Payne, G A; Hagler, W M
1983-01-01
Four amino acids were used as sole nitrogen sources or as supplements to ammonium sulfate, and casein and ammonium sulfate were used as sole nitrogen sources to examine their effects on aflatoxin production by Aspergillus parasiticus NRRL 2999 and Aspergillus flavus 3357 grown on synthetic liquid media. In general, when proline, asparagine, casein, and ammonium sulfate were used as sole nitrogen sources, they supported more growth and toxin production than tryptophan or methionine. However, proline stimulated more toxin production per gram of mycelium in stationary cultures than the other nitrogen sources, including the amino acid asparagine, which is generally recognized as supporting good aflatoxin production. The exact responses to individual nitrogen sources were influenced by the species of fungus and whether cultures were stationary or shaken. In shake cultures, but not in stationary cultures, increased growth was generally associated with increased toxin production. PMID:6416168
Biodegradation of Nitriles in Shale Oil
Aislabie, Jackie; Atlas, Ronald M.
1988-01-01
Enrichment cultures were obtained, after prolonged incubation on a shale oil as the sole source of nitrogen, that selectively degraded nitriles. Capillary gas chromatographic analyses showed that the mixed microbial populations in the enrichments degraded the homologous series of aliphatic nitriles but not the aliphatic hydrocarbons, aromatic hydrocarbons, or heterocyclic-nitrogen compounds found in this oil. Time course studies showed that lighter nitriles were removed more rapidly than higher-molecular-weight nitriles. A Pseudomonas fluorescens strain isolated from an enrichment, which was able to completely utilize the individual nitriles undecyl cyanide and undecanenitrile as sole sources of carbon and nitrogen, was unable to attack stearonitrile when provided alone as the growth substrate. A P. aeruginosa strain, also isolated from one of the enrichments, used nitriles but not aliphatic or aromatic hydrocarbons when the oil was used as a sole nitrogen source. However, when the shale oil was used as the sole source of carbon, aliphatic hydrocarbons in addition to nitriles were degraded but aromatic hydrocarbons were still not attacked by this P. aeruginosa strain. PMID:16347731
Kinzel, J J; Winston, M K; Bhattacharjee, J K
1983-01-01
Wild-type and saccharopine dehydrogenaseless mutant strains of Rhodotorula glutinis grew in minimal medium containing lysine as the sole nitrogen source and simultaneously accumulated, in the culture supernatant, large amounts of a product identified as alpha-aminoadipic-delta-semialdehyde. The saccharopine dehydrogenase and pipecolic acid oxidase levels remained unchanged in wild-type cells grown in the presence of ammonium or lysine as the nitrogen source. Lysine-alpha-ketoglutarate aminotransferase activity was demonstrated in ammonium-grown cells. This activity was depressed in cells grown in the presence of lysine as the sole source of nitrogen. PMID:6408065
Garzón, A; Li, J; Flores, A; Casadesus, J; Stewart, V
1992-01-01
Selection for chlorate resistance yields mol (formerly chl) mutants with defects in molybdenum cofactor synthesis. Complementation and genetic mapping analyses indicated that the Klebsiella pneumoniae mol genes are functionally homologous to those of Escherichia coli and occupy analogous genetic map positions. Hypoxanthine utilization in other organisms requires molybdenum cofactor as a component of xanthine dehydrogenase, and thus most chlorate-resistant mutants cannot use hypoxanthine as a sole source of nitrogen. Surprisingly, the K. pneumoniae mol mutants and the mol+ parent grew equally well with hypoxanthine as the sole nitrogen source, suggesting that K. pneumoniae has a molybdenum cofactor-independent pathway for hypoxanthine utilization. PMID:1400180
Müller, Elisabeth; Schüssler, Walter; Horn, Harald; Lemmer, Hilde
2013-08-01
Potential aerobic biodegradation mechanisms of the widely used polar, low-adsorptive sulfonamide antibiotic sulfamethoxazole (SMX) were investigated in activated sludge at bench scale. The study focused on (i) SMX co-metabolism with acetate and ammonium nitrate and (ii) SMX utilization when present as the sole carbon and nitrogen source. With SMX adsorption being negligible, elimination was primarily based on biodegradation. Activated sludge was able to utilize SMX both as a carbon and/or nitrogen source. SMX biodegradation was enhanced when a readily degradable energy supply (acetate) was provided which fostered metabolic activity. Moreover, it was raised under nitrogen deficiency conditions. The mass balance for dissolved organic carbon showed an incomplete SMX mineralization with two scenarios: (i) with SMX as a co-substrate, 3-amino-5-methyl-isoxazole represented the main stable metabolite and (ii) SMX as sole carbon and nitrogen source possibly yielded hydroxyl-N-(5-methyl-1,2-oxazole-3-yl)benzene-1-sulfonamide as a further metabolite. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source
NASA Technical Reports Server (NTRS)
Henry, L. T.; Raper, C. D. Jr
1989-01-01
When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.
Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5
NASA Astrophysics Data System (ADS)
Cai, Jinling; Wei, Ying; Zhao, Yupeng; Pan, Guanghua; Wang, Guangce
2012-07-01
The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.2 of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH{4/+}-N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.
French, Christopher E.; Nicklin, Stephen; Bruce, Neil C.
1998-01-01
Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water. PMID:9687442
Stenuit, Ben; Eyers, Laurent; Rozenberg, Raoul; Habib-Jiwan, Jean-Louis; Agathos, Spiros N.
2006-01-01
Escherichia coli grew aerobically with 2,4,6-trinitrotoluene (TNT) as sole nitrogen source and caused TNT's partial denitration. This reaction was enhanced in nongrowing cell suspensions with 0.516 mol nitrite released per mol TNT. Cell extracts denitrated TNT in the presence of NAD(P)H. Isomers of amino-dimethyl-tetranitrobiphenyl were detected and confirmed with U-15N-labeled TNT. PMID:17012591
Thompson, Karen T.; Crocker, Fiona H.; Fredrickson, Herbert L.
2005-01-01
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp. KTR4 and Gordonia sp. KTR9. The physiology of each strain was characterized with respect to the rates of RDX degradation and [U-14C]RDX mineralization when RDX was supplied as a sole carbon and nitrogen source in the presence and absence of competing carbon and nitrogen sources. Strains KTR4 and KTR9 degraded 180 μM RDX within 72 h when RDX served as the only added carbon and nitrogen source while growing to total protein concentrations of 18.6 and 16.5 μg/ml, respectively. Mineralization of [U-14C]RDX to 14CO2 was 30% by strain KTR4 and 27% by KTR9 when RDX was the only added source of carbon and nitrogen. The addition of (NH4)2SO4 greatly inhibited KTR9's degradation of RDX but had little effect on that of KTR4. These are the first two pure bacterial cultures isolated that are able to use RDX as a sole carbon and nitrogen source. These two genera possess different physiologies with respect to RDX mineralization, and each can serve as a useful microbiological model for the study of RDX biodegradation with regard to physiology, biochemistry, and genetics. PMID:16332812
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, C.E.; Bruce, N.C.; Nicklin, S.
1998-08-01
Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia colimore » expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.« less
Boualem, Khadidja; Labrie, Steve; Gervais, Patrick; Waché, Yves; Cavin, Jean-François
2016-02-01
To study the ability of a commercial Penicillium camemberti strain, used for Camembert type cheese ripening, to produce conidia during growth in liquid culture (LC), in media containing different sources of nitrogen as, industrially, conidia are produced by growth at the surface of a solid state culture because conidiation in stirred submerged aerobic LC is not known. In complex media containing peptic digest of meat, hyphae ends did not differentiate into phialides and conidia. Contrarily, in a synthetic media containing KNO3 as sole nitrogen source, hyphae ends differentiated into phialides producing 0.5 × 10(7) conidia/ml. Conidia produced in LC were 25 % less hydrophobic than conidia produced in solid culture, and this correlates with a seven-times-lower expression of the gene rodA encoding hydrophobin RodA in the mycelium grown in LC. Conidiation of P. camembertii is stimulated in iquid medium containing KNO3 as sole source of nitrogen and therefore opens up opportunities for using liquid medium in commercial productions.
Liu, Feng; Tian, Yu; Ding, Yi; Li, Zhipeng
2016-11-01
Wastewater primary sedimentation sludge was prepared into fermentation liquid as denitrification carbon source, and the main components of fermentation liquid was short-chain volatile fatty acids. Meanwhile, the acetic acid and propionic acid respectively accounted for about 29.36% and 26.56% in short-chain volatile fatty acids. The performance of fermentation liquid, methanol, acetic acid, propionic acid and glucose used as sole carbon source were compared. It was found that the denitrification rate with fermentation liquid as carbon source was 0.17mgNO3(-)-N/mg mixed liquor suspended solid d, faster than that with methanol, acetic acid, and propionic acid as sole carbon source, and lower than that with glucose as sole carbon source. For the fermentation liquid as carbon source, the transient accumulation of nitrite was insignificantly under different initial total nitrogen concentration. Therefore, the use of fermentation liquid for nitrogen removal could improve denitrification rate, and reduce nitrite accumulation in denitrification process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thong-On, Arunee; Suzuki, Katsuyuki; Noda, Satoko; Inoue, Jun-ichi; Kajiwara, Susumu; Ohkuma, Moriya
2012-01-01
Recycling of the nitrogenous waste uric acid (UA) of wood-feeding termites by their gut bacteria is one of the significant aspects of symbiosis for the conservation of nitrogen sources. Diverse anaerobic UA-degrading bacteria comprising 16 species were isolated from the gut of eight termite species, and were assigned to Clostridia, Enterobacteriaceae, and low G+C Gram-positive cocci. UA-degrading Clostridia had never been isolated from termite guts. UA-degrading ability was sporadically distributed among phylogenetically various culturable anaerobic bacteria from termite guts. A strain of Clostridium sp., which was commonly isolated from three termite species and represented a probable new species in cluster XIVa of clostridia, utilized UA as a nitrogen source but not as a sole carbon and energy source. This feature is in clear contrast to that of well-studied purinolytic clostridia or previously isolated UA degraders from termite guts, which also utilize UA as a sole carbon and energy source. Ammonia is the major nitrogenous product of UA degradation. Various purines stimulated the growth of this strain when added to an otherwise growth-limiting, nitrogen poor medium. The bacterial species involved the recycling of UA nitrogen in the gut microbial community of termites are more diverse in terms of both taxonomy and nutritional physiology than previously recognized. PMID:22791052
S5 Lipase: an organic solvent tolerant enzyme.
Rahman, Raja Noor Zaliha Abdul; Baharum, Syarul Nataqain; Salleh, Abu Bakar; Basri, Mahiran
2006-12-01
In this study, an organic solvent tolerant bacterial strain was isolated. This strain was identified as Pseudomonas sp. strain S5, and was shown to degrade BTEX (Benzene, Toluene, Ethyl-Benzene, and Xylene). Strain S5 generates an organic solvent-tolerant lipase in the late logarithmic phase of growth. Maximum lipase production was exhibited when peptone was utilized as the sole nitrogen source. Addition of any of the selected carbon sources to the medium resulted in a significant reduction of enzyme production. Lower lipase generation was noted when an inorganic nitrogen source was used as the sole nitrogen source. This bacterium hydrolyzed all tested triglycerides and the highest levels of production were observed when olive oil was used as a natural triglyceride. Basal medium containing Tween 60 enhanced lipase production to the most significant degree. The absence of magnesium ions (Mg2+) in the basal medium was also shown to stimulate lipase production. Meanwhile, an alkaline earth metal ion, Na+, was found to stimulate the production of S5 lipase.
He, Tengxia; Xie, Deti; Li, Zhenlun; Ni, Jiupai; Sun, Quan
2017-09-01
The ability of Arthrobacter arilaitensis Y-10 for nitrogen removal from simulated wastewater was studied. Results showed that ammonium was the best inorganic nitrogen for strain Y-10's cell growth, which could also promote nitrate reduction. Approximately 100.0% of ammonium was removed in the nitrogen removal experiments. The nitrate removal efficiency was 73.3% with nitrate as sole nitrogen source, and then the nitrate efficiency was increased to 85.3% and 100.0% with ammonium and nitrate (both about 5 or 100mg/L) as the mixed nitrogen sources. Nitrite accumulation was observed in presence of ammonium and nitrate. When the concentration of sole nitrite nitrogen was 10.31mg/L, the nitrite removal efficiency was 100.0%. Neither ammonium nor nitrate was accumulated during the whole experimental process. All experimental results indicated that A. arilaitensis Y-10 could remove ammonium, nitrate and nitrite at 15°C from wastewater, and could also perform simultaneous nitrification and denitrification under aerobic condition. Copyright © 2017. Published by Elsevier Ltd.
Xiong, Yi; Wu, Vincent W.; Lubbe, Andrea; ...
2017-05-03
In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26more » mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yi; Wu, Vincent W.; Lubbe, Andrea
In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26more » mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution.« less
Xiong, Yi; Qin, Lina; Kennedy, Megan; Bauer, Diane; Barry, Kerrie; Northen, Trent R.; Grigoriev, Igor V.
2017-01-01
In Neurospora crassa, the transcription factor COL-26 functions as a regulator of glucose signaling and metabolism. Its loss leads to resistance to carbon catabolite repression. Here, we report that COL-26 is necessary for the expression of amylolytic genes in N. crassa and is required for the utilization of maltose and starch. Additionally, the Δcol-26 mutant shows growth defects on preferred carbon sources, such as glucose, an effect that was alleviated if glutamine replaced ammonium as the primary nitrogen source. This rescue did not occur when maltose was used as a sole carbon source. Transcriptome and metabolic analyses of the Δcol-26 mutant relative to its wild type parental strain revealed that amino acid and nitrogen metabolism, the TCA cycle and GABA shunt were adversely affected. Phylogenetic analysis showed a single col-26 homolog in Sordariales, Ophilostomatales, and the Magnaporthales, but an expanded number of col-26 homologs in other filamentous fungal species. Deletion of the closest homolog of col-26 in Trichoderma reesei, bglR, resulted in a mutant with similar preferred carbon source growth deficiency, and which was alleviated if glutamine was the sole nitrogen source, suggesting conservation of COL-26 and BglR function. Our finding provides novel insight into the role of COL-26 for utilization of starch and in integrating carbon and nitrogen metabolism for balanced metabolic activities for optimal carbon and nitrogen distribution. PMID:28467421
Urease Activity Represents an Alternative Pathway for Mycobacterium tuberculosis Nitrogen Metabolism
Lin, Wenwei; Mathys, Vanessa; Ang, Emily Lei Yin; Koh, Vanessa Hui Qi; Martínez Gómez, Julia María; Ang, Michelle Lay Teng; Zainul Rahim, Siti Zarina; Tan, Mai Ping; Pethe, Kevin
2012-01-01
Urease represents a critical virulence factor for some bacterial species through its alkalizing effect, which helps neutralize the acidic microenvironment of the pathogen. In addition, urease serves as a nitrogen source provider for bacterial growth. Pathogenic mycobacteria express a functional urease, but its role during infection has yet to be characterized. In this study, we constructed a urease-deficient Mycobacterium tuberculosis strain and confirmed the alkalizing effect of the urease activity within the mycobacterium-containing vacuole in resting macrophages but not in the more acidic phagolysosomal compartment of activated macrophages. However, the urease-mediated alkalizing effect did not confer any growth advantage on M. tuberculosis in macrophages, as evidenced by comparable growth profiles for the mutant, wild-type (WT), and complemented strains. In contrast, the urease-deficient mutant exhibited impaired in vitro growth compared to the WT and complemented strains when urea was the sole source of nitrogen. Substantial amounts of ammonia were produced by the WT and complemented strains, but not with the urease-deficient mutant, which represents the actual nitrogen source for mycobacterial growth. However, the urease-deficient mutant displayed parental colonization profiles in the lungs, spleen, and liver in mice. Together, our data demonstrate a role for the urease activity in M. tuberculosis nitrogen metabolism that could be crucial for the pathogen's survival in nutrient-limited microenvironments where urea is the sole nitrogen source. Our work supports the notion that M. tuberculosis virulence correlates with its unique metabolic versatility and ability to utilize virtually any carbon and nitrogen sources available in its environment. PMID:22645285
Hong, Xuan; Chen, Zhongwei; Zhao, Chungui; Yang, Suping
2017-06-01
Marichromatium gracile: YL28 (M. gracile YL28) is an anoxygenic phototrophic bacterial strain that utilizes ammonia, nitrate, or nitrite as its sole nitrogen source during growth. In this study, we investigated the removal and transformation of ammonium, nitrate, and nitrite by M. gracile YL28 grown in a combinatorial culture system of sodium acetate-ammonium, sodium acetate-nitrate and sodium acetate-nitrite in response to different initial dissolved oxygen (DO) levels. In the sodium acetate-ammonium system under aerobic conditions (initial DO = 7.20-7.25 mg/L), we detected a continuous accumulation of nitrate and nitrite. However, under semi-anaerobic conditions (initial DO = 4.08-4.26 mg/L), we observed a temporary accumulation of nitrate and nitrite. Interestingly, under anaerobic conditions (initial DO = 0.36-0.67 mg/L), there was little accumulation of nitrate and nitrite, but an increase in nitrous oxide production. In the sodium acetate-nitrite system, nitrite levels declined slightly under aerobic conditions, and nitrite was completely removed under semi-anaerobic and anaerobic conditions. In addition, M. gracile YL28 was able to grow using nitrite as the sole nitrogen source in situations when nitrogen gas produced by denitrification was eliminated. Taken together, the data indicate that M. gracile YL28 performs simultaneous heterotrophic nitrification and denitrification at low-DO levels and uses nitrite as the sole nitrogen source for growth. Our study is the first to demonstrate that anoxygenic phototrophic bacteria perform heterotrophic ammonia-oxidization and denitrification under anaerobic conditions.
Sahu, Umakant; Rangarajan, Pundi N
2016-09-23
Unlike Saccharomyces cerevisiae, the methylotrophic yeast Pichia pastoris can assimilate amino acids as the sole source of carbon and nitrogen. It can grow in media containing yeast extract and peptone (YP), yeast nitrogen base (YNB) + glutamate (YNB + Glu), or YNB + aspartate (YNB + Asp). Methanol expression regulator 1 (Mxr1p), a zinc finger transcription factor, is essential for growth in these media. Mxr1p regulates the expression of several genes involved in the utilization of amino acids as the sole source of carbon and nitrogen. These include the following: (i) GDH2 encoding NAD-dependent glutamate dehydrogenase; (ii) AAT1 and AAT2 encoding mitochondrial and cytosolic aspartate aminotransferases, respectively; (iii) MDH1 and MDH2 encoding mitochondrial and cytosolic malate dehydrogenases, respectively; and (iv) GLN1 encoding glutamine synthetase. Synthesis of all these enzymes is regulated by Mxr1p at the level of transcription except GDH2, whose synthesis is regulated at the level of translation. Mxr1p activates the transcription of AAT1, AAT2, and GLN1 in cells cultured in YP as well as in YNB + Glu media, whereas transcription of MDH1 and MDH2 is activated in cells cultured in YNB + Glu but not in YP. A truncated Mxr1p composed of 400 N-terminal amino acids activates transcription of target genes in cells cultured in YP but not in YNB + Glu. Mxr1p binds to Mxr1p response elements present in the promoters of AAT2, MDH2, and GLN1 We conclude that Mxr1p is essential for utilization of amino acids as the sole source of carbon and nitrogen, and it is a global regulator of multiple metabolic pathways in P. pastoris. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marusich, W.C.; Jensen, R.A.; Zamir, L.O.
Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than in complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-phenylalanine will also induce lyase synthesis during exponential growth in minimal medium inmore » which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared fom cultures induced with doubly labeled (U-/sup 14/C; ring-4-/sup 3/H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate.« less
Marusich, W C; Jensen, R A; Zamir, L O
1981-01-01
Rhodotorula glutinis is a convenient source of L-phenylalanine ammonia-lyase, an enzyme that is useful as a biochemical reagent in the assay of L-phenylalanine. There have been previous descriptions of induced lyase production in complex medium where induction occurs late in exponential growth, suggesting a role in secondary metabolism such as is the case in higher plants. A higher specific activity of L-phenylalanine ammonia-lyase (sixfold higher than a complex medium) can be obtained during midexponential growth in a defined medium containing L-phenylalanine as the sole source of carbon. L-Phenylalanine will also induce lyase synthesis during exponential growth in minimal in which L-phenylalanine is the sole source of nitrogen. The appearance of lyase in complex medium supplemented with L-phenylalanine is probably triggered fortuitously by exhaustion late in growth of a prime source of nitrogen. In this study, R. glutinis appeared to express a single lyase enzyme, regardless of whether induction was nitrogen signaled or carbon signaled. Thin-layer chromatographic analysis of ether extracts prepared from cultures induced with doubly labeled (U-14C; ring-4-3H) L-phenylalanine provided evidence of a catabolic sequence containing cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid as degradative intermediates. 3,4-Dihydroxybenzoic acid was not identified as a catabolic intermediate. PMID:7195398
Husserl, Johana; Hughes, Joseph B.
2012-01-01
Flavoprotein reductases that catalyze the transformation of nitroglycerin (NG) to dinitro- or mononitroglycerols enable bacteria containing such enzymes to use NG as the nitrogen source. The inability to use the resulting mononitroglycerols limits most strains to incomplete denitration of NG. Recently, Arthrobacter strain JBH1 was isolated for the ability to grow on NG as the sole source of carbon and nitrogen, but the enzymes and mechanisms involved were not established. Here, the enzymes that enable the Arthrobacter strain to incorporate NG into a productive pathway were identified. Enzyme assays indicated that the transformation of nitroglycerin to mononitroglycerol is NADPH dependent and that the subsequent transformation of mononitroglycerol is ATP dependent. Cloning and heterologous expression revealed that a flavoprotein catalyzes selective denitration of NG to 1-mononitroglycerol (1-MNG) and that 1-MNG is transformed to 1-nitro-3-phosphoglycerol by a glycerol kinase homolog. Phosphorylation of the nitroester intermediate enables the subsequent denitration of 1-MNG in a productive pathway that supports the growth of the isolate and mineralization of NG. PMID:22427495
Husserl, Johana; Hughes, Joseph B; Spain, Jim C
2012-05-01
Flavoprotein reductases that catalyze the transformation of nitroglycerin (NG) to dinitro- or mononitroglycerols enable bacteria containing such enzymes to use NG as the nitrogen source. The inability to use the resulting mononitroglycerols limits most strains to incomplete denitration of NG. Recently, Arthrobacter strain JBH1 was isolated for the ability to grow on NG as the sole source of carbon and nitrogen, but the enzymes and mechanisms involved were not established. Here, the enzymes that enable the Arthrobacter strain to incorporate NG into a productive pathway were identified. Enzyme assays indicated that the transformation of nitroglycerin to mononitroglycerol is NADPH dependent and that the subsequent transformation of mononitroglycerol is ATP dependent. Cloning and heterologous expression revealed that a flavoprotein catalyzes selective denitration of NG to 1-mononitroglycerol (1-MNG) and that 1-MNG is transformed to 1-nitro-3-phosphoglycerol by a glycerol kinase homolog. Phosphorylation of the nitroester intermediate enables the subsequent denitration of 1-MNG in a productive pathway that supports the growth of the isolate and mineralization of NG.
Heterotrophic nitrogen removal by Acinetobacter sp. Y1 isolated from coke plant wastewater.
Liu, YuXiang; Hu, Tingting; Song, Yujie; Chen, Hongping; Lv, YongKang
2015-11-01
A strain of Acinetobacter sp. Y1, which exhibited an amazing ability to remove ammonium, nitrite and nitrate, was isolated from the activated sludge of a coking wastewater treatment plant. The aim of this work was to study the ability, influence factors and possible pathway of nitrogen removal by Acinetobacter sp. Y1. Results showed that maximum removal rate of NH4(+)-N by the strain was 10.28 mg-N/L/h. Carbon source had significant influence on the growth and ammonium removal efficiencies of strain Y1. Pyruvate, citrate and acetate were favourable carbon sources for the strain. Temperature, pH value and shaking speed could affect the growth and nitrogen removal ability. Nitrate or nitrite could be used as a sole nitrogen source for the growth and removed efficiently by the strain. N2 levels increased to 53.74%, 50.21% and 55.13% within 36 h when 100 mg/L NH4(+)-N, NO2(-)-N or NO3(-) -N was used as sole nitrogen source in the gas detection experiment. The activities of hydroxylamine oxidoreductase (HAO), nitrate reductase (NR) and nitrite reductase (NiR), which are key enzymes in heterotrophic nitrification and aerobic denitrification, were all detectable in the strain. Consequently, a possible pathway for ammonium removal by the strain was also suggested. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Morales-Jiménez, Jesús; Vera-Ponce de León, Arturo; García-Domínguez, Aidé; Martínez-Romero, Esperanza; Zúñiga, Gerardo; Hernández-Rodríguez, César
2013-07-01
The bark beetles of the genus Dendroctonus feed on phloem that is a nitrogen-limited source. Nitrogen fixation and nitrogen recycling may compensate or alleviate such a limitation, and beetle-associated bacteria capable of such processes were identified. Raoultella terrigena, a diazotrophic bacteria present in the gut of Dendroctonus rhizophagus and D. valens, exhibited high acetylene reduction activity in vitro with different carbon sources, and its nifH and nifD genes were sequenced. Bacteria able to recycle uric acid were Pseudomonas fluorescens DVL3A that used it as carbon and nitrogen source, Serratia proteomaculans 2A CDF and Rahnella aquatilis 6-DR that used uric acid as sole nitrogen source. Also, this is the first report about the uric acid content in whole eggs, larvae, and adults (male and female) samples of the red turpentine beetle (Dendroctonus valens). Our results suggest that the gut bacteria of these bark beetles could contribute to insect N balance.
Kaech, Andres; Vallotton, Nathalie; Egli, Thomas
2005-04-01
The quaternary ammonium alcohols (QAAs) 2,3-dihydroxypropyl-trimethyl-ammonium (TM), dimethyl-diethanol-ammonium (DM) and methyl-triethanol-ammonium (MM) are hydrolysis products of their parent esterquat surfactants, which are widely used as softeners in fabric care. We isolated several bacteria growing with QAAs as the sole source of carbon and nitrogen. The strains were compared with a previously isolated TM-degrading bacterium, which was identified as a representative of the species Pseudomonas putida (Syst. Appl. Microbiol. 24 (2001) 252). Two bacteria were isolated with DM, referred to as strains DM 1 and DM 2, respectively. Based on 16S-rDNA analysis, they provided 97% (DM 1) and 98% (DM 2) identities to the closest related strain Zoogloea ramigera Itzigsohn 1868AL. Both strains were long, slim, motile rods but only DM 1 showed the floc forming activity, which is typical for representatives of the genus Zoogloea. Using MM we isolated a Gram-negative, non-motile rod referred to as strain MM 1. The 16S-rDNA sequence of the isolated bacterium revealed 94% identities (best match) to Rhodobacter sphaeroides only. The strains MM 1 and DM 1 exclusively grew with the QAA which was used for their isolation. DM 2 was also utilizing TM as sole source of carbon and nitrogen. However, all of the isolated bacteria were growing with the natural and structurally related compound choline.
Gupta, Rishikesh Kumar; Prasad, Dinesh; Sathesh, Jaykumar; Naidu, Ramachandra Boopathy; Kamini, Numbi Ramudu; Palanivel, Saravanan; Gowthaman, Marichetti Kuppuswami
2012-09-01
Fish meal grades SL1 and SL2 from Sardine (Sardinella longiceps) and NJ from Pink Perch (Nemipterus japonicas) were evaluated as a sole source of carbon and nitrogen in the medium for alkaline protease production by Bacillus pumilus MTCC 7514. The analysis of the fish meal suggests that the carbon and nitrogen contents in fish meal are sufficient to justify its choice as replacement for other nutrients. Protease production increased significantly (4,914 U/ml) in medium containing only fish meal, compared with the basal medium (2,646 U/ml). However, the elimination of inorganic salts from media reduced the protease productivity. In addition, all the three grades of fish meal yielded almost the same amounts of protease when employed as the sole source of carbon and nitrogen. Nevertheless, the best results were observed in fish meal SL1 medium. Furthermore, protease production was enhanced to 6,966 U/ml and 7,047 U/ml on scaling up from flask (4,914 U/ml) to 3.7 and 20 L fermenters, respectively, using fish meal (10 g/l). Similarly, the corresponding improvement in productivities over flask (102.38 U/ml/h) was 193.5 and 195.75 U/ml/h in 3.7 and 20 L fermenters, respectively. The crude protease was found to have dehairing ability in leather processing, which is bound to have great environmental benefits.
Biodegradation of munitions compounds by a sulfate reducing bacterial enrichment culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boopathy, R.; Manning, J.
1997-08-01
The degradation of several munitions compounds was studied. The compounds included 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine, 2,4,6-trinitrobenzene (TNB), and 2,4-dinitrotoluene. All of the compounds studied were degraded by the sulfate reducing bacterial (SRB) enrichment culture. The SRB culture did not use the munitions compounds as their sole source of carbon. However, all the munitions compounds tested served as the sole source of nitrogen for the SRB culture. Degradation of munitions compounds was achieved by a co-metabolic process. The SRB culture used a variety of carbon sources including pyruvate, ethanol, formate, lactate, and H{sub 2}-CO{sub 2}. The SRB culture was an incompletemore » oxidizer, unable to carry out the terminal oxidation of organic substrates to CO{sub 2} as the sole product, and it did not use acetate or methanol as a carbon source. In addition to serving as nitrogen sources, the munitions compounds also served as electron acceptors in the absence of sulfate. A soil slurry experiment with 5% and 10% munitions compounds-contaminated soil showed that the contaminant TNT was metabolized by the SRB culture in the presence of pyruvate as electron donor. This culture may be useful in decontaminating munitions compounds-contaminated soil and water under anaerobic conditions.« less
Takatani, Nobuyuki; Ito, Takuro; Kiba, Takatoshi; Mori, Marie; Miyamoto, Tetsuro; Maeda, Shin-Ichi; Omata, Tatsuo
2014-02-01
Elevated CO2 has been reported to stimulate plant growth under nitrogen-sufficient conditions, but the effects of CO2 on growth in a constantly nitrogen-limited state, which is relevant to most natural habitats of plants, remain unclear. Here, we maintained Arabidopsis seedlings under such conditions by growing a mutant with reduced nitrate uptake activity on a medium containing nitrate as the sole nitrogen source. Under nitrogen-sufficient conditions (i.e. in the presence of ammonium), growth of shoots and roots of both the wild type (WT) and the mutant was increased approximately 2-fold by elevated CO2. Growth stimulation of shoots and roots by elevated CO2 was observed in the WT growing with nitrate as the sole nitrogen source, but in the mutant grown with nitrate, the high-CO2 conditions stimulated only the growth of roots. In the mutant, elevated CO2 caused well-known symptoms of nitrogen-starved plants, including decreased shoot/root ratio, reduced nitrate content and accumulation of anthocyanin, but also had an increased Chl content in the shoot, which was contradictory to the known effect of nitrogen depletion. A high-CO2-responsive change specific to the mutant was not observed in the levels of the major metabolites, although CO2 responses were observed in the WT and the mutant. These results indicated that elevated CO2 causes nitrogen limitation in the seedlings grown with a constantly limited supply of nitrogen, but the Chl content and the root biomass of the plant increase to enhance the activities of both photosynthesis and nitrogen uptake, while maintaining normal metabolism and response to high CO2.
Gutiérrez-Sánchez, Gerardo; Atwood, James; Kolli, V S Kumar; Roussos, Sévastianos; Augur, Christopher
2012-04-01
Caffeine is toxic to most microorganisms. However, some filamentous fungi, such as Aspergillus tamarii, are able to metabolize this alkaloid when fed caffeine as the sole nitrogen source. The aim of the present work was to identify intracellular A. tamarii proteins, regulated by caffeine, using fluorescence difference two-dimensional gel electrophoresis. Specific proteins from two culture media of A. tamarii grown either on ammonium sulfate or caffeine as the sole nitrogen source were analysed by mass spectrometry. Thirteen out of a total of 85 differentially expressed spots were identified after database search. Identified up-regulated proteins include phosphoglycerate kinase, malate dehydrogenase, dyp-type peroxidase family protein, heat shock protein, Cu, Zn superoxidase dismutase and xanthine dehydrogenase. Some of the proteins identified in this study are involved in the caffeine degradation pathway as well as in stress response, suggesting that stress proteins could be involved in caffeine metabolism in filamentous fungi.
Behrend, Christian; Heesche-Wagner, Kerstin
1999-01-01
There are only a few examples of microbial conversion of picric acid (2,4,6-trinitrophenol). None of the organisms that have been described previously is able to use this compound as a sole source of carbon, nitrogen, and energy at high rates. In this study we isolated and characterized a strain, strain CB 22-2, that was able to use picric acid as a sole source of carbon and energy at concentrations up to 40 mM and at rates of 1.6 mmol · h−1 · g (dry weight) of cells−1 in continuous cultures and 920 μmol · h−1 · g (dry weight) of cells−1 in flasks. In addition, this strain was able to use picric acid as a sole source of nitrogen at comparable rates in a nitrogen-free medium. Biochemical characterization and 16S ribosomal DNA analysis revealed that strain CB 22-2 is a Nocardioides sp. strain. High-pressure liquid chromatography and UV-visible light data, the low residual chemical oxygen demand, and the stoichiometric release of 2.9 ± 0.1 mol of nitrite per mol of picric acid provided strong evidence that complete mineralization of picric acid occurred. During transformation, the metabolites detected in the culture supernatant were the [H−]-Meisenheimer complexes of picric acid and 2,4-dinitrophenol (H−-DNP), as well as 2,4-dinitrophenol. Experiments performed with crude extracts revealed that H−-DNP formation indeed is a physiologically relevant step in picric acid metabolism. PMID:10103224
Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi
2001-01-01
Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine. PMID:11244061
López, María F; Cabrera, Juan J; Salas, Ana; Delgado, María J; López-García, Silvina L
2017-04-01
Bradyrhizobium diazoefficiens, a nitrogen-fixing endosymbiont of soybeans, is a model strain for studying rhizobial denitrification. This bacterium can also use nitrate as the sole nitrogen (N) source during aerobic growth by inducing an assimilatory nitrate reductase encoded by nasC located within the narK-bjgb-flp-nasC operon along with a nitrite reductase encoded by nirA at a different chromosomal locus. The global nitrogen two-component regulatory system NtrBC has been reported to coordinate the expression of key enzymes in nitrogen metabolism in several bacteria. In this study, we demonstrate that disruption of ntrC caused a growth defect in B. diazoefficiens cells in the presence of nitrate or nitrite as the sole N source and a decreased activity of the nitrate and nitrite reductase enzymes. Furthermore, the expression of narK-lacZ or nirA-lacZ transcriptional fusions was significantly reduced in the ntrC mutant after incubation under nitrate assimilation conditions. A B. diazoefficiens rpoN 1/2 mutant, lacking both copies of the gene encoding the alternative sigma factor σ 54 , was also defective in aerobic growth with nitrate as the N source as well as in nitrate and nitrite reductase expression. These results demonstrate that the NtrC regulator is required for expression of the B. diazoefficiens nasC and nirA genes and that the sigma factor RpoN is also involved in this regulation.
Polymorphism of Malassezia furfur.
Salkin, I F; Gordon, M A
1977-04-01
Alterations in the morphologic and physiologic characters of 11 isolates of Pityrosporum orbiculare were noted upon prolonged maintenance in pure culture. Successive subculturing of each isolate resulted in its progressive conversion from globose (P. orbiculare) through ovoid to cylindrical (P. ovale) form. Globose forms utilized neither olive oil nor Tween 20 as a sole carbon source, nor KNO3 as a sole source of nitrogen, while ovoid and cylindrical forms utilized both of these carbon sources, and one of four strains of the cylindrical form assimilated KNO3. These results suggest that P. orbiculare and P. ovale are stages in the complex developmental cycle of a single species (Malassezia furfur), but the three names should be preserved until the life cycle is more fully understood.
Smith, D L; Krikorian, A D
1989-01-01
Excised zygotic embryos, mericarps ("seeds") and hypocotyls of seedlings of cultivated carrot Daucus carota cv. Scarlet Nantes were evaluated for their ability to generate somatic embryos on a semisolid hormone-free nutrient medium. Neither intact zygotic embryos nor hypocotyls ever produced somatic embryos. However, mericarps and broken zygotic embryos were excellent sources for somatic embryo production (response levels as high as 86%). Somatic embryo formation was highest from cotyledons, but was also observed on isolated hypocotyls and root tips of mature zygotic embryos. On media containing unreduced nitrogen, somatic embryo formation led to the generation of vigorous cultures comprised entirely of somatic embryos at various stages of development which in turn proliferated still other somatic embryos. However, a medium was devised which when 1-5 mM NH4+ was the sole nitrogen source, led only to a proliferation of globular proembryos. Sustained subculturing of these proembryos at 2-3 week intervals enabled establishment of highly uniform cultures in which no further development into more mature stages of embryonic development occurred. These have been maintained, without decline, as morphogenetically competent proembryonic globules for over ten months. A basal medium containing from 1-5 mM NH4+ as the sole nitrogen source appears not to be inductive to somatic proembryo formation. Instead, such a medium is best thought of as permissive to the expression of embryogenically determined cells within zygotic embryos. By excising and breaking or wounding zygotic embryos, constituent cells are probably released from positional or chemical restraints and thus are able to express their innate embryogenic potential. Once a proembryonic culture is established, this medium containing 1-5 mM NH4+ as the sole nitrogen source provides a nonpermissive environment to the development and growth of later embryonic stages, but it does allow the continued formation and multiplication of globular somatic proembryos. The sequence of events leading from excised broken zygotic embryos to the formation of somatic embryos and the maintenance of somatic proembryos are demonstrated by scanning electron microscopy and histological preparations. Germination levels from intact zygotic embryos on media with varying levels and ratios of unreduced vs. reduced inorganic nitrogen were determined as well and provided baseline or control data on the type of response obtained from nonwounded material.
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1989-01-01
Excised zygotic embryos, mericarps ("seeds") and hypocotyls of seedlings of cultivated carrot Daucus carota cv. Scarlet Nantes were evaluated for their ability to generate somatic embryos on a semisolid hormone-free nutrient medium. Neither intact zygotic embryos nor hypocotyls ever produced somatic embryos. However, mericarps and broken zygotic embryos were excellent sources for somatic embryo production (response levels as high as 86%). Somatic embryo formation was highest from cotyledons, but was also observed on isolated hypocotyls and root tips of mature zygotic embryos. On media containing unreduced nitrogen, somatic embryo formation led to the generation of vigorous cultures comprised entirely of somatic embryos at various stages of development which in turn proliferated still other somatic embryos. However, a medium was devised which when 1-5 mM NH4+ was the sole nitrogen source, led only to a proliferation of globular proembryos. Sustained subculturing of these proembryos at 2-3 week intervals enabled establishment of highly uniform cultures in which no further development into more mature stages of embryonic development occurred. These have been maintained, without decline, as morphogenetically competent proembryonic globules for over ten months. A basal medium containing from 1-5 mM NH4+ as the sole nitrogen source appears not to be inductive to somatic proembryo formation. Instead, such a medium is best thought of as permissive to the expression of embryogenically determined cells within zygotic embryos. By excising and breaking or wounding zygotic embryos, constituent cells are probably released from positional or chemical restraints and thus are able to express their innate embryogenic potential. Once a proembryonic culture is established, this medium containing 1-5 mM NH4+ as the sole nitrogen source provides a nonpermissive environment to the development and growth of later embryonic stages, but it does allow the continued formation and multiplication of globular somatic proembryos. The sequence of events leading from excised broken zygotic embryos to the formation of somatic embryos and the maintenance of somatic proembryos are demonstrated by scanning electron microscopy and histological preparations. Germination levels from intact zygotic embryos on media with varying levels and ratios of unreduced vs. reduced inorganic nitrogen were determined as well and provided baseline or control data on the type of response obtained from nonwounded material.
González, James; López, Geovani; Argueta, Stefany; Escalera-Fanjul, Ximena; El Hafidi, Mohammed; Campero-Basaldua, Carlos; Strauss, Joseph; Riego-Ruiz, Lina; González, Alicia
2017-11-01
Saccharomyces cerevisiae harbors BAT1 and BAT2 paralogous genes that encode branched chain aminotransferases and have opposed expression profiles and physiological roles . Accordingly, in primary nitrogen sources such as glutamine, BAT1 expression is induced, supporting Bat1-dependent valine-isoleucine-leucine (VIL) biosynthesis, while BAT2 expression is repressed. Conversely, in the presence of VIL as the sole nitrogen source, BAT1 expression is hindered while that of BAT2 is activated, resulting in Bat2-dependent VIL catabolism. The presented results confirm that BAT1 expression is determined by transcriptional activation through the action of the Leu3-α-isopropylmalate (α-IPM) active isoform, and uncovers the existence of a novel α-IPM biosynthetic pathway operating in a put3 Δ mutant grown on VIL, through Bat2-Leu2-Leu1 consecutive action. The classic α-IPM biosynthetic route operates in glutamine through the action of the leucine-sensitive α-IPM synthases. The presented results also show that BAT2 repression in glutamine can be alleviated in a ure2 Δ mutant or through Gcn4-dependent transcriptional activation. Thus, when S. cerevisiae is grown on glutamine, VIL biosynthesis is predominant and is preferentially achieved through BAT1 ; while on VIL as the sole nitrogen source, catabolism prevails and is mainly afforded by BAT2 . Copyright © 2017 by the Genetics Society of America.
Nitrogen Source-Dependent Capsule Induction in Human-Pathogenic Cryptococcus Species
Frazzitta, Aubrey E.; Vora, Haily; Price, Michael S.; Tenor, Jennifer L.; Betancourt-Quiroz, Marisol; Toffaletti, Dena L.; Cheng, Nan
2013-01-01
Cryptococcus neoformans and C. gattii cause meningoencephalitis and are an increasing human health threat. These pathogenic Cryptococcus species are neurotropic and persist in the cerebrospinal fluid (CSF) of the mammalian host during infection. In order to survive in the host, pathogenic fungi must procure nutrients, such as carbon and nitrogen, from the CSF. To enhance our understanding of nutrient acquisition during central nervous system infection by Cryptococcus species, we examined the utilization of nitrogen sources available in CSF. We screened for the growth and capsule production of 817 global environmental and clinical isolates on various sources of nitrogen. Both environmental and clinical strains grew robustly on uric acid, Casamino Acids, creatinine, and asparagine as sole nitrogen sources. Urea induced the greatest magnitude of capsule induction. This induction was greater in Cryptococcus gattii than in C. neoformans. We confirmed the ability of nonpreferred nitrogen sources to increase capsule production in pathogenic species of Cryptococcus. Since urea is metabolized to ammonia and CO2 (a known signal for capsule induction), we examined urea metabolism mutants for their transcriptional response to urea regarding capsule production. The transcriptional profile of C. neoformans under urea-supplemented conditions revealed both similar and unique responses to other capsule-inducing conditions, including both intra- and extracellular urea utilization. As one of the most abundant nitrogen sources in the CSF, the ability of Cryptococcus to import urea and induce capsule production may substantially aid this yeast's survival and propagation in the host. PMID:23975889
Nitrogen source-dependent capsule induction in human-pathogenic cryptococcus species.
Frazzitta, Aubrey E; Vora, Haily; Price, Michael S; Tenor, Jennifer L; Betancourt-Quiroz, Marisol; Toffaletti, Dena L; Cheng, Nan; Perfect, John R
2013-11-01
Cryptococcus neoformans and C. gattii cause meningoencephalitis and are an increasing human health threat. These pathogenic Cryptococcus species are neurotropic and persist in the cerebrospinal fluid (CSF) of the mammalian host during infection. In order to survive in the host, pathogenic fungi must procure nutrients, such as carbon and nitrogen, from the CSF. To enhance our understanding of nutrient acquisition during central nervous system infection by Cryptococcus species, we examined the utilization of nitrogen sources available in CSF. We screened for the growth and capsule production of 817 global environmental and clinical isolates on various sources of nitrogen. Both environmental and clinical strains grew robustly on uric acid, Casamino Acids, creatinine, and asparagine as sole nitrogen sources. Urea induced the greatest magnitude of capsule induction. This induction was greater in Cryptococcus gattii than in C. neoformans. We confirmed the ability of nonpreferred nitrogen sources to increase capsule production in pathogenic species of Cryptococcus. Since urea is metabolized to ammonia and CO(2) (a known signal for capsule induction), we examined urea metabolism mutants for their transcriptional response to urea regarding capsule production. The transcriptional profile of C. neoformans under urea-supplemented conditions revealed both similar and unique responses to other capsule-inducing conditions, including both intra- and extracellular urea utilization. As one of the most abundant nitrogen sources in the CSF, the ability of Cryptococcus to import urea and induce capsule production may substantially aid this yeast's survival and propagation in the host.
Brucella, nitrogen and virulence.
Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques
2016-08-01
The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.
Suleiman, Marcel; Zecher, Karsten; Yücel, Onur; Jagmann, Nina; Philipp, Bodo
2016-12-15
Methylamines occur ubiquitously in the oceans and can serve as carbon, nitrogen, and energy sources for heterotrophic bacteria from different phylogenetic groups within the marine bacterioplankton. Diatoms, which constitute a large part of the marine phytoplankton, are believed to be incapable of using methylamines as a nitrogen source. As diatoms are typically associated with heterotrophic bacteria, the hypothesis came up that methylotrophic bacteria may provide ammonium to diatoms by degradation of methylamines. This hypothesis was investigated with the diatom Phaeodactylum tricornutum and monomethylamine (MMA) as the substrate. Bacteria supporting photoautotrophic growth of P. tricornutum with MMA as the sole nitrogen source could readily be isolated from seawater. Two strains, Donghicola sp. strain KarMa, which harbored genes for both monomethylamine dehydrogenase and the N methylglutamate pathway, and Methylophaga sp. strain M1, which catalyzed MMA oxidation by MMA dehydrogenase, were selected for further characterization. While strain M1 grew with MMA as the sole substrate, strain KarMa could utilize MMA as a nitrogen source only when, e.g., glucose was provided as a carbon source. With both strains, release of ammonium was detected during MMA utilization. In coculture with P. tricornutum, strain KarMa supported photoautotrophic growth with 2 mM MMA to the same extent as with the equimolar amount of NH 4 Cl. In coculture with strain M1, photoautotrophic growth of P. tricornutum was also supported, but to a much lower degree than by strain KarMa. This proof-of-principle study with a synthetic microbial community suggests that interkingdom cross-feeding of ammonium from methylamine-degrading bacteria is a contribution to phytoplankton growth which has been overlooked so far. Interactions between diatoms and heterotrophic bacteria are important for marine carbon cycling. In this study, a novel interaction is described. Bacteria able to degrade monomethylamine, which is a ubiquitous organic nitrogen compound in marine environments, can provide ammonium to diatoms. This interkingdom metabolite transfer enables growth under photoautotrophic conditions in coculture, which would not be possible in the respective monocultures. This proof-of-principle study calls attention to a so far overlooked contribution to phytoplankton growth. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Suleiman, Marcel; Zecher, Karsten; Yücel, Onur; Jagmann, Nina
2016-01-01
ABSTRACT Methylamines occur ubiquitously in the oceans and can serve as carbon, nitrogen, and energy sources for heterotrophic bacteria from different phylogenetic groups within the marine bacterioplankton. Diatoms, which constitute a large part of the marine phytoplankton, are believed to be incapable of using methylamines as a nitrogen source. As diatoms are typically associated with heterotrophic bacteria, the hypothesis came up that methylotrophic bacteria may provide ammonium to diatoms by degradation of methylamines. This hypothesis was investigated with the diatom Phaeodactylum tricornutum and monomethylamine (MMA) as the substrate. Bacteria supporting photoautotrophic growth of P. tricornutum with MMA as the sole nitrogen source could readily be isolated from seawater. Two strains, Donghicola sp. strain KarMa, which harbored genes for both monomethylamine dehydrogenase and the N methylglutamate pathway, and Methylophaga sp. strain M1, which catalyzed MMA oxidation by MMA dehydrogenase, were selected for further characterization. While strain M1 grew with MMA as the sole substrate, strain KarMa could utilize MMA as a nitrogen source only when, e.g., glucose was provided as a carbon source. With both strains, release of ammonium was detected during MMA utilization. In coculture with P. tricornutum, strain KarMa supported photoautotrophic growth with 2 mM MMA to the same extent as with the equimolar amount of NH4Cl. In coculture with strain M1, photoautotrophic growth of P. tricornutum was also supported, but to a much lower degree than by strain KarMa. This proof-of-principle study with a synthetic microbial community suggests that interkingdom cross-feeding of ammonium from methylamine-degrading bacteria is a contribution to phytoplankton growth which has been overlooked so far. IMPORTANCE Interactions between diatoms and heterotrophic bacteria are important for marine carbon cycling. In this study, a novel interaction is described. Bacteria able to degrade monomethylamine, which is a ubiquitous organic nitrogen compound in marine environments, can provide ammonium to diatoms. This interkingdom metabolite transfer enables growth under photoautotrophic conditions in coculture, which would not be possible in the respective monocultures. This proof-of-principle study calls attention to a so far overlooked contribution to phytoplankton growth. PMID:27694241
Bren, Anat; Park, Junyoung O.; Towbin, Benjamin D.; Dekel, Erez; Rabinowitz, Joshua D.; Alon, Uri
2016-01-01
In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including α-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a ‘bug’ that leads to slow growth under what may be an environmentally rare condition. PMID:27109914
Tauk-Tornisielo, Sâmia M.; Arasato, Luciana S.; de Almeida, Alex F.; Govone, José S.; Malagutti, Eleni N.
2009-01-01
The fungi strains were tested in Bioscreen automated system to select the best nutritional source. Following, shaking submserse cultures were studied in media containing sole carbon or nitrogen source. The growth of these strains improved in media containing vegetable oil, with high concentration of lipids. The high concentration of γ-linolenic acid was obtained with M. circinelloides in culture containing sesame oil. PMID:24031370
Topp, E; Hanson, R S; Ringelberg, D B; White, D C; Wheatcroft, R
1993-01-01
A gram-negative bacterium which hydrolyzed aryl N-methylcarbamate insecticides was isolated from an agricultural soil which quickly degraded these pesticides. This organism, designated strain ER2, grew on carbofuran as a sole source of carbon and nitrogen with a doubling time of 3 h in a mineral salts medium. The aromatic nucleus of the molecule was not metabolized, and carbofuran 7-phenol accumulated as the end product of metabolism. The insecticides carbaryl, bendiocarb, and propoxur were similarly hydrolyzed, with each yielding the corresponding phenol. Strain ER2 contained two plasmids (120 and 130 kb). A probe cloned from the pDL11 plasmid of Achromobacter sp. strain WM111, which encodes the carbofuran hydrolase (mcd) gene (P. H. Tomasek and J. S. Karns, J. Bacteriol. 171:4038-4044, 1989), hybridized to the 120-kb plasmid. Restriction fragment profiles of pDL11 and strain ER2 plasmid DNAs suggested that the 120-kb plasmid of strain ER2 is very similar to pDL11. On the basis of the results of biochemical tests, 16S rRNA sequence analysis, and membrane lipid analyses, strain ER2 was found to be a phylogenetically unique type II methylotroph. The constitutive carbofuran hydrolase activity in glucose-grown cells increased sevenfold when strain ER2 was grown in the presence of 100 mg of carbofuran per liter as the sole source of carbon and nitrogen or as the sole nitrogen source in the presence of glucose. Growth on carbofuran resulted in the induction of enzymes required for methylamine-dependent respiration and the serine pathway of formaldehyde assimilation. These results indicate that the carbofuran hydrolase mcd gene is conserved on a plasmid found in organisms from different geographic areas and that the specific activity of carbofuran degradation may increase in response to carbofuran treatment. Images PMID:7504430
Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae.
Johansson, Nina; Persson, Karl O; Quehl, Paul; Norbeck, Joakim; Larsson, Christer
2014-11-01
We have previously shown that ethylene production in Saccharomyces cerevisiae expressing the ethylene-forming enzyme (EFE) from Pseudomonas syringae is strongly influenced by variations in the mode of cultivation as well as the choice of nitrogen source. Here, we have studied the influence of nitrogen metabolism on the production of ethylene further. Using ammonium, glutamate, glutamate/arginine, and arginine as nitrogen sources, it was found that glutamate (with or without arginine) correlates with a high ethylene production, most likely linked to an observed increase in 2-oxoglutarate levels. Arginine as a sole nitrogen source caused a reduced ethylene production. A reduction of arginine levels, accomplished using an arginine auxotrophic ARG4-deletion strain in the presence of limiting amounts of arginine or through CAR1 overexpression, did however not correlate with an increased ethylene production. As expected, arginine was necessary for ethylene production as ethylene production in the ARG4-deletion strain ceased at the time when arginine was depleted. In conclusion, our data suggest that high levels of 2-oxoglutarate and a limited amount of arginine are required for successful ethylene production in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, R.S.; Song, Jian; Gu, Wei
L-Arogenate is a commonplace amino acid in nature in consideration of its role as a ubiquitous precursor of L-phenylalanine and/or L-tyrosine. However, the questions of whether it serves as a chemoattractant molecule and whether it can serve as a substrate for catabolism have never been studied. We found that Pseudomonas aeruginosa recognizes L-arogenate as a chemoattractant molecule which can be utilized as a source of both carbon and nitrogen. Mutants lacking expression of either cyclohexadienyl dehydratase or phenylalanine hydroxylase exhibited highly reduced growth rates when utilizing L-arogenate as a nitrogen source. Utilization of L-arogenate as a source of either carbonmore » or nitrogen was dependent upon {sub S}{sup 54}, as revealed by the use of an rpoN null mutant. The evidence suggests that catabolism of L-arogenate proceeds via alternative pathways which converge at 4-hydroxyphenylpyruvate. In one pathway, prephenate formed in the periplasm by deamination of L-arogenate is converted to 4-hydroxyphenylpyruvate by cyclohexadienyl dehydrogenase. The second route depends upon the sequential action of periplasmic cyclohexadienyl dehydratase, phenylalanine hydroxylase, and aromatic aminotransferase. 32 refs., 5 figs., 4 tabs.« less
Berndt, M.P.
1990-01-01
The city of Tallahassee, Florida began applying sewage treatment-plant effluent to a sprayfield southeast of the city in 1980. Fertilizers containing inorganic nitrogen were also applied in conjunction with the operation of a commercial farm at this site. Analysis of groundwater in the surficial aquifer and the Upper Floridan aquifer have indicated that nitrate concentrations in some wells exceed the prescribed drinking water maximum contaminant level of 10 mg/L (nitrate as nitrogen). Nitrate concentrations greater than the maximum contaminant level were not detected in samples from monitoring wells outside the sprayfield boundary. Analyses of water from the unsaturated zone indicated that conversion of organic nitrogen and ammonia to nitrate was complete before the nitrogen- enriched water reached the water table. Groundwater samples from wells in the surficial and Upper Floridan aquifers less than 100 ft deep located inside sprayed areas had mean concentrations of nitrate much higher than samples from similar wells located outside sprayed areas at the southeast sprayfield. These shallow wells inside the sprayed areas were the only wells in which the maximum contaminant level for nitrate was exceeded. Analyses of the nitrogen isotope ratios in groundwater were used to determine whether the major source of nitrogen was treated sewage or fertilizers. The nitrogen isotope ratios in contaminated groundwater at the southeast sprayfield were compared to those at another sprayfield southwest of the city, where treated sewage was the sole source of nitrogen. Statistical analyses indicated a significant difference in the nitrogen isotope ratios at the two sites, indicating that both nitrogen sources are significant at the southeast sprayfield. (USGS)
Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C
2015-05-01
In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.
He, Tengxia; Li, Zhenlun; Xie, Deti; Sun, Quan; Xu, Yi; Ye, Qing; Ni, Jiupai
2018-04-01
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH 4 + -N and NO 3 - -N/NO 2 - -N (about 5 mg/L-N each) and high concentration of mixed NH 4 + -N and NO 3 - -N/NO 2 - -N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.
Bartholomew, B A; Smith, M J; Long, M T; Darcy, P J; Trudgill, P W; Hopper, D J
1993-01-01
Growth of Pseudomonas AT3 on the alkaloid atropine as its sole source of carbon and nitrogen is nitrogen-limited and proceeds by degradation of the tropic acid part of the molecule, with the metabolism of the tropine being limited to the point of release of its nitrogen. A nitrogen-free compound accumulated in the growth medium and was isolated and identified as 6-hydroxycyclohepta-1,4-dione. This novel compound is proposed as an intermediate in tropine metabolism. It served as a growth substrate for the organism and was also the substrate for an NAD(+)-linked dehydrogenase present in cell extracts. The enzyme was induced during the tropine phase of diauxic growth on atropine or during growth on tropine alone. PMID:8328951
Song, Houhui
2012-01-01
Knowledge of the metabolic pathways used by Mycobacterium tuberculosis during infection is important for understanding its nutrient requirements and host adaptation. However, uptake, the first step in the utilization of nutrients, is poorly understood for many essential nutrients, such as inorganic anions. Here, we show that M. tuberculosis utilizes nitrate as the sole nitrogen source, albeit at lower efficiency than asparagine, glutamate, and arginine. The growth of the porin triple mutant M. smegmatis ML16 in media with limiting amounts of nitrate and sulfate as sole nitrogen and sulfur sources, respectively, was delayed compared to that of the wild-type strain. The uptake of sulfate was 40-fold slower than that of the wild-type strain, indicating that the efficient uptake of these anions is dependent on porins. The uptake by M. tuberculosis of sulfate and phosphate was approximately 40- and 10-fold slower than that of M. smegmatis, respectively, which is consistent with the slower growth of M. tuberculosis. However, the uptake of these anions by M. tuberculosis is orders of magnitude faster than diffusion through lipid membranes, indicating that unknown outer membrane proteins are required to facilitate this process. PMID:22194452
Jackson, Mark A.; Bothast, Rodney J.
