Controlled Neutralization of Anions in Cryogenic Matrices by Near-Threshold Photodetachment
NASA Astrophysics Data System (ADS)
Ludwig, Ryan M.; Moore, David T.
2014-06-01
Using matrix isolation FTIR, we have observed the formation of anionic copper carbonyl complexes [Cu(CO)n]- (n=1-3) following co-deposition of Cu- and counter-cations (Ar+ or Kr+) into argon matrices doped with CO. The infrared bands have been previously assigned in argon matrix studies employing laser ablation, however they were quite weak compared to the bands for the corresponding neutral species. In the current study, when the deposition is carried out in fully darkened conditions at 10 K with high CO concentrations (1-2%), only the bands for the anionic complexes are observed initially via FTIR. However, upon mild irradiation with broadband visible light, the anionic bands are rapidly depleted, with concomitant appearance of bands corresponding to neutral copper carbonyl complexes. This photo-triggered neutralization is attributed to photodetachment of electrons from the anions, which then "flow" through the solid argon matrix to recombine in the matrix with non-adjacent trapping sites. This mechanism is supported by the appearance of a new band near 1515 wn, assigned to the (CO)2- species in argon. The wavelength dependence of the photodetachment will be discussed in detail, although preliminary indications are that the thresholds for the copper carbonyls, which are normally in the infrared, are shifted into the visible region of the spectrum in argon matrices. This likely occurs because the conduction band of solid argon is known to lie about 1 eV above the vacuum level, and thus the electron must have at least this much energy in order to escape into the matrix and find a trapping site. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged Ryan M. Ludwig and David T. Moore, J. Chem. Phys. 139, 244202 (2013) Zhou, M.; Andrews, L., J. Chem. Phys. 111, 4548 (1999). Thompson, W.E.; Jacox, M.E.; J. Chem. Phys. 91, 735 (1991). Stanzel, J. et al.; Collect. Czech. Chem. Comm. 72, 1 (2007). Harbich, W. et al.; Phys. Rev. B. 76, 104306 (2007).
NASA Astrophysics Data System (ADS)
Čermák, Ivo; Förderer, Markus; Čermáková, Iva; Kalhofer, Stefan; Stopka-Ebeler, Helmut; Monninger, Gerold; Krätschmer, Wolfgang
1998-06-01
We have studied small carbon molecules using a matrix-isolation technique. Our experimental setup is described in detail. The carbon clusters were produced by evaporating graphite and trapping the carbon-vapor molecules in solid argon, where molecular growth could be induced by controlled matrix annealing. To identify the produced molecules, absorption spectroscopy in the ultraviolet (UV)-visible and infrared (IR) spectral ranges was applied. Additional characterization of the excited and ground states of the molecules was obtained from emission and excitation spectra. The molecules were excited by a pulsed dye laser system and the emission spectra were recorded with a high-sensitivity photodiode-array spectrometer. We present our measurements on linear C3. The à 1Πu excited state of linear C3 was populated by the electronic transition à 1Πu←X˜ 1Σg+, and the corresponding excitation spectra of the C3 fluorescence (à 1Πu→X˜ 1Σg+) and phosphorescence (ã 3Πu→X˜ 1Σg+) were studied. Comparison of excitation and absorption spectra yielded information on site effects due to the matrix environment. Emission bands in the fluorescence and phosphorescence spectra up to vibrational energies of 8500 cm-1 could be observed. The radiation lifetime of the à 1Πu excited state of C3 in solid argon was found to be shorter than 10 ns. The phosphorescence transition ã 3Πu→X˜ 1Σg+ decays in about 10 ms and its rise indicates fast vibrational relaxation within the triplet system. Our data support a linear ground state geometry for C3 also in solid argon.
Nonadiabatic quantum dynamics and laser control of Br2 in solid argon.
Accardi, A; Borowski, A; Kühn, O
2009-07-02
A five-dimensional reaction surface-vibronic coupling model is introduced to describe the B- to C-state predissociation dynamics of Br(2) occupying a double substitutional lattice site in a face-centered cubic argon crystal at low temperatures. The quantum dynamics driven by a Franck-Condon vertical excitation is investigated, revealing the role of matrix cage compression for efficient nonadiabatic transitions. Vibrational preexcitation of the Br(2) bond in the electronic ground state can be used to access a different regime of predissociation which does not require substantial matrix compression because the Franck-Condon window shifts into the energetic range of the B-C level crossing. Using optimal control theory, it is shown how vibrational preexcitation can be achieved via a pump-dump-type mechanism involving the repulsive C state.
Formation and identification of borane radical anions isolated in solid argon
NASA Astrophysics Data System (ADS)
Lin, Meng-Yeh; Huang, Tzu-Ping; Chin, Chih-Hao; Wu, Yu-Jong
2018-02-01
The infrared (IR) spectrum of borane(3) anions (BH3-) isolated in solid Ar was recorded; two vibrational modes were observed at 2259.4 and 606.6 cm-1, which were assigned to the BH2 stretching (ν3) and out-of-plane large-amplitude (ν2) modes, respectively. These anions were produced by the electron bombardment of an Ar matrix sample containing a small proportion of B2H6 and H2 during matrix deposition or by the photolysis of single-bridged-B2H5- in an Ar matrix with the selected ultraviolet light. The band positions, relative intensity ratios, isotopic splitting pattern, and isotopic shift ratios of the observed IR features of BH3- are generally in good agreement with those predicted by the B2PLYP/aug-cc-pVTZ method.
UV absorption spectrum of allene radical cations in solid argon
NASA Astrophysics Data System (ADS)
Chin, Chih-Hao; Lin, Meng-Yeh; Huang, Tzu-Ping; Wu, Yu-Jong
2018-05-01
Electron bombardment during deposition of an Ar matrix containing a small proportion of allene generated allene cations. Further irradiation of the matrix sample at 385 nm destroyed the allene cations and formed propyne cations in solid Ar. Both cations were identified according to previously reported IR absorption bands. Using a similar technique, we recorded the ultraviolet absorption spectrum of allene cations in solid Ar. The vibrationally resolved progression recorded in the range of 266-237 nm with intervals of about 800 cm-1 was assigned to the A2E ← X2E transition of allene cations, and the broad continuum absorption recorded in the region of 229-214 nm was assigned to their B2A1 ← X2E transition. These assignments were made based on the observed photolytic behavior of the progressions and the vertical excitation energies and oscillator strengths calculated using time-dependent density functional theory.
Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei
2005-12-29
The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.
NASA Technical Reports Server (NTRS)
Salama, F.; Allamandola, L. J.
1991-01-01
The ultraviolet, visible, and near-infrared absorption spectra of naphthalene (C10H8) and its radical ion (C10H8/+/), formed by vacuum ultraviolet irradiation, were measured in argon and neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion production in the solid phase. The absorption coefficients were calculated for the ion and found lower than previous values, presumably due to the low polarizability of the neon matrix.
NASA Technical Reports Server (NTRS)
Gordon, W. A.
1975-01-01
Matrix effects related to the chemical form of analyzed materials were studied. An arc in argon was used which was buffered with silver chloride. The effect of chemical form was minimal for a variety of metals, oxides, and carbides representing the most refractory compounds and thermally stable metal-containing molecules. Only four of the most refractory materials known showed significant emission depressions due to incomplete volatilization in the arc system. These results are discussed in terms of vapor pressures of the solid materials placed on the anodes and dissociation reactions of the molecules in the gaseous environment.
Teng, Yun-Lei; Xu, Qiang
2008-04-24
The reactions of yttrium and lanthanum with dinitrogen were reinvestigated. Laser-ablated yttrium and lanthanum atoms were co-deposited at 4 K with dinitrogen in excess argon, and the low-temperature reactions of Y and La with N2 in solid argon were studied using infrared spectroscopy. The reaction products YNN, (YN)2, LaNN, and (LaN)2 were formed in the present experiments and characterized on the basis of 14N/15N isotopic shifts, mixed isotope splitting patterns, stepwise annealing, change of reagent concentration and laser energy, and comparison with theoretical predictions. Some assignments were made based on a previous report. Density functional theory calculations were performed on these systems to identify possible reaction products. The agreement between experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts of the MNN and (MN)2 (M = Y and La) molecules supports the identification of these molecules from the matrix infrared spectra. Plausible reaction mechanisms were proposed for the formation of these molecules along with tentative identification of the Y3NN molecule.
Zhao, Jie; Beckers, Helmut; Huang, Tengfei; Wang, Xuefeng; Riedel, Sebastian
2018-02-19
Laser-ablated boron atoms react with GeH 4 molecules to form novel germylidene borane H 2 GeBH 2 , which undergoes a photochemical rearrangement to the germanium tetrahydroborate Ge(μ-H) 2 BH 2 upon irradiation with light of λ = 405 nm. For comparison, the boron atom reactions with SnH 4 only gave the tin tetrahydroborate Sn(μ-H) 2 BH 2 . Infrared matrix-isolation spectroscopy with deuterium substitution and the state-of-the-art quantum-chemical calculations are used to identify these species in solid argon. A planar structure of H 2 GeBH 2 with an electron-deficient B-Ge bond with a partial multiple bond character (bond order = 1.5) is predicted by quantum-chemical calculations. In the case of M(μ-H) 2 BH 2 (M = Ge, Sn) two 3c-2e B-H-M hydrogen bridged bonds are formed by donation of electrons from the B-H σ-bonds into empty p-orbitals of M.
ENDOR/ESR of Mn atoms and MnH molecules in solid argon
NASA Astrophysics Data System (ADS)
van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.
1986-09-01
Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.
Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko
2009-01-01
The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.
NASA Astrophysics Data System (ADS)
Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt
2013-10-01
Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.
Gong, Yu; Andrews, Lester; Jackson, Virgil E; Dixon, David A
2012-10-15
Reactions of ThO molecules and CH(4) have been investigated in solid argon near 4 K. The CH(3)Th(O)H molecule is produced when the sample is exposed to UV irradiation. Identification of this new intermediate is substantiated by observation of the Th═O and Th-H stretching vibrational modes with isotopic substitution via matrix infrared spectroscopy, and the assignments are supported by electronic structure frequency calculations. Methanol absorptions increase together with formation of the CH(3)Th(O)H molecule, suggesting a methane to methanol conversion induced by thorium oxide proceeding through the CH(3)Th(O)H intermediate. The formation of CH(3)Th(O)H from ThO + CH(4) is exothermic (ΔH(rxn) = -11 kcal/mol) with an energy barrier of 30 kcal/mol at the CCSD(T)//B3LYP level. Decomposition of this intermediate to form methanol involves spin crossing, and the overall reaction from the intermediate is endothermic by 127 kcal/mol. There is no activation energy for the reaction of thorium atoms with methanol to give CH(3)Th(O)H, as observed in separate experiments with Th and CH(3)OH.
Ultraviolet Spectroscopy of Matrix-isolated Amorphous Carbon Particles
NASA Astrophysics Data System (ADS)
Schnaiter, M.; Mutschke, H.; Henning, Th.; Lindackers, D.; Strecker, M.; Roth, P.
1996-06-01
In view of the interstellar 217.5 nm and the circumstellar 230--250 nm extinction features, the UV extinction behavior of small matrix-isolated amorphous carbon grains is investigated experimentally. The particles were produced in a flame by burning acetylene with oxygen at low pressure. To prevent coagulation, the condensing primary soot grains (average diameter ~6 nm) were extracted by a molecular beam technique into a high-vacuum chamber. There they were deposited into a layer of solid argon, isolated from each other. The particle mass and size were controlled using a particle mass spectrometer. The measured UV extinction of the matrix-isolated particles is compared with measurements on samples produced in the conventional way by collecting carbon smoke on substrate as well as with scattering calculations for small spheres and ellipsoides. The laboratory data give a good representation of the circumstellar extinction feature observed in the spectrum of V348 Sgr.
NASA Astrophysics Data System (ADS)
Wang, Xuefeng; Andrews, Lester; Ma, Dongxia; Gagliardi, Laura; Gonçalves, António P.; Pereira, Cláudia C. L.; Marçalo, Joaquim; Godart, Claude; Villeroy, Benjamin
2011-06-01
Laser evaporation of carbon rich uranium/carbon alloy targets into condensing argon or neon matrix samples gives weak infrared absorptions that increase on annealing, which can be assigned to new uranium carbon bearing species. New bands at 827.6 cm-1 in solid argon or 871.7 cm-1 in neon become doublets with mixed carbon 12 and 13 isotopes and exhibit the 1.0381 carbon isotopic frequency ratio for the UC diatomic molecule. Another new band at 891.4 cm-1 in argon gives a three-band mixed isotopic spectrum with the 1.0366 carbon isotopic frequency ratio, which is characteristic of the anti-symmetric stretching vibration of a linear CUC molecule. No evidence was found for the lower energy cyclic U(CC) isomer. Other bands at 798.6 and 544.0 cm-1 are identified as UCH, which has a uranium-carbon triple bond similar to that in UC. Evidence is found for bicyclic U(CC)2 and tricyclic U(CC)3. This work shows that U and C atoms react spontaneously to form the uranium carbide U≡C and C≡U≡C molecules with uranium-carbon triple bonds.
NASA Astrophysics Data System (ADS)
Goodrich, Michael E.; Moore, David T.
2016-06-01
The separated CO2 dimer anion, (CO2)(CO2-), is observed by FTIR spectroscopy in matrix isolation experiments at 1652 cm-1 upon deposition of high energy argon ions into an argon matrix doped with 0.5% CO2. It has previously been reported by Andrews that upon annealing the matrix to 25K, the separated species converts to an oxalate-like C2O4- species which appears at 1856 cm-1.a We have observed that subsequently holding the matrix at 10K caused the C2O4- species to fully convert back to (CO2)(CO2-). Upon further investigation, we determined that the two species reversibly interconvert between 19K and 23K, suggesting the species are in thermodynamic equilibrium. The associated van't Hoff plot has a linear trend and indicates an endothermic reaction driven by a large increase in entropy. An analogous experiment in a krypton matrix was performed, and the equilibrium was found to occur between 26K and 31K. Interestingly, analysis revealed the reaction in krypton is more endothermic, but has nearly the same entropy value as was observed in the argon experiment. aZhou, M.; Andrews, L.; J. Chem. Phys. 110, 2414 (1999).
NASA Technical Reports Server (NTRS)
Cygnarowicz, Thomas A.; Schein, Michael E.; Lindauer, David A.; Scarlotti, Roger; Pederson, Robert
1990-01-01
A solid argon cooler (SAC) for attached Shuttle payloads has been developed and qualified to meet the need for low cost cooling of flight instruments to the temperature range of 60-120 K. The SACs have been designed and tested with the intent of flying them up to five times. Two coolers, as part of the Broad Band X-ray Telescope (BBXRT) instrument on the ASTRO-1 payload, are awaiting launch on Space Shuttle mission STS-35. This paper describes the design, testing and performance of the SAC and its vacuum maintenance system (VMS), used to maintain the argon as a solid during launch delays of up to 5 days. BBXRT cryogen system design features used to satisfy Shuttle safety requirements are discussed, along with SAC ground servicing equipment (GSE) and procedures used to fill, freeze and subcool the argon.
Novel cryogenic sources for liquid droplet and solid filament beams
NASA Astrophysics Data System (ADS)
Grams, Michael P.
Two novel atomic and molecular beam sources have been created and tested consisting first of a superfluid helium liquid jet, and secondly a solid filament of argon. The superfluid helium apparatus is the second of its kind in the world and uses a modified liquid helium cryostat to inject a cylindrical stream of superfluid helium into vacuum through glass capillary nozzles with diameters on the order of one micron created on-site at Arizona State University. The superfluid beam is an entirely new way to study superfluid behavior, and has many new applications such as superfluid beam-surface scattering, beam-beam scattering, and boundary-free study of superfluidity. The solid beam of argon is another novel beam source created by flowing argon gas through a capillary 50 microns in diameter which is clamped by a small copper plate to a copper block kept at liquid nitrogen temperature. The gas subsequently cools and solidifies plugging the capillary. Upon heating, the solid plug melts and liquid argon exits the capillary and immediately freezes by evaporative cooling. The solid filaments may find application as wall-less cryogenic matrices, or targets for laser plasma sources of extreme UV and soft x-ray sources.
Microwave plasma generation of arsine from hydrogen and solid arsenic
NASA Astrophysics Data System (ADS)
Omstead, Thomas R.; Annapragada, Ananth V.; Jensen, Klavs F.
1990-12-01
The generation of arsine from the reactions of hydrogen and elemental arsenic in a microwave plasma reactor is described. The arsenic is evaporated from a solid source upstream and carried into the microwave plasma region by a mixture of hydrogen and argon. Stable reaction products, arsine and diarsine are observed by molecular beam sampled mass spectroscopy along with partially hydrogenated species (e.g., AsH and AsH2). The effect of composition and flow rate of the argon/hydrogen carrier gas mixture on the amount of arsine generated is investigated. The arsine production reaches a maximum for an argon-to-hydrogen ratio of unity indicating that metastable argon species act as energy transfer intermediates in the overall reaction. The generation of arsine and diarsine from easily handled solid arsenic by this technique makes it attractive as a possible arsenic source for the growth of compound semiconductors by low-pressure metalorganic chemical vapor deposition.
Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.
2017-05-02
We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.
We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul
2016-07-01
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuş, Nihal; Department of Physics, Anadolu University, 26470 Eskişehir; Fausto, Rui, E-mail: rfausto@ci.uc.pt
2014-12-21
E-crotonic acid was isolated in cryogenic solid N{sub 2} and xenon matrices, and subjected to Laser ultraviolet (UV) and near-infrared (NIR) irradiations. In the deposited matrices, the two low-energy cis C–O E-cc and E-ct conformers, which are the only forms significantly populated in the gas phase, were observed. UV irradiation (λ= 250 nm) of the compound in N{sub 2} matrix allows for experimental detection, not just of the two low-energy cis C–O isomers of Z-crotonic acid previously observed in the experiments carried out in argon matrix [Z-cc and Z-ct; R. Fausto, A. Kulbida, and O. Schrems, J. Chem. Soc., Faradaymore » Trans. 91, 3755–3770 (1995)] but also of the never observed before high-energy forms of both E- and Z-crotonic acids bearing the carboxylic acid group in the trans arrangement (E-tc and Z-tc conformers). In turn, NIR irradiation experiments in the N{sub 2} matrix allow to produce the high-energy E-tc trans C–O conformer in a selective way, from the initially deposited E-cc form. The vibrational signatures of all the 6 rotameric structures of the crotonic acids experimentally observed, including those of the new trans C–O forms, were determined and the individual spectra fully assigned, also with support of theoretically obtained data. On the other hand, as found before for the compound isolated in argon matrix, the experiments performed in xenon matrix failed to experimental detection of the trans C–O forms. This demonstrates that in noble gas matrices these forms are not stable long enough to allow for their observation by steady state spectroscopy techniques. In these matrices, the trans C–O forms convert spontaneously into their cis C–O counterparts, by tunnelling. Some mechanistic details of the studied processes were extracted and discussed.« less
Interaction of formic acid with nitrogen: stabilization of the higher-energy conformer.
Marushkevich, Kseniya; Räsänen, Markku; Khriachtchev, Leonid
2010-10-07
Conformational change is an important concept in chemistry and physics. In the present work, we study conformations of formic acid (HCOOH, FA) and report the preparation and identification of the complex of the higher-energy conformer cis-FA with N(2) in an argon matrix. The cis-FA···N(2) complex was synthesized by combining annealing and vibrational excitation of the ground-state trans-FA in a FA/N(2)/Ar matrix. The assignment is based on IR spectroscopic measurements and ab initio calculations. The cis-FA···N(2) complex decay in an argon matrix is much slower compared with the cis-FA monomer. In agreement with the experimental observations, the calculations predict a substantial increase in the stabilization barrier for the cis-FA···N(2) complex compared with the uncomplexed cis-FA monomer. A number of solvation effects in an argon matrix are computationally estimated and discussed. The present results on the cis-FA···N(2) complex show that intermolecular interaction can stabilize intrinsically unstable conformers, as previously found for some other cis-FA complexes.
A new solid-state, frequency-doubled neodymium-YAG photocoagulation system.
Jalkh, A E; Pflibsen, K; Pomerantzeff, O; Trempe, C L; Schepens, C L
1988-06-01
We have developed a solid-state laser system that produces a continuous green monochromatic laser beam of 532 nm by doubling the frequency of a neodymium-YAG laser wavelength of 1064 nm with a potassium-titamyl-phosphate crystal. Photocoagulation burns of equal size and intensity were placed in two rabbit eyes with the solid-state laser system and the regular green argon laser system, respectively, using the same slit-lamp mode of delivery. Histologic findings of lesion sections revealed no important differences between the two systems. In theory, the longer wavelength of the solid-state laser offers the advantages of less scattering in ocular media, higher absorption by oxyhemoglobin, and less absorption by macular xanthophyll than the 514-nm wavelength of the regular green argon laser. The solid-state laser has impressive technical advantages: it contains no argon-ion gas tube that wears out and is expensive to replace; it is much more power efficient, and thus considerably smaller and compact; it is sturdier and easily movable; it does not require external cooling; it uses a 220-V monophasic alternating current; and it requires little maintenance.
Theoretical and experimental studies of the structure and vibrational spectra of NTO
NASA Astrophysics Data System (ADS)
Sorescu, Dan C.; Sutton, Teressa R. L.; Thompson, Donald L.; Beardall, David; Wight, Charles A.
1996-10-01
The structure and vibrational spectra of the high explosive 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) have been determined by ab initio molecular orbital calculations at the Hartree-Fock and second-order Møller-Plesset levels and by density functional theory (B3LYP). Experimental frequencies for the molecule have been determined from infrared spectra of pure NTO films and NTO molecules isolated in an argon matrix at 21 K. A force field for gas phase NTO has been obtained based on calculated results at the MP2/6-311G∗∗ level. In addition, a force field for solid state NTO has been constructed using the experimental vibrational frequencies for NTO films and scaled ab initio vibrational frequencies. Differences between the solid state and gas phase results indicate that the environment and preparation procedure exert a marked influence on the spectral characteristics of the NTO molecule.
Wang, Xuefeng; Andrews, Lester
2011-03-23
Electron-deficient group 13 metals react with F(2) to give the compounds MF(2) (M = B, Al, Ga, In, Tl), which combine with F(2) to form a new class of very high electron affinity neutral molecules, (F(2))MF(2), in solid argon and neon. These (F(2))MF(2) fluorine metal difluoride molecules were identified through matrix IR spectra containing new antisymmetric and symmetric M-F stretching modes. The assignments were confirmed through close comparisons with frequency calculations using DFT methods, which were calibrated against the MF(3) molecules observed in all of the spectra. Electron affinities calculated at the CCSD(T) level fall between 7.0 and 7.8 eV, which are in the range of the highest known electron affinities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Shavik, Sheikh Mohammad, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com
2016-07-12
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solidmore » platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.« less
Wagatsuma, Kazuaki
2009-04-01
The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Binyong; Andrews, Lester S.; Li, Jun
2004-02-09
Uranium atoms excited by laser ablation react with CO in excess neon to produce the novel CUO molecule, which forms distinct Ng complexes (Ng = Ar, Kr, Xe) when the heavier noble gases are added. The CUO(Ng) complexes are identified through CO isotopic and Ng substitution on the neon matrix infrared spectra and by comparison to DFT frequency calculations. The U-C and U-O stretching frequencies of CUO(Ng) complexes are slightly red shifted from frequencies for the 1S+ CUO ground state, which identifies singlet ground state CUO(Ng) complexes. In solid neon the CUO molecule is also a complex CUO(Ne)n, and themore » CUO(Ne)n-1(Ng) complexes are likewise specified. The next singlet CUO(Ne)x(Ng)2 complexes in excess neon follow in like manner. However, the higher CUO(Ne)x(Ng)n complex (n = 3, 4) stretching modes approach pure argon matrix CUO(Ar)n values and isotopic behavior, which are characterized as triplet ground state complexes by DFT frequency calculations. This work suggests that the singlet-triplet crossing occurs with 3 Ar, 3 Kr or 4 Xe and a balance of Ne atoms coordinated to CUO in the neon matrix host.« less
NASA Astrophysics Data System (ADS)
Kofman, V.; Sarre, P. J.; Hibbins, R. E.; ten Kate, I. L.; Linnartz, H.
2017-06-01
Triphenylene (C18H12) is a highly symmetric polycyclic aromatic hydrocarbon (PAH) molecule with a 'fully-benzenoid' electronic structure. This confers a high chemical stability compared with PAHs of similar size. Although numerous infrared and UV-vis experimental spectroscopic and theoretical studies of a wide range PAHs in an astrophysical context have been conducted, triphenylene and its radical cation have received almost no attention. There exists a huge body of spectroscopic evidence for neutral and ionised PAHs in astrophysical sources, obtained principally through detection of infrared emission features that are characteristic of PAHs as a chemical class. However, it has so far not proved possible to identify spectroscopically a single isolated PAH in space, although PAHs including triphenylene have been detected mass spectrometrically in meteorites. In this work we focus on recording laboratory electronic spectra of neutral and ionised triphenylene between 220 and 780 nm, trapped in H2O ice and solid argon at 12 K. The studies are motivated by the potential for spectroscopic astronomical detection of electronic absorption spectra of PAHs in ice mantles on interstellar grains as discussed by Linnartz (2014), and were performed also in a cold Ar matrix to provide guidance as to whether triphenylene (particularly in its singly positively ionised form) could be a viable candidate for any of the unidentified diffuse interstellar absorption bands. Based on the argon-matrix experimental results, comparison is made with previously unpublished astronomical spectra near 400 nm which contain broad interstellar absorption features consistent with the predictions from the laboratory matrix spectra, thus providing motivation for the recording of gas-phase electronic spectra of the internally cold triphenylene cation.
1993-03-30
Massachusetts Institute of Technology, Cambridge, MA 02139I ABSTRACT polysilanes." Pyrolysis of these polymers usually The decomposition of polymeric SiC ...of soluble polymeric solids. Pyrolysis of these polymers in argon yielded The precursors were prepared by adding a TiC/A120 3 composite at 12501C...formation of soluble polymeric solids. Pyrolysis described an approach for synthesizing AI2O/ SiC of these polymers in argon yielded TiC/AI203
Emission and excitation spectra of IF in solid argon at 12 K
NASA Astrophysics Data System (ADS)
Miller, John C.; Andrews, Lester
1980-03-01
The interhalogen, IF, has been synthesized by vacuum ultraviolet photolysis of CHF 2I and CHFI 2 and subsequently trapped in solid argon at 12 K. The B 3π 0+-X 1Σ transition was observed in emission and dye laser excitation experiments with the origin near 18 688 cm -1 and average ground- and excited-state spacings of 573 and 380 cm -1, respectively. These data are compared to the gas phase results.
Infrared Spectroscopy of Matrix-Isolated Neutral and Ionized Anthracoronene in Argon.
de Barros, A L F; Mattioda, A L; Korsmeyer, J M; Ricca, A
2018-03-08
The matrix-isolated mid-IR (MIR) spectrum of neutral and ionized anthracoronene (C 36 H 18 , AnthCor) in argon has been measured experimentally, compared to the spectrum of its parent molecules, coronene and anthracene, and analyzed by comparison to a theoretical spectrum computed using density functional theory (DFT). The experimental and theoretical band positions generally agree within 0-10 cm -1 . Anthracoronene exhibits extremely intense cation and anion bands around 1330 and 1318 cm -1 . The intensity of these two bands approaches what is traditionally observed over the entire 1000-1600 cm -1 range for a typical PAH cation or anion. The matrix-isolated near-IR (NIR) through overlap region (OVR) spectrum of ionized AnthCor in argon has been reported for the first time and compared to the spectrum of its parent molecules, coronene and anthracene. The spectrum of AnthCor contains a very strong electronic transition around 6175 cm -1 , placing it outside the range of the electronic transitions typically observed for PAHs. Anthracoronene is one of the few PAHs studied to date which has exhibited the formation of anions upon UV photolysis.
Iron hydrides formation in interstellar clouds
NASA Astrophysics Data System (ADS)
Bar-Nun, A.; Pasternak, M.; Barrett, P. H.
1980-07-01
A recent Moessbauer study with Fe-57 in a solid hydrogen or hydrogen-argon matrix demonstrated the formation of an iron hydride molecule (FeH2) at 2.5-5 K. Following this and other studies, the possible existence of iron hydride molecules in interstellar clouds is proposed. In clouds, the iron hydrides FeH and FeH2 would be formed only on grains, by encounters of H atoms or H2 molecules with Fe atoms which are adsorbed on the grains. The other transition metals, Sc, Ti, V, Cr, Mn, Co, N, Cd and also Cu and Ca form hydrides of the type M-H, which could be responsible, at least in part, for the depletion of these metals in clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Lester; Liang, Binyong; Li, Jun
2004-02-15
Atomic uranium excited by laser ablation reacts with CO in excess neon to produce the novel CUO molecule, which forms weak complexes CUO(Ne)m with neon and stronger complexes CUO(Ne)x(Ng)n (Ng = Ar, Kr, Xe) when the heavier noble gas atoms are present. The heavier CUO(Ne)m-1(Ng) complexes are identified through the effects of CO isotopic and Ng substitution on the neon matrix infrared spectra and by comparison to DFT frequency calculations on model complexes CUO(Ng) (Ng = Ne, Ar, Kr, Xe). The U-C and U-O stretching frequencies of CUO(Ne)m-1(Ng) complexes are slightly red shifted from 1047 and 872 cm-1 frequencies formore » the 1Sigma+ CUO ground state neon complex, which identifies singlet ground state CUO(Ne)m-1(Ng) complexes in solid neon. The next singlet CUO(Ne)x(Ng)2 complexes in excess neon follow in like manner. However, stretching modes and the isotopic shifts of the higher CUO(Ne)x(Ng)n complex approach those of the pure argon matrix CUO(Ar)n complex, which characterizes triple t ground state complexes by comparison to DFT frequency calculations.« less
Lead Pipe Scale Analysis Using Broad-Beam Argon Ion Milling to Elucidate Drinking Water Corrosion
Herein, we compared the characterization of lead pipe scale removed from a drinking water distribution system using two different cross section methods (conventional polishing and argon ion beam etching). The pipe scale solids were analyzed using scanning electron microscopy (SEM...
