solar cycle 22 in 1989 is estimated to be 8.6 percent at 205 nm, 3.5 percent at 250 nm, and less than 1 percent beyond 300 nm.
Solar maximum: Solar array degradation
NASA Technical Reports Server (NTRS)
Miller, T.
1985-01-01
The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurup, Parthiv; Turchi, Craig
2015-11-01
After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies ofmore » interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.« less
The 1-kW solar Stirling experiment
NASA Technical Reports Server (NTRS)
Giandomenico, A.
1981-01-01
The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.
An analytical and experimental evaluation of the plano-cylindrical Fresnel lens solar concentrator
NASA Technical Reports Server (NTRS)
Hastings, L. J.; Allums, S. L.; Cosby, R. M.
1976-01-01
Plastic Fresnel lenses for solar concentration are attractive because of potential for low-cost mass production. An analytical and experimental evaluation of line-focusing Fresnel lenses with application potential in the 200 to 370 C range is reported. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves-down lens. Experimentation was based primarily on a 56 cm-wide lens with f-number 1.0. A sun-tracking heliostat provided a non-moving solar source. Measured data indicated more spreading at the profile base than analytically predicted. The measured and computed transmittances were 85 and 87% respectively. Preliminary testing with a second lens (1.85 m) indicated that modified manufacturing techniques corrected the profile spreading problem.
Real-time Kp predictions from ACE real time solar wind
NASA Astrophysics Data System (ADS)
Detman, Thomas; Joselyn, Joann
1999-06-01
The Advanced Composition Explorer (ACE) spacecraft provides nearly continuous monitoring of solar wind plasma, magnetic fields, and energetic particles from the Sun-Earth L1 Lagrange point upstream of Earth in the solar wind. The Space Environment Center (SEC) in Boulder receives ACE telemetry from a group of international network of tracking stations. One-minute, and 1-hour averages of solar wind speed, density, temperature, and magnetic field components are posted on SEC's World Wide Web page within 3 to 5 minutes after they are measured. The ACE Real Time Solar Wind (RTSW) can be used to provide real-time warnings and short term forecasts of geomagnetic storms based on the (traditional) Kp index. Here, we use historical data to evaluate the performance of the first real-time Kp prediction algorithm to become operational.
A verified technique for calibrating space solar cells
NASA Technical Reports Server (NTRS)
Anspaugh, Bruce
1987-01-01
Solar cells have been flown on high-altitude balloons for over 24 years, to produce solar cell standards that can be used to set the intensity of solar simulators. The events of a typical balloon calibration flight are reported. These are: the preflight events, including the preflight cell measurements and the assembly of the flight cells onto the solar tracker; the activities at the National Scientific Balloon Facility in Palestine, Texas, including the preflight calibrations, the mating of the tracker and cells onto the balloon, preparations for launch, and the launch; the payload recovery, which includes tracking the balloon by aircraft, terminating the flight, and retrieving the payload. In 1985, the cells flow on the balloon were also flown on a shuttle flight and measured independently. The two measurement methods are compared and shown to agree within 1 percent.
The Distribution and Behaviour of Photospheric Magnetic Features
NASA Astrophysics Data System (ADS)
Parnell, C. E.; Lamb, D. A.; DeForest, C. E.
2014-12-01
Over the past two decades enormous amounts of data on the magnetic fields of the solar photosphere have been produced by both ground-based (Kitt Peak & SOLIS), as well as space-based instruments (MDI, Hinode & HMI). In order to study the behaviour and distribution of photospheric magnetic features, efficient automated detection routines need to be utilised to identify and track magnetic features. In this talk, I will discuss the pros and cons of different automated magnetic feature identification and tracking routines with a special focus on the requirements of these codes to deal with the large data sets produced by HMI. By patching together results from Hinode and MDI (high-res & full-disk), the fluxes of magnetic features were found to follow a power-law over 5 orders of magnitude. At the strong flux tail of this distribution, the power law was found to fall off at solar minimum, but was maintained over all fluxes during solar maximum. However, the point of deflection in the power-law distribution occurs at a patching point between instruments and so questions remain over the reasons for the deflection. The feature fluxes determined from the superb high-resolution HMI data covers almost all of the 5 orders of magnitude. Considering both solar mimimum and solar maximum HMI data sets, we investigate whether the power-law over 5 orders of magnitude in flux still holds. Furthermore, we investigate the behaviour of magnetic features in order to probe the nature of their origin. In particular, we analyse small-scale flux emergence events using HMI data to investigate the existence of a small-scale dynamo just below the solar photosphere.
Twisting and Writhing with George Ellery Hale
NASA Astrophysics Data System (ADS)
Canfield, Richard C.