1990-01-01
We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation. Images PMID:16348348
Crété, P; Caboche, M; Meyer, C
1997-04-01
Higher plant nitrite reductase (NiR) is a monomeric chloroplastic protein catalysing the reduction of nitrite, the product of nitrate reduction, to ammonium. The expression of this enzyme is controlled at the transcriptional level by light and by the nitrogen source. In order to study the post-transcriptional regulation of NiR, Nicotiana plumbaginifolia and Arabidopsis thaliana were transformed with a chimaeric NiR construct containing the tobacco leaf NiR1 coding sequence driven by the CaMV 35S RNA promoter. Transformed plants did not show any phenotypic difference when compared with the wild-type, although they overexpressed NiR activity in the leaves. When these plants were grown in vitro on media containing either nitrate or ammonium as sole nitrogen source, NiR mRNA derived from transgene expression was constitutively expressed, whereas NiR activity and protein level were strongly reduced on ammonium-containing medium. These results suggest that, together with transcriptional control, post-transcriptional regulation by the nitrogen source is operating on NiR expression. This post-transcriptional regulation of tobacco leaf NiR1 expression was observed not only in the closely related species N. plumbaginifolia but also in the more distant species A. thaliana.
Genome Analysis of Fimbriiglobus ruber SP5T, a Planctomycete with Confirmed Chitinolytic Capability.
Ravin, Nikolai V; Rakitin, Andrey L; Ivanova, Anastasia A; Beletsky, Alexey V; Kulichevskaya, Irina S; Mardanov, Andrey V; Dedysh, Svetlana N
2018-04-01
Members of the bacterial order Planctomycetales have often been observed in associations with Crustacea. The ability to degrade chitin, however, has never been reported for any of the cultured planctomycetes although utilization of N -acetylglucosamine (GlcNAc) as a sole carbon and nitrogen source is well recognized for these bacteria. Here, we demonstrate the chitinolytic capability of a member of the family Gemmataceae , Fimbriiglobus ruber SP5 T , which was isolated from a peat bog. As revealed by metatranscriptomic analysis of chitin-amended peat, the pool of 16S rRNA reads from F. ruber increased in response to chitin availability. Strain SP5 T displayed only weak growth on amorphous chitin as a sole source of carbon but grew well with chitin as a source of nitrogen. The genome of F. ruber SP5 T is 12.364 Mb in size and is the largest among all currently determined planctomycete genomes. It encodes several enzymes putatively involved in chitin degradation, including two chitinases affiliated with the glycoside hydrolase (GH) family GH18, GH20 family β- N -acetylglucosaminidase, and the complete set of enzymes required for utilization of GlcNAc. The gene encoding one of the predicted chitinases was expressed in Escherichia coli , and the endochitinase activity of the recombinant enzyme was confirmed. The genome also contains genes required for the assembly of type IV pili, which may be used to adhere to chitin and possibly other biopolymers. The ability to use chitin as a source of nitrogen is of special importance for planctomycetes that inhabit N-depleted ombrotrophic wetlands. IMPORTANCE Planctomycetes represent an important part of the microbial community in Sphagnum -dominated peatlands, but their potential functions in these ecosystems remain poorly understood. This study reports the presence of chitinolytic potential in one of the recently described peat-inhabiting members of the family Gemmataceae , Fimbriiglobus ruber SP5 T This planctomycete uses chitin, a major constituent of fungal cell walls and exoskeletons of peat-inhabiting arthropods, as a source of nitrogen in N-depleted ombrotrophic Sphagnum -dominated peatlands. This study reports the chitin-degrading capability of representatives of the order Planctomycetales . Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diner, Rachel E.; Schwenck, Sarah M.; McCrow, John P.
Diatoms are a dominant group of eukaryotic phytoplankton that contribute substantially to global primary production and the cycling of important elements such as carbon and nitrogen. Heterotrophic bacteria, including members of the gammaproteobacteria, are commonly associated with diatom populations and may rely on them for organic carbon while potentially competing with them for other essential nutrients. Considering that bacterioplankton drive oceanic release of CO 2 (i.e., bacterial respiration) while diatoms drive ocean carbon sequestration vial the biological pump, the outcome of such competition could influence the direction and magnitude of carbon flux in the upper ocean. Nitrate availability is commonlymore » a determining factor for the growth of diatom populations, particularly in coastal and upwelling regions. Diatoms as well as many bacterial species can utilize nitrate, however the ability of bacteria to compete for nitrate may be hindered by carbon limitation. Here we have developed a genetically tractable model system using the pennate diatom Phaeodactylurn tricomuturn and the widespread heterotrophic bacteria Alterornonas macleodii to examine carbon-nitrogen dynamics. While subsisting solely on P. tricomutum derived carbon. A. macleodii does not appear to be an effective competitor for nitrate, and may in fact benefit the diatom; particularly in stationary phase. However, allochthonous dissolved organic carbon addition in the form of pyruvate triggers A. macleodii proliferation and nitrate uptake, leading to reduced P. tricornutum growth. Nitrate reductase deficient mutants of A. macleodii ( ΔnasA) do not exhibit such explosive growth and associated competitive ability in response to allochthonous carbon when nitrate is the sole nitrogen source, but could survive by utilizing solely P. tricomutum-derived nitrogen. Furthermore, allocthonous carbon addition enables wild-type A. macleodii to rescue nitrate reductase deficient P. tricomutum populations from nitrogen starvation, and RNA-seq transcriptomic evidence supports nitrogen-based interactions between diatoms and bacteria at the molecular level. As a result, this study provides key insights into the roles of carbon and nitrogen in phytoplankton-bacteria dynamics and lays the foundation for developing a mechanistic understanding of these interactions using co-culturing and genetic manipulation.« less
Genetic manipulation of competition for nitrate between heterotrophic bacteria and diatoms
Diner, Rachel E.; Schwenck, Sarah M.; McCrow, John P.; ...
2016-06-09
Diatoms are a dominant group of eukaryotic phytoplankton that contribute substantially to global primary production and the cycling of important elements such as carbon and nitrogen. Heterotrophic bacteria, including members of the gammaproteobacteria, are commonly associated with diatom populations and may rely on them for organic carbon while potentially competing with them for other essential nutrients. Considering that bacterioplankton drive oceanic release of CO 2 (i.e., bacterial respiration) while diatoms drive ocean carbon sequestration vial the biological pump, the outcome of such competition could influence the direction and magnitude of carbon flux in the upper ocean. Nitrate availability is commonlymore » a determining factor for the growth of diatom populations, particularly in coastal and upwelling regions. Diatoms as well as many bacterial species can utilize nitrate, however the ability of bacteria to compete for nitrate may be hindered by carbon limitation. Here we have developed a genetically tractable model system using the pennate diatom Phaeodactylurn tricomuturn and the widespread heterotrophic bacteria Alterornonas macleodii to examine carbon-nitrogen dynamics. While subsisting solely on P. tricomutum derived carbon. A. macleodii does not appear to be an effective competitor for nitrate, and may in fact benefit the diatom; particularly in stationary phase. However, allochthonous dissolved organic carbon addition in the form of pyruvate triggers A. macleodii proliferation and nitrate uptake, leading to reduced P. tricornutum growth. Nitrate reductase deficient mutants of A. macleodii ( ΔnasA) do not exhibit such explosive growth and associated competitive ability in response to allochthonous carbon when nitrate is the sole nitrogen source, but could survive by utilizing solely P. tricomutum-derived nitrogen. Furthermore, allocthonous carbon addition enables wild-type A. macleodii to rescue nitrate reductase deficient P. tricomutum populations from nitrogen starvation, and RNA-seq transcriptomic evidence supports nitrogen-based interactions between diatoms and bacteria at the molecular level. As a result, this study provides key insights into the roles of carbon and nitrogen in phytoplankton-bacteria dynamics and lays the foundation for developing a mechanistic understanding of these interactions using co-culturing and genetic manipulation.« less
Tang, Sui-Yan; Hara, Shintaro; Melling, Lulie; Goh, Kah-Joo; Hashidoko, Yasuyuki
2010-01-01
Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h(-1) in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.
Liu, Enuo; Zheng, Huajun; Hao, Pei; Konno, Tomonobu; Yu, Yao; Kume, Hisae; Oda, Munehiro; Ji, Zai-Si
2012-12-01
Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038) is a bacterium that is used as a starter for dairy products by Meiji Co., Ltd of Japan. Culturing L. bulgaricus 2038 with whey as the sole nitrogen source results in a shorter lag phase than other milk proteins under the same conditions (carbon source, minerals, and vitamins). Microarray results of gene expression revealed characteristics of amino acid anabolism with whey as the nitrogen source and established a model of proteolysis and amino acid biosynthesis for L. bulgaricus. Whey peptides and free amino acids are readily metabolized, enabling rapid entry into the logarithmic growth phase. The oligopeptide transport system is the primary pathway for obtaining amino acids. Amino acid biosynthesis maintains the balance between amino acids required for cell growth and the amount obtained from environment. The interconversion of amino acids is also important for L. bulgaricus 2038 growth.
Lactic acid production from xylose by Geobacillus stearothermophilus strain 15
NASA Astrophysics Data System (ADS)
Kunasundari, B.; Naresh, S.; Chu, J. E.
2017-09-01
Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.
Keratinolytic activity of Aspergillus fumigatus fresenius.
Santos RMDB; Firmino, A A; de Sá, C M; Felix, C R
1996-12-01
Aspergillus fumigatus can utilize chicken feather keratin as its sole carbon and nitrogen source. Because enzymatic conversion of native keratin into readily usable products is of economic interest, this fungus was studied for its capacity to produce and secrete keratin-hydrolyzing proteinases. Substantial keratin-azure hydrolyzing activity was present in the culture fluid of keratin-containing media. Considerably lower activity was present in cultures containing glucose and nitrate as the carbon and nitrogen sources, or keratin plus glucose and nitrate. Secretion of keratin-hydrolyzing activity in A. fumigatus was induced by keratin but repressed by low-molecular-weight carbon and nitrogen sources. The amount of keratinolytic enzyme present in the culture fluid was dependent on the initial pH of the culture medium. The crude enzyme also hydrolyzed native keratin and casein in vitro. Hydrolysis was optimal at pH 9 and 45 degrees C. The crude enzyme was remarkably thermostable. At 70 degrees C, it retained about 90% of its original activity for 1.5 h. The obtained results indicated that the A. fumigatus keratinolytic enzyme may be suitable for enzymatic improvement of feather meal.
Single-cell protein from methanol with Enterobacter aerogenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnan, S.O.; Abodreheba, A.O.
1987-02-20
An identified Enterobacter aerogenes utilizing methanol as a sole carbon source was studied for the optimization of biomass production and the reduction of its nucleic acid content. Results indicated that the highest yield and conversion were obtained at 0.5% methanol. The addition of seawater as a source of trace elements has an adverse effect. However, the addition of urea as source of nitrogen enhanced the growth of E. aerogenes. Heat shock at 60 degrees C for one minute followed by incubation at 50 degrees C for 2 hours caused 72.6% reduction in the nucleic acid. 12 references.
Nitrogen assimilation in denitrifier Bacillus azotoformans LMG 9581T.
Sun, Yihua; De Vos, Paul; Willems, Anne
2017-12-01
Until recently, it has not been generally known that some bacteria can contain the gene inventory for both denitrification and dissimilatory nitrate (NO 3 - )/nitrite (NO 2 - ) reduction to ammonium (NH 4 + ) (DNRA). Detailed studies of these microorganisms could shed light on the differentiating environmental drivers of both processes without interference of organism-specific variation. Genome analysis of Bacillus azotoformans LMG 9581 T shows a remarkable redundancy of dissimilatory nitrogen reduction, with multiple copies of each denitrification gene as well as DNRA genes nrfAH, but a reduced capacity for nitrogen assimilation, with no nas operon nor amtB gene. Here, we explored nitrogen assimilation in detail using growth experiments in media with different organic and inorganic nitrogen sources at different concentrations. Monitoring of growth, NO 3 - NO 2 - , NH 4 + concentration and N 2 O production revealed that B. azotoformans LMG 9581 T could not grow with NH 4 + as sole nitrogen source and confirmed the hypothesis of reduced nitrogen assimilation pathways. However, NH 4 + could be assimilated and contributed up to 50% of biomass if yeast extract was also provided. NH 4 + also had a significant but concentration-dependent influence on growth rate. The mechanisms behind these observations remain to be resolved but hypotheses for this deficiency in nitrogen assimilation are discussed. In addition, in all growth conditions tested a denitrification phenotype was observed, with all supplied NO 3 - converted to nitrous oxide (N 2 O).
Recombinational inactivation of the gene encoding nitrate reductase in Aspergillus parasiticus.
Wu, T S; Linz, J E
1993-01-01
Functional disruption of the gene encoding nitrate reductase (niaD) in Aspergillus parasiticus was conducted by two strategies, one-step gene replacement and the integrative disruption. Plasmid pPN-1, in which an internal DNA fragment of the niaD gene was replaced by a functional gene encoding orotidine monophosphate decarboxylase (pyrG), was constructed. Plasmid pPN-1 was introduced in linear form into A. parasiticus CS10 (ver-1 wh-1 pyrG) by transformation. Approximately 25% of the uridine prototrophic transformants (pyrG+) were chlorate resistant (Chlr), demonstrating their inability to utilize nitrate as a sole nitrogen source. The genetic block in nitrate utilization was confirmed to occur in the niaD gene by the absence of growth of the A. parasiticus CS10 transformants on medium containing nitrate as the sole nitrogen source and the ability to grow on several alternative nitrogen sources. Southern hybridization analysis of Chlr transformants demonstrated that the resident niaD locus was replaced by the nonfunctional allele in pPN-1. To generate an integrative disruption vector (pSKPYRG), an internal fragment of the niaD gene was subcloned into a plasmid containing the pyrG gene as a selectable marker. Circular pSKPYRG was transformed into A. parasiticus CS10. Chlr pyrG+ transformants were screened for nitrate utilization and by Southern hybridization analysis. Integrative disruption of the genomic niaD gene occurred in less than 2% of the transformants. Three gene replacement disruption transformants and two integrative disruption transformants were tested for mitotic stability after growth under nonselective conditions. All five transformants were found to stably retain the Chlr phenotype after growth on nonselective medium.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8215371
Schumacher, Jörg; Behrends, Volker; Pan, Zhensheng; Brown, Dan R.; Heydenreich, Franziska; Lewis, Matthew R.; Bennett, Mark H.; Razzaghi, Banafsheh; Komorowski, Michal; Barahona, Mauricio; Stumpf, Michael P. H.; Wigneshweraraj, Sivaramesh; Bundy, Jacob G.; Buck, Martin
2013-01-01
ABSTRACT Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency. PMID:24255125
Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants
NASA Technical Reports Server (NTRS)
Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1989-01-01
Tobacco (Nicotiana tabacum L., cv. 'Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3- or 1.0 mM NH4+ as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3- or NH4+ uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO3- [correction of NO-] was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4+ was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3(-) -fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4(+) -fed plants was increased to pH 4.0, however, specific rate of NH4+ uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4(+) -fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4(+) -fed plants to increased root-zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.
Gruffaz, Christelle; Muller, Emilie E. L.; Louhichi-Jelail, Yousra; Nelli, Yella R.; Guichard, Gilles
2014-01-01
Monomethylamine (MMA, CH3NH2) can be used as a carbon and nitrogen source by many methylotrophic bacteria. Methylobacterium extorquens DM4 lacks the MMA dehydrogenase encoded by mau genes, which in M. extorquens AM1 is essential for growth on MMA. Identification and characterization of minitransposon mutants with an MMA-dependent phenotype showed that strain DM4 grows with MMA as the sole source of carbon, energy, and nitrogen by the N-methylglutamate (NMG) pathway. Independent mutations were found in a chromosomal region containing the genes gmaS, mgsABC, and mgdABCD for the three enzymes of the pathway, γ-glutamylmethylamide (GMA) synthetase, NMG synthase, and NMG dehydrogenase, respectively. Reverse transcription-PCR confirmed the operonic structure of the two divergent gene clusters mgsABC-gmaS and mgdABCD and their induction during growth with MMA. The genes mgdABCD and mgsABC were found to be essential for utilization of MMA as a carbon and nitrogen source. The gene gmaS was essential for MMA utilization as a carbon source, but residual growth of mutant DM4gmaS growing with succinate and MMA as a nitrogen source was observed. Plasmid copies of gmaS and the gmaS homolog METDI4690, which encodes a protein 39% identical to GMA synthetase, fully restored the ability of mutants DM4gmaS and DM4gmaSΔmetdi4690 to use MMA as a carbon and nitrogen source. Similarly, chemically synthesized GMA, the product of GMA synthetase, could be used as a nitrogen source for growth in the wild-type strain, as well as in DM4gmaS and DM4gmaSΔmetdi4690 mutants. The NADH:ubiquinone oxidoreductase respiratory complex component NuoG was also found to be essential for growth with MMA as a carbon source. PMID:24682302
Boase, Natasha A; Lockington, Robin A; Adams, Julian R J; Rodbourn, Louise; Kelly, Joan M
2003-01-01
Mutations in the acrB gene, which were originally selected through their resistance to acriflavine, also result in reduced growth on a range of sole carbon sources, including fructose, cellobiose, raffinose, and starch, and reduced utilization of omega-amino acids, including GABA and beta-alanine, as sole carbon and nitrogen sources. The acrB2 mutation suppresses the phenotypic effects of mutations in the creB gene that encodes a regulatory deubiquitinating enzyme, and in the creC gene that encodes a WD40-repeat-containing protein. Thus AcrB interacts with a regulatory network controlling carbon source utilization that involves ubiquitination and deubiquitination. The acrB gene was cloned and physically analyzed, and it encodes a novel protein that contains three putative transmembrane domains and a coiled-coil region. AcrB may play a role in the ubiquitination aspect of this regulatory network. PMID:12750323
Ammonium conversion and its feedback effect on methane oxidation of Methylosinus sporium.
He, Ruo; Chen, Min; Ma, Ruo-Chan; Su, Yao; Zhang, Xuan
2017-04-01
Ammonium (NH 4 + ) is not only nitrogen source that can support methanotrophic growth, but also it can inhibit methane (CH 4 ) oxidation by competing with CH 4 for the active site of methane monooxygenase. NH 4 + conversion and its feedback effect on the growth and activity of methanotrophs were evaluated with Methylosinus sporium used as a model methanotroph. Nitrogen sources could affect the CH 4 -derived carbon distribution, which varied with incubation time and nitrogen concentrations. More CH 4 -derived carbon was incorporated into biomass in the media with NH 4 + -N, compared to nitrate-nitrogen (NO 3 - -N), as sole nitrogen source at the nitrogen concentrations of 10-18 mmol L -1 . Although ammonia (NH 3 ) oxidation activity of methanotrophs was considerably lower, only accounting for 0.01-0.06% of CH 4 oxidation activity in the experimental cultures, NH 4 + conversion could lead to the pH decrease and toxic intermediates accumulation in the their habits. Compared with NH 4 + , nitrite (NO 2 - ) accumulation in the NH 4 + conversion of methanotroph had stronger inhibition on its activity, especially the joint inhibition of NO 2 - accumulation and the pH decrease during the NH 4 + -N conversion. These results suggested that more attention should be paid to the feedback effects of NH 4 + conversion by methanotrophs to understand effects of NH 4 + on CH 4 oxidation in the environments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Olaya-Abril, Alfonso; Luque-Almagro, Víctor M; Manso, Isabel; Gates, Andrew J; Moreno-Vivián, Conrado; Richardson, David J
2017-01-01
Abstract Paracoccus denitrificans PD1222 accumulates short-length polyhydroxyalkanoates, poly(3-hydroxybutyrate), under nitrogen-deficient conditions. Polyhydroxybutyrate metabolism requires the 3-ketoacyl-CoA thiolase PhaA, the acetoacetyl-CoA dehydrogenase/reductase PhaB and the synthase PhaC for polymerization. Additionally, P. denitrificans PD1222 grows aerobically with nitrate as sole nitrogen source. Nitrate assimilation is controlled negatively by ammonium through the two-component NtrBC system. NtrB is a sensor kinase that autophosphorylates a histidine residue under low-nitrogen concentrations and, in turn, transfers a phosphoryl group to an aspartate residue of the response regulator NtrC protein, which acts as a transcriptional activator of the P. denitrificans PD1222 nasABGHC genes. The P. denitrificans PD1222 NtrB mutant was unable to use nitrate efficiently as nitrogen source when compared to the wild-type strain, and it also overproduced poly(3-hydroxybutyrate). Acetyl-CoA concentration in the P. denitrificans PD1222 NtrB mutant strain was higher than in the wild-type strain. The expression of the phaC gene was also increased in the NtrB mutant when compared to the wild-type strain. These results suggest that accumulation of poly(3-hydroxybutyrate) in the NtrB mutant strain of PD1222 responds to the high levels of acetyl-CoA that accumulate in the cytoplasm as consequence of its inability to efficiently use nitrate as nitrogen source. PMID:29228177
Development and optimization of a new culture media using extruded bean as nitrogen source.
Batista, Karla A; Fernandes, Kátia F
2015-01-01
The composition of a culture medium is one of the most important parameters to be analyzed in biotechnological processes with industrial purposes, because around 30-40% of the production costs were estimated to be accounted for the cost of the growth medium [1]. Since medium optimization using a one-factor-at-a-time approach is time-consuming, expensive, and often leads to misinterpretation of results, statistical experimental design has been applied to medium optimization for growth and metabolite production [2-5]. In this scenario, the use of mixture design to develop a culture medium containing a cheaper nitrogen source seems to be more appropriate and simple. In this sense, the focus of this work is to present a detailed description of the steps involved in the development of a optimized culture medium containing extruded bean as nitrogen source. •In a previous work we tested a development of new culture media based on the composition of YPD medium, aiming to reduce bioprocess costs as well as to improve the biomass production and heterologous expression.•The developed medium was tested for growth of Saccharomyces cerevisiae and Pichia pastoris (GS 115).•The use of culture media containing extruded bean as sole nitrogen source showed better biomass production and protein expression than those observed in the standard YPD medium.
FORMATION OF NITRITE AND NITRATE BY ACTINOMYCETES AND FUNGI
Hirsch, P.; Overrein, L.; Alexander, M.
1961-01-01
Hirsch, P. (Cornell University, Ithaca, New York), L. Overrein, and M. Alexander. Formation of nitrite and nitrate by actinomycetes and fungi. J. Bacteriol. 82:442–448. 1961.—Nitrite was produced by strains of Mycobacterium, Nocardia, Streptomyces, Micromonospora, and Streptosporangium in media containing ammonium phosphate as the sole nitrogen source. The quantity of nitrite formed was small, and the concentration was affected by pH and by the relative levels of carbon and nitrogen. Aspergillus flavus produced little nitrite from ammonium but formed in excess of 100 parts per million of nitrate-nitrogen. Peroxidase activity and heterotrophic nitrification were reduced in acid conditions, but mycelial development of the fungus was not markedly affected. The inability of A. flavus to form nitrate and nitrite at low pH appears to result from a selective effect of pH upon nitrification rather than being a consequence of the decomposition of nitrogenous intermediates. PMID:13714587
Valorization of Flue Gas by Combining Photocatalytic Gas Pretreatment with Microalgae Production.
Eynde, Erik Van; Lenaerts, Britt; Tytgat, Tom; Blust, Ronny; Lenaerts, Silvia
2016-03-01
Utilization of flue gas for algae cultivation seems to be a promising route because flue gas from fossil-fuel combustion processes contains the high amounts of carbon (CO2) and nitrogen (NO) that are required for algae growth. NO is a poor nitrogen source for algae cultivation because of its low reactivity and solublilty in water and its toxicity for algae at high concentrations. Here, we present a novel strategy to valorize NO from flue gas as feedstock for algae production by combining a photocatalytic gas pretreatment unit with a microalgal photobioreactor. The photocatalytic air pretreatment transforms NO gas into NO2 gas and thereby enhances the absorption of NOx in the cultivation broth. The absorbed NOx will form NO2(-) and NO3(-) that can be used as a nitrogen source by algae. The effect of photocatalytic air pretreatment on the growth and biomass productivity of the algae Thalassiosira weissflogii in a semicontinuous system aerated with a model flue gas (1% CO2 and 50 ppm of NO) is investigated during a long-term experiment. The integrated system makes it possible to produce algae with NO from flue gas as the sole nitrogen source and reduces the NOx content in the exhaust gas by 84%.
Characterization and regulation of glycine transport in Fusarium oxysporum var. lini.
Castro, I M; Lima, A A; Nascimento, A F; Ruas, M M; Nicoli, J R; Brandão, R L
1996-08-01
Glycine was transported in Fusarium oxysporum cells, grown on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant (Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees C. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one (Ks) of about 47 microM and Vmax of about 60 microM (g dry weight)-1 h-1). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F. oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.
Siljanen, Henri M. P.; Saari, Anne; Bodrossy, Levente; Martikainen, Pertti J.
2012-01-01
Methane is the second most abundant greenhouse gas in the atmosphere. A major part of the total methane emissions from lake ecosystems is emitted from littoral wetlands. Methane emissions are significantly reduced by methanotrophs, as they use methane as their sole energy and carbon source. Methanotrophic activity can be either activated or inhibited by nitrogen. However, the effects of nitrogen on methanotrophs in littoral wetlands are unknown. Here we report how nitrogen loading in situ affected the function and diversity of methanotrophs in a boreal littoral wetland. Methanotrophic community composition and functional diversity were analyzed with a particulate methane monooxygenase (pmoA) gene targeted microarray. Nitrogen load had no effects on methane oxidation potential and methane fluxes. Nitrogen load activated pmoA gene transcription of type I (Methylobacter, Methylomonas, and LW21-freshwater phylotypes) methanotrophs, but decreased the relative abundance of type II (Methylocystis, Methylosinus trichosporium, and Methylosinus phylotypes) methanotrophs. Hence, the overall activity of a methanotroph community in littoral wetlands is not affected by nitrogen leached from the catchment area. PMID:22363324
Miao, Lei; Wang, Shuying; Li, Baikun; Cao, Tianhao; Zhang, Fangzhai; Wang, Zhong; Peng, Yongzhen
2016-09-01
Glycogen accumulating organisms (GAOs) capable of storing organic compounds as polyhydroxyalkanoate (PHA) have been used for endogenous denitritation (ED), but the effect of carbon sources type on nitrogen removal performance of GAOs treating landfill leachate is unclear. In this study, a successful ED system treating landfill leachate (COD/NH4(+)-N (C/N): 4) without external carbon source addition was applied. The mature leachate with C/N of 1 was used as the feeding base solution, with acetate, propionate, and glucose examined as the carbon sources, and their effects on yields and compositions of PHA produced by GAOs were determined and associated with nitrogen removal performance. In the case of sole carbon source, acetate was much easier to be stored than propionate and glucose, which led to a higher nitrogen removal efficiency. Glucose had the lowest amount of PHA storage and led to the lowest performance. In the case of composite carbon sources (two scenarios: acetate + propionate; acetate + propionate + glucose), GAOs stored sufficient PHA and exhibited similar nitrogen removal efficiencies. Moreover, type of carbon source influenced the compositions of PHA. The polyhydroxybutyrate (PHB) fraction in PHA was far more than polyhydroxyvalerate (PHV) in all tests. PHV was synthesized only when acetate existed in carbon source. The microbial diversity analysis revealed that Proteobacteria was the most abundant phylum. Among the 108 genera detected in this ED system, the genera responsible for denitritation were Thauera, Paracoccus, Ottowia and Comamonadaceae_unclassified, accounting for 46.21% of total bacteria. Especially, Paracoccus and Comamonadaceae_unclassified transformed the carbon source into PHA for denitritation, and carried out endogenous denitritation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carbaryl degradation by bacterial isolates from a soil ecosystem of the Gaza Strip
Hamada, Mazen; Matar, Ammar; Bashir, Abdallah
2015-01-01
Abstract Carbaryl is an important and widely used insecticide that pollutes soil and water systems. Bacteria from the local soil ecosystem of the Gaza Strip capable of utilizing carbaryl as the sole source of carbon and nitrogen were isolated and identified as belonging to Bacillus, Morganella, Pseudomonas, Aeromonas and Corynebacterium genera. Carbaryl biodegradation by Bacillus, Morganella and Corynebacterium isolates was analyzed in minimal liquid media supplemented with carbaryl as the only source of carbon and nitrogen. Bacillus and Morganella exhibited 94.6% and 87.3% carbaryl degradation, respectively, while Corynebacterium showed only moderate carbaryl degradation at 48.8%. These results indicate that bacterial isolates from a local soil ecosystem in the Gaza Strip are able to degrade carbaryl and can be used to decrease the risk of environmental contamination by this insecticide. PMID:26691466
Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania
2015-01-01
Soybean is traditionally grown in soil, where root symbiosis with Bradyrhizobium japonicum can supply nitrogen (N), by means of bacterial fixation of atmospheric N2. Nitrogen fertilizers inhibit N-fixing bacteria. However, urea is profitably used in soybean cultivation in soil, where urease enzymes of telluric microbes catalyze the hydrolysis to ammonium, which has a lighter inhibitory effect compared to nitrate. Previous researches demonstrated that soybean can be grown hydroponically with recirculating complete nitrate-based nutrient solutions. In Space, urea derived from crew urine could be used as N source, with positive effects in resource procurement and waste recycling. However, whether the plants are able to use urea as the sole source of N and its effect on root symbiosis with B. japonicum is still unclear in hydroponics. We compared the effect of two N sources, nitrate and urea, on plant growth and physiology, and seed yield and quality of soybean grown in closed-loop Nutrient Film Technique (NFT) in growth chamber, with or without inoculation with B. japonicum. Urea limited plant growth and seed yield compared to nitrate by determining nutrient deficiency, due to its low utilization efficiency in the early developmental stages, and reduced nutrients uptake (K, Ca, and Mg) throughout the whole growing cycle. Root inoculation with B. japonicum did not improve plant performance, regardless of the N source. Specifically, nodulation increased under fertigation with urea compared to nitrate, but this effect did not result in higher leaf N content and better biomass and seed production. Urea was not suitable as sole N source for soybean in closed-loop NFT. However, the ability to use urea increased from young to adult plants, suggesting the possibility to apply it during reproductive phase or in combination with nitrate in earlier developmental stages. Root symbiosis did not contribute significantly to N nutrition and did not enhance the plant ability to use urea, possibly because of ineffective infection process and nodule functioning in hydroponics. PMID:26579144
Levicán, Gloria; Ugalde, Juan A; Ehrenfeld, Nicole; Maass, Alejandro; Parada, Pilar
2008-01-01
Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms. PMID:19055775
Dutta, Debasree; Gachhui, Ratan
2007-02-01
A few members of the family Acetobacteraceae are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3T, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus Gluconacetobacter, with Gluconacetobacter hansenii LMG 1527T as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as L-alanine, L-cysteine and L-threonine served as carbon and nitrogen sources for growth of strain RG3T. Strain RG3T produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2-27.77 % DNA-DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name Gluconacetobacter kombuchae sp. nov. is proposed, with the type strain RG3T (=LMG 23726T=MTCC 6913T).
Wang, C C; Lee, C M; Cheng, P W
2001-01-01
A gram-negative rod-shaped bacteria (strain AAS6), capable of utilizing acrylonitrile as the sole source of both carbon and nitrogen, was utilized to investigate the removal of acrylonitrile in ABS resin manufacturing wastewater. Both synthetic wastewater, containing a high concentration of acrylonitrile, and actual wastewater obtained from an ABS manufacturing factory were used. The result indicated that strain AAS6 was capable of completely removing acrylonitrile from synthetic wastewater containing less than 889 mg/l acrylonitrile and from actual industrial wastewater containing less than 400 mg/l acrylonitrile. Whether in synthetic wastewater or actual industrial wastewater, strain AAS6 showed approximately the same ability for acrylonitrile removal and used acrylic acid, a metabolic by-product of acrylonitrile, as the carbon source and ammonium as the nitrogen source. The bacteria could not directly metabolize other chemicals found in the actual industrial wastewater. However, its metabolic activities were not inhibited by the presence of compounds such as butadiene, styrene or acrylonitrile-styrene polymer. Thus, this strain is expected to play an important role in aeration tanks for treating ABS resin manufacturing wastewater.
GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea.
Yao, Li-Li; Liao, Cheng-Heng; Huang, Gang; Zhou, Ying; Rigali, Sebastien; Zhang, Buchang; Ye, Bang-Ce
2014-09-01
Nitrogen source sensing, uptake, and assimilation are central for growth and development of microorganisms which requires the participation of a global control of nitrogen metabolism-associated genes at the transcriptional level. In soil-dwelling antibiotic-producing actinomycetes, this role is played by GlnR, an OmpR family regulator. In this work, we demonstrate that SACE_7101 is the ortholog of actinomycetes' GlnR global regulators in the erythromycin producer Saccharopolyspora erythraea. Indeed, the chromosomal deletion of SACE_7101 severely affects the viability of S. erythraea when inoculated in minimal media supplemented with NaNO3, NaNO2, NH4Cl, glutamine, or glutamate as sole nitrogen source. Combination of in silico prediction of cis-acting elements, subsequent in vitro (through gel shift assays) and in vivo (real-time reverse transcription polymerase chain reaction) validations of the predicted target genes revealed a very large GlnR regulon aimed at adapting the nitrogen metabolism of S. erythraea. Indeed, enzymes/proteins involved in (i) uptake and assimilation of ammonium, (ii) transport and utilization of urea, (iii) nitrite/nitrate, (iv) glutamate/glutamine, (v) arginine metabolism, (vi) nitric oxide biosynthesis, and (vii) signal transduction associated with the nitrogen source supplied have at least one paralog gene which expression is controlled by GlnR. Our work highlights a GlnR-binding site consensus sequence (t/gna/cAC-n6-GaAAc) which is similar although not identical to the consensus sequences proposed for other actinomycetes. Finally, we discuss the distinct and common features of the GlnR-mediated transcriptional control of nitrogen metabolism between S. erythraea and the model organism Streptomyces coelicolor.
Miranda-Carrazco, Alejandra; Vigueras-Cortés, Juan M; Villa-Tanaca, Lourdes; Hernández-Rodríguez, César
2018-04-11
Mine tailings and wastewater generate man-made environments with several selective pressures, including the presence of heavy metals, arsenic and high cyanide concentrations, but severe nutritional limitations. Some oligotrophic and pioneer bacteria can colonise and grow in mine wastes containing a low concentration of organic matter and combined nitrogen sources. In this study, Pseudomonas mendocina P6115 was isolated from mine tailings in Durango, Mexico, and identified through a phylogenetic approach of 16S rRNA, gyrB, rpoB, and rpoD genes. Cell growth, cyanide consumption, and ammonia production kinetics in a medium with cyanide as sole nitrogen source showed that at the beginning, the strain grew assimilating cyanide, when cyanide was removed, ammonium was produced and accumulated in the culture medium. However, no clear stoichiometric relationship between both nitrogen sources was observed. Also, cyanide complexes were assimilated as nitrogen sources. Other phenotypic tasks that contribute to the strain's adaptation to a mine tailing environment included siderophores production in media with moderate amounts of heavy metals, arsenite and arsenate tolerance, and the capacity of oxidizing arsenite. P. mendocina P6115 harbours cioA/cioB and aoxB genes encoding for a cyanide-insensitive oxidase and an arsenite oxidase, respectively. This is the first report where P. mendocina is described as a cyanotrophic and arsenic oxidizing species. Genotypic and phenotypic tasks of P. mendocina P6115 autochthonous from mine wastes are potentially relevant for biological treatment of residues contaminated with cyanide and arsenic.
Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Xu, Guang-yao; Li, Jin
2016-03-15
A heterotrophic nitrification--aerobic denitrification bacterium named y3 was isolated from the sludge of Jiaozhou Bay using the enrichment medium with seawater as the matrix. It was identified as Pseudomonas sp. based on the morphological observation, physiological experiments and sequence analysis of 16S rRNA. The experiment results showed that the optimal carbon resource was sodium citrate, the optimal pH was 7.0, and the optimal C/N was 13. The strain could use NH₄Cl, NaNO₂ and KNO₃ as sole nitrogen source, and the removal efficiencies were 98.69%, 78.38% and 72.95% within 20 hours, respectively. There was no nitrate and nitrite accumulation during the heterotrophic nitrification process. Within 20 hours, the nitrogen removal efficiencies were 99.56%, 99.75% and 99.41%, respectively, in the mixed system with NO₃⁻-N: NO²⁻-N of 2:1, 1:1 and 1:2. When the NH₄⁺-N: NO₃⁻-N ratios were 2: 1 , 1: 1 , 1: 2, the nitrogen removal efficiencies were all 100% . When the NH₄⁺-N:NO₂⁻-N ratios were 2:1,1:1,1:2, the nitrogen removal efficiencies were 90.43%, 92.79% and 99.96%, respectively. They were higher than those with single nitrogen source. As a result, strain y3 had good nitrogen removal performance in high saline wastewater treatment.
Zhu, Shuangyue; Zheng, Maosheng; Li, Can; Gui, Mengyao; Chen, Qian; Ni, Jinren
2015-06-01
Much effort has been made for reducing nitrous oxide (N2O) emission in wastewater treatment processes. This paper presents an interesting way to minimize N2O in aerobic denitrification by strain Pseudomonas stutzeri PCN-1 with help of corn flour as cheaper additional carbon source. Experimental results showed that maximal N2O accumulation by strain PCN-1 was only 0.02% of removed nitrogen if corn flour was used as sole carbon source, which was significantly reduced by 52.07-99.81% comparing with others such as succinate, glucose, acetate and citrate. Sustained release of reducing sugar from starch and continuous expression of nosZ coding for N2O reductase contributed to the special role of corn flour as the ideal carbon source for strain PCN-1. Further experiments in sequencing batch reactors (SBRs) demonstrated similarly efficient nitrogen removal with much less N2O emission due to synergy of the novel strain and activated sludge, which was then confirmed by quantitative PCR analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Complete Genome Sequence of the p-Nitrophenol-Degrading Bacterium Pseudomonas putida DLL-E4
Hu, Xiaojun; Wang, Jue; Wang, Fei; Chen, Qiongzhen; Huang, Yan
2014-01-01
The first complete genome sequence of a p-nitrophenol (PNP)-degrading bacterium is reported here. Pseudomonas putida DLL-E4, a Gram-negative bacterium isolated from methyl-parathion-polluted soil, can utilize PNP as the sole carbon and nitrogen source. P. putida DLL-E4 has a 6,484,062 bp circular chromosome that contains 5,894 genes, with a G+C content of 62.46%. PMID:24948765
Gojković, Z; Sandrini, M P; Piskur, J
2001-01-01
beta-Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamyl-beta-alanine as the sole nitrogen source and exhibits diminished beta-alanine synthase activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has no pyrimidine catabolic pathway, it enabled growth on N-carbamyl-beta-alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta-alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial N-carbamyl amidohydrolases. All three beta-alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta-alanine, but not by uracil. This work establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta-alanine production in eukaryotes. PMID:11454750
Lowe-Power, Tiffany M; Hendrich, Connor G; von Roepenack-Lahaye, Edda; Li, Bin; Wu, Dousheng; Mitra, Raka; Dalsing, Beth L; Ricca, Patrizia; Naidoo, Jacinth; Cook, David; Jancewicz, Amy; Masson, Patrick; Thomma, Bart; Lahaye, Thomas; Michael, Anthony J; Allen, Caitilyn
2018-04-01
Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Rayu, Smriti; Nielsen, Uffe N.; Nazaries, Loïc; Singh, Brajesh K.
2017-01-01
Chlorpyrifos (CP) is one of the most widely used organophosphate pesticides in agriculture worldwide, but its extensive use has led to the contamination of various soil and water systems. Microbial bioremediation is considered to be one of the most viable options for the removal of CP from the environment; however, little is known about the soil bacterial diversity that degrade CP. Sequential soil and liquid culture enrichments enabled the isolation of bacterial CP degraders with sequence homologies to Xanthomonas sp., Pseudomonas sp., and Rhizobium sp. The efficacy of the three isolated strains: Xanthomonas sp. 4R3-M1, Pseudomonas sp. 4H1-M3, and Rhizobium sp. 4H1-M1 was further investigated for biodegradation of CP and its primary metabolic product, 3,5,6-trichloro-2-pyridinol (TCP). The results indicate that all three bacterial strains almost completely metabolized CP (10 mg/L) and TCP, occurring as a metabolic degradation product, in mineral salt media as a sole source of carbon and nitrogen. The isolated bacterial strains Xanthomonas sp. 4R3-M1 and Pseudomonas sp. 4H1-M3 could also degrade TCP (10 mg/L) as a sole carbon and nitrogen source, when provided externally. Thus, these bacterial strains may be effective in practical application of bioremediation of both CP and TCP. PMID:28421040
Nitrogen use strategies of seedlings from neotropical tree species of distinct successional groups.
Oliveira, Halley Caixeta; da Silva, Ligia Maria Inocêncio; de Freitas, Letícia Dias; Debiasi, Tatiane Viegas; Marchiori, Nidia Mara; Aidar, Marcos Pereira Marinho; Bianchini, Edmilson; Pimenta, José Antonio; Stolf-Moreira, Renata
2017-05-01
Few studies have analyzed the strategies of neotropical tree seedlings for absorbing, translocating and assimilating the nitrogen. Here, we compared the nitrogen use strategies of seedlings from six tree species that are native to the Brazilian Atlantic Forest and that belong to different successional groups: Trema micrantha, Heliocarpus popayanensis and Cecropia pachystachya (pioneers), Cariniana estrellensis, Eugenia brasiliensis and Guarea kunthiana (non-pioneers). The effects of cultivating seedlings with nitrate or ammonium on the growth, physiology and nitrogen metabolism were analyzed. Nitrate-grown pioneer species had much higher leaf nitrate reductase activity than non-pioneer ones, but non-pioneer seedlings were also able to use nitrate as a nitrogen source. In addition to this remarkable difference between the groups in the capacity for leaf nitrate assimilation, substantial variations in the nitrogen use strategies were observed within the successional classes. Differently from the other non-pioneers, the canopy species C. estrellensis seemed to assimilate nitrate mainly in the leaves. Morphophysiological analyses showed a gradient of ammonium toxicity response, with E. brasiliensis as the most tolerant species, and T. micrantha and H. popayanensis as the most sensitive ones. Guarea kunthiana showed a relatively low tolerance to ammonium and an unusual high translocation of this cation in the xylem sap. In contrast to the other pioneers, C. pachystachya had a high plasticity in the use of nitrogen sources. Overall, these results suggest that nitrogen use strategies of neotropical tree seedlings were not determined solely by their successional position. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
2014-01-01
Background Biodegradation of free cyanide from industrial wastewaters has been proven as a viable and robust method for treatment of wastewaters containing cyanide. Results Cyanide degrading bacteria were isolated from a wastewater treatment plant for coke-oven-gas condensate by enrichment culture technique. Five strains were able to use cyanide as the sole nitrogen source under alkaline conditions and among them; one strain (C2) was selected for further studies on the basis of the higher efficiency of cyanide degradation. The bacterium was able to tolerate free cyanide at concentrations of up to 500 ppm which makes it a good potentially candidate for the biological treatment of cyanide contaminated residues. Cyanide degradation corresponded with growth and reached a maximum level 96% during the exponential phase. The highest growth rate (1.23 × 108) was obtained on day 4 of the incubation time. Both glucose and fructose were suitable carbon sources for cyanotrophic growth. No growth was detected in media with cyanide as the sole carbon source. Four control factors including, pH, temperature, agitation speed and glucose concentration were optimized according to central composite design in response surface method. Cyanide degradation was optimum at 34.2°C, pH 10.3 and glucose concentration 0.44 (g/l). Conclusions Bacterial species degrade cyanide into less toxic products as they are able to use the cyanide as a nitrogen source, forming ammonia and carbon dioxide as end products. Alkaliphilic bacterial strains screened in this study evidentially showed the potential to possess degradative activities that can be harnessed to remediate cyanide wastes. PMID:24921051
Hokamura, Ayaka; Yunoue, Yuko; Goto, Saki; Matsusaki, Hiromi
2017-08-08
Pseudomonas sp. 61-3 accumulates a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer, poly(3-hydroxybutyrate- co -3-hydroxyalkanoate) [P(3HB- co -3HA)], consisting of 3HA units of 4-12 carbon atoms. Pseudomonas sp. 61-3 possesses two types of PHA synthases, PHB synthase (PhbC) and PHA synthases (PhaC1 and PhaC2), encoded by the phb and pha loci, respectively. The P(94 mol% 3HB- co -6 mol% 3HA) copolymer synthesized by the recombinant strain of Pseudomonas sp. 61-3 ( phbC :: tet ) harboring additional copies of phaC1 gene is known to have desirable physical properties and to be a flexible material with moderate toughness, similar to low-density polyethylene. In this study, we focused on the production of the P(3HB- co -3HA) copolymer using steamed soybean wastewater, a by-product in brewing miso , which is a traditional Japanese seasoning. The steamed soybean wastewater was spray-dried to produce a powder (SWP) and used as the sole nitrogen source for the synthesis of P(3HB- co -3HA) by the Pseudomonas sp. 61-3 recombinant strain. Hydrolyzed SWP (HSWP) was also used as a carbon and nitrogen source. P(3HB- co -3HA)s with relatively high 3HB fractions could be synthesized by a recombinant strain of Pseudomonas sp. 61-3 ( phbC :: tet ) harboring additional copies of the phaC1 gene in the presence of 2% glucose and 10-20 g/L SWP as the sole nitrogen source, producing a PHA concentration of 1.0-1.4 g/L. When HSWP was added to a nitrogen- and carbon-free medium, the recombinant strain could synthesize PHA without glucose as a carbon source. The recombinant strain accumulated 32 wt% P(3HB- co -3HA) containing 80 mol% 3HB and 20 mol% medium-chain-length 3HA with a PHA concentration of 1.0 g/L when 50 g/L of HSWP was used. The PHA production yield was estimated as 20 mg-PHA/g-HSWP, which equates to approximately 1.0 g-PHA per liter of soybean wastewater.
Hokamura, Ayaka; Yunoue, Yuko; Goto, Saki; Matsusaki, Hiromi
2017-01-01
Pseudomonas sp. 61-3 accumulates a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer, poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) [P(3HB-co-3HA)], consisting of 3HA units of 4–12 carbon atoms. Pseudomonas sp. 61-3 possesses two types of PHA synthases, PHB synthase (PhbC) and PHA synthases (PhaC1 and PhaC2), encoded by the phb and pha loci, respectively. The P(94 mol% 3HB-co-6 mol% 3HA) copolymer synthesized by the recombinant strain of Pseudomonas sp. 61-3 (phbC::tet) harboring additional copies of phaC1 gene is known to have desirable physical properties and to be a flexible material with moderate toughness, similar to low-density polyethylene. In this study, we focused on the production of the P(3HB-co-3HA) copolymer using steamed soybean wastewater, a by-product in brewing miso, which is a traditional Japanese seasoning. The steamed soybean wastewater was spray-dried to produce a powder (SWP) and used as the sole nitrogen source for the synthesis of P(3HB-co-3HA) by the Pseudomonas sp. 61-3 recombinant strain. Hydrolyzed SWP (HSWP) was also used as a carbon and nitrogen source. P(3HB-co-3HA)s with relatively high 3HB fractions could be synthesized by a recombinant strain of Pseudomonas sp. 61-3 (phbC::tet) harboring additional copies of the phaC1 gene in the presence of 2% glucose and 10–20 g/L SWP as the sole nitrogen source, producing a PHA concentration of 1.0–1.4 g/L. When HSWP was added to a nitrogen- and carbon-free medium, the recombinant strain could synthesize PHA without glucose as a carbon source. The recombinant strain accumulated 32 wt% P(3HB-co-3HA) containing 80 mol% 3HB and 20 mol% medium-chain-length 3HA with a PHA concentration of 1.0 g/L when 50 g/L of HSWP was used. The PHA production yield was estimated as 20 mg-PHA/g-HSWP, which equates to approximately 1.0 g-PHA per liter of soybean wastewater. PMID:28952548
N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR.
Zhao, Bin; An, Qiang; He, Yi Liang; Guo, Jin Song
2012-07-01
A heterotrophic nitrifier, strain NR, was isolated from a membrane bioreactor. Strain NR was identified as Alcaligenes faecalis by Auto-Microbic system and 16S rRNA gene sequence analysis. A. faecalis strain NR shows a capability of heterotrophic nitrification and N(2)O and N(2) production as well under the aerobic condition. Further tests demonstrated that neither nitrite nor nitrate could be denitrified aerobically by strain NR. However, when hydroxylamine was used as the sole nitrogen source, nitrogenous gases were detected. With an enzyme assay, a 0.063 U activity of hydroxylamine oxidase was observed, while nitrate reductase and nitrite reductase were undetectable. Thus, nitrogenous gas was speculated to be produced via hydroxylamine. Therefore, two different metabolic pathways might exist in A. faecalis NR. One is heterotrophic nitrification by oxidizing ammonium to nitrite and nitrate. The other is oxidizing ammonium to nitrogenous gas directly via hydroxylamine. Copyright © 2012 Elsevier Ltd. All rights reserved.
Functional analysis of fructosyl-amino acid oxidases of Aspergillus oryzae.
Akazawa, Shin-Ichi; Karino, Tetsuya; Yoshida, Nobuyuki; Katsuragi, Tohoru; Tani, Yoshiki
2004-10-01
Three active fractions of fructosyl-amino acid oxidase (FAOD-Ao1, -Ao2a, and -Ao2b) were isolated from Aspergillus oryzae strain RIB40. N-terminal and internal amino acid sequences of FAOD-Ao2a corresponded to those of FAOD-Ao2b, suggesting that these two isozymes were derived from the same protein. FAOD-Ao1 and -Ao2 were different in substrate specificity and subunit assembly; FAOD-Ao2 was active toward N(epsilon)-fructosyl N(alpha)-Z-lysine and fructosyl valine (Fru-Val), whereas FAOD-Ao1 was not active toward Fru-Val. The genes encoding the FAOD isozymes (i.e., FAOAo1 and FAOAo2) were cloned by PCR with an FAOD-specific primer set. The deduced amino acid sequences revealed that FAOD-Ao1 was 50% identical to FAOD-Ao2, and each isozyme had a peroxisome-targeting signal-1, indicating their localization in peroxisomes. The genes was expressed in Escherichia coli and rFaoAo2 showed the same characteristics as FAOD-Ao2, whereas rFaoAo1 was not active. FAOAo2 disruptant was obtained by using ptrA as a selective marker. Wild-type strain grew on the medium containing Fru-Val as the sole carbon and nitrogen sources, but strain Delta faoAo2 did not grow. Addition of glucose or (NH(4))(2)SO(4) to the Fru-Val medium did not affect the assimilation of Fru-Val by wild-type, indicating glucose and ammonium repressions did not occur in the expression of the FAOAo2 gene. Furthermore, conidia of the wild-type strain did not germinate on the medium containing Fru-Val and NaNO(2) as the sole carbon and nitrogen sources, respectively, suggesting that Fru-Val may also repress gene expression of nitrite reductase. These results indicated that FAOD is needed for utilization of fructosyl-amino acids as nitrogen sources in A. oryzae.
Romagnoli, Gabriele; Knijnenburg, Theo A; Liti, Gianni; Louis, Edward J; Pronk, Jack T; Daran, Jean-Marc
2015-01-01
Phenylethanol has a characteristic rose-like aroma that makes it a popular ingredient in foods, beverages and cosmetics. Microbial production of phenylethanol currently relies on whole-cell bioconversion of phenylalanine with yeasts that harbour an Ehrlich pathway for phenylalanine catabolism. Complete biosynthesis of phenylethanol from a cheap carbon source, such as glucose, provides an economically attractive alternative for phenylalanine bioconversion. In this study, synthetic genetic array (SGA) screening was applied to identify genes involved in regulation of phenylethanol synthesis in Saccharomyces cerevisiae. The screen focused on transcriptional regulation of ARO10, which encodes the major decarboxylase involved in conversion of phenylpyruvate to phenylethanol. A deletion in ARO8, which encodes an aromatic amino acid transaminase, was found to underlie the transcriptional upregulation of ARO10 during growth, with ammonium sulphate as the sole nitrogen source. Physiological characterization revealed that the aro8Δ mutation led to substantial changes in the absolute and relative intracellular concentrations of amino acids. Moreover, deletion of ARO8 led to de novo production of phenylethanol during growth on a glucose synthetic medium with ammonium as the sole nitrogen source. The aro8Δ mutation also stimulated phenylethanol production when combined with other, previously documented, mutations that deregulate aromatic amino acid biosynthesis in S. cerevisiae. The resulting engineered S. cerevisiae strain produced >3 mm phenylethanol from glucose during growth on a simple synthetic medium. The strong impact of a transaminase deletion on intracellular amino acid concentrations opens new possibilities for yeast-based production of amino acid-derived products. Copyright © 2014 John Wiley & Sons, Ltd.
Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton
Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.
2017-01-01
Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361
Rios-Iribe, Erika Y; Hernández-Calderón, Oscar M; Reyes-Moreno, C; Contreras-Andrade, I; Flores-Cotera, Luis B; Escamilla-Silva, Eleazar M
2013-01-01
A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H-984) grown in varying ratios of glucose-corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first-order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3 ) in G. fujikuroi. © 2013 American Institute of Chemical Engineers.
Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications.
Huang, He; Li, Chunguang; Zhu, Shoujun; Wang, Hailong; Chen, Cailing; Wang, Zhaorui; Bai, Tianyu; Shi, Zhan; Feng, Shouhua
2014-11-18
Nitrogen-doped (N-doped) photoluminescent carbon dots (CDs) were prepared by a one-pot microwave-assisted hydrothermal treatment using histidine as the sole carbon source in the absence of acid, alkali, or metal ions. With a diameter of 2-5 nm, the synthesized CDs had apparent lattice fringes and exhibited an excitation-dependent photoluminescent behavior. The CDs were highly yielded, well-dispersed in aqueous solution, and showed high photostability in the solutions of a wide range of pH and salinity. They were used as probes to identify the presence of Fe(3+) ions with a detection limit of 10 nM. With confirmed nontoxicity, these CDs could enter the cancer cells, indicating a practical potential for cellular imaging and labeling.
Novel degradation pathway and kinetic analysis for buprofezin removal by newly isolated Bacillus sp.
Wang, Guangli; Xu, Dayong; Xiong, Minghua; Zhang, Hui; Li, Feng; Liu, Yuan
2016-09-15
Given the intensive and widespread application of the pesticide, buprofezin, its environmental residues potentially pose a problem; yet little is known about buprofezin's kinetic and metabolic behaviors. In this study, a novel gram-positive strain, designated BF-5, isolated from aerobic activated sludge, was found to be capable of metabolizing buprofezin as its sole energy, carbon, and nitrogen source. Based on its physiological and biochemical characteristics, other aspects of its phenotype, and a phylogenetic analysis, strain BF-5 was identified as Bacillus sp. This study investigated the effect of culture conditions on bacterial growth and substrate degradation, such as pH, temperature, initial concentration, different nitrogen source, and additional nitrogen sources as co-substrates. The degradation rate parameters, qmax, Ks, Ki and Sm were determined to be 0.6918 h(-1), 105.4 mg L(-1), 210.5 mg L(-1), and 148.95 mg L(-1) respectively. The capture of unpublished potential metabolites by gas chromatography-mass spectrometry (GC-MS) analysis has led to the proposal of a novel degradation pathway. Taken together, our results clarify buprofezin's biodegradation pathway(s) and highlight the promising potential of strain BF-5 in bioremediation of buprofezin-contaminated environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jana, Arijit; Maity, Chiranjit; Halder, Suman Kumar; Mondal, Keshab Chandra; Pati, Bikash Ranjan; Mohapatra, Pradeep Kumar Das
2012-07-01
Tannase production by newly isolated Penicillium purpurogenum PAF6 was investigated by 'one variable at a time' (OVAT) approach followed by response surface methodology (RSM). Tannin-rich plant residues were used as supporting solid substrate and sole carbon source and, among them, tamarind seed was found to be the most favorable substrate than haritaki, pomegranate, tea leaf waste and arjun fruit. Physicochemical parameters were initially optimized using OVAT methodology and some important factors like incubation time, incubation temperature, substrate:moisture ratio as well as carbon, nitrogen and phosphate concentrations were verified with Box-Behken design of response surface methodology. Phosphate source, nitrogen source and temperature were found as the most favorable variables in the maximization of production. Tannase production was enhanced from 1.536 U/g to 5.784 U/g using tamarind seed OVAT optimization and further enhancement up to 6.15 U/g following RSM. An overall 3.76- and 4.0-fold increases in tannase production were achieved in OVAT and RSM, respectively.
NASA Astrophysics Data System (ADS)
Leakey, Chris D. B.; Attrill, Martin J.; Jennings, Simon; Fitzsimons, Mark F.