NASA Technical Reports Server (NTRS)
Ball, David W.; Zehe, Michael J.
1993-01-01
BF3 was co-condensed with H2O, D2O, (C2H5)2O, (CF3CH2)2O, and (C2F5)2O in excess argon at 15 K. Infrared spectra of BF3/water isolated in solid argon provided a more complete analysis of the BF3--H2O complex than previously published. Infrared spectra of the matrices showed a definite Lewis acid-base interaction between BF3 and diethyl ether; a weak but definite interaction with bis (2,2,2-trifluorodiethyl) ether, and no observable interaction with perfluorodiethyl ether. Thus, the ether data indicate a clear trend between strength of interaction with BF3 and the degree of F substitution. To support and explain the emerging relationship between interaction strength and the basicity of the oxygen-containing molecule, the proton affinity of (CF3CH2)2O was measured using chemical ionization mass spectrometry. The implications of the results for lubricant/metal oxide surface interactions are discussed.
Photochemistry of cyclopentadiene isolated in low-temperature argon matrices
NASA Astrophysics Data System (ADS)
Miyazaki, Jun; Yamada, Yasuhiro
2004-04-01
The photochemistry of cyclopentadiene isolated in low-temperature argon matrices was studied by means of IR and UV/VIS spectroscopy. Bicyclo[2.1.0]pent-2-ene was formed by the irradiation of matrix-isolated cyclopentadiene using a super-high-pressure mercury lamp. When the matrix-isolated cyclopentadiene was irradiated with shorter wavelength using a low-pressure mercury lamp, further reactions of bicyclo[2.1.0]pent-2-ene were found to produce allylacetylene and vinylallene. While the photochemistry of cyclopentadiene to form bicyclo[2.1.0]pent-2-ene is known in a solution system, the production of allylacetylene and vinylallene in a matrix-isolated system has never been previously reported. The assignments of the species and the determination of the reaction mechanisms were performed using molecular orbital calculations.
Difluorophosphoryl nitrene F2P(O)N: matrix isolation and unexpected rearrangement to F2PNO.
Zeng, Xiaoqing; Beckers, Helmut; Willner, Helge; Neuhaus, Patrik; Grote, Dirk; Sander, Wolfram
2009-12-14
Triplet difluorophosphoryl nitrene F(2)P(O)N (X(3)A'') was generated on ArF excimer laser irradiation (lambda=193 nm) of F(2)P(O)N(3) in solid argon matrix at 16 K, and characterized by its matrix IR, UV/Vis, and EPR spectra, in combination with DFT and CBS-QB3 calculations. On visible light irradiation (lambda>420 nm) at 16 K F(2)P(O)N reacts with molecular nitrogen and some of the azide is regenerated. UV irradiation (lambda=255 nm) of F(2)P(O)N (X(3)A'') induced a Curtius-type rearrangement, but instead of a 1,3-fluorine shift, nitrogen migration to give F(2)PON is proposed to be the first step of the photoisomerization of F(2)P(O)N into F(2)PNO (difluoronitrosophosphine). Formation of novel F(2)PNO was confirmed with (15)N- and (18)O-enriched isotopomers by IR spectroscopy and DFT calculations. Theoretical calculations predict a rather long P-N bond of 1.922 A [B3LYP/6-311+G(3df)] and low bond-dissociation energy of 76.3 kJ mol(-1) (CBS-QB3) for F(2)PNO.
NASA Astrophysics Data System (ADS)
Samanta, Amit K.; Pandey, Prasenjit; Bandyopadhyay, Biman; Mukhopadhyay, Anamika; Chakraborty, Tapas
2011-05-01
Mid-infrared spectra of 3-methyl-1,2-cyclopentanedione (3-MeCPD) have been recorded by isolating the molecule in a cold argon matrix (8 K) and also in CCl 4 solution at room temperature. The spectral features reveal that in both media, the molecule exists exclusively in an enol tautomeric form, which is stabilized by an intramolecular O sbnd H⋯O hydrogen bond. NBO analysis shows that the preferred conformer is further stabilized because of hyperconjugation interaction between the methyl and vinyl group of the enol tautomer. In CCl 4 solution, the molecule undergoes extensive self association and generates a doubly hydrogen bonded centrosymmetric dimer. The dimerization constant ( K d) is estimated to have a value of ˜9 L mol -1 at room temperature (25 °C) and the thermodynamic parameters, Δ H°, Δ S° and Δ G°, of dimerization are estimated by measuring K d at several temperatures within the range 22-60 °C. The same dimer is also produced when the matrix is annealed at a higher temperature. In addition, a non-centrosymmetric singly hydrogen bonded dimer is also identified in the argon matrix. A comparison between the spectral features of the two dimers indicates that the dimerization effect on doubly H-bonded case is influenced by cooperative interaction between the two H-bonds.
Ustinov, E A
2014-02-21
Freezing of gases adsorbed on open surfaces (e.g., graphite) and in narrow pores is a widespread phenomenon which is a subject of a large number of publications. Modeling of the gas/liquid-solid transition is usually accomplished with a molecular simulation technique. However, quantitative analysis of the gas/liquid-solid coexistence and thermodynamic properties of the solid layer still encounters serious difficulties. This is mainly due to the effect of simulation box size on the lattice constant. Since the lattice constant is a function of loading and temperature, once the ordering transition has occurred, the simulation box size must be corrected in the course of simulation according to the Gibbs-Duhem equation. A significant problem is also associated with accurate prediction of the two-dimensional liquid-solid coexistence because of a small difference in densities of coexisting phases. The aim of this study is thermodynamic analysis of the two-dimensional phase coexistence in systems involving crystal-like free of defects layers in narrow slit pores. A special attention was paid to the determination of triple point temperatures. It is shown that intrinsic properties of argon monolayer adsorbed on the graphite surface are similar to those of isolated monolayer accommodated in the slit pore having width of two argon collision diameters. Analysis of the latter system is shown to be clearer and less time-consuming than the former one, which has allowed for explanation of the experimentally observed two-stage melting transition of argon monolayer on graphite without invoking the periodic surface potential modulation and orientational transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ustinov, E. A., E-mail: eustinov@mail.wplus.net
Freezing of gases adsorbed on open surfaces (e.g., graphite) and in narrow pores is a widespread phenomenon which is a subject of a large number of publications. Modeling of the gas/liquid–solid transition is usually accomplished with a molecular simulation technique. However, quantitative analysis of the gas/liquid–solid coexistence and thermodynamic properties of the solid layer still encounters serious difficulties. This is mainly due to the effect of simulation box size on the lattice constant. Since the lattice constant is a function of loading and temperature, once the ordering transition has occurred, the simulation box size must be corrected in the coursemore » of simulation according to the Gibbs–Duhem equation. A significant problem is also associated with accurate prediction of the two-dimensional liquid–solid coexistence because of a small difference in densities of coexisting phases. The aim of this study is thermodynamic analysis of the two-dimensional phase coexistence in systems involving crystal-like free of defects layers in narrow slit pores. A special attention was paid to the determination of triple point temperatures. It is shown that intrinsic properties of argon monolayer adsorbed on the graphite surface are similar to those of isolated monolayer accommodated in the slit pore having width of two argon collision diameters. Analysis of the latter system is shown to be clearer and less time-consuming than the former one, which has allowed for explanation of the experimentally observed two-stage melting transition of argon monolayer on graphite without invoking the periodic surface potential modulation and orientational transition.« less
Production and characterization of micron-sized filaments of solid argon
NASA Astrophysics Data System (ADS)
Grams, Michael; Stasicki, Boleslaw; Toennies, J. Peter
2005-12-01
A continuous 50-μm-diam filament of solid argon is produced in a moderate vacuum (4.2×10-3mbar) by cooling argon gas to 70-90K over the last 8mm of a long fused silica capillary. Prior to formation of the straight filament the jet shows different stages characterized by spraying, snowballing, or spiraling filaments as documented by charge-coupled device (CCD) camera microscope pictures. Consecutive CCD pictures are used to measure the filament velocities, which increase with the driving gas pressure P0 up to about 4.0cm/s at P0=400bars with an intermediate peak at about 80bars. This technique may find applications for producing wall-less cryogenic matrices, targets for laser plasma sources of extreme UV and soft-x-ray sources, plasma implosion experiments, or H2 pellets for injection into fusion reactors.
A molecular dynamics study of thermal transport in nanoparticle doped Argon like solid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahadat, Muhammad Rubayat Bin, E-mail: rubayat37@gmail.com; Ahmed, Shafkat; Morshed, A. K. M. M.
2016-07-12
Interfacial phenomena such as mass and type of the interstitial atom, nano scale material defect influence heat transfer and the effect become very significant with the reduction of the material size. Non Equilibrium Molecular Dynamics (NEMD) simulation was carried out in this study to investigate the effect of the interfacial phenomena on solid. Argon like solid was considered in this study and LJ potential was used for atomic interaction. Nanoparticles of different masses and different molecular defects were inserted inside the solid. From the molecular simulation, it was observed that a large interfacial mismatch due to change in mass inmore » the homogenous solid causes distortion of the phonon frequency causing increase in thermal resistance. Position of the doped nanoparticles have more profound effect on the thermal conductivity of the solid whereas influence of the mass ratio is not very significant. Interstitial atom positioned perpendicular to the heat flow causes sharp reduction in thermal conductivity. Structural defect caused by the molecular defect (void) also observed to significantly affect the thermal conductivity of the solid.« less
Formic acid dimers in a nitrogen matrix
NASA Astrophysics Data System (ADS)
Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid
2018-01-01
Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (˜11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.
Formic acid dimers in a nitrogen matrix.
Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid
2018-01-21
Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (∼11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.
Zhao, Yanying; Fan, Kexue; Huang, Yongfei; Zheng, Xuming
2013-12-01
The reactions of iron and manganese monoxide molecules (FeO, and MnO) with monochloromethane in solid argon have been studied by matrix isolation infrared spectroscopy and quantum chemistry calculations. When annealing, the reactions of FeO and MnO with CH3Cl first form the OM-(η(Cl)-CH3Cl) (MMn, Fe) complexes, which can isomerize to CH3MOCl (MMn, Fe) upon 300<λ<580 nm irradiation. The products were characterized by isotopic IR studies with CD3Cl and (13)CH3Cl and density functional calculations. Based on theoretical calculations, the OFe-(η(Cl)-CH3Cl) and OMn-(η(Cl)-CH3Cl) complexes have (5)A' and (6)A' ground state with Cs symmetry, respectively. The accurate CCSD(T) single point calculations illustrate the CH3MOCl isomerism are 13.8 and 3.1 kcal/mol lower in energy than the OM-(η(Cl)-CH3Cl) (MMn, Fe) complexes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grzegorzek, Joanna; Mielke, Zofia; Filarowski, Aleksander
2010-07-01
2'-hydroxyacetophenone azine (APA) has been studied by matrix isolation infrared spectroscopy and quantum chemical calculations. The DFT/B3LYP/6-311++G(2d,2p) calculations demonstrated the existence of two conformers for the lowest energy E/ E configuration of APA, a s- trans and a gauche ones. The conformers are characterized by similar energies and differ in the value of a C dbnd N sbnd N dbnd C angle, that was calculated to be 180° for a planar s-trans conformer and 155° for a non-planar gauche one . The calculated barrier for conformational interconversion is also very low, ca. 1 kJ mol -1 for the conversion from a gauche conformer to a trans one. The FTIR spectra of an argon matrix doped with APA from a vapour above solid sample evidence the presence of both conformers that exhibit reversible interconversion at matrix temperatures. The comparison of the theoretical spectra with the experimental ones and reversible temperature dependence of the experimental spectra allowed for unambiguous spectroscopic characterization of the trans and gauche conformers. The experiment also demonstrated that a gauche conformer is more stable than a trans one. The spectra analysis indicates that transformation from a trans conformer to a gauche one weakens the intramolecular O sbnd H⋯N bonds in the molecule.
Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases.
Traba, Christian; Liang, Jun F
2011-08-01
Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by discharge gas within minutes of exposure. Under optimal experimental conditions, no bacteria and biofilm re-growth from discharge gas treated biofilms was found. Further studies revealed that the anti-biofilm activity of the discharge gas occurred by two distinct mechanisms: (1) killing bacteria in biofilms by causing severe cell membrane damage, and (2) damaging the extracellular polymeric matrix in the architecture of the biofilm to release biofilm from the surface of the solid substratum. Information gathered from this study provides an insight into the anti-biofilm mechanisms of plasma and confirms the applications of discharge gas in the treatment of biofilms and biofilm related bacterial infections.
Infrared absorption of 2-hydroxyethyl (HOCH2CH2) in solid Ar
NASA Astrophysics Data System (ADS)
Kuo, Yu-Ping; Wann, Gwo-Huei; Lee, Yuan-Pern
1993-09-01
An argon matrix containing C2H4 and H2O2 was irradiated at 12 K with the 248 nm emission of a KrF excimer laser; IR spectra were recorded after various periods of photolysis. In addition to lines ascribed to ethylene oxide, acetaldehyde, and vinyl alcohol, absorptions at 2991.0, 2842.7, 1355.4, 1172.5, and 1040.1 cm-1 have been assigned to HOCH2CH2; weaker lines at 3625.8, 2922.4, and 873.9 cm-1 may also be due to HOCH2CH2. Corresponding lines at 2970.6, 2829.3, 1346.5, 1171.3, and 1020.5 (and probably 3625.8, 2915.1, and 860.7) cm-1 were observed for HO13CH2 13CH2. The results are consistent with ab initio calculations.
NASA Astrophysics Data System (ADS)
Mateo-Marti, E.; Pradier, C. M.
2013-05-01
Matrix isolation is a powerful tool for studying photochemical processes occurring in isolated molecules. In this way, we characterized the chemical modifications occurring within a tri peptide molecule, IGF, when exposed to the influence of Ultraviolet (UV) irradiation. This paper first describes the successful formation of the tripeptide (IGF) argon matrix under vacuum conditions, followed by the in situ UV irradiation and characterization of the molecular matrix reactivity after UV-irradiation. These studies have been performed by combining two complementary spectroscopic techniques, Fourier-Transform Reflexion Absorption Spectroscopy (FT-IRRAS) and X-ray Photoelectron Spectroscopy (XPS). The IR spectra of the isolated peptide-matrix, before and after UV irradiation, revealed significant differences that could be associated either to a partial deprotonation of the molecule or to a tautomeric conversion of some amide bonds to imide ones on some peptide molecules. XPS analyses undoubtedly confirmed the second hypothesis; the combination of IRRAS and XPS results provide evidence that UV irradiation of peptides induces a chemical reaction, namely a shift of the double bond, meaning partial conversion from amide tautomer into an imidic acid tautomer.
High-Strain-Rate Constitutive Characterization and Modeling of Metal Matrix Composites
2014-03-07
protective coatings. Even though most MMCs studied to date are aluminum matrix composites, magnesium and its alloys have also been considered to be... plastic response of the matrix. Based on a simple analysis of the effect of misalignments of microscale kinks, Argon estimated that the compressive... deformations ; if the fibers break into small enough pieces, their stiffening effect could be reduced. We are examining both possibilities to explain
The source and significance of argon isotopes in fluid inclusions from areas of mineralization
NASA Astrophysics Data System (ADS)
Kelley, S.; Turner, G.; Butterfield, A. W.; Shepherd, T. J.
1986-09-01
Argon isotopes in fluid inclusions in quartz veins associated with granite-hosted tungsten mineralization in the southwest and north of England have been investigated in detail by the 40Ar- 39Ar technique. The natural argon is present as a number of discrete components which can be identified through correlations with 39Ar, 38Ar and 37Ar induced by neutron bombardment of potassium, chlorine and calcium. The potassium-correlated component arises principally from in situ decay of potassium in solid phases in the inclusions. In the case of the Hemerdon tungsten deposit of southwest England the phases responsible are small (≈ 25 μm) captive authigenic micas which are shown to have been deposited from a fluid 268 ± 20 Ma ago, shortly after the emplacement of the host granite. The chlorine-correlated component is present in the brines which constitute the fluid phase of the inclusions. The argon in these hydrothermal fluids is made up in part of "parentless" or "excess" 40Ar leached from surrounding crustal rocks, and in part of dissolved ancient atmospheric argon. Absolute concentrations of both atmospheric and excess components in the brine can be estimated from ( 40ArCl ) ratios and independent determinations of the salinity of the inclusions. The absolute concentrations of the atmospheric argon are close to those found in modern meteoric water, while those of the excess component can be interpreted in terms of the degree of interaction betwen the circulating fluids and country rock. A calcium-correlated component, with a much higher ratio of excess to atmospheric argon than that in the brine, was found to be a dominant phase in one sample from the Hemerdon deposit, indicating the presence of a solid phase (probably a CaSO 4 daughter mineral). Inclusions of this composition represent fluids which have had a more prolonged interaction- with crustal rocks. The results obtained from this study provide a systematization and a framework for future multi-component argon studies of fluid inclusions, together with an indication of the wide range of information which can be inferred.
NASA Astrophysics Data System (ADS)
Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.
2017-02-01
Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.
Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C
2017-01-27
Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .
Infrared spectra and density functional calculations for SMO2 molecules (M = Cr, Mo, W).
Wang, Xuefeng; Andrews, Lester
2009-08-06
Infrared absorptions of the matrix isolated SMO2 (M = Cr, Mo, W) molecules were observed following laser-ablated metal atom reactions with SO2 during condensation in solid argon and neon. The symmetric and antisymmetric M-O stretching mode assignments were confirmed by appropriate S18O2 and S(16,18)O2 isotopic shifts. The much weaker Cr-S stretching mode was identified through its 34S shift. Density functional (B3LYP and BPW91) calculations were performed to obtain molecular structures and to reproduce the infrared spectra. Computed pyramidal structures for the SMO2 molecules are very similar to those for the analogous trioxides and this functional group in [MO2S(bdt)]2- complexes. Additional weaker absorptions are assigned to the (SO2)(SMO2) adducts, which are stabilized by a four-membered ring.
NASA Astrophysics Data System (ADS)
Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie
2015-04-01
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.
Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie
2015-01-01
Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.
Investigation of iron oxide reduction by TEM
NASA Astrophysics Data System (ADS)
Rau, Mann-Fu; Rieck, David; Evans, James W.
1987-03-01
An “environmental cell” located in a high voltage transmission electron microscope has been used to study the reduction of single crystal iron oxides by hydrogen and hydrogen-argon mixtures. The cell enables a direct observation of the solid during reaction, thus permitting the nucleation and growth of solid reaction products to be observed. Hematite was reduced at temperatures in the range 387 to 610°C with gas pressures up to 5.3 kP. Reduction with pure hydrogen was considerably faster than when argon was present. Lath magnetite which rapidly transforms to porous magnetite and thence (more slowly) to porous iron was observed. The reduction of magnetite and of wustite single crystals was observed in the temperature range 300 to 514°C using both hydrogen and hydrogen-argon mixtures at gas pressures up to 6.6 kP. Incubation periods were found for magnetite reduction; during these periods faceted pits formed in the oxide. Iron formed in the early stages was epitaxial with the host magnetite; at later stages the epitaxy was lost and fissures frequently formed in the metal. The morphology of the iron differed between the gas mixtures. Disproportionation accompanied the reduction of wustite, producing intermediate polycrystalline magnetite despite reducing conditions. The disproportionation appeared to be promoted by the reduction reaction. For both oxides, reduction in the hydrogen-argon mixture was slower than in pure hydrogen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Wen Hao, E-mail: wkan6795@uni.sydney.edu.au
AISI 440 stainless steels reinforced with various volume fractions of niobium carbide (NbC) particles of up to 25 vol% were fabricated in-situ using an argon arc furnace and then heat-treated to produce a martensitic matrix. Optical and scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and electron back-scatter diffraction (EBSD) techniques were used to analyze the microstructure, phases and composition of these composites. Interestingly, it was found that Chinese-script NbC could nucleate on existing primary NbC particles creating NbC clusters with complex microstructures. Additionally, hardness tests were used to evaluate viability in mining and mineral processing applications. The increasemore » in NbC content resulted in an overall increase in the hardness of the composites while causing a marginal decrease in the amount of Cr in solid solution with the matrix, which could be a concern for corrosion resistance. The latter was due to the fact that the NbC lattice could dissolve a minor amount of Cr. Thermodynamic simulations also attributed this to a slight increase in M{sub 7}C{sub 3} precipitation. Nonetheless, these novel composites show great promise for applications in wear and corrosive environments. - Highlights: •Stainless steels reinforced with NbC particles of up to 25 vol% were fabricated. •NbC was formed in-situ in the steels using an arc melter. •Martensitic transformation of the matrix of each sample was achieved. •NbC reinforcements increased the bulk hardness values of the steels. •Dissolved Cr in the matrix of each sample was sufficient for passivity in theory.« less
NASA Astrophysics Data System (ADS)
Pitsevich, George; Shalamberidze, Elena; Malevich, Alex; Sablinskas, Valdas; Balevicius, Vytautas; Pettersson, Lars G. M.
2017-10-01
The frequencies and intensities of vibration-rotational transitions of water molecules in an argon matrix were calculated for temperatures of 6 and 30 K. The rigid asymmetric top approximation was used with available literature values of the effective rotational constants in the ground and excited vibrational states. The calculations were carried out by taking into account the existence of a non-equilibrium population distribution between the rotational levels of ortho- and para-water isomers. It was assumed that the temperature relaxation of the population of rotational levels is independent of the ortho- and para-isomers. Comparison of the results of the theoretical calculations with experimental literature data shows good agreement for the majority of the rotational structure lines for symmetric and antisymmetric stretching vibrations both in the frequency values and in the values of the relative intensities.
Banert, Klaus; Chityala, Madhu; Hagedorn, Manfred; Beckers, Helmut; Stüker, Tony; Riedel, Sebastian; Rüffer, Tobias; Lang, Heinrich
2017-08-01
Solutions of azidomethylidenemalononitrile were photolyzed at low temperatures to produce the corresponding 2H-azirine and tricyanomethane, which were analyzed by low-temperature NMR spectroscopy. The latter product was also observed after short thermolysis of the azide precursor in solution whereas irradiation of the azide isolated in an argon matrix did not lead to tricyanomethane, but to unequivocal detection of the tautomeric ketenimine by IR spectroscopy for the first time. When the long-known "aquoethereal" greenish phase generated from potassium tricyanomethanide, dilute sulfuric acid, and diethyl ether was rapidly evaporated and sublimed, a mixture of hydronium tricyanomethanide and tricyanomethane was formed instead of the previously claimed ketenimine tautomer. Under special conditions of sublimation, single crystals of tricyanomethane could be isolated, which enabled the analysis of the molecular structure by X-ray diffraction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Byrne, Owen; McCaffrey, John G
2011-03-28
Absorption spectroscopy recorded for annealed samples of matrix-isolated atomic europium reveals a pair of thermally stable sites in Ar and Kr while a single site exists in Xe. Plots of the matrix shifts of the visible s → p bands versus host polarizability, allowed the association of the single site in Xe and the blue sites in Ar and Kr. On the basis of the similar ground state bond lengths expected for the Eu-rare gas (RG) diatomics and the known Na-RG molecules, the blue sites are attributed to Eu occupancy in the smaller tetra-vacancy while the red sites are proposed to arise from hexa-vacancy sites. Both sites are of cubic symmetry, consistent with the pronounced Jahn-Teller structure present on the y(8)P ← a(8)S(7/2) transition for these bands in the three hosts studied. Site-selective excitation spectroscopy has been used to reanalyze complex absorption spectra previously published by Jakob et al. [Phys. Lett. A 57, 67 (1976)] for the near-UV f → d transitions. On the basis that a pair of thermally stable sites exist in solid argon, the occurrence of crystal field splitting has been identified to occur for the J ≥ 5/2 level of the (8)P state when isolated in these two sites with cubic symmetry. From a detailed lineshape analysis, the magnitude of the crystal field splittings on the J = 5/2 level in Ar is found to be 105 and 123 cm(-1) for the red and blue sites, respectively.
Wang, Xuefeng; Roos, Björn O; Andrews, Lester
2010-03-14
Laser-ablated Th atoms react with BF(3) during condensation in excess argon at 6 K to form the first actinide borylene (FB=ThF(2)) and actinide-boron multiple bond. Three new product absorptions in the B-F and Th-F stretching regions of matrix infrared spectra are assigned to FB=ThF(2) from comparison to theoretically predicted vibrational frequencies.
Chemical-Vapor Deposition Of Silicon Carbide
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.; Riccitiello, S. R.; Ren, J.; Zaghi, F.
1993-01-01
Report describes experiments in chemical-vapor deposition of silicon carbide by pyrolysis of dimethyldichlorosilane in hydrogen and argon carrier gases. Directed toward understanding chemical-kinetic and mass-transport phenomena affecting infiltration of reactants into, and deposition of SiC upon, fabrics. Part of continuing effort to develop method of efficient and more nearly uniform deposition of silicon carbide matrix throughout fabric piles to make improved fabric/SiC-matrix composite materials.
Engineering Interfaces in Metal Matrix Composites (Volume 3)
1988-06-10
Howard S. Landis and James A. Cornie Interfaces with Controlled Toughness as Mechanical Fuses to Isolate Fibers from Damage -Vijay Gupta, All S. Argon and...protect the re- inforcing fiber from damage resulting from fracture of surrounding fibers or from misfitting reaction products between the matrix and...properties to govern the decoupling of the fiber from its damaging surroundings, while maintaining full wetting contact along the interface between
A phenomenological continuum model for force-driven nano-channel liquid flows
NASA Astrophysics Data System (ADS)
Ghorbanian, Jafar; Celebi, Alper T.; Beskok, Ali
2016-11-01
A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.
Perspectives on continuum flow models for force-driven nano-channel liquid flows
NASA Astrophysics Data System (ADS)
Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper
2017-11-01
A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.
Interfacial Studies of Chemical Vapor Infiltrated (CVI) Ceramic Matrix Composites
1988-10-01
carbon layer exists at the fiber/matrix interface. From Fig. 6, it can also be seen that a small amount of Cl exists at the interface and in the CVD SiC...matrix interface, most of which stayed on the fiber surface upon fracture. A small amount of oxygen (3-5 at*/) was found to be present in the CVI SiC. The... small amount of oxygen (1-2%). The results of MTS precursor coatings applied to Nextel 440 and Nicalon fibers preceded by an argon flush of the reactor
Nanodroplet impact onto solid platinum surface: Spreading and bouncing
NASA Astrophysics Data System (ADS)
Lussier, Daniel; Ventikos, Yiannis
2009-11-01
The impact of droplets onto solid surfaces is found in a huge variety of natural and technological applications, from rain drops splashing on the pavement, to material manufacturing by molten droplet deposition. Taking inspiration from existing microfluidic technologies (i.e. lab-on-chip), there is increasing interest in the use of nanodroplets (D < 100 nm) for a number of applications such as drug delivery and semiconductor device manufacturing. However, as the size of the droplet is reduced into the nanoscale, the direct use of previously obtained macroscopic results is not guaranteed. At the nanoscale, important effects due to the molecular nature of the fluid, thermal fluctuations and reduced dimensionality can play a critical role in determining system dynamics. In this paper we present the results of large-scale, fully atomistic, three-dimensional molecular dynamics (MD) simulation of an argon nanodroplet (D = 18 nm, 54 000 atoms) impact onto a solid platinum surface, using the LAMMPS software package. The fluid argon is modeled using the well-known Lennard-Jones (LJ) potential, while the embedded-atom model (EAM) potential is used for the solid platinum. By varying both the impact velocities (10-1000 m/s) and the wettability of the solid surface a wide range of impact behaviors is observed, from smooth spreading, to bouncing recoil, pointing towards a wide array of potential applications.
Nagamori, Masanao; Mowjood, M I M; Watanabe, Youichi; Isobe, Yugo; Ishigaki, Tomonori; Kawamoto, Ken
2016-12-01
A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Gas samples were taken from vertical gas monitoring pipes installed along transects at two sections (called new and old) of an abandoned waste dump site in Sri Lanka. N 2 O concentrations varied especially widely, by more than three orders of magnitude (0.046-140 ppmv). The nitrogen/argon ratio of landfill gas was normally higher than that of fresh air, implying that denitrification occurred in the dump site. Argon assays indicate that both N 2 and N 2 O production occurred inside waste and more significantly in the old section. The Ar assay would help for evaluations of N 2 O emission in developing countries. A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Argon assays indicate that both N 2 and N 2 O production occurred inside waste and more significantly in the old section.
Zeng, Xiaoqing; Beckers, Helmut; Willner, Helge
2009-01-01
Splendid isolation: Monomeric phosphazene F(2)PN ((1)A(1)) was prepared for the first time through irradiation of F(2)PN(3) in an argon matrix with an ArF excimer laser (lambda=193 nm). Upon subsequent irradiation with a high-pressure mercury arc lamp (lambda=255 nm), F(2)PN undergoes a 1,2-fluorine shift to give iminophosphane cis-FP=NF.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Han, Q.; Wang, D.; Macé, T.; Kipphardt, H.; Maiwald, M.; Tuma, D.; Uehara, S.; Akima, D.; Shimosaka, T.; Jung, J.; Oh, S.-H.; van der Veen, A.; van Wijk, J. I. T.; Ziel, P. R.; Konopelko, L.; Valkova, M.; Mogale, David M.; Botha, A.; Brewer, P.; Murugan, A.; Doval Minnaro, M.; Miller, M.; Guenther, F.; Kelly, M. E.