2013-06-01
Early in his productive career in astronomy, George Ellery Hale developed innovative solar instrumentation that allowed him to make narrow-band images. Among the solar phenomena he discovered were sunspot vortices, which he attributed to storms akin to cyclones in our own atmosphere. Using the concept of magnetic helicity, physicists and mathematicians describe the topology of magnetic fields, including twisting and writhing. Our contemporary understanding of Hale's vortices as a consequence of large-scale twist in sunspot magnetic fields hinges on a key property of helicity: conservation. I will describe the critical role that this property plays, when applied to twist and writhe, in a fundamental aspect of global solar magnetism: the hemispheric and solar cycle dependences of active region electric currents with respect to magnetic fields. With the advent of unbroken sequences of high-resolution magnetic images, such as those presently available from the Helioseismic and Magnetic Imager on Solar Dynamics Observatory, the flux of magnetic helicity through the photosphere can be observed quantitatively. As magnetic flux tubes buoy up through the convection zone, buffeted and shredded by turbulence, they break up into fragments by repeated random bifurcation. We track these rising flux fragments in the photosphere, and calculate the flux of energy and magnetic helicity there. Using a quantitative model of coronal currents, we also track connections between these fragments to calculate the energy and magnetic helicity stored at topological interfaces that are in some ways analogous to the storage of stress at faults in the Earth's crust. Comparison of these values to solar flares and interplanetary coronal mass ejections implies that this is the primary storage mechanism for energy and magnetic helicity released in those phenomena, and suggests a useful tool for quantitative prediction of geomagnetic storms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Seel, Joachim; LaCommare, Kristina Hamachi
The utility-scale solar sector has led the overall U.S. solar market in terms of installed capacity since 2012. In 2016, the utility-scale sector installed more than 2.5 times as much new capacity as did the residential and commercial sectors combined, and is expected to maintain its dominant position for at least another five years. This report—the fifth edition in an ongoing annual series—provides data-driven analysis of the utility-scale solar project fleet in the United States. We analyze not just installed project prices, but also operating costs, capacity factors, and power purchase agreement ("PPA") prices from a large sample of utility-scalemore » PV and CSP projects throughout the United States. Highlights from this year's edition include the following: Installation Trends: The use of solar tracking devices dominated 2016 installations, at nearly 80% of all new capacity. In a reflection of the ongoing geographic expansion of the market beyond California and the Southwest, the median long-term average insolation level at newly built project sites declined again in 2016. While new fixed-tilt projects are now seen predominantly in less-sunny regions, tracking projects are increasingly pushing into these same regions. The median inverter loading ratio has stabilized in 2016 at 1.3 for both tracking and fixed-tilt projects. Installed Prices: Median installed PV project prices within a sizable sample have fallen by two-thirds since the 2007-2009 period, to $2.2/WAC (or $1.7/WDC) for projects completed in 2016. The lowest 20th percentile of projects within our 2016 sample were priced at or below $2.0/WAC, with the lowest-priced projects around $1.5/WAC. Overall price dispersion across the entire sample and across geographic regions decreased significantly in 2016. Operation and Maintenance (“O&M”) Costs: What limited empirical O&M cost data are publicly available suggest that PV O&M costs were in the neighborhood of $18/kWAC-year, or $8/MWh, in 2016. These numbers include only those costs incurred to directly operate and maintain the generating plant. Capacity Factors: The cumulative net AC capacity factors of individual PV projects range widely, from 15.4% to 35.5%, with a sample median of 26.3%. This project-level variation is based on a number of factors, including the strength of the solar resource at the project site, whether the array is mounted at a fixed-tilt or on a tracking mechanism, the inverter loading ratio, degradation, and curtailment. Changes in at least the first three of these factors drove mean capacity factors higher from 2010- to 2013-vintage projects, where they’ve remained fairly steady among both 2014- and 2015-vintage projects as an ongoing increase in the prevalence of tracking has been offset by a build-out of lower resource sites. Meanwhile, several of the newer CSP projects in the United States are struggling to match long-term performance expectations. PPA Prices: Driven by lower installed project prices and improving capacity factors, levelized PPA prices for utility-scale PV have fallen dramatically over time. Most recent PPAs in our sample are priced at or below $50/MWh levelized, with a few priced as aggressively as ~$30/MWh. Though impressive in pace and scale, these falling PPA prices have been offset to some degree by declining wholesale market value within high penetration markets like California, where in 2016 a MWh of solar generation was worth just 83% of a MWh of flat, round-the-clock generation. At the end of 2016, there were at least 121.4 GW of utility-scale solar power capacity within the interconnection queues across the nation. The growth within these queues is widely distributed across all regions of the country: California and the Southeast each account for 23% of the 83.3 GW of solar that first entered the queues in 2016, followed by the Northeast (17%), the Southwest (16%), the Central region (12%), Texas (6%) and the Northwest (3%). The widening geographic distribution of solar projects is a clear sign that the utility-scale market is maturing and expanding outside of its traditional high-insolation comfort zones.« less