2008-04-01
Estuaries are regarded as valuable nursery habitats for many commercially important marine fishes, potentially providing a thermal resource, refuge from predators and a source of abundant prey. Stable isotope analysis may be used to assess relative resource use from isotopically distinct sources. This study comprised two major components: (1) development of a spatial map and discriminant function model of stable isotope variation in selected invertebrate groups inhabiting the Thames Estuary and adjacent coastal regions; and (2) analysis of stable isotope signatures of juvenile bass ( Dicentrarchus labrax), sole ( Solea solea) and whiting ( Merlangius merlangus) for assessment of resource use and feeding strategies. The data were also used to consider anthropogenic enrichment of the estuary and potential energetic benefits of feeding in estuarine nursery habitat. Analysis of carbon (δ 13C), nitrogen (δ 15N) and sulphur (δ 34S) isotope data identified significant differences in the 'baseline' isotopic signatures between estuarine and coastal invertebrates, and discriminant function analysis allowed samples to be re-classified to estuarine and coastal regions with 98.8% accuracy. Using invertebrate signatures as source indicators, stable isotope data classified juvenile fishes to the region in which they fed. Feeding signals appear to reflect physiological (freshwater tolerance) and functional (mobility) differences between species. Juvenile sole were found to exist as two isotopically-discrete sub-populations, with no evidence of mixing between the two. An apparent energetic benefit of estuarine feeding was only found for sole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Cliff; Spring, Stefan; Lapidus, Alla
Pedobacter heparinus (Payza and Korn 1956) Steyn et al. 1998 comb. nov. is the type species of the rapidly growing genus Pedobacter within the family Sphingobacteriaceae of the phylum 'Bacteroidetes'. P. heparinus is of interest, because it was the first isolated strain shown to grow with heparin as sole carbon and nitrogen source and because it produces several enzymes involved in the degradation of mucopolysaccharides. All available data about this species are based on a sole strain that was isolated from dry soil. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Thismore » is the first report on a complete genome sequence of a member of the genus Pedobacter, and the 5,167,383 bp long single replicon genome with its 4287 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less
Lindemann, Stephen R.; Mobberley, Jennifer M.; Cole, Jessica K.; Markillie, L. M.; Taylor, Ronald C.; Huang, Eric; Chrisler, William B.; Wiley, H. S.; Lipton, Mary S.; Nelson, William C.; Fredrickson, James K.; Romine, Margaret F.
2017-01-01
The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities. PMID:28659875
Zhang, Tingting; Wang, Xiaowei; Zhou, Jiti; Zhang, Yu
2018-03-01
Methanotrophic-heterotrophic communities were selectively enriched from sewage sludge to obtain a mixed culture with high levels of poly-β-hydroxybutyrate (PHB) accumulation capacity from methane. Methane was used as the carbon source, N 2 as sole nitrogen source, and oxygen and Cu content were varied. Copper proved essential for PHB synthesis. All cultures enriched with Cu could accumulate high content of PHB (43.2%-45.9%), while only small amounts of PHB were accumulated by cultures enriched without Cu (11.9%-17.5%). Batch assays revealed that communities grown with Cu and a higher O 2 content synthesized more PHB, which had a wider optimal CH 4 :O 2 range and produced a high PHB content (48.7%) even though in the presence of N 2 . In all methanotrophic-heterotrophic communities, both methanotrophic and heterotrophic populations showed the ability to accumulate PHB. Although methane was added as the sole carbon source, heterotrophs dominated with abundances between 77.2% and 85.6%. All methanotrophs detected belonged to type II genera, which formed stable communities with heterotrophs of different PHB production capacities. Copyright © 2017. Published by Elsevier B.V.
Ibáñez, María Isabel; Cabello, Purificación; Luque-Almagro, Víctor Manuel; Sáez, Lara P.; Olaya, Alfonso; Sánchez de Medina, Verónica; Luque de Castro, María Dolores; Moreno-Vivián, Conrado; Roldán, María Dolores
2017-01-01
Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal−cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative proteomic analysis by LC-MS/MS has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue as sole nitrogen source. Different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue. GntR-like regulatory proteins were also induced by this industrial residue and mutational analysis revealed that GntR-like regulatory proteins may play a role in the regulation of cyanide assimilation in P. pseudoalcaligenes CECT5344. The strain CECT5344 has been used in a batch reactor to remove at pH 9 the different forms of cyanide present in industrial wastewaters from the jewelry industry (0.3 g/L, ca. 12 mM total cyanide, including both free cyanide and metal−cyanide complexes). This is the first report describing the biological removal at alkaline pH of such as elevated concentration of cyanide present in a heterogeneous mixture from an industrial source. PMID:28253357
Ibáñez, María Isabel; Cabello, Purificación; Luque-Almagro, Víctor Manuel; Sáez, Lara P; Olaya, Alfonso; Sánchez de Medina, Verónica; Luque de Castro, María Dolores; Moreno-Vivián, Conrado; Roldán, María Dolores
2017-01-01
Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal-cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative proteomic analysis by LC-MS/MS has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue as sole nitrogen source. Different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue. GntR-like regulatory proteins were also induced by this industrial residue and mutational analysis revealed that GntR-like regulatory proteins may play a role in the regulation of cyanide assimilation in P. pseudoalcaligenes CECT5344. The strain CECT5344 has been used in a batch reactor to remove at pH 9 the different forms of cyanide present in industrial wastewaters from the jewelry industry (0.3 g/L, ca. 12 mM total cyanide, including both free cyanide and metal-cyanide complexes). This is the first report describing the biological removal at alkaline pH of such as elevated concentration of cyanide present in a heterogeneous mixture from an industrial source.
Yao, Changhong; Wu, Peichun; Pan, Yanfei; Lu, Hongbin; Chi, Lei; Meng, Yingying; Cao, Xupeng; Xue, Song; Yang, Xiaoyi
2016-09-01
Sustainable microalgal cultivation at commercial scale requires nitrogen recycling. This study applied hydrothermal carbonization to recover N of hot-water extracted Arthrospira platensis biomass residue into aqueous phase (AP) under different operation conditions and evaluated the N utilization, biomass yield and quality of A. platensis cultures using AP as the sole N source. With the increase of temperature at 190-210°C or reaction time of 2-3h, the N recovery rate decreased under nitrogen-repletion (+N) cultivation, while contrarily increased under nitrogen-limitation (-N) cultivation. Under +N biomass accumulation in the cultures with AP under 190°C was enhanced by 41-67% compared with that in NaNO3, and the highest protein content of 51.5%DW achieved under 200°C-2h was also 22% higher. Carbohydrate content of 71.4%DW under -N cultivation achieved under 210°C-3h was 14% higher than that in NaNO3. HTC-algal cultivation strategy under -N mode could save 60% of conventional N. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microbial Thiocyanate Utilization under Highly Alkaline Conditions
Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs
2001-01-01
Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS−) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase activity which converted cyanate (CNO−) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a “cyanate pathway” in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate. PMID:11157213
Dual-Carbon sources fuel the OCS deep-reef Community, a stable isotope investigation
Sulak, Kenneth J.; Berg, J.; Randall, Michael T.; Dennis, George D.; Brooks, R.A.
2008-01-01
The hypothesis that phytoplankton is the sole carbon source for the OCS deep-reef community (>60 m) was tested. Trophic structure for NE Gulf of Mexico deep reefs was analyzed via carbon and nitrogen stable isotopes. Carbon signatures for 114 entities (carbon sources, sediment, fishes, and invertebrates) supported surface phytoplankton as the primary fuel for the deep reef. However, a second carbon source, the macroalga Sargassum, with its epiphytic macroalgal associate, Cladophora liniformis, was also identified. Macroalgal carbon signatures were detected among 23 consumer entities. Most notably, macroalgae contributed 45 % of total carbon to the 13C isotopic spectrum of the particulate-feeding reef-crest gorgonian Nicella. The discontinuous spatial distribution of some sessile deep-reef invertebrates utilizing pelagic macroalgal carbon may be trophically tied to the contagious distribution of Sargassum biomass along major ocean surface features.
Measurement of Total Reactive Nitrogen (Nr) during the FIREX 2016 Lab Study
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Liu, Y.; Stockwell, C.; Warneke, C.; Coggon, M.; Franchin, A.; Gilman, J.; De Gouw, J. A.; Jimenez, J. L.; Koss, A.; Krechmer, J. E.; Lerner, B. M.; Middlebrook, A. M.; Sekimoto, K.; Selimovic, V.; Yokelson, R. J.; Yuan, B.; Zarzana, K. J.; Brown, S. S.
2017-12-01
Wildfire is a significant source of nitrogen-containing gases and particles to the atmosphere. In addition, a warmer and drier climate is making wildfire an emerging air quality issue in North America. The nitrogen compounds emitted from biomass fires come solely from fuel nitrogen, as a result of pyrolytic and combustion processes, and range from highly reduced (NH3) to highly oxidized (HNO3/NO3-) species. A systematic understanding of the emissions and fate of these compounds is key to quantifying and predicting the role of wild fire in ozone and particle formation, so that wildfire management can be optimized. In addition, many wildfire-derived compounds have unique health impacts that also need to be managed. We have developed a method for the measurement of Total Reactive Nitrogen (Nr = all N-compounds except for N2 and N2O), based on catalytic conversion on a high temperature platinum catalyst, with detection by NO-O3 chemiluminescence. This instrument was fielded during the 2016 FIREX emissions studies at the USFS Missoula, MT., Fire Laboratory, along with a whole suite of measurements of individual gas and particle-phase species. The nitrogen balance of measured emissions will be discussed in the context of fuel-N, fuel type and fire phase (e.g. pyrolysis, flaming, smoldering stages).
Li, Jinyang; Pan, Yuanyuan; Liu, Gang
2013-12-01
AcareA, encoding a homologue of the fungal nitrogen regulatory GATA zinc-finger proteins, was cloned from Acremonium chrysogenum. Gene disruption and genetic complementation revealed that AcareA was required for nitrogen metabolism and cephalosporin production. Disruption of AcareA resulted in growth defect in the medium using nitrate, uric acid and low concentration of ammonium, glutamine or urea as sole nitrogen source. Transcriptional analysis showed that the transcription of niaD/niiA was increased drastically when induced with nitrate in the wild-type and AcareA complemented strains but not in AcareA disruption mutant. Consistent with the reduction of cephalosporin production, the transcription of pcbAB, cefD2, cefEF and cefG encoding the enzymes for cephalosporin production was reduced in AcareA disruption mutant. Band shift assays showed that AcAREA bound to the promoter regions of niaD, niiA and the bidirectional promoter region of pcbAB-pcbC. Sequence analysis showed that all the AcAREA binding sites contain the consensus GATA elements. These results indicated that AcAREA plays an important role both in the regulation of nitrogen metabolism and cephalosporin production in A. chrysogenum. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wixom, R. L.
1974-01-01
The chemolithotroph, Hydrogenomonas eutropha, was considered as a life support, bioregenerative system. This project focuses on several metabolic functions that are related to the proposed nitrogen cycle between man and this microbe. Specifically this organism has the capability to utilize as the sole nitrogen source such urine components as urea and fifteen individual amino acids, but not nine other amino acids. The effectiveness of utilization was high for many amino acids. Several specific growth inhibitions were also observed. The enzyme that catalyzes the incorporation of ammonia in the medium into amino acids was identified as a NADP-specific, L-glutamate dehydrogenase. This enzyme has a constitutive nature. This organism can synthesize all of its amino acids from carbon dioxide and ammonia. Therefore with the background literature of multiple pathways of individual amino acid biosyntheses, our evidence to date is consistent with the Hydrogeneomonas group having the same pathway of valine-isoleucine formation as the classical E. coli.
Complete genome sequence of Pedobacter heparinus type strain (HIM 762-3T)
Han, Cliff; Spring, Stefan; Lapidus, Alla; Del Rio, Tijana Glavina; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia C.; Saunders, Elizabeth; Chertkov, Olga; Brettin, Thomas; Göker, Markus; Rohde, Manfred; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Detter, John C.
2009-01-01
Pedobacter heparinus (Payza and Korn 1956) Steyn et al. 1998 comb. nov. is the type species of the rapidly growing genus Pedobacter within the family Sphingobacteriaceae of the phylum ‘Bacteroidetes’. P. heparinus is of interest, because it was the first isolated strain shown to grow with heparin as sole carbon and nitrogen source and because it produces several enzymes involved in the degradation of mucopolysaccharides. All available data about this species are based on a sole strain that was isolated from dry soil. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first report on a complete genome sequence of a member of the genus Pedobacter, and the 5,167,383 bp long single replicon genome with its 4287 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304637
77 FR 12930 - Federal Acquisition Regulation: Socioeconomic Program Parity
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... on May 6, 2011, reinstating the Rule of Two. C. Sole Source Dollar Thresholds Vary Among the... all socioeconomic programs had the same sole source dollar threshold. Response: The sole source dollar... business socioeconomic contracting program to utilize. D. Sole Source Authority Under the SDVOSB Program...
Reexamining the risks of drinking-water nitrates on public health.
Richard, Alyce M; Diaz, James H; Kaye, Alan David
2014-01-01
Nitrates in drinking water are generally considered the sole source of nitrite poisoning with methemoglobinemia in infantile methomoglobinemia (IM). However, IM, which occurs during the first 4 months of life, is actually a constellation of cyanosis and hypoxia associated with methemoglobinemia that can result from several other causes. This review reexamines the role of nitrate levels in drinking water as a cause of IM and identifies other sources of nitrates that can affect public health and cause chronic diseases. Causes of IM include nitrites in foods, environmental chemical exposures, commonly prescribed pharmaceuticals, and the endogenous generation of oxides of nitrogen. Infants with congenital enzyme deficiencies in glucose-6-phosphate dehydrogenase and methemoglobin reductase are at greater risk of nitrite-induced methemoglobinemia from nitrates in water and food and from exposures to hemoglobin oxidizers. Early epidemiological studies demonstrated significant associations between high groundwater nitrate levels and elevated methemoglobin levels in infants fed drinking water-diluted formulas. However, more recent epidemiological investigations suggest other sources of nitrogenous substance exposures in infants, including protein-based formulas and foods and the production of nitrate precursors (nitric acid) by bacterial action in the infant gut in response to inflammation and infection.
Agulló, Loreine; González, Myriam; Seeger, Michael
2013-01-01
2-aminophenol (2-AP) is a toxic nitrogen-containing aromatic pollutant. Burkholderia xenovorans LB400 possess an amn gene cluster that encodes the 2-AP catabolic pathway. In this report, the functionality of the 2-aminophenol pathway of B. xenovorans strain LB400 was analyzed. The amnRJBACDFEHG cluster located at chromosome 1 encodes the enzymes for the degradation of 2-aminophenol. The absence of habA and habB genes in LB400 genome correlates with its no growth on nitrobenzene. RT-PCR analyses in strain LB400 showed the co-expression of amnJB, amnBAC, amnACD, amnDFE and amnEHG genes, suggesting that the amn cluster is an operon. RT-qPCR showed that the amnB gene expression was highly induced by 2-AP, whereas a basal constitutive expression was observed in glucose, indicating that these amn genes are regulated. We propose that the predicted MarR-type transcriptional regulator encoded by the amnR gene acts as repressor of the amn gene cluster using a MarR-type regulatory binding sequence. This report showed that LB400 resting cells degrade completely 2-AP. The amn gene cluster from strain LB400 is highly identical to the amn gene cluster from P. knackmussi strain B13, which could not grow on 2-AP. However, we demonstrate that B. xenovorans LB400 is able to grow using 2-AP as sole nitrogen source and glucose as sole carbon source. An amnBA − mutant of strain LB400 was unable to grow with 2-AP as nitrogen source and glucose as carbon source and to degrade 2-AP. This study showed that during LB400 growth on 2-AP this substrate was partially converted into picolinic acid (PA), a well-known antibiotic. The addition of PA at lag or mid-exponential phase inhibited LB400 growth. The MIC of PA for strain LB400 is 2 mM. Overall, these results demonstrate that B. xenovorans strain LB400 posses a functional 2-AP catabolic central pathway, which could lead to the production of picolinic acid. PMID:24124510
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindemann, Stephen R.; Mobberley, Jennifer M.; Cole, Jessica K.
The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp.more » OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.« less
Birkenhead, K; Manian, S S; O'Gara, F
1988-01-01
A recombinant plasmid encoding Rhizobium meliloti sequences involved in dicarboxylic acid transport (plasmid pRK290:4:46) (E. Bolton, B. Higgisson, A. Harrington, and F. O'Gara, Arch. Microbiol. 144:142-146, 1986) was used to study the relationship between dicarboxylic acid transport and nitrogen fixation in Bradyrhizobium japonicum. The expression of the dct sequences on plasmid pRK290:4:46 in B. japonicum CJ1 resulted in increased growth rates in media containing dicarboxylic acids as the sole source of carbon. In addition, strain CJ1(pRK290:4:46) exhibited enhanced succinate uptake activity when grown on dicarboxylic acids under aerobic conditions. Under free-living nitrogen-fixing conditions, strain CJ1(pRK290:4:46) exhibited higher nitrogenase (acetylene reduction) activity compared with that of the wild-type strain. This increase in nitrogenase activity also correlated with an enhanced dicarboxylic acid uptake rate under these microaerobic conditions. The regulation of dicarboxylic acid transport by factors such as metabolic inhibitors and the presence of additional carbon sources was similar in both the wild-type and the engineered strains. The implications of increasing nitrogenase activity through alterations in the dicarboxylic acid transport system are discussed. PMID:3422072
Lindemann, Stephen R.; Mobberley, Jennifer M.; Cole, Jessica K.; ...
2017-06-13
The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp.more » OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.« less
Screening for biosurfactant production by 2,4,6-trinitrotoluene-transforming bacteria.
Avila-Arias, H; Avellaneda, H; Garzón, V; Rodríguez, G; Arbeli, Z; Garcia-Bonilla, E; Villegas-Plazas, M; Roldan, F
2017-08-01
To isolate and identify TNT-transforming cultures from explosive-contaminated soils with the ability to produce biosurfactants. Bacteria (pure and mixed cultures) were selected based on their ability to transform TNT in minimum media with TNT as the sole nitrogen source and an additional carbon source. TNT-transforming bacteria were identified by 16S rRNA gene sequencing. TNT transformation rates were significantly lower when no additional carbon or nitrogen sources were added. Surfactant production was enabled by the presence of TNT. Fourteen cultures were able to transform the explosive (>50%); of these, five showed a high transformation capacity (>90%), and six produced surfactants. All explosive-transforming cultures contained Proteobacteria of the genera Achromobacter, Stenotrophomonas, Pseudomonas, Sphingobium, Raoultella, Rhizobium and Methylopila. These cultures transformed TNT when an additional carbon source was added. Remarkably, Achromobacter spanius S17 and Pseudomonas veronii S94 have high TNT transformation rates and are surfactant producers. TNT is a highly toxic, mutagenic and carcinogenic nitroaromatic explosive; therefore, bioremediation to eliminate or mitigate its presence in the environment is essential. TNT-transforming cultures that produce surfactants are a promising method for remediation. To the best of our knowledge, this is the first report that links surfactant production and TNT transformation by bacteria. © 2017 The Society for Applied Microbiology.
A Novel Denitrifying Extreme Halophile That Grows in a Simple Mineral Salts Medium
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Oremland, R. S.; Gherna, R.; Cote, R.; Chang, Sherwood (Technical Monitor)
1995-01-01
An extremely halophilic bacterium (strain CH-1) was isolated from a saltern adjacent to San Francisco Bay. It grew in a mineral salts medium with ammonium and glucose as sole sources of nitrogen and carbon as well as energy, respectively Cells lysed at less than 10% NaCl and growth was most rapid in medium containing 20% NaCl. Cells were pieomorphic ranging from disc to ovoid-shaved and used a variety of carbohydrates as sole carbon sources. the utilization of certain carbon sources was controlled by temperature with some used at 37 degrees but not 45 C. CH-1 grew between 30 degrees and 50 C with the optimum at 45 C in the presence of 20% NaCl. CH-1 contained 2,3-di-O-isoprenyl glcerol diethers and was sensitive to aphidicofin. The major polar lipid was glucosyl-mannosyl-alucosyl diether, which is diagnostic of the Haloarcula. Thus CH-1 is an extreme halophile and a member of this genus. Among the novel characteristics of this organism was its ability to grow anaerobically in synthetic medium when nitrate was present which was only reduced to nitrous oxide. This organism should prove useful for studying denitrification and carbohydrate metabolism in the extreme halophiles; and to be a valuable resource for generic studies.
Milne, N; Luttik, M A H; Cueto Rojas, H F; Wahl, A; van Maris, A J A; Pronk, J T; Daran, J M
2015-07-01
In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requires 1 ATP per incorporated NH3. Urea assimilation by this yeast is more energy efficient but still requires 0.5 ATP per NH3 produced. To decrease ATP costs for nitrogen assimilation, the S. cerevisiae gene encoding ATP-dependent urease (DUR1,2) was replaced by a Schizosaccharomyces pombe gene encoding ATP-independent urease (ure2), along with its accessory genes ureD, ureF and ureG. Since S. pombe ure2 is a Ni(2+)-dependent enzyme and Saccharomyces cerevisiae does not express native Ni(2+)-dependent enzymes, the S. pombe high-affinity nickel-transporter gene (nic1) was also expressed. Expression of the S. pombe genes into dur1,2Δ S. cerevisiae yielded an in vitro ATP-independent urease activity of 0.44±0.01 µmol min(-1) mg protein(-1) and restored growth on urea as sole nitrogen source. Functional expression of the Nic1 transporter was essential for growth on urea at low Ni(2+) concentrations. The maximum specific growth rates of the engineered strain on urea and ammonium were lower than those of a DUR1,2 reference strain. In glucose-limited chemostat cultures with urea as nitrogen source, the engineered strain exhibited an increased release of ammonia and reduced nitrogen content of the biomass. Our results indicate a new strategy for improving yeast-based production of nitrogen-containing chemicals and demonstrate that Ni(2+)-dependent enzymes can be functionally expressed in S. cerevisiae. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang
2017-01-01
Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Oh, Taeseob; Kim, Myeongjin; Park, Dabin; Kim, Jooheon
2018-05-01
Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 °C (NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage.
Exploring the Denitrification Proteome of Paracoccus denitrificans PD1222
Olaya-Abril, Alfonso; Hidalgo-Carrillo, Jesús; Luque-Almagro, Víctor M.; Fuentes-Almagro, Carlos; Urbano, Francisco J.; Moreno-Vivián, Conrado; Richardson, David J.; Roldán, María D.
2018-01-01
Denitrification is a respiratory process that produces nitrous oxide as an intermediate, which may escape to the atmosphere before its reduction to dinitrogen through the nitrous oxide reductase NosZ. In this work, the denitrification process carried out by Paracoccus denitrificans PD1222 has been explored through a quantitative proteomic analysis. Under anaerobic conditions, with nitrate as sole nitrogen source, the synthesis of all the enzymes involved in denitrification, the respiratory nitrate, nitrite, nitric oxide, and nitrous oxide reductases, was increased. However, the periplasmic and assimilatory nitrate reductases decreased. Synthesis of transporters for alcohols, D-methionine, sulfate and copper, most of the enzymes involved in the tricarboxylic acid cycle, and proteins involved in other metabolic processes like lysine catabolism, fatty acids degradation and acetyl-CoA synthesis, was increased during denitrification in P. denitrificans PD1222. As consequence, an enhanced production of the central metabolite acetyl-CoA was observed. After establishing the key features of the denitrification proteome, its changes by the influence of a competitive electron acceptor, oxygen, or competitive nitrogen source, ammonium, were evaluated. PMID:29896187
Exploring the Denitrification Proteome of Paracoccus denitrificans PD1222.
Olaya-Abril, Alfonso; Hidalgo-Carrillo, Jesús; Luque-Almagro, Víctor M; Fuentes-Almagro, Carlos; Urbano, Francisco J; Moreno-Vivián, Conrado; Richardson, David J; Roldán, María D
2018-01-01
Denitrification is a respiratory process that produces nitrous oxide as an intermediate, which may escape to the atmosphere before its reduction to dinitrogen through the nitrous oxide reductase NosZ. In this work, the denitrification process carried out by Paracoccus denitrificans PD1222 has been explored through a quantitative proteomic analysis. Under anaerobic conditions, with nitrate as sole nitrogen source, the synthesis of all the enzymes involved in denitrification, the respiratory nitrate, nitrite, nitric oxide, and nitrous oxide reductases, was increased. However, the periplasmic and assimilatory nitrate reductases decreased. Synthesis of transporters for alcohols, D-methionine, sulfate and copper, most of the enzymes involved in the tricarboxylic acid cycle, and proteins involved in other metabolic processes like lysine catabolism, fatty acids degradation and acetyl-CoA synthesis, was increased during denitrification in P. denitrificans PD1222. As consequence, an enhanced production of the central metabolite acetyl-CoA was observed. After establishing the key features of the denitrification proteome, its changes by the influence of a competitive electron acceptor, oxygen, or competitive nitrogen source, ammonium, were evaluated.
Kumar, Anup; Singh, Neera
2016-03-01
An atrazine-degrading enrichment culture was used to study degradation of atrazine metabolites viz. hydroxyatrazine, deethylatrazine, and deisopropylatrazine in mineral salts medium. Results suggested that the enrichment culture was able to degrade only hydroxyatrazine, and it was used as the sole source of carbon and nitrogen. Hydroxyatrazine degradation slowed down when sucrose and/or ammonium hydrogen phosphate were supplemented as the additional sources of carbon and nitrogen, respectively. The enrichment culture could degrade high concentrations of atrazine (up to 110 μg/mL) in mineral salts medium, and neutral pH was optimum for atrazine degradation. Further, except in an acidic soil, enrichment culture was able to degrade atrazine in three soil types having different physico-chemical properties. Raising the pH of acidic soil to neutral or alkaline enabled the enrichment culture to degrade atrazine suggesting that acidic pH inhibited atrazine-degrading ability. The study suggested that the enrichment culture can be successfully utilized to achieve complete degradation of atrazine and its persistent metabolite hydroxyatrazine in the contaminated soil and water.
Shen, Jinyou; Zhang, Jianfa; Zuo, Yi; Wang, Lianjun; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; He, Rui
2009-04-30
A picric acid-degrading bacterium, strain NJUST16, was isolated from a soil contaminated by picric acid and identified as a member of Rhodococcus sp. based on 16S rRNA sequence. The degradation assays suggested that the strain NJUST16 could utilize picric acid as the sole source of carbon, nitrogen and energy. The isolate grew optimally at 30 degrees C and initial pH 7.0-7.5 in the mineral salts medium supplemented with picric acid. It was basically consistent with degradation of picric acid by the isolate. Addition of nitrogen sources such as yeast extract and peptone accelerated the degradation of picric acid. However, the stimulation was concentration dependent. The degradation was accompanied by release of stoichiometric amount of nitrite and acidification. The degradation of picric acid at relatively high concentrations (>3.93 mM) demonstrated that the degradation was both pH and nitrite dependent. Neutral and slightly basic pH was crucial to achieve high concentrations of picric acid degradation by the NJUST16 strain.
Kaye, C; Crawford, N M; Malmberg, R L
1997-04-01
We have isolated a haploid cell line of N. plumbaginifolia, hNP 588, that is constitutive and not inducible for nitrate reductase. Nitrate reductase mutants were isolated from hNP 588 protoplasts upon UV irradiation. Two of these nitrate reductase-deficient cell lines, nia 3 and nia 25, neither of which contained any detectable nitrate reductase activity, were selected for complementation studies. A cloned Arabidopsis thaliana nitrate reductase gene Nia 2 was introduced into each of the two mutants resulting in 56 independent kanamycin-resistant cell lines. Thirty of the 56 kanamycin-resistant cell lines were able to grow on nitrate as the sole nitrogen source. Eight of these were further analyzed for nitrate reductase enzyme activity and nitrate reductase mRNA production. All eight lines had detectable nitrate reductase activity ranging from 7% to 150% of wild-type hNP 588 callus. The enzyme activity levels were not influenced by the nitrogen source in the medium. The eight lines examined expressed a constitutive, non-inducible 3.2 kb mRNA species that was not present in untransformed controls.
Zhou, Weizheng; Wang, Zhongming; Xu, Jingliang; Ma, Longlong
2018-05-22
The high cost of large-scale cultivation of microalgae has limited their industrial application. This study investigated the potential use of mixed biogas slurry and municipal wastewater to cultivate microalgae. Pig biogas slurry as the sole nutrient supplement, was assessed for the cultivation of Chlorella zofingiensis in municipal wastewater. Batch culture of various ratios of pig biogas slurry and municipal wastewater were compared. The characteristics of algal growth and lipid production were analyzed, and the removal rates of nitrogen and phosphate were examined. Results indicate that 8% pig bio-gas slurry in municipal wastewater, had a significant effect on microalgal growth. C. zofingiensis, with 2.5 g L -1 biomass, 93% total nitrogen and 90% total phosphorus removal. Lipid content was improved by 8% compared to BG11 medium. These findings show that mixing pig biogas slurry and municipal wastewater, without additional nutrition sources, allows efficient cultivation of C. zofingiensis. This is of high research and industrial significance, allowing cultivation of C. zofingiensis in mixed waste culture solution without additional nutrition sources. Copyright © 2018. Published by Elsevier B.V.
Wood, A P; Kelly, D P; McDonald, I R; Jordan, S L; Morgan, T D; Khan, S; Murrell, J C; Borodina, E
1998-02-01
The isolation and properties of a novel species of pink-pigmented methylotroph, Methylobacterium thiocyanatum, are described. This organism satisfied all the morphological, biochemical, and growth-substrate criteria to be placed in the genus Methylobacterium. Sequencing of the gene encoding its 16S rRNA confirmed its position in this genus, with its closest phylogenetic relatives being M. rhodesianum, M. zatmanii and M. extorquens, from which it differed in its ability to grow on several diagnostic substrates. Methanol-grown organisms contained high activities of hydroxypyruvate reductase -3 micromol NADH oxidized min-1 (mg crude extract protein)-1], showing that the serine pathway was used for methylotrophic growth. M. thiocyanatum was able to use thiocyanate or cyanate as the sole source of nitrogen for growth, and thiocyanate as the sole source of sulfur in the absence of other sulfur compounds. It tolerated high concentrations (at least 50 mM) of thiocyanate or cyanate when these were supplied as nitrogen sources. Growing cultures degraded thiocyanate to produce thiosulfate as a major sulfur end product, apparently with the intermediate formation of volatile sulfur compounds (probably hydrogen sulfide and carbonyl sulfide). Enzymatic hydrolysis of thiocyanate by cell-free extracts was not demonstrated. Cyanate was metabolized by means of a cyanase enzyme that was expressed at approximately sevenfold greater activity during growth on thiocyanate [Vmax 634 +/- 24 nmol NH3 formed min-1 (mg protein)-1] than on cyanate [89 +/- 9 nmol NH3 min-1 (mg protein)-1]. Kinetic study of the cyanase in cell-free extracts showed the enzyme (1) to exhibit high affinity for cyanate (Km 0.07 mM), (2) to require bicarbonate for activity, (3) to be subject to substrate inhibition by cyanate and competitive inhibition by thiocyanate (Ki 0.65 mM), (4) to be unaffected by 1 mM ammonium chloride, (5) to be strongly inhibited by selenocyanate, and (6) to be slightly inhibited by 5 mM thiosulfate, but unaffected by 0.25 mM sulfide or 1 mM thiosulfate. Polypeptides that might be a cyanase subunit (mol.wt. 17.9 kDa), a cyanate (and/or thiocyanate) permease (mol.wt. 25.1 and 27.2 kDa), and a putative thiocyanate hydrolase (mol.wt. 39.3 kDa) were identified by SDS-PAGE. Correlation of the growth rate of cultures with thiocyanate concentration (both stimulatory and inhibitory) and the kinetics of cyanase activity might indicate that growth on thiocyanate involved the intermediate formation of cyanate, hence requiring cyanase activity. The very high activity of cyanase observed during growth on thiocyanate could be in compensation for the inhibitory effect of thiocyanate on cyanase. Alternatively, thiocyanate may be a nonsubstrate inducer of cyanase, while thiocyanate degradation itself proceeds by a carbonyl sulfide pathway not involving cyanate. A formal description of the new species (DSM 11490) is given.
Jiao, Yu; Chen, Yinghao; Ma, Chaofeng; Qin, Jingjing; Nguyen, Thi Hong Nhung; Liu, Di; Gan, Honghao; Ding, Shen; Luo, Zhi-Bin
2018-01-01
To investigate the physiological responses of poplars to amino acids as sole nitrogen (N) sources, Populus × canescens (Ait.) Smith plants were supplied with one of three nitrogen fertilizers (NH4NO3, phenylalanine (Phe) or the mixture of NH4NO3 and Phe) in sand culture. A larger root system, and decreased leaf size and CO2 assimilation rate was observed in Phe- versus NH4NO3-treated poplars. Consistently, a greater root biomass and a decreased shoot growth were detected in Phe-supplied poplars. Decreased enzymatic activities of nitrate reductase (NR), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) and elevated activities of nitrite reductase (NiR), phenylalanine ammonia lyase (PAL), glutamine synthetase (GS) and asparagine synthase (AS) were found in Phe-treated roots. Accordingly, reduced concentrations of NH4+, NO3- and total N, and enhanced N-use efficiencies (NUEs) were detected in Phe-supplied poplars. Moreover, the transcript levels of putative Phe transporters ANT1 and ANT3 were upregulated, and the mRNA levels of NR, glutamine synthetase 2 (GS2), NADH-dependent glutamate synthase (NADH-GOGAT), GDH and asparagine synthetase 2 (ASN2) were downexpressed in Phe-treated roots and/or leaves. The 15N-labeled Phe was mainly allocated in the roots and only a small amount of 15N-Phe was translocated to poplar aerial parts. These results indicate that poplar roots can acquire Phe as an N source to support plant growth and that Phe-induced NUEs in the poplars are probably associated with NH4+ re-utilization after Phe deamination and the carbon bonus simultaneously obtained during Phe uptake. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cryptococcus cyanovorans sp. nov., a basidiomycetous yeast isolated from cyanide-contaminated soil.
Motaung, Thabiso E; Albertyn, Jacobus; Kock, Johan L F; Pohl, Carolina H
2012-05-01
Eighteen yeast strains were isolated and identified from cyanide-contaminated soil in South Africa. According to sequence-based analyses using the D1/D2 region of the large ribosomal subunit and ITS region, three of these strains were found to be identical and represent a novel species. Phylogenetic analysis based on the combined dataset of the D1/D2 and ITS regions revealed a grouping with Cryptococcus curvatus, representing a defined clade (Curvatus) in the order Trichosporonales. The three strains were demarcated from Cryptococcus curvatus by standard physiological tests such as assimilation of lactose, xylitol, 5-keto-D-gluconate, succinate and citrate as well as growth on media containing 10 % (w/v) NaCl and 5 % (w/v) glucose. In addition, it was established that these strains could utilize up to 10 mM NaCN as sole carbon source on solid media and as sole nitrogen source in liquid media. On the basis of these findings, it is suggested that the three strains represent a novel species for which the name Cryptococcus cyanovorans sp. nov. is given (type strain CBS 11948(T) = NRRL Y-48730(T)).
Kendall, C.; Silva, S.R.; Kelly, V.J.
2001-01-01
Riverine particulate organic matter (POM) samples were collected bi-weekly to monthly from 40 sites in the Mississippi, Colorado, Rio Grande, and Columbia River Basins (USA) in 1996-97 and analysed for carbon and nitrogen stable isotopic compositions. These isotopic compositions and C : N ratios were used to identify four endmember sources of POM: Plankton, fresh terrestrial plant material, aquatic plants, and soil organic material. This large-scale study also incorporated ancillary chemical and hydrologic data to refine and extend the interpretations of POM sources beyond the source characterizations that could be done solely with isotopic and elemental ratios. The ancillary data were especially useful for differentiating between seasonal changes in POM source materials and the effects of local nutrient sources and in-stream biogeochemical processes. Average values of ??13 C and C : N for all four river systems suggested that plankton is the dominant source of POM in these rivers, with higher percentages of plankton downstream of reservoirs. Although the temporal patterns in some rivers are complex, the low ??13C and C : N values in spring and summer probably indicate plankton blooms, whereas relatively elevated values in fall and winter are consistent with greater proportions of decaying aquatic vegetation and/or terrestrial material. Seasonal shifts in the ??13C of POM when the C : N remains relatively constant probably indicate changes in the relative rates of photosynthesis and respiration. Periodic inputs of plant detritus are suggested by C : N ratios >15, principally on the Columbia and Ohio Rivers. The ??15N and ??13C also reflect the importance of internal and external sources of dissolved carbon and nitrogen, and the degree of in-stream processing. Elevated ??15N values at some sites probably reflect inputs from sewage and/or animal waste. This information on the spatial and temporal variation in sources of POM in four major river systems should prove useful in future food web and nutrient transport studies.
Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Li, Jin
2016-02-15
A heterotrophic nitrification-aerobic denitrification strain named y5 was isolated from marine environment by traditional microbial isolation method using seawater as medium. It was identified as Klebsiella sp. based on the morphological, physiological and 16S rRNA sequence analysis. The experiment results showed that the optimal carbon resource was sodium citrate; the optimal pH was 7.0; and the optimal C/N was 17. The strain could use NH4Cl, NaNO2 and KNO3 as sole nitrogen source, and the removal efficiencies were77.07%, 64.14% and 100% after 36 hours, respectively. The removal efficiency reached 100% after 36 hours in the coexistence of NH4Cl, NaNO2 and KNO3. The results showed that the strain y5 had independent and efficient heterotrophic nitrification and aerobic denitrification activities in high salt wastewater.
Nitrogen Metabolism in Plant Cell Suspension Cultures
Behrend, Josef; Mateles, Richard I.
1976-01-01
Tobacco cells (Nicotiana tabacum) are capable of growth on ammonia as a sole nitrogen source only when succinate, malate, fumarate, citrate, α-ketoglutarate, glutamate, or pyruvate is added to the growth medium. A ratio between the molar concentrations of ammonia to succinate (as a complementary organic acid) in the growth medium of 1.5 was optimal. Succinate had no effect on the rate of uptake of ammonia from the medium into the cells although it did affect the intracellular concentration of ammonia. However, the changes were not sufficient to explain inhibition of growth as being due to ammonia toxicity. The radioactivity from 14C-succinate was incorporated into malate, glutamate, and aspartate within 2 minutes. It appears that the role of organic acids is neither connected to ammonium transport nor to relief of ammonia toxicity, but may be related to the need for additional carbon skeletons for synthesis of amino acids. PMID:16659706
Alatalo, Sara-Maaria; Pileidis, Filoklis; Mäkilä, Ermei; Sevilla, Marta; Repo, Eveliina; Salonen, Jarno; Sillanpää, Mika; Titirici, Maria-Magdalena
2015-11-25
Hydrothermal carbonization of cellulose in the presence of the globular protein ovalbumin leads to the formation of nitrogen-doped carbon aerogel with a fibrillar continuous carbon network. The protein plays here a double role: (i) a natural source of nitrogen functionalities (2.1 wt %) and (ii) structural directing agent (S(BET) = 38 m(2)/g). The applicability in wastewater treatment, namely, for heavy metal removal, was examined through adsorption of Cr(VI) and Pb(II) ion solely and in a mixed bicomponent aqueous solutions. This cellulose-based carbogel shows an enhanced ability to remove both Cr(VI) (∼68 mg/g) and Pb(II) (∼240 mg/g) from the targeted solutions in comparison to other carbon materials reported in the literature. The presence of competing ions showed little effect on the adsorption efficiency toward Cr(VI) and Pb(II).
Microalgae-mediated simultaneous treatment of toxic thiocyanate and production of biodiesel.
Ryu, Byung-Gon; Kim, Jungmin; Yoo, Gursong; Lim, Jun-Taek; Kim, Woong; Han, Jong-In; Yang, Ji-Won
2014-04-01
In this work, a method for simultaneously degrading the toxic pollutant, thiocyanate, and producing microalgal lipids using mixed microbial communities was developed. Aerobic activated sludge was used as the seed culture and thiocyanate was used as the sole nitrogen source. Two cultivation methods were sequentially employed: a lithoautotrophic mode and a photoautotrophic mode. Thiocyanate hydrolysis and a nitrification was found to occur under the first (lithoautotrophic) condition, while the oxidized forms of nitrogen were assimilated by the photoautotrophic consortium and lipids were produced under the second condition. The final culture exhibited good settling efficiency (∼ 70% settling over 10 min), which can benefit downstream processing. The highest CO2 fixation rate and lipid productivity were observed with 2.5% and 5% CO2, respectively. The proposed integrated algal-bacterial system appears to be a feasible and even beneficial option for thiocyanate treatment and production of microbial lipids. Copyright © 2014 Elsevier Ltd. All rights reserved.
EPA Region 1 Sole Source Aquifers
This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.
Díaz-Leal, Juan Luis; Gálvez-Valdivieso, Gregorio; Fernández, Javier; Pineda, Manuel; Alamillo, Josefa M
2012-06-01
The ureides allantoin and allantoate are key molecules in the transport and storage of nitrogen in ureide legumes. In shoots and leaves from Phaseolus vulgaris plants using symbiotically fixed nitrogen as the sole nitrogen source, ureide levels were roughly equivalent to those of nitrate-supported plants during the whole vegetative stage, but they exhibited a sudden increase at the onset of flowering. This rise in the level of ureides, mainly in the form of allantoate, was accompanied by increases in allantoinase gene expression and enzyme activity, consistent with developmental regulation of ureide levels mainly through the tissue-specific induction of allantoate synthesis catalysed by allantoinase. Moreover, surprisingly high levels of ureides were also found in non-nodulated plants fertilized with nitrate, at both early and late developmental stages. The results suggest that remobilized N from lower leaves is probably involved in the sharp rise in ureides in shoots and leaves during early pod filling in N(2)-fixing plants and in the significant amounts of ureides observed in non-nodulated plants.
Minami, Tomoyuki; Anda, Misue; Mitsui, Hisayuki; Sugawara, Masayuki; Kaneko, Takakazu; Sato, Shusei; Ikeda, Seishi; Okubo, Takashi; Tsurumaru, Hirohito; Minamisawa, Kiwamu
2016-01-01
Methylobacterium inhabits the phyllosphere of a large number of plants. We herein report the results of comparative metagenome analyses on methylobacterial communities of soybean plants grown in an experimental field in Tohoku University (Kashimadai, Miyagi, Japan). Methylobacterium was identified as the most dominant genus (33%) among bacteria inhabiting soybean stems. We classified plant-derived Methylobacterium species into Groups I, II, and III based on 16S rRNA gene sequences, and found that Group I members (phylogenetically close to M. extorquens) were dominant in soybean-associated Methylobacterium. By comparing 29 genomes, we found that all Group I members possessed a complete set of genes for the N-methylglutamate pathway for methylamine utilization, and genes for urea degradation (urea carboxylase, urea amidolyase, and conventional urease). Only Group I members and soybean methylobacterial isolates grew in a culture supplemented with methylamine as the sole carbon source. They utilized urea or allantoin (a urea-related compound in legumes) as the sole nitrogen source; however, group III also utilized these compounds. The utilization of allantoin may be crucial in soybean-bacterial interactions because allantoin is a transported form of fixed nitrogen in legume plants. Soybean-derived Group I strain AMS5 colonized the model legume Lotus japonicus well. A comparison among the 29 genomes of plant-derived and other strains suggested that several candidate genes are involved in plant colonization such as csgG (curli fimbriae). Genes for the N-methylglutamate pathway and curli fimbriae were more abundant in soybean microbiomes than in rice microbiomes in the field. Based on these results, we discuss the lifestyle of Methylobacterium in the legume phyllosphere. PMID:27431374
Sole Source Aquifers for NY and NJ
This layer is the designated sole source aquifers of New York and New Jersey. A Sole Source Aquifer, is an aquifer that supplies 50% or more of the drinking water for a given area where there are no reasonably available alternative sources should the aquifer become contaminated.
NASA Technical Reports Server (NTRS)
Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1986-01-01
Dry matter accumulation of plants utilizing NH4+ as the sole nitrogen source generally is less than that of plants receiving NO3- unless acidity of the root-zone is controlled at a pH of about 6.0. To test the hypothesis that the reduction in growth is a consequence of nitrogen stress within the plant in response to effects of increased acidity during uptake of NH4+ by roots, nonnodulated soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 24 days in flowing nutrient culture containing 1.0 millimolar NH4+ as the nitrogen source. Acidities of the culture solutions were controlled at pH 6.1, 5.1, and 4.1 +/- 0.1 by automatic additions of 0.01 N H2SO4 or Ca(OH)2. Plants were sampled at intervals of 3 to 4 days for determination of dry matter and nitrogen accumulation. Rates of NH4+ uptake per gram root dry weight were calculated from these data. Net CO2 exchange rates per unit leaf area were measured on attached leaves by infrared gas analysis. When acidity of the culture solution was increased from pH 6.1 to 5.1, dry matter and nitrogen accumulation were reduced by about 40% within 14 days. Net CO2 exchange rates per unit leaf area, however, were not affected, and the decreased growth was associated with a reduction in rates of appearance and expansion of new leaves. The uptake rates of NH4+ per gram root were about 25% lower throughout the 24 days at pH 5.1 than at 6.1. A further increase in solution acidity from pH 5.1 to 4.1 resulted in cessation of net dry matter production and appearance of new leaves within 10 days. Net CO2 exchange rates per unit leaf area declined rapidly until all viable leaves had abscised by 18 days. Uptake rates of NH4+, which were initially about 50% lower at pH 4.1 than at 6.1 continued to decline with time of exposure until net uptake ceased at 10 days. Since these responses also are characteristic of the sequence of responses that occur during onset and progression of a nitrogen stress, they corroborate our hypothesis.
Accashian, John V.; Vinopal, Robert T.; Kim, Byung-Joon; Smets, Barth F.
1998-01-01
Nitroglycerin (glycerol trinitrate [GTN]), an explosive and vasodilatory compound, was metabolized by mixed microbial cultures from aeration tank sludge previously exposed to GTN. Aerobic enrichment cultures removed GTN rapidly in the absence of a supplemental carbon source. Complete denitration of GTN, provided as the sole C and N source, was observed in aerobic batch cultures and proceeded stepwise via the dinitrate and mononitrate isomers, with successive steps occurring at lower rates. The denitration of all glycerol nitrate esters was found to be concomitant, and 1,2-glycerol dinitrate (1,2-GDN) and 2-glycerol mononitrate (2-GMN) were the primary GDN and GMN isomers observed. Denitration of GTN resulted in release of primarily nitrite-N, indicating a reductive denitration mechanism. Biomass growth at the expense of GTN was verified by optical density and plate count measurements. The kinetics of GTN biotransformation were 10-fold faster than reported for complete GTN denitration under anaerobic conditions. A maximum specific growth rate of 0.048 ± 0.005 h−1 (mean ± standard deviation) was estimated for the mixed culture at 25°C. Evidence of GTN toxicity was observed at GTN concentrations above 0.3 mM. To our knowledge, this is the first report of complete denitration of GTN used as a primary growth substrate by a bacterial culture under aerobic conditions. PMID:9726874
Werner, Andrea K.; Sparkes, Imogen A.; Romeis, Tina; Witte, Claus-Peter
2008-01-01
Allantoate amidohydrolases (AAHs) hydrolize the ureide allantoate to ureidoglycolate, CO2, and two molecules of ammonium. Allantoate degradation is required to recycle purine-ring nitrogen in all plants. Tropical legumes additionally transport fixed nitrogen via allantoin and allantoate into the shoot, where it serves as a general nitrogen source. AAHs from Arabidopsis (Arabidopsis thaliana; AtAAH) and from soybean (Glycine max; GmAAH) were cloned, expressed in planta as StrepII-tagged variants, and highly purified from leaf extracts. Both proteins form homodimers and release 2 mol ammonium/mol allantoate. Therefore, they can truly be classified as AAHs. The kinetic constants determined and the half-maximal activation by 2 to 3 μm manganese are consistent with allantoate being the in vivo substrate of manganese-loaded AAHs. The enzymes were strongly inhibited by micromolar concentrations of fluoride as well as by borate, and by millimolar concentrations of l-asparagine and l-aspartate but not d-asparagine. l-Asparagine likely functions as competitive inhibitor. An Ataah T-DNA mutant, unable to grow on allantoin as sole nitrogen source, is rescued by the expression of StrepII-tagged variants of AtAAH and GmAAH, demonstrating that both proteins are functional in vivo. Similarly, an allantoinase (aln) mutant is rescued by a tagged AtAln variant. Fluorescent fusion proteins of allantoinase and both AAHs localize to the endoplasmic reticulum after transient expression and in transgenic plants. These findings demonstrate that after the generation of allantoin in the peroxisome, plant purine degradation continues in the endoplasmic reticulum. PMID:18065556
NASA Astrophysics Data System (ADS)
Böer, Erik; Steinborn, Gerhard; Florschütz, Kristina; Körner, Martina; Gellissen, Gerd; Kunze, Gotthard
The dimorphic ascomycetous yeast Arxula adeninivorans exhibits some unusual properties. Being a thermo- and halotolerant species it is able to assimilate and ferment many compounds as sole carbon and/or nitrogen source. It utilises n-alkanes and is capable of degrading starch. Due to these unusual biochemical properties A. adeninivorans can be exploited as a gene donor for the production of enzymes with attractive biotechnological characteristics. Examples of A. adeninivorans-derived genes that are overexpressed include the ALIP1 gene encoding a secretory lipase, the AINV encoding invertase, the AXDH encoding xylitol dehydrogenase and the APHY encoding a secretory phosphatase with phytase activity.
Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; ...
2015-10-26
Thioalkalivibrio thiocyanoxidans strain ARh 2 T is a sulfur-oxidizing bacterium isolated from haloalkaline soda lakes. It is a motile, Gram-negative member of the Gammaproteobacteria. Remarkable properties include the ability to grow on thiocyanate as the sole energy, sulfur and nitrogen source, and the capability of growth at salinities of up to 4.3 M total Na +. This draft genome sequence consists of 61 scaffolds comprising 2,765,337 bp, and contains 2616 protein-coding and 61 RNA-coding genes. In conclusion, this organism was sequenced as part of the Community Science Program of the DOE Joint Genome Institute.
Berben, Tom; Sorokin, Dimitry Y.; Ivanova, Natalia; ...
2015-11-19
Thioalkalivibrio paradoxus strain ARh 1 T is a chemolithoautotrophic, non-motile, Gram-negative bacterium belonging to the Gammaproteobacteria that was isolated from samples of haloalkaline soda lakes. It derives energy from the oxidation of reduced sulfur compounds and is notable for its ability to grow on thiocyanate as its sole source of electrons, sulfur and nitrogen. The full genome consists of 3,756,729 bp and comprises 3,500 protein-coding and 57 RNA-coding genes. Moreover, this organism was sequenced as part of the community science program at the DOE Joint Genome Institute.
21 CFR 558.62 - Arsanilic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... efficiency; improving pigmentation Withdraw 5 days before slaughter; as sole source of organic arsenic 015565... pigmentation. As erythromycin thiocyanate; withdraw 5 days before slaughter; as sole source of organic arsenic... pigmentation As erythromycin thiocyanate; withdraw 5 days before slaughter; as sole source of organic arsenic...
NASA Astrophysics Data System (ADS)
Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania
2014-02-01
Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.
Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions
Sarasketa, Asier; González-Moro, María Begoña; González-Murua, Carmen; Marino, Daniel
2014-01-01
Plants are dependent on exogenous nitrogen (N) supply. Ammonium (NH4 +), together with nitrate (NO3 –), is one of the main nitrogenous compounds available in the soil. Paradoxically, although NH4 + assimilation requires less energy than that of NO3 –, many plants display toxicity symptoms when grown with NH4 + as the sole N source. However, in addition to species-specific ammonium toxicity, intraspecific variability has also been shown. Thus, the aim of this work was to study the intraspecific ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. Plants were grown with either 1mM NO3 – or NH4 + as the N source, and several parameters related to ammonium tolerance and assimilation were determined. Overall, high variability was observed in A. thaliana shoot growth under both forms of N nutrition. From the parameters determined, tissue ammonium content was the one with the highest impact on shoot biomass, and interestingly this was also the case when N was supplied as NO3 –. Enzymes of nitrogen assimilation did not have an impact on A. thaliana biomass variation, but the N source affected their activity. Glutamate dehydrogenase (GDH) aminating activity was, in general, higher in NH4 +-fed plants. In contrast, GDH deaminating activity was higher in NO3 –-fed plants, suggesting a differential role for this enzyme as a function of the N form supplied. Overall, NH4 + accumulation seems to be an important player in Arabidopsis natural variability in ammonium tolerance rather than the cell NH4 + assimilation capacity. PMID:25205573
Ehlers, Claudia; Veit, Katharina; Gottschalk, Gerhard; Schmitz, Ruth A.
2002-01-01
The mesophilic methanogenic archaeon Methanosarcina mazei strain Gö1 is able to utilize molecular nitrogen (N2) as its sole nitrogen source. We have identified and characterized a single nitrogen fixation (nif) gene cluster in M. mazei Gö1 with an approximate length of 9 kbp. Sequence analysis revealed seven genes with sequence similarities to nifH, nifI1, nifI2, nifD, nifK, nifE and nifN, similar to other diazotrophic methanogens and certain bacteria such as Clostridium acetobutylicum, with the two glnB-like genes (nifI1 and nifI2) located between nifH and nifD. Phylogenetic analysis of deduced amino acid sequences for the nitrogenase structural genes of M. mazei Gö1 showed that they are most closely related to Methanosarcina barkeri nif2 genes, and also closely resemble those for the corresponding nif products of the gram-positive bacterium C. acetobutylicum. Northern blot analysis and reverse transcription PCR analysis demonstrated that the M. mazei nif genes constitute an operon transcribed only under nitrogen starvation as a single 8 kb transcript. Sequence analysis revealed a palindromic sequence at the transcriptional start site in front of the M. mazei nifH gene, which may have a function in transcriptional regulation of the nif operon. PMID:15803652
Identification of the fitness determinants of budding yeast on a natural substrate.
Filteau, Marie; Charron, Guillaume; Landry, Christian R
2017-04-01
The budding yeasts are prime models in genomics and cell biology, but the ecological factors that determine their success in non-human-associated habitats is poorly understood. In North America Saccharomyces yeasts are present on the bark of deciduous trees, where they feed on bark and sap exudates. In the North East, Saccharomyces paradoxus is found on maples, which makes maple sap a natural substrate for this species. We measured growth rates of S. paradoxus natural isolates on maple sap and found variation along a geographical gradient not explained by the inherent variation observed under optimal laboratory conditions. We used a functional genomic screen to reveal the ecologically relevant genes and conditions required for optimal growth in this substrate. We found that the allantoin degradation pathway is required for optimal growth in maple sap, in particular genes necessary for allantoate utilization, which we demonstrate is the major nitrogen source available to yeast in this environment. Growth with allantoin or allantoate as the sole nitrogen source recapitulated the variation in growth rates in maple sap among strains. We also show that two lineages of S. paradoxus display different life-history traits on allantoin and allantoate media, highlighting the ecological relevance of this pathway.
Luque-Almagro, Victor M; Merchán, Faustino; Blasco, Rafael; Igeño, M Isabel; Martínez-Luque, Manuel; Moreno-Vivián, Conrado; Castillo, Francisco; Roldán, M Dolores
2011-03-01
The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to grow with cyanide as the sole nitrogen source. Membrane fractions from cells grown under cyanotrophic conditions catalysed the production of oxaloacetate from L-malate. Several enzymic activities of the tricarboxylic acid and glyoxylate cycles in association with the cyanide-insensitive respiratory pathway seem to be responsible for the oxaloacetate formation in vivo. Thus, in cyanide-grown cells, citrate synthase and isocitrate lyase activities were significantly higher than those observed with other nitrogen sources. Malate dehydrogenase activity was undetectable, but a malate:quinone oxidoreductase activity coupled to the cyanide-insensitive alternative oxidase was found in membrane fractions from cyanide-grown cells. Therefore, oxaloacetate production was linked to the cyanide-insensitive respiration in P. pseudoalcaligenes CECT5344. Cyanide and oxaloacetate reacted chemically inside the cells to produce a cyanohydrin (2-hydroxynitrile), which was further converted to ammonium. In addition to cyanide, strain CECT5344 was able to grow with several cyano derivatives, such as 2- and 3-hydroxynitriles. The specific system required for uptake and metabolization of cyanohydrins was induced by cyanide and by 2-hydroxynitriles, such as the cyanohydrins of oxaloacetate and 2-oxoglutarate.
21 CFR 520.2088 - Roxarsone tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... period. Withdraw 5 days before slaughter. Use as sole source of organic arsenic. (ii) Growing chickens—(a.... Withdraw 5 days before slaughter. Use as sole source of organic arsenic. (b)(1) Specifications. Each tablet... slaughter. Use as sole source of organic arsenic. (ii) [Reserved] (c)(1) Specifications. Each tablet...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... a sole source SDVOSB concern acquisition. The final rule contains language that more closely mirrors...-AL29 Federal Acquisition Regulation; FAR Case 2008-023, Clarification of Criteria for Sole Source...: Final rule. SUMMARY: The Civilian Agency Acquisition Council and the Defense Acquisition Regulations...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Sole Source Cooperative Agreement Award to the Association...: Notification of a Sole Source Cooperative Agreement Award to the Association for State and Territorial Health... management systems. One of the overarching goals of both the National Health Security Strategy (2009) and the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Sole Source Cooperative Agreement Award to the National...: Notification of a Sole Source Cooperative Agreement Award to the National Association of County and City Health... resilience, and strengthen health care, public health, and emergency management systems. One of the...
Miller, Scott R.; Castenholz, Richard W.
2001-01-01
Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either enzyme is not due to inactivation of the cyanobacterial nitrogen control protein NtcA. A few other naturally occurring cyanobacterial strains are also nitrate assimilation deficient, and phylogenetic analyses indicated that the ability to utilize nitrate has been independently lost at least four times during the evolutionary history of the cyanobacteria. This phenotype is associated with the presence of environmental ammonium, a negative regulator of nitrate assimilation gene expression, which may indicate that natural selection to maintain functional copies of nitrate assimilation genes has been relaxed in these habitats. These results suggest how the evolutionary fates of conditionally expressed genes might differ between environments and thereby effect ecological divergence and biogeographical structure in the microbial world. PMID:11425713
NASA Technical Reports Server (NTRS)
Miller, S. R.; Castenholz, R. W.