2016-01-01
This key comparison aims to assess the capabilities of the participants to determine the amount-of-substance fraction oxygen in nitrogen. The GAWG has classified this as a track B comparison, due to the unexpected 50 μmol/mol argon mole fraction content of the transfer standards, which effects the achievable performance of some measurement techniques such a GC-TCD. The separation of oxygen and argon is challenging, and not all systems in use are equally well designed for it. As this analytical challenge due to a substantial fraction of argon in the transfer standards became a reality, the Gas Analysis Working Group (GAWG) decided to qualify this key comparison as a regular key comparison and not as a core comparison, which may be used to support calibration and measurement capabilities (CMCs) for oxygen in nitrogen, or for oxygen in nitrogen mixtures containing argon only (see also the section on support to CMCs). Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Borylnitrenes: electrophilic reactive intermediates with high reactivity towards C-H bonds.
Bettinger, Holger F; Filthaus, Matthias
2010-12-21
Borylnitrenes (catBN 3a and pinBN 3b; cat = catecholato, pin = pinacolato) are reactive intermediates that show high tendency towards insertion into the C-H bonds of unactivated hydrocarbons. The present article summarizes the matrix isolation investigations that were aimed at identifying, characterizing and investigating the chemical behaviour of 3a by spectroscopic means, and of the experiments in solution and in the gas phase that were performed with 3b. Comparison with the reactivity reported for difluorovinylidene 1a in solid argon indicates that 3a shows by and large similar reactivity, but only after photochemical excitation. The derivative 3b inserts into the C-H bonds of hydrocarbon solvents in high yields and thus allows the formation of primary amines, secondary amines, or amides from "unreactive" hydrocarbons. It can also be used for generation of methylamine or methylamide from methane in the gas phase at room temperature. Remaining challenges in the chemistry of borylnitrenes are briefly summarized.
Kugel, Roger W; Ault, Bruce S
2015-01-15
The reactions of ozone with three bicyclic alkenes, α-pinene, norbornene, and norbornadiene, were studied by low-temperature (14 K), argon matrix isolation infrared spectroscopy including (18)O isotope-labeling studies. Theoretical calculations of some of the proposed reaction intermediates and products were carried out using the Gaussian 09 suite of programs, applying density functional theory (DFT), the B3LYP functional, and the 6-311G++(d,2p) basis set. In the α-pinene/ozone system, the thermal reaction between α-pinene and ozone was too slow to observe under the twin-jet or merged-jet deposition conditions of these experiments. However, red light (λ ≥ 600 nm) irradiation of the argon matrixes containing α-pinene and ozone caused new infrared peaks to appear that could be readily assigned to reaction products of α-pinene with O((3)P) resulting from ozone photolysis: α-pinene oxide (with an epoxide ring) and two isomeric ketones. Norbornene and norbornadiene were both found to react with ozone in the gas phase during twin-jet or merged-jet deposition of these mixtures with argon. New peaks observed in the infrared spectra were assigned to the primary ozonides, Criegee intermediates, and secondary ozonides of norbornene and norbornadiene, indicating that the bulk of these reactions proceeded via the "classic" Criegee mechanism for ozonolysis of alkenes. Calculated infrared frequencies and molecular energies support these conclusions. Ultraviolet irradiation of these mixtures resulted in complete decomposition of the early intermediates and the formation of acids, aldehydes, alcohols, carbon dioxide, and carbon monoxide. In any case, no evidence for "unusual" chemistry, prompted by the bicyclic nature of the reactants, was observed.
Photoisomerization and photochemistry of matrix-isolated 3-furaldehyde.
Kuş, Nihal; Reva, Igor; Fausto, Rui
2010-12-02
3-Furaldehyde (3FA) was isolated in an argon matrix at 12 K and studied using FTIR spectroscopy and quantum chemistry. The molecule has two conformers, with trans and cis orientation of the O=C-C=C dihedral angle. At the B3LYP/6-311++G(d,p) level of theory, the trans form was computed to be ca. 4 kJ mol(-1) more stable than the cis form. The relative stability of the two conformers was explained using the natural bond orbital (NBO) method. In fair agreement with their calculated relative energies and the high barrier of rotamerization (ca. 34 kJ mol(-1) from trans to cis), the trans and cis conformers were trapped in an argon matrix from the compound room temperature gas phase in proportion ~7:1. The experimentally observed vibrational signatures of the two forms are in a good agreement with the theoretically calculated spectra. Broad-band UV-irradiation (λ > 234 nm) of the matrix-isolated compound resulted in partial trans → cis isomerization, which ended at a photostationary state with the trans/cis ratio being ca. 1.85:1. This result was interpreted based on results of time-dependent DFT calculations. Irradiation at higher energies (λ > 200 nm) led to decarbonylation of the compound, yielding furan, cyclopropene-3-carbaldehyde, and two C(3)H(4) isomers: cyclopropene and propadiene.
NASA Astrophysics Data System (ADS)
Cuglietta, Mark; Kesler, Olivera
2012-06-01
Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.
Atomistic study of the graphene nanobubbles
NASA Astrophysics Data System (ADS)
Iakovlev, Evgeny; Zhilyaev, Petr; Akhatov, Iskander
2017-11-01
A two-dimensional (2D) heterostructures can be created using 2D crystals stacking method. Substance can be trapped between the layers which leads to formation of the surface nanobubbles. We study nanobubbles trapped between graphene layers with argon atoms inside using molecular dynamics approach. For bubbles with radius in range 7-34 nm the solid close-packed state of argon is found, although according to bulk argon phase diagram the fluid phase must be observed. The universal shape scaling (constant ratio of height to radius), which is found experimentally and proved by the theory of elasticity of membranes, is also observed in our atomistic simulations. An unusual pancake shape (extremely small height to radius ratio) is found for smallest nanobubble with radius 7 nm. The nanobubbles with similar shape were experimentally observed at the interface between water and hydrophobic surface.
Nanocrystal-polymer nanocomposite electrochromic device
Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo
2015-12-08
Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.
The DarkSide physics program and its recent results
D'Angelo, D.
2017-01-12
Here, DarkSide (DS) at Gran Sasso underground laboratory is a direct Dark Matter search program based on Time Projection Chambers (TPC) with liquid Argon from underground sources. The DarkSide-50 (DS-50) TPC, with 150 kg of Argon is installed inside active neutron and muon detectors. DS-50 has been taking data since November 2013 with Atmospheric Argon (AAr) and since April 2015 with Underground Argon (UAr), depleted in radioactive 39Ar by a factor ~1400. The exposure of 1422 kg d of AAr has demonstrated that the operation of DS-50 for three years in a background free condition is a solid reality, thanksmore » to the superb performance of the Pulse Shape Analysis. The first release of results from an exposure of 2616 kg d of UAr has shown no candidate Dark Matter events. We have set the best limit for Spin-Independent elastic nuclear scattering of WIMPs obtained by Argon-based detectors, corresponding to a cross-section of 2 10 –44 cm 2 at a WIMP mass of 100 GeV. We present the detector design and performance, the results from the AAr run and the first results from the UAr run and we briefly introduce the future of the DarkSide program.« less
The DarkSide physics program and its recent results
NASA Astrophysics Data System (ADS)
D'Angelo, D.; Agnes, P.; Agostino, L.; F. M. Albuquerque, I.; Alexander, T.; K. Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; M. Goretti, A.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; R. Hackett, B.; Herner, K.; V. Hungerford, E.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; L. Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Lissia, M.; Li, X.; Lombardi, P.; Luitz, S.; N. Machulin, I.; Mandarano, A.; Maricic, J.; Marini, L.; M. Mari, S.; J. Martoff, C.; Ma, Y.; Meregaglia, A.; D. Meyers, P.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; J. Mount, B.; N. Muratova, V.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; A. Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; L. Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; A. Semenov, D.; Shields, E.; N. Singh, P.; D. Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; V. Unzhakov, E.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; W. Watson, A.; Westerdale, S.; Wilhelmi, J.; M. Wojcik, M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2017-07-01
DarkSide (DS) at Gran Sasso underground laboratory is a direct Dark Matter search program based on Time Projection Chambers (TPC) with liquid Argon from underground sources. The DarkSide-50 (DS-50) TPC, with 150kg of Argon is installed inside active neutron and muon detectors. DS-50 has been taking data since November 2013 with Atmospheric Argon (AAr) and since April 2015 with Underground Argon (UAr), depleted in radioactive ^{39} Ar by a factor {˜}1400 . The exposure of 1422kg d of AAr has demonstrated that the operation of DS-50 for three years in a background free condition is a solid reality, thanks to the superb performance of the Pulse Shape Analysis. The first release of results from an exposure of 2616kg d of UAr has shown no candidate Dark Matter events. We have set the best limit for Spin-Independent elastic nuclear scattering of WIMPs obtained by Argon-based detectors, corresponding to a cross-section of 2 10^{-44}{ cm2} at a WIMP mass of 100GeV. We present the detector design and performance, the results from the AAr run and the first results from the UAr run and we briefly introduce the future of the DarkSide program.
Argon laser choroidotomy for drainage of subretinal fluid.
Bovino, J A; Marcus, D F; Nelsen, P T
1985-03-01
We used the argon laser to perforate the choroid and drain subretinal fluid during retinal detachment surgery in 24 consecutive patients. The procedure was successful in 23 of 24 patients (95.8%). The laser settings required for perforation ranged from 0.02 to 0.2 s and from 200 mW to 2.0 W. Because it is not necessary to enter the subretinal space with a solid, pointed object, laser choroidotomy may reduce the incidence of retinal perforation. In addition, the laser has the advantage of cauterizing small vessels during choroidal puncture, which may reduce bleeding at the time of drainage.
Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders.
Gronostajski, Zbigniew; Bandoła, P; Skubiszewski, T
2010-01-01
The paper presents the method of the argon - shielded hot pressing of titanium alloy (Ti6A14V) powder (used in medical industry). The powders produced in the GA (gas atomization) process and in the HDH (hydride - dehydride) process were used in the experiments. A pressing process was conducted at a temperature of 800-850 degrees C for different lengths of time. An unoxidized sintered material, nearly as dense as a solid material and having a lamellar structure (alpha+beta), was obtained from the titanium alloy powder produced in the HDH process.
Alternatives to argon for gas stopping volumes in the B194 neutron imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleuel, D. L.; Anderson, S.; Caggiano, J. A.
2017-05-17
In a recent experiment at Lawrence Berkeley National Laboratory, the 40Ar(d,p)41Ar excitation function between 3-7 MeV was measured, confirming a previous estimation that there may be an intolerable radiation dose from 41Ar production by slowing to rest 6.74 MeV deuterons in the gas cell of the neutron imaging facility being constructed in B194. Gas alternatives to argon are considered, including helium, nitrogen (N2), neon, sulfur hexafluoride (SF6), krypton, and xenon, as well as high atomic number solid backings such as tantalum.
2009-06-01
typically consists of a thermoset or thermoplastic polymer matrix reinforced with fibers that are much stronger and stiffer than the matrix. The PMCs are...high thermal or electrical conductivity, stealth characteristics , the ability to self-heal, communication, and sensor capabilities. The multi...have factual evidence of limitations and characteristics so as to utilize the material in a manner consistent with its strengths and weaknesses
Matrix isolation FT-IR and theoretical DFT/B3LYP spectrum of 1-naphthol.
Muzomwe, Mayawila; Boeckx, Bram; Maes, Guido; Kasende, Okuma E
2013-05-01
The FT-IR spectrum of 1-Naphthol isolated in an argon matrix is performed and compared to the infrared spectra calculated at the DFT (B3LYP)/6-31+G(d) level for cis-1-Naphthol and trans-1-Naphthol rotamers in order to clarify the existence of both rotamers in the standard temperature. Comparison of the computed and the experimental matrix spectra reveals the presence in 1-Naphthol argon matrices in the standard temperature of both cis and trans rotameric forms of 1-Naphthol, the last predominating. The relative stability of the trans-1-Naphthol rotamer has also been supported by a fit comparison between the difference of predicted total energy (ETC) of both rotamers of 0.00195 a.u. corresponding to 5.12 kJ mol(-1) and the variation of the standard free Gibbs energy of rotamerization (ΔGr°) of 5.06 kJ mol(-1). Almost all 51 active vibrational modes of 1-Naphthol have been assigned. The stretching vibration of the OH group (νOH) appears to be the unique vibrational mode distinguishing the cis-1-NpOH rotamer from the trans-1-NpOH rotamer in FT-IR spectrum. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cortés, Joaquin; Valencia, Eliana
1997-07-01
Monte Carlo experiments are used to investigate the adsorption of argon on a heterogeneous solid with a periodic distribution of surface energy. A study is made of the relation between the adsorbate molecule's diameter and the distance between the sites of maximum surface energy on the critical temperature, the observed phase changes, and the commensurability of the surface phase structure determined in the simulation.
Tunable femtosecond lasers with low pump thresholds
NASA Astrophysics Data System (ADS)
Oppo, Karen
The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.
NASA Astrophysics Data System (ADS)
Jarrah, Nina K.; Moore, David T.
2014-06-01
Interfacial matrix stabilization spectroscopy is a new technique based on matrix isolation spectroscopy, but where a cryogenic matrix is deposited over the top of a film sample, in order to characterize interactions between the substrate and molecular dopants. The IMSS technique harnesses the well-established ability of cryogenic matrices to trap and stabilize transient species, although in this case it is applied to intermediates relevant to heterogeneous catalysis. In this proof-of-concept study, we present data for CO and O2 reactants binding to TiO2 and Au/TiO2 nanoparticle films, where in the latter case the Au nanoparticles were created by de-wetting of a 22.5 nm overlayer at 450 K. The films are first pre-saturated with CO at 40 K, then cooled to 20 K, at which point an argon matrix is deposited over the top of them. The spectra are then annealed in stages over a range of temperatures between 20 and 40 K. In all cases, the presence of the Ar matrix alters the appearance of the CO bands, revealing additional structure, such as a broad feature at 2150 wn, which is typically attributed to CO interacting with OH groups on the TiO2 surface, but is not observed at 40 K for these samples in the absence of the matrix. The interpretation is that the matrix induces a caging-effect that prevents molecules from desorbing from weak binding sites from which they would be "pumped away" in the vacuum chamber if the matrix were not present. Perhaps the most interesting feature of these spectra is a small but sharp band at 2112 wn that appears ONLY when O2 is added to the argon matrix as a dopant. This transient band grows in following annealing at 32 K, but then disappears upon annealing above 34 K, suggesting that it may correspond to a reactive intermediate. The band occurs for samples both with and without Au present on the TiO2 surface, but shows a larger intensity in the latter case. Possible assignments for the observed band in light of previous studies from the literature will be discussed in detail.
Dual beam organic depth profiling using large argon cluster ion beams
Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES
2014-01-01
Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Opila, Elizabeth J.; Calomino, Anthony; Kiser, J. Douglas
2002-01-01
Stress-rupture tests were conducted in air, vacuum, and steam-containing environments to identify the failure modes and degradation mechanisms of a carbon fiber-reinforced silicon carbide (C/SiC) composite at two temperatures, 600 and 1200 C. Stress-rupture lives in air and steam containing environments (50 - 80% steam with argon) are similar for a composite stress of 69 MPa at 1200 C. Lives of specimens tested in a 20% steam/argon environment were about twice as long. For tests conducted at 600 C, composite life in 20% steam/argon was 20 times longer than life in air. Thermogravimetric analysis of the carbon fibers was conducted under similar conditions to the stress-rupture tests. The oxidation rate of the fibers in the various environments correlated with the composite stress-rupture lives. Examination of the failed specimens indicated that oxidation of the carbon fibers was the primary damage mode for specimens tested in air and steam environments at both temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Shu-Hua; Liu, Xiang-Yang; Fang, Qiu
2015-11-21
In this work, we have first employed the combined quantum mechanics/molecular mechanics (QM/MM) method to study the photodissociation mechanism of thioacetic acid CH{sub 3}C(O)SH in the S{sub 1}, T{sub 1}, and S{sub 0} states in argon matrix. CH{sub 3}C(O)SH is treated quantum mechanically using the complete active space self-consistent field and complete active space second-order perturbation theory methods; argon matrix is described classically using Lennard-Jones potentials. We find that the C-S bond fission is predominant due to its small barriers of ca. 3.0 and 1.0 kcal/mol in the S{sub 1} and T{sub 1} states. It completely suppresses the nearby C—Cmore » bond fission. After the bond fission, the S{sub 1} radical pair of CH{sub 3}CO and SH can decay to the S{sub 0} and T{sub 1} states via internal conversion and intersystem crossing, respectively. In the S{sub 0} state, the radical pair can either recombine to form CH{sub 3}C(O)SH or proceed to form molecular products of CH{sub 2}CO and H{sub 2}S. We have further employed our recently developed QM/MM generalized trajectory-based surface-hopping method to simulate the photodissociation dynamics of CH{sub 3}C(O)SH. In 1 ps dynamics simulation, 56% trajectories stay at the Franck-Condon region; the S{sub 1} C—S bond fission takes place in the remaining 44% trajectories. Among all nonadiabatic transitions, the S{sub 1} → S{sub 0} internal conversion is major (55%) but the S{sub 1} → T{sub 1} intersystem crossing is still comparable and cannot be ignored, which accounts for 28%. Finally, we have found a radical channel generating the molecular products of CH{sub 2}CO and H{sub 2}S, which is complementary to the concerted molecular channel. The present work sets the stage for simulating photodissociation dynamics of similar thio-carbonyl systems in matrix.« less
Structure and photochemistry of a saccharyl thiotetrazole.
Ismael, A; Borba, A; Henriques, M S C; Paixão, J A; Fausto, R; Cristiano, M L S
2015-01-02
The molecular structure and photochemistry of 5-thiosaccharyl-1-methyltetrazole (TSMT) were studied by means of matrix-isolation FTIR spectroscopy, X-ray crystallography, and theoretical calculations. The calculations predicted two conformers of TSMT that differ in energy by more than 15 kJ mol(-1). The infrared spectrum of TSMT isolated in solid argon was fully assigned on the basis of the spectrum calculated (O3LYP/6-311++G(3df,3pd)) for the most stable conformer. In the crystal, TSMT molecules were found to assume the same conformation as for the isolated molecule, with each molecule forming four hydrogen bonds with three neighboring molecules, leading to a network of TSMT oligomers. Upon UV (λ = 265 nm) irradiation of the matrix-isolated TSMT, two photodegradation pathways were observed, both arising from cleavage of the tetrazolyl ring. Pathway a involves cleavage of the N1-N2 and N3-N4 bonds with extrusion of N2, leading to photostable diazirine and thiocarbodiimide derivatives. The photostability of the photoproduced diazirine under the conditions used precluded its rearrangement to the nitrile imine, as reported for 5-phenyltetrazole by Bégué et al. ( J. Am. Chem. Soc. 2012 , 134 , 5339 ). Pathway b involves cleavage of the C5-N1 and N4-N3 bonds, leading to a thiocyanate and methyl azide, the latter undergoing subsequent fragmentation to give CNH.
Relativistic coupled-cluster and density-functional studies of argon at high pressure
NASA Astrophysics Data System (ADS)
Schwerdtfeger, Peter; Steenbergen, Krista G.; Pahl, Elke
2017-06-01
The equation of state P (V ,T ) for solid argon is determined by the calculation of accurate static and vibrational terms in the free energy. The static component comes from a quantum theoretical many-body expansion summing over all energetic contributions from two-, three-, and four-body fragments treated with relativistic coupled cluster theory, while the lattice vibrations are described at an anharmonic level including two- and three-body forces as well as temperature effects. The dynamic part is calculated within the Debye and Einstein approximation, as well as by a more accurate phonon treatment where the vibrational motions in the lattice are coupled. Our results are in good agreement with room-temperature high-pressure experimental data up to ˜20 GPa. In the 20-100 GPa pressure range, however, we see considerable deviations between experiment and theory, perhaps indicating missing four-body contributions (beyond the quadruple dipole terms included here), missing five and higher-body effects, and the need to go beyond the coupled cluster singles-doubles with perturbative triples treatment in such higher-body forces. This contrasts with the results for solid neon, where excellent agreement has been achieved taking only two- and three-body forces into account [P. Schwerdtfeger and A. Hermann, Phys. Rev. B 80, 064106 (2009), 10.1103/PhysRevB.80.064106]. We demonstrate that the phase transition from fcc to hcp cannot account for the large discrepancies observed. Density functional calculations give very mixed results in the high-pressure region, but some functionals such as optB88-vdW (proposed by Lundqvist and co-workers) describe the many-body forces in argon reasonably well over the range of pressures investigated. Theoretical investigations of the heavier rare gas solids reaching experimental accuracy in the high-pressure regime therefore remain a significant challenge.
NASA Astrophysics Data System (ADS)
Khurana, Sanchit; LaBarbera, Mark; Fedkin, Mark V.; Lvov, Serguei N.; Abernathy, Harry; Gerdes, Kirk
2015-01-01
A liquid tin anode solid oxide fuel cell is constructed and investigated under different operating conditions. Electrochemical Impedance Spectroscopy (EIS) is used to reflect the effect of fuel feed as the EIS spectra changes significantly on switching the fuel from argon to hydrogen. A cathode symmetric cell is used to separate the impedance from the two electrodes, and the results indicate that a major contribution to the charge-transfer and mass-transfer impedance arises from the anode. The OCP of 0.841 V for the cell operating under argon as a metal-air battery indicates the formation of a SnO2 layer at the electrolyte/anode interface. The increase in the OCP to 1.1 V for the hydrogen fueled cell shows that H2 reduces the SnO2 film effectively. The effective diffusion coefficients are calculated using the Warburg element in the equivalent circuit model for the experimental EIS data, and the values of 1.9 10-3 cm2 s-1 at 700 °C, 2.3 10-3 cm2 s-1 at 800 °C and 3.5 10-3 cm2 s-1 at 900 °C indicate the system was influenced by diffusion of hydrogen in the system. Further, the performance degradation over time is attributed to the irreversible conversion of Sn to SnO2 resulting from galvanic polarization.
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E.; Riccitiello, Salvatore R.; Carswell, Marty G.
1990-01-01
A study of the products and reactions occurring during the chemical vapor deposition of silicon carbide from dimethyldichlorosilane in argon is presented. Reaction conditions were as follows: 700 to 1100 C, a contact time of about 1 min, and a pressure of 1 atm. At these conditions, the gases that formed were mainly methane, hydrogen, silicon tetrachloride, trichlorosilane, and methyltrichlorosilane. The silicon carbide solid that formed showed the presence of hydrogen and chloride as impurities, which might degrade the silicon carbide properties. These impurities were eliminated slowly, even at 1100 C, forming hydrogen, trichlorosilane, and silicon tetrachloride.
Atomistic study of the solid state inside graphene nanobubbles.
Iakovlev, Evgeny; Zhilyaev, Petr; Akhatov, Iskander
2017-12-20
A two-dimensional (2D) material placed on an atomically flat substrate can lead to the formation of surface nanobubbles trapping different types of substances. In this paper graphene nanobubbles of the radius of 7-34 nm with argon atoms inside are studied using molecular dynamics (MD). All modeled graphene nanobubbles except for the smallest ones exhibit an universal shape, i.e., a constant ratio of a bubble height to its footprint radius, which is in an agreement with experimental studies and their interpretation using the elastic theory of membranes. MD simulations reveal that argon does exist in a solid close-packed phase, although the internal pressure in the nanobubble is not sufficiently high for the ordinary crystallization that would occur in a bulk system. The smallest graphene bubbles with a radius of 7 nm exhibit an unusual "pancake" shape. Previously, nanobubbles with a similar pancake shape were experimentally observed in completely different systems at the interface between water and a hydrophobic surface.
Golec, Barbara; Bil, Andrzej; Mielke, Zofia
2009-08-27
We have studied the structure and photochemistry of the formaldoxime−nitrous acid system (CH2NOH−HONO) by help of FTIR matrix isolation spectroscopy and ab initio methods. The MP2/6-311++G(2d,2p) calculations show stability of six isomeric CH2NOH···HONO complexes. The FTIR spectra evidence formation of two hydrogen bonded complexes in an argon matrix whose structures are determined by comparison of the experimental spectra with the calculated ones for the six stable complexes. In the matrix there is present the most stable cyclic complex with two O−H···N bonds; a strong bond is formed between the OH group of HONO and the N atom of CH2NOH and the weaker one between the OH group of CH2NOH and the N atom of HONO. In the other complex present in the matrix the OH group of formaldoxime is attached to the OH group of HONO forming an O−H···O bond. The irradiation of the CH2NOH···HONO complexes with the filtered output of the mercury lamp (λ > 345 nm) leads to the formation of formaldoxime nitrite, CH2NONO, and its two isomeric complexes with water. The main product is the CH2NONO···H2O complex in which water is hydrogen bonded to the N atom of the C═N group. The identity of the photoproducts is confirmed by both FTIR spectroscopy and MP2 or QCISD(full) calculations with the 6-311++G(2d,2p) basis set. The intermediate in this reaction is iminoxyl radical that is formed by abstraction of hydrogen atom from formaldoxime OH group by an OH radical originating from HONO photolysis.
40Ar/39Ar systematics and argon diffusion in amber: implications for ancient earth atmospheres
Landis, G.P.; Snee, L.W.
1991-01-01
Argon isotope data indicate retained argon in bulk amber (matrix gas) is radiogenic [40Ar/39Ar ???32o] than the much more abundant surface absorbed argon [40Ar/39Ar ???295.5]. Neutron-induced 39Ar is retained in amber during heating experiments to 150?? -250??C, with no evidence of recoiled 39Ar found after irradiation. A maximum permissible volume diffusion coefficient of argon in amber (at ambient temperature) D???1.5 x 10-17 cm2S-1 is calculated from 39Ar retention. 40Ar/39Ar age calculations indicate Dominican Republic amber is ??? 45 Ma and North Dakota amber is ??? 89 Ma, both at least reasonable ages for the amber based upon stratigraphic and paleontological constraints and upon the small amount of radiogenic 40Ar. To date, over 300 gas analyses of ambers and resins of Cretaceous to Recent age that are geographically distributed among fifteen noted world locations identify mixtures of gases in different sites within amber (Berner and Landis, 1988). The presence of multiple mixing trends between compositionally distinct end-members gases within the same sample and evidence for retained radiogenic argon within the amber argue persuasivley against rapid exchange by diffusion of amber-contained gases with moder air. Only gas in primary bubbles entrapped between successive flows of tree resin has been interpreted as original "ancient air", which is an O2-rich end-member gas with air-like N2/Ar ratios. Gas analyses of these primary bubbles indicate atmospheric O2 levels in the Late Cretaceous of ??? 35%, and that atmospheric O2 dropped by early Tertiary time to near a present atmospheric level of 21% O2. A very low argon diffusion coefficient in amber persuasively argues for a gas in primary bubbles trapped in amber being ancient air (possibly modified only by O2 reaction with amber). ?? 1991.
NASA Astrophysics Data System (ADS)
Song, Jung-Bin; Lee, Haigun
2012-12-01
A cooling system employing a solid cryogen (SC), such as solid nitrogen (SN2), was recently reported for high-temperature superconducting (HTS) applications. However, thermal contact between the SC and the HTS can be degraded by repeated overcurrent runs, resulting in 'thermal dry-out'. Novel cryogens, SC with small amounts of liquid cryogen, have been suggested to overcome this problem. Such cooling systems rely on the small amount of liquid cryogen to facilitate heat exchange so as to fully exploit the heat capacity of the solid cryogen. This paper presents a description and summary of recent activities at Korea University related to cooling systems employing mixed cryogens of solid-liquid nitrogen, solid argon-liquid nitrogen, and solid nitrogen-liquid neon.
Rasheed, Tabish; Ahmad, Shabbir
2010-10-01
Ab initio Hartree-Fock (HF), density functional theory (DFT) and second-order Møller-Plesset (MP2) methods were used to perform harmonic and anharmonic calculations for the biomolecule cytosine and its deuterated derivative. The anharmonic vibrational spectra were computed using the vibrational self-consistent field (VSCF) and correlation-corrected vibrational self-consistent field (CC-VSCF) methods. Calculated anharmonic frequencies have been compared with the argon matrix spectra reported in literature. The results were analyzed with focus on the properties of anharmonic couplings between pair of modes. A simple and easy to use formula for calculation of mode-mode coupling magnitudes has been derived. The key element in present approach is the approximation that only interactions between pairs of normal modes have been taken into account, while interactions of triples or more are neglected. FTIR and Raman spectra of solid state cytosine have been recorded in the regions 400-4000 cm(-1) and 60-4000 cm(-1), respectively. Vibrational analysis and assignments are based on calculated potential energy distribution (PED) values. Copyright 2010 Elsevier B.V. All rights reserved.
Process of making carbon-carbon composites
NASA Technical Reports Server (NTRS)
Kowbel, Witold (Inventor); Withers, James C. (Inventor); Bruce, Calvin (Inventor); Vaidyanathan, Ranji (Inventor); Loutfy, Raouf O. (Inventor)
2000-01-01
A carbon composite structure, for example, an automotive engine piston, is made by preparing a matrix including of a mixture of non crystalline carbon particulate soluble in an organic solvent and a binder that has a liquid phase. The non crystalline particulate also contains residual carbon hydrogen bonding. An uncured structure is formed by combining the matrix mixture, for example, carbon fibers such as graphite dispersed in the mixture and/or graphite cloth imbedded in the mixture. The uncured structure is cured by pyrolyzing it in an inert atmosphere such as argon. Advantageously, the graphite reinforcement material is whiskered prior to combining it with the matrix mixture by a novel method involving passing a gaseous metal suboxide over the graphite surface.
Grate, Jay W; Gonzalez, Jhanis J; O'Hara, Matthew J; Kellogg, Cynthia M; Morrison, Samuel S; Koppenaal, David W; Chan, George C-Y; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E
2017-09-08
Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.