2. West portal of Tunnel 27, contextual view from track ...
2. West portal of Tunnel 27, contextual view from track level east of Tunnel 26 (HAER CA-202), 210mm lens. Note solar panel providing signal power, evidence of continuing updating of technology by the railroad. Single-light searchlight-type signal was typical system-wide on the Southern Pacific prior to the 1980s merger with the Denver & Rio Grande Western. - Central Pacific Transcontinental Railroad, Tunnel No. 27, Milepost 133.9, Applegate, Placer County, CA
Chan, Ying-Chi; Brugge, Martin; Tibbitts, T. Lee; Dekinga, Anne; Porter, Ron; Klaassen, Raymond H. G.; Piersma, Theunis
2016-01-01
Small solar-powered satellite transmitters and GPS data loggers enable continuous, multi-year, and global tracking of birds. What is lacking, however, are reliable methods to attach these tracking devices to small migratory birds so that (1) flight performance is not impacted and (2) tags are retained during periods of substantial mass change associated with long-distance migration. We developed a full-body harness to attach tags to Red Knots (Calidris canutus), a medium-sized shorebird (average mass 124 g) that undertakes long-distance migrations. First, we deployed dummy tags on captive birds and monitored them over a complete migratory fattening cycle (February–July 2013) during which time they gained and lost 31–110 g and underwent a pre-alternate moult of body feathers. Using each individual’s previous year fattening and moult data in captivity as controls, we compared individual mass and moult differences between years between the tagged and reference groups, and concluded that the attachment did not impact mass and moult cycles. However, some birds shed feathers under the tags and under the polyester harness line commonly used in avian harnesses. Feather shedding was alleviated by switching to smoothed-bottom tags and monofilament harness lines. To field-trial this design, we deployed 5-g satellite transmitters on ten Red Knots released on 3 October 2013 in the Dutch Wadden Sea. Bird movements and tag performance appeared normal. However, nine tags stopped transmitting 11–170 days post-release which was earlier than expected. We attribute this to bird mortality rather than failure of the attachments or transmitters and suggest that the extra weight and drag caused by the tag and its feather-blocking shield increased the chance of depredation by the locally common Peregrine Falcons (Falco peregrinus). Our results demonstrate that species- and place-specific contexts can strongly determine tagging success. While captive trials are an important first step in developing an attachment method, field trials are essential to fully assess attachment designs.
A computer program to determine the possible daily release window for sky target experiments
NASA Technical Reports Server (NTRS)
Michaud, N. H.
1973-01-01
A computer program is presented which is designed to determine the daily release window for sky target experiments. Factors considered in the program include: (1) target illumination by the sun at release time and during the tracking period; (2) look angle elevation above local horizon from each tracking station to the target; (3) solar depression angle from the local horizon of each tracking station during the experimental period after target release; (4) lunar depression angle from the local horizon of each tracking station during the experimental period after target release; and (5) total sky background brightness as seen from each tracking station while viewing the target. Program output is produced in both graphic and data form. Output data can be plotted for a single calendar month or year. The numerical values used to generate the plots are furnished to permit a more detailed review of the computed daily release windows.
A Refractory Inclusion Returned by Stardust from Comet 81P/Wild 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, S B; Joswiak, D J; Ishii, H A
2008-05-20
Among the samples returned from comet 81P/Wild 2 by the Stardust spacecraft is a suite of particles from one impact track (Track 25) that are Ca-, Al-rich and FeO-free. We studied three particles from this track that range in size from 5.3 x 3.2 {micro}m to 15 x 10 {micro}m. Scanning and transmission electron microscopy show that they consist of very fine-grained (from {approx}0.5 to {approx}2 {micro}m) Al-rich, Ti-bearing and Ti-free clinopyroxene, Mg-Al spinel, anorthite, perovskite, and osbornite (TiN). In addition to these phases, the terminal particle, named 'Inti', also contains melilite. All of these phases, with the exception ofmore » osbornite, are common in refractory inclusions and are predicted to condense at high temperature from a gas of solar composition. Osbornite, though very rare, has also been found in meteoritic refractory inclusions, and could have formed in a region of the nebula where carbon became enriched relative to oxygen compared to solar composition. Compositions of Ti-pyroxene in Inti are similar, but not identical, to those of fassaite from Allende inclusions. Electron energy loss spectroscopy shows that Ti-rich pyroxene in Inti has Ti{sup 3+}/Ti{sup 4+} within the range of typical meteoritic fassaite, consistent with formation under reducing conditions comparable to those of a system of solar composition. Inti is {sup 16}O-rich, with {delta}{sup 18}O {approx} {delta}{sup 17}O {approx} 40{per_thousand}, like unaltered phases in refractory inclusions and refractory IDPs. With grain sizes, mineralogy, mineral chemistry, and an oxygen isotopic composition like those of refractory inclusions, we conclude that Inti is a refractory inclusion that formed in the inner solar nebula. Identification of a particle that formed in the inner Solar System among the comet samples demonstrates that there was transport of materials from the inner to the outer nebula, probably either in a bipolar outflow or by turbulence.« less
Greenland Inland Traverse (GrIT): 2010 Mobility Performance and Implications
2011-10-01
solar irradiance were also measured. The right-hand bladder sled (Fig. 5), designated Sled2, had black- rubber covers ( EPDM roofing material) wrapped...CRREL TR-11-16 ix tion only). Sled2 had thin, black- rubber covers over the bladders to in- crease solar gain. Some performance improvement...Pole Station from McMurdo Station, a distance of 1030 miles, using large, rubber -track tractors to haul fuel and cargo over the snow on flexible