2001-01-01
Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either enzyme is not due to inactivation of the cyanobacterial nitrogen control protein NtcA. A few other naturally occurring cyanobacterial strains are also nitrate assimilation deficient, and phylogenetic analyses indicated that the ability to utilize nitrate has been independently lost at least four times during the evolutionary history of the cyanobacteria. This phenotype is associated with the presence of environmental ammonium, a negative regulator of nitrate assimilation gene expression, which may indicate that natural selection to maintain functional copies of nitrate assimilation genes has been relaxed in these habitats. These results suggest how the evolutionary fates of conditionally expressed genes might differ between environments and thereby effect ecological divergence and biogeographical structure in the microbial world.
Influence of an experimental herbicide on soil nitrogen-fixing bacteria and other microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, L.M. Jr.; Hedrick, H.G.
Influence of an experimental herbicide on two isolates of soil nitrogen-fixing bacteria Rhizobium japonicum 3I1b110 and Azotobacter vinelandii ATCC 12837, was determined using a bioresponse assay, thin-layer chromatographic analysis, and changes in viable cells on the herbicide as the sole source of organic carbon. Seven bacterial and nine fungus isolates were also found by a soil enrichment technique to show utilization of the herbicide. A. vinelandii showed stimulation of growth in the first 4 days of exposure on the herbicide at 1,000 ppM. The herbicide then became toxic or was metabolized into toxic by-products. R. japonicum showed utilization of themore » herbicide by changes in growth rate as influenced by the inoculum concentration, the thoroughness of inoculum washing, and the concentration of herbicide. Using TLC assay techniques, the herbicide was found to be depleted in laboratory experiments by R. japonicum following 10 days of growth, without detectable nonmetabolic by-products. These findings suggested that the addition of the experimental herbicide to soils planted with bean crops could possibly influence the metabolic activity of R. japonicum as a symbiotic nitrogen-fixing bacterium. 5 figures, 1 table.« less
Huo, Ying; Xu, Jing-gang; Li, Shu-qin; Wang, Lei
2011-05-01
A selection of actinomyces that could degrade imazethapyr was conducted to provide actinomyces source for bioremediation of soil contaminated by imazethapyr. A strain of actinomyces was isolated from the samples of soil where imazethapyr had been applied for a long-term by use of bottle enriched culture and named S181. The strain had strong ability to degrade imazethapyr and could grow using mazethapyr as the sole nitrogen. The strain was related and shared characteristics to genus Streptomyces omiyaensis according to the physiological and biochemical properties as well as 16S rRNA sequence analysis. The influencing factors (temperature, pH, concentration and inoculum) were studied with fungus growth mass and degradation ratio as indexes. The results showed that the optimal degradation ratio occurred at the condition of inoculation ratio of 3%, 200 mg x L(-1) imazethapyr, at 30 degrees C and pH 7.0. Under these conditions, 84% imazethapyr had been degraded by S181 in medium Gao 1 without nitrogen after 5 days.
Anderson, James E; Lofton, Tiffany V; Kim, Byung R; Mueller, Sherry A
2009-04-01
Membrane bioreactors (MBRs) have been installed at automotive plants to treat metalworking fluid (MWF) wastewaters, which are known to contain toxic and/or recalcitrant organic compounds. A laboratory study was conducted to evaluate treatment of a simulated wastewater prepared from a semisynthetic MWF, which contains two such compounds, dicyclohexylamine (DCHA) and ethylenediaminetetraacetic acid (EDTA). Primary findings were as follows: During stable operating periods, almost all chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and EDTA were removed (by > 96%). During somewhat unstable periods, COD removal was still extremely robust, but removal of EDTA and TKN were sensitive to prolonged episodes of low dissolved oxygen. Nitrogen mass balance suggested 30 to 40% TKN removal by assimilation and 60 to 70% by nitrification (including up to 34% TKN removal via subsequent denitrification). Dicyclohexylamine appeared to be readily biodegraded. Maximum DCHA and EDTA degradation rates between pH 7 and 8 were found. An Arthrobacter sp. capable of growth on DCHA as the sole source of carbon and energy was isolated.
METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane II
The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will bemore » to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum. Aromatic compounds such as carbazole are representative of the difficult-to-treat organonitrogen compounds most commonly encountered in petroleum. There are two C-N bonds in carbazole and the construction of a metabolic pathway for the removal of nitrogen from carbazole will require enzymes capable cleaving both C-N bonds. A multi-component enzyme, carbazole dioxygenase, which can selectively cleave the first C-N bond has been identified and the genes that encode this enzyme have been cloned, sequenced, and are being expressed in Rhodococcus erythropolis, a bacterial culture that tolerates exposure to petroleum. An enzyme capable of selectively cleaving the second C-N bond in carbazole has not yet been identified, but enrichment culture experiments have recently succeeded in isolating a bacterial culture that is a likely candidate and may possess a suitable enzyme. Research in the near future will verify if a suitable enzyme for the cleavage of the second C-N bond in carbazole has indeed been found, then the genes encoding a suitable enzyme will be identified, cloned, and sequenced. Ultimately genes encoding enzymes for selective cleavage of both C-N bonds in carbazole will be assembled into a new metabolic pathway and the ability of the resulting bacterial culture to remove nitrogen from petroleum will be determined.« less
Effect of fiber source on cecal fermentation and nitrogen recycled through cecotrophy in rabbits.
García, J; Carabaño, R; Pérez-Alba, L; de Blas, J C
2000-03-01
The influence of fiber source on fiber digestion in rabbits was investigated. Six fibrous feedstuffs with wide differences in chemical composition and particle size were selected: paprika meal, olive leaves, alfalfa hay, soybean hulls, sodium hydroxide-treated barley straw, and sunflower hulls. Six diets were formulated to contain one of these ingredients as the sole source of fiber. To avoid nutrient imbalances, fiber sources were supplemented with different proportions of a fiber-free concentrate, based on soy protein isolate, wheat flour, lard, and a vitamin and mineral mix, to obtain diets containing at least 3% nitrogen and 5% starch. Daily soft feces excretion, and its NDF, and total and microbial nitrogen content were determined in 60 fattening rabbits (10 per diet). Seven days after the last cecotrophy control, the same animals were used to determine weight of stomach, cecum and their contents, and cecal fermentation traits (pH, VFA and ammonia concentrations, and buffer properties of cecal contents). Stepwise regression analysis showed a positive effect (P < .001) on soft feces excretion, total and microbial nitrogen concentrations in soft feces, cecal acidity, and total VFA in the cecum of dietary pectic constituents (2.9, 3.5, 2.5, .9, and 6.6%) and proportion of fine particles (< .315 mm) (1.8, .9, 1.3, .15, and .9%) per each increment of one percentage unit of the independent variables. Proportion of fine particles also increased weight of cecal contents (P < .001). Soft feces excretion and weight of stomach and of its contents increased (P < .001) by 5.2, 2.8, and 10.2% per each percentage unit increment of proportion of large particles (> 1.25 mm). Degree of lignification of NDF decreased total nitrogen concentration in soft feces and cecal VFA concentration (P < .001). Source of fiber affected cecal pH not only by its influence on the cecal concentrations of the final products of fermentation, but also through its effect on the pH of dry cecal contents (P < .001). The latter was negatively correlated with dietary proportion of fine particles, degree of lignification of NDF, and base-buffering capacity of dry cecal contents (r = -.52, -.37, and -.49, respectively). From these results, we conclude that pectic constituent concentration, degree of lignification of NDF, and particle size are the variables that best characterize the influence of the source of fiber on soft feces excretion and cecal fermentation traits in rabbits.
Cyanate as energy source for nitrifiers
Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M.; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael
2015-01-01
Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment. PMID:26222031
Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed; Zouari, Nabil
2017-01-01
Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n -alkanes ( n -C12- n -C16) to longer chain n -alkanes ( n -C21- n -C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.
Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178.
Fournier, Diane; Trott, Sandra; Hawari, Jalal; Spain, Jim
2005-08-01
The aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB; C2H5N3O3) is a ring cleavage metabolite that accumulates during the aerobic degradation of the energetic compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by various Rhodococcus spp. NDAB is also produced during the alkaline hydrolysis of either RDX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and during the photolysis of RDX. Traces of NDAB were observed in a soil sampled from an ammunition-manufacturing facility contaminated with both HMX and RDX, suggesting natural attenuation. In this study, we report the isolation of a soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink-pigmented facultative methylotroph affiliated with the genus Methylobacterium. The strain, named Methylobacterium sp. strain JS178, degrades NDAB as a sole nitrogen source, with concomitant growth and formation of 1 molar equivalent of nitrous oxide (N2O). Comparison of the growth yield of strain JS178 grown on NDAB, nitrite (NO2-), or ammonium (NH4+) as a nitrogen source revealed that 1 N equivalent is assimilated from each mole of NDAB, which completes the nitrogen mass balance. In radiotracer experiments, strain JS178 mineralized 1 C of the [14C]NDAB produced in situ from [14C]RDX by Rhodococcus sp. strain DN22. Studies on the regulation of NDAB degradation indicated that allantoin, an intermediate in the purine catabolic pathway and a central molecule in the storage and transport of nitrogen in plants, up-regulated the enzyme(s) involved in the degradation of the nitramine. The results reveal the potential for the sequential participation of rhodococci and methylobacteria to effect the complete degradation of RDX.
Metabolism of the Aliphatic Nitramine 4-Nitro-2,4-Diazabutanal by Methylobacterium sp. Strain JS178
Fournier, Diane; Trott, Sandra; Hawari, Jalal; Spain, Jim
2005-01-01
The aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB; C2H5N3O3) is a ring cleavage metabolite that accumulates during the aerobic degradation of the energetic compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by various Rhodococcus spp. NDAB is also produced during the alkaline hydrolysis of either RDX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and during the photolysis of RDX. Traces of NDAB were observed in a soil sampled from an ammunition-manufacturing facility contaminated with both HMX and RDX, suggesting natural attenuation. In this study, we report the isolation of a soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink-pigmented facultative methylotroph affiliated with the genus Methylobacterium. The strain, named Methylobacterium sp. strain JS178, degrades NDAB as a sole nitrogen source, with concomitant growth and formation of 1 molar equivalent of nitrous oxide (N2O). Comparison of the growth yield of strain JS178 grown on NDAB, nitrite (NO2−), or ammonium (NH4+) as a nitrogen source revealed that 1 N equivalent is assimilated from each mole of NDAB, which completes the nitrogen mass balance. In radiotracer experiments, strain JS178 mineralized 1 C of the [14C]NDAB produced in situ from [14C]RDX by Rhodococcus sp. strain DN22. Studies on the regulation of NDAB degradation indicated that allantoin, an intermediate in the purine catabolic pathway and a central molecule in the storage and transport of nitrogen in plants, up-regulated the enzyme(s) involved in the degradation of the nitramine. The results reveal the potential for the sequential participation of rhodococci and methylobacteria to effect the complete degradation of RDX. PMID:16085803
Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine
Gurusamy, Raman; Natarajan, Sakthivel
2013-01-01
Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites. PMID:24470788
Veiga, Tânia; Solis-Escalante, Daniel; Romagnoli, Gabriele; ten Pierick, Angela; Hanemaaijer, Mark; Deshmuhk, Amit; Wahl, Aljoscha; Pronk, Jack T.
2012-01-01
The industrial production of penicillin G by Penicillium chrysogenum requires the supplementation of the growth medium with the side chain precursor phenylacetate. The growth of P. chrysogenum with phenylalanine as the sole nitrogen source resulted in the extracellular production of phenylacetate and penicillin G. To analyze this natural pathway for penicillin G production, chemostat cultures were switched to [U-13C]phenylalanine as the nitrogen source. The quantification and modeling of the dynamics of labeled metabolites indicated that phenylalanine was (i) incorporated in nascent protein, (ii) transaminated to phenylpyruvate and further converted by oxidation or by decarboxylation, and (iii) hydroxylated to tyrosine and subsequently metabolized via the homogentisate pathway. The involvement of the homogentisate pathway was supported by the comparative transcriptome analysis of P. chrysogenum cultures grown with phenylalanine and with (NH4)2SO4 as the nitrogen source. This transcriptome analysis also enabled the identification of two putative 2-oxo acid decarboxylase genes (Pc13g9300 and Pc18g01490). cDNAs of both genes were cloned and expressed in the 2-oxo-acid-decarboxylase-free Saccharomyces cerevisiae strain CEN.PK711-7C (pdc1 pdc5 pdc6Δ aro10Δ thi3Δ). The introduction of Pc13g09300 restored the growth of this S. cerevisiae mutant on glucose and phenylalanine, thereby demonstrating that Pc13g09300 encodes a dual-substrate pyruvate and phenylpyruvate decarboxylase, which plays a key role in an Ehrlich-type pathway for the production of phenylacetate in P. chrysogenum. These results provide a basis for the metabolic engineering of P. chrysogenum for the production of the penicillin G side chain precursor phenylacetate. PMID:22158714
Andeer, Peter; Stahl, David A; Lillis, Lorraine; Strand, Stuart E
2013-09-17
The leaching of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) from particulates deposited in live-fire military training range soils contributes to significant pollution of groundwater. In situ microbial degradation has been proposed as a viable method for onsite containment of RDX. However, there is only a single report of RDX degradation in training range soils and the soil microbial communities involved in RDX degradation were not identified. Here we demonstrate aerobic RDX degradation in soils taken from a target area of an Eglin Air Force Base bombing range, C52N Cat's Eye, (Eglin, Florida U.S.A.). RDX-degradation activity was spatially heterogeneous (found in less than 30% of initial target area field samples) and dependent upon the addition of exogenous carbon sources to the soils. Therefore, biostimulation (with exogenous carbon sources) and bioaugmentation may be necessary to sustain timely and effective in situ microbial biodegradation of RDX. High sensitivity stable isotope probing analysis of extracted soils incubated with fully labeled (15)N-RDX revealed several organisms with (15)N-labeled DNA during RDX-degradation, including xplA-bearing organisms. Rhodococcus was the most prominent genus in the RDX-degrading soil slurries and was completely labeled with (15)N-nitrogen from the RDX. Rhodococcus and Williamsia species isolated from these soils were capable of using RDX as a sole nitrogen source and possessed the genes xplB and xplA associated with RDX-degradation, indicating these genes may be suitable genetic biomarkers for assessing RDX degradation potential in soils. Other highly labeled species were primarily Proteobacteria, including: Mesorhizobium sp., Variovorax sp., and Rhizobium sp.
Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain.
Ma, Yuping; Wang, Xiaoyu; Nie, Xueling; Zhang, Zhan; Yang, Zongcan; Nie, Cong; Tang, Hongzhi
2016-08-01
In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.
González-García, Yolanda; Nungaray, Jesús; Córdova, Jesús; González-Reynoso, Orfil; Koller, Martin; Atlic, Aid; Braunegg, Gerhart
2008-06-01
The marine bacterium Saccharophagus degradans was investigated for the synthesis of polyhydroxyalkanoates (PHAs), using glucose as the sole source of carbon in a two-step batch culture. In the first step the microorganism grew under nutrient balanced conditions; in the second step the cells were cultivated under limitation of nitrogen source. The biopolymer accumulated in S. degradans cells was detected by Nile red staining and FT-IR analysis. From GC-MS analysis, it was found that this strain produced a homopolymer of 3-hydroxybutyric acid. The cellular polymer concentration, its molecular mass, glass transition temperature, melting point and heat of fusion were 17.2+/-2.7% of dry cell weight, 54.2+/-0.6 kDa, 37.4+/-6.0 degrees C, 165.6+/-5.5 degrees C and 59.6+/-2.2 J g(-1), respectively. This work is the first report determining the capacity of S. degradans to synthesize PHAs.
Volova, T G; Trusova, M Y; Kalacheva, G S; Kozhevnicov, I V
2006-11-01
Physiological-biochemical, genetic, and cultural properties of the glucose-utilizing mutant strain Ralstonia eutropha B8562 have been compared with those of its parent strain R. eutropha B5786. It has been shown that growth characteristics of the strain cultured on glucose as the sole carbon and energy source are comparable with those of the parent strain. Strain B8562 is characterized by high polyhydroxyalkanoate (PHA) yields on different carbon sources (CO(2), fructose, and glucose). PHA accumulation in the strain batch cultured on glucose under nitrogen deficiency reaches 90 %. The major monomer in the PHA is beta-hydroxybutyric acid (more than 99 mol %); the identified minor components are beta-hydroxyvaleric acid (0.25-0.72 mol %) and beta-hydroxyhexanoic acid (0.08-1.5 mol %). The strain is a promising PHA producer on available sugar-containing media with glucose.
Porphyromonas endodontalis binds, reduces and grows on human hemoglobin.
Zerr, M; Drake, D; Johnson, W; Cox, C D
2001-08-01
Porphyromonas endodontalis is a black-pigmented, obligate anaerobic rod-shaped bacterium implicated as playing a major role in endodontic infections. We have previously shown that P. endodontalis requires the porphyrin nucleus, preferably supplied as hemoglobin, as a growth supplement. The bacteria also actively transport free iron, although this activity does not support growth in the absence of a porphyrin source. The purpose of this study was to further investigate the binding and subsequent utilization of human hemoglobin by P. endodontalis. P. endodontalis binds hemoglobin and reduces the Fe(III) porphyrin, resulting in a steady accumulation of ferrous hemoglobin. Reduction of methemoglobin was similar to the extracellular reduction of nitrobluetetrazolium in the presence of oxidizable substrate. Turbidimetric and viable cell determinations showed that P. endodontalis grew when supplied only hemoglobin. Therefore, we conclude that hemoglobin appears to serve as a sole carbon and nitrogen source, and that these bacteria reduce extracellular compounds at the expense of oxidized substrates.
Dry deposition of reduced and reactive nitrogen: A surrogate surfaces approach
NASA Astrophysics Data System (ADS)
Shahin, Usama Mohammed
Nitrogen deposition constitutes an important component of acidic deposition to terrestrial surfaces. However, deposition flux and ambient concentration measurement methods and are still under development. A new sampler using water as a surrogate surface was developed in the Department of Environmental Engineering at Illinois Institute of Technology. This study investigated nitrate and ammonia dry deposition to the water surface sampler, a Nylasorb filter, a citric acid impregnated filter, and a greased strip on the dry deposition plate. The nitrogen containing species that may be responsible for nitrate dry deposition to the WSS include nitrogen monoxide (NO), nitrogen dioxide (NO2), peroxyacetyl nitrate (PAN), nitrous acid (HNO2), nitric acid (HNO3), and particulate nitrate. The experimental measurements showed that HNO3 and particulate nitrate are the major nitrate contributors to the WSS. Ammonia sources to the water surface are ammonia gas (NH3) and ammonium (NH4+). The experimental results showed that these two species are the sole sources to ammonium deposition. Comparison between the measured deposition velocity of SO2, and HNO3, shows that their dry deposition velocities are statistically the same at the 95% confidence level and NH3 deposition velocity and the water evaporation rate are also the same. It was also shown that the air side MTC of two different compounds were correlated to the square root of the inverse of the molecular weight for compounds. The measured MTC was tested by the application of two models, the resistance model and the water evaporation model. The resistance model prediction of the MTC was very close to the measured value but the evaporation model prediction was not. This result is compatible with the finding of Yi, (1997) who used the same WSS for measurements of SO2. The experimental data collected in this research project was used to develop an empirical model to measure the MTC that is [kl/over D] = 0.0426 ([lv/rho/over /mu])0.8([/mu/over /rho [ D
Chang, Yun C.; Khanal Lamichhane, Ami; Bradley, James; Rodgers, Laura; Ngamskulrungroj, Popchai; Kwon-Chung, Kyung J.
2015-01-01
The ability to grow on media containing certain D-amino acids as a sole nitrogen source is widely utilized to differentiate Cryptococcus gattii from C. neoformans. We used the C. neoformans H99 and C. gattii R265 strains to dissect the mechanisms of D-amino acids utilization. We identified three putative D-amino acid oxidase (DAO) genes in both strains and showed that each DAO gene plays different roles in D-amino acid utilization in each strain. Deletion of DAO2 retarded growth of R265 on eleven D-amino acids suggesting its prominent role on D-amino acid assimilation in R265. All three R265 DAO genes contributed to growth on D-Asn and D-Asp. DAO3 was required for growth and detoxification of D-Glu by both R265 and H99. Although growth of H99 on most D-amino acids was poor, deletion of DAO1 or DAO3 further exacerbated it on four D-amino acids. Overexpression of DAO2 or DAO3 enabled H99 to grow robustly on several D-amino acids suggesting that expression levels of the native DAO genes in H99 were insufficient for growth on D-amino acids. Replacing the H99 DAO2 gene with a single copy of the R265 DAO2 gene also enabled its utilization of several D-amino acids. Results of gene and promoter swaps of the DAO2 genes suggested that enzymatic activity of Dao2 in H99 might be lower compared to the R265 strain. A reduction in virulence was only observed when all DAO genes were deleted in R265 but not in H99 indicating a pathobiologically exclusive role of the DAO genes in R265. These results suggest that C. neoformans and C. gattii divergently evolved in D-amino acid utilization influenced by their major ecological niches. PMID:26132227
Identification of the fitness determinants of budding yeast on a natural substrate
Filteau, Marie; Charron, Guillaume; Landry, Christian R
2017-01-01
The budding yeasts are prime models in genomics and cell biology, but the ecological factors that determine their success in non-human-associated habitats is poorly understood. In North America Saccharomyces yeasts are present on the bark of deciduous trees, where they feed on bark and sap exudates. In the North East, Saccharomyces paradoxus is found on maples, which makes maple sap a natural substrate for this species. We measured growth rates of S. paradoxus natural isolates on maple sap and found variation along a geographical gradient not explained by the inherent variation observed under optimal laboratory conditions. We used a functional genomic screen to reveal the ecologically relevant genes and conditions required for optimal growth in this substrate. We found that the allantoin degradation pathway is required for optimal growth in maple sap, in particular genes necessary for allantoate utilization, which we demonstrate is the major nitrogen source available to yeast in this environment. Growth with allantoin or allantoate as the sole nitrogen source recapitulated the variation in growth rates in maple sap among strains. We also show that two lineages of S. paradoxus display different life-history traits on allantoin and allantoate media, highlighting the ecological relevance of this pathway. PMID:27935595
Huang, Fei; Pan, Luqing; Lv, Na; Tang, Xianming
2017-11-01
The development of an intensive aquaculture industry has been accompanied by increasing environmental impacts, especially nitrogen pollution. In this study, a novel halophilic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from mariculture water and identified as Bacillus litoralis N31. The efficiency of ammonium, nitrite and nitrate removal by N31 were 86.3%, 89.3% and 89.4%, respectively, after a 48-h cultivation in sole N-source medium with initial nitrogen approximately 20 mg/L. However, ammonium was removed preferentially, and no obvious nitrite accumulated during the simultaneous nitrification and denitrification process in mixed N-source media. The existence of hao, napA and nirS genes further proved the heterotrophic nitrification-aerobic denitrification capability of N31. The optimal conditions for ammonium removal were 30°C, initial pH 7.5-8.5, C/N ratio 5-20 and salinity 30-40‰, and the nitrification rate of N31 increased with increasing initial [Formula: see text] from 10 to 250 mg/L. Biosecurity assessment with shrimp indicated that strain N31 could be applied in the marine aquaculture industry safely for culture water remediation and effluent treatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sabati, Hoda; Motamedi, Hossein
2018-05-15
Water in oil emulsions increase oil processing costs and cause damage to refinery equipment which necessitates demulsification. Since chemical demulsifiers cause environmental pollution, biodemulsifiers have been paid more attention. This study aims to identify biodemulsifier-producing bacteria from petroleum contaminated environments. As a result, several biodemulsifier producing strains were found that Stenotrophomonas sp. strain HS7 (accession number: MF445088) which produced a cell associated biodemulsifier showed the highest demulsifying ratio, 98.57% for water in kerosene and 66.28% for water in crude oil emulsion after 48 h. 35 °C, pH 7, 48 h incubation and ammonium nitrate as nitrogen source were optimum conditions for biodemulsifier production. Furthermore, it was found that hydrophobic carbon sources like as liquid paraffin is not preferred as the sole carbon source while a combination of various carbon sources including liquid paraffin will increase demulsification efficiency of the biodemulsifier. The appropriate potential of this biodemulsifier strengthens the possibility of its application in industries especially petroleum industry.
2013-01-01
Background Sulfamethoxazole (SMX, sulfonamide antibiotic) biodegradation by activated sludge communities (ASC) is still only partly understood. The present work is focusing on nine different bacteria species capable of SMX biodegradation that were isolated from SMX-acclimated ASC. Results Initially 110 pure cultures, isolated from activated sludge, were screened by UV-absorbance measurements (UV-AM) for their SMX biodegradation potential. Identification via almost complete 16S rRNA gene sequencing revealed five Pseudomonas spp., one Brevundimonas sp., one Variovorax sp. and two Microbacterium spp.. Thus seven species belonged to the phylum Proteobacteria and two to Actinobacteria. These cultures were subsequently incubated in media containing 10 mg L-1 SMX and different concentrations of carbon (sodium-acetate) and nitrogen (ammonium-nitrate). Different biodegradation patterns were revealed with respect to media composition and bacterial species. Biodegradation, validated by LC-UV measurements to verify UV-AM, occurred very fast with 2.5 mg L-1 d-1 SMX being biodegraded in all pure cultures in, for UV-AM modified, R2A-UV medium under aerobic conditions and room temperature. However, reduced and different biodegradation rates were observed for setups with SMX provided as co-substrate together with a carbon/nitrogen source at a ratio of DOC:N – 33:1 with rates ranging from 1.25 to 2.5 mg L-1 d-1. Conclusions Media containing only SMX as carbon and nitrogen source proved the organisms’ ability to use SMX as sole nutrient source where biodegradation rates decreased to 1.0 – 1.7 mg L-1 d-1. The different taxonomically identified species showed specific biodegradation rates and behaviours at various nutrient conditions. Readily degradable energy sources seem to be crucial for efficient SMX biodegradation. PMID:24289789
Vetting, Matthew W.; Al-Obaidi, Nawar; Zhao, Suwen; ...
2014-12-25
The rate at which genome sequencing data is accruing demands enhanced methods for functional annotation and metabolism discovery. Solute binding proteins (SBPs) facilitate the transport of the first reactant in a metabolic pathway, thereby constraining the regions of chemical space and the chemistries that must be considered for pathway reconstruction. Here in this paper, we describe high-throughput protein production and differential scanning fluorimetry platforms, which enabled the screening of 158 SBPs against a 189 component library specifically tailored for this class of proteins. Like all screening efforts, this approach is limited by the practical constraints imposed by construction of themore » library, i.e., we can study only those metabolites that are known to exist and which can be made in sufficient quantities for experimentation. To move beyond these inherent limitations, we illustrate the promise of crystallographic- and mass spectrometric-based approaches for the unbiased use of entire metabolomes as screening libraries. Together, our approaches identified 40 new SBP ligands, generated experiment-based annotations for 2084 SBPs in 71 isofunctional clusters, and defined numerous metabolic pathways, including novel catabolic pathways for the utilization of ethanolamine as sole nitrogen source and the use of D-Ala-D-Ala as sole carbon source. These efforts begin to define an integrated strategy for realizing the full value of amassing genome sequence data.« less
NASA Astrophysics Data System (ADS)
Mihucz, Victor G.; Tatár, Eniko; Varga, Anita; Záray, Gyula; Cseh, Edit
2001-11-01
Total-reflection X-ray fluorescence (TXRF) spectrometry, reversed-phase (RP) and size-exclusion (SE) high-performance liquid chromatography (HPLC) methods were applied for the characterization of low-volume xylem sap of control and nickel contaminated cucumber plants growing in hydroponics containing urea as the sole nitrogen source. In these saps collected for 1 h, Ca, K, Fe, Mn, Ni, Zn, as well as malic, citric and fumaric acids were determined. The SEC measurements showed that macromolecules were not detectable in the samples. Nickel contamination had minimum impact on the organic acid transport, however, the transport of Zn, K and Fe was reduced by 50, 22 and 11%, respectively. This observation supports the results of our earlier experiments when nitrate ions were used as the sole nitrogen form. At the same time, the fresh root weight and the volume of the collected xylem sap increased by 36 and 85%, respectively. Therefore, nickel addition seemed to decrease the urea toxicity of the plants. By pooling the eluting fractions of the SEC column, which were 10-fold concentrated by freeze-drying, the series of the resulted samples were analyzed by the TXRF spectrometry and RP-HPLC. The three organic acids could be identified in only one of the fractions, which contained Fe and, in the case of the contaminated plants, Ni in detectable concentration. However, considerable parts of these two elements and Mn, as well as practically the total amounts of Cu may be transported by unidentified organic compounds in the xylem.
Ochoa-Estopier, Abril; Guillouet, Stéphane E
2014-01-20
Lipid accumulation in oleaginous yeasts is triggered by nutrient imbalance in the culture medium between the carbon source in excess and the nitrogen source in limiting concentration. However Yarrowia lipolytica when cultivated on glucose as the sole carbon source, mainly produces citric acid upon nitrogen limitation over lipid accumulation (only 5-10% triacylglycerol). Therefore for developing bioprocess for the production of triacylglycerol from renewable carbon source as glucose it is of first importance to control this imbalance in order to avoid citric acid production during TAG accumulation. Using D-stat cultivation system, where the N/C was linearly decreased using a constant change rate we were able to identify the N/C ratio inducing TAG accumulation (0.085NmolCmol(-1)) and citric acid (0.021NmolCmol(-1)). We therefore demonstrated that it was possible to accumulate lipids without excretion citric acid as long as the N/C was within this indicated range. Moreover enzyme specific activities measurement during the D-stat indicated that ATP-citrate lyase, malic enzyme and acetyl-coA carboxylase were strongly induced at the onset of lipid accumulation and showed different patterns when citric acid was excreted. Our results give relevant information for future industrial bioprocess development concerning the production of lipids using renewable carbohydrate substrates as an alternative way to produce synthons for fuel or chemical industry. By controlling the N/C over the fermentation process on glucose Y. lipolytica can accumulate lipids without excreting citric acid. Copyright © 2013 Elsevier B.V. All rights reserved.
Aspergillus oryzae nrtA affects kojic acid production.
Sano, Motoaki
2016-09-01
We analyzed the role of the nitrate transporter-encoding gene (nrtA) of Aspergillus oryzae by gene disruption. Southern hybridization analysis indicated that homologous recombination occurred at the resident nrtA locus. Real-time PCR showed that the nrtA gene was strongly inducible by NaNO3. The nrtA disruptant did not exhibit normal growth when nitrate was available as the sole nitrogen source. These results indicate that NrtA is essential for nitrate uptake in A. oryzae. Kojic acid (KA) production was inhibited by the addition of a small amount of sodium nitrate. The nrtA-disrupted strain was deficient in the uptake of nitrate. As a result, KA production in this strain was not considerably affected by the presence of nitrate.
In the spring, nitrogen (N) uptake by apple roots is known to be delayed about three weeks after bud break. We used one-year-old 'Fuji' (Malus domestica Borkh) on M26 bare-root apple trees to determine whether timing of N uptake in the spring is dependant solely on the growth st...
Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed
2017-01-01
Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605
Edmundson, S.; Huesemann, M.; Kruk, R.; ...
2017-07-25
Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day -1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day -1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant reduction in media cost and improves the prospects for industrial scale, algae-based biofuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmundson, S.; Huesemann, M.; Kruk, R.
Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day -1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day -1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant reduction in media cost and improves the prospects for industrial scale, algae-based biofuels.« less
Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA
Juracek, K.E.; Ziegler, A.C.
2009-01-01
The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. In an investigation of sources of fine-grained sediment (clay and silt) within the Perry Lake Basin in northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, chemically analyzed, and compared. The samples were sieved to isolate the <63 ?? m fraction and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). On the basis of substantial and consistent compositional differences among the source types, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected for use in the estimation of sediment sources. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment, constituent ratio and clay-normalization techniques were used. Computed ratios included TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators. Within the Perry Lake Basin, the consensus of the seven indicators was that both channel-bank and surface-soil sources were important in the Atchison County Lake and Banner Creek Reservoir subbasins, whereas channel-bank sources were dominant in the Mission Lake subbasin. On the sole basis of 137Cs activity, surface-soil sources contributed the most fine-grained sediment to Atchison County Lake, and channel-bank sources contributed the most fine-grained sediment to Banner Creek Reservoir and Mission Lake. Both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant for Perry Lake and that channel-bank sources increased in importance with distance downstream in the basin. ?? 2009 International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research.
Geerts, R; van Ginkel, C G; Plugge, C M
2017-04-01
The biodegradation of N-alkyl polypropylene polyamines (NAPPs) was studied using pure and mixed cultures to enable read-across of ready biodegradability test results. Two Pseudomonas spp. were isolated from activated sludge with N-oleyl alkyl propylene diamine and N-coco alkyl dipropylene triamine, respectively. Both strains utilized all NAPPs tested as the sole source of carbon, nitrogen and energy for growth. Mineralization of NAPPs was independent of the alkyl chain length and the size of the polyamine moiety. NAPPs degraded in closed bottle tests (CBTs) using both river water and activated sludge. However, ready biodegradability of NAPPs with alkyl chain lengths of 16-18 carbon atoms and polyamine moieties with three and four nitrogen atoms could not be demonstrated. Biodegradation in the CBT was hampered by their limited bioavailability, making assessment of the true ready biodegradability of these highly adsorptive surfactants impossible. All NAPPs are therefore classified as readily biodegradable through read-across. Read-across is justified by the broad substrate specificity of NAPP-degrading microorganisms, their omnipresence and the mineralization of NAPPs.
Analysis and interpretation of Viking labeled release experimental results
NASA Technical Reports Server (NTRS)
Levin, G. V.
1979-01-01
The Viking Labeled Release (LR) life detection experiment on the surface of Mars produced data consistent with a biological interpretation. In considering the plausibility of this interpretation, terrestrial life forms were identified which could serve as models for Martian microbial life. Prominent among these models are lichens which are known to survive for years in a state of cryptobiosis, to grow in hostile polar environments, to exist on atmospheric nitrogen as sole nitrogen source, and to survive without liquid water by absorbing water directly from the atmosphere. Another model is derived from the endolithic bacteria found in the dry Antarctic valleys; preliminary experiments conducted with samples of these bacteria indicate that they produce positive LR responses approximating the Mars results. However, because of the hositility of the Martian environment to life, and the failure to find organics on the surface of Mars, a number of nonbiological explanations were advanced to account for the Viking LR data. A reaction of the LR nutrient with putative surface hydrogen peroxide is the leading candidate. Other possibilities raised include reactions caused by or with ultraviolet irradiation, gamma-Fe2O3, metalloperoxides or superoxides.
2009-01-01
Nutrition in the Teredinidae family of wood-boring mollusks is sustained by cellulolytic/nitrogen fixing symbiotic bacteria of the Teredinibacter clade. The mangrove Teredinidae Neoteredo reynei is popularly used in the treatment of infectious diseases in the north of Brazil. In the present work, the symbionts of N. reynei, which are strictly confined to the host's gills, were conclusively identified as Teredinibacter turnerae. Symbiont variants obtained in vitro were able to grow using casein as the sole carbon/nitrogen source and under reduced concentrations of NaCl. Furthermore, cellulose consumption in T. turnerae was clearly reduced under low salt concentrations. As a point of interest, we hereby report first hand that T. turnerae in fact exerts antibiotic activity. Furthermore, this activity was also affected by NaCl concentration. Finally, T. turnerae was able to inhibit the growth of Gram-negative and Gram-positive bacteria, this including strains of Sphingomonas sp., Stenotrophomonas maltophilia, Bacillus cereus and Staphylococcus sciuri. Our findings introduce new points of view on the ecology of T. turnerae, and suggest new biotechnological applications for this marine bacterium. PMID:21637522
2015-05-08
Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for Sole-Source Commercial Spare Parts...Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for Sole-Source Commercial Spare Parts...D000AH-0180.000) │ i Results in Brief Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua
2013-03-19
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.
Franco, A. R.; Lopez-Siles, F. J.; Cardenas, J.
1996-01-01
Wild-type strain 21gr of the green alga Chlamydomonas reinhardtii was resistant to the ammonium salt of l-phosphinothricin (PPT, also called glufosinate), an irreversible inhibitor of glutamine synthetase activity and the main active component of the herbicide BASTA (AgrEvo, Frankfurt am Main, Germany). Under the same conditions, however, this strain was highly sensitive to l-methionine-S-sulfoximine, a structural analog of PPT which has been reported to be 5 to 10 times less effective than PPT as an inhibitor in plants. Moreover, this alga was able to grow with PPT as the sole nitrogen source when this compound was provided at low concentrations. This utilization of PPT was dependent upon the addition of acetate and light and did not take place in the presence of ammonium. Resistance was due neither to the presence of N-acetyltransferase or transaminase activity nor to the presence of glutamine synthetase isoforms resistant to PPT. By using l-[methyl-(sup14)C]PPT, we demonstrated that resistance is due to lack of PPT transport into the cells. This strongly suggests that PPT and l-methionine-S-sulfoximine enter the cells through different systems. Growth with PPT is supported by its deamination by an l-amino acid oxidase activity which has been previously described to be located at the periplasm. PMID:16535427
21 CFR 520.2240b - Sulfaethoxypyridazine tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
...; do not treat within 16 days of slaughter; as sole source of sulfonamide; milk that has been taken... sole source of sulfonamide; not for use in lactating dairy cows; Federal law restricts this drug to use...
[Biodiversity of phosphate-dissolving and plant growth--promoting endophytic bacteria of two crops].
Huang, Jing; Sheng, Xiafang; He, Linyan
2010-06-01
We isolated and characterized phosphate-dissolving endophytic bacteria from two commonly cultivated crops. Phosphate-dissolving endophytic bacteria were isolated by plating and screening from interior tissues of rape and maize plants on NBRIP medium with tricalcium phosphate as sole phosphate source. Bacteria were characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction-indoleacetic acid, siderophore and 1-aminocyclopropane-1-carboxylic acid deaminase production,and further classified by restriction analysis of 16S rDNA. Eleven typical strains were identified by 16S rDNA sequence analysis. Thirty-two phosphate-dissolving endophytic bacteria were isolated from maize and rape plants and classified by restriction analysis of 16S rDNA in 8 different taxonomic groups at the similarity level of 76%. All the isolates could release phosphate from tricalcium phosphate and decrease the pH of the medium. The maximum phosphate content (537.6 mg/L) in the solution was obtained with strain M1L5. Thirteen isolates isolated from rape produced indoleacetic acid and siderophore, 68.4% and 63.2% of the strains isolated from maize produced indoleacetic acid and siderophore,respectively. 63.2% of the strains isolated from maize were able to grow on 1-aminocyclopropane-1-carboxylic acid as the sole nitrogen source. The eleven strains belonged to five different genera including Pantoea, Pseudomonas, Burkholderia, Acinetobacter and Ralstonia. Phosphate-dissolving endophytic bacteria isolated from rape and maize plants have abundant characteristics relative to promoting plant growth and genetic diversity.
Wong, P P; Stenberg, N E; Edgar, L
1980-03-01
A bacterium with the taxonomic characteristics of the genus Azospirillum was isolated from celluloytic N2-fixing mixed cultures. Its characteristics fit the descriptions of both Azopirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. It may be a variant strain of A. lipoferum. In mixed cultures with cellulolytic organisms, the bacterium grew and fixed N2 with cellelose as a sole source of energy and carbon. The mixed cultures used cellulose from leaves of wheat (Triticum aestivum L.), corn (Zea mays L.), and big bluestem grass (Andropogon gerardii Vitm). Microaerophilic N2-fixing bacteria of the genus Azospirillum, such as the bacterium we isolated, may be important contributors of fixed N2 in soil with partial anaerobiosis and cellulose decomposition.
Conversion of alcohols to enantiopure amines through dual enzyme hydrogen-borrowing cascades
Mutti, Francesco G.; Knaus, Tanja; Scrutton, Nigel S.; Breuer, Michael; Turner, Nicholas J.
2016-01-01
α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds on industrial scale. Here we present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on the combination of an alcohol dehydrogenase (ADHs from Aromatoleum sp., Lactobacillus sp. and Bacillus sp.) enzyme operating in tandem with an amine dehydrogenase (AmDHs engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols (up to 96% conversion and 99% enantiomeric excess). Furthermore, primary alcohols are aminated with high conversion (up to 99%). This redox self-sufficient network possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product. PMID:26404833
Electrochemical process for the preparation of nitrogen fertilizers
Jiang, Junhua; Aulich, Ted R; Ignatchenko, Alexey V
2015-04-14
Methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia are disclosed. Embodiments include (1) ammonium nitrate produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source: (3) ammonia produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source.
Kim, Y S; Nayve, F R P; Nakano, K; Matsumura, M
2002-09-01
Potential starch degrading denitrifying microorganisms that can grow at 4 degrees C were isolated from lake sediments to remove nitrate from groundwater. Initial screening using soluble starch as the sole carbon source confirmed that two out of twenty-five isolates (strain no. 2 and 47) significantly reduced nitrate in the medium and liberated nitrogen gas during culture. In a second screening, several commercially available starch based materials and different kinds of starch were tested. Strain 47 was found to have the best denitrification performance compared with strain 2. Using starch based carrier C (a commercial packing material) as carbon source, strain 47 could completely reduce the nitrate nitrogen in the medium after one week of batch culture even at 10 degrees C. Strain 47 could remove nitrate even without trace element supplementation, and it could perform optimally at 1X (10ml l(-1) of trace element solution) level of trace element supplement. The best temperature for denitrification for strain 47 was 15 degrees C and 20 degrees C, but it could also remove nitrate nitrogen at 10 degrees C and 30 degrees C, although at a slower rate. Reactor studies in a simulated treatment well (a cylindrical reciprocating basket reactor) in a repeated fed batch mode showed a good stable denitrification performance as long as substrate limitation is avoided by adequate supply of starch based carrier. Although the similarity score obtained was not enough for phylogenic identification, the results of 16SrRNA sequences analysis for the strain 47 showed a dose relation to Janthinobacterium lividum or Pseudomonas (Janth) mephitica (95.77%).
21 CFR 520.2087 - Roxarsone soluble powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... throughout growing period. Withdraw 5 days before slaughter. Use as sole source of organic arsenic. (2) Swine.... Use as sole source of organic arsenic. [46 FR 41039, Aug. 14, 1981, as amended at 55 FR 8460, Mar. 8...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... aquifer (U.S. EPA, 1987, Sole Source Aquifer Designation Decision Process, Petition Review Guidance... the petition; U.S. Geological Survey, 2011, Conceptual Model and Numerical Simulation of the...
21 CFR 520.2087 - Roxarsone soluble powder.
Code of Federal Regulations, 2011 CFR
2011-04-01
... throughout growing period. Withdraw 5 days before slaughter. Use as sole source of organic arsenic. (2) Swine.... Use as sole source of organic arsenic. [46 FR 41039, Aug. 14, 1981, as amended at 55 FR 8460, Mar. 8...
Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.
Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena
2017-01-01
Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO 3 - ) and ammonium (NH 4 + ). However, the composition of the N source is important, because excess of NH 4 + promotes morphological disorders. Plants cultured on NH 4 + as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH 4 + -mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH 4 + nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH 4 + as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH 4 + toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH 4 + -mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia , a receptor-like kinase involved in the control of cell wall extension.
Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition
Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena
2017-01-01
Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3–) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as “ammonium toxicity syndrome.” NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension. PMID:28848567
Electrochemical process for the preparation of nitrogen fertilizers
Aulich, Ted R [Grand Forks, ND; Olson, Edwin S [Grand Forks, ND; Jiang, Junhua [Grand Forks, ND
2012-04-10
The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.
USDA-ARS?s Scientific Manuscript database
Multi-layer vertical production systems using sole-source (SS) lighting can be used for microgreen production; however, traditional SS lighting can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources including: high photoelec...
Responses of Arabidopsis and wheat to rising CO2 depend on nitrogen source and nighttime CO2 levels.
Asensio, Jose Salvador Rubio; Rachmilevitch, Shimon; Bloom, Arnold J
2015-05-01
A major contributor to the global carbon cycle is plant respiration. Elevated atmospheric CO2 concentrations may either accelerate or decelerate plant respiration for reasons that have been uncertain. We recently established that elevated CO2 during the daytime decreases plant mitochondrial respiration in the light and protein concentration because CO2 slows the daytime conversion of nitrate (NO3 (-)) into protein. This derives in part from the inhibitory effect of CO2 on photorespiration and the dependence of shoot NO3 (-) assimilation on photorespiration. Elevated CO2 also inhibits the translocation of nitrite into the chloroplast, a response that influences shoot NO3 (-) assimilation during both day and night. Here, we exposed Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) plants to daytime or nighttime elevated CO2 and supplied them with NO3 (-) or ammonium as a sole nitrogen (N) source. Six independent measures (plant biomass, shoot NO3 (-), shoot organic N, (15)N isotope fractionation, (15)NO3 (-) assimilation, and the ratio of shoot CO2 evolution to O2 consumption) indicated that elevated CO2 at night slowed NO3 (-) assimilation and thus decreased dark respiration in the plants reliant on NO3 (-). These results provide a straightforward explanation for the diverse responses of plants to elevated CO2 at night and suggest that soil N source will have an increasing influence on the capacity of plants to mitigate human greenhouse gas emissions. © 2015 American Society of Plant Biologists. All Rights Reserved.
Rachmilevitch, Shimon
2015-01-01
A major contributor to the global carbon cycle is plant respiration. Elevated atmospheric CO2 concentrations may either accelerate or decelerate plant respiration for reasons that have been uncertain. We recently established that elevated CO2 during the daytime decreases plant mitochondrial respiration in the light and protein concentration because CO2 slows the daytime conversion of nitrate (NO3−) into protein. This derives in part from the inhibitory effect of CO2 on photorespiration and the dependence of shoot NO3− assimilation on photorespiration. Elevated CO2 also inhibits the translocation of nitrite into the chloroplast, a response that influences shoot NO3− assimilation during both day and night. Here, we exposed Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) plants to daytime or nighttime elevated CO2 and supplied them with NO3− or ammonium as a sole nitrogen (N) source. Six independent measures (plant biomass, shoot NO3−, shoot organic N, 15N isotope fractionation, 15NO3− assimilation, and the ratio of shoot CO2 evolution to O2 consumption) indicated that elevated CO2 at night slowed NO3− assimilation and thus decreased dark respiration in the plants reliant on NO3−. These results provide a straightforward explanation for the diverse responses of plants to elevated CO2 at night and suggest that soil N source will have an increasing influence on the capacity of plants to mitigate human greenhouse gas emissions. PMID:25755253
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, D.E.
Assay procedures for analysis of four groups of allelochemicals in Artemisia tridentata, big sagebrush, were established. Growth of Artemisia under high and low light at three CO/sub 2/ levels demonstrated that this species also undegoes a ''dilution'' of the leaf nitrogen content and is useful as test species for herbivory response to CO/sub 2/ induced effects. The initiial experiment also showed that high irradiance is a necessary growth condition. Plants from a single population of A. Tridentata were grown at the Duke Phytotron in three CO/sub 2/ regimed and fed to two species of grasshoppers. Sagabrush plants grew more andmore » had lower leaf nitrogen contents as CO/sub 2/ concentration increased. However, the plants had on average lowere leaf carbon as well as lower leaf niitrogen contents with elevated CO/sub 2/. The source of the lower leaf nutritional value does not appear to be solely an increase in carbon content. Grasshopper consumption was greater on leaves from elevated future and from reduced historical CO/sub 2/ regimes, compared to the current concentration. The increased consumption of leaves from elevated CO/sub 2/ is in agreement with previous results. Grasshopper consumption was significantly related to leaf allelochemical content, but not to leaf nitrogen content. The consumption difference among CO/sub 2/ regimes appeared to result from allelochemical differences, which in turn may result from genetic variation or from CO/sub 2/ treatments. 17 refs., 2 figs., 4 tabs.« less
Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.
Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A
2011-08-31
Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.
Regulation of tyramine oxidase synthesis in Klebsiella aerogenes.
Okamura, H; Murooka, Y; Harada, T
1976-01-01
Tyramine oxidase in Klebsiella aerogenes is highly specific for tyramine, dopamine, octopamine, and norepinephrine, and its synthesis is induced specifically by these compounds. The enzyme is present in a membrane-bound form. The Km value for tyramine is 9 X 10(-4) M. Tyramine oxidase synthesis was subjected to catabolite repression by glucose in the presence of ammonium salts. Addition of cyclic adenosine 3',5'-monophosphate (cAMP) overcame the catabolite repression. A mutant strain, K711, which can produce a high level of beta-galactosidase in the presence of glucose and ammonium chloride, can also synthesize tyramine oxidase and histidase in the presence of inducer in glucose ammonium medium. Catabolite repression of tyramine oxidase synthesis was relieved when the cells were grown under conditions of nitrogen limitation, whereas beta-galactosidase was strongly repressed under these conditions. A cAMP-requiring mutant, MK54, synthesized tyramine oxidase rapidly when tyramine was used as the sole source of nitrogen in the absence of cAMP. However, a glutamine synthetase-constitutive mutant, MK94, failed to synthesize tyramine oxidase in the presence of glucose and ammonium chloride, although it synthesized histidase rapidly under these conditions. These results suggest that catabolite repression of tyramine oxidase synthesis in K. aerogenes is regulated by the intracellular level of cAMP and an unknown cytoplasmic factor that acts independently of cAMP and is formed under conditions of nitrogen limitation. PMID:179974
[Nitrogen non-point source pollution identification based on ArcSWAT in Changle River].
Deng, Ou-Ping; Sun, Si-Yang; Lü, Jun
2013-04-01
The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source (NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35%, 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.
NASA Astrophysics Data System (ADS)
Richter, P. R.; Liu, Y.; An, Y.; Li, X.; Nasir, A.; Strauch, S. M.; Becker, I.; Krüger, J.; Schuster, M.; Ntefidou, M.; Daiker, V.; Haag, F. W. M.; Aiach, A.; Lebert, M.
2015-01-01
In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH+4 (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4.
Richter, P R; Liu, Y; An, Y; Li, X; Nasir, A; Strauch, S M; Becker, I; Krüger, J; Schuster, M; Ntefidou, M; Daiker, V; Haag, F W M; Aiach, A; Lebert, M
2015-01-01
In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH4+ (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Wang, Wenguo; Li, Rui; Zhu, Qili; Tang, Xiaoyu; Zhao, Qi
2016-04-18
Plants can suffer ammonium (NH4 (+)) toxicity, particularly when NH4 (+) is supplied as the sole nitrogen source. However, our knowledge about the underlying mechanisms of NH4 (+) toxicity is still largely unknown. Lemna minor, a model duckweed species, can grow well in high NH4 (+) environment but to some extent can also suffer toxic effects. The transcriptomic and physiological analysis of L. minor responding to high NH4 (+) may provide us some interesting and useful information not only in toxic processes, but also in tolerance mechanisms. The L. minor cultured in the Hoagland solution were used as the control (NC), and in two NH4 (+) concentrations (NH4 (+) was the sole nitrogen source), 84 mg/L (A84) and 840 mg/L (A840) were used as stress treatments. The NH4 (+) toxicity could inhibit the growth of L. minor. Reactive oxygen species (ROS) and cell death were studied using stained fronds under toxic levels of NH4 (+). The malondialdehyde content and the activities of superoxide dismutase and peroxidase increased from NC to A840, rather than catalase and ascorbate peroxidase. A total of 6.62G nucleotides were generated from the three distinct libraries. A total of 14,207 differentially expressed genes (DEGs) among 70,728 unigenes were obtained. All the DEGs could be clustered into 7 profiles. Most DEGs were down-regulated under NH4 (+) toxicity. The genes required for lignin biosynthesis in phenylpropanoid biosynthesis pathway were up-regulated. ROS oxidative-related genes and programmed cell death (PCD)-related genes were also analyzed and indicated oxidative damage and PCD occurring under NH4 (+) toxicity. The first large transcriptome study in L. minor responses to NH4 (+) toxicity was reported in this work. NH4 (+) toxicity could induce ROS accumulation that causes oxidative damage and thus induce cell death in L. minor. The antioxidant enzyme system was activated under NH4 (+) toxicity for ROS scavenging. The phenylpropanoid pathway was stimulated under NH4 (+) toxicity. The increased lignin biosynthesis might play an important role in NH4 (+) toxicity resistance.
Summers, Ryan M; Louie, Tai Man; Yu, Chi Li; Subramanian, Mani
2011-02-01
N-Demethylation of many xenobiotics and naturally occurring purine alkaloids such as caffeine and theobromine is primarily catalysed in higher organisms, ranging from fungi to mammals, by the well-studied membrane-associated cytochrome P450s. In contrast, there is no well-characterized enzyme for N-demethylation of purine alkaloids from bacteria, despite several reports on their utilization as sole source of carbon and nitrogen. Here, we provide what we believe to be the first detailed characterization of a purified N-demethylase from Pseudomonas putida CBB5. The soluble N-demethylase holoenzyme is composed of two components, a reductase component with cytochrome c reductase activity (Ccr) and a two-subunit N-demethylase component (Ndm). Ndm, with a native molecular mass of 240 kDa, is composed of NdmA (40 kDa) and NdmB (35 kDa). Ccr transfers reducing equivalents from NAD(P)H to Ndm, which catalyses an oxygen-dependent N-demethylation of methylxanthines to xanthine, formaldehyde and water. Paraxanthine and 7-methylxanthine were determined to be the best substrates, with apparent K(m) and k(cat) values of 50.4±6.8 μM and 16.2±0.6 min(-1), and 63.8±7.5 μM and 94.8±3.0 min(-1), respectively. Ndm also displayed activity towards caffeine, theobromine, theophylline and 3-methylxanthine, all of which are growth substrates for this organism. Ndm was deduced to be a Rieske [2Fe-2S]-domain-containing non-haem iron oxygenase based on (i) its distinct absorption spectrum and (ii) significant identity of the N-terminal sequences of NdmA and NdmB with the gene product of an uncharacterized caffeine demethylase in P. putida IF-3 and a hypothetical protein in Janthinobacterium sp. Marseille, both predicted to be Rieske non-haem iron oxygenases.
Multiple metabolisms constrain the anaerobic nitrite budget in the Eastern Tropical South Pacific
NASA Astrophysics Data System (ADS)
Babbin, Andrew R.; Peters, Brian D.; Mordy, Calvin W.; Widner, Brittany; Casciotti, Karen L.; Ward, Bess B.
2017-02-01
The Eastern Tropical South Pacific is one of the three major oxygen deficient zones (ODZs) in the global ocean and is responsible for approximately one third of marine water column nitrogen loss. It is the best studied of the ODZs and, like the others, features a broad nitrite maximum across the low oxygen layer. How the microbial processes that produce and consume nitrite in anoxic waters interact to sustain this feature is unknown. Here we used 15N-tracer experiments to disentangle five of the biologically mediated processes that control the nitrite pool, including a high-resolution profile of nitrogen loss rates. Nitrate reduction to nitrite likely depended on organic matter fluxes, but the organic matter did not drive detectable rates of denitrification to N2. However, multiple lines of evidence show that denitrification is important in shaping the biogeochemistry of this ODZ. Significant rates of anaerobic nitrite oxidation at the ODZ boundaries were also measured. Iodate was a potential oxidant that could support part of this nitrite consumption pathway. We additionally observed N2 production from labeled cyanate and postulate that anammox bacteria have the ability to harness cyanate as another form of reduced nitrogen rather than relying solely on ammonification of complex organic matter. The balance of the five anaerobic rates measured—anammox, denitrification, nitrate reduction, nitrite oxidation, and dissimilatory nitrite reduction to ammonium—is sufficient to reproduce broadly the observed nitrite and nitrate profiles in a simple one-dimensional model but requires an additional source of reduced nitrogen to the deeper ODZ to avoid ammonium overconsumption.
Liu, Weiqiu; Yang, Chao; Shi, Si; Shu, Wensheng
2014-02-01
Ten strains of Cu-tolerant bacteria with potential plant growth-promoting ability were isolated by selecting strains with the ability to use 1-aminocyclopropane-1-carboxylate as a sole nitrogen source (designated ACC-B) or fix nitrogen (designated FLN-B) originating from the rhizosphere of plants growing on copper tailings. All 10 strains proved to have intrinsic ability to produce indole acetic acid and siderophores, and most of them could mobilize insoluble phosphate. In addition, a greenhouse study showed that ACC-B, FLN-B and a mixture of both had similar, potent ability to stimulate growth of Pennisetum purpureum, Medicago sativa and Oenothera erythrosepala plants grown on sterilized tailings. For instance, above-ground biomass of P. purpureum was 278-357% greater after 60d growth on sterilized tailings in their presence. They could also significantly promote the growth of the plants grown on non-sterilized tailings, though the growth-promoting effects were much weaker. So, strategies for using of the plant growth-promoting bacteria in the practice of phytoremediation deserve further studies to get higher growth-promoting efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino
2014-01-01
Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].
Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino
2014-01-01
Flor yeasts of Saccharomyces cerevisiae have an innate diversity of FLO11 which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling FLO11 alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce FLO11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to FLO11 expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air–liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the FLO11 gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts. PMID:25369456
IDAWG: Metabolic incorporation of stable isotope labels for quantitative glycomics of cultured cells
Orlando, Ron; Lim, Jae-Min; Atwood, James A.; Angel, Peggi M.; Fang, Meng; Aoki, Kazuhiro; Alvarez-Manilla, Gerardo; Moremen, Kelley W.; York, William S.; Tiemeyer, Michael; Pierce, Michael; Dalton, Stephen; Wells, Lance
2012-01-01
Robust quantification is an essential component of comparative –omic strategies. In this regard, glycomics lags behind proteomics. Although various isotope-tagging and direct quantification methods have recently enhanced comparative glycan analysis, a cell culture labeling strategy, that could provide for glycomics the advantages that SILAC provides for proteomics, has not been described. Here we report the development of IDAWG, Isotopic Detection of Aminosugars With Glutamine, for the incorporation of differential mass tags into the glycans of cultured cells. In this method, culture media containing amide-15N-Gln is used to metabolically label cellular aminosugars with heavy nitrogen. Because the amide side chain of Gln is the sole source of nitrogen for the biosynthesis of GlcNAc, GalNAc, and sialic acid, we demonstrate that culturing mouse embryonic stems cells for 72 hours in the presence of amide-15N-Gln media results in nearly complete incorporation of 15N into N-linked and O-linked glycans. The isotopically heavy monosaccharide residues provide additional information for interpreting glycan fragmentation and also allow quantification in both full MS and MS/MS modes. Thus, IDAWG is a simple to implement, yet powerful quantitative tool for the glycomics toolbox. PMID:19449840
Al-Mailem, D M; Eliyas, M; Radwan, S S
2013-05-01
Two halophilic, hydrocarbonoclastics bacteria, Marinobacter sedimentarum and M. flavimaris, with diazotrophic potential occured in hypersaline waters and soils in southern and northern coasts of Kuwait. Their numbers were in the magnitude of 10(3) colony forming units g(-1). The ambient salinity in the hypersaline environments was between 3.2 and 3.5 M NaCl. The partial 16S rRNA gene sequences of the two strains showed, respectively, 99 and 100% similarities to the sequences in the GenBank. The two strains failed to grow in the absence of NaCl, exhibited best growth and hydrocarbon biodegradation in the presence of 1 to 1.5 M NaCl, and still grew and maintained their hydrocarbonoclastic activity at salinities up to 5 M NaCl. Both species utilized Tween 80, a wide range of individual aliphatic hydrocarbons (C9-C40) and the aromatics benzene, biphenyl, phenanthrene, anthracene and naphthalene as sole sources of carbon and energy. Experimental evidence was provided for their nitrogen-fixation potential. The two halophilic Marinobacter strains successfully mineralized crude oil in nutrient media as well as in hypersaline soil and water microcosms without the use of any nitrogen fertilizers.
Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.
Mutti, Francesco G; Knaus, Tanja; Scrutton, Nigel S; Breuer, Michael; Turner, Nicholas J
2015-09-25
α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds at industrial scale. We present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on a combination of two enzymes: an alcohol dehydrogenase (from Aromatoleum sp., Lactobacillus sp., or Bacillus sp.) operating in tandem with an amine dehydrogenase (engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols, yielding up to 96% conversion and 99% enantiomeric excess. Primary alcohols were aminated with high conversion (up to 99%). This redox self-sufficient cascade possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product. Copyright © 2015, American Association for the Advancement of Science.
Alternate Sources for Propellant Ingredients.
1976-07-07
0dJ variety of reasons; (3) sole source; (4) medical/ OSHA /EPA problems; (5) dependent on foreign Imports; and (6) specification problems. •’. .’ . . I...problems exist for a variety of reasons; (3) sole sourc:e; (4) medical/ OSHA /EPA problems; (5) dependent on foreign imports; and (6) specification problems...regulations of OSHA or EPA affect pro- duction or use of the product; 5. Plant capacity - when demand increases faster that; predictions; 6. Supply
NASA Astrophysics Data System (ADS)
Dierking, Jan; Morat, Fabien; Letourneur, Yves; Harmelin-Vivien, Mireille
2012-06-01
The commercially important marine flatfish common sole (Solea solea) facultatively uses NW Mediterranean lagoons as nurseries. To assess the imprint left by the lagoonal passage, muscle carbon (C) and nitrogen (N) isotope values of S. solea juveniles caught in Mauguio lagoon in spring (shortly after arrival from the sea) and in autumn (before the return to the sea) were compared with values of juveniles from adjacent coastal marine nurseries. In addition, in the lagoon, sole otolith stable isotope (C and oxygen (O)) and elemental (11 elements) composition in spring and autumn, and the stable isotope composition (C and N) of organic matter sources in autumn, were determined. Overall, our data indicate that a distinct lagoonal signature existed. Specifically, lagoon soles showed a strong enrichment in muscle tissue 15N (>6‰) compared to their coastal relatives, likely linked to sewage inputs (see below), and a depletion in 13C (1-2‰), indicative of higher importance of 13C depleted terrestrial POM in the lagoon compared to coastal nurseries. In addition, over the time spent in the lagoon, sole otolith δ13C and δ18O values and otolith elemental composition changed significantly. Analysis of the lagoon sole foodweb based on C and N isotopes placed sediment particulate organic matter (POM) at the base. Seagrasses, formerly common but in decline in Mauguio lagoon, played a minor role in the detritus cycle. The very strong 15N enrichment of the entire foodweb (+7 to +11‰) compared to little impacted lagoons and coastal areas testified of important human sewage inputs. Regarding the S. solea migration, the analysis of higher turnover and fast growth muscle tissue and metabolically inert and slower growth otoliths indicated that soles arrived at least several weeks prior to capture in spring, and that no migrations took place in summer. In the autumn, the high muscle δ15N value acquired in Mauguio lagoon would be a good marker of recent return to the sea, whereas altered otolith δ18O values and elemental ratios hold promise as long-term markers. The combination of several complementary tracers from muscle and otoliths may present the chance to distinguish between fish from specific lagoons and coastal nurseries in the future.
Yang, S Q; Xiong, H; Yang, H Y; Yan, Q J; Jiang, Z Q
2015-01-01
To improve the β-1,3-1,4-glucanase production by Rhizomucor miehei under solid-state fermentation (SSF) for industrial application. The fermentation conditions for β-1,3-1,4-glucanase production by R. miehei CAU432 under SSF were optimized using a 'one-factor-at-a-time' method. Under the optimized fermentation conditions, viz. oatmeal (0·45-0·9 mm) as sole carbon source, 5% (w/w) peptone as sole nitrogen source, initial moisture of 80% (w/w), initial culture pH of 5·0, incubation temperature of 50°C and incubation time of 6 days, the highest β-1,3-1,4-glucanase activity of 20,025 U g(-1) dry substrate was achieved, which represents the highest yield for β-1,3-1,4-glucanase production ever reported. The crude enzyme was extracted and purified to homogeneity with a purification fold of 4·6 and a recovery yield of 9·0%. The addition of the purified β-1,3-1,4-glucanase in mash obviously reduced its filtration time (24·6%) and viscosity (2·61%). The optimal fermentation conditions for maximal β-1,3-1,4-glucanase production under SSF was obtained, and the enzyme was suitable for application in the malting process. The high production yield and excellent capability of the enzyme may enable it great potential in industries, especially in brewing industry. © 2014 The Society for Applied Microbiology.
Roles of Two Shewanella oneidensis MR-1 Extracellular Endonucleases ▿ †
Gödeke, Julia; Heun, Magnus; Bubendorfer, Sebastian; Paul, Kristina; Thormann, Kai M.
2011-01-01
The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment. PMID:21705528
Cyanophycin production from feather hydrolysate using biotechnological methods.
Altun, Müslüm; Wiefel, Lars; Steinbüchel, Alexander
2018-06-11
Cyanophycin is a bacterial storage polymer for carbon, nitrogen and energy with emerging industrial applications. As efficient cyanophycin production is enhanced by peptone, but commercial peptones are very expensive, thereby increasing the overall production cost, an enzymatically produced feather hydrolysate (FH) is assessed as a cheap replacement of peptone to lower the costs and make cyanophycin production more economically feasible. Keratinase production using feather as the sole carbon/nitrogen source by S.pactum 40530 at 30-L fermentation scale was achieved within 93 h with degradation rate of 96.5%. A concentration of 60 g/L of FH, generated by keratinolytic activity (8 × 10 3 U g -1 L -1 d -1 ) within 24 h, was used as the main carbon/peptone source to produce cyanophycin. The growth performances of E. coli DapE/L using FH was compared to that of casamino acids (CA) and up to 7.1 ± 0.4 and 5.3 ± 0.3 g/L of cell mass were obtained after 72 h from FH and CA, respectively. Cyanophycin production yielded 1.4 ± 0.1g/L for FH with average molecular mass of 28.8 and 1.4 ± 0.2 for CA with average molecular mass of 35.3, after 60 h. For the first time, FH generated by biotechnological methods from environmentally problematic, abundant and renewable feather bioresource was successfully used for cyanophycin biopolymer production.
Madkour, Magdy A.; Smith, Linda Tombras; Smith, Gary M.
1990-01-01
A common cellular mechanism of osmotic-stress adaptation is the intracellular accumulation of organic solutes (osmolytes). We investigated the mechanism of osmotic adaptation in the diazotrophic bacteria Azotobacter chroococcum, Azospirillum brasilense, and Klebsiella pneumoniae, which are adversely affected by high osmotic strength (i.e., soil salinity and/or drought). We used natural-abundance 13C nuclear magnetic resonance spectroscopy to identify all the osmolytes accumulating in these strains during osmotic stress generated by 0.5 M NaCl. Evidence is presented for the accumulation of trehalose and glutamate in Azotobacter chroococcum ZSM4, proline and glutamate in Azospirillum brasilense SHS6, and trehalose and proline in K. pneumoniae. Glycine betaine was accumulated in all strains grown in culture media containing yeast extract as the sole nitrogen source. Alternative nitrogen sources (e.g., NH4Cl or casamino acids) in the culture medium did not result in measurable glycine betaine accumulation. We suggest that the mechanism of osmotic adaptation in these organisms entails the accumulation of osmolytes in hyperosmotically stressed cells resulting from either enhanced uptake from the medium (of glycine betaine, proline, and glutamate) or increased net biosynthesis (of trehalose, proline, and glutamate) or both. The preferred osmolyte in Azotobacter chroococcum ZSM4 shifted from glutamate to trehalose as a consequence of a prolonged osmotic stress. Also, the dominant osmolyte in Azospirillum brasilense SHS6 shifted from glutamate to proline accumulation as the osmotic strength of the medium increased. PMID:16348295
Liang, Fang; Du, Kui; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang
2015-12-28
To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m(2); temperature: 30°C; pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R(2) = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.
Acetylenotrophy: A hidden but ubiquitous microbial metabolism?
Akob, Denise M.; Sutton, John M.; Fierst, Janna L.; Haase, Karl B.; Baesman, Shaun; Luther, George; Miller, Laurence G.; Oremland, Ronald S.
2018-01-01
Acetylene (IUPAC name: ethyne) is a colorless, gaseous hydrocarbon, composed of two triple bonded carbon atoms attached to hydrogens (C2H2). When microbiologists and biogeochemists think of acetylene, they immediately think of its use as an inhibitory compound of certain microbial processes and a tracer for nitrogen fixation. However, what is less widely known is that anaerobic and aerobic microorganisms can degrade acetylene, using it as a sole carbon and energy source and providing the basis of a microbial food web. Here, we review what is known about acetylene degrading organisms and introduce the term 'acetylenotrophs' to refer to the microorganisms that carry out this metabolic pathway. In addition, we review the known environmental sources of acetylene and postulate the presence of an hidden acetylene cycle. The abundance of bacteria capable of using acetylene and other alkynes as an energy and carbon source suggests that there are energy cycles present in the environment that are driven by acetylene and alkyne production and consumption that are isolated from atmospheric exchange. Acetylenotrophs may have developed to leverage the relatively high concentrations of acetylene in the pre-Cambrian atmosphere, evolving later to survive in specialized niches where acetylene and other alkynes were produced.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-14
... 2] RIN 9000-AL55 Federal Acquisition Regulation; Justification and Approval of Sole-Source 8(a... removes language indicating that the applicable section of the National Defense Authorization Act for...: June 8, 2012. Laura Auletta, Director, Office of Governmentwide Acquisition Policy, Office of...
48 CFR 19.1406 - Sole source awards to service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2013 CFR
2013-10-01
... service-disabled veteran-owned small business concerns. 19.1406 Section 19.1406 Federal Acquisition...-Disabled Veteran-Owned Small Business Procurement Program 19.1406 Sole source awards to service-disabled...-disabled veteran-owned small business concerns; (2) The anticipated award price of the contract, including...
48 CFR 19.1406 - Sole source awards to service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2014 CFR
2014-10-01
... service-disabled veteran-owned small business concerns. 19.1406 Section 19.1406 Federal Acquisition...-Disabled Veteran-Owned Small Business Procurement Program 19.1406 Sole source awards to service-disabled...-disabled veteran-owned small business concerns; (2) The anticipated award price of the contract, including...
48 CFR 19.1406 - Sole source awards to service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2010 CFR
2010-10-01
... service-disabled veteran-owned small business concerns. 19.1406 Section 19.1406 Federal Acquisition...-Disabled Veteran-Owned Small Business Procurement Program 19.1406 Sole source awards to service-disabled veteran-owned small business concerns. (a) A contracting officer may award contracts to service-disabled...
48 CFR 18.116 - Service-disabled Veteran-owned Small Business (SDVOSB) sole source awards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Service-disabled Veteran... Available Acquisition Flexibilities 18.116 Service-disabled Veteran-owned Small Business (SDVOSB) sole source awards. Contracts may be awarded to Service-disabled Veteran-owned Small Business (SDVOSB...
48 CFR 819.7008 - Sole source awards to veteran-owned small business concerns.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Sole source awards to veteran-owned small business concerns. 819.7008 Section 819.7008 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Service-Disabled Veteran-Owned...
48 CFR 19.1406 - Sole source awards to service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2011 CFR
2011-10-01
... service-disabled veteran-owned small business concerns. 19.1406 Section 19.1406 Federal Acquisition...-Disabled Veteran-Owned Small Business Procurement Program 19.1406 Sole source awards to service-disabled veteran-owned small business concerns. (a) A contracting officer may award contracts to service-disabled...
48 CFR 18.116 - Service-disabled Veteran-owned Small Business (SDVOSB) sole source awards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Service-disabled Veteran... Available Acquisition Flexibilities 18.116 Service-disabled Veteran-owned Small Business (SDVOSB) sole source awards. Contracts may be awarded to Service-disabled Veteran-owned Small Business (SDVOSB...
48 CFR 18.116 - Service-disabled Veteran-owned Small Business (SDVOSB) sole source awards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Service-disabled Veteran... Available Acquisition Flexibilities 18.116 Service-disabled Veteran-owned Small Business (SDVOSB) sole source awards. Contracts may be awarded to Service-disabled Veteran-owned Small Business (SDVOSB...
48 CFR 819.7008 - Sole source awards to veteran-owned small business concerns.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Sole source awards to veteran-owned small business concerns. 819.7008 Section 819.7008 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Service-Disabled Veteran-Owned...
48 CFR 18.116 - Service-disabled Veteran-owned Small Business (SDVOSB) sole source awards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Service-disabled Veteran... Available Acquisition Flexibilities 18.116 Service-disabled Veteran-owned Small Business (SDVOSB) sole source awards. Contracts may be awarded to Service-disabled Veteran-owned Small Business (SDVOSB...
48 CFR 19.1406 - Sole source awards to service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2012 CFR
2012-10-01
... service-disabled veteran-owned small business concerns. 19.1406 Section 19.1406 Federal Acquisition...-Disabled Veteran-Owned Small Business Procurement Program 19.1406 Sole source awards to service-disabled...-disabled veteran-owned small business concerns; (2) The anticipated award price of the contract, including...
48 CFR 18.116 - Service-disabled Veteran-owned Small Business (SDVOSB) sole source awards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Service-disabled Veteran... Available Acquisition Flexibilities 18.116 Service-disabled Veteran-owned Small Business (SDVOSB) sole source awards. Contracts may be awarded to Service-disabled Veteran-owned Small Business (SDVOSB...
40 CFR 149.111 - Funding to redesigned projects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) SOLE SOURCE AQUIFERS Review of Projects Affecting the Edwards Underground Reservoir, A Designated Sole Source Aquifer in the San Antonio, Texas Area § 149.111 Funding to redesigned projects. After... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Funding to redesigned projects. 149...
Espinosa Vidal, Esteban; de Morais, Marcos Antonio; François, Jean Marie; de Billerbeck, Gustavo M
2015-01-01
Higher alcohol formation by yeast is of great interest in the field of fermented beverages. Among them, medium-chain alcohols impact greatly the final flavour profile of alcoholic beverages, even at low concentrations. It is widely accepted that amino acid metabolism in yeasts directly influences higher alcohol formation, especially the catabolism of aromatic and branched-chain amino acids. However, it is not clear how the availability of oxygen and glucose metabolism influence the final higher alcohol levels in fermented beverages. Here, using an industrial Brazilian cachaça strain of Saccharomyces cerevisiae, we investigated the effect of oxygen limitation and glucose pulse on the accumulation of higher alcohol compounds in batch cultures, with glucose (20 g/l) and leucine (9.8 g/l) as the carbon and nitrogen sources, respectively. Fermentative metabolites and CO2 /O2 balance were analysed in order to correlate the results with physiological data. Our results show that the accumulation of isoamyl alcohol by yeast is independent of oxygen availability in the medium, depending mainly on leucine, α-keto-acids and/or NADH pools. High-availability leucine experiments showed a novel and unexpected accumulation of isobutanol, active amyl alcohol and 2-phenylethanol, which could be attributed to de novo biosynthesis of valine, isoleucine and phenylalanine and subsequent outflow of these pathways. In carbon-exhausted conditions, our results also describe, for the first time, the metabolization of isoamyl alcohol, isobutanol, active amyl alcohol but not of 2-phenylethanol, by yeast strains in stationary phase, suggesting a role for these higher alcohols as carbon source for cell maintenance and/or redox homeostasis during this physiological phase. Copyright © 2014 John Wiley & Sons, Ltd.
Nonpoint and Point Sources of Nitrogen in Major Watersheds of the United States
Puckett, Larry J.
1994-01-01
Estimates of nonpoint and point sources of nitrogen were made for 107 watersheds located in the U.S. Geological Survey's National Water-Quality Assessment Program study units throughout the conterminous United States. The proportions of nitrogen originating from fertilizer, manure, atmospheric deposition, sewage, and industrial sources were found to vary with climate, hydrologic conditions, land use, population, and physiography. Fertilizer sources of nitrogen are proportionally greater in agricultural areas of the West and the Midwest than in other parts of the Nation. Animal manure contributes large proportions of nitrogen in the South and parts of the Northeast. Atmospheric deposition of nitrogen is generally greatest in areas of greatest precipitation, such as the Northeast. Point sources (sewage and industrial) generally are predominant in watersheds near cities, where they may account for large proportions of the nitrogen in streams. The transport of nitrogen in streams increases as amounts of precipitation and runoff increase and is greatest in the Northeastern United States. Because no single nonpoint nitrogen source is dominant everywhere, approaches to control nitrogen must vary throughout the Nation. Watershed-based approaches to understanding nonpoint and point sources of contamination, as used by the National Water-Quality Assessment Program, will aid water-quality and environmental managers to devise methods to reduce nitrogen pollution.
Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.
ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells weremore » growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism. IMPORTANCENitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeastY. lipolyticato determine how the nitrogen source regulates lipid metabolism. We show that disruption of both activators and repressors of nitrogen catabolite repression leads to increased lipid accumulation via activation of carbon catabolite repression through an as yet uncharacterized method.« less
Dashti, Narjes; Ali, Nedaa; Eliyas, Mohamed; Khanafer, Majida; Sorkhoh, Naser A.; Radwan, Samir S.
2015-01-01
Eighty-two out of the 100 hydrocarbonoclastic bacterial species that have been already isolated from oil-contaminated Kuwaiti sites, characterized by 16S rRNA nucleotide sequencing, and preserved in our private culture collection, grew successfully in a mineral medium free of any nitrogenous compounds with oil vapor as the sole carbon source. Fifteen out of these 82 species were selected for further study based on the predominance of most of the isolates in their specific sites. All of these species tested positive for nitrogenase using the acetylene reduction reaction. They belonged to the genera Agrobacterium, Sphingomonas, and Pseudomonas from oily desert soil and Nesiotobacter, Nitratireductor, Acinetobacter, Alcanivorax, Arthrobacter, Marinobacter, Pseudoalteromonas, Vibrio, Diatzia, Mycobacterium, and Microbacterium from the Arabian/Persian Gulf water body. A PCR-DGGE-based sequencing analysis of nifH genes revealed the common occurrence of the corresponding genes among all the strains tested. The tested species also grew well and consumed crude oil effectively in NaNO3 -containing medium with and without nitrogen gas in the top space. On the other hand, these bacteria only grew and consumed crude oil in the NaNO3 -free medium when the top space gas contained nitrogen. We concluded that most hydrocarbonoclastic bacteria are diazotrophic, which allows for their wide distribution in the total environment. Therefore, these bacteria are useful for the cost-effective, environmentally friendly bioremediation of hydrocarbon contaminants. PMID:25740314
Dashti, Narjes; Ali, Nedaa; Eliyas, Mohamed; Khanafer, Majida; Sorkhoh, Naser A; Radwan, Samir S
2015-01-01
Eighty-two out of the 100 hydrocarbonoclastic bacterial species that have been already isolated from oil-contaminated Kuwaiti sites, characterized by 16S rRNA nucleotide sequencing, and preserved in our private culture collection, grew successfully in a mineral medium free of any nitrogenous compounds with oil vapor as the sole carbon source. Fifteen out of these 82 species were selected for further study based on the predominance of most of the isolates in their specific sites. All of these species tested positive for nitrogenase using the acetylene reduction reaction. They belonged to the genera Agrobacterium, Sphingomonas, and Pseudomonas from oily desert soil and Nesiotobacter, Nitratireductor, Acinetobacter, Alcanivorax, Arthrobacter, Marinobacter, Pseudoalteromonas, Vibrio, Diatzia, Mycobacterium, and Microbacterium from the Arabian/Persian Gulf water body. A PCR-DGGE-based sequencing analysis of nifH genes revealed the common occurrence of the corresponding genes among all the strains tested. The tested species also grew well and consumed crude oil effectively in NaNO3 -containing medium with and without nitrogen gas in the top space. On the other hand, these bacteria only grew and consumed crude oil in the NaNO3 -free medium when the top space gas contained nitrogen. We concluded that most hydrocarbonoclastic bacteria are diazotrophic, which allows for their wide distribution in the total environment. Therefore, these bacteria are useful for the cost-effective, environmentally friendly bioremediation of hydrocarbon contaminants.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... composed solely of container or refrigerated cargo vessels making fewer than twenty-five (25) visits to the.... \\7\\ ``Fleet'' means ``all container, passenger, and refrigerated cargo vessels, visiting a specific... of nitrogen and particulate matter from auxiliary diesel engines on container vessels, passenger...
48 CFR 819.7007 - Sole source awards to service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2010 CFR
2010-10-01
... service-disabled veteran-owned small business concerns. 819.7007 Section 819.7007 Federal Acquisition...-Disabled Veteran-Owned and Veteran-Owned Small Business Acquisition Program 819.7007 Sole source awards to service-disabled veteran-owned small business concerns. (a) A contracting officer may award contracts to...
48 CFR 819.7007 - Sole source awards to service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2011 CFR
2011-10-01
... service-disabled veteran-owned small business concerns. 819.7007 Section 819.7007 Federal Acquisition...-Disabled Veteran-Owned and Veteran-Owned Small Business Acquisition Program 819.7007 Sole source awards to service-disabled veteran-owned small business concerns. (a) A contracting officer may award contracts to...
48 CFR 819.7007 - Sole source awards to service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2014 CFR
2014-10-01
... service-disabled veteran-owned small business concerns. 819.7007 Section 819.7007 Federal Acquisition...-Disabled Veteran-Owned and Veteran-Owned Small Business Acquisition Program 819.7007 Sole source awards to service-disabled veteran-owned small business concerns. (a) A contracting officer may award contracts to...
48 CFR 819.7007 - Sole source awards to service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2012 CFR
2012-10-01
... service-disabled veteran-owned small business concerns. 819.7007 Section 819.7007 Federal Acquisition...-Disabled Veteran-Owned and Veteran-Owned Small Business Acquisition Program 819.7007 Sole source awards to service-disabled veteran-owned small business concerns. (a) A contracting officer may award contracts to...
48 CFR 819.7007 - Sole source awards to service-disabled veteran-owned small business concerns.
Code of Federal Regulations, 2013 CFR
2013-10-01
... service-disabled veteran-owned small business concerns. 819.7007 Section 819.7007 Federal Acquisition...-Disabled Veteran-Owned and Veteran-Owned Small Business Acquisition Program 819.7007 Sole source awards to service-disabled veteran-owned small business concerns. (a) A contracting officer may award contracts to...
40 CFR 149.109 - Decision under section 1424(e).
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) SOLE SOURCE AQUIFERS Review of Projects Affecting the Edwards Underground Reservoir, A Designated Sole Source Aquifer in the San Antonio, Texas Area § 149.109 Decision under section 1424(e). (a... hazard to public health is not sufficiently great so as to prevent commitment of Federal funding to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... Administration (NASA). ACTION: Notice of tribal consultation and outreach meetings and request for comments... owned by Indian Tribes and Alaska Native Corporations, if the sole-source award is to exceed $20 million... Indian Tribes and Alaska Native Corporations. As explained in E.O. 13175, Tribal consultation is a...
Bai, Zhongzhong; Gao, Zhen; Sun, Junfei; Wu, Bin; He, Bingfang
2016-05-01
d-Lactic acid, is an important organic acid produced from agro-industrial wastes by Sporolactobacillus inulinus YBS1-5 was investigated to reduce the raw material cost of fermentation. The YBS1-5 strain could produce d-lactic acid by using cottonseed meal as the sole nitrogen source. For efficient utilization, the cottonseed meal was enzymatically hydrolyzed and simultaneously utilized during d-lactic acid fermentation. Corncob residues are rich in cellulose and can be enzymatically hydrolyzed without pretreatment. The hydrolysate of this lignocellulosic waste could be utilized by strain YBS1-5 as a carbon source for d-lactic acid production. Under optimal conditions, a high d-lactic acid concentration (107.2g/L) was obtained in 7-L fed-batch fermenter, with an average productivity of 1.19g/L/h and a yield of 0.85g/g glucose. The optical purity of d-lactic acid in the broth was 99.2%. This study presented a new approach for low-cost production of d-lactic acid for an industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Volova, T G; Kozhevnikov, I V; Dolgopolova, Iu B; Trusova, M Iu; Kalacheva, G S; Aref'eva, Iu V
2005-01-01
The physiological, biochemical, genetic, and cultural characteristics of the glucose-utilizing mutant strain Ralstonia eutropha B8562 were investigated in comparison with the parent strain R. eutropha B5786. The morphological, cultural, and biochemical characteristics of strain R. eutropha B8562 were similar to those of strain R. eutropha B5786. Genetic analysis revealed differences between the 16S rRNA gene sequences of these strains. The growth characteristics of the mutant using glucose as the sole carbon and energy source were comparable with those of the parent strain grown on fructose. Strain B8562 was characterized by high yields of polyhydroxyalkanoate (PHA) from different carbon sources (CO2, fructose, and glucose). In batch culture with glucose under nitrogen limitation, PHA accumulation reached 90% of dry weight. In PHA, beta-hydroxybutyrate was predominant (over 99 mol %); beta-hydroxyvalerate (0.25-0.72 mol %) and beta-hydroxyhexanoate (0.008-1.5 mol %) were present as minor components. The strain has prospects as a PHA producer on glucose-containing media.
Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.
Shi, Suan; Li, Jing; Blersch, David M
2018-06-01
The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.
Yager, Tracy J.B.; McMahon, Peter B.
2012-01-01
Concentrations of dissolved nitrite plus nitrate increased fairly steadily in samples from four shallow groundwater monitoring wells after biosolids applications to nonirrigated farmland began in 1993. The U.S. Geological Survey began a preliminary assessment of sources of nitrogen in shallow groundwater at part of the biosolids-application area near Deer Trail, Colorado, in 2005 in cooperation with the Metro Wastewater Reclamation District. Possible nitrogen sources in the area include biosolids, animal manure, inorganic fertilizer, atmospheric deposition, and geologic materials (bedrock and soil). Biosolids from the Metro Wastewater Reclamation District plant in Denver and biosolids, cow manure, geologic materials (bedrock and soil), and groundwater from the study area were sampled to measure nitrogen content and nitrogen isotopic compositions of nitrate or total nitrogen. Biosolids also were leached, and the leachates were analyzed for nitrogen content and other concentrations. Geologic materials from the study area also were sampled to determine mineralogy. Estimates of nitrogen contributed from inorganic fertilizer and atmospheric deposition were calculated from other published reports. The nitrogen information from the study indicates that each of the sources contain sufficient nitrogen to potentially affect groundwater nitrate concentrations. Natural processes can transform the nitrogen in any of the sources to nitrate in the groundwater. Load calculations indicate that animal manure, inorganic fertilizer, or atmospheric deposition could have contributed the largest nitrogen load to the study area in the 13 years before biosolids applications began, but biosolids likely contributed the largest nitrogen load to the study area in the 13 years after biosolids applications began. Various approaches provided insights into sources of nitrate in the groundwater samples from 2005. The isotopic data indicate that, of the source materials considered, biosolids and (or) animal manure were the most likely sources of nitrate in the wells at the time of sampling (2005), and that inorganic fertilizer, atmospheric deposition, and geologic materials were not substantial sources of nitrate in the wells in 2005. The large total nitrogen content of the biosolids and animal-manure samples and biosolids leachates also indicates that the biosolids and animal manure had potential to leach nitrogen and produce large dissolved nitrate concentrations in groundwater. The available data, however, could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the nitrogen isotopic composition of the two materials is similar. Major-ion data also could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the major-ion composition (as well as the isotopic composition) of the two materials is similar. Without additional data, chloride/bromide mass ratios do not necessarily support or refute the hypothesis that biosolids and (or) animal manure were the primary sources of nitrate in water from the study-area wells in 2005. Concentrations of water-extractable nitrate in the soil indicate that biosolids could be an important source of nitrate in the groundwater recharge. Nitrogen inventories in the soil beneath biosolids-application areas and the nitrogen-input estimates for the study area both support the comparisons of isotopic composition, which indicate that some type of human waste (such as biosolids) and (or) animal manure was the source of nitrate in groundwater sampled from the wells in 2005. The nitrogen-load estimates considered with the nitrogen isotopic data and the soil-nitrogen inventories indicate that biosolids applications likely are a major source of nitrogen to the shallow groundwater at these monitoring wells.
Muhammadi; Afzal, Muhammad
2014-01-01
Optimum culture conditions, and carbon and nitrogen sources for production of water absorbing exopolysaccharide by Bacillus strain CMG1403 on local cheap substrates were determined using one variable at a time approach. Carbon source was found to be sole substrate for EPS biosynthesis in the presence of yeast extract that supported the growth only and hence, indirectly enhanced the EPS yield. Whereas, urea only coupled with carbon source could enhance the EPS production but no effect on growth. The maximum yield of EPS was obtained when Bacillus strain CMG1403 was grown statically in neutral minimal medium with 25% volumetric aeration at 30°C for 10 days. Under these optimum conditions, a maximum yield of 2.71±0.024, 3.82±0.005, 4.33±0.021, 4.73±0.021, 4.85±0.024, and 5.52±0.016 g/L culture medium was obtained with 20 g (sugar) of sweet whey, glucose, fructose, sucrose, cane molasses and sugar beet the most efficient one respectively as carbon sources. Thus, the present study showed that under optimum culture conditions, the local cheap substrates could be superior and efficient alternatives to synthetic carbon sources providing way for an economical production of water absorbing EPS by indigenous soil bacterium Bacillus strain CMG1403.
Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica
Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.; ...
2017-02-15
Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less
Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.
Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less
Characterization of a Salmonella sugar kinase essential for the utilization of fructose-asparagine.
Biswas, Pradip K; Behrman, Edward J; Gopalan, Venkat
2017-04-01
Salmonella can utilize fructose-asparagine (F-Asn), a naturally occurring Amadori product, as its sole carbon and nitrogen source. Conversion of F-Asn to the common intermediates glucose-6-phosphate, aspartate, and ammonia was predicted to involve the sequential action of an asparaginase, a kinase, and a deglycase. Mutants lacking the deglycase are highly attenuated in mouse models of intestinal inflammation owing to the toxic build-up of the deglycase substrate. The limited distribution of this metabolic pathway in the animal gut microbiome raises the prospects for antibacterial discovery. We report the biochemical characterization of the kinase that was expected to transform fructose-aspartate to 6-phosphofructose-aspartate during F-Asn utilization. In addition to confirming its anticipated function, we determined through studies of fructose-aspartate analogues that this kinase exhibits a substrate-specificity with greater tolerance to changes to the amino acid (including the d-isomer of aspartate) than to the sugar.
METABOLISM OF ω-AMINO ACIDS V.
Hardman, John K.; Stadtman, Thressa C.
1963-01-01
Hardman, John K. (National Heart Institute, National Institutes of Health, Bethesda, Md.) and Thressa C. Stadtman. Metabolism of ω-amino acids. V. Energetics of the γ-aminobutyrate fermentation by Clostridium aminobutyricum. J. Bacteriol. 85:1326–1333. 1963.—Clostridium aminobutyricum utilizes γ-aminobutyrate as its sole carbon, nitrogen, and energy source, producing ammonia, acetate, and butyrate as a result of this fermentation. Coenzyme A (CoA)-transferase, phosphotransacetylase, and acetokinase activities have been demonstrated in crude extracts of the organism; the coupling of the reactions catalyzed by these enzymes to the fermentation reactions provides a mechanism whereby C. aminobutyricum can obtain energy, in the form of adenosine triphosphate, from the decomposition of γ-aminobutyrate. Indirect evidence of additional phosphorylation, at the electron-transport level, has been obtained from molar growth yield studies and from the inhibition by 2,4-dinitrophenol of butyrate synthesis from γ-aminobutyrate and from crotonyl-CoA. PMID:14047225
Li, Jing; Li, Wen-ying
2015-04-01
A bacterial strain, which could utilize quinoline as the sole carbon, nitrogen and energy source, was isolated from the activated sludge in a coking wastewater treatment plant. According to the 16S rRNA gene sequence analysis, the strain was identified as Acidovorax sp. Taken into consideration of both the growth and the quinoline degradation of the strain, the optimized degradation conditions were acquired as following: 10% inoculum, pH value of 8.0-10.0, 35 degrees C and 150 r x min(-1). The process of its growth was simulated by Haldane kinetic model under different initial quinoline concentrations, the fitted curve had a good correlation with test measured values. Furthermore, coking wastewater was bioaugmented by the mixed strains of DQS-01 and D2 with enhanced process in a moving bed biofilm reactor, and the COD degradation rate was 87.4% within 72 h.
Purification and properties of nitroalkane-oxidizing enzyme from Hansenula mrakii.
Kido, T; Yamamoto, T; Soda, K
1976-01-01
A nitroalkane-oxidizing enzyme was purified about 1,300-fold from a cell extract of Hansenula mrakii grown in a medium containing nitroethane as the sole nitrogen source by ammonium sulfate fractionation, diethylaminoethyl-cellulose column chromatography, hydroxyapatite column chromatography, and Bio-Gel P-150 column chromatography. The enzyme was shown to be homogeneous upon acrylamide gel electrophoresis and ultracentrifugation. The enzyme exhibits absorption maxima at 274, 370, 415, and 440 nm and a shoulder at 470 nm. Balance studies showed that 2 mol of 2-nitropropane is converted into an equimolar amount of acetone and nitrite with the consumption of 1 mol of oxygen. Hydrogen peroxide is not formed in the enzyme reaction. In addition to 2-nitropropane, 1-nitropropane and nitroethane are oxidatively dentrified by the enzyme, but nitromethane is inert to the enzyme. The nitroalkanes are not oxidized under anaerobic conditions. Images PMID:947888
Chlamydospore production and germ-tube formation by auxotrophs of Candida albicans.
Balish, E
1973-04-01
A prototrophic strain and 21 auxotrophic strains of Candida albicans were assessed for their capacity to produce chlamydospores and germ tubes. All of the mutants were able to produce germ-tubes in human serum but only two mutants produced them in defined medium with L-alpha-amino-n-butyric acid as the sole source of nitrogen. Most auxotrophs were not able to produce chlamydospores on corn meal agar with 1% Tween 80, but they could be induced to do so if the medium was supplemented with their growth requirement(s). Although L-cysteine was able to support the growth of two methionine mutants, it did not support chlamydospore formation when added to corn meal agar with 1% Tween 80. Mutants of C. albicans that do not form chlamydospores could be incorrectly identified in laboratories that rely on chlamydospore formation for identification.
Richard, Thomas; Weidhaas, Jennifer
2014-09-15
Defense agencies are increasingly using insensitive munitions (IM) in place of explosives such as 2,4,6-trinitrotoluene. In this study simultaneous aerobic degradation of the IMX-101 formulation constituents 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ) was observed and degradation products were examined. Degradation products over four days of incubation included: nitrourea, 1,2-dihydro-3H-1,2,4-triazol-3-one, and 2,4-dinitrophenol. The enrichment culture maximum specific growth rate of 0.12h(-1) and half saturation constant of 288 mg L(-1) during degradation of IMX-101 as a sole nitrogen source suggest that enrichment culture growth kinetics may closely relate to those of other explosive and nitroaromatic compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee
Ceja-Navarro, Javier A.; Vega, Fernando E.; Karaoz, Ulas; Hao, Zhao; Jenkins, Stefan; Lim, Hsiao Chien; Kosina, Petr; Infante, Francisco; Northen, Trent R.; Brodie, Eoin L.
2015-01-01
The coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Here we show that caffeine is degraded in the gut of H. hampei, and that experimental inactivation of the gut microbiota eliminates this activity. We demonstrate that gut microbiota in H. hampei specimens from seven major coffee-producing countries and laboratory-reared colonies share a core of microorganisms. Globally ubiquitous members of the gut microbiota, including prominent Pseudomonas species, subsist on caffeine as a sole source of carbon and nitrogen. Pseudomonas caffeine demethylase genes are expressed in vivo in the gut of H. hampei, and re-inoculation of antibiotic-treated insects with an isolated Pseudomonas strain reinstates caffeine-degradation ability confirming their key role. PMID:26173063
Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749.
Jiang, Longfa
2013-01-01
This study aims to investigate the effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Curdlan production fell when excess nitrogen source was present, while biomass accumulation increased as the level of nitrogen source raised. Curdlan production and biomass accumulation were greater with urea compared with those with other nitrogen sources. The highest production of curdlan and biomass accumulation by A. faecalis ATCC 31749 was 28.16 g L(-1) and 9.58 g L(-1), respectively, with urea, whereas those with NH(4)Cl were 15.17 g L(-1) and 6.25 g L(-1), respectively. The optimum fermentation time for curdlan production was also affected by the nitrogen source in the medium. Copyright © 2012 Elsevier B.V. All rights reserved.
Gerbl, Friedrich W; Weidler, Gerhard W; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga
2014-01-01
Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.
Gerbl, Friedrich W.; Weidler, Gerhard W.; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga
2014-01-01
Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6–47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH4)2SO4as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH+4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ. PMID:24904540
Airoldi, Edoardo M.; Miller, Darach; Athanasiadou, Rodoniki; Brandt, Nathan; Abdul-Rahman, Farah; Neymotin, Benjamin; Hashimoto, Tatsu; Bahmani, Tayebeh; Gresham, David
2016-01-01
Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. In Saccharomyces cerevisiae (budding yeast), the molecular form of environmental nitrogen is a major determinant of cell growth rate, supporting growth rates that vary at least threefold. Transcriptional control of nitrogen use is mediated in large part by nitrogen catabolite repression (NCR), which results in the repression of specific transcripts in the presence of a preferred nitrogen source that supports a fast growth rate, such as glutamine, that are otherwise expressed in the presence of a nonpreferred nitrogen source, such as proline, which supports a slower growth rate. Differential expression of the NCR regulon and additional nitrogen-responsive genes results in >500 transcripts that are differentially expressed in cells growing in the presence of different nitrogen sources in batch cultures. Here we find that in growth rate–controlled cultures using nitrogen-limited chemostats, gene expression programs are strikingly similar regardless of nitrogen source. NCR expression is derepressed in all nitrogen-limiting chemostat conditions regardless of nitrogen source, and in these conditions, only 34 transcripts exhibit nitrogen source–specific differential gene expression. Addition of either the preferred nitrogen source, glutamine, or the nonpreferred nitrogen source, proline, to cells growing in nitrogen-limited chemostats results in rapid, dose-dependent repression of the NCR regulon. Using a novel means of computational normalization to compare global gene expression programs in steady-state and dynamic conditions, we find evidence that the addition of nitrogen to nitrogen-limited cells results in the transient overproduction of transcripts required for protein translation. Simultaneously, we find that that accelerated mRNA degradation underlies the rapid clearing of a subset of transcripts, which is most pronounced for the highly expressed NCR-regulated permease genes GAP1, MEP2, DAL5, PUT4, and DIP5. Our results reveal novel aspects of nitrogen-regulated gene expression and highlight the need for a quantitative approach to study how the cell coordinates protein translation and nitrogen assimilation to optimize cell growth in different environments. PMID:26941329
Lucà-Moretti, M; Grandi, A; Lucà, E; Muratori, G; Nofroni, M G; Mucci, M P; Gambetta, P; Stimolo, R; Drago, P; Giudice, G; Tamburlin, N; Karbalai, M; Valente, C; Moras, G
2003-01-01
Results of this multicentric study have shown that by giving Master Amino acid Pattern (MAP) as a sole and total substitute of dietary proteins to 500 overweight participants undergoing the American Nutrition Clinics/Overweight Management Program (ANC/OMP), the participants' body nitrogen balance could be maintained in equilibrium with essentially no calories (MAP 1 g=0.04 kcal), thereby preserving the body's structural and functional proteins, eliminating excessive water retention from the interstitial compartment, and preventing the sudden weight increase after study conclusion commonly known as the yo-yo effect. Study results have shown that the use of MAP, in conjunction with the ANC/OMP regimen, has proven to be safe and effective by preventing those adverse effects associated with a negative nitrogen balance, such as oversized or flabby tissue, stretch marks, the sagging of breast tissue, increased hair loss, faded hair color, and fragile or brittle nails. Also prevented were those anomalies commonly associated with weight-loss diets, such as hunger, weakness, headache caused by ketosis, constipation, and decreased libido. The use of MAP in conjunction with the ANC/OMP also allowed for mean weight loss of 2.5 kg (5.5 lb) per week, achieved through reduction of excessive fat tissue and elimination of excessive water retention from the interstitial compartment.
Raudabaugh, Daniel B.; Miller, Andrew N.
2013-01-01
Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome, has caused nearly six million deaths in North American bats since its introduction into the United States in 2006. Current research has shown that caves can harbor P. destructans even after the infected bats are removed and bats no longer visit or inhabit previously infected caves. Our research focuses on elucidating reservoir requirements by investigating the nutritional capabilities of and substrate suitability requirements for six different P. destructans isolates from various localities including Illinois, Indiana, New York (Type specimen), and Pennsylvania. Enzyme assays implicate that both urease and b-glucosidase appear to be constitutive, lipase and esterase activity were more rapid than proteinase activity on 6% gelatin, gelatin degradation was accompanied by medium alkalinization, the reduction of thiosulfate generated hydrogen sulfide gas, chitinase and manganese dependent peroxidase activity were not visually demonstrated within eight weeks, and keratinase activity was not evident at pH 8 within eight weeks. We demonstrate that all P. destructans isolates are capable of growth and sporulation on dead fish, insect, and mushroom tissues. Sole nitrogen source assays demonstrated that all P. destructans isolates exhibit Class 2 nitrogen utilization and that growth-dependent interactions occur among different pH and nitrogen sources. Substrate suitability assays demonstrated that all isolates could grow and sporulate on media ranging from pH 5–11 and tolerated media supplemented with 2000 mg/L of calcium and 700 mg/L of three separated sulfur compounds: thiosulfate L-cysteine, and sulfite. All isolates were intolerant to PEG-induced matric potential with delayed germination and growth at −2.5 MPa with no visible germination at −5 MPa. Interestingly, decreasing the surface tension with Tween 80 permitted germination and growth of P. destructans in −5 MPa PEG medium within 14 days suggesting a link between substrate suitability and aqueous surface tension altering substances. PMID:24205191
Raudabaugh, Daniel B; Miller, Andrew N
2013-01-01
Pseudogymnoascus destructans, the causal agent of bat white-nose syndrome, has caused nearly six million deaths in North American bats since its introduction into the United States in 2006. Current research has shown that caves can harbor P. destructans even after the infected bats are removed and bats no longer visit or inhabit previously infected caves. Our research focuses on elucidating reservoir requirements by investigating the nutritional capabilities of and substrate suitability requirements for six different P. destructans isolates from various localities including Illinois, Indiana, New York (Type specimen), and Pennsylvania. Enzyme assays implicate that both urease and b-glucosidase appear to be constitutive, lipase and esterase activity were more rapid than proteinase activity on 6% gelatin, gelatin degradation was accompanied by medium alkalinization, the reduction of thiosulfate generated hydrogen sulfide gas, chitinase and manganese dependent peroxidase activity were not visually demonstrated within eight weeks, and keratinase activity was not evident at pH 8 within eight weeks. We demonstrate that all P. destructans isolates are capable of growth and sporulation on dead fish, insect, and mushroom tissues. Sole nitrogen source assays demonstrated that all P. destructans isolates exhibit Class 2 nitrogen utilization and that growth-dependent interactions occur among different pH and nitrogen sources. Substrate suitability assays demonstrated that all isolates could grow and sporulate on media ranging from pH 5-11 and tolerated media supplemented with 2000 mg/L of calcium and 700 mg/L of three separated sulfur compounds: thiosulfate L-cysteine, and sulfite. All isolates were intolerant to PEG-induced matric potential with delayed germination and growth at -2.5 MPa with no visible germination at -5 MPa. Interestingly, decreasing the surface tension with Tween 80 permitted germination and growth of P. destructans in -5 MPa PEG medium within 14 days suggesting a link between substrate suitability and aqueous surface tension altering substances.
Whelan, Kevin; Efthymiou, Loukia; Judd, Patricia A; Preedy, Victor R; Taylor, Moira A
2006-08-01
Liquid enteral formulas are commonly used as a sole source of nutritional support of patients in hospital and community settings. Their effect on appetite has important consequences for dietary management of such patients and is likely to be affected by the formula composition. The aim of the present study was to compare appetite within healthy subjects consuming both a standard formula and one supplemented with pea-fibre (10 g/l) and fructo-oligosaccharide (FOS; 5 g/l) as a sole source of nutrition. Eleven healthy subjects consumed a standard formula or a pea-fibre/FOS formula as a sole source of nutrition for 14 d in a double-blind, cross-over trial. Appetite was recorded using standard 100 mm lines anchored at each end by a phrase denoting the most extreme appetite sensation. Consumption of the pea-fibre/FOS formula resulted in higher mean fullness (46 v. 37 mm, P=0.035), minimum fullness (13 v. 9 mm, P=0.024) and minimum satiety (12 v. 8 mm, P=0.012) compared to the standard formula. As there were no differences in macronutrient intake between formulas, these differences are likely to be due to supplementation with pea-fibre and FOS. The effect on appetite of the composition of an enteral formula, both with respect to nutrient content and functional components such as pea-fibre and FOS, may be an important aspect to consider in the dietary management of patients consuming enteral formula as a sole source of nutrition.
Pathway of Glycine Betaine Biosynthesis in Aspergillus fumigatus
Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi
2013-01-01
The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD+ to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom. PMID:23563483
Pathway of glycine betaine biosynthesis in Aspergillus fumigatus.
Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi; Gadda, Giovanni; Latgé, Jean-Paul
2013-06-01
The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD(+) to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom.
Healy, M E; Dillavou, C L; Taylor, G E
1977-01-01
An agar medium containing inositol and urea as sole carbon and nitrogen sources, caffeic acid and ferric citrate as agents for the selective pigmentation of Cryptococcus neoformans, gentamicin as a broad-spectrum bacterial antibiotic, and yeast nitrogen base without amino acids and ammonium sulfate (Difco) was tested against 137 clinical isolates, 4 survey specimens, and 11 ATCC yeast and yeast-like strains. All 28 strains of C. neoformans showed heavy growth and dark brown pigmentation after 36 h. All other tested species of Cryptococcus showed heavy growth after 36 h but only light brown pigmentation after 48 h. No growth was observed in any tested strains of Geotrichum, Pityrosporum, Rhodotorula, Saccharomyces, and Torulopsis. Only the Cryptococcus-like Candida humicola grew of the 8 species and 62 strains of Candida tested. Six of 15 strains of Trichosporon cutaneum and 1 of 2 strains of Trichosporon pullulans showed moderate growth after 48 h. Very different colonial and microscopic morphology and/or the absence of brown pigmentation easily differentiated these strains of T. cutaneum, T. pullulans, and C. humicola from C. neoformans. The growth- and pigmentation-providing characteristics of the medium were unaffected by 2 h of exposure to 254 nm of ultraviolet light. PMID:334795
Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L.
Wang, Wenguo; Yang, Chuang; Tang, Xiaoyu; Gu, Xinjiao; Zhu, Qili; Pan, Ke; Hu, Qichun; Ma, Danwei
2014-12-01
Growing common duckweed Lemna minor L. in diluted livestock wastewater is an alternative option for pollutants removal and consequently the accumulated duckweed biomass can be used for bioenergy production. However, the biomass accumulation can be inhibited by high level of ammonium (NH4 (+)) in non-diluted livestock wastewater and the mechanism of ammonium inhibition is not fully understood. In this study, the effect of high concentration of NH4 (+) on L. minor biomass accumulation was investigated using NH4 (+) as sole source of nitrogen (N). NH4 (+)-induced toxicity symptoms were observed when L. minor was exposed to high concentrations of ammonium nitrogen (NH4 (+)-N) after a 7-day cultivation. L. minor exposed to the NH4 (+)-N concentration of 840 mg l(-1) exhibited reduced relative growth rate, contents of carbon (C) and photosynthetic pigments, and C/N ratio. Ammonium irons were inhibitory to the synthesis of photosynthetic pigments and caused C/N imbalance in L. minor. These symptoms could further cause premature senescence of the fronds, and restrain their reproduction, growth and biomass accumulation. L. minor could grow at NH4 (+)-N concentrations of 7-84 mg l(-1) and the optimal NH4 (+)-N concentration was 28 mg l(-1).
Putri, Lutfi K; Ng, Boon-Junn; Ong, Wee-Jun; Lee, Hing Wah; Chang, Wei Sea; Chai, Siang-Piao
2017-02-08
Owing to its superior properties and versatility, graphene has been proliferating the energy research scene in the past decade. In this contribution, nitrogen (N-) and boron (B-) doped reduced graphene oxide (rGO) variants were investigated as a sole photocatalyst for the green production of H 2 and their properties with respect to photocatalysis were elucidated for the first time. N- and B-rGOs were facilely prepared via the pyrolysis of graphene oxide with urea and boron anhydride as their respective dopant source. The pyrolysis temperature was varied (600-800 °C for N-rGO and 800-1000 °C for B-rGO) in order to modify dopant loading percentage (%) which was found to be influential to photocatalytic activity. N-rGO600 (8.26 N at%) and B-rGO1000 (3.59 B at%), which holds the highest at% from each of their party, exhibited the highest H 2 activity. Additionally, the effects of the nature of N and B bonding configuration in H 2 photoactivity were also examined. This study demonstrates the importance of dopant atoms in graphene, rendering doping as an effective strategy to bolster photocatalytic activity for standalone graphene derivative photocatalysts.
Zuo, Zhaojiang; Yang, Lin; Chen, Silan; Ye, Chaolin; Han, Yujie; Wang, Sutong; Ma, Yuandan
2018-06-06
Cyanobacteria release abundant volatile organic compounds (VOCs), which can poison other algae and cause water odor. To uncover the effects of nitrogen (N) nutrients on the formation of cyanobacteria VOCs, the cell growth, VOC emission and the expression of genes involving in VOC formation in Microcystis aeruginosa were investigated under different N conditions. With the supplement of NaNO 3 , NaNO 2 , NH 4 Cl, urea, Serine (Ser) and Arginine (Arg) as the sole N source, NaNO 3 , urea and Arg showed the best effects on M. aeruginosa cell growth, and limited N supply inhibited the cell growth. M. aeruginosa released 26, 25, 23, 27, 23 and 25 compounds, respectively, in response to different N forms, including furans, sulfocompounds, terpenoids, benzenes, hydrocarbons, aldehydes, and esters. Low-N especially Non-N condition markedly promoted the VOC emission. Under Non-N condition, four up-regulated genes involving in VOC precursor formation were identified, including the genes of pyruvate kinase, malic enzyme and phosphotransacetylase for terpenoids, the gene of aspartate aminotransferase for benzenes and sulfocompounds. In eutrophic water, cyanobacteria release different VOC blends using various N forms, and the reduction of N amount caused by cyanobacteria massive growth can promote algal VOC emission by up-regulating the gene expression. Copyright © 2018 Elsevier Inc. All rights reserved.
Ben-Yosef, Michael; Aharon, Yael; Jurkevitch, Edouard; Yuval, Boaz
2010-05-22
Olive flies (Bactrocera oleae) are intimately associated with bacteria throughout their life cycle, and both larvae and adults are morphologically adapted for housing bacteria in the digestive tract. We tested the hypothesis that these bacteria contribute to the adult fly's fitness in a diet-dependent fashion. We predicted that when dietary protein is superabundant, bacterial contribution will be minimal. Conversely, in the absence of protein, or when only non-essential amino acids are present (as in the fly's natural diet), we predicted that bacterial contribution to fitness will be significant. Accordingly, we manipulated diet and the presence of bacteria in female olive flies, and monitored fecundity--an indirect measure of fitness. Bacteria did not affect fecundity when females were fed a nutritionally poor diet of sucrose, or a protein-rich, nutritionally complete diet. However, when females were fed a diet containing non-essential amino acids as the sole source of amino nitrogen, egg production was significantly enhanced in the presence of bacteria. These results suggest that bacteria were able to compensate for the skewed amino acid composition of the diet and may be indispensable for wild adult olive flies that subsist mainly on nitrogen-poor resources such as honeydew.
Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie
2013-04-01
Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.
Ma, Jing-Yun; Quan, Xian-Chun; Xiong, Wei-Cong
2010-11-01
This study investigated the changes of the morphology, structure, and capability of removing the target contamination of the aerobic granules pre-cultured with mixed substrates of glucose and 2,4-dichlorophenoxyacetic acid (2,4-D) in a long-time running sequence batch reactor (SBR), when the carbon source transformed into the sole carbon source of 2,4-D. Results showed that when the substrate turned to the sole carbon source of 2,4-D, the aerobic granules still maintained a strong degradation ability to the target contamination; a 2,4-D removal percentage of 99.2% -100% and an average COD removal rate of 85.6% were achieved at the initial 2,4-D concentration of 361-564 mg/L. Carbon source transformation caused certain damages to the original aerobic granule structure, made some parts of granules disintegrated, and led to granule size decline from 513 microm to 302 microm. However, those granules maintained the main body, re-aggregated and grew after a period of adaptation due to their strong resistance to toxicity. Aerobic granules capable of utilizing 2,4-D as the sole carbon source with a good settling ability (SYI 20-40 mL/g) and a mean diameter of 489 microm were finally obtained in this study. Scanning electron microscope (SEM) observation showed that the diversity of granule microbial species was declined when turned to the sole carbon source.
NASA Astrophysics Data System (ADS)
Waring, Michael S.; Wells, J. Raymond
2015-04-01
Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with D-limonene, and also with OH, which reacted with D-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and D-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.
Srivastava, Praveen Kumar; Kapoor, Mukesh
2014-01-01
The indigenous bacteria Bacillus sp. CFR1601 produced significant levels of endo-mannanase when grown on agro-wastes, namely, green gram husk and sunflower oil cake (25.6 IU/mL), used as sole carbon and nitrogen sources, respectively. Under immobilized cell system, synthetic supports (polyurethane foam, scotch brite, polyester; up to 33.2 IU/mL) were found marginally superior as compared to natural supports (cotton and silk; up to 28.2 IU/mL) for endo-mannanase production. Cooperative interactions between L-lysine HCl (0.3% w/v), Tween 60 (0.3% v/v), and sunflower oil cake (3.0% w/v) in central composite design response surface methodology ameliorated (1.61-fold) endo-mannanase titers to 48.0 IU/mL. Partially purified endo-mannanase was tested for its ability to produce oligosaccharides from guar gum. These oligosaccharides were tested in vitro for their ability to promote growth of Lactobacillus plantarum MTCC 5422 and Lactobacillus salivarius CHS 1E. Results indicated that low-molecular-weight degraded products from guar gum were (1) able to support the growth of tested strains [increased O.D600nm up to 2.3-fold and decrease in pH (<6.3) due to production of short chain fatty acid (SCFA)] when used as sole carbon source; and (2) after purification and analysis by electron spray ionization-mass spectrometry (ESI-MS) were found to be composed of mainly disaccharide and tetrasaccharide. The compatibility of endo-mannanase with various detergents together with wash performance test confirmed its potential applicability for laundry industry.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare the effects of corn meal or liquid molasses fed as the sole supplemental nonstructural carbohydrate source on milk yield and composition, milk fatty acids, and N use efficiency in grazing dairy cows. Ten multiparous organically-certified Jersey cows averagi...
Effects of different nitrogen sources on the biogas production - a lab-scale investigation.
Wagner, Andreas Otto; Hohlbrugger, Peter; Lins, Philipp; Illmer, Paul
2012-12-20
For anaerobic digestion processes nitrogen sources are poorly investigated although they are known as possible process limiting factors (in the hydrolysis phase) but also as a source for fermentations for subsequent methane production by methanogenic archaea. In the present study different complex and defined nitrogen sources were investigated in a lab-scale experiment in order to study their potential to build up methane. The outcome of the study can be summarised as follows: from complex nitrogen sources yeast extract and casamino acids showed the highest methane production with approximately 600 ml methane per mole of nitrogen, whereas by the use of skim milk no methane production could be observed. From defined nitrogen sources L-arginine showed the highest methane production with almost 1400 ml methane per mole of nitrogen. Moreover it could be demonstrated that the carbon content and therefore C/N-ratio has only minor influence for the methane production from the used substrates. Copyright © 2011 Elsevier GmbH. All rights reserved.
Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesis
NASA Technical Reports Server (NTRS)
Smith, D. L.; Krikorian, A. D.
1990-01-01
Cultures of preglobular stage proembryos (PGSPs) were initiated from mechanically wounded mature zygotic embryos of carrot, Daucus carota, on a hormone-free, semisolid medium. These PGSPs have been maintained and multiplied for extended periods without their progression into later embryo stages on the same hormone-free medium containing 1 mM NH4+ as the sole nitrogen source. Sustained maintenance of cultures comprised exclusively of PGSPs was dependent on medium pH throughout the culture period. Best growth and multiplication of PGSP cultures occurred when the pH of unbuffered, hormone-free medium fell from 4.5 to 4 over a 2-week period or when buffered medium was titrated to pH 4. If the hormone-free medium was buffered to sustain a pH at or above 4.5, PGSPs developed into later embryo stages. Maintenance with continuous multiplication of PGSPs occurred equally well on medium containing NH4+ or NH4+ and NO3-, but growth was poor with NO3- alone. Additional observations on the effects of medium components such as various nitrogen sources and levels, sucrose concentration, semisolid supports, type of buffer, borate concentration, activated charcoal, and initial pH that permit optimum maintenance of the PGSPs or foster their continued developmental progression into mature embryos and plantlets are reported. The influence of the pH of the hormone-free medium as a determinant in maintaining cultures as PGSPs or allowing their continued embryonic development are unequivocally demonstrated by gross morphology, scanning electron microscopy, and histological preparations.
Hu, Hao; Liu, Jin-Feng; Li, Cai-Yun; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong
2018-06-01
The increasing usage of partially hydrolyzed polyacrylamide (HPAM) in oilfields as a flooding agent to enhance oil recovery at so large quantities is an ecological hazard to the subsurface ecosystem due to persistence and inertness. Biodegradation of HPAM is a potentially promising strategy for dealing with this problem among many other methods available. To understand the responsible microorganisms and mechanism of HPAM biodegradation under anaerobic conditions, an enrichment culture from production waters of oil reservoirs were established with HPAM as the sole source of carbon and nitrogen incubated for over 328 days, and analyzed using both molecular microbiology and chemical characterization methods. Gel permeation chromatography, High-pressure liquid chromatography and Fourier-transformed infrared spectroscopy results indicated that, after 328 days of anaerobic incubation, some of the amide groups on HPAM were removed and released as ammonia/ammonium and carboxylic groups, while the carbon backbone of HPAM was converted to smaller polymeric fragments, including oligomers and various fatty acids. Based on these results, the biochemical process of anaerobic biodegradation of HPAM was proposed. The phylogenetic analysis of 16S rRNA gene sequences retrieved from the enrichments showed that Proteobacteria and Planctomycetes were the dominant bacteria in the culture with HPAM as the source of carbon and nitrogen, respectively. For archaea, Methanofollis was more abundant in the anaerobic enrichment. These results are helpful for understanding the process of HPAM biodegradation and provide significant insights to the fate of HPAM in subsurface environment and for possible bioremediation.
Huang, Xiangfeng; Mu, Tianshuai; Shen, Changming; Lu, Lijun; Liu, Jia
2016-12-01
Volatile fatty acid (VFA) production stimulated by saponin (SP), an environmentally friendly bio-surfactant, was investigated during sludge alkaline fermentation in laboratory studies and pilot applications. The combined use of SP and pH 9 condition significantly enhanced VFA production to approximately 425 mg COD/g VSS, which was 4.7-fold of raw sludge and 1.5-fold of sole pH 10 adjustment (the optimum pH for alkaline fermentation). Further results indicated that SP & pH 9 condition provided sufficient substrates for acidification and decreased the consumption of VFAs through methanogenesis. Moreover, SP accompanied by moderate alkaline condition (i.e. pH 9) showed weaker inhibitory effects on key enzyme activities and metabolic potential of acidification microorganisms than sole pH 10 adjustment. On this basis, a pilot-scale system involving anaerobic fermentation and anaerobic-anoxic-aerobic step-feed bioreaction tanks was established to study the potential of VFAs as supplementary carbon sources for wastewater treatment. The influent of the pilot system was sanitary wastewater characterized by low C/N ratios from a scenic rural area. After flocculation and nutrient precipitation, the fermentation supernatant was mixed with the influent at a volume ratio of 1:30. With this approach, nitrogen and phosphorus concentrations in effluent fulfilled the first-A wastewater discharge standard in China.
Jiang, Yufeng; Zhang, Baogang; He, Chao; Shi, Jiaxin; Borthwick, Alistair G L; Huang, Xueyang
2018-05-21
Groundwater co-contaminated by vanadium (V) (V(V)) and nitrate requires efficient remediation to prevent adverse environmental impacts. However, little is known about simultaneous bio-reductions of V(V) and nitrate supported by gaseous electron donors in aquifers. This study is among the first to examine microbial V(V) reduction and denitrification with hydrogen as the sole electron donor. V(V) removal efficiency of 91.0 ± 3.2% was achieved in test bioreactors within 7 d, with synchronous, complete removal of nitrate. V(V) was reduced to V(IV), which precipitated naturally under near-neutral conditions, and nitrate tended to be converted to nitrogen, both of which processes helped to purify the groundwater. Volatile fatty acids (VFAs) were produced from hydrogen oxidation. High-throughput 16S rRNA gene sequencing and metagenomic analyses revealed the evolutionary behavior of microbial communities and functional genes. The genera Dechloromonas and Hydrogenophaga promoted bio-reductions of V(V) and nitrate directly coupled to hydrogen oxidation. Enriched Geobacter and denitrifiers also indicated synergistic mechanism, with VFAs acting as organic carbon sources for heterotrophically functional bacteria while reducing V(V) and nitrate. These findings are likely to be useful in revealing biogeochemical fates of V(V) and nitrate in aquifer and developing technology for removing them simultaneously from groundwater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xia, Xinghui; Wu, Qiong; Zhu, Baotong; Zhao, Pujun; Zhang, Shangwei; Yang, Lingyan
2015-08-01
We applied a mixing model based on stable isotopic δ(13)C, δ(15)N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two (210)Pb and (137)Cs dated sediment cores. The results showed that during the past 50years, average contributions of soil and fertilizer, submerged macrophytes, N2-fixing phytoplankton, and non-N2-fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N2-fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N2-fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment. Copyright © 2015 Elsevier B.V. All rights reserved.
Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke
2011-05-27
The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on mycotoxin production by A. alternata. Copyright © 2011 Elsevier B.V. All rights reserved.
Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113
NASA Astrophysics Data System (ADS)
Gavrailov, Simeon; Ivanova, Viara
2016-03-01
The effects of the carbon and nitrogen substrates on the growth of Bacillus sp. SG113 strain were studied. The use of organic nitrogen sources (peptone, beef extract, yeast extract, casein) leads to rapid cellular growth and the best results for the Bacillus strain were obtained with casein hydrolysate. From the inorganic nitrogen sources studied, the (NH4) 2SO4 proved to be the best nitrogen source. Casein hydrolysate and (NH4) 2SO4 stimulated the invertase synthesis. In the presence of Jerusalem artichoke, onion and garlic extracts as carbon sources the strain synthesized from 6 to 10 times more inulinase.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Waiver of debarment for a provider that... HEALTH BENEFITS PROGRAM Administrative Sanctions Imposed Against Health Care Providers Exceptions to the Effect of Debarments § 890.1048 Waiver of debarment for a provider that is the sole source of health care...
Atmospheric Nitrogen Deposition in the Western United States: Sources, Sinks and Changes over Time
NASA Astrophysics Data System (ADS)
Anderson, Sarah Marie
Anthropogenic activities have greatly modified the way nitrogen moves through the atmosphere and terrestrial and aquatic environments. Excess reactive nitrogen generated through fossil fuel combustion, industrial fixation, and intensification of agriculture is not confined to anthropogenic systems but leaks into natural ecosystems with consequences including acidification, eutrophication, and biodiversity loss. A better understanding of where excess nitrogen originates and how that changes over time is crucial to identifying when, where, and to what degree environmental impacts occur. A major route into ecosystems for excess nitrogen is through atmospheric deposition. Excess nitrogen is emitted to the atmosphere where it can be transported great distances before being deposited back to the Earth's surface. Analyzing the composition of atmospheric nitrogen deposition and biological indicators that reflect deposition can provide insight into the emission sources as well as processes and atmospheric chemistry that occur during transport and what drives variation in these sources and processes. Chapter 1 provides a review and proof of concept of lichens to act as biological indicators and how their elemental and stable isotope composition can elucidate variation in amounts and emission sources of nitrogen over space and time. Information on amounts and emission sources of nitrogen deposition helps inform natural resources and land management decisions by helping to identify potentially impacted areas and causes of those impacts. Chapter 2 demonstrates that herbaria lichen specimens and field lichen samples reflect historical changes in atmospheric nitrogen deposition from urban and agricultural sources across the western United States. Nitrogen deposition increases throughout most of the 20 th century because of multiple types of emission sources until the implementation of the Clean Air Act Amendments of 1990 eventually decrease nitrogen deposition around the turn of the 21st century. Chapter 3 focuses on how nitrogen emissions and subsequent deposition are affected by processes and chemistry during atmospheric transport through analysis of the oxygen isotope composition of nitrate in wet deposition. Local emission sources drive spatial variation, changes in solar radiation drive seasonal variation, and variability in atmospheric conditions and transport drive interannual variation in the processes and chemistry occurring during atmospheric transport of reactive nitrogen.
Liu, Fupin; Guan, Jian; Wei, Tao; Wang, Song; Jiao, Mingzhi; Yang, Shangfeng
2013-04-01
A series of nitrogen-containing inorganic solid compounds with variable oxidation states of nitrogen and counter ions have been successfully applied as new inorganic solid nitrogen sources toward the synthesis of Sc-based metal nitride clusterfullerenes (Sc-NCFs), including ammonium salts [(NH4)xH(3-x)PO4 (x = 0-2), (NH4)2SO4, (NH4)2CO3, NH4X (X = F, Cl), NH4SCN], thiocyanate (KSCN), nitrates (Cu(NO3)2, NaNO3), and nitrite (NaNO2). Among them, ammonium phosphates ((NH4)xH(3-x)PO4, x = 1-3) and ammonium thiocyanate (NH4SCN) are revealed to behave as better nitrogen sources than others, and the highest yield of Sc-NCFs is achieved when NH4SCN was used as a nitrogen source. The optimum molar ratio of Sc2O3:(NH4)3PO4·3H2O:C and Sc2O3:NH4SCN:C has been determined to be 1:2:15 and 1:3:15, respectively. The thermal decomposition products of these 12 inorganic compounds have been discussed in order to understand their different performances toward the synthesis of Sc-NCFs, and accordingly the dependence of the production yield of Sc-NCFs on the oxidation state of nitrogen and counter ion is interpreted. The yield of Sc3N@C80 (I(h) + D(5h)) per gram Sc2O3 by using the N2-based group of nitrogen sources (thiocyanate, nitrates, and nitrite) is overall much lower than those by using gaseous N2 and NH4SCN, indicating the strong dependence of the yield of Sc-NCFs on the oxidation state of nitrogen, which is attributed to the "in-situ" redox reaction taking place for the N2-based group of nitrogen sources during discharging. For NH3-based group of nitrogen sources (ammonium salts) which exhibits a (-3) oxidation states of nitrogen, their performance as nitrogen sources is found to be sensitively dependent on the anion, and this is understood by considering their difference on the thermal stability and/or decomposition rate. Contrarily, for the N2-based group of nitrogen sources, the formation of Sc-NCFs is independent to both the oxidation state of nitrogen (+3 or +5) and the cation.
Wang, Mei-Zhen; Lai, Bai-Min; Dandekar, Ajai A; Yang, Yu-Sheng; Li, Na; Yin, Jun; Shen, Dong-Sheng
2017-08-15
Pseudomonas aeruginosa SD-1 is efficient at degrading aromatic compounds and can therefore contribute to the bioremediation of wastewater. P. aeruginosa uses quorum sensing (QS) to regulate the production of numerous secreted "public goods." In wastewater bioaugmentation applications, there are myriad nitrogen sources, and we queried whether various nitrogen sources impact the stabilities of both QS and the bacterial populations. In a laboratory strain of P. aeruginosa , PAO1, the absence of a nitrogen source has been shown to destabilize these populations through the emergence of QS mutant "cheaters." We tested the ability of SD-1 to grow in casein broth, a condition that requires QS for growth, when the nitrogen source with either NH 4 Cl, NaNO 3 , or NaNO 2 or with no added nitrogen source. There was great variability in susceptibility to invasion by QS mutant cheaters and, by extension, the stability of the SD-1 population. When grown with NH 4 Cl as an extra nitrogen source, no population collapse was observed; by contrast, two-thirds of cultures grown in the presence of NaNO 2 collapsed. In the populations that collapsed, the frequency of social cheaters exceeded 40%. NaNO 3 and NaNO 2 directly favor QS mutants of P. aeruginosa SD-1. Although the mechanism by which these nitrogen sources act is not clear, these data indicate that the metabolism of nitrogen can affect the stability of bacterial populations, an important observation for continuing industrial applications with this species. IMPORTANCE Bioaugmentation as a method to help remediate wastewater pollutant streams holds significant potential to enhance traditional methods of treatment. Addition of microbes that can catabolize organic pollutants can be an effective method to remove several toxic compounds. Such bioaugmented strains of bacteria have been shown to be susceptible to competition from the microbiota that are present in wastewater streams, limiting their potential effectiveness. Here, we show that bioaugmentation strains of bacteria might also be susceptible to invasion by social cheaters and that the nitrogen sources available in the wastewater might influence the ability of cheaters to overtake the bioaugmentation strains. Our results imply that control over the nitrogen sources in a wastewater stream or selective addition of certain nitrogen sources could help stabilize bioaugmentation strains of bacteria. Copyright © 2017 American Society for Microbiology.
Volk, J.A.; Scudlark, J.R.; Savidge, K.B.; Andres, A.S.; Stenger, R.J.; Ullman, W.J.
2012-01-01
Monthly phosphorus loads from uplands, atmospheric deposition, and wastewater to Rehoboth Bay (Delaware) were determined from October 1998 to April 2002 to evaluate the relative importance of these three sources of P to the Bay. Loads from a representative subwatershed were determined and used in an areal extrapolation to estimate the upland load from the entire watershed. Soluble reactive phosphorus (SRP) and dissolved organic P (DOP) are the predominant forms of P in baseflow and P loads from the watershed are highest during the summer months. Particulate phosphorus (PP) becomes more significant in stormflow and during periods with more frequent or larger storms. Atmospheric deposition of P is only a minor source of P to Rehoboth Bay. During the period of 1998-2002, wastewater was the dominant external source of P to Rehoboth Bay, often exceeding all other P sources combined. Since 2002, however, due to technical improvements to the sole wastewater plant discharging directly to the Bay, the wastewater contribution of P has been significantly reduced and upland waters are now the principal source of P on an annualized basis. Based on comparison of N and P loads, primary productivity and biomass carrying capacity in Rehoboth Bay should be limited by P availability. However, due to the contrasting spatial and temporal patterns of N and P loading and perhaps internal cycling within the ecosystem, spatial and temporal variations in N and P-limitation within Rehoboth Bay are likely. ?? 2011 Elsevier Ltd.
Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z
2015-10-01
The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Leonhartsberger, S; Lafferty, R M; Korneti, L
1993-09-01
Optimal conditions for both biomass formation and penicillin synthesis by a strain of Penicillium chrysogenum were determined when using a collagen-derived nitrogen source. Preliminary investigations were carried out in shaken flask cultures employing a planned experimental program termed the Graeco-Latin square technique (Auden et al., 1967). It was initially determined that up to 30% of a conventional complex nitrogen source such as cottonseed meal could be replaced by the collagen-derived nitrogen source without decreasing the productivity with respect to the penicillin yield. In the pilot scale experiments using a 30 l stirred tank type of bioreactor, higher penicillin yields were obtained when 70% of the conventional complex nitrogen source in the form of cottonseed meal was replaced by the collagen hydrolysate. Furthermore, the maximum rate of penicillin synthesis continued for over a longer period when using collagen hydrolysate as a complex nitrogen source. Penicillin synthesis rates were determined using a linear regression.
Aerobic Biodegradation of N-Nitrosodimethylamine by the Propanotroph Rhodococcus ruber ENV425▿
Fournier, Diane; Hawari, Jalal; Halasz, Annamaria; Streger, Sheryl H.; McClay, Kevin R.; Masuda, Hisako; Hatzinger, Paul B.
2009-01-01
The propanotroph Rhodococcus ruber ENV425 was observed to rapidly biodegrade N-nitrosodimethylamine (NDMA) after growth on propane, tryptic soy broth, or glucose. The key degradation intermediates were methylamine, nitric oxide, nitrite, nitrate, and formate. Small quantities of formaldehyde and dimethylamine were also detected. A denitrosation reaction, initiated by hydrogen atom abstraction from one of the two methyl groups, is hypothesized to result in the formation of n-methylformaldimine and nitric oxide, the former of which decomposes in water to methylamine and formaldehyde and the latter of which is then oxidized further to nitrite and then nitrate. Although the strain mineralized more than 60% of the carbon in [14C]NDMA to 14CO2, growth of strain ENV425 on NDMA as a sole carbon and energy source could not be confirmed. The bacterium was capable of utilizing NDMA, as well as the degradation intermediates methylamine and nitrate, as sources of nitrogen during growth on propane. In addition, ENV425 reduced environmentally relevant microgram/liter concentrations of NDMA to <2 ng/liter in batch cultures, suggesting that the bacterium may have applications for groundwater remediation. PMID:19542346
A review of plastic waste biodegradation.
Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S
2005-01-01
With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.
Gertler, Christoph; Bargiela, Rafael; Mapelli, Francesca; Han, Xifang; Chen, Jianwei; Hai, Tran; Amer, Ranya A; Mahjoubi, Mouna; Malkawi, Hanan; Magagnini, Mirko; Cherif, Ameur; Abdel-Fattah, Yasser R; Kalogerakis, Nicolas; Daffonchio, Daniele; Ferrer, Manuel; Golyshin, Peter N
2015-10-01
Uric acid is a promising hydrophobic nitrogen source for biostimulation of microbial activities in oil-impacted marine environments. This study investigated metabolic processes and microbial community changes in a series of microcosms using sediment from the Mediterranean and the Red Sea amended with ammonium and uric acid. Respiration, emulsification, ammonium and protein concentration measurements suggested a rapid production of ammonium from uric acid accompanied by the development of microbial communities containing hydrocarbonoclastic bacteria after 3 weeks of incubation. About 80 % of uric acid was converted to ammonium within the first few days of the experiment. Microbial population dynamics were investigated by Ribosomal Intergenic Spacer Analysis and Illumina sequencing as well as by culture-based techniques. Resulting data indicated that strains related to Halomonas spp. converted uric acid into ammonium, which stimulated growth of microbial consortia dominated by Alcanivorax spp. and Pseudomonas spp. Several strains of Halomonas spp. were isolated on uric acid as the sole carbon source showed location specificity. These results point towards a possible role of halomonads in the conversion of uric acid to ammonium utilized by hydrocarbonoclastic bacteria.
NASA Astrophysics Data System (ADS)
Alam, Md Jahangir; Goodall, Jonathan L.
2012-04-01
The goal of this research was to quantify the relative impact of hydrologic and nitrogen source changes on incremental nitrogen yield in the contiguous United States. Using nitrogen source estimates from various federal data bases, remotely sensed land use data from the National Land Cover Data program, and observed instream loadings from the United States Geological Survey National Stream Quality Accounting Network program, we calibrated and applied the spatially referenced regression model SPARROW to estimate incremental nitrogen yield for the contiguous United States. We ran different model scenarios to separate the effects of changes in source contributions from hydrologic changes for the years 1992 and 2001, assuming that only state conditions changed and that model coefficients describing the stream water-quality response to changes in state conditions remained constant between 1992 and 2001. Model results show a decrease of 8.2% in the median incremental nitrogen yield over the period of analysis with the vast majority of this decrease due to changes in hydrologic conditions rather than decreases in nitrogen sources. For example, when we changed the 1992 version of the model to have nitrogen source data from 2001, the model results showed only a small increase in median incremental nitrogen yield (0.12%). However, when we changed the 1992 version of the model to have hydrologic conditions from 2001, model results showed a decrease of approximately 8.7% in median incremental nitrogen yield. We did, however, find notable differences in incremental yield estimates for different sources of nitrogen after controlling for hydrologic changes, particularly for population related sources. For example, the median incremental yield for population related sources increased by 8.4% after controlling for hydrologic changes. This is in contrast to a 2.8% decrease in population related sources when hydrologic changes are included in the analysis. Likewise we found that median incremental yield from urban watersheds increased by 6.8% after controlling for hydrologic changes—in contrast to the median incremental nitrogen yield from cropland watersheds, which decreased by 2.1% over the same time period. These results suggest that, after accounting for hydrologic changes, population related sources became a more significant contributor of nitrogen yield to streams in the contiguous United States over the period of analysis. However, this study was not able to account for the influence of human management practices such as improvements in wastewater treatment plants or Best Management Practices that likely improved water quality, due to a lack of data for quantifying the impact of these practices for the study area.
Intelligence Sharing in Counterproliferation
2007-09-01
Claims Alleged Mobile WMD Plants Solely for ‘ Agrochemicals ,” Spiegel Online, Hamburg, Germany. Translated by OpenSource.gov https...Knauer, Sebastian. "German Site Claims Alleged Mobile WMD Plants Solely for Agrochemicals ." Spiegel Online. https://www.opensource.gov (accessed June
NASA Astrophysics Data System (ADS)
Wu, Yunchao; Zhang, Jingping; Liu, Songlin; Jiang, Zhijian; Arbi, Iman; Huang, Xiaoping; Macreadie, Peter Ian
2018-06-01
Daya Bay in the South China Sea (SCS) has experienced rapid nitrogen pollution and intensified eutrophication in the past decade due to economic development. Here, we estimated the deposition fluxes of nitrogenous species, clarified the contribution of nitrogen from precipitation and measured ions and isotopic composition (δ15N and δ18O) of nitrate in precipitation in one year period to trace its sources and formation processes among different seasons. We found that the deposition fluxes of total dissolved nitrogen (TDN), NO3-, NH4+, NO2-, and dissolved organic nitrogen (DON) to Daya Bay were 132.5, 64.4 17.5, 1.0, 49.6 mmol m-2•yr-1, respectively. DON was a significant contributor to nitrogen deposition (37% of TDN), and NO3- accounted for 78% of the DIN in precipitation. The nitrogen deposition fluxes were higher in spring and summer, and lower in winter. Nitrogen from precipitation contributed nearly 38% of the total input of nitrogen (point sources input and dry and wet deposition) in Daya Bay. The δ15N-NO3- abundance, ion compositions, and air mass backward trajectories implicated that coal combustion, vehicle exhausts, and dust from mainland China delivered by northeast monsoon were the main sources in winter, while fossil fuel combustion (coal combustion and vehicle exhausts) and dust from PRD and southeast Asia transported by southwest monsoon were the main sources in spring; marine sources, vehicle exhausts and lightning could be the potential sources in summer. δ18O results showed that OH pathway was dominant in the chemical formation process of nitrate in summer, while N2O5+ DMS/HC pathways in winter and spring.
Jiaxi Wang; Guolei Li; Jeremiah R. Pinto; Jiajia Liu; Wenhui Shi; Yong Liu
2015-01-01
Optimum fertilization levels are often determined solely from nursery growth responses. However, it is the performance of the seedling on the outplanting site that is the most important. For Pinus species seedlings, little information is known about the field performance of plants cultured with different nutrient rates, especially with exponential fertilization. In...
Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing
2016-01-01
The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657
NASA Astrophysics Data System (ADS)
Zhang, Zhaoguo; Huang, Zhengfeng; Cheng, Xudong; Wang, Qingli; Chen, Yi; Dong, Peimei; Zhang, Xiwen
2015-11-01
The influence of nitrogen-source on the photocatalytic properties of nitrogen-doped titanium dioxide is herein first investigated from the perspective of the chemical bond form of the nitrogen element in the nitrogen-source. The definitive role of groups such as Nsbnd N from the nitrogen-source on the surface of as-prepared samples in the selectivity of the dominant product of photocatalytic reduction is demonstrated. Well-crystallized one-dimensional Nsbnd TiO2 nanorod arrays with a preferred orientation of the rutile (3 1 0) facet are manufactured via a hydrothermal treatment using hydrazine and ammonia variously as the source of nitrogen. Significant selectivity of the dominant reduced products has been exhibited for Nsbnd TiO2 prepared from different nitrogen-sources in carbon dioxide photocatalytic reduction under visible light illumination. CH4 is the main product with N2H4-doped Nsbnd TiO2, while CO is the main product with NH3-doped Nsbnd TiO2, which can be attributed to the existence of the reducing Nsbnd N groups in the N2H4-doped Nsbnd TiO2 surfaces after the hydrothermal treatment. Compared with the approaches previously reported, the facile one-step route utilized here accomplishes the fabrication of Nsbnd TiO2 possessing visible-light activity and attainment of selectivity of dominant photocatalytic reduction product simultaneously by choosing a nitrogen-source with appropriate chemical bond form, which provides a completely new approach to understanding the effects of doping treatment on photocatalytic properties.
40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...
40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...
40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...
40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...
40 CFR Table 9 to Subpart Uuuu of... - Recordkeeping Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... process affected source records of nitrogen unloading and storage systems or nitrogen unloading systems records certifying that a nitrogen unloading and storage system or nitrogen unloading system is in use. 9. an existing or new viscose process affected source records of material balances all pertinent data...
RIBBED MUSSEL NITROGEN ISOTOPE SIGNATURES REFLECT NITROGEN SOURCES IN COASTAL MARSHES
The stable nitrogen isotope ratio in tissue of the ribbed mussel (Geukensia demissa) was investigated as an indicator of the source of nitrogen inputs to coastal salt marshes. Initially, mussels were fed a diet of 15N-enriched algae in the laboratory to determine how the tissue n...
'Trophic' and 'source' amino acids in trophic estimation: a likely metabolic explanation.
O'Connell, T C
2017-06-01
Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual's 'trophic' and 'source' amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in 'trophic' and 'source' amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the 'trophic'/'source' groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. 'Trophic' amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and 'source' amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of 'trophic' amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of 'source' amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for 'trophic discrimination factors' is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.
The Extent of Denitrification in Long Island Groundwater using MIMS
NASA Astrophysics Data System (ADS)
Young, C.; Hanson, G. N.; Kroeger, K. D.
2009-12-01
Long Island drinking water is provided by a sole source aquifer with nitrate levels in some North Shore communities approaching or exceeding the drinking water standard of 10 mgL-1. Previous workers, using mass balance approaches, suggested that the primary source of nitrogen is sewage effluent and observed a 50% deficit of nitrate in Long Island’s groundwater system. We analyzed dissolved N2/Ar ratios in groundwater from wells to determine if groundwater denitrification is the cause of the nitrogen deficit at two locations where septic tanks are used for sewage treatment and the effluent leaches to the groundwater; a suburban community on the north shore of Long Island (Northport, NY) and parkland on a barrier island at the south shore of Long Island (Watch Hill, Fire Island National Seashore). In Northport we found 0 to 20 % of the nitrate in groundwater denitrified with excess N-NO3- concentrations ranging from 0 to 1.5 mgL-1. These samples had concentrations high in dissolved oxygen (DO), 6 to 11 mgL-1, and low in dissolved organic carbon (DOC), 0.4 to 2.8 mgL-1. At Watch Hill nitrogen is primarily retained as ammonium or dissolved organic nitrogen. Where nitrate is formed, we found up to 99% denitrification. Excess N-NO3- ranged from 0 to 8 mgL-1 with concentrations low in DO, 0.3 to 3.4 mgL-1, and high in DOC, 5.3 to 18.4 mgL-1. The vadose zone in the Northport area has an average thickness of 10-100 feet whereas at Watch Hill it is 1 - 2 feet thick. We hypothesize that the vadose zone thickness affects the extent of denitrification by controlling the amount of DOC and DO that reaches the groundwater. A thick vadose zone allows for more extensive interaction of infiltrating sewage effluent with atmospheric oxygen in the vadose zone which oxidizes DOC. In Northport groundwater has high DO, low DOC and essentially no denitrification leaving 2 to 11 mgL-1 N-NO3- remaining. At the Watch Hill site a thin vadose zone below the sewage leach field provides anaerobic conditions under which DOC is recharged with the sewage to the groundwater. Under these conditions any nitrate in the groundwater is denitrified and the groundwater has less than 0.01 mgL-1 nitrate remaining.
NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1.
Chou, M; Matsunaga, T; Takada, Y; Fukunaga, N
1999-05-01
NH4(+) transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3+) into the intact cells. 14CH3NH3+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3+ completely inhibited 14CH3NH3+ uptake. These results indicate that 14CH3NH3+ uptake in this bacterium is mediated via an NH4+ transport system and not by a specific carrier for CH3NH3+. The respiratory substrate succinate was required to drive 14CH3NH3+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3+ uptake. The 14CH3NH3+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0 degrees and 15 degrees C, and the apparent Km value for CH3NH3+ of the uptake did not change significantly over the temperature range from 0 degrees to 25 degrees C. Thus, the NH4+ transport system of this bacterium was highly active at low temperatures.
Linkage of the Nit1C gene cluster to bacterial cyanide assimilation as a nitrogen source.
Jones, Lauren B; Ghosh, Pallab; Lee, Jung-Hyun; Chou, Chia-Ni; Kunz, Daniel A
2018-05-21
A genetic linkage between a conserved gene cluster (Nit1C) and the ability of bacteria to utilize cyanide as the sole nitrogen source was demonstrated for nine different bacterial species. These included three strains whose cyanide nutritional ability has formerly been documented (Pseudomonas fluorescens Pf11764, Pseudomonas putida BCN3 and Klebsiella pneumoniae BCN33), and six not previously known to have this ability [Burkholderia (Paraburkholderia) xenovorans LB400, Paraburkholderia phymatum STM815, Paraburkholderia phytofirmans PsJN, Cupriavidus (Ralstonia) eutropha H16, Gluconoacetobacter diazotrophicus PA1 5 and Methylobacterium extorquens AM1]. For all bacteria, growth on or exposure to cyanide led to the induction of the canonical nitrilase (NitC) linked to the gene cluster, and in the case of Pf11764 in particular, transcript levels of cluster genes (nitBCDEFGH) were raised, and a nitC knock-out mutant failed to grow. Further studies demonstrated that the highly conserved nitB gene product was also significantly elevated. Collectively, these findings provide strong evidence for a genetic linkage between Nit1C and bacterial growth on cyanide, supporting use of the term cyanotrophy in describing what may represent a new nutritional paradigm in microbiology. A broader search of Nit1C genes in presently available genomes revealed its presence in 270 different bacteria, all contained within the domain Bacteria, including Gram-positive Firmicutes and Actinobacteria, and Gram-negative Proteobacteria and Cyanobacteria. Absence of the cluster in the Archaea is congruent with events that may have led to the inception of Nit1C occurring coincidentally with the first appearance of cyanogenic species on Earth, dating back 400-500 million years.
NASA Astrophysics Data System (ADS)
Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin
2013-04-01
The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords:Chemical fertilizer, Nitrogen, Phosphorus, Paddy field, Non-point source pollution.
Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests
NASA Astrophysics Data System (ADS)
Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.
2015-12-01
Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric calcium helps explain reports of greater ecological calcium limitation in an increasingly nitrogen-rich world.
Dry deposition is a major component of total nitrogen deposition and thus an important source of bioavailable nitrogen to ecosystems. However, relative to wet deposition, less is known regarding the sources and spatial variability of dry deposition. This is in part due to diffi...
NASA Astrophysics Data System (ADS)
Tan, J. P.; Jahim, J. M.; Wu, T. Y.; Harun, S.; Mumtaz, T.
2016-06-01
Expensive raw materials are the driving force that leads to the shifting of the petroleum-based succinic acid production into bio-based succinic acid production by microorganisms. Cost of fermentation medium is among the main factors contributing to the total production cost of bio-succinic acid. After carbon source, nitrogen source is the second largest component of the fermentation medium, the cost of which has been overlooked for the past years. The current study aimed at replacing yeast extract- a costly nitrogen source with corn steep liquor for economical production of bio-succinic acid by Actinobacillus succinogenes 130Z. In this study, a final succinic acid concentration of 20.6 g/L was obtained from the use of corn steep liquor as the nitrogen source, which was comparable with the use of yeast extract as the nitrogen source that had a final succinate concentration of 21.4 g/l. In terms of economical wise, corn steep liquor was priced at 200 /ton, which was one fifth of the cost of yeast extract at 1000 /ton. Therefore, corn steep liquor can be considered as a potential nitrogen source in biochemical industries instead of the costly yeast extract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorio, H.; Bibeau, L.; Heitz, M.
2000-05-01
The biofiltration process is a promising technology for the treatment of dilute styrene emissions in air. The efficiency of this process is however strongly dependent upon various operational parameters such as the filter bed characteristics, nutrient supplies, input contaminant concentrations, and gas flow rates. The biofiltration of air containing styrene vapors was therefore investigated, employing a novel biomass filter material, in two identical but separate laboratory scale biofiltration units (units 1 and 2), both biofilters being initially inoculated with a microbial consortium. Each biofilter was irrigated with a nutrient solution supplying nitrogen in one of two forms; i.e., mainly asmore » ammonia for unit 1 and exclusively as nitrate for unit 2. The experimental results have revealed that greater styrene elimination rates are achieved in the biofilter supplied with ammonia as the major nitrogen source in comparison to the lesser elimination performance obtained with the nitrate provided biofilter. However, in achieving the high styrene removal rates in the ammonia supplied biofilter, the excess of biomass accumulates on the filtering pellets and causes progressive clogging of the filter media. Furthermore, the effectiveness of nitrate supply as the sole nitrogen nutrient form, on reducing or controlling the biomass accumulation in the filter media in comparison to ammonia, could not be satisfactorily demonstrated because the two biofilters operated with very different styrene elimination capacities. The monitoring of the carbon dioxide concentration profile through both biofilters revealed that the ratio of carbon dioxide produced to the styrene removed was approximately 3/1, which confirms the complete biodegradation of removed styrene, given that some of the organic carbon consumed is also used for the microbial growth. The effects of the most important design parameters, namely styrene input concentrations and gas flow rates, were investigated for each nutrient solution.« less
NASA Astrophysics Data System (ADS)
Ueda, M.; Silva, C.; Santos, N. M.; Souza, G. B.
2017-10-01
There is a strong need for developing methods to coat or implant ions inside metallic tubes for many practical contemporary applications, both for industry and science. Therefore, stainless steel tubes with practical diameters of 4, 11 and 16 cm, but short lengths of 20 cm, were internally treated by nitrogen plasma immersion ion implantation (PIII). Different configurations as tube with lid in one of the ends or both sides open were tested for better PIII performance, in the case of smallest diameter tube. Among these PIII tests in tubes, using the 4 cm diameter one with a lid, it was possible to achieve tube temperatures of more than 700 °C in 15 min and maintain it during the whole treatment time (typically 2 h). Samples made of different materials were placed at the interior of the tube, as the monitors for posterior analysis, and the tube was solely pulsed by high voltage pulser producing high voltage glow discharge and hollow cathode discharge both driven by a moderate power source. In this experiment, samples of SS 304, pure Ti, Ti6Al4V and Si were used for the tests of the above methods. Results on the analysis of the surface of these nitrogen PIII treated materials, as well as on their processing methods, are presented and discussed in the paper.
Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane II
The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been themore » focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.« less
Bartholomew, B A; Smith, M J; Trudgill, P W; Hopper, D J
1996-09-01
Pseudomonas strain AT3, isolated by elective culture with atropine, hydrolyzed atropine and grew diauxically, first on the tropic acid and then on the tropine. Tropine was also used as a sole carbon and energy source. The methyl group of tropine was eliminated as formaldehyde, and the nortropine thus formed was a precursor of 6-hydroxycyclohepta-1,4-dione. Ammonia was detected as a product of nitrogen elimination. 6-Hydroxycyclohepta-1,4-dione was oxidized to cyclohepta-1,3,5-trione by an induced NAD(sup+)-specific dehydrogenase. Although cyclohepta-1,3,5-trione is a (beta)-diketone with two potential hydrolytic cleavage sites, an induced hydrolase was specific for one of these sites, with 4,6-dioxoheptanoate as the only hydrolysis product. Unlike the alternative cleavage product (3,6-dioxoheptanoate), this compound is also a (beta)-diketone, and a second hydrolytic cleavage formed succinate and acetone. Although Pseudomonas strain AT3 was not capable of growth with acetone, the compound was not detected in the culture medium and may have been lost to the atmosphere. Exhaustive experimentation with a wide range of conditions did not result in detection of the enzymes required for cleavage of the carbon-nitrogen bonds leading to the formation of nortropine and 6-hydroxycyclohepta-1,4-dione.
Bartholomew, B. A.; Smith, M. J.; Trudgill, P. W.; Hopper, D. J.
1996-01-01
Pseudomonas strain AT3, isolated by elective culture with atropine, hydrolyzed atropine and grew diauxically, first on the tropic acid and then on the tropine. Tropine was also used as a sole carbon and energy source. The methyl group of tropine was eliminated as formaldehyde, and the nortropine thus formed was a precursor of 6-hydroxycyclohepta-1,4-dione. Ammonia was detected as a product of nitrogen elimination. 6-Hydroxycyclohepta-1,4-dione was oxidized to cyclohepta-1,3,5-trione by an induced NAD(sup+)-specific dehydrogenase. Although cyclohepta-1,3,5-trione is a (beta)-diketone with two potential hydrolytic cleavage sites, an induced hydrolase was specific for one of these sites, with 4,6-dioxoheptanoate as the only hydrolysis product. Unlike the alternative cleavage product (3,6-dioxoheptanoate), this compound is also a (beta)-diketone, and a second hydrolytic cleavage formed succinate and acetone. Although Pseudomonas strain AT3 was not capable of growth with acetone, the compound was not detected in the culture medium and may have been lost to the atmosphere. Exhaustive experimentation with a wide range of conditions did not result in detection of the enzymes required for cleavage of the carbon-nitrogen bonds leading to the formation of nortropine and 6-hydroxycyclohepta-1,4-dione. PMID:16535398
Chitinase activity of Pseudomonas stutzeri PT5 in different fermentation condition
NASA Astrophysics Data System (ADS)
Chalidah, N.; Khotimah, I. N.; Hakim, A. R.; Meata, B. A.; Puspita, I. D.; Nugraheni, P. S.; Ustadi; Pudjiraharti, S.
2018-03-01
This study aimed to determine the incubation condition of Pseudomonas stutzeri PT5 in producing chitin degrading enzyme in various pH and temperatures; to compare the production of chitin degrading enzyme in chitin medium supplemented with additional nitrogen, carbon and a mixture of nitrogen and carbon sources and to observe the production of chitin degrading enzyme in 250 mL-shake flasks and 2 L-fermentor. The parameters tested during production were chitinase activity (U·mL-1) of culture supernatant and N-acetylglucosamine concentration (μg·mL-1) in the medium. The results showed that Pseudomonas stutzeri PT5 was able to produce the highest chitinase activity at pH 6 and temperature of 37 °C (0.024 U·mL-1). The addition of 0.1 % of ammonium phosphate and 0.1 % of maltose, increased the chitinase activity of Pseudomonas stutzeri PT5 by 3.24 and 8.08 folds, respectively, compared to the control. The addition of 0.1 % ammonium phosphate and 0.1 % maltose mixture to chitin medium resulted in the shorter time of chitinase production compared to the addition of sole nutrition. The production of chitinase using 2 L-fermentor shows that the highest chitinase activity produced by Pseudomonas stutzeri PT5 was reached at 1-day incubation (0.0283 U·mL-1), which was shorter than in 250 mL-shake flasks.
Dorado, M Pilar; Lin, Sze Ki Carol; Koutinas, Apostolis; Du, Chenyu; Wang, Ruohang; Webb, Colin
2009-08-10
A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.
Wang, San-Lang; Wu, Pei-Chen; Liang, Tzu-Wen
2009-05-26
We have developed a culture system for efficient production of chitosanase by Bacillus sp. TKU004. TKU004 was cultivated by using squid pen powder as the sole carbon/nitrogen source. The effects of autoclave treatments of the medium on the production of chitosanase were investigated. Autoclave treatment of squid pen powder for 45 min remarkably promoted enzyme productivity. When the culture medium containing an initial squid pen powder concentration of 3% was autoclaved for 45 min, the chitosanase activity was optimal and reached 0.14-0.16 U/mL. In addition, extracellular surfactant-stable chitosanase was purified from the TKU004 culture supernatant. The antioxidant activity of TKU004 culture supernatant was determined through the scavenging ability of DPPH, with 70% per mL. With this method, we have shown that marine wastes can be utilized efficiently through prolonged autoclave treatments to generate a high value-added product, and have revealed its hidden potential in the production of functional foods.
Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceja-Navarro, Javier A.; Vega, Fernando E.; Karaoz, Ulas
Here we report that the coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Furthermore, we show that caffeine is degraded in the gut of H. hampei, and that experimental inactivation of the gut microbiota eliminates this activity. We also demonstrate that gut microbiota in H. hampei specimens from seven major coffee-producing countries and laboratory-reared colonies share a core of microorganisms. Globally ubiquitousmore » members of the gut microbiota, including prominent Pseudomonas species, subsist on caffeine as a sole source of carbon and nitrogen. In conclusion, pseudomonas caffeine demethylase genes are expressed in vivo in the gut of H. hampei, and re-inoculation of antibiotic-treated insects with an isolated Pseudomonas strain reinstates caffeine-degradation ability confirming their key role.« less
Schenzle, Andreas; Lenke, Hiltrud; Spain, Jim C.; Knackmuss, Hans-Joachim
1999-01-01
Ralstonia eutropha JMP134 utilizes 2-chloro-5-nitrophenol as a sole source of nitrogen, carbon, and energy. The initial steps for degradation of 2-chloro-5-nitrophenol are analogous to those of 3-nitrophenol degradation in R. eutropha JMP134. 2-Chloro-5-nitrophenol is initially reduced to 2-chloro-5-hydroxylaminophenol, which is subject to an enzymatic Bamberger rearrangement yielding 2-amino-5-chlorohydroquinone. The chlorine of 2-amino-5-chlorohydroquinone is removed by a reductive mechanism, and aminohydroquinone is formed. 2-Chloro-5-nitrophenol and 3-nitrophenol induce the expression of 3-nitrophenol nitroreductase, of 3-hydroxylaminophenol mutase, and of the dechlorinating activity. 3-Nitrophenol nitroreductase catalyzes chemoselective reduction of aromatic nitro groups to hydroxylamino groups in the presence of NADPH. 3-Nitrophenol nitroreductase is active with a variety of mono-, di-, and trinitroaromatic compounds, demonstrating a relaxed substrate specificity of the enzyme. Nitrosobenzene serves as a substrate for the enzyme and is converted faster than nitrobenzene. PMID:10347008
A New 4-Nitrotoluene Degradation Pathway in a Mycobacterium Strain
Spiess, Tilmann; Desiere, Frank; Fischer, Peter; Spain, Jim C.; Knackmuss, Hans-Joachim; Lenke, Hiltrud
1998-01-01
Mycobacterium sp. strain HL 4-NT-1, isolated from a mixed soil sample from the Stuttgart area, utilized 4-nitrotoluene as the sole source of nitrogen, carbon, and energy. Under aerobic conditions, resting cells of the Mycobacterium strain metabolized 4-nitrotoluene with concomitant release of small amounts of ammonia; under anaerobic conditions, 4-nitrotoluene was completely converted to 6-amino-m-cresol. 4-Hydroxylaminotoluene was converted to 6-amino-m-cresol by cell extracts and thus could be confirmed as the initial metabolite in the degradative pathway. This enzymatic equivalent to the acid-catalyzed Bamberger rearrangement requires neither cofactors nor oxygen. In the same crucial enzymatic step, the homologous substrate hydroxylaminobenzene was rearranged to 2-aminophenol. Abiotic oxidative dimerization of 6-amino-m-cresol, observed during growth of the Mycobacterium strain, yielded a yellow dihydrophenoxazinone. Another yellow metabolite (λmax, 385 nm) was tentatively identified as 2-amino-5-methylmuconic semialdehyde, formed from 6-amino-m-cresol by meta ring cleavage. PMID:9464378
Tork, Sanaa E; Aly, Magda M; Alakilli, Saleha Y; Al-Seeni, Madeha N
2015-03-01
γ-poly glutamic acid (γ-PGA) has received considerable attention for pharmaceutical and biomedical applications. γ-PGA from the newly isolate Bacillus licheniformis NRC20 was purified and characterized using diffusion distance agar plate, mass spectrometry and thin layer chromatography. All analysis indicated that γ-PGA is a homopolymer composed of glutamic acid. Its molecular weight was determined to be 1266 kDa. It was composed of L- and D-glutamic acid residues. An amplicon of 3050 represents the γ-PGA-coding genes was obtained, sequenced and submitted in genbank database. Its amino acid sequence showed high similarity with that obtained from B. licheniformis strains. The bacterium NRC 20 was independent of L-glutamic acid but the polymer production enhanced when cultivated in medium containing L-glutamic acid as the sole nitrogen source. Finally we can conclude that γ-PGA production from B. licheniformis NRC20 has many promised applications in medicine, industry and nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.
Leguminose green juice as an efficient nutrient for l(+)-lactic acid production.
Dietz, Donna; Schneider, Roland; Papendiek, Franka; Venus, Joachim
2016-10-20
Lactic acid is one of the most important building blocks for the production of bioplastic. Many investigations have been conducted to reduce the lactic acid production costs. In this work, the focus was put on the application of legume pressed juice or green juice as nutrient source. The pressed juice was utilized directly without prior pre-treatment and sterilization. Using two different alfalfa green juices and a clover green juice from two different harvest years as sole nutrients, non-sterile fermentations were performed at 52°C and pH 6.0 with a thermotolerant strain Bacillus coagulans AT107. The results showed that alfalfa green juices generally were more suitable for high lactic acid production than clover green juices, presumably due to the higher nitrogen content. A final titer of 98.8g/L after 30h with l(+)-lactic acid purity of >99% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.
Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores
2018-01-01
Abstract Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed. PMID:29438505
Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores
2018-03-01
Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed.
Lee, Sang-Yeop; Kim, Gun-Hwa; Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il
2016-01-01
Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX.
Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il
2016-01-01
Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467
Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee
Ceja-Navarro, Javier A.; Vega, Fernando E.; Karaoz, Ulas; ...
2015-07-14
Here we report that the coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Furthermore, we show that caffeine is degraded in the gut of H. hampei, and that experimental inactivation of the gut microbiota eliminates this activity. We also demonstrate that gut microbiota in H. hampei specimens from seven major coffee-producing countries and laboratory-reared colonies share a core of microorganisms. Globally ubiquitousmore » members of the gut microbiota, including prominent Pseudomonas species, subsist on caffeine as a sole source of carbon and nitrogen. In conclusion, pseudomonas caffeine demethylase genes are expressed in vivo in the gut of H. hampei, and re-inoculation of antibiotic-treated insects with an isolated Pseudomonas strain reinstates caffeine-degradation ability confirming their key role.« less
Purification and Characterization of Put1p from Saccharomyces cerevisiae
Wanduragala, Srimevan; Sanyal, Nikhilesh; Liang, Xinwen; Becker, Donald F.
2010-01-01
In Saccharomyces cerevisiae, the PUT1 and PUT2 genes are required for the conversion of proline to glutamate. The PUT1 gene encodes Put1p, a proline dehydrogenase (PRODH)1 enzyme localized in the mitochondrion. Put1p was expressed and purified from Escherichia coli and shown to have a UV-visible absorption spectrum that is typical of a bound flavin cofactor. A Km value of 36 mM proline and a kcat = 27 s−1 were determined for Put1p using an artificial electron acceptor. Put1p also exhibited high activity using ubiquinone-1 (CoQ1) as an electron acceptor with a kcat = 9.6 s−1 and a Km of 33 µM for CoQ1. In addition, knockout strains of the electron transfer flavoprotein (ETF) homolog in S. cerevisiae were able to grow on proline as the sole nitrogen source demonstrating that ETF is not required for proline utilization in yeast. PMID:20450881
Mazotto, Ana Maria; Coelho, Rosalie Reed Rodrigues; Cedrola, Sabrina Martins Lage; de Lima, Marcos Fábio; Couri, Sonia; Paraguai de Souza, Edilma; Vermelho, Alane Beatriz
2011-01-01
Three Bacillus species (B. subtilis LFB-FIOCRUZ 1270, B. subtilis LFB-FIOCRUZ 1273, and B. licheniformis LFB-FIOCRUZ 1274), isolated from the poultry industry, were evaluated for keratinase production using feathers or feather meal as the sole carbon and nitrogen sources in a submerged fermentation. The three Bacillus spp. produced extracellular keratinases and peptidases after 7 days. Feather meal was the best substrate for keratinase and peptidase production in B. subtilis 1273, with 412 U/mL and 463 U/ml. The three strains were able to degrade feather meal (62–75%) and feather (40–95%) producing 3.9–4.4 mg/ml of soluble protein in feather meal medium and 1.9–3.3 mg/ml when feather medium was used. The three strains produced serine peptidases with keratinase and gelatinase activity. B. subtilis 1273 was the strain which exhibited the highest enzymatic activity. PMID:21822479
Purification and properties of fructosyl lysine oxidase from Fusarium oxysporum S-1F4.
Sakai, Y; Yoshida, N; Isogai, A; Tani, Y; Kato, N
1995-03-01
Fructosyl lysine oxidase (FLOD) was examined for its use in the enzymatic measurement of the level of glycated albumin in blood serum. To isolate microorganisms having such an enzyme activity, we used N epsilon-fructosyl N alpha-Z-lysine (epsilon-FL) as a sole nitrogen source in the enrichment culture medium. The isolated fungus, strain S-1F4, showed a high FLOD activity in the cell-free extract and was identified as Fusarium oxysporum. FLOD was purified to an apparent homogeneity on SDS-PAGE. The molecular mass of the subunit was 50 kDa on SDS-PAGE and seemed to exist in a monomeric form. The enzyme had an absorption spectrum characteristic of a flavoprotein and the flavin was found to be covalently bound to the enzyme. The enzyme acted against N epsilon-fructosyl N alpha-Z-lysine and N alpha-fructosyl N epsilon-Z-lysine and showed specificity for fructosyl lysine residues.
Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1
Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph
1989-01-01
A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024
Rieger, Paul-Gerhard; Sinnwell, Volker; Preuß, Andrea; Francke, Wittko; Knackmuss, Hans-Joachim
1999-01-01
Biodegradation of 2,4,6-trinitrophenol (picric acid) by Rhodococcus erythropolis HLPM-1 proceeds via initial hydrogenation of the aromatic ring system. Here we present evidence for the formation of a hydride-Meisenheimer complex (anionic ς-complex) of picric acid and its protonated form under physiological conditions. These complexes are key intermediates of denitration and productive microbial degradation of picric acid. For comparative spectroscopic identification of the hydride complex, it was necessary to synthesize this complex for the first time. Spectroscopic data revealed the initial addition of a hydride ion at position 3 of picric acid. This hydride complex readily picks up a proton at position 2, thus forming a reactive species for the elimination of nitrite. Cell extracts of R. erythropolis HLPM-1 transform the chemically synthesized hydride complex into 2,4-dinitrophenol. Picric acid is used as the sole carbon, nitrogen, and energy source by R. erythropolis HLPM-1. PMID:9973345
Biodegradation of CuTETA, an effluent by-product in mineral processing.
Cushing, Alexander M L; Kelebek, Sadan; Yue, Siqing; Ramsay, Juliana A
2018-04-13
Polyamines such as triethylenetetramine (TETA) and other amine chelators are used in mineral processing applications. Formation of heavy metal complexes of these reagents as a by-product in effluent water is a recent environmental concern. In this study, Paecilomyces sp. was enriched from soil on TETA as the sole source of carbon and nitrogen and was found to degrade > 96 and 90% CuTETA complexes at initial concentrations of 0.32 and 0.79 mM respectively, following 96-h incubation. After destabilization, most of the copper (> 78%) was complexed extracellularly and the rest was associated with the cell. Mass spectroscopy results provided confirmation that copper re-complexed with small, extracellular, and organic molecules. There are no reports in the literature that Paecilomyces or any other organism can grow on TETA or CuTETA. This study is the first to show that biological destabilization of CuTETA complexes in mineral processing effluents is feasible.
Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari.
Chen, Yan; Xie, Xing-Guang; Ren, Cheng-Gang; Dai, Chuan-Chao
2013-02-01
A broad-spectrum endophytic Phomopsis liquidambari, was used to degrade environmental pollutant indole. In the condition of using indole as sole carbon and nitrogen source, the optimum concentration of indole supplied was determined to be 100 mg L(-1), with 41.7% ratio of indole degradation within 120 h. Exogenous addition of plant litter significantly increased indole degradation to 99.1% within 60 h. Indole oxidation to oxindole and isatin were the key steps limiting indole degradation. Plant litter addition induced fungus to produce laccase and LiP to non-specific oxidize indole. The results of fungal metabolites pathway through HPLC-MS and NMR analysis showed that indole was firstly oxidized to oxindole and isatin, and deoxidated to indolenie-2-dione, then hydroxylated to 2-dioxindole, which pyridine ring were cleaved through C-N position and changed to 2-aminobenzoic acid. Such metabolic pathway was similar with bacterial degradation of indole-3-acetic acid in plant. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ibrahim, Mohd Hafiz; Jaafar, Hawa Z.E.; Rahmat, Asmah; Rahman, Zaharah Abdul
2011-01-01
A split plot 3 by 4 experiment was designed to examine the impact of 15-week variable levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) on the characteristics of total flavonoids (TF), total phenolics (TP), total non structurable carbohydrate (TNC), net assimilation rate, leaf chlorophyll content, carbon to nitrogen ratio (C/N), phenyl alanine lyase activity (PAL) and protein content, and their relationships, in three varieties of Labisia pumila Blume (alata, pumila and lanceolata). The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effect observed. As nitrogen levels increased from 0 to 270 kg N/ha, the production of TNC was found to decrease steadily. Production of TF and TP reached their peaks under 0 followed by 90, 180 and 270 kg N/ha treatment. However, net assimilation rate was enhanced as nitrogen fertilization increased from 0 to 270 kg N/ha. The increase in production of TP and TF under low nitrogen levels (0 and 90 kg N/ha) was found to be correlated with enhanced PAL activity. The enhancement in PAL activity was followed by reduction in production of soluble protein under low nitrogen fertilization indicating more availability of amino acid phenyl alanine (phe) under low nitrogen content that stimulate the production of carbon based secondary metabolites (CBSM). The latter was manifested by high C/N ratio in L. pumila plants. PMID:21954355
Chen, Han; Li, Ang; Wang, Qiao; Cui, Di; Cui, Chongwei; Ma, Fang
2018-06-01
The low-strength domestic wastewater (LSDW) treatment with low chemical oxygen demand (COD) has drawn extensive attention for the poor total nitrogen (TN) removal performance. In the present study, an enhanced multistage anoxic/oxic (A/O) biofilm reactor was designed to improve the TN removal performance of the LSDW treatment. Efficient nitrifying and denitrifying biofilm carriers were cultivated and then filled into the enhanced biofilm reactor as the sole microbial source. Step-feed strategy and internal recycle were adopted to optimize the substrate distribution and the organics utilization. Key operational parameters were optimized to obtain the best nitrogen and organics removal efficiencies. A hydraulic retention time of 8 h, an influent distribution ratio of 2:1 and an internal recycle ratio of 200% were tested as the optimum parameters. The ammonium, TN and COD removal efficiencies under the optimal operational parameters separately achieved 99.75 ± 0.21, 59.51 ± 1.95 and 85.06 ± 0.79% with an organic loading rate at around 0.36 kg COD/m 3 d. The high-throughput sequencing technology confirmed that nitrifying and denitrifying biofilm could maintain functional bacteria in the system during long-period operation. Proteobacteria and Bacteroidetes were the dominant phyla in all the nitrifying and denitrifying biofilm samples. Nitrosomonadaceae_uncultured and Nitrospira sp. stably existed in nitrifying biofilm as the main nitrifiers, while several heterotrophic genera, such as Thauera sp. and Flavobacterium sp., acted as potential genera responsible for TN removal in denitrifying biofilm. These findings suggested that the enhanced biofilm reactor could be a promising route for the treatment of LSDW with a low COD level.
Green, Laura S.; Li, Youzhong; Emerich, David W.; Bergersen, Fraser J.; Day, David A.