Interaction models were developed for moisture effects on room-temperature fluorescence (RTF) and room-temperature phosphorescence (RTP) of compounds adsorbed on filter paper. The models described both dynamic and matrix quenching and also related the Young modulus of filter paper to quenching of phosphor on moist filter paper. Photophysical parameters for lumiphors in solution and on solid matrices were compared. Results showed that for some compounds, solid-matrix luminescence has greater analytical potential than solution luminescence. Also, the solid-matrix systems into one of two categories depending on how the intersystem crossing rate constants change with temperature. The first study was carried out onmore » effects of heavy atom on solid-matrix luminescence. With some heavy atoms, maximum solid-matrix phosphorescence quantum yield was obtained at room temperature, and there was no need to use low temperature to obtain a strong phosphorescence signal. By studying solid-matrix luminescence properties of phosphors adsorbed on sodium acetate and deuterated sodium acetate, an interaction model was developed for p-aminobenzoic acid anion adsorbed on sodium acetate. It was shown that the energy-gap law was applicable to solid-matrix luminescence. Also, deuterated phenanthrene and undeuterated phenanthrene were used to study nonradiative transition of excited triplet state of adsorbed phosphors. Heat capacities of several solid matrices were obtained vs temperature and related to vibrational coupling of solid matrix with phosphor. Photophysical study was performed on the hydrolysis products of benzo(a)pyrene-DNA adducts. Also, an analytical method was developed for tetrols in human lung fractions. Work was initiated on the formation of room temperature glasses with glucose and trehalose. Also, work has begun for the development of an oxygen sensor by measuring the RTP quenching of triphenylene on filter paper.« less
NASA Technical Reports Server (NTRS)
Avni, R.; Carmi, U.; Grill, A.; Manory, R.; Grossman, E.
1984-01-01
The dissociation of chlorosilanes to silicon and its deposition on a solid substrate in a RF plasma of mixtures of argon and hydrogen were investigated as a function of the macrovariables of the plasma. The dissociation mechanism of chlorosilanes and HCl as well as the formation of Si in the plasma state were studied by sampling the plasma with a quadrupole mass spectrometer. Macrovariables such as pressure, net RF power input and locations in the plasma reactor strongly influence the kinetics of dissociation. The deposition process of microcrystalline silicon films and its chlorine contamination were correlated to the dissociation mechanism of chlorosilanes and HCl.
Infrared and EPR Spectroscopic Studies of 2-C 2H 2F and 1-C 2H 2F Radicals Isolated in Solid Argon
NASA Astrophysics Data System (ADS)
Goldschleger, I. U.; Akimov, A. V.; Misochko, E. Ya.; Wight, C. A.
2001-02-01
2-fluorovinyl radicals were generated in solid argon by solid-state chemical reactions of mobile F atoms with acetylene and its deuterated analogues. Highly resolved EPR spectra of the stabilized radicals CHF•CH, CDF•CD, CHF•CD, and CDF•CH were obtained for the first time. The observed spectra were assigned to cis-2-fluorovinyl radical based on excellent agreement between the measured (aF = 6.50, aβH = 3.86, aαH = 0.25 mT) hyperfine constants and those calculated using density functional (B3LYP) theory. Analogous experiments carried out using infrared spectroscopy yielded a complete assignment of the vibrational frequencies. An unusual reversible photochemical conversion is observed in which cis-2-fluorovinyl radicals can be partially converted to 1-fluorovinyl radicals by pulsed laser photolysis at 532 nm. Photolysis at 355 nm converts 1-fluorovinyl back to cis-2-fluorovinyl. High-resolution EPR and infrared spectra of 1-fluorovinyl were obtained for the first time. The measured hyperfine constants (aF = 13.71, aH1 = 4.21, aH2 = 1.16 mT) are in good agreement with calculated values.
Generation of warm dense matter using an argon based capillary discharge laser
NASA Astrophysics Data System (ADS)
Rossall, A. K.; Tallents, G. J.
2015-06-01
Argon based capillary discharge lasers operating in the extreme ultra violet (EUV) at 46.9 nm with output up to 0.5 mJ energy per pulse and repetition rates up to 10 Hz are capable of focused irradiances of 109-1012 W cm-2 and can be used to generate plasma in the warm dense matter regime by irradiating solid material. To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to describe the ionization-dependent electronic configurations and a calculation of plasma refractive indices for ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary discharge lasers of 1200 ps pulse duration can be used to generate warm dense matter at close to solid densities with temperatures of a few eV and energy densities up to 1 × 105 J cm-3. Plasmas produced by EUV laser irradiation are shown to be useful for examining the properties of warm dense matter as, for example, plasma emission is not masked by hotter, less dense plasma emission that occurs with visible/infra-red laser target irradiation.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2002-01-01
PS304, a plasma spray deposited solid lubricant coating developed for high temperature sliding contacts was deposited on nine different substrate metals, heat treated at 650C in either air or argon and subsequently tested for strength using a commercially available pull-off adhesion test. Some samples were examined metallographically to help elucidate and explain the results. As deposited coatings exhibit pull-off strengths typically between 16 and 20 MPa with failure occuring (cohesively) within the coating. Heat treatment in argon at 650 C results in a slight increase in coating (cohesive) strength of about 30 percent to 21 to 27 MPa. Heat treatment in air at 650 C results in a dramatic increase in strength to over 30 MPa, exceeding the strength of the epoxy used in the pull test. Cross section metallographic analyses show that no microstructural coating changes occur following the argon heat treatments, however, exposure to air at 650C gives rise to the formation of a second chromium-rich phase precipitate within the PS304 NiCr constituent which provides a strengthening effect and a slight (approximately 5 percent) coating thickness increase. Subsequent heat treatments do not result in any further coating changes. Based upon these studies, PS304 is a suitable coating for use on a wide variety of high temperature substrates and must be heat treated following deposition to enhance strength and ensure dimensional stability.
Predictive model to describe water migration in cellular solid foods during storage.
Voogt, Juliën A; Hirte, Anita; Meinders, Marcel B J
2011-11-01
Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Water migration in cellular solid foods involves migration through both the air cells and the solid matrix. For systems in which the water migration distance is large compared with the cell wall thickness of the solid matrix, the overall water flux through the system is dominated by the flux through the air. For these systems, water migration can be approximated well by a Fickian diffusion model. The effective diffusion coefficient can be expressed in terms of the material properties of the solid matrix (i.e. the density, sorption isotherm and diffusion coefficient of water in the solid matrix) and the morphological properties of the cellular structure (i.e. water vapour permeability and volume fraction of the solid matrix). The water vapour permeability is estimated from finite element method modelling using a simplified model for the cellular structure. It is shown that experimentally observed dynamical water profiles of bread rolls that differ in crust permeability are predicted well by the Fickian diffusion model. Copyright © 2011 Society of Chemical Industry.
Identification of HgO/x/ species by matrix isolation spectroscopy
NASA Technical Reports Server (NTRS)
Butler, R.; Katz, S.; Snelson, A.; Stephens, J. B.
1979-01-01
The condensation of Hg atoms in an ozone-doped argon matrix gas with irradiation from a medium-pressure mercury arc lamp at 10 K resulted in the formation of several trapped HgO(x) species. Tentative identification of HgO has been made from absorption bands appearing in the visible and IR regions of the spectrum based on (O-16)2 and (O-18)2 isotope studies. The following spectroscopic constants were obtained: nu(00) = 14634 cm, nu(1) = 548 cm, and nu(11) = 676 cm. Some qualitative evidence was obtained for the existence of HgO2.
Kuş, Nihal; Henriques, Marta Sofia; Paixão, José António; Lapinski, Leszek; Fausto, Rui
2014-09-25
The crystal structure of 3-quinolinecarboxaldehyde (3QC) has been solved, and the compound has been shown to crystallize in the space group P21/c (monoclinic) with a = 6.306(4), b = 18.551(11), c = 6.999(4) Å, β = 106.111(13)°, and Z = 4. The crystals were found to exhibit pseudomerohedral twinning with a twin law corresponding to a two-fold rotation around the monoclinic (100) reciprocal lattice axis (or [4 0 1] in direct space). Individual molecules adopt the syn conformation in the crystal, with the oxygen atom of the aldehyde substituent directed toward the same side of the ring nitrogen atom. In the gas phase, the compound exists in two nearly isoenergetic conformers (syn and anti), which could be successfully trapped in solid argon at 10 K, and their infrared spectra are registered and interpreted. Upon in situ irradiation of matrix-isolated 3QC with UV light (λ > 315 nm), significant reduction of the population of the less stable anti conformer was observed, while that of the conformational ground state (syn conformer) increased, indicating occurrence of the anti → syn isomerization. Upon irradiation at higher energy (λ > 235 nm), the syn → anti reverse photoreaction was observed. Interpretation of the structural, spectroscopic, and photochemical experimental data received support from quantum chemical theoretical results obtained at both DFT/B3LYP (including TD-DFT investigation of excited states) and MP2 levels, using the 6-311++G(d,p) basis set.
Ionizing Shocks in Argon. Part 1: Collisional-Radiative Model and Steady-State Structure (Preprint)
2010-09-09
absorption oscillator strength is given by fabsij = gj gi Aji 3γ . (43) Contributions to the parameter γ have been assumed to result from a combination of...discretization, the Saha temperatures of the higher states (green, red and blue solid curves) overshoot Te and relaxes with Th, indicating over
Synthesis and characterization of P-doped amorphous and nanocrystalline Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jialing; Ganguly, Shreyashi; Sen, Sabyasachi
Intentional impurity doping lies at the heart of the silicon technology. The dopants provide electrons or holes as necessary carriers of the electron current and can significantly modify the electric, optical and magnetic properties of the semiconductors. P-doped amorphous Si (a-Si) was prepared by a solid state and solution metathesis reaction of a P-doped Zintl phase precursor, NaSi 0.99P 0.01, with an excess of NH 4X (X = Br, I). After the salt byproduct was removed from the solid state reaction, the a-Si material was annealed at 600 °C under vacuum for 2 h, resulting in P-doped nanocrystalline Si (nc-Si)more » material embedded in a-Si matrix. The product from the solution reaction also shows a combination of nc-Si embedded in a-Si; however, it was fully converted to nc-Si after annealing under argon at 650 °C for 30 min. Powder X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) show the amorphous nature of the P-doped Si material before the annealing and the nanocrystallinity after the annealing. Fourier Transform Infrared (FTIR) spectroscopy shows that the P-doped Si material surface is partially capped by H and O or with solvent. Finally, electron microprobe wavelength dispersive spectroscopy (WDS) as well as energy dispersive spectroscopy (EDS) confirm the presence of P in the Si material. 29Si and 31P solid state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy data provide the evidence of P doping into the Si structure with the P concentration of approximately 0.07 at.%.« less
Corona-vacuum failure mechanism test facilities
NASA Technical Reports Server (NTRS)
Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.
1975-01-01
A nondestructive corona-vacuum test facility for testing high-voltage power system components has been developed using commercially available hardware. The facility simulates operating temperature and vacuum while monitoring coronal discharges with residual gases. Corona threshold voltages obtained from statorette tests with various gas-solid dielectric systems and comparison with calculated data support the following conclusions: (1) air gives the highest corona threshold voltage and helium the lowest, with argon and helium-xenon mixtures intermediate; (2) corona threshold voltage increases with gas pressure; (3) corona threshold voltage for an armature winding can be accurately calculated by using Paschen curves for a uniform field; and (4) Paschen curves for argon can be used to calculate the corona threshold voltage in He-Xe mixtures, for which Paschen curves are unavailable.-
NASA Astrophysics Data System (ADS)
Borisenok, V. A.; Medvedev, A. B.
2017-12-01
The results of numerical simulation of the behavior of a system consisting of a spherical bubble filled with nitrogen or its mixtures with argon and surrounding water under external influence typical of experimental study of single-bubble sonoluminescence are presented. Comparison of the results of calculations and experiments shows that gas heated at the bubble compression stage cannot be regarded as the only source of radiation. This circumstance requires the presence of other, basic, sources. In the polarization model, this is the channel of electrical breakdown in a liquid. Possible electrical effects accompanying the liquid-solid phase transformation in water near the moment of the maximum compression of the bubble are assumed.
Investigation of the daytime lunar atmosphere for lunar synthesis program
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1976-01-01
Synthesis studies of the daytime lunar atmoshere were directed toward improved understanding of fundamental lunar atmospheric dynamics and the relationship of the detectable atmosphere to physical processes of the lunar surface and interior. The primary source of data is the Apollo 17 lunar surface mass spectrometer. The Ar40 is radiogenic and its escape rate from the lunar atmosphere requires release of a significant fraction (about 8%) of the argon produced from the decay of K40 within the moon. Furthermore the process of argon release from the solid moon is time varying and related to seismic activity. Most of the helium on the moon is due to release of implanted solar wind alpha particles from the regolith.
NASA Astrophysics Data System (ADS)
Ren, Xueguang; Amami, Sadek; Zatsarinny, Oleg; Pflüger, Thomas; Weyland, Marvin; Dorn, Alexander; Madison, Don; Bartschat, Klaus
2016-06-01
As a further test of advanced theoretical methods to describe electron-impact single-ionization processes in complex atomic targets, we extended our recent work on Ne (2 p ) ionization [X. Ren, S. Amami, O. Zatsarinny, T. Pflüger, M. Weyland, W. Y. Baek, H. Rabus, K. Bartschat, D. Madison, and A. Dorn, Phys. Rev. A 91, 032707 (2015), 10.1103/PhysRevA.91.032707] to Ar (3 p ) ionization at the relatively low incident energy of E0=66 eV. The experimental data were obtained with a reaction microscope, which can cover nearly the entire 4 π solid angle for the secondary electron emission. We present experimental data for detection angles of 10, 15, and 20∘ for the faster of the two outgoing electrons as a function of the detection angle of the secondary electron with energies of 3, 5, and 10 eV, respectively. Comparison with theoretical predictions from a B -spline R -matrix (BSR) with pseudostates approach and a three-body distorted-wave (3DW) approach, for detection of the secondary electron in three orthogonal planes as well as the entire solid angle, shows overall satisfactory agreement between experiment and the BSR results, whereas the 3DW approach faces difficulties in predicting some of the details of the angular distributions. These findings are different from our earlier work on Ne (2 p ), where both the BSR and 3DW approaches yielded comparable levels of agreement with the experimental data.
Energy transfer and reaction dynamics of matrix-isolated 1,2-difluoroethane-d4
NASA Astrophysics Data System (ADS)
Raff, Lionel M.
1990-09-01
The molecular dynamics of vibrationally excited 1,2-difluoroethane-d4 isolated in Ar, Kr, and Xe matrices at 12 K are investigated using trajectory methods. The matrix model is an fcc crystal containing 125 unit cells with 666 atoms in a cubic (5×5×5) arrangement. It is assumed that 1,2-difluoroethane-d4 is held interstitially within the volume bounded by the innermost unit cell of the crystal. The transport effects of the bulk are simulated using the velocity reset method introduced by Riley, Coltrin, and Diestler [J. Chem. Phys. 88, 5934 (1988)]. The system potential is written as the separable sum of a lattice potential, a lattice-molecule interaction and a gas-phase potential for 1,2-difluoroethane. The first two of these are assumed to have pairwise form while the molecular potential is a modified form of the global potential previously developed for 1,2-difluoroethane [J. Phys. Chem. 91, 3266 (1987)]. Calculated sublimation energies for the pure crystals are in good accord with the experimental data. The distribution of metastable-state energies for matrix-isolated 1,2-difluoroethane-d4 is Gaussian in form. In krypton, the full width at half maximum for the distribution is 0.37 eV. For a total excitation energy of 6.314 eV, the observed dynamic processes are vibrational relaxation, orientational exchange, and four-center DF elimination reactions. The first of these processes is characterized by a near linear, first-order decay curve with rate coefficients in the range 1.30-1.48×1011 s-1. The average rates in krypton and xenon are nearly equal. The process is slightly slower in argon. The decay curves exhibit characteristic high-frequency oscillations that are generally seen in energy transfer studies. It is demonstrated that these oscillations are associated with the frequencies for intramolecular energy transfer so that the entire frequency spectrum for such transfer processes can be obtained from the Fourier transform of the decay curve. Orientational exchange is shown to occur with much greater frequency as the unit cell spacing decreases. The occurrence of orientational exchange generally results in a very rapid dissipation of molecular rotational energy to the lattice which causes a characteristic break to occur in the decay curve. It is shown that 16% of the total energy transfer to the lattice in argon is a result of such rotational energy transfer. The propensity for four-center DF elimination is found to be greater in argon than in either krypton or xenon. The relaxation data show that this effect is not the result of different energy transfer rates but is probably associated with steric effects resulting from the smaller lattice dimensions in argon. Isotope effects upon the energy partitioning in unimolecular reactions of 1,2-difluoroethane and upon the energy transfer dynamics under matrix-isolation conditions are also reported.
NASA Astrophysics Data System (ADS)
Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin
2009-10-01
Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.
Three-phase double-arc plasma for spectrochemical analysis of environmental samples.
Mohamed, M M; Ghatass, Z F; Shalaby, E A; Kotb, M M; El-Raey, M
2000-12-01
A new instrument, which uses a three-phase current to support a double-arc argon plasma torch for evaporation, atomization and excitation of solid or powder samples, is described. The sampling arc is ignited between the first and second electrode while the excitation arc is ignited between the second and third electrode. Aerosol generated from the sample (first electrode) is swept by argon gas, through a hole in the second electrode (carbon tubing electrode), into the excitation plasma. A tangential stream of argon gas is introduced through an inlet orifice as a coolant gas for the second electrode. This gas stream forces the excitation arc discharge to rotate reproducibly around the electrode surface. Discharge rotation increases the stability of the excitation plasma. Spectroscopic measurements are made directly in the current-carrying region of the excitation arc. An evaluation of each parameter influencing the device performance was performed. Analytical calibration curves were obtained for Fe, Al, K, and Pb. Finally, the present technique was applied for the analysis of environmental samples. The present method appears to have significant, low cost analytical utility for environmental measurements.
Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix.
Whiteley, Justin M; Taynton, Philip; Zhang, Wei; Lee, Se-Hee
2015-11-18
Thin solid membranes are formed by a new strategy, whereby an in situ derived self-healing polymer matrix that penetrates the void space of an inorganic solid is created. The concept is applied as a separator in an all-solid-state battery with an FeS2 -based cathode and achieves tremendous performance for over 200 cycles. Processing in dry conditions represents a paradigm shift for incorporating high active-material mass loadings into mixed-matrix membranes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Bates, H. E.; Hill, D. M.; Jewett, D. N.
1983-01-01
Drop length necessary to convert molten silicon to shot reduced by proposed new process. Conversion of silicon from powder or chunks to shot often simplifies processing. Shot is more easily handled in most processing equipment. Drops of liquid silicon fall through protective cloud of argon, then through rapidly cooling bath of methanol, where they quickly turn into solid shot.
NASA Astrophysics Data System (ADS)
Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo
2017-03-01
The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.
Exploring the potential of short-baseline physics at Fermilab
NASA Astrophysics Data System (ADS)
Miranda, O. G.; Pasquini, Pedro; Tórtola, M.; Valle, J. W. F.
2018-05-01
We study the capabilities of the short-baseline neutrino program at Fermilab to probe the unitarity of the lepton mixing matrix. We find the sensitivity to be slightly better than the current one. Motivated by the future DUNE experiment, we have also analyzed the potential of an extra liquid Argon near detector in the LBNF beamline. Adding such a near detector to the DUNE setup will substantially improve the current sensitivity on nonunitarity. This would help to remove C P degeneracies due to the new complex phase present in the neutrino mixing matrix. We also study the sensitivity of our proposed setup to light sterile neutrinos for various configurations.
2013-01-01
Multiwalled boron nitride nanotubes (BNNTs) have very attractive mechanical and thermal properties, e.g., elasticity, tensile strength, and high resistance to oxidation, and may be considered as ideal reinforcing agents in lightweight metal matrix composites. Herein, for the first time, Al-BNNT ribbons with various BNNT contents (up to 3 wt.%) were fabricated via melt spinning in an argon atmosphere. BNNTs were randomly dispersed within a microcrystalline Al matrix under ribbon casting and led to more than doubling of room-temperature ultimate tensile strength of the composites compared to pure Al ribbons produced at the similar conditions. PMID:23279813
Infrared spectra of the CO2- and C2O4- anions isolated in solid argon
NASA Astrophysics Data System (ADS)
Zhou, Mingfei; Andrews, Lester
1999-02-01
Laser ablation of transition metal targets with concurrent 11 to 12 K condensation of CO2-Ar mixtures produces a sharp metal independent infrared absorption at 1657.0 cm-1 due to CO2-, which is formed from the capture of ablated electrons by CO2 molecules during the condensation process. Two additional metal independent absorptions are produced at 1856.7 and 1184.7 cm-1 on matrix annealing to 25 K to allow diffusion and reaction of CO2 and CO2-. Isotopic substitution (13CO2, C18O2, C16,18O2, and mixtures) shows that these two vibrations involve two equivalent CO2 subunits. The excellent agreement with frequencies, intensities, and isotopic frequency ratios from density-functional calculations supports assignment to the symmetrical C2O4- anion with D2d symmetry. Photodissociation (470-580 nm) and failure to observe these absorptions in identical experiments doped with the electron trapping molecule CCl4 further support the molecular anion assignments. Although absorptions were observed for weak (CO2)(CO2-) complexes, no evidence was found for the asymmetric O2CṡOCO- molecule-anion complex characterized by calculations.
Extraction and quantitative analysis of iodine in solid and solution matrixes.
Brown, Christopher F; Geiszler, Keith N; Vickerman, Tanya S
2005-11-01
129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.
Defining the Role of Solid Stress and Matrix Stiffness in Cancer Cell Proliferation and Metastasis
Kalli, Maria; Stylianopoulos, Triantafyllos
2018-01-01
Solid tumors are characterized by an abnormal stroma that contributes to the development of biomechanical abnormalities in the tumor microenvironment. In particular, these abnormalities include an increase in matrix stiffness and an accumulation of solid stress in the tumor interior. So far, it is not clearly defined whether matrix stiffness and solid stress are strongly related to each other or they have distinct roles in tumor progression. Moreover, while the effects of stiffness on tumor progression are extensively studied compared to the contribution of solid stress, it is important to ascertain the biological outcomes of both abnormalities in tumorigenesis and metastasis. In this review, we discuss how each of these parameters is evolved during tumor growth and how these parameters are influenced by each other. We further review the effects of matrix stiffness and solid stress on the proliferative and metastatic potential of cancer and stromal cells and summarize the in vitro experimental setups that have been designed to study the individual contribution of these parameters. PMID:29594037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Secchieri, M.; Benassi, C.A.; Pastore, S.
A method for the quail-quantitative evaluation of pentachlorophenol (PCP) in solid matrixes has been developed. The procedure is based on solid-liquid extraction of solid samples (leather or wood), followed by purification on a cyanopropyl column and determination of the preservative by second derivative UV spectroscopy considering the PCP A peak-through value (304-297 nm). The method allows rapid PCP determination in the concentration range 1-40 micrograms/mL; any matrix interference is avoided by the purification step and recoveries of the preservative were 99.12% (RSD% 0.13) for the leather matrix and 98.03 (RSD% 0.17) for the wood matrix.
Regenerator filled with a matrix of polycrystalline iron whiskers
NASA Astrophysics Data System (ADS)
Eder, F. X.; Appel, H.
1982-08-01
In thermal regenerators, parameters were optimized: convection coefficient, surface of heat accumulating matrix, matrix density and heat capacity, and frequency of cycle inversions. The variation of heat capacity with working temperature was also computed. Polycrystalline iron whiskers prove a good compromise as matrix for heat regenerators at working temperatures ranging from 300 to 80 K. They were compared with wire mesh screens and microspheres of bronze and stainless steel. For theses structures and materials, thermal conductivity, pressure drop, heat transfer and yield were calculated and related to the experimental values. As transport heat gas, helium, argon, and dry nitrogen were applied at pressures up to 20 bar. Experimental and theoretical studies result in a set of formulas for calculating pressure drop, heat capacity, and heat transfer rate for a given thermal regenerator in function of mass flow. It is proved that a whisker matrix has an efficiency that depends strongly on gas pressure and composition. Iron whiskers make a good matrix with heat capacities of kW/cu cm per K, but their relative high pressure drop may, at low pressures, be a limitation. A regenerator expansion machine is described.
Infrared spectra of MF2, MF2+, MF4-, MF3, and M2F6 molecules (M = Sc, Y, La) in solid argon.
Wang, Xuefeng; Andrews, Lester
2010-02-18
Reactions of laser-ablated Sc, Y and La atoms with F(2) in excess argon gave new absorptions in the M-F stretching region, which are assigned to metal fluoride neutral species MF(2) and MF(3) and ions MF(2)(+) and MF(4)(-). Dibridged MF(3) dimers, M(2)F(6), were also identified through terminal M-F and bridge M-F-M stretching modes. Density functional theory (DFT) calculations substantiated the experimental assignments. Mulliken and natural charge distributions indicate significant electron transfer from metal d orbitals to F ligands that increase from Sc to La, suggesting that strong participation of La 5d orbital hybridization drives the F-La-F bond angle below 120 degrees.
Krypton adsorption on rutile: State and cross-sectional area at 77 K
NASA Astrophysics Data System (ADS)
Grillet, Y.; Rouquerol, F.; Rouquerol, J.
1985-10-01
A krypton adsorption study was carried out on a polycrystalline TiO 2 sample (98.5% rutile) presently considered as a potential reference material for surface areas. Both adsorption microcalorimetry and volumetry show evidence of a two-dimensional phase change (from 2D fluid to 2D solid) taking place at 77 K before the completion of the monolayer. No such phenomenon is observed neither with nitrogen (which we explain by a strong orientation and a close-packing of this molecule on a polar surface) neither with argon (which we explain by a large incompatibility factor between rutile and an argon crystal). On completion of the monolayer, the krypton molecular cross-sectional area is here around 0.15 nm 2 (instead of the usual 0.17 to 0.21 nm 2).
Infrared spectra of RuTPP, RuCOTPP, and Ru(CO)2TPP isolated in solid argon.
Krim, Lahouari; Sorgues, Sébastien; Soep, Benoit; Shafizadeh, Niloufar
2005-09-22
Infrared spectra of unstable species such as CO-free ruthenium tetraphenylporphyrin RuTPP and RuCOTPP (species with vacant coordination sites) isolated in solid argon at 8 K have been recorded. Selective deposition conditions allow the isolation of either RuTPP and RuCOTPP or RuCOTPP and Ru(CO)2TPP. This depends on the preparation conditions of the sample. A specific Ru-CO bending mode has been characterized at 590.1 cm(-1) for Ru(CO)2TPP. The behavior of each vibrational mode of RuTPP, RuCOTPP, and Ru(CO)2TPP has been analyzed. Modes such as gamma8 at 721.3 cm(-1) (out-of-plane stretching mode gamma(Cbeta-H)sym) and nu41 at 1342.8 cm(-1) (nuCalpha-N coupled with deltaCalpha-Cm) reflect the charge transfer in the porphyrin. Indeed, the addition of one or two CO ligands to RuTPP reduces the charge transfer between the metal center and the porphyrin, which appears as an increase in the frequency of the nu41 mode and in a decrease in that of the gamma8 mode.
NASA Astrophysics Data System (ADS)
Bokhtache, Aicha Aissa; Zegaoui, Abdallah; Aillerie, Michel; Djahbar, Abdelkader; Hemici, Kheira
2018-05-01
Electronic ballasts dedicated to discharge lamps allow improving the quality of radiation by operating at high frequency. In the present work, the use of a single-phase direct converter with a matrix structure for supplying a low-pressure mercury-argon UVC lamp for water sterilization is proposed. The structure of the converter is based on two switching cells allowing the realization of a fully controllable bidirectional switches. The advantages of such a matrix topology include the delivered of a sinusoidal waveform current with a controllable power factor close to unity, variable in amplitude and frequency. In order to obtain the desired amplitude and frequency, a PWM control was associated in the current realization. Finally, a linear adjustment of the lamp arc current was warranted by using of a PI regulator.
NASA Astrophysics Data System (ADS)
Pardanaud, Cédric; Vasserot, Anne-Marie; Michaut, Xavier; Abouaf-Marguin, L.
2008-02-01
We have investigated, at high resolution (0.03 cm -1), the 1593 cm -1 structure observed in the IR absorption spectrum of water trapped in solid argon doped with nitrogen. It exhibits a doublet at 1592.59 ± 0.05 and 1593.08 ± 0.05 cm -1 and a line centered at 1592.93 ± 0.05 cm -1. The central component, which increases irreversibly upon annealing and when the concentration is increased, is due to the proton acceptor submolecule of the H 2O dimer, as mentioned in the literature. The doublet is assigned to the H 2O:N 2 complex. After a fast cooling of the sample from 20 to 4 K, the low frequency line of the doublet decreases with time and the high frequency one increases, the total integrated absorption increasing slightly. The ratio of the integrated intensities between the low frequency component and the high frequency one reaches a constant limit of 0.5 ± 0.1 at infinite time. This time behavior, perfectly exponential with a time constant τ of about 680 min, is reproducible. As the nitrogen molecule cannot rotate in an argon substitutional site, and as the H 2O submolecule seems to preserve somewhat its identity, this is interpreted as nuclear spin species conversion between ortho and para states of the H 2O submolecule within the complex. The order of magnitude of the energy difference between the ortho and para lowest levels, about 5 cm -1, is too weak to imply any, even very hindered, rotational motion of H 2O, but it could be the energy range of a tunneling effect. When the temperature is increased, the two components coalesce at 25 K into a single symmetrical line pointing at 1593.3 cm -1 and the conversion time shortens dramatically. An Arrhenius plot leads to a weak activation energy of the conversion process (about 30 cm -1). A possible geometry of the complex in solid argon, different from the gas phase one, is proposed.