2000-01-01
A complete tricarboxylic acid (TCA) cycle is generally considered necessary for energy production from the dicarboxylic acid substrates malate, succinate, and fumarate. However, a Bradyrhizobium japonicum sucA mutant that is missing α-ketoglutarate dehydrogenase is able to grow on malate as its sole source of carbon. This mutant also fixes nitrogen in symbiosis with soybean, where dicarboxylic acids are its principal carbon substrate. Using a flow chamber system to make direct measurements of oxygen consumption and ammonium excretion, we confirmed that bacteroids formed by the sucA mutant displayed wild-type rates of respiration and nitrogen fixation. Despite the absence of α-ketoglutarate dehydrogenase activity, whole cells of the mutant were able to decarboxylate α-[U-14C]ketoglutarate and [U-14C]glutamate at rates similar to those of wild-type B. japonicum, indicating that there was an alternative route for α-ketoglutarate catabolism. Because cell extracts from B. japonicum decarboxylated [U-14C]glutamate very slowly, the γ-aminobutyrate shunt is unlikely to be the pathway responsible for α-ketoglutarate catabolism in the mutant. In contrast, cell extracts from both the wild type and mutant showed a coenzyme A (CoA)-independent α-ketoglutarate decarboxylation activity. This activity was independent of pyridine nucleotides and was stimulated by thiamine PPi. Thin-layer chromatography showed that the product of α-ketoglutarate decarboxylation was succinic semialdehyde. The CoA-independent α-ketoglutarate decarboxylase, along with succinate semialdehyde dehydrogenase, may form an alternative pathway for α-ketoglutarate catabolism, and this pathway may enhance TCA cycle function during symbiotic nitrogen fixation. PMID:10781553
Song, Wenjing; Sun, Huwei; Li, Jiao; Gong, Xianpo; Huang, Shuangjie; Zhu, Xudong; Zhang, Yali; Xu, Guohua
2013-01-01
Background and Aims Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3−) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3− nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3− availability are not known. Methods Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3−, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants. Key Results Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3− compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’. Conclusions The results indicate that higher NO3− responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’. PMID:24095838
Metabolic Diversity for Degradation, Detection, and Synthesis of Nitro Compounds and Toxins
2012-07-08
Figure 24. p-Hydroxycinnamic acid methyl ester (HCAME) accumulated transiently in cultures provided with CPhos as the sole carbon, nitrogen...and salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans (22% amino acid identity). The enzymes share a conserved histidine pair serving...to anchor Fe2+ and a conserved domain. 5NSA dioxygenase is active against salicylate , 5-chlorosalicylate, and 5-bromosalicylate; and inhibited by
Murai, Masahito; Omura, Tetsuya; Kuninobu, Yoichiro; Takai, Kazuhiko
2015-03-18
Rhenium-catalysed C(sp(3))-H bond borylation in the absence of any oxidant, hydrogen acceptor, or external ligand, with the generation of H2 as the sole byproduct is described. The transformation, which represents a rare example of rhenium-catalysed C(sp(3))-H bond functionalisation, features high atom efficiency and simple reaction conditions.
NASA Astrophysics Data System (ADS)
Pereg, Lily; Aldorri, Sind; McMillan, Mary
2017-04-01
Wheat and cotton are important food and cash crops often grown in rotation on black, grey and red clay soil, in Australia. The common practice of nitrogen and phosphate fertilizers have been solely in the form of agrochemicals, however, a few growers have incorporated manure or composted plant material into the soil before planting. While the cotton yield in studied farms was comparable, we found that the use of such organic amendments significantly enhanced the pool of nitrogen cycling genes, suggesting increased potential of soil microbial function as well as increased microbial metabolic diversity and abundance. Therefore, the regular use of organic amendments contributed to improved soil sustainability.
Martín, Yusé; González, Yelvis V.; Cabrera, Elisa; Rodríguez, Celia; Siverio, José M.
2011-01-01
Ynt1, the single high affinity nitrate and nitrite transporter of the yeast Hansenula polymorpha, is regulated by the quality of nitrogen sources. Preferred nitrogen sources cause Ynt1 dephosphorylation, ubiquitinylation, endocytosis, and vacuolar degradation. In contrast, under nitrogen limitation Ynt1 is phosphorylated and sorted to the plasma membrane. We show here the involvement of the Ser/Thr kinase HpNpr1 in Ynt1 phosphorylation and regulation of Ynt1 levels in response to nitrogen source quality and the availability of carbon. In Δnpr1, Ynt1 phosphorylation does not take place, although Ynt1 ubiquitin conjugates increase. As a result, in this strain Ynt1 is sorted to the vacuole, from both plasma membrane and the later biosynthetic pathway in nitrogen-free conditions and nitrate. In contrast, overexpression of NPR1 blocks down-regulation of Ynt1, increasing Ynt1 phosphorylation at Ser-244 and -246 and reducing ubiquitinylation. Furthermore, Npr1 is phosphorylated in response to the preferred nitrogen sources, and indeed it is dephosphorylated in nitrogen-free medium. Under conditions where Npr1 is phosphorylated, Ynt1 is not and vice versa. We show for the first time that carbon starvation leads to Npr1 phosphorylation, whereas Ynt1 is dephosphorylated and degraded in the vacuole. Rapamycin prevents this, indicating a possible role of the target of rapamycin signaling pathway in this process. We concluded that Npr1 plays a key role in adapting Ynt1 levels to the nitrogen quality and availability of a source of carbon. PMID:21652715
Liu, Mei-bing; Chen, Xing-wei; Chen, Ying
2015-07-01
Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.
Arrizon, J; Gschaedler, A
2007-04-01
To study the effect of the addition of different nitrogen sources at high sugar concentration in the tequila fermentation process. Fermentations were performed at high sugar concentration (170 g l(-1)) using Agave tequilana Weber blue variety with and without added nitrogen from different sources (ammonium sulfate; glutamic acid; a mixture of ammonium sulfate and amino acids) during the exponential phase of growth. All the additions increased the fermentation rate and alcohol efficiency. The level of synthesis of volatile compounds depended on the source added. The concentration of amyl alcohols and isobutanol were decreased while propanol and acetaldehyde concentration increased. The most efficient nitrogen sources for fermentation rate were ammonium sulfate and the mixture of ammonium sulfate and amino acids. The level of volatile compounds produced depended upon types of nitrogen. The synthesis of some volatile compounds increased while others decreased with nitrogen addition. The addition of nitrogen could be a strategy for improving the fermentation rate and efficiency in the tequila fermentation process at high sugar Agave tequilana concentration. Furthermore, the sensory quality of the final product may change because the synthesis of the volatile compounds is modified.
Pullulan production by Aureobasidium pullulans grown on ethanol stillage as a nitrogen source.
West, T P; Strohfus, B
1996-01-01
Pullulan production by Aureobasidium pullulans strain RP-1 using thin stillage from fuel ethanol production as a nitrogen source was studied in a medium using corn syrup as a carbon source. The use of 1% thin stillage as a nitrogen source instead of ammonium sulphate elevated polysaccharide production by strain RP-1 cells when grown on a concentration of up to 7.5% corn syrup, independent of yeast extract supplementation. Dry weights of cells grown in medium containing ammonium sulphate as the nitrogen source were higher than the stillage-grown cells after 7 days of growth. The viscosity of the polysaccharide on day 7 was higher for cells grown on thin stillage rather than ammonium sulphate as a nitrogen source. The pullulan content of the polysaccharide elaborated by ammonium sulphate-grown cells on day 7 was higher than the pullulan content of polysaccharide produced by stillage-grown cells regardless of whether yeast extract was added to the culture medium.
Pham, Trâm; Giraud, Sandrine; Schuliar, Gaëlle; Rougeron, Amandine; Bouchara, Jean-Philippe
2015-06-01
The Scedosporium apiospermum complex is responsible for a large variety of infections in human. Members of this complex have become emerging fungal pathogens with an increasing occurrence in patients with underlying conditions such as immunosuppression or cystic fibrosis. A better knowledge of these fungi and of the sources of contamination of the patients is required and more accurate detection methods from the environment are needed. In this context, a highly selective culture medium was developed in the present study. Thus, various aliphatic, cyclic, or aromatic compounds were tested as the sole carbon source, in combination with some inorganic nitrogen sources and fungicides. The best results were obtained with 4-hydroxy-benzoate combined with ammonium sulfate and the fungicides dichloran and benomyl. This new culture medium called Scedo-Select III was shown to support growth of all species of the S. apiospermum complex. Subsequently, this new culture medium was evaluated successfully on water and soil samples, exhibiting higher sensitivity and selectivity than the previously described SceSel+ culture medium. Therefore, this easy-to-prepare and synthetic semi-selective culture medium may be useful to clarify the ecology of these fungi and to identify their reservoirs in patients' environment. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zhou, Wei; Lyu, Teng Fei; Yang, Zhi Ping; Sun, Hong; Yang, Liang Jie; Chen, Yong; Ren, Wan Jun
2016-09-01
Unreasonable application of nitrogen fertilizer to cropland decreases nitrogen use efficiency of crop. A large amount of nitrogen loss to environment through runoff, leaching, ammonia volati-lization, nitrification-denitrification, etc., causes water and atmospheric pollution, poses serious environmental problems and threatens human health. The type of nitrogen fertilizer and its application rate, time, and method have significant effects on nitrogen loss. The primary reason for nitrogen loss is attributed to the supersaturated soil nitrogen concentration. Making full use of environmental nitrogen sources, reducing the application rate of chemical nitrogen fertilizers, applying deep placement fertilizing method, and applying organic fertilizers with chemical nitrogen fertilizers, are effective practices for reducing nitrogen loss and improving nitrogen use efficiency. It is suggested that deve-loping new high efficiency nitrogen fertilizers, enhancing nitrogen management, and strengthening the monitoring and use of environmental nitrogen sources are the powerful tools to decrease nitrogen application rate and increase efficiency of cropland.
2011-02-18
Control Limit Lower Control Limit Reaction Plan 1 Complaints from other suppliers (synopsis, award) SCG During award process Identify Sole- Source...Parts 0.0 1.0 0.0 Evaluate complaint, if valid remove item from contract. 2 Tracking timeline for procurement/reviews SCG During pre- award process...Review Solicitation 100.0 Determine where the document stands in the approval process. Adjust milestones and followup . 3 FAR/DPAP guidance SCG
NASA Technical Reports Server (NTRS)
Raper, C. D. Jr; Thomas, J. F.; Tolley-Henry, L.; Rideout, J. W.; Raper CD, J. r. (Principal Investigator)
1988-01-01
Daily relative accumulation rate of soluble carbohydrates (RARS) and reduced nitrogen (RARN) in the shoot, as estimates of source strength, were compared with daily relative growth rates (RGR) of the shoot, as an estimate of sink demand, during floral transformation in apical meristems of tobacco (Nicotiana tabacum 'NC 2326') grown at day/night temperatures of 18/14, 22/18, 26/22, 30/26, and 34/30 C. Source strength was assumed to exceed sink demand for either carbohydrates or nitrogen when the ratio of RARS/RGR or RARN/RGR was greater than unity, and sink demand was assumed to exceed source strength when the ratio was less than unity. Time of floral initiation, which was delayed up to 21 days with increases in temperature over the experimental range, was associated with intervals in which source strength of either carbohydrate or nitrogen exceeded sink demand, while sink demand for the other exceeded source strength. Floral initiation was not observed during intervals in which source strengths of both carbohydrates and nitrogen were greater than or less than sink demand. These results indicate that floral initiation is responsive to an imbalance in the relative availabilities of carbohydrate and nitrogen.
Derse, E.; Knee, K.L.; Wankel, Scott D.; Kendall, C.; Berg, C.J.; Paytan, A.
2007-01-01
Sewage effluent, storm runoff, discharge from polluted rivers, and inputs of groundwater have all been suggested as potential sources of land derived nutrients into Hanalei Bay, Kauai. We determined the nitrogen isotopic signatures (??15N) of different nitrate sources to Hanalei Bay along with the isotopic signature recorded by 11 species of macroalgal collected in the Bay. The macroalgae integrate the isotopic signatures of the nitrate sources over time, thus these data along with the nitrate to dissolved inorganic phosphate molar ratios (N:P) of the macroalgae were used to determine the major nitrate source to the bay ecosystem and which of the macro-nutrients is limiting algae growth, respectively. Relatively low ??15N values (average -0.5???) were observed in all algae collected throughout the Bay; implicating fertilizer, rather than domestic sewage, as an important external source of nitrogen to the coastal water around Hanalei. The N:P ratio in the algae compared to the ratio in the Bay waters imply that the Hanalei Bay coastal ecosystem is nitrogen limited and thus, increased nitrogen input may potentially impactthis coastal ecosystem and specifically the coral reefs in the Bay. Identifying the major source of nutrient loading to the Bay is important for risk assessment and potential remediation plans. ?? 2007 American Chemical Society.
Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.
2016-05-31
Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.
Sainz, F; Mas, A; Torija, M J
2017-02-02
Acetic acid bacteria (AAB) are a group of microorganisms highly used in the food industry. However, its use can be limited by the insufficient information known about the nutritional requirements of AAB for optimal growth. The aim of this work was to study the effects of different concentrations and sources of nitrogen on the growth of selected AAB strains and to establish which nitrogen source best encouraged their growth. Two strains of three species of AAB, Gluconobacter japonicus, Gluconobacter oxydans and Acetobacter malorum, were grown in three different media with diverse nitrogen concentrations (25, 50, 100, and 300mgN/L and 1gN/L) as a complete solution of amino acids and ammonium. With this experiment, the most favourable medium and the lowest nitrogen concentration beneficial for the growth of each strain was selected. Subsequently, under these conditions, single amino acids or ammonium were added to media individually to determine the best nitrogen sources for each AAB strain. The results showed that nitrogen requirements are highly dependent on the nitrogen source, the medium and the AAB strain. Gluconobacter strains were able to grow in the lowest nitrogen concentration tested (25mgN/L); however, one of the G. oxydans strains and both A. malorum strains required a higher concentration of nitrogen (100-300mgN/L) for optimal growth. In general, single nitrogen sources were not able to support the growth of these AAB strains as well as the complete solution of amino acids and ammonium. Copyright © 2016 Elsevier B.V. All rights reserved.
Shi, Kan; Song, Da; Chen, Gong; Pistolozzi, Marco; Wu, Zhenqiang; Quan, Lei
2015-08-01
Submerged fermentations of Monascus anka were performed with different nitrogen sources at different pH in 3 L bioreactors. The results revealed that the Monascus pigments dominated by different color components (yellow pigments, orange pigments or red pigments) could be selectively produced through pH control and nitrogen source selection. A large amount of intracellular pigments dominated by orange pigments and a small amount of water-soluble extracellular yellow pigments were produced at low pH (pH 2.5 and 4.0), independently of the nitrogen source employed. At higher pH (pH 6.5), the role of the nitrogen source became more significant. In particular, when ammonium sulfate was used as nitrogen source, the intracellular pigments were dominated by red pigments with a small amount of yellow pigments. Conversely, when peptone was used, intracellular pigments were dominated by yellow pigments with a few red pigments derivatives. Neither the presence of peptone nor ammonium sulfate promoted the production of intracellular orange pigments while extracellular pigments with an orangish red color were observed in both cases, with a higher yield when peptone was used. Two-stage pH control fermentation was then performed to improve desirable pigments yield and further investigate the effect of pH and nitrogen sources on pigments composition. These results provide a useful strategy to produce Monascus pigments with different composition and different color characteristics. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Struck, Ulrich; Voss, Maren; von Bodungen, Bodo; Mumm, Nicolai
The ratios of stable nitrogen isotopes were analysed in zooplankton exoskeletons extracted from dated sediment cores from the Gotland Basin of the central Baltic Sea. Combined with results on δ15N of bulk sediment, organic carbon concentrations, and abundances of exoskeletons of Bosminalongispinamaritima in the sediment, the data are used to evaluate significant sources of nitrogen in the food web over the past century. Nitrogen isotopic composition of bulk sediments ranges from 2.5 to 4.5ö, that of exokeletons varies between 0.4 and 6.2ö. The two are positively correlated. A marked increase in the abundance of Bosmina since 1965 (from less than 500 specimen to more than 5000 specimencm3 of sediment) is correlated with a significant increase in sedimentary organic carbon concentrations (from 4% to more than 10%). The isotopic data do not identify increased land-derived nitrate as the dominant nitrogen source fuelling the increase. Instead, we postulate that nitrogen fixation by diazotrophic bacteria has been one of the larger sources of nitrogen in the Baltic Sea, as it is today.
Mythilypriya, Rajendran; Shanthi, Palanivelu; Sachdanandam, Panchanatham
2007-07-20
Rheumatoid arthritis (RA) is a prevalent and debilitating disease that affects the joints. Infiltration of blood-derived cells in the affected joints upon activation generate reactive oxygen/nitrogen species, resulting in an oxidative stress. One approach to counteract this oxidative stress is the use of antioxidants as therapeutic agents. Kalpaamruthaa (KA), a modified indigenous Siddha preparation constituting Semecarpus anacardium nut milk extract (SA), Emblica officinalis (EO) and honey was evaluated for its synergistic antioxidant potential in adjuvant induced arthritic rats than sole SA treatment. Levels/activities of reactive oxygen species (ROS)/reactive nitrogen species (RNS), myeloperoxidase, lipid peroxide and enzymic and non-enzymic antioxidants were determined in control, arthritis induced, SA and KA treated (150 mg/kg b.wt.) animals. The levels/activities of ROS/RNS, myeloperoxidase and lipid peroxide were increased significantly (p<0.05) and the activities of enzymic and non-enzymic antioxidants were in turn decreased in arthritic rats, whereas these changes were reverted to near normal levels upon SA and KA treatment. KA showed an enhanced antioxidant potential than sole treatment of SA in adjuvant induced arthritic rats. KA via enhancing the antioxidant status in adjuvant induced arthritic rats than sole SA treatment proves to be an important therapeutic modality in the management of RA and thereby instituting the role of oxidative stress in the clinical manifestation of the disease RA. The profound antioxidant efficacy of KA than SA alone might be due to the synergistic action of the polyphenols such as flavonoids, tannins and other compounds such as vitamin C and hydroxycinnamates present in KA.
DEVELOPING INDICATORS OF NITROGEN SOURCE IN COASTAL ECOSYSTEMS
Several studies have linked stable isotope ratios of biota to nitrogen source. In particular, ribbed mussels show promise as sensitive indicators of the origins of nitrogen inputs to coastal ecosystems. Here we expand on previous work which demonstrated that mussel isotope ratios...
Nutrient pollution in stormwater runoff from urbanized areas contributes to water quality degradation in streams and receiving waterbodies. Agriculture, population growth, and industrial activities are significant sources of nitrogen inputs for surface waters. Increased nitrogen ...
Wang, Jilong; Yan, Dalai
2016-01-01
ABSTRACT A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tunes the expression of amino acid transport and catabolism components to match the flux through the ammonia assimilation pathway such that essential nutrients are retained, but, as a consequence, the fast growth rate on amino acids is sacrificed. PMID:27435461
NASA Astrophysics Data System (ADS)
Cao, D.; Cao, W.; Yu, K.; Wu, G.; Yang, J.; Su, X.; Wang, F.
2017-05-01
Coral reefs have suffered remarkable declines worldwide. Nutrient overenrichment is considered to be one of the primary local causes. The Luhuitou fringing reef in southern China is a well-known tourist destination that is subject to enormous coastal renovation. The mean δ13C, δ15N value, and carbon over nitrogen ratio (C/N) of particulate organic matter were -21.56 ± 1.94‰, 7.04 ± 3.81‰, and 5.81 ± 1.86, respectively, suggesting mixed sources of carbon and nitrogen. The IsoError calculations suggested that marine phytoplankton and marine benthic algae dominated the majority of carbon sources, while anthropogenic and terrestrial organic nitrogen dominated the nitrogen sources. A tendency toward greater terrestrial detritus and anthropogenic-derived discharges was found during dry seasons and greater marine-derived organic matter during wet seasons. These results demonstrated the existence of anthropogenic influences and high dissolved inorganic nitrogen concentrations and C/N ratios. Anthropogenic nutrient discharge moderated nitrogen limitation, whereas phosphorus became more important to the reef ecosystem. Despite the marine carbon sources dominated, freshwater and terrestrial-derived organic carbon sources were also very important. Meanwhile, anthropogenic and terrestrial organic nitrogen sources were dominant. Therefore, pollution from more extensive region and anthropogenic activities from riverine sewage discharges adjacent to reefs should be focused to effectively reduce human-derived nutrients on reefs.
Climate Change Impacts of US Reactive Nitrogen Emissions
NASA Astrophysics Data System (ADS)
Pinder, R. W.; Davidson, E. A.; Goodale, C. L.; Greaver, T.; Herrick, J.; Liu, L.
2011-12-01
By fossil fuel combustion and fertilizer application, the US has substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here, we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions. We use the global temperature potential (GTP) as a common metric, and we calculate the GTP at 20 and 100 years in units of CO2 equivalents. At both time-scales, nitrogen enhancement of CO2 uptake has the largest impact, because in the eastern US, areas of high nitrogen deposition are co-located with forests. In the short-term, the effect due to NOx altering ozone and methane concentrations is also substantial, but are not important on the 100 year time scale. Finally, the GTP of N2O emissions is substantial at both time scales. We have also attributed these impacts to combustion and agricultural sources, and quantified the uncertainty. Reactive nitrogen from combustion sources contribute more to cooling than warming. The impacts of agricultural sources tend to cancel each other out, and the net effect is uncertain. Recent trends show decreasing reactive nitrogen from US combustion sources, while agricultural sources are increasing. Fortunately, there are many mitigation strategies currently available to reduce the climate change impacts of US agricultural sources.
Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment
NASA Astrophysics Data System (ADS)
Houlton, B. Z.; Morford, S. L.; Dahlgren, R. A.
2018-04-01
Nitrogen availability is a pivotal control on terrestrial carbon sequestration and global climate change. Historical and contemporary views assume that nitrogen enters Earth’s land-surface ecosystems from the atmosphere. Here we demonstrate that bedrock is a nitrogen source that rivals atmospheric nitrogen inputs across major sectors of the global terrestrial environment. Evidence drawn from the planet’s nitrogen balance, geochemical proxies, and our spatial weathering model reveal that ~19 to 31 teragrams of nitrogen are mobilized from near-surface rocks annually. About 11 to 18 teragrams of this nitrogen are chemically weathered in situ, thereby increasing the unmanaged (preindustrial) terrestrial nitrogen balance from 8 to 26%. These findings provide a global perspective to reconcile Earth’s nitrogen budget, with implications for nutrient-driven controls over the terrestrial carbon sink.
NASA Astrophysics Data System (ADS)
Saleh, D.; Domagalski, J. L.
2012-12-01
Sources and factors affecting the transport of total nitrogen are being evaluated for a study area that covers most of California and some areas in Oregon and Nevada, by using the SPARROW model (SPAtially Referenced Regression On Watershed attributes) developed by the U.S. Geological Survey. Mass loads of total nitrogen calculated for monitoring sites at stream gauging stations are regressed against land-use factors affecting nitrogen transport, including fertilizer use, recharge, atmospheric deposition, stream characteristics, and other factors to understand how total nitrogen is transported under average conditions. SPARROW models have been used successfully in other parts of the country to understand how nutrients are transported, and how management strategies can be formulated, such as with Total Maximum Daily Load (TMDL) assessments. Fertilizer use, atmospheric deposition, and climatic data were obtained for 2002, and loads for that year were calculated for monitored streams and point sources (mostly from wastewater treatment plants). The stream loads were calculated by using the adjusted maximum likelihood estimation method (AMLE). River discharge and nitrogen concentrations were de-trended in these calculations in order eliminate the effect of temporal changes on stream load. Effluent discharge information as well as total nitrogen concentrations from point sources were obtained from USEPA databases and from facility records. The model indicates that atmospheric deposition and fertilizer use account for a large percentage of the total nitrogen load in many of the larger watersheds throughout the study area. Point sources, on the other hand, are generally localized around large cities, are considered insignificant sources, and account for a small percentage of the total nitrogen loads throughout the study area.
Darnaude, Audrey M; Salen-Picard, Chantal; Polunin, Nicholas V C; Harmelin-Vivien, Mireille L
2004-02-01
The link between climate-driven river runoff and sole fishery yields observed in the Gulf of Lions (NW Mediterranean) was analysed using carbon- and nitrogen stable isotopes along the flatfish food webs. Off the Rhone River, the main terrestrial (river POM) and marine (seawater POM) sources of carbon differed in delta(13)C (-26.11 per thousand and -22.36 per thousand, respectively). Surface sediment and suspended POM in plume water exhibited low delta(13)C (-24.38 per thousand and -24.70 per thousand, respectively) that differed more from the seawater POM than from river POM, demonstrating the dominance of terrestrial material in those carbon pools. Benthic invertebrates showed a wide range in delta(15)N (mean 4.30 per thousand to 9.77 per thousand ) and delta(13)C (mean -23.81 per thousand to -18.47 per thousand ), suggesting different trophic levels, diets and organic sources. Among the macroinvertebrates, the surface (mean delta(13)C -23.71 per thousand ) and subsurface (mean delta(13)C -23.81 per thousand ) deposit-feeding polychaetes were particularly (13)C depleted, indicating that their carbon was mainly derived from terrestrial material. In flatfish, delta(15)N (mean 9.42 to 10.93 per thousand ) and delta(13)C (mean -19.95 per thousand to -17.69 per thousand ) varied among species, indicating differences in food source and terrestrial POM use. A significant negative correlation was observed between the percentage by weight of polychaetes in the diet and the delta(13)C of flatfish white muscle. Solea solea (the main polychaete feeder) had the lowest mean delta(13)C, Arnoglossus laterna and Buglossidium luteum (crustacean, mollusc and polychaete feeders) had intermediate values, and Solea impar (mollusc feeder) and Citharus linguatula (crustacean and fish feeder) exhibited the highest delta(13)C. Two different benthic food webs were thus identified off the Rhone River, one based on marine planktonic carbon and the other on the terrestrial POM carried by the river. Deposit-feeding polychaetes were responsible for the main transfer of terrestrial POM to upper trophic levels, linking sole population dynamics to river runoff fluctuations.
Nitrogen isotope and mass balance approach in the Elbe Estuary
NASA Astrophysics Data System (ADS)
Sanders, Tina; Wankel, Scott D.; Dähnke, Kirstin
2017-04-01
The supply of bioavailable nitrogen is crucial to primary production in the world's oceans. Especially in estuaries, which act as a nutrient filter for coastal waters, microbial nitrogen turnover and removal has a particular significance. Nitrification as well as other nitrogen-based processes changes the natural abundance of the stable isotope, which can be used as proxies for sources and sinks as well as for process identification. The eutrophic Elbe estuary in northern Germany is loaded with fertilizer-derived nitrogen, but management efforts have started to reduce this load effectively. However, an internal nitrate source in turn gained in importance and the estuary changed from a sink to a source of dissolved inorganic nitrogen: Nitrification is responsible for significant estuarine nutrient regeneration, especially in the Hamburg Port. In our study, we aimed to quantify sources and sinks of nitrogen based on a mass and stable isotope budget in the Elbe estuary. A model was developed reproduce internal N-cycling and associated isotope changes. For that approach we measured dissolved inorganic nitrogen (DIN), particulate nitrogen and their stable isotopes in a case study in July 2013. We found an almost closed mass balance of nitrogen, with only low lost or gains which we attribute to sediment resuspension. The isotope values of different DIN components and the model approach both support a high fractionation of up to -25‰ during nitrification. However, the nitrogen balance and nitrogen stable isotopes suggest that most important processes are remineralization of organic matter to ammonium and further on the oxidation to nitrate. Denitrification and nitrate assimilation play a subordinate role in the Elbe Estuary.
USDA-ARS?s Scientific Manuscript database
Aims: Nitrogen is a critical element in industrial fermentation media. This study investigated the influence of various nitrogen sources on blastospore production, tolerance to anhydrobiosis stress, and storage stability using two strains of the cosmopolitan insect pathogenic fungus Beauveria bassia...
Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela
2018-01-01
Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants. PMID:29320529
Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun
2018-01-01
Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.
Stable Isotope Identification of Nitrogen Sources for United States (U.S.) Pacific Coast Estuaries
NASA Astrophysics Data System (ADS)
Brown, C. A.; Kaldy, J. E.; Fong, P.; Fong, C.; Mochon Collura, T.; Clinton, P.
2016-02-01
Nutrients are the leading cause of water quality impairments in the United States, and as a result tools are needed to identify the sources of nutrients. We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected macroalgae and analyzed these samples for natural abundance of stable isotopes (δ15N) and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In Oregon estuaries, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources with heavier sites located near the estuary mouth. In California estuaries, the gradient was reversed with heavier sites located upriver. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhang, L.; Chen, Y.; Liu, X.; Xu, W.; Pan, Y.; Duan, L.
2016-12-01
We present a national-scale model analysis of the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2°×1/3° horizontal resolution. Averaged model results for 2008-2012 are evaluated with an ensemble of surface measurements of nitrogen wet deposition flux and concentration, and satellite measurements of tropospheric NO2 columns. Annual inorganic nitrogen deposition fluxes are shown to be generally less than 10 kg N ha-1 a-1 in the western China, 15-50 kg N ha-1 a-1 in the eastern China, and 15.6 kg N ha-1 a-1 averaged over China. The model simulates an annual total deposition flux of 16.4 Tg N to China, with 10.3 Tg N (63%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported out of China. We also find while nitrogen deposition to China is comparable to the nitrogen input from fertilizer application (16.5 Tg N a-1) on the national scale, it is much more widely distributed spatially. The deposition flux is also much higher than natural biological fixation (7.3 Tg N a-1). A comparison with estimates of nitrogen critical load for eutrophication indicates that about 40% of the land over China faces nitrogen critical load exceedances. However, 45% of the exceeding areas, mainly in Beijing-Tianjin-Hebei, Central China, East China, and South China, will not occur in the absence of nitrogen deposition, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects over these areas.
Nitrogen Loading in Jamaica Bay, Long Island, New York: Predevelopment to 2005
Benotti, Mark J.; Abbene, Irene; Terracciano, Stephen A.
2007-01-01
Nitrogen loading to Jamaica Bay, a highly urbanized estuary on the southern shore of western Long Island, New York, has increased from an estimated rate of 35.6 kilograms per day (kg/d) under predevelopment conditions (pre-1900), chiefly as nitrate plus nitrite from ground-water inflow, to an estimated 15,800 kilograms per day as total nitrogen in 2005. The principal point sources are wastewater-treatment plants, combined sewer overflow/stormwater discharge during heavy precipitation, and subway dewatering, which account for 92 percent of the current (2005) nitrogen load. The principal nonpoint sources are landfill leachate, ground-water flow, and atmospheric deposition, which account for 8 percent of the current nitrogen load. The largest single source of nitrogen to Jamaica Bay is wastewater-treatment plants, which account for 89 percent of the nitrogen load. The current and historic contributions of nitrogen from seawater are unknown, although at present, the ocean likely serves as a sink for nitrogen from Jamaica Bay. Currently, concentrations of nitrogen in surface water are high throughout Jamaica Bay, but some areas with relatively little mixing have concentrations that are five times higher than areas that are well mixed.
Effects of watershed land use on nitrogen concentrations and δ15 nitrogen in groundwater
Cole, Marci L.; Kroeger, Kevin D.; McClelland, J.W.; Valiela, I.
2006-01-01
Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify this nitrogen delivery and to link the delivery to specific land-derived sources. In this study we measured nitrogen concentrations and δ 15N values in seepage water entering three freshwater ponds and six estuaries on Cape Cod, Massachusetts and assessed how they varied with different types of land use. Nitrate concentrations and δ 15N values in groundwater reflected land use in developed and pristine watersheds. In particular, watersheds with larger populations delivered larger nitrate loads with higher δ 15N values to receiving waters. The enriched δ 15N values confirmed nitrogen loading model results identifying wastewater contributions from septic tanks as the major N source. Furthermore, it was apparent that N coastal sources had a relatively larger impact on the N loads and isotopic signatures than did inland N sources further upstream in the watersheds. This finding suggests that management priorities could focus on coastal sources as a first course of action. This would require management constraints on a much smaller population.
Scott, D.; Harvey, J.; Alexander, R.; Schwarz, G.
2007-01-01
The frequency and magnitude of hypoxic areas in coastal waterbodies are increasing across the globe, partially in response to the increase in nitrogen delivery from the landscape (Diaz, 2001; Rabalais et al., 2002). Although studies of annual total nitrogen and nitrate yields have greatly improved understanding of the contaminant sources that contribute to riverine nitrogen loads (Alexander et al., 2000; Caraco and Cole, 1999), the emphasis of these studies on annual timescales and selected nitrogen forms is not sufficient to understand the factors that control the cycling, transport, and fate of reactive nitrogen. Here we use data from 850 river stations to calculate long-term mean-annual and interannual loads of organic, ammonia, and nitrate-nitrite nitrogen suitable for spatial analysis. We find that organic nitrogen is the dominant nitrogen pool within rivers across most of the United States and is significant even in basins with high anthropogenic sources of nitrogen. Downstream organic nitrogen patterns illustrate that organic nitrogen is an abundant fraction of the nitrogen loads in all regions. Although the longitudinal patterns are not consistent across regions, these patterns are suggestive of cycling between ON and NO3- on seasonal timescales influenced by land use, stream morphology, and riparian connectivity with active floodplains. Future regional studies need to incorporate multinitrogen species at intraannual timescales, as well as stream characteristics beyond channel depth, to elucidate the roles of nitrogen sources and in-stream transformations on the fate and reactivity of riverine nitrogen transported to coastal seas.
NASA Astrophysics Data System (ADS)
Scott, Durelle; Harvey, Judson; Alexander, Richard; Schwarz, Gregory
2007-03-01
The frequency and magnitude of hypoxic areas in coastal waterbodies are increasing across the globe, partially in response to the increase in nitrogen delivery from the landscape (Diaz, 2001; Rabalais et al., 2002). Although studies of annual total nitrogen and nitrate yields have greatly improved understanding of the contaminant sources that contribute to riverine nitrogen loads (Alexander et al., 2000; Caraco and Cole, 1999), the emphasis of these studies on annual timescales and selected nitrogen forms is not sufficient to understand the factors that control the cycling, transport, and fate of reactive nitrogen. Here we use data from 850 river stations to calculate long-term mean-annual and interannual loads of organic, ammonia, and nitrate-nitrite nitrogen suitable for spatial analysis. We find that organic nitrogen is the dominant nitrogen pool within rivers across most of the United States and is significant even in basins with high anthropogenic sources of nitrogen. Downstream organic nitrogen patterns illustrate that organic nitrogen is an abundant fraction of the nitrogen loads in all regions. Although the longitudinal patterns are not consistent across regions, these patterns are suggestive of cycling between ON and NO3- on seasonal timescales influenced by land use, stream morphology, and riparian connectivity with active floodplains. Future regional studies need to incorporate multinitrogen species at intraannual timescales, as well as stream characteristics beyond channel depth, to elucidate the roles of nitrogen sources and in-stream transformations on the fate and reactivity of riverine nitrogen transported to coastal seas.
Zhao, S.; Zhang, P.; Crusius, John; Kroeger, K.D.; Bratton, J.F.
2011-01-01
In developed, non-agricultural, unsewered areas, septic systems and fertilizer application to lawns and gardens represent two major sources of nitrogen to coastal groundwater, in addition to atmospheric input. This study was designed to distinguish between these two possible nitrogen sources by analyzing groundwater samples for pharmaceutical residuals, because fertilizers do not contain any of these pharmaceuticals, but domestic wastewater commonly does. In addition, several herbicides and insecticides used in lawn treatment were analyzed as indicators of nitrogen delivery to groundwater from fertilizers. Groundwater samples were taken through piezometres at shoreline sites in unsewered areas surrounding Northport Harbor and in sewered areas adjacent to Manhasset Bay (hereafter referred to as "Northport" and "Manhasset", respectively), both in northwestern Long Island, USA. Excessive nitrogen loading has led to reduced dissolved oxygen concentrations in Long Island Sound, and the groundwater contribution to the nitrogen budget is poorly constrained. The frequent detection of the anticonvulsant compound carbamazepine in groundwater samples of the Northport Harbor area (unsewered), together with the fact that few pesticides associated with lawn applications were detected, suggests that wastewater input and atmospheric input are the likely sources of nitrogen in the Northport groundwater. High concentrations of nitrogen were also detected in the Manhasset (sewered) groundwater. The low detection frequency and concentration of carbamazepine, however, suggest that the sewer system effectively intercepts nitrogen from wastewater there. The likely sources of nitrogen in the Manhasset groundwater are atmospheric deposition and lawn fertilizers, as this area is densely populated.
QUANTIFYING SEASONAL SHIFTS IN NITROGEN SOURCES TO OREGON ESTUARIES: PART II: TRANSPORT MODELING
Identifying the sources of dissolved inorganic nitrogen (DIN) in estuaries is complicated by the multiple sources, temporal variability in inputs, and variations in transport. We used a hydrodynamic model to simulate the transport and uptake of three sources of DIN (oceanic, riv...
Sources of nitrogen and phosphorus to estuaries and estuarine watersheds of the coterminous United States have been compiled from a variety of publically available data sources (1985 – 2015). Atmospheric loading was obtained from two sources. Modelled and interpolated meas...
Villers, Jennifer; Savocco, Jérôme; Szopinska, Aleksandra; Degand, Hervé; Nootens, Sylvain; Morsomme, Pierre
2017-09-01
Yeast cells, to be able to grow on a wide variety of nitrogen sources, regulate the set of nitrogen transporters present at their plasma membrane. Such regulation relies on both transcriptional and post-translational events. Although microarray studies have identified most nitrogen-sensitive genes, nitrogen-induced post-translational regulation has only been studied for very few proteins among which the general amino acid permease Gap1. Adding a preferred nitrogen source to proline-grown cells triggers Gap1 endocytosis and vacuolar degradation in an Rsp5-Bul1/2-dependent manner. Here, we used a proteomic approach to follow the dynamics of the plasma membrane proteome after addition of a preferred nitrogen source. We identified new targets of the nitrogen regulation and four transporters of poor nitrogen sources-Put4, Opt2, Dal5, and Ptr2-that rapidly decrease in abundance. Although the kinetics is different for each transporter, we found that three of them-Put4, Dal5, and Ptr2-are endocytosed, like Gap1, in an Rsp5-dependent manner and degraded in the vacuole. Finally, we showed that Gap1 stabilization at the plasma membrane, through deletion of Bul proteins, regulates the abundance of Put4, Dal5 and Ptr2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng
2017-01-01
Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems. However, nitrogen removal efficiency is usually limited due to the low carbon/nitrogen (C/N) ratio. A common solution is to add external carbon sources, but amount of liquid is difficult to determine. Therefore, a combined wood-chip-framework substrate (with wood, slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem. Results show that the removal rate of ammonia nitrogen (NH 4 + -N), total nitrogen (TN) and chemical oxygen demand (COD) could reach 37.5%-85%, 57.4%-86%, 32.4%-78%, respectively, indicating the combined substrate could diffuse sufficient oxygen for the nitrification process (slag and gravel zone) and provide carbon source for denitrification process (wood-chip zone). The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip, respectively. Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process, while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process. This study provides a new idea for wetland treatment of high-strength nitrogen wastewater. Copyright © 2016. Published by Elsevier B.V.
Assimilation of organic and inorganic nutrients by Erica root fungi from the fynbos ecosystem.
Bizabani, Christine; Dames, Joanna Felicity
2016-03-01
Erica dominate the fynbos ecosystem, which is characterized by acidic soils that are rich in organic matter. The ericaceae associate with ericoid mycorrhizal (ERM) fungi for survival. In this study fungal biomass accumulation in vitro was used to determine nutrient utilisation of various inorganic and organic substrates. This is an initial step towards establishment of the ecological roles of typical ERM fungi and other root fungi associated with Erica plants, with regard to host nutrition. Meliniomyces sp., Acremonium implicatum, Leohumicola sp., Cryptosporiopsis erica, Oidiodendron maius and an unidentified Helotiales fungus were selected from fungi previously isolated and identified from Erica roots. Sole nitrogen sources ammonium, nitrate, arginine and Bovine Serum Albumin (BSA) were tested. Meliniomyces and Leohumicola species were able to utilise BSA effectively. Phosphorus nutrition was tested using orthophosphate, sodium inositol hexaphosphate and DNA. Most isolates preferred orthophosphate. Meliniomyces sp. and A. implicatum were able to accumulate significant biomass using DNA. Carbon utilisation was tested using glucose, cellobiose, carboxymethylcellulose, pectin and tannic acid substrates. All fungal isolates produced high biomass on glucose and cellobiose. The ability to utilize organic nutrient sources in culture, illustrates their potential role of these fungi in host nutrition in the fynbos ecosystem. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Wang, San-Lang; Wu, Ying-Ying; Liang, Tzu-Wen
2011-02-28
BSN1, a nattokinase, was purified from the culture supernatant of Bacillus subtilis TKU007 with shrimp shell wastes as the sole carbon/nitrogen source. The BSN1 was purified to homogeneity by three-step procedure with a 515-fold increase in specific activity and 12% recovery. The molecular masses of BSN1 determined by SDS-PAGE and gel filtrations were approximately 30 kDa and 28 kDa, respectively. The results of peptide mass mapping showed that four tryptic peptides of BSN1 were identical to the nattokinase from B. subtilis (GenBank accession number gi14422313) with 37% sequence coverage. The N-terminal amino acid sequence of the first 12 amino acids of BSN1 was AQSVPYGISQIK. The optimum pH, optimum temperature, pH stability, and thermal stability of BSN1 were 8, 40 °C, pH 4-11, and less than 50°C, respectively. BSN1 was inhibited completely by PMSF, indicating that the BSN1 was a serine protease. Using this method, B. subtilis TKU007 produces a nattokinase/fibrinolytic enzyme and this enzyme may be considered as a new source for thrombolytic agents. Copyright © 2010 Elsevier B.V. All rights reserved.
Flores-Mireles, Ana Lidia; Eberhard, Anatol; Winans, Stephen C
2012-06-01
Agrobacterium tumefaciens incites plant tumours that produce nutrients called opines, which are utilized by the bacteria during host colonization. Various opines provide sources of carbon, nitrogen and phosphorous, but virtually nothing was previously known about how A. tumefaciens acquires sulphur during colonization. Some strains encode an operon required for the catabolism of the opine octopine. This operon contains a gene, msh, that is predicted to direct the conversion of S-methylmethionine (SMM) and homocysteine (HCys) to two equivalents of methionine. Purified Msh carried out this reaction, suggesting that SMM could be an intermediate in opine catabolism. Purified octopine synthase (Ocs, normally expressed in plant tumours) utilized SMM and pyruvate to produce a novel opine, designated sulfonopine, whose catabolism by the bacteria would regenerate SMM. Sulfonopine was produced by tobacco and Arabidopsis when colonized by A. tumefaciens and was utilized as sole source of sulphur by A. tumefaciens. Purified Ocs also used 13 other proteogenic and non-proteogenic amino acids as substrates, including three that contain sulphur. Sulfonopine and 11 other opines were tested for induction of octopine catabolic operon and all were able to do so. This is the first study of the acquisition of sulphur, an essential element, by this pathogen. © 2012 Blackwell Publishing Ltd.
Borysiuk, Klaudia; Ostaszewska-Bugajska, Monika; Vaultier, Marie-Noëlle; Hasenfratz-Sauder, Marie-Paule; Szal, Bożena
2018-01-01
Nitrate (NO3–) and ammonium (NH4+) are prevalent nitrogen (N) sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG), which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs) to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins) in the contribution to NH4+ toxicity symptoms in Arabidopsis. PMID:29881392
Abol Fotouh, Deyaa M; Bayoumi, Reda A; Hassan, Mohamed A
2016-01-01
Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase production were recorded to be temperature 60°C, pH 10, and incubation time for 48 hrs. Enzymatic production increased when the organism was grown in a medium containing galactose as carbon source and ammonium phosphate as nitrogen source at concentrations of 1 and 0.5% (w/v), respectively. Moreover, the optimum conditions for lipase production such as substrate concentration, inoculum size, and agitation rate were found to be 10% (w/v), 4% (v/v), and 120 rpm, respectively. The TA lipase with Triton X-100 had the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene (7.5%) or the sole crude enzyme (8.9%). It can be concluded that the chemical leather process can be substituted with TA lipase for boosting the quality of leather and reducing the environmental hazards.
NASA Technical Reports Server (NTRS)
Vitt, Francis M.; Jackman, Charles H.
1995-01-01
The odd nitrogen source strengths associated with Solar Proton Events (SPEs), Galactic Cosmic Rays (GCRs), and the oxidation of nitrous oxide in the Earth's middle atmosphere from 1974 through 1993 have been compared globally, at middle and lower latitudes (less than 50 deg), and polar regions (greater than 50 deg) with a two-dimensional (2-D) photochemical transport model. As discovered previously, the oxidation of nitrous oxide dominates the global odd nitrogen source while GCRs and SPEs are significant at polar latitudes. The horizontal transport of odd nitrogen, produced by the oxidation of nitrous oxide at latitudes < 50 deg, was found to be the dominant source of odd nitrogen in the polar regions with GCRs contributing substantially during the entire solar cycle. The source of odd nitrogen from SPEs was more sporadic; however, contributions during several years (mostly near solar maximum) were significant in the polar middle atmosphere.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... Volatile Organic Compounds and Nitrogen Oxides AGENCY: Environmental Protection Agency (EPA). ACTION... requirements for stationary sources of volatile organic compounds (VOCs) and nitrogen oxides (NO X ). This... to 310 CMR 7.19, Reasonably Available Control Technology (RACT) for Sources of Oxides of Nitrogen (NO...
Zhang, Chao; Chen, Yin-Guang
2013-07-01
As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.
Giese, Henriette; Sondergaard, Teis Esben; Sørensen, Jens Laurids
2013-01-01
Growth conditions are known to affect the production of secondary metabolites in filamentous fungi. The influence of different nitrogen sources and the transcription factor AreA on the production of mycotoxins in Fusarium graminearum was examined. Growth on glutamine or NH4-sources was poor and asparagine was found to be a preferential nitrogen source for F. graminearum. Deletion of areA led to poor growth on NaNO₃ suggesting its involvement in regulation of the nitrate reduction process. In addition utilization of aspartic acid, histidine, isoleucine, leucine, threonine, tyrosine, and valine as nitrogen sources was shown to depend of a functional AreA. AreA was shown to be required for the production of the mycotoxins deoxynivalenol (DON), zearalenone, and fusarielin H regardless of the nutrient medium. Deletion of nmr, the repressor of AreA under nitrogen sufficient conditions, had little effect on either growth or toxin production. AreA appears to regulate production of some mycotoxins directly or indirectly independent on nitrogen status and plays a role in utilization of certain amino acids. Copyright © 2013 The British Mycological Society. All rights reserved.
Gour, Rakesh Singh; Bairagi, Madhusudan; Garlapati, Vijay Kumar; Kant, Anil
2018-01-01
Algal biofuels are far from a commercial reality due to the technical challenges associated with their growth and lipid extraction procedures. In this study, we investigated the effect of 4 different media and 5 different nitrogen sources at 5 levels on the growth, biomass and lipid productivity of Scenedesmus sp and Chlorella sp The hypothesis was that a nitrogen source can be identified that provides enough stress to accumulate lipids without compromising significantly on biomass and lipid productivity. A maximum specific growth rate and doubling per day have been observed with algal species using modified BG-11 medium. Among the tested nitrogen sources, 2.5 mM potassium nitrate as a nitrogen constituent of modified BG-11 medium resulted in higher lipid content and productivity in the case of S. dimorphus (29.15%, 15.449 mg L -1 day -1 ). Another noteworthy outcome of the present study lies in the usage of a smaller amount of the nitrogen source, i.e., 2.5 mM, which is found to be 7 times less than the standard BG11 media (17.60 mM sodium nitrate).
NASA Astrophysics Data System (ADS)
Auma, Khairunnisa; Hamid, Aidil Abdul; Yusoff, Wan Mohtar Wan
2018-04-01
A local isolate, Aurantiochytrium sp. SW1 has been verified to have high content of docosahexanoic acid (DHA). However, the effect of different nitrogen sources on biomass, lipid concentration and DHA content in Aurantiochytrium sp. SW1 is still unknown. Hence, this study is focused in using six different organic and inorganic nitrogen sources to grow Aurantiochytrium sp. SW1 in optimized Burja medium. Monosodium glutamate (MSG) gave the highest biomass concentration of 15.97 g/L followed by ammonium nitrate (NH4NO3) with 13.37 g/L at 96 hr. These two nitrogen sources had significant effect on the biomass concentration (p<0.05). The highest lipid accumulated was obtained using MSG that reached 79.6% in biomass concentration. DHA content in lipid showed cultivation using MSG reached 47.9% (4.95 g/L). Statistical analysis using least significant difference (LSD) showed significant lipid production (p<0.05) when cultivated in MSG compared to other five nitrogen sources. The highest DHA productivity (0.052 g/L hr-1) was obtained in medium containing MSG. This study proves that nitrogen component in the medium significantly affects the biomass concentration, lipid and DHA content.
Stable nitrogen isotopes in coastal macroalgae: geographic and anthropogenic variability.
Viana, Inés G; Bode, Antonio
2013-01-15
Growing human population adds to the natural nitrogen loads to coastal waters. Both anthropogenic and natural nitrogen is readily incorporated in new biomass, and these different nitrogen sources may be traced by the measurement of the ratio of stable nitrogen isotopes (δ(15)N). In this study δ(15)N was determined in two species of macroalgae (Ascophyllum nodosum and Fucus vesiculosus), and in nitrate and ammonium to determine the relative importance of anthropogenic versus natural sources of nitrogen along the coast of NW Spain. Both algal species and nitrogen sources showed similar isotopic enrichment for a given site, but algal δ(15)N was not related to either inorganic nitrogen concentrations or δ(15)N in the water samples. The latter suggests that inorganic nitrogen inputs are variable and do not always leave an isotopic trace in macroalgae. However, a significant linear decrease in macroalgal δ(15)N along the coast is consistent with the differential effect of upwelling. Besides this geographic variability, the influence of anthropogenic nitrogen sources is evidenced by higher δ(15)N in macroalgae from rias and estuaries compared to those from open coastal areas and in areas with more than 15×10(3) inhabitants in the watershed. These results indicate that, in contrast with other studies, macroalgal δ(15)N is not simply related to either inorganic nitrogen concentrations or human population size but depends on other factors as the upwelling or the efficiency of local waste treatment systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Analysis of Nitrogen Loads From Long Island Sound Watersheds, 1988-98
NASA Astrophysics Data System (ADS)
Mullaney, J. R.; Trench, E. C.
2001-05-01
The U.S. Geological Survey (USGS) recently estimated annual nonpoint-source nitrogen loads from watersheds that drain to Long Island Sound. The study, was conducted in cooperation with the Connecticut Department of Environmental Protection, the New York State Department of Environmental Conservation and the U.S. Environmental Protection Agency, to assist these agencies with the issue of low concentrations of dissolved oxygen in Long Island Sound caused by nitrogen enrichment. A regression model was used to determine annual nitrogen loads at 27 streams monitored by the USGS during 1988-98. Estimates of nitrogen loads from municipal wastewater-treatment plants (where applicable) were subtracted from the total nitrogen loads to determine the nonpoint-source nitrogen load for each water-quality monitoring station. The nonpoint-source load information was applied to unmonitored areas by comparing the land-use and land-cover characteristics of monitored areas with unmonitored areas, and selecting basins that were most similar. In extrapolating load estimates to unmonitored areas, regional differences in mean annual runoff between monitored and unmonitored areas also were considered, using flow information from nearby USGS gaging stations. Estimates of nonpoint nitrogen loads from monitored areas with point sources of nitrogen discharge and estimates from unmonitored areas are subject to uncertainty. These estimates could be improved with additional data collection in coastal basins and in basins with a large percentage of urbanized land, measurements of instream transformation or losses of nitrogen, improved reporting of total nitrogen concentrations from municipal wastewater treatment facilities, and tracking of intrabasin and (or) interbasin diversion of water.
Stable Isotope Identification of Nitrogen Sources for United ...
We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected δ15N of macroalgae data and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In addition, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources. There was also a strong gradient in δ15N of macroalgae with heavier sites located near the estuary mouth. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient. Nutrients are the leading cause of water quality impairments in the United States, and as a result too
Glutamate Dehydrogenase from Apodachlya (Oomycetes) 1
Price, Jeffrey S.; Gleason, Frank H.
1972-01-01
A glutamate dehydrogenase specific for nicotinamide-adenine-dinucleotide has been purified 50-fold from Apodachlya brachynema (Leptomitales). Certain physical, chemical, and kinetic properties of this enzyme have been studied, particularly specificity for coenzymes and substrates. With glucose as the sole carbon source, the synthesis of glutamate dehydrogenase was repressed, whereas glutamate, proline, alanine, or ornithine plus aspartate as sole carbon sources induced synthesis of the enzyme. These data indicate that the function of this enzyme is primarily degradative, although there is no evidence for a nicotinamide-adenine-dinucleotide-phosphate-specific biosynthetic glutamate dehydrogenase in Apodachlya. PMID:16657902
Identifying the sources of dissolved inorganic nitrogen (DIN) in estuaries is complicated by the multiple sources, temporal variability in inputs, and variations in transport. We used a hydrodynamic model to simulate the transport and uptake of three sources of DIN (oceanic, riv...
Nitrogen oxides (NOX) are important components of ambient and indoor air pollution and are emitted from a range of combustion sources, including on-road mobile sources, electric power generators, and non-road mobile sources. While anthropogenic sources dominate, NOX is also forme...
NASA Astrophysics Data System (ADS)
Tong, X. X.; Hu, B.; Xu, W. S.; Liu, J. G.; Zhang, P. C.
2017-12-01
In this paper, Three Gorges Reservoir Area (TGRA) was chosen to be the study area, the export coefficients of different land-use type were calculated through the observation experiments and literature consultation, and then the load of non-point source (NPS) nitrogen and phosphorus of different pollution sources such as farmland pollution sources, decentralized livestock and poultry breeding pollution sources and domestic pollution sources were estimated. The results show as follows: the pollution load of dry land is the main source of farmland pollution. The order of total nitrogen load of different pollution sources from high to low is livestock breeding pollution, domestic pollution, land use pollution, while the order of phosphorus load of different pollution sources from high to low is land use pollution, livestock breeding pollution, domestic pollution, Therefore, reasonable farmland management, effective control methods of dry land fertilization and sewage discharge of livestock breeding are the keys to the prevention and control of NPS nitrogen and phosphorus in TGRA.
NASA Astrophysics Data System (ADS)
Townsend, M. A.; Macko, S. A.
2004-12-01
Nitrate-N concentrations have increased to greater than 10 mg/L in a municipal water supply in western Kansas from 1995 to 2002. A study was done by the Kansas Geological Survey using the nitrogen-15 natural abundance isotope method to determine potential sources for the increasing nitrate concentrations. Preliminary results of the isotope analyses on water samples suggest that animal waste and/or denitrification enrichment has affected the water supply. Soil samples from areas near the wells that were not treated with manure show a general increase of nitrogen-15 signature (+9 to +15 \\permil) to a depth of 5 m. Soils are silt loams with measurable carbonate (0.8 to 2 % by weight) in the profile, which may permit volatilization enrichment to occur in the soil profile. Wells in the area range from 11 to 20 m in alluvial deposits with depth to water at approximately 9 m). Nitrate-N values range from 8 to 26 mg/L. Nitrogen-15 values range from (+17 to +28 \\permil) with no obvious source of animal waste near the well sites. There are potential nearby long-term sources of animal waste - an abandoned sewage treatment plant and an agricultural testing farm. One well has a reducing chemistry with a nitrate value of 0.9 mg/L and a nitrogen-15 value of +17 \\permil suggesting that alluvial sediment variation also has an impact on the water quality in the study area. The other wells show values of nitrate and nitrogen-15 that are much greater than the associated soils. The use of nitrogen-15 alone permited limited evaluation of sources of nitrate to ground water particularly in areas with carbonate in the soils. Use of oxygen-18 on nitrate will permit the delineation of the processes affecting the nitrogen in the soil profile and determination of the probable sources and the processes that have affected the nitrogen in the ground water. Final results of the nitrogen-15 and oxygen-18 analyses will be presented.
The influence of various carbon and nitrogen sources on oil production by Fusarium oxysporum.
Joshi, S; Mathur, J M
1987-01-01
The oil-synthesizing capacity of Fusarium oxysporum, cultivated on basal nutrient medium, was evaluated using different carbon and nitrogen sources. In one of the media, molasses was also used as a principal carbon source. Media containing glucose and ammonium nitrate were found to be most efficient for oil production. Fatty acid profile of the fungal oil indicated the presence of a wide range of fatty acids ranging from C8 to C24. Fatty acid composition largely depends on the type of carbon and nitrogen sources.
McSwain, Kristen Bukowski; Young, Megan B.; Giorgino, Mary L.
2014-01-01
A preliminary assessment of nitrate sources was conducted in three creeks that feed nutrient impaired Falls and Jordan Lakes in the vicinity of Durham County, North Carolina, from July 2011 to June 2012. Cabin Branch, Ellerbe Creek, and Third Fork Creek were sampled monthly to determine if sources of nitrate in surface water could be identified on the basis of their stable isotopic compositions. Land use differs in the drainage basins of the investigated creeks—the predominant land use in Cabin Branch Basin is forest, and the Ellerbe and Third Fork Creek Basins are predominantly developed urban areas. Total nutrient concentrations were below 1 milligram per liter (mg/L). All measured nitrate plus nitrite concentrations were below the North Carolina standard of 10 mg/L as nitrogen with the highest concentration of 0.363 mg/L measured in Third Fork Creek. Concentrations of ammonia were generally less than 0.1 mg/L as nitrogen in all creek samples. More than 50 percent of the total nitrogen measured in the creeks was in the form of organic nitrogen. Total phosphorus and orthophosphate concentrations in all samples were generally less than 0.2 mg/L as phosphorus. The isotopic composition of surface water (δ2HH20 and δ18OH2O) is similar to that of modern-day precipitation. During July and August 2011 and May and June 2012, surface-water samples displayed a seasonal difference in isotopic composition, indicating fractionation of isotopes as a result of evaporation and, potentially, mixing with local and regional groundwater. The dominant source of nitrate to Cabin Branch, Ellerbe Creek, and Third Fork Creek was the nitrification of soil nitrogen. Two stormflow samples in Ellerbe Creek and Third Fork Creek had nitrate sources that were a mixture of the nitrification of soil nitrogen and an atmospheric source that had bypassed some soil contact through impermeable surfaces within the drainage basin. No influence of a septic or wastewater source was found in Cabin Branch. Results from this study suggest that it is possible to distinguish sources of nitrogen and biogeochemical processes on nitrate using stable isotopes of nitrogen and oxygen in small creeks of Durham County, North Carolina.