Wang, Xuefeng; Andrews, Lester; Brosi, Felix; Riedel, Sebastian
2013-01-21
The reactions of laser-ablated Au, Ag, and Cu atoms with F(2) in excess argon and neon gave new absorptions in the M-F stretching region of their IR spectra, which were assigned to metal-fluoride species. For gold, a Ng-AuF bond was identified in mixed neon/argon samples. However, this bonding was much weaker with AgF and CuF. Molecules MF(2) and MF(3) (M=Au, Ag, Cu) were identified from the isotopic distribution of the Cu and Ag atoms, comparison of the frequencies for three metal fluorides, and theoretical frequency calculations. The AuF(5) molecule was characterized by its strongest stretching mode and theoretical frequency calculations. Additional evidence was observed for the formation of the Au(2) F(6) molecule. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Collisional transfer of population and orientation in NaK
NASA Astrophysics Data System (ADS)
Wolfe, C. M.; Ashman, S.; Bai, J.; Beser, B.; Ahmed, E. H.; Lyyra, A. M.; Huennekens, J.
2011-05-01
Collisional satellite lines with |ΔJ| ≤ 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb2 molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ΔJ that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)1Σ+(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ΔJ = even. Conversely, collisions with potassium atoms do not show this ΔJ = even propensity, but do show a propensity for ΔJ = positive compared to ΔJ = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 31Π ← 2(A)1Σ+spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.
Collisional transfer of population and orientation in NaK.
Wolfe, C M; Ashman, S; Bai, J; Beser, B; Ahmed, E H; Lyyra, A M; Huennekens, J
2011-05-07
Collisional satellite lines with |ΔJ| ≤ 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb(2) molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ΔJ that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)(1)Σ(+)(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ΔJ = even. Conversely, collisions with potassium atoms do not show this ΔJ = even propensity, but do show a propensity for ΔJ = positive compared to ΔJ = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 3(1)Π ← 2(A)(1)Σ(+)spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.
Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Nitrogen Heterocycles (PANHs)
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.; Biemesderfer, C. D.; Rosi, M.
2002-01-01
The mid-infrared spectra of the nitrogen-containing heterocyclic polycyclic aromatic compounds 1-azabenz[a]-anthracene; 2-azabenz[a]anthracene; 1-azachrysene; 2-azachrysene; 4-azachrysene; 2-azapyrene, and 7,8 benzoquinoline in their neutral and cation forms were investigated. The spectra of these species isolated in an argon matrix have been measured. Band frequencies and intensities were tabulated and these data compared with spectra computed using density functional theory at the B3LYP level. The overall agreement between experiment and theory is quite good, in keeping with earlier results on homonuclear polycyclic aromatic hydrocarbons. The differences between the spectral properties of nitrogen bearing aromatics and non-substituted, neutral polycyclic aromatic hydrocarbons will be discussed.
One-dimensional hybrid model of plasma-solid interaction in argon plasma at higher pressures
NASA Astrophysics Data System (ADS)
Jelínek, P.; Hrach, R.
2007-04-01
One of problems important in the present plasma science is the surface treatment of materials at higher pressures, including the atmospheric pressure plasma. The theoretical analysis of processes in such plasmas is difficult, because the theories derived for collisionless or slightly collisional plasma lose their validity at medium and high pressures, therefore the methods of computational physics are being widely used. There are two basic ways, how to model the physical processes taking place during the interaction of plasma with immersed solids. The first technique is the particle approach, the second one is called the fluid modelling. Both these approaches have their limitations-small efficiency of particle modelling and limited accuracy of fluid models. In computer modelling is endeavoured to use advantages by combination of these two approaches, this combination is named hybrid modelling. In our work one-dimensional hybrid model of plasma-solid interaction has been developed for an electropositive plasma at higher pressures. We have used hybrid model for this problem only as the test for our next applications, e.g. pulsed discharge, RF discharge, etc. The hybrid model consists of a combined molecular dynamics-Monte Carlo model for fast electrons and fluid model for slow electrons and positive argon ions. The latter model also contains Poisson's equation, to obtain a self-consistent electric field distribution. The derived results include the spatial distributions of electric potential, concentrations and fluxes of individual charged species near the substrate for various pressures and for various probe voltage bias.
1984-08-01
0V-10 on 100/120 mesh chromosorb W column was used in the gas chromatography inlet of the mass spectrometer. High resolution mass spectra were obtained...into methylsilene on ultraviolet irradiation in an argon matrix, as well’as, in the gas phase at high temperature has been reported. 31 34 .4 . CH3 CHK... analytical achievement. Further it should be noted that in control experiments we have shown that the products discussed are stable to the pyrolysis
NASA Astrophysics Data System (ADS)
Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka
2016-11-01
Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.
Molecular dynamics study of solid-liquid heat transfer and passive liquid flow
NASA Astrophysics Data System (ADS)
Yesudasan Daisy, Sumith
High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an equilibrium canonical ensemble (NVT) is simulated using thermostat algorithms. For research in heat transfer involving solid liquid interaction, we need to perform non equilibrium MD (NEMD) simulations. In such NEMD simulations, the methods used for simulating heating from a surface is very important and must capture proper physics and thermodynamic properties. Development of MD simulation techniques to simulate solid-liquid heating and the study of fundamental mechanism of passive flow is the main focus of this thesis. An accurate surface-heating algorithm was developed for water which can now allow the study of a whole new set of fundamental heat transfer problems at the nanoscale like surface heating/cooling of droplets, thin-films, etc. The developed algorithm is implemented in the in-house developed C++ MD code. A direct two dimensional local pressure estimation algorithm is also formulated and implemented in the code. With this algorithm, local pressure of argon and platinum interaction is studied. Also, the surface tension of platinum-argon (solid-liquid) was estimated directly from the MD simulations for the first time. Contact angle estimation studies of water on platinum, and argon on platinum were also performed. A thin film of argon is kept above platinum plate and heated in the middle region, leading to the evaporation and pressure reduction thus creating a strong passive flow in the near surface region. This observed passive liquid flow is characterized by estimating the pressure, density, velocity and surface tension using Eulerian mapping method. Using these simulation, we have demonstrated the fundamental nature and origin of surface-driven passive flow. Heat flux removed from the surface is also estimated from the results, which shows a significant improvement can be achieved in thermal management of electronic devices by taking advantage of surface-driven strong passive liquid flow. Further, the local pressure of water on silicon di-oxide surface is estimated using the LAMMPS atomic to continuum (ATC) package towards the goal of simulating the passive flow in water.
Bil, A; Grzechnik, K; Sałdyka, M; Mielke, Z
2016-09-01
We studied the photochemistry of the carbon disulfide-nitrous acid system with the help of Fourier transform infrared (FTIR) matrix isolation spectroscopy and theoretical methods. The irradiation of the CS2···HONO complexes, isolated in solid argon, with the filtered output of the mercury lamp (λ > 345 nm) was found to produce OCS, SO2, and HNCS; HSCN was also tentatively identified. The (13)C, (15)N, and (2)H isotopic shifts as well as literature data were used for product identifications. The evolution of the measured FTIR spectra with irradiation time and the changes in the spectra after matrix annealing indicated that the identified molecules are the products of different reaction channels: OCS being a product of another reaction path than SO2 and HNCS or HSCN. The possible reaction channels between SC(OH)S/SCS(OH) radicals and NO were studied using DFT/B3LYP/aug-cc-pVTZ method. The SC(OH)S and/or SCS(OH) intermediates are formed when HONO attached to CS2 photodissociates into OH and NO. The calculations indicated that SC(OH)S radical can form with NO two stable adducts. The more stable SC(OH)S···NO structure is a reactant for a simple one-step process leading to OCS and HONS molecules. An alternative, less-stable complex formed between SC(OH)S and NO leads to formation of OCS and HSNO. The calculations predict only one stable complex between SCS(OH) radical and NO, which can dissociate along two channels leading to HNCS and SO2 or HSCN and SO2 as the end products. The identified photoproducts indicate that both SC(OH)S and SCS(OH) adducts are intermediates in the CS2 + OH + NO reaction leading to different reaction products.
Collisional Transfer of Population and Orientation in NaK
NASA Astrophysics Data System (ADS)
Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.
2010-03-01
We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser- induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v'=16, J') <- X^1&+circ;(v''=0, J'±1) transition, creating an orientation (non-uniform MJ' level distribution) in both levels. The linearly polarized probe laser is scanned over various 3^1π(v, J'±1) <- A^1&+circ;(v'=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). Using both spectroscopic methods, analysis of weak collisional satellite lines adjacent to these directly populated lines, as a function of argon buffer gas pressure and cell temperature, allows us to discern separately the effects collisions with argon atoms and potassium atoms have on the population and orientation of the molecule. In addition, code has been written which provides a theoretical analysis of the process, through a solution of the density matrix equations of motion for the system.
Collisional transfer of population and orientation in sodium potassium
NASA Astrophysics Data System (ADS)
Wolfe, Christopher Matthew
Collisional spectral satellite lines have been identified in recent optical-optical double resonance (OODR) excitation spectra of the NaK molecule. These satellite lines represent both a transfer of population, and a partial preservation of angular momentum orientation, to a rotational level adjacent to the one directly excited by the pump laser beam. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms (being the most populous species in the vapor by an order of magnitude over the third most populous). Using a fit of this rate equation model to the data, it was found that collisions between NaK and potassium are more likely to transfer population and destroy orientation than argon collisions, and also more likely to transfer population to rotational levels higher in energy than the one being pumped (i.e. a propensity for positive Delta J collisions). Also, collisions between NaK and argon atoms show a propensity toward even-numbered changes in J. In addition to the above study, an analysis of collisional line broadening and velocity-changes in J-changing collisions was performed, showing potassium has a higher line broadening rate coefficient, as well as a smaller velocity change in J-changing collisions, than argon. A program was also written in Fortran 90/95 which solves the density matrix equations of motion in steady state for a coupled system of 3 (or 4) energy levels with their constituent degenerate magnetic sublevels. The solution to these equations yields the populations of each sublevel in steady state, as well as the laser-induced coherences between each sublevel (which are needed to model the polarization spectroscopy lineshape precisely). Development of an appropriate theoretical model for collisional transfer will yield a more rigorous study of the problem than the empirical rate equation model used in the analysis of our experiment.
George, Edward V.; Oster, Yale; Mundinger, David C.
1990-01-01
Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1700-1300A using xenon, krypton or argon; shorter wavelengths of 850-650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask.
High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers
Hoenig, Clarence L.
1994-01-01
Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2200.degree. C. and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made.
High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers
Hoenig, C.L.
1994-08-09
Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.
Boeckx, Bram; Maes, Guido
2012-02-01
The conformational landscape of N-acetylalanine has been investigated by a theoretical and matrix-isolation FT-IR study. Optimizations of N-acetylalanine structures has been conducted at successive higher levels of theory HF/3-21G, DFT(B3LYP)/6-31++G** and MP2/6-31++G**. This resulted in three stable conformations. Among these, one conformation contains an intramolecular H-bond. The vibrational properties of these conformations were calculated and used to identify the conformations in a cryogenic argon matrix. The intensities of some bands assigned to a particular conformation were used to estimate the rotamerization constants K(r12) and K(r13) for the equilibria NAA1 NAA2 and NAA1 NAA3, respectively. The obtained experimental values were in agreement with the theoretical predictions. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Holzapfel, Wilfried B.
2018-06-01
Thermodynamic modeling of fluids (liquids and gases) uses mostly series expansions which diverge at low temperatures and do not fit to the behavior of metastable quenched fluids (amorphous, glass like solids). These divergences are removed in the present approach by the use of reasonable forms for the "cold" potential energy and for the thermal pressure of the fluid system. Both terms are related to the potential energy and to the thermal pressure of the crystalline phase in a coherent way, which leads to simpler and non diverging series expansions for the thermal pressure and thermal energy of the fluid system. Data for solid and fluid argon are used to illustrate the potential of the present approach.
Engineered glass seals for solid-oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry
2017-02-07
A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.
Revised error propagation of 40Ar/39Ar data, including covariances
NASA Astrophysics Data System (ADS)
Vermeesch, Pieter
2015-12-01
The main advantage of the 40Ar/39Ar method over conventional K-Ar dating is that it does not depend on any absolute abundance or concentration measurements, but only uses the relative ratios between five isotopes of the same element -argon- which can be measured with great precision on a noble gas mass spectrometer. The relative abundances of the argon isotopes are subject to a constant sum constraint, which imposes a covariant structure on the data: the relative amount of any of the five isotopes can always be obtained from that of the other four. Thus, the 40Ar/39Ar method is a classic example of a 'compositional data problem'. In addition to the constant sum constraint, covariances are introduced by a host of other processes, including data acquisition, blank correction, detector calibration, mass fractionation, decay correction, interference correction, atmospheric argon correction, interpolation of the irradiation parameter, and age calculation. The myriad of correlated errors arising during the data reduction are best handled by casting the 40Ar/39Ar data reduction protocol in a matrix form. The completely revised workflow presented in this paper is implemented in a new software platform, Ar-Ar_Redux, which takes raw mass spectrometer data as input and generates accurate 40Ar/39Ar ages and their (co-)variances as output. Ar-Ar_Redux accounts for all sources of analytical uncertainty, including those associated with decay constants and the air ratio. Knowing the covariance matrix of the ages removes the need to consider 'internal' and 'external' uncertainties separately when calculating (weighted) mean ages. Ar-Ar_Redux is built on the same principles as its sibling program in the U-Pb community (U-Pb_Redux), thus improving the intercomparability of the two methods with tangible benefits to the accuracy of the geologic time scale. The program can be downloaded free of charge from http://redux.london-geochron.com.
NASA Astrophysics Data System (ADS)
Starace, Anthony F.; Jiang, Tsin-Fu
1987-08-01
A transition-matrix theory for two-photon ionization processes in rare-gas atoms or isoelectronic ions is presented. Uncoupled ordinary differential equations are obtained for the radial functions needed to calculate the two-photon transition amplitude. The implications of these equations are discussed in detail. In particular, the role of correlations involving virtually excited electron pairs, which are known to be essential to the description of single-photon processes, is examined for multiphoton ionization processes. Additionally, electron scattering interactions between two electron-hole pairs are introduced into our transition amplitude in the boson approximation since these have been found important in two-photon ionization of xenon by L'Huillier and Wendin [J. Phys. B 20, L37 (1987)]. Application of our theory is made to two-photon ionization of the 3p subshell of argon below the one-photon ionization threshold. Our results are compared to previous calculations of McGuire [Phys. Rev. A 24, 835 (1981)], of Moccia, Rahman, and Rizzo [J. Phys. B 16, 2737 (1983)], and of Pindzola and Kelly [Phys. Rev. A 11, 1543 (1975)]. Results are presented for both circularly and linearly polarized photons. Among our findings are, firstly, that the electron scattering interactions, which have not been included in previous calculations for argon, produce a substantial reduction in the two-photon single-ionization cross section below the one-photon ionization threshold, which is in agreement with findings of L'Huillier and Wendin for xenon. Secondly, we find that de-excitation of virtually excited electron pairs by absorption of a photon is important for describing the interaction of the atom with the photon field, as in the case of single-photon ionization processes, but that further excitation of virtually excited electron pairs by the photon field has completely negligible effects, indicating a major simplification of the theory for higher-order absorption processes.
Treviňo, Lucia; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raul; Aguilar, Cristóbal Noé
2007-01-01
The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices. PMID:17910122
Deguin, Vincent; Mascetti, Joëlle; Simon, Aude; Ben Amor, Nadia; Aupetit, Christian; Latournerie, Sandra; Noble, Jennifer A
2018-01-18
The photochemistry of Fe:H 2 O adducts is of interest in fields as diverse as catalysis and astrochemistry. Industrially, iron can be used as a catalyst to convert H 2 O to H 2 , whereas in the interstellar medium it may be an important component of dust grains, influencing the chemistry on their icy surfaces. This study consisted of the deposition and spectral characterization of binary systems of atomic iron with H 2 O in cryogenic argon matrixes. In this way, we were able to obtain information about the interaction of the two species; we observed the formation of adducts of iron monomers and dimers with water molecules in the mid-IR and UV-visible spectral domains. Upon irradiation with a UV radiation source, the iron species were inserted into the water molecules to form HFeOH and HFe 2 OH, leading in some cases to the formation of FeO possibly accompanied by the production of H 2 . DFT and correlated multireference wave function calculations confirmed our attributions. This combination of IR and UV-visible spectroscopy with theoretical calculations allowed us to determine, for the first time, the spectral characteristics of iron adducts and their photoproducts in the UV-visible and in the OH stretching region of the mid-IR domain.
A hybrid method for transient wave propagation in a multilayered solid
NASA Astrophysics Data System (ADS)
Tian, Jiayong; Xie, Zhoumin
2009-08-01
We present a hybrid method for the evaluation of transient elastic-wave propagation in a multilayered solid, integrating reverberation matrix method with the theory of generalized rays. Adopting reverberation matrix formulation, Laplace-Fourier domain solutions of elastic waves in the multilayered solid are expanded into the sum of a series of generalized-ray group integrals. Each generalized-ray group integral containing Kth power of reverberation matrix R represents the set of K-times reflections and refractions of source waves arriving at receivers in the multilayered solid, which was computed by fast inverse Laplace transform (FILT) and fast Fourier transform (FFT) algorithms. However, the calculation burden and low precision of FILT-FFT algorithm limit the application of reverberation matrix method. In this paper, we expand each of generalized-ray group integrals into the sum of a series of generalized-ray integrals, each of which is accurately evaluated by Cagniard-De Hoop method in the theory of generalized ray. The numerical examples demonstrate that the proposed method makes it possible to calculate the early-time transient response in the complex multilayered-solid configuration efficiently.
Covering solid, film cooled surfaces with a duplex thermal barrier coating
NASA Technical Reports Server (NTRS)
Liebert, C. H. (Inventor)
1983-01-01
Thermal barrier coating systems were applied to hardware having passageways in the walls connecting apertures in the surface to a gas supply for film cooling. An inert gas, such as argon, is discharged through the apertures during the application of the thermal barrier coating system by plasma spraying. This flow of inert gas reduces both blocking of the holes and base metal oxidation during the coating operation.
Corona inception voltage in statorettes with various gas-solid dielectric systems
NASA Technical Reports Server (NTRS)
Bollenbacher, G.; Kempke, E. E., Jr.
1972-01-01
Corona inception voltage was calculated and measured for three statorettes in several gases and gas mixtures at pressures from 50.8 to 1270 torr. In helium the corona inception voltage was lowest, and in air it was highest. In argon and mixtures of helium and xenon the corona inception voltage was between that of air and helium. Correlation between experimental and calculated data was good.
Solid-state NMR for bacterial biofilms
NASA Astrophysics Data System (ADS)
Reichhardt, Courtney; Cegelski, Lynette
2014-04-01
Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.
Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor
NASA Technical Reports Server (NTRS)
Kurtz, Joe; Huffman, Donald R.
1989-01-01
Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.
Pyrolysis and Matrix-Isolation FTIR of Acetoin
NASA Astrophysics Data System (ADS)
Cole, Sarah; Ellis, Martha; Sowards, John; McCunn, Laura R.
2017-06-01
Acetoin, CH_3C(O)CH(OH)CH_3, is an additive used in foods and cigarettes as well as a common component of biomass pyrolysate during the production of biofuels, yet little is known about its thermal decomposition mechanism. In order to identify thermal decomposition products of acetoin, a gas-phase mixture of approximately 0.3% acetoin in argon was subject to pyrolysis in a resistively heated SiC microtubular reactor at 1100-1500 K. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Many products were observed in analysis of the spectra, including acetylene, propyne, ethylene, and vinyl alcohol. These results provide clues to the overall mechanism of thermal decomposition and are important for predicting emissions from many industrial and residential processes.
Techniques for on-orbit cryogenic servicing
NASA Astrophysics Data System (ADS)
DeLee, C. H.; Barfknecht, P.; Breon, S.; Boyle, R.; DiPirro, M.; Francis, J.; Huynh, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; Wegel, D.
2014-11-01
NASA (National Aeronautics and Space Administration) has a renewed interest in on-orbit cryogen storage and transfer to support its mission to explore near-earth objects such as asteroids and comets. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission (CPST-TDM), managed by the NASA Glenn Research Center (GRC) and scheduled for launch in 2018, will demonstrate numerous key technologies applicable to a cryopropellant fuel depot. As an adjunct to the CPST-TDM work, experiments at NASA Goddard Space Flight Center (GSFC) will support the development of techniques to manage and transfer cryogens on-orbit and expand these techniques as they may be applicable to servicing science missions using solid cryogens such as the Wide-field Infrared Survey Explorer (WISE). The results of several ground experiments are described, including autogenous pressurization used for transfer of liquid nitrogen and argon, characterization of the transfer and solidification of argon, and development of robotic tools for cryogen transfer.
Phase Stability and Superconductivity of Compressed Argon-Hydrogen Compounds from First-Principles
NASA Astrophysics Data System (ADS)
Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Oda, Tatsuki
2017-12-01
We present the phase stability and superconductivity of Ar-H compounds under high pressure predicted by first-principles calculations and a genetic algorithm technique for crystal structure search. We found that insulating ArH4, earlier predicted to be metalized at 350 GPa, survives up to 700 GPa owing to the transition into a new phase Pnma at around 250 GPa and then decomposes into metallic ArH2 and pure solid hydrogen. At around 1500 GPa, the bonding form of ArH2 is changed by the dissociation of H2 molecules at the interstitial site of the argon lattice, and antibonding orbitals are partially filled, which causes an increase in the density of states at the Fermi level. Results showed that electron-phonon coupling is enhanced and the superconducting critical temperature is increased from 0.2 to 67 K.
NASA Astrophysics Data System (ADS)
Baksht, E. Kh; Lomaev, Mikhail I.; Rybka, D. V.; Tarasenko, Viktor F.
2006-06-01
The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude—time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ~45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ~130 ns.
NASA Astrophysics Data System (ADS)
Rezaei, A. H.; Keshavarz, M. H.; Kavosh Tehrani, M.; Darbani, S. M. R.
2018-06-01
The aluminized plastic-bonded explosive (PBX) is a composite material in which solid explosive particles are dispersed in a polymer matrix, which includes three major components, i.e. polymeric binder, metal fuel (aluminum) and nitramine explosive. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy (LIBS) technique in air and argon atmospheres to investigate the determination of aluminum content and detonation performance of aluminized PBXs. Plasma emissions of aluminized PBXs are recorded where atomic lines of Al, C and H as well as molecular bands of AlO and CN are identified. The experimental results demonstrate that a good discrimination and separation between the aluminized PBXs is possible using LIBS and principle component analysis, although they have similar atomic composition. Relative intensity of the AlO/Al is used to determine aluminum percentage of the aluminized PBXs. The obtained quantitative calibration curve using the relative intensity of the AlO/Al is better than the resulting calibration curve using only the intensity of Al. By using the LIBS method and the measured intensity ratio of CN/C, an Al content of 15% is found to be the optimum value in terms of velocity of detonation of the RDX/Al/HTPB standard samples.
NASA Astrophysics Data System (ADS)
Gornushkin, Igor B.
1997-12-01
Laser-excited atomic fluorescence spectrometry (LEAFS) with a novel diffusive tube electrothermal atomizer (ETA) has been used for the study of atomization and diffusion processes and for the direct trace analysis of complex matrices. A novel ETA was a graphite tube sealed by two graphite electrodes. A sample was introduced into the tube and the furnace assembly was heated. The vaporized sample diffused through the hot graphite and the atomic fraction of the vapor was excited by a tunable dye laser above the tube. Temporal behavior of atomic fluorescence of Cu, Ag, and Ni atoms, diffused through the furnace tube, was studied at different temperatures; the values for activation energies and diffusion coefficients were derived on the basis of the diffusion/vaporization kinetic model. The femtogram/nanogram concentrations of silver were determined in coastal Atlantic water and soil samples. Use of the new ETA resulted in significant reduction of matrix interferences, ultra-low limits of detection, good accuracy and precision. LEAFS coupled with laser ablation (LA) was studied in terms of its analytical and spectroscopic potential. Low concentrations of lead (0.15 ppm-750 ppm) in metallic matrices (copper, brass, steel, and zinc) were measured in a low pressure argon atmosphere. No matrix effect was observed, providing a universal calibration curve for all samples. A limit of detection of 22 ppb (0.5 fg) was achieved. Also, the lifetime of the metastable 6p21D level of lead was measured and found to be in good agreement with the literature data. A simple open-air LA-LEAFS system was used for the determination of cobalt in solid matrices (graphite, soil, and steel). The fluorescence of cobalt was excited from a level which was already populated in the ablation plasma and was monitored at the Stokes-shifted wavelength. Detection limits in the ppb to ppm range and linearity over four orders of magnitude were achieved. The resonance shadowgraph technique has been developed for time-resolved imaging of laser-produced plasmas. The shadowgraphs were obtained by igniting the plasma on the lead or tin surface and by illuminating the plasma by a laser tuned in resonance with a strong atomic transition. UV-photodecomposition of lead and tin clusters was visualized. The evolution of the plasmas was studied at different pressures of argon. A shock wave produced by the laser ablation was monitored and its speed was measured.
Creep and microstructural processes in a low-alloy 2.25%Cr1.6%W steel (ASTM Grade 23)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucharova, K.; Sklenicka, V., E-mail: sklen@ipm.cz; CEITEC — IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, CZ-616 62 Brno
2015-11-15
A low-alloy 2.25%Cr1%Mo steel (ASTM Grade 22) has been greatly improved by the substitution of almost all of the 1%Mo by 1.6%W. The improved material has been standardized as P/T23 steel (Fe–2.25Cr–1.6W–0.25V–0.05Nb–0.07C). The present investigation was conducted on T23 steel in an effort to obtain a more complete description and understanding of the role of the microstructural evolution and deformation processes in high-temperature creep. Constant load tensile creep tests were carried out in an argon atmosphere in the temperature range 500–650 °C at stresses ranging from 50 to 400 MPa. It was found that the diffusion in the matrix latticemore » is the creep-rate controlling process. The results of an extensive transmission electron microscopy (TEM) analysis programme to investigate microstructure evolution as a function of temperature are described and compared with the thermodynamic calculations using the software package Thermo-Calc. The significant creep-strength drop of T23 steel after long-term creep exposures can be explained by the decrease in dislocation hardening, precipitation hardening and solid solution hardening due to the instability of the microstructure at high temperature. - Highlights: • The constant load creep tests of T23 steel were carried out at 500–650 °C. • The stress exponents of the creep rate correspond to power law (dislocation) creep. • Diffusion in the matrix lattice is the creep-rate controlling process. • The microstructure instability is the main creep degradation process in T23 steel.« less
NASA Astrophysics Data System (ADS)
Dahlqvist, Martti; Hotokka, Matti; Räsänen, Markku
1998-04-01
The infrared spectra of monomeric pinacol molecules (2,3-dimethyl-2,3-butanediol; (CH 3) 2C(OH)C(OH)(CH 3) 2) have been recorded in the gas phase and dilute nonpolar solutions, and in an argon matrix. The vibrational data are consistent with the intramolecularly hydrogen-bonded G-type (gauche with respect to the central C-C bond) conformers and there is no evidence for the T-type (trans with respect to the central C-C bond) conformers, which have been observed in the condensed phases. This was confirmed by studying the infrared region 835-815 cm -1, which was found to be the most indicative to show spectral changes within the type of the conformers. In this region the band of the T-type conformers (assigned to the hybridized asymmetric vibration of the central CC and CO stretching modes) disappears when going from the condensed phases to phases, where pinacol molecules are monomeric. Ab initio HF/6-311G** (MP2/6-311G**) calculations support the experimental findings; the calculated relative energies for the tGg', gGg', g'Gg', tTt, and gTg' conformers are 0.0 (0.0), 3.4 (3.4), 5.1 (5.9), 7.9 (11.3), and 12.0 (14.0) kJ mol -1, respectively. Consequently, only the G-type conformers are sufficiently populated to give rise to observable spectral lines. Both experimental findings and theoretical calculations demonstrated that the bands in the argon matrix spectrum of pinacol are due to the most stable tGg' conformer. Although the ab initio calculations predict that also the gGg' and g'Gg' conformers are present in the gas phase and in dilute nonpolar solutions their existence could not be confirmed experimentally. Hence, we conclude that the conformation sensitive bands may coincide in the spectra. The HF/6-311G** ab initio calculations for vibrational frequencies of pinacol are consistent with this conclusion, suggesting only small differences between the wavenumbers of the G-type conformers. Pinacol does not show infrared-induced photorotamerization in the low-temperature argon matrix. This is due to the high energy barrier to internal rotation around the central C-C bond as demonstrated by ab initio calculations. Assignments of the vibrational bands were made with the aid of computer animations of the ab initio calculated harmonic vibrations, common group frequencies, and analogy conclusions from related compounds. The deuterium derivatives [(CD 3) 2C(OH)C(OH)(CD 3) 2 and (CH 3) 2C(OD)C(OD)(CH 3) 2] of pinacol were also utilized even though their spectra were recorded only in the condensed phases.
Solid-state harmonics beyond the atomic limit.
Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A
2016-06-23
Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.
Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Mimura, Hisahi; Ozaki, Yukihiro; Reppas, Christos; Kitamura, Satoshi
2015-07-25
The objective of this study was to develop an in vitro dissolution test method with discrimination ability for an extended-release solid dispersion matrix of a lipophilic drug using the United States Pharmacopeia (USP) Apparatus 4, flow-through cell apparatus. In the open-loop configuration, the sink condition was maintained by manipulating the flow rate of the dissolution medium. To evaluate the testing conditions, the drug release mechanism from an extended-release solid dispersion matrix containing hydrophobic and hydrophilic polymers was investigated. As the hydroxypropyl methylcellulose (HPMC) maintained concentrations of indomethacin higher than the solubility in a dissolution medium, the release of HPMC into the dissolution medium was also quantified using size-exclusion chromatography. We concluded that the USP Apparatus 4 is suitable for application to an in vitro dissolution method for orally administered extended-release solid dispersion matrix formulations containing poorly water-soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids
2011-07-01
Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6
Analysis of nanoscale two-phase flow of argon using molecular dynamics
NASA Astrophysics Data System (ADS)
Verma, Abhishek Kumar; Kumar, Rakesh
2014-12-01
Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.
[Determination of lead in edible salt with solid-phase extraction and GFAAS].
Zhao, Xin; Zhou, Shuang; Ma, Lan; Yang, Dajin
2013-01-01
Establishing a method for determination of lead in salt with solid-phase extraction and GFAAS. Salt sample was diluted to a certain volume directly with ammonium acetate, then the sample solution was filtered through the solid phase extraction column which has been pre-activated. Lead ions were retained, and the sodium chloride matrix was removed. After elution, the collected lead ions was determined by graphite furnace atomic absorption spectrometry in 257.4 nm. This method can be used effectively to wipe off the sodium chloride in matrix. The limit of detection was 0.7 microg/kg and the limit of quantification was 2 microg/kg. Solid phase extraction technique can be used effectively to reduce the interference in matrix and improves the accuracy and reproducibility of detection.
Realization of an all-solid-state cryocooler using optical refrigeration
NASA Astrophysics Data System (ADS)
Meng, Junwei; Albrecht, Alexander R.; Gragossian, Aram; Lee, Eric; Volpi, Azzurra; Ghasemkhani, Mohammadreza; Hehlen, Markus P.; Epstein, Richard I.; Sheik-Bahae, Mansoor
2018-05-01
Optical refrigeration of rare-earth-doped solids has reached the boiling point of argon, 87 K, and is expected to cool to that of nitrogen, 77 K, in the near future. This technology is poised to pave the way to compact, reliable, and vibrationfree all-solid-state optical cryocoolers. By attaching the Yb:YLF cooling crystal to a cold finger via a double 90° kink thermal link, we have cooled a silicon temperature sensor to below 151 K. An advanced design of the thermal link and the clamshell surrounding the cooled assembly successfully controlled the flow of heat and radiation to allow cooling of a payload to cryogenic temperatures. Key elements of the design were a low-absorption thermal link material, an optimized thermal link geometry, and a spectrally-selective coating of the clamshell.
NASA Astrophysics Data System (ADS)
Reva, Igor; Lapinski, Leszek; Lopes Jesus, A. J.; Nowak, Maciej J.
2017-11-01
Photochemical transformations were studied for monomers of indole and 3-formylindole isolated in low-temperature noble-gas matrices. Upon UV (λ > 270 nm) irradiation of indole trapped in argon and neon matrices, the initial 1H-form of the compound converted into the 3H-tautomer. Alongside this photoinduced hydrogen-atom transfer, an indolyl radical was also generated by photodetachment of the hydrogen atom from the N1-H bond. Excitation of 3-formylindole isolated in an argon matrix with UV (λ > 335 nm) light led to interconversion between the two conformers of the 1H-tautomer, differing from each other in the orientation of the formyl group (cis or trans). Parallel to this conformational phototransformation, the 3H-form of the compound was generated in the 1H → 3H phototautomeric conversion. The photoproducts emerging upon UV irradiation of indole and 3-formylindole were identified by comparison of their infrared spectra with the spectra calculated for candidate structures.
Application of atmospheric-pressure argon plasma jet for bread mold decontamination
NASA Astrophysics Data System (ADS)
Thonglor, P.; Amnuaycheewa, P.
2017-09-01
Atmospheric-pressure argon plasma (APAP) is a promising non-thermal technology for microbial control and prevention minimally affecting quality of foods. Effect of APAP jet on the growth of bread molds, including two Aspergillus sp., Rhizopus stolonifer, and Penicillium roqueforti, isolated from white bread were investigated. The molds were isolated, verified, cultured to fully grown on potato dextrose agar (PDA), and subsequently treated with APAP jet using plasma generating power at 24 W for 5, 10, and 20 min, respectively. The inhibition of mold growth was investigated by comparing fungal dry weights and the effect on fungal cell structure was observed using compound light microscope. The results indicated that the 20-min treatment time is most effective in retarding the growth of the three bread molds. However, this level of generating power did not lead to destruction of the cellular structures for all the four fungi. Plasma generating power and treatment time are significant parameters determining the success of bread mold decontamination and further investigation on real bread matrix is needed.
Klimiankou, M; Lindau, R; Möslang, A
2005-01-01
Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels with yttrium oxide (Y(2)O(3)) have been produced by mechanical alloying and hot isostatic pressing for use as advanced material in fusion power reactors. Argon gas, usually widely used as inert gas during mechanical alloying, was surprisingly detected in the nanodispersion-strengthened materials. Energy-filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) led to the following results: (i) chemical composition of ODS particles, (ii) voids with typical diameters of 1-6 nm are formed in the matrix, (iii) these voids are filled with Ar gas, and (iv) the high-density nanosized ODS particles serve as trapping centers for the Ar bubbles. The Ar L(3,2) energy loss edge at 245 eV as well as the absorption features of the ODS particle elements were identified in the EELS spectrum. The energy resolution in the EEL spectrum of about 1.0 eV allows to identify the electronic structure of the ODS particles.
George, E.V.; Oster, Y.; Mundinger, D.C.
1990-12-25
Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.
Gionfriddo, Emanuela; Souza-Silva, Érica A; Pawliszyn, Janusz
2015-08-18
This work aims to investigate the behavior of analytes in complex mixtures and matrixes with the use of solid-phase microextraction (SPME). Various factors that influence analyte uptake such as coating chemistry, extraction mode, the physicochemical properties of analytes, and matrix complexity were considered. At first, an aqueous system containing analytes bearing different hydrophobicities, molecular weights, and chemical functionalities was investigated by using commercially available liquid and solid porous coatings. The differences in the mass transfer mechanisms resulted in a more pronounced occurrence of coating saturation in headspace mode. Contrariwise, direct immersion extraction minimizes the occurrence of artifacts related to coating saturation and provides enhanced extraction of polar compounds. In addition, matrix-compatible PDMS-modified solid coatings, characterized by a new morphology that avoids coating fouling, were compared to their nonmodified analogues. The obtained results indicate that PDMS-modified coatings reduce artifacts associated with coating saturation, even in headspace mode. This factor, coupled to their matrix compatibility, make the use of direct SPME very practical as a quantification approach and the best choice for metabolomics studies where wide coverage is intended. To further understand the influence on analyte uptake on a system where additional interactions occur due to matrix components, ex vivo and in vivo sampling conditions were simulated using a starch matrix model, with the aim of mimicking plant-derived materials. Our results corroborate the fact that matrix handling can affect analyte/matrix equilibria, with consequent release of high concentrations of previously bound hydrophobic compounds, potentially leading to coating saturation. Direct immersion SPME limited the occurrence of the artifacts, which confirms the suitability of SPME for in vivo applications. These findings shed light into the implementation of in vivo SPME strategies in quantitative metabolomics studies of complex plant-based systems.
Liquid-Solid Self-Lubricated Coatings
NASA Astrophysics Data System (ADS)
Armada, S.; Schmid, R.; Equey, S.; Fagoaga, I.; Espallargas, N.
2013-02-01
Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Self-lubricated coatings obtained by thermal spray are exclusively based on solid lubricants (PTFE, h-BN, graphite, MoS2, etc.) embedded in the matrix. Production of thermal spray coatings containing liquid lubricants has not yet been achieved because of the complexity of keeping a liquid in a solid matrix during the spraying process. In the present article, the first liquid-solid self-lubricating thermal spray coatings are presented. The coatings are produced by inserting lubricant-filled capsules inside a polymeric matrix. The goal of the coating is to release lubricant to the system when needed. The first produced coatings consisted solely of capsules for confirming the feasibility of the process. For obtaining such a coating, the liquid-filled capsules were injected in the thermal spray flame without any other feedstock material. Once the concept and the idea were proven, a polymer was co-sprayed together with the capsules to obtain a coating containing the lubricant-filled capsules distributed in the solid polymeric matrix. The coatings and the self-lubricated properties have been investigated by means of optical microscopy, Scanning Electron Microscopy, and tribological tests.
Matrix isolation infrared spectra and photochemistry of hydantoin.
Ildiz, Gulce Ogruc; Nunes, Cláudio M; Fausto, Rui
2013-01-31
Hydantoin (C(3)H(4)N(2)O(2), 2,4-imidazolidinedione) was isolated in argon matrix at 10 K and its infrared spectrum and unimolecular photochemistry were investigated. The molecular structure of the compound was studied both at the DFT(B3LYP) and MP2 levels of approximation with valence triple- and quadruple-ζ basis sets (6-311++G(d,p); cc-pVQZ). It was concluded that the minima in the potential energy surfaces of the molecule correspond to C(1) symmetry structures. However, the energy barrier separating the two-equivalent-by-symmetry minima stays below their zero-point energy, which makes the C(s) symmetry structure, which separates the two minima, the experimentally relevant one. The electronic structure of the molecule was studied in detail by performing the Natural Bond Orbital analysis of its electronic configuration within the DFT(B3LYP)/cc-pVQZ space. The infrared spectrum of the matrix isolated compound was fully assigned also with help of the theoretically predicted spectrum. Upon irradiation at λ = 230 nm, matrix-isolated hydantoin was found to photofragment into isocyanic acid, CO, and methylenimine.
Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C
2014-06-01
The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.
NASA Astrophysics Data System (ADS)
Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank
2016-12-01
Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.
NASA Astrophysics Data System (ADS)
Dmitriev, Yurij A.; Zelenetckii, Ilia A.; Benetis, Nikolas P.
2018-05-01
EPR investigation of the lineshape of matrix -isolated methyl radical, CH3, spectra recorded in solid N2O and CO2 was carried out. Reversible temperature-dependent line width anisotropy was observed in both matrices. This effect is a fingerprint of the extra-slow radical rotation about the in-plane C2 axes. The rotation was found to be anisotropic and closely correlated to the orientational dynamics of the matrix molecules. It was suggested that a recently discovered "hoping precession" effect of matrix molecules in solid CO2 is a common feature of matrices of the linear molecules CO, N2O, and CO2. A new low-temperature matrix effect, referred to as "libration trap", was proposed which accounts for the changing CH3 reorientational motion about the radical C3-axis from rotation to libration. Temperature dependence of the intensity of the EPR satellites produced by these nonrotating-but librating methyls was presented. This allowed for a rough estimation of the rotation hindering potential due to correlation mismatch between the radical and the nearest matrix molecules' librations.
USDA-ARS?s Scientific Manuscript database
Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...
Solid-state radioluminescent compositions
Clough, Roger L.; Gill, John T.; Hawkins, Daniel B.; Renschler, Clifford L.; Shepodd, Timothy J.; Smith, Henry M.
1991-01-01
A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.
NASA Astrophysics Data System (ADS)
Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong
2018-05-01
A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.
NASA Astrophysics Data System (ADS)
Zhang, Ruiyun; Xu, Shisen; Cheng, Jian; Wang, Hongjian; Ren, Yongqiang
2017-07-01
Low-cost and high-performance matrix materials used in mass production of molten carbonate fuel cell (MCFC) were prepared by automatic casting machine with α-LiAlO2 powder material synthesized by gel-solid method, and distilled water as solvent. The single cell was assembled for generating test, and the good performance of the matrix was verified. The paper analyzed the factors affecting aqueous tape casting matrix preparation, such as solvent content, dispersant content, milling time, blade height and casting machine running speed, providing a solid basis for the mass production of large area environment-friendly matrix used in molten carbonate fuel cell.
Understanding band gaps of solids in generalized Kohn-Sham theory.
Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas
2017-03-14
The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.
Understanding band gaps of solids in generalized Kohn–Sham theory
Perdew, John P.; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K. U.; Scheffler, Matthias; Scuseria, Gustavo E.; Henderson, Thomas M.; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas
2017-01-01
The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. PMID:28265085
Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; ...
2015-08-06
Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition thatmore » is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.« less
Plasma-grafting polymerization on carbon fibers and its effect on their composite properties
NASA Astrophysics Data System (ADS)
Zhang, Huanxia; Li, Wei
2015-11-01
Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.
Four tetrols of benzo[a]pyrene-DNA adducts were separated using reversed-phase high performance liquid chromatography. Chromatographic fractions containing a given tetrol were readily characterized with solid-matrix room temperature luminescence techniques. So...
Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M
2018-01-03
Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.
X-ray Fluorescence Measurements of Turbulent Methane-Oxygen Shear Coaxial Flames (Briefing Charts)
2015-03-01
Radiography- Radial EPL Profiles • Near-injector EPL profiles have elliptical shape expected from a solid liquid jet • Closest measurements were...turbulent flames relevant to liquid rocket engines – Explore the use of two different tracers, Argon & Krypton – Identify a path forward to apply these...made 0.02 mm downstream • EPL decreases axially as liquid core is atomized and droplets are accelerated – EPL is a function of local mass flux
Inelastic Deformation and Fracture of Glassy Solids
1991-05-31
systems . The results of these simulations are best discussed in the context of the deformation studies for which they have been developed. Therefore, we...11.4.3 below this, can be viewed either as a system with a distribution of relaxation times, obeying conventional Arrhernius kinetics or a process that...the case by Argon and Shi (1982) in the soap bubble rafts) which results in the build-up of a system pressure when the deformation is performed at
NASA Technical Reports Server (NTRS)
Moon, Hee-Kyung
1990-01-01
The rheological behavior and microstructure were investigated using a concentric cylinder viscometer for three different slurries: semi-solid alloy slurries of a matrix alloy, Al-6.5wt percent Si: composite slurries, SiC (sub p) (8.5 microns)/Al-6.5wt percent Si, with the same matrix alloy in the molten state, and composite slurries of the same composition with the matrix alloy in the semi-solid state. The pseudoplasticity of these slurries was obtained by step changes of the shear rate from a given initial shear rate. To study the thixotropic behavior of the system, a slurry was allowed to rest for different periods of time, prior to shearing at a given initial shear rate. In the continuous cooling experiments, the viscosities of these slurries were dependent on the shear rate, cooling rate, volume fraction of the primary solid of the matrix alloy, and volume fraction of silicon carbide. In the isothermal experiments, all three kinds of slurries exhibited non-Newtonian behavior, depending on the volume fraction of solid particles.
Kim, Jo-Il; Park, Jong-Min; Hwang, Seung-Ju; Kang, Min-Jung; Pyun, Jae-Chul
2014-07-11
Top-down synthesized TiO2 nanowires are presented as an ideal solid matrix to analyze small biomolecules at a m/z of less than 500. The TiO2 nanowires were synthesized as arrays using a modified hydrothermal process directly on the surface of a Ti plate. Finally, the feasibility of the TiO2 nanowires in the anatase phase as a solid matrix. The crystal and electronic structures of the top-down TiO2 nanowires were analyzed at each step of the hydrothermal process, and the optimal TiO2 nanowires were identified by checking their performance toward the ionization of analytes in surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Finally, the feasibility of the TiO2 nanowires in the anatase phase as a solid matrix for SALDI-TOF mass spectrometry was demonstrated using eight types of amino acids and peptides as model analytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Abraham, Kuzhikalail M.; Alamgir, Mohamed
1993-06-15
This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).
NASA Astrophysics Data System (ADS)
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1990-06-01
Sub-Doppler spectra of the A 7Π-X 7Σ+ (0,0) band of gas phase MnH near 5680 Å were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55Mn and 1H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N`. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F1(J`=3) spin component of the X 7Σ+(N`=0) level, the 55Mn Fermi contact interaction in the ground state has been measured as bF=Aiso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed.
Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne.
Sacramento, R L; Scudeller, L A; Lambo, R; Crivelli, P; Cesar, C L
2011-10-07
We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid. © 2011 American Institute of Physics
Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie
2014-11-01
A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CO2 in solid para-hydrogen: spectral splitting and the CO2···(o-H2)n clusters.
Du, Jun-He; Wan, Lei; Wu, Lei; Xu, Gang; Deng, Wen-Ping; Liu, An-Wen; Chen, Yang; Hu, Shui-Ming
2011-02-17
Complicated high-resolution spectral structures are often observed for molecules doped in solid molecular hydrogen. The structures can result from miscellaneous effects and are often interpreted differently in references. The spectrum of the ν(3) band of CO(2) in solid para-H(2) presents a model system which exhibits rich spectral structures. With the help of the potential energy simulation of the CO(2) molecule doped in para-hydrogen matrix, and extensive experiments with different CO(2) isotopologues and different ortho-hydrogen concentrations in the matrix, the spectral features observed in p-H(2) matrix are assigned to the CO(2)···(o-H(2))(n) clusters and also to energy level splitting that is due to different alignments of the doped CO(2) molecules in the matrix. The assignments are further supported by the dynamics analysis and also by the spectrum recorded with sample codoped with O(2) which serves as catalyst transferring o-H(2) to p-H(2) in the matrix at 4 K temperature. The observed spectral features of CO(2)/pH(2) can potentially be used as an alternative readout of the temperature and orthohydrogen concentration in the solid para-hydrogen.
NASA Astrophysics Data System (ADS)
Hazelton, Garrett Blaine
Furnace and laser spot methods of obtaining 40Ar/ 39Ar ages from fine-grained cataclasite and pseudotachylyte are compared and evaluated in terms of protolith, faulting, and cooling age components. These methods are applied to fault rocks from outcrop-scale, small-displacement, brittle detachment faults (minidetachments or MDF's) that cut mid-crustal rocks from the footwalls of brittle, large-displacement (>20 km), top-to-the-NE, low-angle normal (i.e., detachment) faults in the Whipple (WM) and Chemehuevi Mountains (CM), SE California. Mid-Tertiary extension affected both areas from ˜26 Ma to ˜11--8 Ma. Rapid footwall cooling began at ˜22 Ma. WM-CM furnace ages range from 22.0 +/- 1.3 to 14.6 +/- 0.6 Ma, CM laser ages from 29.9 +/- 3.7 to 15.7 +/- 1.2 Ma. These ages are younger than host protolith formation and record detachment faulting or footwall cooling. At least 50 MDF's were mapped; they typically cut all basement fabrics. Brittle MDFand detacriment-generated fault rocks are texturally similar, but some in the WM are plastically deformed. Fault rock matrix was mechanically extracted, optically studied, probed to characterize bulk mineralogy. K-feldspar grains are the primary source of fault rock-derived Ar. The laser provides high spatial resolution and the furnace method yields the Ar diffusion properties of fault rock matrix. Both methods yield reproducible results, but ages are difficult to interpret without an established geothermochronologic context. Fault rock 40Ar/39Ar measurements reveal: (1) closure temperatures of 140--280°C (at 100°C/Myr); (2) activation energies ranging from 33--50 kcal/mol; (3) individual K-feldspar grain ages of 55--5 Ma; (4) unanticipated and poorly understood low-temperature diffusion behavior; (5) little difference between pseudotachylyte and cataclasite matrix diffusion and age results; (6) that pre-analysis sample characterization is requisite. The diffusion properties of prepared glasses (47--84% SiO2) were also measured. Those with fault rock-like compositions yield activation energies of 25--39 kca/mol and average diffusivity of 4.63 · 10-3 cm2/sec. Network-forming Ca, Fe, and Mg partly cause certain low-temperature diffusion behaviors that, if unaccounted for, could allow an underestimation of Ar diffusion rates in some glass-bearing materials. Numerical models show that ambient temperature, grain size, and cooling rate strongly influence the Ar retention rate and interpretability of fault rock 40Ar/39Ar ages.
Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.
Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E
2015-05-01
The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. Copyright © 2015 Elsevier B.V. All rights reserved.
Graphene nanocomposites for electrochemical cell electrodes
Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun
2015-11-19
A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.
NASA Astrophysics Data System (ADS)
Amicangelo, Jay; Silbaugh, Matthew J.
2016-06-01
Ethanol can exist in two conformers, one in which the OH group is trans to the methyl group (trans-ethanol) and the other in which the OH group is gauche to the methyl group (gauche-ethanol). Matrix isolation infrared spectra of ethanol deposited in 20 K argon matrices display distinct infrared peaks that can be assigned to the trans-ethanol and gauche-ethanol conformers, particularly with the O-H stretching vibrations. Given this, matrix isolation experiments were performed in which ethanol (C_2H_5OH) and benzene (C_6H_6) were co-deposited in argon matrices at 20 K in order to determine if conformer specific ethanol complexes with benzene could be observed in the infrared spectra. New infrared peaks that can be attributed to the trans-ethanol and gauche-ethanol complexes with benzene have been observed near the O-H stretching vibrations of ethanol. The initial identification of the new infrared peaks as being due to the ethanol-benzene complexes was established by performing a concentration study (1:200 to 1:1600 S/M ratios), by comparing the co-deposition spectra with the spectra of the individual monomers, by matrix annealing experiments (35 K), and by performing experiments using isotopically labeled ethanol (C_2D_5OD) and benzene (C_6D_6). Quantum chemical calculations were also performed for the C_2H_5OH-C_6H_6 complexes using density functional theory (B3LYP) and ab initio (MP2) methods. Stable minima were found for the both the trans-ethanol and gauche-ethanol complexes with benzene at both levels of theory and were predicted to have similar interaction energies. Both complexes can be characterized as H-π complexes, in which the ethanol is above the benzene ring with the hydroxyl hydrogen interacting with the π cloud of the ring. The theoretical O-H stretching frequencies for the complexes were predicted to be shifted from the monomer frequencies and from each other and these results were used to make the conformer specific infrared peak assignments. Barnes, A. J.; Hallam, H. E. Trans. Faraday Soc., 1970, 66, 1932-1940.
Pajón-Suárez, Pedro; Rojas-Lorenzo, Germán A; Rubayo-Soneira, Jesús; Hernández-Lamoneda, Ramón; Larrégaray, Pascal
2009-12-31
The local relaxation of solid neon subsequent to the impulsive excitation of the NO chromophore to its A(3s sigma) Ryberg state is investigated using molecular dynamics simulations. This study makes use of empirical NO(X,A)-Ne isotropic pair potentials as well as a recently developed ab initio triatomic potential energy surface for the excited state. The role of these interaction potentials is analyzed, including many-body effects. In particular, empirical potentials, designed to reproduce correctly both the NO X-A steady-state absorption and emission bands, are shown to lead to a good description of the subpicosecond relaxation dynamics. The 600 fs expansion of the electronic bubble fairly agrees with experimental data. This relatively long time scale with respect to solid Argon, which was previously attributed to the range of the NO(A)-Ne interaction, is presumably related to the quantum nature of the medium. The time-resolved local relaxation of the Ne solid is understandably intermediate between that of classical solids (e.g., Ar) and that of quantum solids (e.g., H(2)).
Growth of fullerene-like carbon nitride thin solid films consisting of cross-linked nano-onions
NASA Astrophysics Data System (ADS)
Czigány, Zs.; Brunell, I. F.; Neidhardt, J.; Hultman, L.; Suenaga, K.
2001-10-01
Fullerene-like CNx (x≈0.12) thin solid films were deposited by reactive magnetron sputtering of graphite in a nitrogen and argon discharge on cleaved NaCl and Si(001) substrates at 450 °C. As-deposited films consist of 5 nm diam CNx nano-onions with shell sizes corresponding to Goldberg polyhedra determined by high-resolution transmission electron microscopy. Electron energy loss spectroscopy revealed that N incorporation is higher in the core of the onions than at the perimeter. N incorporation promotes pentagon formation and provides reactive sites for interlinks between shells of the onions. A model is proposed for the formation of CNx nano-onions by continuous surface nucleation and growth of hemispherical shells.
Monolayer adsorption of noble gases on graphene
NASA Astrophysics Data System (ADS)
Maiga, Sidi M.; Gatica, Silvina M.
2018-02-01
We report our results of simulations of the adsorption of noble gases (Kr, Ar, Xe) on graphene. For Kr, we consider two configurations: supported and free-standing graphene, where atoms are adsorbed only on one or two sides of the graphene. For Ar and Xe, we studied only the case of supported graphene. For the single-side adsorption, we calculated the two-dimensional gas-liquid critical temperature for each adsorbate. We determined the different phases of the monolayers and constructed the phase diagrams. We found two-dimensional incommensurate solid phases for krypton, argon and xenon, and a two-dimensional commensurate solid phase for krypton. For double side adsorption of Kr, we do not see evidence of an ordering transition driven by the interlayer forces.
Kinetics of propagation of the lattice excitation in a swift heavy ion track
NASA Astrophysics Data System (ADS)
Lipp, V. P.; Volkov, A. E.; Sorokin, M. V.; Rethfeld, B.
2011-05-01
In this research we verify the applicability of the temperature and heat diffusion conceptions for the description of subpicosecond lattice excitations in nanometric tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime. The method is based on the molecular dynamics (MD) analysis of temporal evolutions of the local kinetic and configurational temperatures of a lattice. We used solid argon as the model system. MD simulations demonstrated that in a SHI track (a) thermalization of lattice excitations takes time of several picoseconds, and (b) application of the parabolic heat diffusion equations for the description of spatial and temporal propagation of lattice excitations is questionable at least up to 10 ps after the ion passage.
Lars Berglund; Roger M. Rowell
2005-01-01
A composite can be defined as two or more elements held together by a matrix. By this definition, what we call âsolid woodâ is a composite. Solid wood is a three-dimensional composite composed of cellulose, hemicelluloses and lignin (with smaller amounts of inorganics and extractives), held together by a lignin matrix. The advantages of developing wood composites are (...
Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott
2015-11-01
Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.
Towards an acoustic model-based poroelastic imaging method: I. Theoretical foundation.
Berry, Gearóid P; Bamber, Jeffrey C; Armstrong, Cecil G; Miller, Naomi R; Barbone, Paul E
2006-04-01
The ultrasonic measurement and imaging of tissue elasticity is currently under wide investigation and development as a clinical tool for the assessment of a broad range of diseases, but little account in this field has yet been taken of the fact that soft tissue is porous and contains mobile fluid. The ability to squeeze fluid out of tissue may have implications for conventional elasticity imaging, and may present opportunities for new investigative tools. When a homogeneous, isotropic, fluid-saturated poroelastic material with a linearly elastic solid phase and incompressible solid and fluid constituents is subjected to stress, the behaviour of the induced internal strain field is influenced by three material constants: the Young's modulus (E(s)) and Poisson's ratio (nu(s)) of the solid matrix and the permeability (k) of the solid matrix to the pore fluid. New analytical expressions were derived and used to model the time-dependent behaviour of the strain field inside simulated homogeneous cylindrical samples of such a poroelastic material undergoing sustained unconfined compression. A model-based reconstruction technique was developed to produce images of parameters related to the poroelastic material constants (E(s), nu(s), k) from a comparison of the measured and predicted time-dependent spatially varying radial strain. Tests of the method using simulated noisy strain data showed that it is capable of producing three unique parametric images: an image of the Poisson's ratio of the solid matrix, an image of the axial strain (which was not time-dependent subsequent to the application of the compression) and an image representing the product of the aggregate modulus E(s)(1-nu(s))/(1+nu(s))(1-2nu(s)) of the solid matrix and the permeability of the solid matrix to the pore fluid. The analytical expressions were further used to numerically validate a finite element model and to clarify previous work on poroelastography.
Method of making carbon fiber-carbon matrix reinforced ceramic composites
NASA Technical Reports Server (NTRS)
Williams, Brian (Inventor); Benander, Robert (Inventor)
2007-01-01
A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.
NASA Astrophysics Data System (ADS)
Matei, A.; Schou, J.; Canulescu, S.; Zamfirescu, M.; Albu, C.; Mitu, B.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Dinescu, M.
2013-08-01
Synthesized N,N'-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate was polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for subsequent applications in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by covering the structures with two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation technique. The functionalized structures were tested in mouse fibroblasts culture and the cells morphology, proliferation, and attachment were analyzed.
In-phase thermomechanical fatigue mechanisms in an unidirectional SCS-6/Ti 15-3 MMC
NASA Technical Reports Server (NTRS)
Newaz, Golam M.; Majumdar, Bhaskar S.
1995-01-01
The objective of this investigation was to identify the inelastic deformation and damage mechanisms under in-phase (IP) thermomechanical fatigue (TMF) in a unidirectional SCS-6/Ti 15-3 metal matrix composite (MMC). Load-controlled IP TMF tests were conducted at 300-538 C at various stress ranges in high-purity argon. A major emphasis of this work was to identify damage mechanism well before final fracture of specimens, rather than to generate life diagrams, to aid development of a realistic deformation/damage and life model.
THE MANUFACTURE OF FUEL ELEMENTS OF THE ARGONAUT TYPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kittl, J.; Machado, R.E.; Mazza, J.A.
1958-06-10
The conditions required for the manufacture of the RA-1 Argonant type fuel elements are investigated. The fuel elements are in the form of a plate which is manufactured by the extrusion of a presintered mass of U/sub 3/O/sub 8/ (20% enriched) in an aluminum matrix. Steps in the investigation were obtention and specification of U/sub 3/O/sub 8/ and Al in powder form for testing, filling, and extrusion tests, finishing of the fuel elements, and computation of U/sub 3/O/sub 8/ content. (W.D.M.)
Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.
Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui
2015-02-21
Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ < 332 nm. The obtained results clearly show that H-atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared spectra with the spectra theoretically calculated for the candidate structures at the B3LYP/aug-cc-pVTZ level.