Molecular signature of organic nitrogen in septic-impacted groundwater
Arnold, William A.; Longnecker, Krista; Kroeger, Kevin D.; Kujawinski, Elizabeth B.
2014-01-01
Dissolved inorganic and organic nitrogen levels are elevated in aquatic systems due to anthropogenic activities. Dissolved organic nitrogen (DON) arises from various sources, and its impact could be more clearly constrained if specific sources were identified and if the molecular-level composition of DON were better understood. In this work, the pharmaceutical carbamazepine was used to identify septic-impacted groundwater in a coastal watershed. Using ultrahigh resolution mass spectrometry data, the nitrogen-containing features of the dissolved organic matter in septic-impacted and non-impacted samples were compared. The septic-impacted groundwater samples have a larger abundance of nitrogen-containing formulas. Impacted samples have additional DON features in the regions ascribed as ‘protein-like’ and ‘lipid-like’ in van Krevelen space and have more intense nitrogen-containing features in a specific region of a carbon versus mass plot. These features are potential indicators of dissolved organic nitrogen arising from septic effluents, and this work suggests that ultrahigh resolution mass spectrometry is a valuable tool to identify and characterize sources of DON.
Convergent evidence for widespread rock nitrogen sources in Earth's surface environment.
Houlton, B Z; Morford, S L; Dahlgren, R A
2018-04-06
Nitrogen availability is a pivotal control on terrestrial carbon sequestration and global climate change. Historical and contemporary views assume that nitrogen enters Earth's land-surface ecosystems from the atmosphere. Here we demonstrate that bedrock is a nitrogen source that rivals atmospheric nitrogen inputs across major sectors of the global terrestrial environment. Evidence drawn from the planet's nitrogen balance, geochemical proxies, and our spatial weathering model reveal that ~19 to 31 teragrams of nitrogen are mobilized from near-surface rocks annually. About 11 to 18 teragrams of this nitrogen are chemically weathered in situ, thereby increasing the unmanaged (preindustrial) terrestrial nitrogen balance from 8 to 26%. These findings provide a global perspective to reconcile Earth's nitrogen budget, with implications for nutrient-driven controls over the terrestrial carbon sink. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Technical Reports Server (NTRS)
Raper, C. D.; Tolley-Henry, L.
1989-01-01
An important feature of controlled-environment crop production systems such as those to be used for life support of crews during space exploration is the efficient utilization of nitrogen supplies. Making decisions about the best sources of these supplies requires research into the relationship between nitrogen source and the physiological processes which regulate vegetative and reproductive plant growth. Work done in four areas within this research objective is reported: (1) experiments on the effects of root-zone pH on preferential utilization of NO3(-) versus NH4(+) nitrogen; (2) investigation of processes at the whole-plant level that regulate nitrogen uptake; (3) studies of the effects of atmospheric CO2 and NO3(-) supply on the growth of soybeans; and (4) examination of the role of NO3(-) uptake in enhancement of root respiration.
Neoh, Chin Hong; Lam, Chi Yong; Lim, Chi Kim; Yahya, Adibah; Bay, Hui Han; Ibrahim, Zaharah; Noor, Zainura Zainon
2015-08-01
Extensive use of recalcitrant azo dyes in textile and paper industries poses a direct threat to the environment due to the carcinogenicity of their degradation products. The aim of this study was to investigate the efficiency of Curvularia clavata NZ2 in decolorization of azo dyes. The ability of the fungus to decolorize azo dyes can be evaluated as an important outcome as existing effluent treatment is unable to remove the dyes effectively. C. clavata has the ability to decolorize Reactive Black 5 (RB5), Acid Orange 7 (AO7), and Congo Red azo dyes, utilizing these as sole sources of carbon and nitrogen. Ultraviolet-visible (UV-vis) spectroscopy and Fourier infrared spectroscopy (FTIR) analysis of the extracted RB5's metabolites along with desorption tests confirmed that the decolorization process occurred due to degradation and not merely by adsorption. Enzyme activities of extracellular enzymes such as carboxymethylcellulase (CMCase), xylanase, laccase, and manganese peroxidase (MnP) were also detected during the decolorization process. Toxicity expressed as inhibition of germination was reduced significantly in fungal-treated azo dye solution when compared with the control. The cultivation of C. clavata under sequential batch system also recorded a decolorization efficiency of above 90%. The crude enzyme secreted by C. clavata also showed excellent ability to decolorize RB5 solutions with concentrations of 100 ppm (88-92%) and 1000 ppm (70-77%) without redox mediator. This proved that extracellular enzymes produced by C. clavata played a major role in decolorization of RB5.
Bloom, Arnold J; Randall, Lesley; Taylor, Alison R; Silk, Wendy K
2012-03-01
This study measured total osmolarity and concentrations of NH(4)(+), NO(3)(-), K(+), soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH(4)(+) and NO(3)(-) in xylem sap for plants receiving NH(4)(+) or NO(3)(-) as a sole N-source, NH(4)(+) plus NO(3)(-), or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH(4)(+) indicated that growing cells imported NH(4)(+) from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH(4)(+) absorbed. Net root NO(3)(-) influx under Ca(NO(3))(2) nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO(3)(-) influx under NH(4)NO(3) was less than the local deposition rate in the growth zone, indicating that additional NO(3)(-) was imported or metabolically produced. The profile of NO(3)(-) deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO(3))(2) or NH(4)NO(3). These results suggest that NO(3)(-) may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues.
Carlisle, Eli; Myers, Samuel; Raboy, Victor; Bloom, Arnold
2012-01-01
Inorganic N is available to plants from the soil as ammonium (NH4+) and nitrate (NO3-). We studied how wheat grown hydroponically to senescence in controlled environmental chambers is affected by N form (NH4+ vs. NO3−) and CO2 concentration (“subambient,” “ambient,” and “elevated”) in terms of biomass, yield, and nutrient accumulation and partitioning. Wheat supplied with NH4+ as a sole N source had the strongest response to CO2 concentration. Plants exposed to subambient and ambient CO2 concentrations typically had the greatest biomass and nutrient accumulation under both N forms. In general NH4+-supplied plants had higher concentrations of total N, P, K, S, Ca, Zn, Fe, and Cu, while NO3--supplied plants had higher concentrations of Mg, B, Mn, and NO3- - N. NH4+-supplied plants contained amounts of phytate similar to NO3−-supplied plants but had higher bioavailable Zn, which could have consequences for human health. NH4+-supplied plants allocated more nutrients and biomass to aboveground tissues whereas NO3+-supplied plants allocated more nutrients to the roots. The two inorganic nitrogen forms influenced plant growth and nutrient status so distinctly that they should be treated as separate nutrients. Moreover, plant growth and nutrient status varied in a non-linear manner with atmospheric CO2 concentration. PMID:22969784
Lee, Soo Chan; Phadke, Sujal; Sun, Sheng; Heitman, Joseph
2012-11-01
Cryptococcus neoformans is a human-pathogenic basidiomycete that commonly infects HIV/AIDS patients to cause meningoencephalitis (7, 19). C. neoformans grows as a budding yeast during vegetative growth or as hyphae during sexual reproduction. Pseudohyphal growth of C. neoformans has been observed rarely during murine and human infections but frequently during coculture with amoeba; however, the genetics underlying pseudohyphal growth are largely unknown. Our studies found that C. neoformans displays pseudohyphal growth under nitrogen-limiting conditions, especially when a small amount of ammonium is available as a sole nitrogen source. Pseudohyphal growth was observed with Cryptococcus neoformans serotypes A and D and Cryptococcus gattii. C. neoformans pseudohyphae bud to produce yeast cells and normal smooth hemispherical colonies when transferred to complete media, indicating that pseudohyphal growth is a conditional developmental stage. Subsequent analysis revealed that two ammonium permeases encoded by the AMT1 and AMT2 genes are required for pseudohyphal growth. Both amt1 and amt2 mutants are capable of forming pseudohyphae; however, amt1 amt2 double mutants do not form pseudohyphae. Interestingly, C. gattii pseudohypha formation is irreversible and involves a RAM pathway mutation that drives pseudohyphal development. We also found that pseudohyphal growth is related to the invasive growth into the medium. These results demonstrate that pseudohyphal growth is a common reversible growth pattern in C. neoformans but a mutational genetic event in C. gattii and provide new insights into understanding pseudohyphal growth of Cryptococcus.
Pearson, Melanie M.; Yep, Alejandra; Smith, Sara N.; Mobley, Harry L. T.
2011-01-01
The enteric bacterium Proteus mirabilis is a common cause of complicated urinary tract infections. In this study, microarrays were used to analyze P. mirabilis gene expression in vivo from experimentally infected mice. Urine was collected at 1, 3, and 7 days postinfection, and RNA was isolated from bacteria in the urine for transcriptional analysis. Across nine microarrays, 471 genes were upregulated and 82 were downregulated in vivo compared to in vitro broth culture. Genes upregulated in vivo encoded mannose-resistant Proteus-like (MR/P) fimbriae, urease, iron uptake systems, amino acid and peptide transporters, pyruvate metabolism enzymes, and a portion of the tricarboxylic acid (TCA) cycle enzymes. Flagella were downregulated. Ammonia assimilation gene glnA (glutamine synthetase) was repressed in vivo, while gdhA (glutamate dehydrogenase) was upregulated in vivo. Contrary to our expectations, ammonia availability due to urease activity in P. mirabilis did not drive this gene expression. A gdhA mutant was growth deficient in minimal medium with citrate as the sole carbon source, and loss of gdhA resulted in a significant fitness defect in the mouse model of urinary tract infection. Unlike Escherichia coli, which represses gdhA and upregulates glnA in vivo and cannot utilize citrate, the data suggest that P. mirabilis uses glutamate dehydrogenase to monitor carbon-nitrogen balance, and this ability contributes to the pathogenic potential of P. mirabilis in the urinary tract. PMID:21505083
Han, Yuanyuan; Jin, Xibiao; Wang, Feng; Liu, Yongdi; Chen, Xiurong
2014-01-01
During the startup of a full-scale anoxic/aerobic (A/O) biological treatment plant for acrylonitrile wastewater, the removal efficiencies of NH(3)-N and total Kjeldahl nitrogen (TKN) were 1.29 and 0.83% on day 30, respectively. The nitrification process was almost totally inhibited, which was mainly caused by the inhibitory effects of toxic compounds. To eliminate the inhibition, cultivating the bacteria that degrade toxic compounds with patience was applied into the second startup of the biological treatment plant. After 75 days of startup, the inhibitory effects of the toxic compounds on nitrification were eliminated. The treatment plant has been operated stably for more than 3 years. During the last 100 days, the influent concentrations of chemical oxygen demand (COD), NH(3)-N, TKN and total cyanide (TCN) were 831-2,164, 188-516, 306-542 and 1.17-9.57 mg L(-1) respectively, and the effluent concentrations were 257 ± 30.9, 3.30 ± 1.10, 31.6 ± 4.49 and 0.40 ± 0.10 mg L(-1) (n = 100), respectively. Four strains of cyanide-degrading bacteria which were able to grow with cyanide as the sole carbon and nitrogen source were isolated from the full-scale biological treatment plant. They were short and rod-shaped under scanning electron microscopy (SEM) and were identified as Brevundimonas sp., Rhizobium sp., Dietzia natronolimnaea and Microbacterium sp., respectively.
Bloom, Arnold J.; Randall, Lesley; Taylor, Alison R.; Silk, Wendy K.
2012-01-01
This study measured total osmolarity and concentrations of NH4+, NO3–, K+, soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH4+ and NO3– in xylem sap for plants receiving NH4+ or NO3– as a sole N-source, NH4+ plus NO3–, or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH4+ indicated that growing cells imported NH4+ from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH4+ absorbed. Net root NO3– influx under Ca(NO3)2 nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO3– influx under NH4NO3 was less than the local deposition rate in the growth zone, indicating that additional NO3– was imported or metabolically produced. The profile of NO3– deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO3)2 or NH4NO3. These results suggest that NO3– may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues. PMID:22213811
Tsouko, Erminda; Kachrimanidou, Vasiliki; Dos Santos, Anderson Fragoso; do Nascimento Vitorino Lima, Maria Eduarda; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise Maria Guimarães; Koutinas, Apostolis A
2017-04-01
This study demonstrates the production of a generic nutrient-rich feedstock using by-product streams from palm oil production that could be used as a substitute for commercial fermentation supplements. Solid-state fermentations of palm kernel cake (PKC) and palm-pressed fiber (PPF) were conducted in tray bioreactors and a rotating drum bioreactor by the fungal strain Aspergillus oryzae for the production of crude enzymes. The production of protease was optimized (319.3 U/g) at an initial moisture content of 55 %, when PKC was used as the sole substrate. The highest free amino nitrogen (FAN) production (5.6 mg/g) obtained via PKC hydrolysis using the crude enzymes produced via solid-state fermentation was achieved at 50 °C. Three initial PKC concentrations (48.7, 73.7, and 98.7 g/L) were tested in hydrolysis experiments, leading to total Kjeldahl nitrogen to FAN conversion yields up to 27.9 %. Sequential solid-state fermentation followed by hydrolysis was carried out in the same rotating drum bioreactor, leading to the production of 136.7 U/g of protease activity during fermentation and 196.5 mg/L of FAN during hydrolysis. Microbial oil production was successfully achieved with the oleaginous yeast strain Lipomyces starkeyi DSM 70296 cultivated on the produced PKC hydrolysate mixed with commercial carbon sources, including glucose, xylose, mannose, galactose, and arabinose.
Madeira, Camila L; Speet, Samuel A; Nieto, Cristina A; Abrell, Leif; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A
2017-01-01
Insensitive munitions, such as 3-nitro-1,2,4-triazol-5-one (NTO), are being considered by the U.S. Army as replacements for conventional explosives. Environmental emissions of NTO are expected to increase as its use becomes widespread; but only a few studies have considered the remediation of NTO-contaminated sites. In this study, sequential anaerobic-aerobic biodegradation of NTO was investigated in bioreactors using soil as inoculum. Batch bioassays confirmed microbial reduction of NTO under anaerobic conditions to 3-amino-1,2,4-triazol-5-one (ATO) using pyruvate as electron-donating cosubstrate. However, ATO biodegradation was only observed after the redox condition was switched to aerobic. This study also demonstrated that the high-rate removal of NTO in contaminated water can be attained in a continuous-flow aerated bioreactor. The reactor was first fed ATO as sole energy and nitrogen source prior to NTO addition. After few days, ATO was removed in a sustained fashion by 100%. When NTO was introduced together with electron-donor (pyruvate), NTO degradation increased progressively, reaching a removal efficiency of 93.5%. Mineralization of NTO was evidenced by the partial release of inorganic nitrogen species in the effluent, and lack of ATO accumulation. A plausible hypothesis for these findings is that NTO reduction occurred in anaerobic zones of the biofilm whereas ATO was mineralized in the bulk aerobic zones of the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Madeira, Camila L.; Speet, Samuel A.; Nieto, Cristina A.; Abrell, Leif; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A.
2017-01-01
Insensitive munitions, such as 3-nitro-1,2,4-triazol-5-one (NTO), are being considered by the U.S. Army as replacements for conventional explosives. Environmental emissions of NTO are expected to increase as its use becomes widespread; but only a few studies have considered the remediation of NTO-contaminated sites. In this study, sequential anaerobic-aerobic biodegradation of NTO was investigated in bioreactors using soil as inoculum. Batch bioassays confirmed microbial reduction of NTO under anaerobic conditions to 3-amino-1,2,4-triazol-5-one (ATO) using pyruvate as electron-donating cosubstrate. However, ATO biodegradation was only observed after the redox condition was switched to aerobic. This study also demonstrated that the high-rate removal of NTO in contaminated water can be attained in a continuous-flow aerated bioreactor. The reactor was first fed ATO as sole energy and nitrogen source prior to NTO addition. After few days, ATO was removed in a sustained fashion by 100%. When NTO was introduced together with electron-donor (pyruvate), NTO degradation increased progressively, reaching a removal efficiency of 93.5%. Mineralization of NTO was evidenced by the partial release of inorganic nitrogen species in the effluent and lack of ATO accumulation. A plausible hypothesis for these findings is that NTO reduction occurred in anaerobic zones of the biofilm whereas ATO was mineralized in the bulk aerobic zones of the reactor. PMID:27750172
Daebeler, Anne; Bodelier, Paul LE; Yan, Zheng; Hefting, Mariet M; Jia, Zhongjun; Laanbroek, Hendrikus J
2014-01-01
Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium concentrations are limiting. Here we report on the interactions between nitrifying communities dominated by ammonia-oxidizing archaea (AOA) and Nitrospira-like nitrite-oxidizing bacteria (NOB), and communities of MOB in controlled microcosm experiments with two levels of ammonium and methane availability. We observed strong stimulatory effects of elevated ammonium concentration on the processes of nitrification and methane oxidation as well as on the abundances of autotrophically growing nitrifiers. However, the key players in nitrification and methane oxidation, identified by stable-isotope labeling using 13CO2 and 13CH4, were the same under both ammonium levels, namely type 1.1a AOA, sublineage I and II Nitrospira-like NOB and Methylomicrobium-/Methylosarcina-like MOB, respectively. Ammonia-oxidizing bacteria were nearly absent, and ammonia oxidation could almost exclusively be attributed to AOA. Interestingly, although AOA functional gene abundance increased 10-fold during incubation, there was very limited evidence of autotrophic growth, suggesting a partly mixotrophic lifestyle. Furthermore, autotrophic growth of AOA and NOB was inhibited by active MOB at both ammonium levels. Our results suggest the existence of a previously overlooked competition for nitrogen between nitrifiers and methane oxidizers in soil, thus linking two of the most important biogeochemical cycles in nature. PMID:24858784
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.30-3 - Normal source for emergency loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
....30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-3 Normal source for emergency loads. (a) The normal source...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.30-3 - Normal source for emergency loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
....30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-3 Normal source for emergency loads. (a) The normal source...
46 CFR 112.30-3 - Normal source for emergency loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
....30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-3 Normal source for emergency loads. (a) The normal source...
46 CFR 112.30-3 - Normal source for emergency loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
....30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-3 Normal source for emergency loads. (a) The normal source...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.30-3 - Normal source for emergency loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
....30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-3 Normal source for emergency loads. (a) The normal source...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
46 CFR 112.25-3 - Normal source for emergency loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
....25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatic Starting Diesel Engine or Gas Turbine Driven Emergency Power Source as the Sole Emergency Power Source § 112.25-3 Normal source for...
Breastfeeding as the sole source of milk for 6 months and adolescent bone mineral density.
Blanco, E; Burrows, R; Reyes, M; Lozoff, B; Gahagan, S; Albala, C
2017-10-01
Little is known regarding the relationship between early life factors and bone mineral density (BMD). We found a positive association between breastfeeding for at least 6 months, without formula supplementation, and whole body adolescent BMD z-score. The aim of the study is to assess the role of breastfeeding BF on adolescent bone mineral density (BMD) in a cohort prospectively followed since infancy. We studied 679 participants from an infancy iron deficiency anemia preventive trial in Santiago, Chile, followed to adolescence. Breast and bottle feeding were ascertained weekly from 4 to 12 months. At 16 years, whole body BMD was assessed by DEXA. Using linear regression, we evaluated associations between BF duration and BF as the sole source of milk and adolescent BMD z-score, adjusting for possible infancy, adolescent, and background confounders. Mean birth weight and length were 3.5 (0.3) kg and 50.7 (1.6) cm. For at least 6 months, BF was the sole source of milk for 26.3% and with supplementation for 36.7%. For 37%, BF was provided for less than 6 months. Mean 16-year BMD z-score was 0.25 (1.0). Covariates included male sex, birth length, and gestational age. BF as the sole source of milk ≥6 months, compared to BF < 6 months, was associated with higher adolescent BMD z-score adjusting for covariates (β = 0.29, p < 0.05). Mixed BF was not significantly related to adolescent BMD z-score (β = 0.06, p = 0.47). For every 30 days of BF as the sole source of milk, adolescent BMD z-score increased by 0.03 (p = 0.01). BF without formula supplementation for at least 6 months was associated with higher adolescent BMD z-score and a suggestive trend in the same direction for BMD suggests that exclusivity and duration of BF may play a role in adolescent bone health.
Saleh, Dina; Domagalski, Joseph L.
2015-01-01
The SPARROW (SPAtially Referenced Regressions On Watershed attributes) model was used to evaluate the spatial distribution of total nitrogen (TN) sources, loads, watershed yields, and factors affecting transport and decay in the stream network of California and portions of adjacent states for the year 2002. The two major TN sources to local catchments on a mass basis were fertilizers and manure (51.7%) and wastewater discharge (15.9%). Other sources contributed < 12%. Fertilizer use is widespread in the Central Valley region of California, and also important in several other regions because of the diversity of California agriculture. Precipitation, sand content of surficial soils, wetlands, and tile drains were important for TN movement to stream reaches. Median streamflow in the study area is about 0.04 m3/s. Aquatic losses of nitrogen were found to be most important in intermittent and small to medium sized streams (0.2-14 m3/s), while larger streams showed less loss, and therefore are important for TN transport. Nitrogen loss in reservoirs was found to be insignificant, possibly because most of the larger ones are located upstream of nitrogen sources. The model was used to show loadings, sources, and tributary inputs to several major rivers. The information provided by the SPARROW model is useful for determining both the major sources contributing nitrogen to streams and the specific tributaries that transport the load.
da Silva, M C; Bertolini, M C; Ernandes, J R
2001-01-01
The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Wang, Yun; Dai, Xiao
2015-08-01
In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.
Watershed delineation and nitrogen source analysis for Bayou ...
Nutrient pollution in stormwater runoff from urbanized areas contributes to water quality degradation in streams and receiving waterbodies. Agriculture, population growth, and industrial activities are significant sources of nitrogen inputs for surface waters. Increased nitrogen loading stimulates eutrophication through algal blooms, which leads to an overall decrease in drinking water and aquatic habitat quality. Bayou Chico, a highly urbanized watershed in the Pensacola Bay system in northwest Florida, is a nutrient-impaired waterbody under management to reduce bacteria and nutrient loadings, in accordance with the Florida Department of Environmental Protection’s (FDEP) Basin Management Action Plan. Best management practices and green infrastructure (GI) throughout Bayou Chico help reduce nitrogen inputs by retaining and filtering water. GI can function as a nitrogen sink by sorption or infiltration into soils, sequestration into plant material, and denitrification through microbial processes. However, a better understanding of the efficiency of these systems is needed to better inform management practices on future nitrogen reduction. This project will address two issues relating to the presence of nitrogen in the Bayou Chico watershed: 1) the identification of specific nitrogen sources within urbanized areas, and 2) the potential rates of nitrogen removal and sequestration from GI and nitrogen transport throughout the bayou. To accomplish these goals, nitr
NASA Astrophysics Data System (ADS)
Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei
2017-03-01
We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.
Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Sun, Han; Shen, Qiuting; Li, Xiang; Chen, Hong
2015-04-15
Adding alkyl polyglucose (APG) into an anaerobic treatment system of waste activated sludge (WAS) was reported to remarkably improve the production of short-chain fatty acids (SCFAs), especially propionic acid via simultaneously accelerating solubilization and hydrolysis, enhancing acidification, inhibiting methanogenesis and balancing carbon to nitrogen (C/N) ratio of substrate. Not only the production of SCFAs, especially propionic acid, was significantly improved by APG, but also the feasible operation time was shortened. The SCFAs yield at 0.3 g APG per gram of total suspended solids (TSS) within 4 d was 2988 ± 60 mg chemical oxygen demand (COD) per liter, much higher than that those from sole WAS or sole WAS plus sole APG. The corresponding yield of propionic acid was 1312 ± 25 mg COD/L, 7.9-fold of sole WAS. Mechanism investigation showed that during anaerobic treatment of WAS in the presence of APG both the solubilization and hydrolysis were accelerated and the acidification was enhanced, while the methanogenesis was inhibited. Moreover, the activities of key enzymes involved in WAS hydrolysis and acidification were improved through the adjustment of C/N ratio of substrates with APG. The abundance of microorganisms responsible for organic compounds hydrolysis and SCFAs production was also observed to be greatly enhanced with APG via 454 high-throughput pyrosequencing analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi
Harned, D.A.; Atkins, J.B.; Harvill, J.S.
2004-01-01
A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinches, A.; Pallent, L.J.
1986-10-01
Rate and yield information relating to biomass and product formation and to nitrogen, glucose and oxygen consumption are described for xanthan gum batch fermentations in which both chemically defined (glutamate nitrogen) and complex (peptone nitrogen) media are employed. Simple growth and product models are used for data interpretation. For both nitrogen sources, rate and yield parameter estimates are shown to be independent of initial nitrogen concentrations. For stationary phases, specific rates of gum production are shown to be independent of nitrogen source but dependent on initial nitrogen concentration. The latter is modeled empirically and suggests caution in applying simple productmore » models to xanthan gum fermentations. 13 references.« less
Cravotta, C.A.
1995-01-01
Stable isotopes of carbon (C), nitrogen (N), and sulfur (S) in nitrogen sources and nearby samples of topsoil, subsoil, runoff water, and stream water were measured to evaluate the feasibility of using isotopic data to identify nitrogen sources in stream water from forested, agricultural, or suburban land-use areas. Chemical and isotopic compositions were measured for six N-source types consisting of rain water, forest-leaf litter, synthetic fertilizer, farm-animal manure, municipal-sewage effluent and sludge, and septic-tank effluent and sludge. Compositions of topsoil, subsoil, runoff water, and stream water were measured to evaluate changes in compositions of transported N-containing materials near the N source. Animal manure, human waste (sewage plus septic), and forest-leaf litter can be distinguished on the basis of C; however, most N-sources can not be distinguished on the basis of N and S, owing to wide ranges of compositions and overlap among different N-source types. Although values of N for soil and runoff-water samples are qualitatively similar to those of the applied N source, values of C and S for runoff-water and stream-water samples appear to reflect the compositions of relatively large reservoirs of the elements in soil organic matter and minerals, respectively, and not the composition of the applied N source. Because of incomplete chemical transfor- mations, the ratio of organic carbon to total nitrogen for particulates in runoff or stream waters generally is lower than that for associated, nearby soils, and isotopic compositions commonly differ between particulate and dissolved fractions in the water.
Moran, P.W.; Cox, S.E.; Embrey, S.S.; Huffman, R.L.; Olsen, T.D.; Fradkin, S.C.
2012-01-01
Lake Crescent, in Olympic National Park in the northwest corner of Washington State is a deep-water lake renowned for its pristine water quality and oligotrophic nature. To examine the major sources and sinks of nutrients (as total nitrogen, total phosphorus, and dissolved nitrate), a study was conducted in the Lake Crescent watershed. The study involved measuring five major inflow streams, the Lyre River as the major outflow, recording weather and climatic data, coring lake bed sediment, and analyzing nutrient chemistry in several relevant media over 14 months. Water samples for total nitrogen, total phosphorous, and dissolved nitrate from the five inflow streams, the outlet Lyre River, and two stations in the lake were collected monthly from May 2006 through May 2007. Periodic samples of shallow water from temporary sampling wells were collected at numerous locations around the lake. Concentrations of nutrients detected in Lake Crescent and tributaries were then applied to the water budget estimates to arrive at monthly and annual loads from various environmental components within the watershed. Other sources, such as leaf litter, pollen, or automobile exhaust were estimated from annual values obtained from various literature sources. This information then was used to construct a nutrient budget for total nitrogen and total phosphorus. The nitrogen budget generally highlights vehicle traffic-diesel trucks in particular-along U.S. Highway 101 as a potential major anthropogenic source of nitrogen compounds in the lake. In contrast, contribution of nitrogen compounds from onsite septic systems appears to be relatively minor related to the other sources identified.
Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.
Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang
2015-04-14
In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.
Efficient Utilization of Waste Carbon Source for Advanced Nitrogen Removal of Landfill Leachate
Yin, Wenjun; Tan, Fengxun
2017-01-01
A modified single sequencing batch reactor (SBR) was developed to remove the nitrogen of the real landfill leachate in this study. To take the full advantage of the SBR, stir phase was added before and after aeration, respectively. The new mechanism in this experiment could improve the removal of nitrogen efficiently by the utilization of carbon source in the raw leachate. This experiment adopts the SBR process to dispose of the real leachate, in which the COD and ammonia nitrogen concentrations were about 3800 mg/L and 1000 mg/L, respectively. Results showed that the removal rates of COD and total nitrogen were above 85% and 95%, respectively, and the effluent COD and total nitrogen were less than 500 mg/L and 40 mg/L under the condition of not adding any carbon source. Also, the specific nitrogen removal rate was 1.48 mgN/(h·gvss). In this process, polyhydroxyalkanoate (PHA) as a critical factor for the highly efficient nitrogen removal (>95%) was approved to be the primary carbon source in the sludge. Because most of the organic matter in raw water was used for denitrification, in the duration of this 160-day experiment, zero discharge of sludge was realized when the effluent suspended solids were 30–50 mg/L. PMID:29435456
Effect of Nitrogen Source on Growth and Trichloroethylene Degradation by Methane-Oxidizing Bacteria
Chu, Kung-Hui; Alvarez-Cohen, Lisa
1998-01-01
The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-β-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities (mass of TCE degraded/biomass inactivated), measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments. PMID:9726896
Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors
Jain, A.A.; Yang, Xiaojuan; Kheshgi, H.; McGuire, A. David; Post, W.; Kicklighter, David W.
2009-01-01
Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.
Nitrogen Source and Loading Data for EPA Estuary Data Mapper
Nitrogen source and loading data have been compiled and aggregated at the scale of estuaries and associated watersheds of the conterminous United States, using the spatial framework in EPA's Estuary Data Mapper (EDM) to provide system boundaries. Original sources of data include...
Sources and Trends of Nitrogen Loading to New England Estuaries
A database of nitrogen (N) loading components to estuaries of the conterminous United States has been developed through application of regional SPARROW models. The original SPARROW models predict average detrended loads by source based on average flow conditions and 2002 source t...
Optimization of diesel oil biodegradation in seawater using statistical experimental methodology.
Xia, Wenxiang; Li, Jincheng; Xia, Yan; Song, Zhiwen; Zhou, Jihong
2012-01-01
Petroleum hydrocarbons released into the environment can be harmful to higher organisms, but they can be utilized by microorganisms as the sole source of energy for metabolism. To investigate the optimal conditions of diesel oil biodegradation, the Plackett-Burman (PB) design was used for the optimization in the first step, and N source (NaNO₃), P source (KH₂PO₄) and pH were found to be significant factors affecting oil degradation. Then the response surface methodology (RSM) using a central composite design (CCD) was adopted for the augmentation of diesel oil biodegradation and a fitted quadratic model was obtained. The model F-value of 27.25 and the low probability value (<0.0001) indicate that the model is significant and that the concentration of NaNO₃N, KH₂PO₄ and pH had significant effects on oil removal during the study. Three-dimensional response surface plots were constructed by plotting the response (oil degradation efficiency) on the z-axis against any two independent variables, and the optimal biodegradation conditions of diesel oil (original total petroleum hydrocarbons 125 mg/L) were determined as follows: NaNO₃ 0.143 g, KH₂PO₄ 0.022 g and pH 7.4. These results fit quite well with the C, N and P ratio in biological cells. Results from the present study might provide a new method to estimate the optimal nitrogen and phosphorus concentration in advance for oil biodegradation according to the composition of petroleum.
Isolation and characterisation of azoxystrobin degrading bacteria from soil.
Howell, Christopher C; Semple, Kirk T; Bending, Gary D
2014-01-01
The first strobilurin fungicides were introduced in 1996, and have since been used in a vast array of disease/plant systems worldwide. The strobilurins now consist of 16 compounds and represent the 2nd most important fungicide group worldwide with 15% of the total fungicide market share. Strobilurins are moderately persistent in soil, and some degradation products (e.g. azoxystrobin acid) have been detected as contaminants of freshwater systems. Little is currently known about the transformation processes involved in the biodegradation of strobilurins or the microbial groups involved. Using sequential soil and liquid culture enrichments, we isolated two bacterial strains which were able to degrade the most widely used strobilurin, azoxystrobin, when supplied as a sole carbon source. 16S rRNA showed that the strains showed homology to Cupriavidus sp. and Rhodanobacter sp. Both isolated strains were also able to degrade the related strobilurin compounds trifloxystrobin, pyraclostrobin, and kresoxim-methyl. An additional nitrogen source was required for degradation to occur, but the addition of a further carbon source reduced compound degradation by approximately 50%. However, (14)C radiometric analysis showed that full mineralisation of azosxystrobin to (14)CO2 was negligible for both isolates. 16S rRNA T-RFLP analysis using both DNA and RNA extracts showed that degradation of azoxystrobin in soil was associated with shifts in bacterial community structure. However, the phylotypes which proliferated during degradation could not be attributed to the isolated degraders. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aspmo, Stein Ivar; Horn, Svein Jarle; Eijsink, Vincent G H
2005-07-01
Hydrolysates of cod viscera were tested as an alternative to commonly used complex nitrogen sources (peptones and/or extracts) for the type strains of the lactic acid bacteria Lactococcus lactis, Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus casei, Lactobacillus sakei and Pediococcus pentosaceus. Comparative studies with MRS-like media containing different nitrogen sources showed that all the fish hydrolysates performed equally well or better than commercial extracts/peptones for all selected lactic acid bacteria.
Using Model Comparisons to Understand Sources of Nitrogen Delivered to US Coastal Areas
Nitrogen loading to water bodies can result in eutrophication-related hypoxia and degraded water quality. The relative contributions of different anthropogenic and natural sources of in-stream N cannot be directly measured at whole-watershed scales; hence, N source attribution e...
Recent advances in glyphosate biodegradation.
Zhan, Hui; Feng, Yanmei; Fan, Xinghui; Chen, Shaohua
2018-06-01
Glyphosate has emerged as the most widespread herbicide to control annual and perennial weeds. Massive use of glyphosate for decades has resulted in its ubiquitous presence in the environment, and poses a threat to humans and ecosystem. Different approaches such as adsorption, photocatalytic degradation, and microbial degradation have been studied to break down glyphosate in the environment. Among these, microbial degradation is the most effective and eco-friendly method. During its degradation, various microorganisms can use glyphosate as a sole source of phosphorus, carbon, and nitrogen. Major glyphosate degradation pathways and its metabolites have been frequently investigated, but the related enzymes and genes have been rarely studied. There are many reviews about the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid. However, there is lack of reviews on biodegradation and bioremediation of glyphosate. The aims of this review are to summarize the microbial degradation of glyphosate and discuss the potential of glyphosate-degrading microorganisms to bioremediate glyphosate-contaminated environments. This review will provide an instructive direction to apply glyphosate-degrading microorganisms in the environment for bioremediation.
Yu, Jiaping; He, Huijun; Yang, William L; Yang, Chunping; Zeng, Guangming; Wu, Xin
2018-07-01
A novel magnetic bionanomaterial, Penicillium sp. yz11-22N2 doped with nano Fe 3 O 4 entrapped in polyvinyl alcohol-sodium alginate gel beads (PFEPS), was successfully synthesized. The factors including nutrient substance, temperature, pH, initial concentrations of atrazine and rotational speeds were presented and discussed in detail. Results showed that the highest removal efficiency of atrazine by PFEPS was 91.2% at 8.00 mg/L atrazine. The maximum removal capacity for atrazine was 7.94 mg/g. Meanwhile, it has been found that most of atrazine were removed by metabolism and degradation of Penicillium sp. yz11-22N2, which could use atrazine as the sole source of either carbon or nitrogen. Degradation kinetics of atrazine conformed to first-order kinetics model. The intermediates indicated that the possible pathway for atrazine degradation by PFEPS mainly included hydrolysis dechlorination, dealkylation, side-chain oxidation and ring-opening. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xing, X H; Inoue, T; Tanji, Y; Unno, H
1999-01-01
In order to examine the microbial degradation of p-nitrophenol (PNP) by a mixed culture system and simultaneous removal of nitrite released via the degradation, an activated sludge retained in porous carrier particles and a suspension culture as a control were acclimated to artificial sewage containing PNP as the sole carbon source. The adaptation of microbes retained in porous carrier particles to PNP was faster than that of suspended microbes by more than 20 d. After microbial adaptation to PNP, it was degraded completely without significant accumulation of intermediate metabolites. The PNP degradation activity of the retained microbes was more than 2 times higher than that of the suspended microbes. By increasing the retained microbial concentration, nitrite released from the degraded PNP was removed by denitrification. This research demonstrates that using microbes retained in porous carrier particles is not only effective for reduction of acclimation time but also enables simultaneous removal of the nitrogen compounds resulting from the degradation of nitroaromatics.
Dwivedi, Naveen; Balomajumder, Chandrajit; Mondal, Prasenji
2016-07-01
The present study aimed to investigate the removal efficiency of cyanide from contaminated water by adsorption, biodegradation and simultaneous adsorption and biodegradation (SAB) process individually in a batch reactor. Adsorption was achieved by using almond shell granules and biodegradation was conducted with suspended cultures of Bacillus cereus, whereas SAB process was carried out using Bacillus cereus and almond shell in a batch reactor. The effect of agitation time, pH, and initial cyanide concentration on the % removal of cyanide has been discussed. Under experimental conditions, optimum removal was obtained at pH 7 with agitation time of 48 hrs and temperature of 35 degrees C. Cyanide was utilized by bacteria as sole source of nitrogen for growth. The removal efficiencies of cyanide by adsorption, biodegradation, and SAB were found to be 91.38%, 95.87%, and 99.63%, respectively, at initial cyanide concentration of 100 mg l(-1). The removal efficiency of SAB was found to be better as compared to that of biodegradation and adsorption alone.
Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil.
Li, Chao; Zhang, Ji; Wu, Zhi-Guo; Cao, Li; Yan, Xin; Li, Shun-Peng
2012-03-14
A buprofezin-degrading bacterium, YL-1, was isolated from rice field soil. YL-1 was identified as Rhodococcus sp. on the basis of the comparative analysis of 16S rDNA sequences. The strain could use buprofezin as the sole source of carbon and nitrogen for growth and was able to degrade 92.4% of 50 mg L(-1) buprofezin within 48 h in liquid culture. During the degradation of buprofezin, four possible metabolites, 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one, N-tert-butyl-thioformimidic acid formylaminomethyl ester, 2-isothiocyanato-2-methyl-propane, and 2-isothiocyanato-propane, were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The catechol 2,3-dioxygenase activity was strongly induced during the degradation of buprofezin. A novel microbial biodegradation pathway for buprofezin was proposed on the basis of these metabolites. The inoculation of soils treated with buprofezin with strain YL-1 resulted in a higher degradation rate than that observed in noninoculated soils, indicating that strain YL-1 has the potential to be used in the bioremediation of buprofezin-contaminated environments.
Ramakrishna Reddy, M; Sathi Reddy, K; Ranjita Chouhan, Y; Bee, Hameeda; Reddy, Gopal
2017-11-01
An effecient feather-degrading bacterium was isolated from poultry dumping yard and identified as Bacillus pumilus GRK based on 16S rRNA sequencing. Complete feather degradation (98.3±1.52%) with high keratinase production (373±4 U/ml) was observed in 24h under optimized conditions (substrate 1% (w/w); inoculum size 4% (v/v); pH 10; 200rpm at 37°C) with feathers as sole carbon and nitrogen source in tap water. The fermented broth was enriched with amino acids like tryptophan (221.44µg/ml), isoleucine (15.0µg/ml), lysine (10.81µg/ml) and methionine (7.24µg/ml) suggesting its potential use as feed supplement. The keratinase produced was a detergent stable serine protease and its activity was further enhanced by Ca +2 and Mg +2 . Bacillus pumilus GRK keratinase was successfully utilised as bioadditive in detergent formulations for removing the blood stains from cloth without affecting its fiber and texture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degradation of the metal-cyano complex tetracyanonickelate (II) by Fusarium oxysporum N-10.
Yanase, H; Sakamoto, A; Okamoto, K; Kita, K; Sato, Y
2000-03-01
A fungus with the ability to utilize a metalcyano compound, tetracyanonickelate (II) ¿K2[Ni (CN)4]; TCN¿, as its sole source of nitrogen was isolated from soil and identified as Fusarium oxysporum N-10. Both intact mycelia and cell-free extract of the strain catalyzed hydrolysis of TCN to formate and ammonia and produced formamide as an intermediate, thereby indicating that a hydratase and an amidase sequentially participated in the degradation of TCN. The enzyme catalyzing the hydration of TCN was purified approximately ten-fold from the cell-free extract of strain N-10 with a yield of 29%. The molecular mass of the active enzyme was estimated to be 160 kDa. The enzyme appears to exist as a homotetramer, each subunit having a molecular mass of 40 kDa. The enzyme also catalyzed the hydration of KCN, with a cyanide-hydrating activity 2 x 10(4) times greater than for TCN. The kinetic parameters for TCN and KCN indicated that hydratase isolated from F. oxysporum was a cyanide hydratase able to utilize a broad range of cyano compounds and nitriles as substrates.
Wang, Yong; Chen, Changjing; Cai, Di; Wang, Zheng; Qin, Peiyong; Tan, Tianwei
2016-10-01
The cost reduction of raw material and sterilization could increase the economic feasibility of l-lactic acid fermentation, and the development of an cost-effective and efficient process is highly desired. To improve the efficiency of open fermentation by Lactobacillus rhamnosus based on sweet sorghum juice (SSJ) and to overcome sucrose utilization deficiency of Bacillus coagulans, a mixed fermentation was developed. Besides, the optimization of pH, sugar concentration and fermentation medium were also studied. Under the condition of mixed fermentation and controlled pH, a higher yield of 96.3% was achieved, compared to that (68.8%) in sole Lactobacillus rhamnosus fermentation. With an optimized sugar concentration and a stepwise-controlled pH, the l-lactic acid titer, yield and productivity reached 121gL(-1), 94.6% and 2.18gL(-1)h(-1), respectively. Furthermore, corn steep powder (CSP) as a cheap source of nitrogen and salts was proved to be an efficient supplement to SSJ in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Jiahuang; Sun, Junfei; Wu, Bin; He, Bingfang
2017-04-01
To decrease d-Lactate production cost, wheat bran, a low-cost waste of milling industry, was selected as the sole feedstock. First, the nutrients were recovered from wheat bran by acid protease hydrolysis. Then, cellulosic hydrolysates were prepared from protease-treated samples after acid pretreatment and enzymatic saccharification. The combined use of nutrients and hydrolysates as nitrogen and carbon sources for fermentation by S. inulinus YB1-5 resulted in d-Lactate levels of 99.5g/L, with an average production efficiency of 1.94g/L/h and a yield of 0.89g/g glucose. Moreover, fed-batch simultaneous saccharification and fermentation process at 40°C, 20% (w/v) solid loading and 20FPU/g solid cellulase concentration was obtained. d-Lactate concentrations, yield, productivity, and optical purity were 87.3g/L, 0.65g/g glucose, 0.81g/L/h and 99.1%, respectively. This study provided a feasible procedure that can help produce cellulosic d-Lactate using agricultural waste without external nutrient supplementation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zheng, Chunli; Qu, Baocheng; Wang, Jing; Zhou, Jiti; Wang, Jing; Lu, Hong
2009-06-15
Strain Z3 was isolated from nitrobenzene-contaminated sludge. Strain Z3 was able to utilize nitrobenzene as a sole source of carbon, nitrogen and energy under aerobic condition. Based on the morphology, physiological biochemical characteristics, and 16S rDNA sequence, strain Z3 was identified as Micrococcus luteus. Strain Z3 completely degraded nitrobenzene with initial concentration of 100, 150, 200, and 250 mg L(-1) within 70, 96, 120 and 196 h, respectively. Kinetics of nitrobenzene degradation was described using the Andrews equation. The kinetic parameters were as follows: q(max)=1.19 h(-1), K(s)=29.11 mg L(-1), and K(i)=94.00 mg L(-1). Strain Z3 had a high salinity tolerance. It degraded 200 mg L(-1) nitrobenzene completely in 5% NaCl (w/w%). Strain Z3 therefore could be an excellent candidate for the bio-treatment of nitrobenzene industrial wastewaters with high salinity. This is the first report on the degradation of nitrobenzene by M. luteus and the degradation of nitrobenzene achieved in such a high salinity.
Xu, Xiaopeng; Nie, Zuoming; Zheng, Zhiyong; Zhu, Li; Zhang, Hongtao; Zhan, Xiaobei
2017-09-01
To reveal effects of different nitrogen sources on the expressions and functions of genes in Sphingomonas sp. ATCC 31555, it was cultivated in medium containing inorganic nitrogen (IN), organic nitrogen (ON), or inorganic-organic combined nitrogen (CN). Welan gum production and bacterial biomass were determined, and RNA sequencing (RNA-seq) was performed. Differentially expressed genes (DEGs) between the different ATCC 31555 groups were identified, and their functions were analyzed. Welan gum production and bacterial biomass were significantly higher in the ON and CN groups compared with those in the IN group. RNA-seq produced 660 unigenes, among which 488, 731, and 844 DEGs were identified between the IN vs. ON, IN vs. CN, and ON vs. CN groups, respectively. All the DEGs were related significantly to metabolic process and signal transduction. DEGs between the IN vs. CN and ON vs. CN groups were potentially associated with bacterial chemotaxis. Real-time PCR confirmed the expressions of selected DEGs. Organic nitrogen led to higher bacterial biomass and welan gum production than inorganic nitrogen, which might reflect differences in gene expression associated with metabolic process, signal transduction, and bacterial chemotaxis induced by different nitrogen sources.
Rollero, Stéphanie; Bloem, Audrey; Ortiz-Julien, Anne; Camarasa, Carole; Divol, Benoit
2018-05-07
Saccharomyces cerevisiae is currently the most important yeast involved in food fermentations, particularly in oenology. However, several other yeast species occur naturally in grape must that are highly promising for diversifying and improving the aromatic profile of wines. If the nitrogen requirement of S. cerevisiae has been described in detail, those of non-Saccharomyces yeasts remain poorly studied despite their increasingly widespread use in winemaking. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we explored the fermentation performances, the utilization of nitrogen sources and the volatile compound production of ten strains of non-conventional yeasts in pure culture. Two different conditions were tested: one mimicking the grape juice's nitrogen composition and one with all the nitrogen sources at the same level. We highlighted the diversity in terms of nitrogen preference and amount consumed among the yeast strains. Some nitrogen sources (arginine, glutamate, glycine, tryptophan and GABA) displayed the largest variations between strains throughout the fermentation. Several non-Saccharomyces strains produced important aroma compounds such as higher alcohols, acetate and ethyl esters in significantly higher quantities than S. cerevisiae.
Isotopic constraints on the source of Pluto's nitrogen and the history of atmospheric escape
NASA Astrophysics Data System (ADS)
Mandt, Kathleen E.; Mousis, Olivier; Luspay-Kuti, Adrienn
2016-10-01
The origin and evolution of nitrogen in solar system bodies is an important question for understanding processes that took place during the formation of the planets and solar system bodies. Pluto has an atmosphere that is 99% molecular nitrogen, but it is unclear if this nitrogen is primordial or derived from ammonia in the protosolar nebula. The nitrogen isotope ratio is an important tracer of the origin of nitrogen on solar system bodies, and can be used at Pluto to determine the origin of its nitrogen. After evaluating the potential impact of escape and photochemistry on Pluto's nitrogen isotope ratio (14N/15N), we find that if Pluto's nitrogen originated as N2 the current ratio in Pluto's atmosphere would be greater than 324 while it would be less than 157 if the source of Pluto's nitrogen were NH3. The New Horizons spacecraft successfully visited the Pluto system in July 2015 providing a potential opportunity to measure 14N/15N in N2.
A Critical Examination of the Reaction of Pyridoxal 5-Phosphate with Human Hemoglobin Ao
1989-01-01
sodium borohydride gives unacceptable levels of methemoglobin (i.e., > 10%). Excessive foaming and methemoglobin formation can be partially avoided using...a biochemical level . By using new advances in HPLC column technology, we could better determine hetero- geneity in the product mixture due solely to... diphosphoglycerate (2,3-DPG). 6 SFH, which had been stripped of 2,3-DPG, was deoxygenated with nitrogen and treated with a solution of PLP in Tris
The potential bioavailability of mineral-associated organic nitrogen in the rhizosphere.
NASA Astrophysics Data System (ADS)
Jilling, A.; Grandy, S.; Keiluweit, M.
2017-12-01
Nitrogen (N) transformations and bioavailability limit both plant productivity and N losses in most ecosystems. Recent research has focused on the mineralization path that N takes—from polymeric to monomeric and finally inorganic forms—and how these pools and processes influence the bioavailability of soil N. By contrast, there has been inadequate exploration of the N-sources that dominate the production of bioavailable N. In a new conceptual framework, we propose that mineral-associated organic matter (MAOM) is an overlooked, but critical, source of organic N, especially in the rhizosphere. We hypothesize that root-deposited low molecular weight exudates enhance the direct and indirect (via microbial communities) destabilization, solubilization, and subsequent bioavailable of MAOM. To test this conceptual framework, we conducted a laboratory incubation to examine the capacity for MAOM to supply N and to determine whether the soil-microbial response to root exudates facilitates the release and subsequent degradation of mineral-bound N. We isolated silt and clay organic matter fractions from two agricultural soils and added sterile sand to create a soil in which MAOM was the sole source of organic N. We applied three solution treatments: 13C-labelled glucose, to stimulate microbial activity and potentially the production of extracellular enzymes capable of liberating N; 13C-labelled oxalic acid, which has been demonstrated to dissolve metal-organic bonds and possibly destabilize mineral-bound and N-rich organic matter; and water, to serve as a control. Over the 12-day incubation, we observed an increase in enzyme activities and C- and N-cycling rates following glucose additions. Oxalic acid additions initially suppressed microbial activity, but eventually favored a slower-growing community with greater oxidative enzyme potential. Results suggest that C additions stimulate a microbial SOM-mining response. We will further assess the abiotic effect of organic acids on soil solution chemistry. We predict that oxalic acid additions will result in the release of metals and formerly clay-bound organic compounds into solution. Results from these incubations will be discussed in the context of our conceptual framework on the N-supplying capacity of MAOM.
Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera
2016-01-01
An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples, however, was degraded up to T4 treatments and was persistent in the T5 treatment. Probably, accumulation of this metabolite inhibited atrazine/cyanuric acid degradation by the enrichment culture in undiluted wastewater.
Wu, Changzheng; Zhang, Feng; Li, Lijun; Jiang, Zhedong; Ni, Hui; Xiao, Anfeng
2018-01-01
High amounts of insoluble substrates exist in the traditional solid-state fermentation (SSF) system. The presence of these substrates complicates the determination of microbial biomass. Thus, enzyme activity is used as the sole index for the optimization of the traditional SSF system, and the relationship between microbial growth and enzyme synthesis is always ignored. This study was conducted to address this deficiency. All soluble nutrients from tea stalk were extracted using water. The aqueous extract was then mixed with polyurethane sponge to establish a modified SSF system, which was then used to conduct tannase production. With this system, biomass, enzyme activity, and enzyme productivity could be measured rationally and accurately. Thus, the association between biomass and enzyme activity could be easily identified, and the shortcomings of traditional SSF could be addressed. Different carbon and nitrogen sources exerted different effects on microbial growth and enzyme production. Single-factor experiments showed that glucose and yeast extract greatly improved microbial biomass accumulation and that tannin and (NH 4 ) 2 SO 4 efficiently promoted enzyme productivity. Then, these four factors were optimized through response surface methodology. Tannase activity reached 19.22 U/gds when the added amounts of tannin, glucose, (NH 4 ) 2 SO 4 , and yeast extract were 7.49, 8.11, 9.26, and 2.25%, respectively. Tannase activity under the optimized process conditions was 6.36 times higher than that under the initial process conditions. The optimized parameters were directly applied to the traditional tea stalk SSF system. Tannase activity reached 245 U/gds, which is 2.9 times higher than our previously reported value. In this study, a modified SSF system was established to address the shortcomings of the traditional SSF system. Analysis revealed that enzymatic activity and microbial biomass are closely related, and different carbon and nitrogen sources have different effects on microbial growth and enzyme production. The maximal tannase activity was obtained under the optimal combination of nutrient sources that enhances cell growth and tannase accumulation. Moreover, tannase production through the traditional tea stalk SSF was markedly improved when the optimized parameters were applied. This work provides an innovative approach to bioproduction research through SSF.
The relative contributions of different anthropogenic and natural sources of in-stream nitrogen (N) cannot be directly measured at whole-watershed scales. Hence, source attribution estimates beyond the scale of small catchments must rely on models. Although such estimates have be...
Modeling pathways of riverine nitrogen and phosphorus in the Baltic Sea
NASA Astrophysics Data System (ADS)
Radtke, H.; Neumann, T.; Voss, M.; Fennel, W.
2012-09-01
A better understanding of the fate of nutrients entering the Baltic Sea ecosystem is an important issue with implications for environmental management. There are two sources of nitrogen and phosphorus: riverine input and atmospheric deposition. In the case of nitrogen, the fixation of dinitrogen by diazotrophic bacteria represents a third source. From an analysis of stable nitrogen isotope ratios it was suggested that most of the riverine nitrogen is sequestered in the coastal rim, specifically along the southern Baltic Sea coast with its coarse sediments, whereas nitrogen from fixation dominates the central basins. However, pathways of nutrients and timescales between the input of the nutrients and their arrival in different basins are difficult to obtain from direct measurements. To elucidate this problem, we use a source attribution technique in a three-dimensional ecosystem model, ERGOM, to track nutrients originating from various rivers. An “age” variable is attributed to the marked elements to indicate their propagation speeds and residence times. In this paper, we specifically investigate the spreading of nitrogen and phosphorus from the riverine discharges of the Oder, Vistula, Neman and Daugava. We demonstrate which regions they are transported to and for how long they remain in the ecosystem. The model results show good agreement with source estimations from observed δ15N values in sediments. The model results suggest that 95% of nitrogen is lost by denitrification in sediments, after an average time of 1.4 years for riverine nitrogen. The residence time of riverine phosphorus is much longer and exceeds our simulated period of 35 years.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhang, L.; Pan, Y.; Wang, Y.; Paulot, F.; Henze, D. K.
2015-09-01
Rapid Asian industrialization has led to increased downwind atmospheric nitrogen deposition threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2° × 2/3° horizontal resolution over East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a-1 as NH3 and 15.7 Tg N a-1 as NOx. China has the largest sources with 12.8 Tg N a-1 as NH3 and 7.9 Tg N a-1 as NOx; the high-NH3 emissions reflect its intensive agricultural activities. We find Asian NH3 emissions are a factor of 3 higher in summer than winter. The model simulation for 2008-2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8-20 kg N ha-1 a-1, decreasing rapidly downwind of the Asian continent. Deposition fluxes average 11.9 kg N ha-1 a-1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha-1 a-1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7 % over the South China Sea, and become important (greater than 30 %) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian monsoon and in nitrogen emissions. The model adjoint further estimates that nitrogen deposition to the Yellow Sea originates from sources over China (92 % contribution) and the Korean peninsula (7 %), and by sectors from fertilizer use (24 %), power plants (22 %), and transportation (18 %). Deposition to the South China Sea shows source contribution from mainland China (66 %), Taiwan (20 %), and the rest (14 %) from the southeast Asian countries and oceanic NH3 emissions. The adjoint analyses also indicate that reducing Asian NH3 emissions would increase NOy dry deposition to the Yellow Sea (28 % offset annually), limiting the effectiveness of NH3 emission controls on reducing nitrogen deposition to the Yellow Sea.
Methylamine as a nitrogen source for microorganisms from a coastal marine environment.
Taubert, Martin; Grob, Carolina; Howat, Alexandra M; Burns, Oliver J; Pratscher, Jennifer; Jehmlich, Nico; von Bergen, Martin; Richnow, Hans H; Chen, Yin; Murrell, J Colin
2017-06-01
Nitrogen is a key limiting resource for biomass production in the marine environment. Methylated amines, released from the degradation of osmolytes, could provide a nitrogen source for marine microbes. Thus far, studies in aquatic habitats on the utilization of methylamine, the simplest methylated amine, have mainly focussed on the fate of the carbon from this compound. Various groups of methylotrophs, microorganisms that can grow on one-carbon compounds, use methylamine as a carbon source. Non-methylotrophic microorganisms may also utilize methylamine as a nitrogen source, but little is known about their diversity, especially in the marine environment. In this proof-of-concept study, stable isotope probing (SIP) was used to identify microorganisms from a coastal environment that assimilate nitrogen from methylamine. SIP experiments using 15 N methylamine combined with metagenomics and metaproteomics facilitated identification of active methylamine-utilizing Alpha- and Gammaproteobacteria. The draft genomes of two methylamine utilizers were obtained and their metabolism with respect to methylamine was examined. Both bacteria identified in these SIP experiments used the γ-glutamyl-methylamide pathway, found in both methylotrophs and non-methylotrophs, to metabolize methylamine. The utilization of 15 N methylamine also led to the release of 15 N ammonium that was used as nitrogen source by other microorganisms not directly using methylamine. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
46 CFR 112.30-10 - Restoration of normal source potential.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 112.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-10 Restoration of normal source potential. When the potential...
46 CFR 112.30-10 - Restoration of normal source potential.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 112.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-10 Restoration of normal source potential. When the potential...
46 CFR 112.30-10 - Restoration of normal source potential.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 112.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-10 Restoration of normal source potential. When the potential...
46 CFR 112.30-10 - Restoration of normal source potential.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 112.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-10 Restoration of normal source potential. When the potential...
46 CFR 112.30-10 - Restoration of normal source potential.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 112.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-10 Restoration of normal source potential. When the potential...
40 CFR 69.31 - New exemptions.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... This exemption applies solely to the PSD major source baseline date and trigger date in the... applicable requirement that is triggered by, implemented or calculated from the PSD major source baseline... the Northern Mariana Islands, use January 13, 1997 as the PSD major source baseline date and trigger...