NASA Astrophysics Data System (ADS)
Sałdyka, Magdalena; Mielke, Zofia; Haupa, Karolina
2018-02-01
An infrared spectroscopic and MP2/6-311++G(2d,2p) study of the complexes between N,N-dimethylformamide (DMF) and nitrogen, carbon dioxide, water, ammonia trapped in solid argon matrices is reported. The 1:1 molecular complexes have been identified in the DMF/B/Ar matrices (B = N2, CO, H2O, NH3); their structures were determined by comparison of the spectra with the results of calculations. The analysis of the experimental and theoretical data indicate that the DMF-N2, CO complexes present in the matrices are stabilized by (C=)O⋯N and (C=)O⋯C van der Waals interactions. In turn, in the DMF-H2O, NH3 complexes the (C=)O⋯H(OH) and (C=)O⋯H(NH2) hydrogen bonding is present in which the carbonyl group of DMF acts as a proton acceptor. In all systems studied the C-H⋯X (X = N, C, O) bonding is a second intermolecular force stabilizing the planar complexes. Some spectral features indicate that for DMF-H2O, DMF-NH3 systems the nonplanar structures with the C=O⋯H interaction are also present. The study demonstrated the strong sensitivity of the CH stretching wavenumber to an involvement of the C-H and/or C=O groups of DMF in an intermolecular interaction.
Conformational landscape, photochemistry, and infrared spectra of sulfanilamide.
Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui
2013-01-31
A combined matrix isolation FTIR and theoretical DFT(B3LYP)/6-311++G(3df,3pd) study of sulfanilamide (SA) was performed. The full conformational search on the potential energy surface of the compound allowed the identification of four different minima, all of them bearing the sulfamide nitrogen atom placed in the perpendicular orientation relatively to the aromatic ring and differing from each other in the orientation of the hydrogen atoms connected to the two nitrogen atoms of the molecule. All conformers were predicted to be significantly populated in the gas phase (at 100 °C, their relative populations were estimated as being 1:0.9:0.3:0.2). However, in agreement with the theoretically calculated low-energy barriers for conformational isomerization, in the low-temperature matrices, only the most stable conformer could be observed, with the remaining forms being converted into this form during matrix deposition (conformational cooling). The unimolecular photochemistry of matrix-isolated SA (in both argon and xenon) was also investigated. Upon broadband UV irradiation (λ > 215 nm), two photofragmentation pathways were observed: the prevalent pathway (A), leading to extrusion of sulfur dioxide and simultaneous formation of benzene-1,4-diamine, which then converts to 2,5-cyclohexadiene-1,4-diimine, and the minor pathway (B), conducting an γ-cleavage plus [1,3] H-atom migration from the sulfamide group to the aromatic ring, which leads to formation of iminosulfane dioxide and aniline, the latter undergoing subsequent phototransformation into cyclohexa-2,5-dien-1-imine. Finally, the crystalline polymorph of SA resulting from warming (265 K) the amorphous solid obtained from fast cooling of the vapor of the compound onto the cold (13 K) substrate of the cryostat was identified spectroscopically, and found to be the γ-crystalline phase, the one exhibiting in average longer H-bonds and an infrared spectrum resembling more that of the low temperature SA glass. Full assignment of the infrared spectra of this crystalline variety as well as of those of the β-polymorph room temperature crystalline sample and low temperature amorphous state was undertaken with help of theoretical results obtained for the crystallographically relevant dimer of SA.
Fabrication of all-inorganic nanocrystal solids through matrix encapsulation of nanocrystal arrays.
Kinder, Erich; Moroz, Pavel; Diederich, Geoffrey; Johnson, Alexa; Kirsanova, Maria; Nemchinov, Alexander; O'Connor, Timothy; Roth, Dan; Zamkov, Mikhail
2011-12-21
A general strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films is reported. The present methodology goes beyond the traditional ligand-interlinking scheme and relies on encapsulation of morphologically defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles while rendering the nanocrystal film photoconductive. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells. © 2011 American Chemical Society
A major use of multi-walled carbon nanotubes (MWCNTs) is as functional fillers embedded in a solid matrix, such as plastics or coatings. Weathering and abrasion of the solid matrix during use can lead to environmental releases of the MWCNTs. Here we focus on a protocol to identif...
DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID
Johnson, R.; Horn, F.L.; Strickland, G.
1963-05-01
A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)
NASA Astrophysics Data System (ADS)
Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri
2017-04-01
SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.
Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; ...
2015-01-31
Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is moremore » than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.« less
Processing of uranium oxide and silicon carbide based fuel using polymer infiltration and pyrolysis
NASA Astrophysics Data System (ADS)
Singh, Abhishek K.; Zunjarrao, Suraj C.; Singh, Raman P.
2008-09-01
Ceramic composite pellets consisting of uranium oxide, UO 2, contained within a silicon carbide matrix, were fabricated using a novel processing technique based on polymer infiltration and pyrolysis (PIP). In this process, particles of depleted uranium oxide, in the form of U 3O 8, were dispersed in liquid allylhydridopolycarbosilane (AHPCS), and subjected to pyrolysis up to 900 °C under a continuous flow of ultra high purity argon. The pyrolysis of AHPCS, at these temperatures, produced near-stoichiometric amorphous silicon carbide ( a-SiC). Multiple polymer infiltration and pyrolysis (PIP) cycles were performed to minimize open porosity and densify the silicon carbide matrix. Analytical characterization was conducted to investigate chemical interaction between U 3O 8 and SiC. It was observed that U 3O 8 reacted with AHPCS during the very first pyrolysis cycle, and was converted to UO 2. As a result, final composition of the material consisted of UO 2 particles contained in an a-SiC matrix. The physical and mechanical properties were also quantified. It is shown that this processing scheme promotes uniform distribution of uranium fuel source along with a high ceramic yield of the parent matrix.
Li, Kai; Li, Yuanyuan; Tao, Jing; Liu, Lu; Wang, Lili; Hou, Hongwei; Tong, Aijun
2015-01-01
Crystal violet lactone (CVL) is a classic halochromic dye which has been widely used as chromogenic reagent in thermochromic and piezochromic systems. In this work, a very first example of CVL-based reversible photochromic compound was developed, which showed distinct color change upon UV-visible light irradiation both in solution and in solid matrix. Moreover, metal complex of CVL salicylaldehyde hydrozone was facilely synthesized, exhibiting reversible photochromic properties with good fatigue resistance. It was served as promising solid material for photo-patterning. PMID:26412101
Trans- and cis-stilbene isolated in cryogenic argon and xenon matrices.
Ünsalan, Ozan; Kuş, Nihal; Jarmelo, Susana; Fausto, Rui
2015-02-05
Monomers of trans- (TS) and cis-stilbene (CS) were isolated in cryogenic argon and xenon matrices, and their infrared (IR) spectra were fully assigned and interpreted. The interpretation of the vibrational spectra received support from theoretical calculations undertaken at the DFT(B3LYP)/6-311++G(d,p) level of theory. In situ broadband UV irradiation of the matrix-isolated CS led to its isomerization to TS, which appeared in the photolysed matrices in both non-planar and planar configurations. The non-planar species was found to convert into the more stable planar form upon subsequent annealing of the matrices at higher temperature. TS was found to be photostable under the used experimental conditions. The structure of the non-planar TS form was assigned based on the comparison of its observed IR spectrum with those theoretically predicted for different conformations of TS. Chemometrics was used to make this assignment. Additional reasoning on the structure of the studied stilbenes is presented taking as basis results of the Natural Bond Orbital analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
UV-Visible Spectra of PAHs and Derivatives Seeded in Supersonic Jet. Astrophysical Implications
NASA Astrophysics Data System (ADS)
Salma, Bejaoui; Salama, Farid
2018-06-01
Laboratory absorption spectra of Polycyclic Aromatic Hydrocarbons (PAHs) and PAH derivatives measured under astrophysical relevant conditions are crucial to test the PAHs-DIBs hypothesis as well as the PAH model for the IR emission bands. Our dedicated experimental setup on the COsmic SImulation Chamber (COSmIC) provides an excellent platform to study neutral and ionized PAHs under the low temperature and pressure conditions that are representative of interstellar environments [1]. In this work, we study the effect of the substitution of CH bond(s) by a nitrogen atom(s) on the electronic spectra of phenanthrene. The electronic transitions associated with the lower excited states of neutral phenanthrene (C14H10) and phenanthridine (C13H9N) are measured in gas phase in the 315-345 nm region. Molecules are seeded in a supersonic expansion of argon gas and the absorption spectra are measured using the Cavity Ring Down Spectroscopy (CRDS) technique. Additional measurements of the absorption spectra of phenanthrene, phenantridine and 1,10-phenanthroline (C12H8N2) isolated in 10 K argon matrices are also performed. The comparison between the CRDS spectra with the absorption of the matrix-isolated molecules highlight the matrix-induced perturbations in band position, profiles and broadening and illustrates the need of gas phase measurements for more accurate comparisons with astronomical spectra.[1] Salama, F., Galazutdinov, G., Krelowski, et al. ApJ 728, 154[FS1] (2011).[2] A. Tielens, ApJ 526 Pt 1265–273 (2008),Acknowledgements: This research is supported by the APRA Program of NASA SMD
The creep and intergranular cracking behavior of Ni-Cr-Fe-C alloys in 360{degree}C water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angeliu, T.M.; Paraventi, D.J.; Was, G.S.
1995-09-01
Mechanical testing of controlled-purity Ni-xCr-9Fe-yC alloys at 360 C revealed an environmental enhancement in IG cracking and time-dependent deformation in high purity and primary water over that exhibited in argon. Dimples on the IG facets indicate a creep void nucleation and growth failure mode. IG cracking was primarily located at the interior of the specimen and not necessarily linked to direct contact with the environment. Controlled potential CERT experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen is detrimental to the mechanical properties. It is proposed that the environment, through the presence of hydrogen, enhancesmore » IG cracking by enhancing the matrix dislocation mobility. This is based on observations that dislocation-controlled creep controls the IG cracking of controlled-purity Ni-xCr-9Fe-yC in argon at 360 C and grain boundary cavitation and sliding results that show the environmental enhancement of the creep rate is primarily due to an increase in matrix plastic deformation. However, controlled potential CLT experiments did not exhibit a change in the creep rate as the applied potential decreased. While this does not clearly support hydrogen assisted creep, the material may already be saturated with hydrogen at these applied potentials and thus no effect was realized. Chromium and carbon decrease the IG cracking in high purity and primary water by increasing the creep resistance. The surface film does not play a significant role in the creep or IG cracking behavior under the conditions investigated.« less
Creep and intergranular cracking behavior of nickel-chromium-iron-carbon alloys in 360 C water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angeliu, T.M.; Paraventi, D.J.; Was, G.S.
1995-11-01
Mechanical testing of controlled-purity Ni-x% Cr-9% Fe-y% C alloys at 360 C revealed an environmental enhancement in intergranular (IG) cracking and time-dependent deformation in high-purity (HP) and primary water (PW) over that exhibited in argon. Dimples on the IG facets indicated a creep void nucleation and growth failure mode. IG cracking was located primarily in the interior of the specimen and was not necessarily linked to the environment. Controlled-potential constant extension rate tensile (CERT) experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen was detrimental to the mechanical properties. It was proposed that the environment,more » through the presence of hydrogen, enhanced IG cracking by enhancing the matrix dislocation mobility. This conclusion was based on observations that dislocation creep controlled IG cracking of controlled-purity Ni-x% Cr-9% Fe-y% C in argon at 360 C. Grain-boundary cavitation (GBC) and sliding (GBS) results showed environmental enhancement of the creep rate primarily resulted from an increase in matrix plastic deformation. However, controlled-potential constant load tensile (CLT) experiments did not indicate a change in the creep rate as the applied potential decreased. While this result did not support hydrogen-assisted creep, the material already may have been saturated with hydrogen at these applied potentials, and thus, no effect was realized. Chromium and carbon decreased IG cracking in HP and PW by increasing the creep resistance. The surface film did not play a significant role in the creep or IG cracking behavior under the conditions investigated.« less
Multilevel perspective on high-order harmonic generation in solids
NASA Astrophysics Data System (ADS)
Wu, Mengxi; Browne, Dana A.; Schafer, Kenneth J.; Gaarde, Mette B.
2016-12-01
We investigate high-order harmonic generation in a solid, modeled as a multilevel system dressed by a strong infrared laser field. We show that the cutoff energies and the relative strengths of the multiple plateaus that emerge in the harmonic spectrum can be understood both qualitatively and quantitatively by considering a combination of adiabatic and diabatic processes driven by the strong field. Such a model was recently used to interpret the multiple plateaus exhibited in harmonic spectra generated by solid argon and krypton [G. Ndabashimiye et al., Nature 534, 520 (2016), 10.1038/nature17660]. We also show that when the multilevel system originates from the Bloch state at the Γ point of the band structure, the laser-dressed states are equivalent to the Houston states [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986), 10.1103/PhysRevB.33.5494] and will therefore map out the band structure away from the Γ point as the laser field increases. This leads to a semiclassical three-step picture in momentum space that describes the high-order harmonic generation process in a solid.
Diffusion of Helium in the mantle: an explanation for MORB-OIB patterns of 3He/4He ratios
NASA Astrophysics Data System (ADS)
Morgan, W. J.; Morgan, J. P.
2011-12-01
OIBs have a wide range of 3He/4He ratios, MORBs have a much narrower range peaked at 3He/4He ≈ 8 Ra. In addition, the ratio of 3He/20Ne (both stable isotopes) is significantly higher in MORB than in OIB, likewise the ratio of 4He/21Ne (both daughter isotopes produced by U and Th decay) are similarly higher in MORB than OIB. (Stable 3He/36Ar and radiogenic 4He/40Ar have the same pattern as the He/Ne plots, only with more scatter.) [See Honda and Patterson, GCA 63, 1999.] We assume the rising mantle plumes are 'lumpy'; a mixture that includes lumps of primordial mantle (which will be rich in 3He, 20Ne, 22Ne, 36Ar, etc.) as well as lumps containing the EM1, EM2, HIMU components, all in a general matrix of relatively-barren, previously-melted 'harzburgite'. When the rising lumps (plums) melt, the He, Ne, Ar, and most of the other incompatible elements will go into the melts that are known as OIB. But not all of the lumps melt (near the edge, some don't rise shallow enough to pressure-release melt); those that don't melt go into the asthenosphere, flowing horizontally away from the rising column. At a spreading center, this asthenosphere contributes the 'plums' it has left but also some of the more barren matrix that the plums are embedded in becomes part of the melt because of the higher extents of partial melting that occur when making MORB. What is the effect of diffusion? If the helium, because of its small size, can diffuse a distance of 100 m or 1000 m in a billion-plus years (the 'age' of a lump) whereas neon or argon diffuse only decimeters or centimeters in this time because of their larger radii (i.e., not much more than non-noble incompatible elements like K, Rb, or U can diffuse), then the 3He and 4He (and H) can diffuse far out into the 'barren harzburgite' matrix. Thus when the lumps in a plume melt there will be a shortage of 3He and 4He relative to the 20Ne, 21Ne, or argon. With the extensive melting that occurs to make MORB, fluxing causes some of the barren matrix to contribute its 3He and 4He to the MORB melt which results in an excess of helium relative to neon and argon. This extraction of helium from the longtime-diffused-into barren matrix also can explain the uniformity of the 3/4 ratio in MORB as opposed to the variability of 3/4 in OIB where the individual lumps each contribute their own variable contents. What is lacking in this explanation are data on diffusion rates of the noble gases under deep mantle conditions. What experimental data exists suggest helium diffuses sufficiently fast, but published data only go up to ≈1300 °C, and at only uppermost mantle pressures. Can experiments in diamond anvils or calculations that include 'helium atoms' in molecular dynamics models give diffusion constants to test this hypothesis?
Conformations of n-butyl imidazole: matrix isolation infrared and DFT studies.
Ramanathan, N; Sundararajan, K; Sankaran, K
2015-03-15
Conformations of n-butyl imidazole (B-IMID) were studied using matrix isolation infrared spectroscopy by trapping in argon, xenon and nitrogen matrixes using an effusive nozzle source. The experimental studies were supported by DFT computations performed at the B3LYP/6-311++G(d,p) level. Computations identified nine unique minima for B-IMID, corresponding to conformers with tg(±)tt, tg(±)g(∓)t, tg(±)g(±)t, tg(±)tg(±), tg(±)tg(∓), tg(±)g(∓)g(∓), tg(±)g(±)g(±), tg(±)g(∓)g(±) and tg(±)g(±)g(∓) structures, given in order of increasing energy. Computations of the transition state structures connecting the higher energy conformers to the global minimum, tg(±)tt structure were carried out. The barriers for the conformer inter-conversion were found to be ∼2 kcal/mol. Natural Bond Orbital (NBO) analysis was performed to understand the reasons for conformational preferences in B-IMID. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Huihui; He, Xiongwei; Guo, Peng
2017-04-01
Three factors (pouring temperature, injection speed and mold temperature) were selected to do three levels L9 (33)orthogonal experiment, then simulate processing of semi-solid die-casting of magnesium matrix composite by Flow-3D software. The stress distribution, temperature field and defect distribution of filling process were analyzed to find the optimized processing parameter with the help of orthogonal experiment. The results showed that semi-solid has some advantages of well-proportioned stress and temperature field, less defect concentrated in the surface. The results of simulation were the same as the experimental results.
Composition of the sheath produced by the green alga Chlorella sorokiniana.
Watanabe, K; Imase, M; Sasaki, K; Ohmura, N; Saiki, H; Tanaka, H
2006-05-01
To investigate the chemical characterization of the mucilage sheath produced by Chlorella sorokiniana. Algal mucilage sheath was hydrolysed with NaOH, containing EDTA. The purity of the hydrolysed sheath was determined by an ATP assay. The composition of polysaccharide in the sheath was investigated by high-performance anion-exchange chromatography with pulsed amperometric detection. Sucrose, galacturonic acid, xylitol, inositol, ribose, mannose, arabinose, galactose, rhamnose and fructose were detected in the sheath as sugar components. Magnesium was detected in the sheath as a divalent cation using inductively coupled argon plasma. The sheath matrix also contained protein. It appears that the sheath is composed of sugars and metals. Mucilage sheath contains many kinds of saccharides that are produced as photosynthetic metabolites and divalent cations that are contained in the culture medium. This is the first report on chemical characterization of the sheath matrix produced by C. sorokiniana.
Efficient photochemistry of coronene:water complexes
NASA Astrophysics Data System (ADS)
Noble, J. A.; Jouvet, C.; Aupetit, C.; Moudens, A.; Mascetti, J.
2017-03-01
The photochemistry of ices with polycyclic aromatic hydrocarbons (PAHs) has been extensively studied, but to date no investigation has been made of PAHs in interaction with low numbers (n< 4) of molecules of water. We performed photochemical matrix isolation studies of coronene:water complexes, probing the argon matrix with FTIR spectroscopy. We find that coronene readily reacts with water upon irradiation with a mercury vapour lamp to produce oxygenated PAH photoproducts, and we postulate a reaction mechanism via a charge transfer Rydberg state. This result suggests that oxygenated PAHs should be widely observed in regions of the ISM with sufficiently high water abundances, for example near the edges of molecular clouds where water molecules begin to form, but before icy layers are observed, that is at AV< 3. In order to explain the low derived observational abundances of oxygenated PAHs, additional destruction routes must be invoked.
NASA Astrophysics Data System (ADS)
Böhling, R.; Becker, A. C.; Minaev, B. F.; Seranski, K.; Schurath, U.
1990-04-01
O 2a 1Δ g, b 1Σ g+ → X 3Σ g- and I 2P 1/2→ 2P 3/4 fluorescence occurs in I 2/O 2-doped rare gas matrices when I 2 is excited with visible laser light. O 2(a 1Δ g) and I( 2P 1/2) are populated independently by near-resonant energy transfer from the metastable triplet states of I 2. The doublet splitting of the O 2a→X band, which peaks at 7879 and 7863 cm -1 in argon, is interpreted as sensitized emission from O 2 trapped in distinct nearest neighbour positions of the donor 3I 2. Annealing reverses the intensity of the doublet, showing that the sites can be interconverted. It is suggested that the a→X emission rate is enhanced by the sensitizer, causing a lifetime reduction of the a 1Δ g state from 79 s in pure argon to 21 and 3±1 s next to I 2. The long-lived O 2(a 1Δ g) state is the precursor of I 2-sensitized emission from O 2(b 1Σ g+). The lifetime of O 2(b 1Σ g+) is reduced from 24.5 ms in pure argon to 17±1 ms in the presence of I 2.
Isolated glyoxylic acid-water 1:1 complexes in low temperature argon matrices.
Lundell, Jan; Olbert-Majkut, Adriana
2015-02-05
The 1:1 hydrogen bonded complexes between glyoxylic acid (GA) and water are studied in low temperature argon matrices. Four different complex structures were found in deposited matrices. The lowest energy conformer (T1) of GA was found to form complex, where the water molecule was attached to the opposite side of the intramolecular hydrogen bond in the molecule (T1B). Interestingly, this complex was estimated to be+8.0 kJ mol(-1) higher in energy than the most stable structure (T1A), where the water is inserted into the internal hydrogen bond, and also found in solid argon but in smaller abundance. For the second-lowest energy conformer of GA (T2), the two lowest-energy complex structures were identified, with the most stable complex structure (T2A) also being the most abundant in the matrices. The difference between experiment and computational energetic order of the two complex structures of the same GA conformer is explained by contributions of deformation energy upon complexation and the effect of the environment. The computed BSSE-corrected interaction energies are for the two most stable complexes of the two GA conformers for T1A and T2A -42.11 and -45.03 kJ mol(-1), respectively, at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory. Copyright © 2013 Elsevier B.V. All rights reserved.
Gañán, Judith; Morante-Zarcero, Sonia; Gallego-Picó, Alejandrina; Garcinuño, Rosa María; Fernández-Hernando, Pilar; Sierra, Isabel
2014-08-01
A molecularly imprinted polymer-matrix solid-phase dispersion methodology for simultaneous determination of five steroids in goat milk samples was proposed. Factors affecting the extraction recovery such as sample/dispersant ratio and washing and elution solvents were investigated. The molecularly imprinted polymer used as dispersant in the matrix solid-phase dispersion procedure showed high affinity to steroids, and the obtained extracts were sufficiently cleaned to be directly analyzed. Analytical separation was performed by micellar electrokinetic chromatography using a capillary electrophoresis system equipped with a diode array detector. A background electrolyte composed of borate buffer (25mM, pH 9.3), sodium dodecyl sulfate (10mM) and acetonitrile (20%) was used. The developed MIP-MSPD methodology was applied for direct determination of testosterone (T), estrone (E1), 17β-estradiol (17β-E2), 17α-ethinylestradiol (EE2) and progesterone (P) in different goat milk samples. Mean recoveries obtained ranged from 81% to 110%, with relative standard deviations (RSD)≤12%. The molecularly imprinted polymer-matrix solid-phase dispersion method is fast, selective, cost-effective and environment-friendly compared with other pretreatment methods used for extraction of steroids in milk. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi
2015-12-01
Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martin-Esteban, A; Slowikowski, B; Grobecker, K H
2004-06-17
Solid sampling-electrothermal vaporisation-inductively coupled plasma-mass spectrometry (SS-ETV-ICP-MS) is an attractive technique for the direct simultaneous determination of trace elements in solid samples and especially in long-term studies (i.e. assessment of the homogeneity of reference materials). However, during these studies a downward drift in the instrument sensitivity has been observed due likely to deposits on the sampling and skimmer cones and on the ion lens of the mass spectrometer. Accordingly, in this paper, several means of correcting and/or suppressing sensitivity drift are proposed and evaluated for the monitoring of Cd, Cu, Hg, Mn, Pb, Sb, Se, Sn, Tl, U and V in different reference materials of inorganic and organic (biological) origin. From that studies, the combination of the use of the argon dimer as internal standard together with a modification in the ETV-ICP connection tube seems to be the best mean of getting stable sensitivity during at least 60 consecutive ETV runs.
Bottom-Up and Top-Down Solid-State NMR Approaches for Bacterial Biofilm Matrix Composition
Cegelski, Lynette
2015-01-01
The genomics and proteomics revolutions have been enormously successful in providing crucial “parts lists” for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this Perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The “sum-of-theparts” bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by E. coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in V. cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture. PMID:25797008
Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition.
Cegelski, Lynette
2015-04-01
The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture. Copyright © 2015 Elsevier Inc. All rights reserved.
Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition
NASA Astrophysics Data System (ADS)
Cegelski, Lynette
2015-04-01
The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture.
Golightly, D.W.; Dorrzapf, A.F.; Thomas, C.P.
1977-01-01
Sets of 5 Fe(I) lines and 3 Ti(I)Ti(II) line pairs have been characterized for precise spectrographic thermometry and manometry, respectively, in d.c. arcs of geologic materials. The recommended lines are free of spectral interferences, exhibit minimal self absorption within defined concentration intervals, and are useful for chemically-unaltered silicate rocks, arced in an argon-oxygen stream. The functional character of these lines in thermometry and manometry of d.c. arcs for evaluations of electrical parameter effects, for temporal studies, and for matrix-effect investigations on real samples is illustrated. ?? 1977.
Argon Isotopes Provide Robust Signature of Atmospheric Loss
2013-04-08
This image, made by the quadrupole mass spectrometer in the SAM suite of instruments in NASA Curiosity Mars rover. shows the ratio of the argon isotope argon-36 to the heavier argon isotope argon-38, in various measurements.
Sahasrabudhe, Himanshu; Bandyopadhyay, Amit
2018-05-24
To reduce the wear related damage of medical grade Ti-6Al-4V alloy, laser engineered net shaping (LENS™) based in situ reactive multi-material additive manufacturing was employed to process a mixed coating of Ti-6Al-4V powder and calcium phosphate (CaP) in an oxygen free, nitrogen-argon environment. The resultant coatings were composite materials of titanium nitrides and calcium titanate in an α-Ti matrix. Hardness was increased by up to ~148% to 868 ± 9 HV as compared to the untreated Ti-6Al-4V substrate. Similarly, when tribological properties were evaluated in deionized (DI) water medium against alumina counter material, the wear damage was reduced by ~91% as compared to the untreated Ti-6Al-4V substrate. Furthermore, the untreated Ti-6Al-4V substrate released Ti ions of ~12.45 ppm concentration during wear whereas the Ti6Al4V-5%CaP coating processed in an argon-nitrogen environment released ions of ~3.17 ppm concentration under similar testing conditions. The overall coefficient of friction was also found to decrease due to the addition of CaP and processing the Ti6Al4V-CaP mixture in an argon-nitrogen environment. Our results indicate that this reactive multi-material additive manufacturing of metal-ceramic composites is an effective way of enhancing the tribological performance of metallic materials. Copyright © 2018 Elsevier Ltd. All rights reserved.
Interfacial Reaction During High Energy Ball Milling Dispersion of Carbon Nanotubes into Ti6Al4V
NASA Astrophysics Data System (ADS)
Adegbenjo, A. O.; Olubambi, P. A.; Potgieter, J. H.; Nsiah-Baafi, E.; Shongwe, M. B.
2017-12-01
The unique thermal and mechanical properties of carbon nanotubes (CNTs) have made them choice reinforcements for metal matrix composites (MMCs). However, there still remains a critical challenge in achieving homogeneous dispersion of CNTs in metallic matrices. Although high energy ball milling (HEBM) has been reported as an effective method of dispersing CNTs into metal matrices, a careful selection of the milling parameters is important not to compromise the structural integrity of CNTs which may cause interfacial reactions with the matrix. In this study, multi-walled carbon nanotubes (MWCNTs) were purified by annealing in argon and vacuum atmospheres at 1000 and 1800 °C, respectively, for 5 h to remove possible metallic catalyst impurities. Subsequently, 1, 2 and 3 wt.% MWCNTs were dispersed by adapted HEBM into Ti6Al4V alloy metal matrix. Raman spectroscopy (RS), x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectrometry and transmission electron microscopy techniques were used to characterize the as-received and annealed MWCNTs, as well as the admixed MWCNT/Ti6Al4V nanocomposite powders. The experimental results showed that vacuum annealing successfully eliminated retained nickel (Ni) catalysts from MWCNTs, while the adapted HEBM method achieved a relative homogeneous dispersion of MWCNTs into the Ti6Al4V matrix and helped to control interfacial reactions between defective MWCNTs and the metal matrix.
Evolution of ion emission yield of alloys with the nature of the solute. 2: Interpretation
NASA Technical Reports Server (NTRS)
Blaise, G.; Slodzian, G.
1977-01-01
Solid solutions of transition elements in copper, nickel, cobalt, iron, and aluminum matrices were analyzed by observing secondary ion emissions under bombardment with 6.2-keV argon ions. Enchancement of the production of solute-element ions was observed. An ion emission model is proposed according to which the ion yield is governed by the probability of an atom leaving the metal in a preionized state. The energy distribution of the valence electrons of the solute atoms is the bases of the probability calculation.
Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii
Brent, Dalrymple G.; Moore, J.G.
1968-01-01
Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.
Argon-40: excess in submarine pillow basalts from kilauea volcano, hawaii.
Dalrymple, G B; Moore, J G
1968-09-13
Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.
Electromagnetic energy coupling mechanism with matrix architecture control
NASA Technical Reports Server (NTRS)
Hughes, Eli (Inventor); Knowles, Gareth (Inventor)
2006-01-01
The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms.
Kim, Yoon Jae; Kim, Yoon Young
2010-10-01
This paper presents a numerical method for the optimization of the sequencing of solid panels, perforated panels and air gaps and their respective thickness for maximizing sound transmission loss and/or absorption. For the optimization, a method based on the topology optimization formulation is proposed. It is difficult to employ only the commonly-used material interpolation technique because the involved layers exhibit fundamentally different acoustic behavior. Thus, an optimization method formulation using a so-called unified transfer matrix is newly proposed. The key idea is to form elements of the transfer matrix such that interpolated elements by the layer design variables can be those of air, perforated and solid panel layers. The problem related to the interpolation is addressed and bench mark-type problems such as sound transmission or absorption maximization problems are solved to check the efficiency of the developed method.
Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip
2015-12-21
A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanocrystal/sol-gel nanocomposites
Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM
2007-06-05
The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.
Nanocrystal/sol-gel nanocomposites
Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM
2012-06-12
The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites
The investigation of argon diffusion in phlogopite under high pressure conditions
NASA Astrophysics Data System (ADS)
Yudin, Denis; Korzhova, Sophia; Travin, Alexey; Zhimulev, Egor; Murzintsev, Nikolay; Moroz, Tatiana
2014-05-01
The present study deals with assessment of pressure effect on the mechanism of bleeding an argon from mica at high temperatures and pressures. The influence of pressure on the diffusion of argon in crustal conditions is not significant (Harrison et al., 2009), while in the mantle conditions, should be significant. The authors suggest that the findings will help to better understand the behavior of K/Ar isotopic system in mica under the lower crust and mantle, including xenoliths transport by kimberlite melt. The experiment was made by using high-pressure spacer "split-sphere" (BARS - 300). Phlogopite from veins cutting metamorphic rocks from the Sludyanka number 2 quarry was used as a testing material. Inclusions of other minerals were not found in the original phlogopite crystal. Chemical composition of phlogopite is homogeneous. 8 experiments was made at a constant pressure of 30 kbar and different temperature and duration: 20 degrees Celsius, 20 minutes; 700 degrees Celsius, 20 minutes; 800 degrees Celsius, 10 minutes; 800 degrees Celsius, 20 minutes; 800 degrees Celsius, 30 minutes; 900 degrees Celsius, 20 minutes; 1000 degrees Celsius, 20 minutes; 1100 degrees Celsius, 20 minutes. According the results of SEM-observation, there is no signs of recrystallization and solid state transformations and melting of phlogopite. It's chemical composition is identical to that of the original phlogopite. Diffractograms of phlogopites after the experiments are similar to the diffractograms of the original phlogopites. Research results of IR spectroscopy, together with the results of SEM and microprobe analysis suggest that phlogopite dehydroxylation in the temperature range T = 700-900 degrees Celsius was negligible. Numerical simulation of the behavior of radiogenic argon in phlogopite at high temperatures and pressure was performed using «Diffarg» software finite differences algorithm, based on the mechanism of bulk thermally activated diffusion (Wheeler, 1996). The size of the effective diffusion domain of mica was considered to be 100-150 microns, when modeling (Baxter, 2010). Comparison of results of simulations and experiments suggests that the mobility of argon isotopes in phlogopite at high temperatures and pressure is well described by the mechanism of thermally activated volume diffusion. Stepwise release of argon in a vacuum experiment was also conducted. The activation energy of 207,714 J/mol was calculated from the slope of the line on the Arrhenius chart. This value is consistent with data obtained by other authors in hydrothermal experiments (Baxter, 2010). The work was supported by the grant of the President of Russia MK-3240.2014.5. Baxter E.F. Diffusion of Noble Gases in Minerals // Reviews in Mineralogy & Geochemistry. 2010. V.72. P.509-557. Harrison T.M., Celerier J., Aikman A.B., Hermann J., Heizler M.T. Diffusion of 40Ar in muscovite // Geochim Cosmochim Acta. 2009. V.73. P.1039-1051. Wheeler J. Diffarg: A program for simulating argon diffusion profiles in minerals // Computers & Geosciences. 1996. V. 22(8). P. 919-929.
Hussein, Esam M A; Agbogun, H M D; Al, Tom A
2015-03-01
A method is presented for interpreting the values of x-ray attenuation coefficients reconstructed in computed tomography of porous media, while overcoming the ambiguity caused by the multichromatic nature of x-rays, dilution by void, and material heterogeneity. The method enables determination of porosity without relying on calibration or image segmentation or thresholding to discriminate pores from solid material. It distinguishes between solution-accessible and inaccessible pores, and provides the spatial and frequency distributions of solid-matrix material in a heterogeneous medium. This is accomplished by matching an image of a sample saturated with a contrast solution with that saturated with a transparent solution. Voxels occupied with solid-material and inaccessible pores are identified by the fact that they maintain the same location and image attributes in both images, with voxels containing inaccessible pores appearing empty in both images. Fully porous and accessible voxels exhibit the maximum contrast, while the rest are porous voxels containing mixtures of pore solutions and solid. This matching process is performed with an image registration computer code, and image processing software that requires only simple subtraction and multiplication (scaling) processes. The process is demonstrated in dolomite (non-uniform void distribution, homogeneous solid matrix) and sandstone (nearly uniform void distribution, heterogeneous solid matrix) samples, and its overall performance is shown to compare favorably with a method based on calibration and thresholding. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gorecki, Jerzy; Díez, Sergi; Macherzynski, Mariusz; Kalisinska, Elżbieta; Golas, Janusz
2013-10-15
Improvements to the application of a combined solid-phase microextraction followed by gas chromatography coupled to pyrolysis and atomic fluorescence spectrometry method (SPME-GC-AFS) for methylmercury (MeHg) determination in biota samples are presented. Our new method includes improvements in the methodology of determination and the quantification technique. A shaker instead of a stirrer was used, in order to reduce the possibility of sample contamination and to simplify cleaning procedures. Then, optimal rotation frequency and shaking time were settled at 800 rpm and 10 min, respectively. Moreover, the GC-AFS system was equipped with a valve and an argon heater to eliminate the effect of the decrease in analytical signal caused by the moisture released from SPME fiber. For its determination, MeHg was first extracted from biota samples with a 25% KOH solution (3h) and then it was quantified by two methods, a conventional double standard addition method (AC) and a modified matrix-matched calibration (MQ) which is two times faster than the AC method. Both procedures were successfully tested with certified reference materials, and applied for the first time to the determination of MeHg in muscle samples of goosander (Mergus merganser) and liver samples of white-tailed eagle (Haliaeetus albicilla) with values ranging from 1.19 to 3.84 mg/kg dry weight (dw), and from 0.69 to 6.23 mg kg(-1) dw, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammad, Mehedi Bin; Brooks, Geoffrey Alan; Rhamdhani, Muhammad Akbar
2018-02-01
A simultaneous thermal analyzer (STA) was used to observe the transition and degradation events of LiNO3, NaNO3, KNO3, and binary NaNO3-KNO3 salts for potential use as phase change materials (PCMs) and heat transfer fluid (HTF). Samples were heated from 50 °C to 800 °C at 10 °C/min scanning rate in three atmospheres (argon, air, and oxygen) using an STA to observe decomposition behavior. Thermal stability increased for all salts at high partial pressure of O2 ( P_{{{O}2 }} = 1.0) compared to inert argon ( P_{{{O}2 }} = 0). O2, N2, NO, N2O, and NO2 were main evolved gases during nitrate decomposition. NO and O2 started to evolve at approximately the same temperature after melting, indicating that primary and secondary decomposition reactions were concurrent and overlapping. The solid-solid transition, liquidus and solidus temperatures, heat of transition, heat of melting, and heat of solidification were obtained at various heating-cooling rates (1, 2, 4, 5, 6, 8, 10, and 15 °C/min) using an STA. At all heating-cooling rates, a small gap exists between liquidus and solidus temperatures for all samples due to the salts exhibiting supercooling phenomena. This study showed that the degradation point depends on the blanket atmosphere top of the molten salts and that heating rates have a minor effect on transition events (peaks height, peaks width, and transition enthalpies).
In Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis.
Gouget, Guillaume; Debecker, Damien P; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco, Sophie; Portehault, David
2017-08-07
Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H 2 ), and a mixture of H 2 and carbon dioxide (CO 2 ) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H 2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H 2 activates CoB for the catalysis of CO 2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.
NASA Astrophysics Data System (ADS)
Mohammad, Mehedi Bin; Brooks, Geoffrey Alan; Rhamdhani, Muhammad Akbar
2018-06-01
A simultaneous thermal analyzer (STA) was used to observe the transition and degradation events of LiNO3, NaNO3, KNO3, and binary NaNO3-KNO3 salts for potential use as phase change materials (PCMs) and heat transfer fluid (HTF). Samples were heated from 50 °C to 800 °C at 10 °C/min scanning rate in three atmospheres (argon, air, and oxygen) using an STA to observe decomposition behavior. Thermal stability increased for all salts at high partial pressure of O2 ( P_{{{O}2 }} = 1.0) compared to inert argon ( P_{{{O}2 }} = 0). O2, N2, NO, N2O, and NO2 were main evolved gases during nitrate decomposition. NO and O2 started to evolve at approximately the same temperature after melting, indicating that primary and secondary decomposition reactions were concurrent and overlapping. The solid-solid transition, liquidus and solidus temperatures, heat of transition, heat of melting, and heat of solidification were obtained at various heating-cooling rates (1, 2, 4, 5, 6, 8, 10, and 15 °C/min) using an STA. At all heating-cooling rates, a small gap exists between liquidus and solidus temperatures for all samples due to the salts exhibiting supercooling phenomena. This study showed that the degradation point depends on the blanket atmosphere top of the molten salts and that heating rates have a minor effect on transition events (peaks height, peaks width, and transition enthalpies).
Hybrid Composites for LH2 Fuel Tank Structure
NASA Technical Reports Server (NTRS)
Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.
2001-01-01
The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.; Duan, Yunda
2016-09-01
An exact analytical solution is presented for the effective dynamic transverse shear modulus in a heterogeneous fluid-filled porous solid containing cylindrical inclusions. The complex and frequency-dependent properties of the dynamic shear modulus are caused by the physical mechanism of mesoscopic-scale wave-induced fluid flow whose scale is smaller than wavelength but larger than the size of pores. Our model consists of three phases: a long cylindrical inclusion, a cylindrical shell of poroelastic matrix material with different mechanical and/or hydraulic properties than the inclusion and an outer region of effective homogeneous medium of laterally infinite extent. The behavior of both the inclusion and the matrix is described by Biot's consolidation equations, whereas the surrounding effective medium which is used to describe the effective transverse shear properties of the inner poroelastic composite is assumed to be a viscoelastic solid whose complex transverse shear modulus needs to be determined. The determined effective transverse shear modulus is used to quantify the S-wave attenuation and velocity dispersion in heterogeneous fluid-filled poroelastic rocks. The calculation shows the relaxation frequency and relative position of various fluid saturation dispersion curves predicted by this study exhibit very good agreement with those of a previous 2-D finite-element simulation. For the double-porosity model (inclusions having a different solid frame than the matrix but the same pore fluid as the matrix) the effective shear modulus also exhibits a size-dependent characteristic that the relaxation frequency moves to lower frequencies by two orders of magnitude if the radius of the cylindrical poroelastic composite increases by one order of magnitude. For the patchy-saturation model (inclusions having the same solid frame as the matrix but with a different pore fluid from the matrix), the heterogeneity in pore fluid cannot cause any attenuation in the transverse shear modulus at all. A comparison with the case of spherical inclusions illustrates that the transverse shear modulus for the cylindrical inclusion exhibits more S-wave attenuation than spherical inclusions.
First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, H. O.; Alexander, T.; Alton, A.
2012-04-01
We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixturemore » was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.« less
1982-11-15
Optics Y-Junction and Mach-Zehnder Interferometric Modulator Using Four -Port Scattering Matrix 7 1.3 Heterodyne and Direct Detection at 10 om with High...and of the Mach-Zehnder interferometric modulator have been analyzed using the four -port scattering i- matrix. The interferometric properties of the Y...USING FOUR -PORT SCATTERING MATRIX The scattering matrix formalism for a lossless four -port device has been used to describe the performance of the
Broadband Ftmw Spectroscopy of the Urea-Argon and Thiourea-Argon Complexes
NASA Astrophysics Data System (ADS)
Medcraft, Chris; Bittner, Dror M.; Cooper, Graham A.; Mullaney, John C.; Walker, Nick
2017-06-01
The rotational spectra complexes of argon-urea, argon-thiourea and water-thiourea have been measured by chirped-pulse Fourier transform microwave spectroscopy from 2-18.5 GHz. The sample was produced via laser vaporisation of a rod containing copper and the organic sample as a stream of argon was passed over the surface and subsequently expanded into the vacuum chamber cooling the sample. Argon was found to bind to π system of the carbonyl bond for both the urea and thiourea complexes.
NASA Astrophysics Data System (ADS)
Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka
2011-07-01
A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.
Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean
2012-07-30
In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.
Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean
2012-01-01
In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295
Nims, Robert J.; Maas, Steve; Weiss, Jeffrey A.
2014-01-01
Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio (www.febio.org). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions. PMID:24558059
Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A
2014-10-01
Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions.
Niskanen, Ilpo; Räty, Jukka; Peiponen, Kai-Erik
2010-06-15
The immersion liquid method is powerful for the measurement of the refractive index of solid particles in a liquid matrix. However, this method applies best for cases when the liquid matrix is transparent. A problem is usually how to assess the refractive index of a pigment when it is in a colored host liquid. In this article we introduce a method, and show that by combining so-called multifunction spectrophotometer, immersion liquid method and detection of light transmission and reflection we can assess the refractive index of a pigment in a colored liquid, and also the extinction or absorption coefficient of the host liquid.
The adsorption of argon on ZnO at 77K
NASA Astrophysics Data System (ADS)
Marinelli, Francis; Grillet, Yves; Pellenq, Roland J.-M.
We have studied the adsorption of argon onto ZnO surfaces at 77K by means of quasiequilibrium adsorption volumetry coupled with high resolution microcalorimetry and Grand Canonical Monte-Carlo (GCMC) simulations. The adsorbate/surface adsorption potential function (PN type) used in the simulations, was determined on the basis of ab initio calculations (corrected for dispersion interactions). The first aspect of this work was to test the ability of a standard solid-state Hartree-Fock technique coupled with a perturbative semiempirical approach in deriving a reliable adsorption potential function. The dispersion part of the adsorbate/surface interatomic potential was derived by using perturbation theory-based equations while the repulsive and induction interactions were derived from periodic HartreeFock (CRYSTAL92) calculations. GCMC simulations based on this adsorption potential allow one to calculate adsorption isotherms and isosteric heat versus loading curves as well as singlet distribution functions at 77K for each type of ZnO (neutral and polar) faces. The combined analysis of the simulation data for all surfaces gives a good insight of the adsorption mechanism of argon onto ZnO surfaces at 77K in agreement with experiment. As far as neutral surfaces are concerned, it is shown that adsorption first takes place within the 'troughs' which cover ZnO neutral surfaces. At low chemical potentials, these semi-channels are preferential adsorption sites in which we could detect a nearly one-dimensional adsorbate freezing in a commensurate phase at 77K. The polar O faces are the most favourable surfaces for adsorption at higher chemical potentials.
Solid polymer electrolyte lithium batteries
Alamgir, M.; Abraham, K.M.
1993-10-12
This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.
Solid polymer electrolyte lithium batteries
Alamgir, Mohamed; Abraham, Kuzhikalail M.
1993-01-01
This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).
NASA Astrophysics Data System (ADS)
He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen
2018-07-01
Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.
Polyfluorides and Neat Fluorine as Host Material in Matrix-Isolation Experiments.
Brosi, Felix; Vent-Schmidt, Thomas; Kieninger, Stefanie; Schlöder, Tobias; Beckers, Helmut; Riedel, Sebastian
2015-11-09
The use of neat fluorine in matrix isolation is reported, as well as the formation of polyfluoride monoanions under cryogenic conditions. Purification procedures and spectroscopic data of fluorine are described, and matrix shifts of selected molecules and impurities in solid fluorine are compared to those of common matrix gases (Ar, Kr, N2 , Ne). The reaction of neat fluorine and IR-laser ablated metal atoms to yield fluorides of chromium (CrF5 ), palladium (PdF2 ), gold (AuF5 ), and praseodymium (PrF4 ) has been investigated. The fluorides have been characterized in solid fluorine by IR spectroscopy at 5 K. Also the fluorination of Kr and the photo-dismutation of XeO4 have been studied by using IR spectroscopy in neat fluorine. Formation of the [F5 ](-) ion was obtained by IR-laser ablation of platinum in the presence of fluorine and proven in a Ne matrix at 5 K by two characteristic vibrational bands of [F5 ](-) at $\\tilde \
NASA Astrophysics Data System (ADS)
Dey, Arka; Das, Mrinmay; Datta, Joydeep; Jana, Rajkumar; Dhar, Joydeep; Sil, Sayantan; Biswas, Debasish; Banerjee, Chandan; Ray, Partha Pratim
2016-07-01
Here we have presented the results of large area (30 × 30 cm2) silicon-hydrogen alloy material and solar cell by argon dilution method. As an alternative to hydrogen dilution, argon dilution method has been applied to develop single junction solar cell with appreciable stability. Optimization of deposition conditions revealed that 95% argon dilution gives a nanostructured material with improved transport property and less light induced degradation. The minority carrier diffusion length (L d ) and mobility-lifetime (μτ) product of the material with 95% argon dilution degrades least after light soaking. Also the density of states (DOS) below conduction level reveals that this material is less defective. Solar cell with this argon diluted material has been fabricated with all the layers deposited by argon dilution method. Finally we have compared the argon diluted solar cell results with the optimized hydrogen diluted solar cell. Light soaking study proves that it is possible to develop stable solar cell on large area by argon dilution method and that the degradation of argon diluted solar cell is less than that of hydrogen diluted one. [Figure not available: see fulltext.
Electron microprobe evaluation of terrestrial basalts for whole-rock K-Ar dating
Mankinen, E.A.; Brent, Dalrymple G.
1972-01-01
Four basalt samples for whole-rock K-Ar dating were analyzed with an electron microprobe to locate potassium concentrations. Highest concentrations of potassium were found in those mineral phases which were the last to crystallize. The two reliable samples had potassium concentrated in fine-grained interstitial feldspar and along grain boundaries of earlier formed plagioclase crystals. The two unreliable samples had potassium concentrated in the glassy matrix, demonstrating the ineffectiveness of basaltic glass as a retainer of radiogenic argon. In selecting basalt samples for whole-rock K-Ar dating, particular emphasis should be placed on determining the nature and condition of the fine-grained interstitial phases. ?? 1972.
Hu, Chen; Wang, Feng; Yang, Huiyong; Ai, Jun; Wang, Linlin; Jing, Dongdong; Shao, Longquan; Zhou, Xingui
2014-12-01
Currently used fibre-reinforced composite (FRC) intracanal posts possess low flexural strength which usually causes post fracture when restoring teeth with extensive loss. To improve the flexural strength of FRC, we aimed to apply a high-performance fibre, poly p-phenylene-2, 6-benzobisoxazole (PBO), to FRCs to develop a new intracanal post material. To improve the interfacial adhesion strength, the PBO fibre was treated with coupling agent (Z-6040), argon plasma, or a combination of above two methods. The effects of the surface modifications on PBO fibre were characterised by determining the single fibre tensile strength and interfacial shear strength (IFSS). The mechanical properties of PBO FRCs were characterised by flexural strength and flexural modulus. The cytotoxicity of PBO FRC was evaluated by the MTT assay. Fibres treated with a combination of Z-6040 and argon plasma possessed a significantly higher IFSS than untreated fibres. Fibre treated with the combination of Z-6040-argon-plasma FRC had the best flexural strength (531.51 ± 26.43MPa) among all treated fibre FRCs and had sufficient flexural strength and appropriate flexural moduli to be used as intracanal post material. Furthermore, an in vitro cytotoxicity assay confirmed that PBO FRCs possessed an acceptable level of cytotoxicity. In summary, our study verified the feasibility of using PBO FRC composites as new intracanal post material. Although the mechanical property of PBO FRC still has room for improvement, our study provides a new avenue for intracanal post material development in the future. To our knowledge, this is the first study to verify the feasibility of using PBO FRC composites as new intracanal post material. Our study provided a new option for intracanal post material development. Copyright © 2014 Elsevier Ltd. All rights reserved.
1979-07-31
3 x 3 t Strain vector a ij,j Space derivative of the stress tensor Fi Force vector per unit volume o Density x CHAPTER III F Total force K Stiffness...matrix 6Vector displacements M Mass matrix B Space operating matrix DO Matrix moduli 2 x 3 DZ Operating matrix in Z direction N Matrix of shape...dissipating medium the deformation of a solid is a function of time, temperature and space . Creep phenomenon is a deformation process in which there is
Thermal Dispersion Within a Porous Medium Near a Solid Wall
NASA Technical Reports Server (NTRS)
Simon, T.; McFadden, G.; Ibrahim, M.
2006-01-01
The regenerator is a key component to Stirling cycle machine efficiency. Typical regenerators are of sintered fine wires or layers of fine-wire screens. Such porous materials are contained within solid-waH casings. Thermal energy exchange between the regenerator and the casing is important to cycle performance for the matrix and casing would not have the same axial temperature profile in an actual machine. Exchange from one to the other may allow shunting of thermal energy, reducing cycle efficiency. In this paper, temperature profiles within the near-wall region of the matrix are measured and thermal energy transport, termed thermal dispersion, is inferred. The data show how the wall affects thermal transport. Transport normal to the mean flow direction is by conduction within the solid and fluid and by advective transport within the matrix. In the near-wall region, both may be interrupted from their normal in-core pattern. Solid conduction paths are broken and scales of advective transport are damped. An equation is presented which describes this change for a wire screen mesh. The near-wall layer typically acts as an insulating layer. This should be considered in design or analysis. Effective thermal conductivity within the core is uniform. In-core transverse thermal effective conductivity values are compared to direct and indirect measurements reported elsewhere and to 3D numerical simulation results, computed previously and reported elsewhere. The 3-D CFD model is composed of six cylinders in cross flow, staggered in arrangement to match the dimensions and porosity of the matrix used in the experiments. The commercial code FLUENT is used to obtain the flow and thermal fields. The thermal dispersion and effective thermal conductivities for the matrix are computed from the results.
Microbial response to environmental gradients in a ceramic-based diffusion system.
Wolfaardt, G M; Hendry, M J; Birkham, T; Bressel, A; Gardner, M N; Sousa, A J; Korber, D R; Pilaski, M
2008-05-01
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Copyright 2008 Wiley Periodicals, Inc.
Investigations of Some Liquid Matrixes for Analyte Quantification by MALDI
NASA Astrophysics Data System (ADS)
Moon, Jeong Hee; Park, Kyung Man; Ahn, Sung Hee; Lee, Seong Hoon; Kim, Myung Soo
2015-06-01
Sample inhomogeneity is one of the obstacles preventing the generation of reproducible mass spectra by MALDI and to their use for the purpose of analyte quantification. As a potential solution to this problem, we investigated MALDI with some liquid matrixes prepared by nonstoichiometric mixing of acids and bases. Out of 27 combinations of acids and bases, liquid matrixes could be produced from seven. When the overall spectral features were considered, two liquid matrixes using α-cyano-4-hydroxycinnamic acid as the acid and 3-aminoquinoline and N,N-diethylaniline as bases were the best choices. In our previous study of MALDI with solid matrixes, we found that three requirements had to be met for the generation of reproducible spectra and for analyte quantification: (1) controlling the temperature by fixing the total ion count, (2) plotting the analyte-to-matrix ion ratio versus the analyte concentration as the calibration curve, and (3) keeping the matrix suppression below a critical value. We found that the same requirements had to be met in MALDI with liquid matrixes as well. In particular, although the liquid matrixes tested here were homogeneous, they failed to display spot-to-spot spectral reproducibility unless the first requirement above was met. We also found that analyte-derived ions could not be produced efficiently by MALDI with the above liquid matrixes unless the analyte was sufficiently basic. In this sense, MALDI processes with solid and liquid matrixes should be regarded as complementary techniques rather than as competing ones.
Investigations of Some Liquid Matrixes for Analyte Quantification by MALDI.
Moon, Jeong Hee; Park, Kyung Man; Ahn, Sung Hee; Lee, Seong Hoon; Kim, Myung Soo
2015-10-01
Sample inhomogeneity is one of the obstacles preventing the generation of reproducible mass spectra by MALDI and to their use for the purpose of analyte quantification. As a potential solution to this problem, we investigated MALDI with some liquid matrixes prepared by nonstoichiometric mixing of acids and bases. Out of 27 combinations of acids and bases, liquid matrixes could be produced from seven. When the overall spectral features were considered, two liquid matrixes using α-cyano-4-hydroxycinnamic acid as the acid and 3-aminoquinoline and N,N-diethylaniline as bases were the best choices. In our previous study of MALDI with solid matrixes, we found that three requirements had to be met for the generation of reproducible spectra and for analyte quantification: (1) controlling the temperature by fixing the total ion count, (2) plotting the analyte-to-matrix ion ratio versus the analyte concentration as the calibration curve, and (3) keeping the matrix suppression below a critical value. We found that the same requirements had to be met in MALDI with liquid matrixes as well. In particular, although the liquid matrixes tested here were homogeneous, they failed to display spot-to-spot spectral reproducibility unless the first requirement above was met. We also found that analyte-derived ions could not be produced efficiently by MALDI with the above liquid matrixes unless the analyte was sufficiently basic. In this sense, MALDI processes with solid and liquid matrixes should be regarded as complementary techniques rather than as competing ones.
NASA Astrophysics Data System (ADS)
Havelund, R.; Seah, M. P.; Tiddia, M.; Gilmore, I. S.
2018-02-01
A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-uc(l)-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to Ξ = 0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with Ξ above or below zero, without correction, appear significantly better than the true resolution.
A finite volume method for trace element diffusion and partitioning during crystal growth
NASA Astrophysics Data System (ADS)
Hesse, Marc A.
2012-09-01
A finite volume method on a uniform grid is presented to compute the polythermal diffusion and partitioning of a trace element during the growth of a porphyroblast crystal in a uniform matrix and in linear, cylindrical and spherical geometry. The motion of the crystal-matrix interface and the thermal evolution are prescribed functions of time. The motion of the interface is discretized and it advances from one cell boundary to next as the prescribed interface position passes the cell center. The appropriate conditions for the flux across the crystal-matrix interface are derived from discrete mass conservation. Numerical results are benchmarked against steady and transient analytic solutions for isothermal diffusion with partitioning and growth. Two applications illustrate the ability of the model to reproduce observed rare-earth element patterns in garnets (Skora et al., 2006) and water concentration profiles around spherulites in obsidian (Watkins et al., 2009). Simulations with diffusion inside the growing crystal show complex concentration evolutions for trace elements with high diffusion coefficients, such as argon or hydrogen, but demonstrate that rare-earth element concentrations in typical metamorphic garnets are not affected by intracrystalline diffusion.
NASA Astrophysics Data System (ADS)
Boeckx, Bram; Ramaekers, Riet; Maes, Guido
2010-06-01
The conformational landscape of N-acetylcysteine (NAC) has been investigated by a combined experimental matrix-isolation FT-IR and theoretical methodology. This combination is a powerful tool to study the conformational behavior of relatively small molecules. Geometry optimizations at the HF/3-21 level resulted in 438 different geometries with an energy difference smaller than 22 kJ mol -1. Among these, six conformations were detected with a relative energy difference smaller than 10 kJ mol -1 at the DFT(B3LYP)/6-31++G∗∗ level of theory. These were finally subjected to MP2/6-31++G∗∗ optimizations which resulted in five minima. The vibrational and thermodynamical properties of these conformations were calculated at both the DFT and MP2 methodologies. Experimentally NAC was isolated in an argon matrix at 16 K after being sublimated at 323 K. The most stable MP2 form appeared to be dominant in the experimental spectra but the presence of three other conformations with Δ EMP2 < 10 kJ mol -1 was also demonstrated. The experimentally observed abundance of the H-bond containing conformations appeared to be in good accordance with the predicted MP2 value.
Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach.
Reichhardt, Courtney; Fong, Jiunn C N; Yildiz, Fitnat; Cegelski, Lynette
2015-01-01
Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analyses. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using ¹³C CPMAS and ¹³C{(¹⁵N}, ¹⁵N{³¹P}, and ¹³C{³¹P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, ¹⁵N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems. Copyright © 2014. Published by Elsevier B.V.
Kim, Jo-Il; Park, Jong-Min; Noh, Joo-Yoon; Hwang, Seong-Ju; Kang, Min-Jung; Pyun, Jae-Chul
2016-01-01
In this work, the wet-corrosion process for the synthesis of titanium oxide (TiO2) nanowires in the anatase phase was optimized as the solid matrix in MALDI-TOF mass spectrometry, and the solid matrix of the TiO2 nanowires was applied to the detection of antibiotics in a daily milk sample. The influence of the alkali concentration and the heat treatment temperature on the crystal structure of the TiO2 nanowires was investigated. The ionization activity of the TiO2 nanowires was estimated for each synthetic condition using amino acids as model analytes with low molecular weights. For the detection of antibiotics in milk, benzylpenicillin was spiked in daily milk samples, and MALDI-TOF mass spectrometry with the TiO2 nanowires was demonstrated to detect the benzylpenicillin at the cut-off concentration of the EU directive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)
NASA Astrophysics Data System (ADS)
Schuler, Thomas; Nastar, Maylise
2016-06-01
We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.
Sun, Ting; Li, Xuwen; Yang, Jie; Li, Lanjie; Jin, Yongri; Shi, Xiaolei
2015-06-01
In this study, graphene-encapsulated silica was synthesized by a hydrothermal reduction strategy. The presence of silica in graphene was identified by Fourier-transform infrared spectrometry, X-ray diffraction and scanning electron microscopy. The graphene-encapsulated silica subsequently was used as adsorbent for matrix solid-phase dispersion extraction of poly-methoxylated flavonoids from the dried leaves of Murraya panaculata (L.) Jack. Compared with the other adsorbents (graphene, silica gel, C18 silica, neutral alumina, diatomaceous earth) and without any adsorbents, better results were obtained. Then a method for analysis of poly-methoxylated flavonoids was established by coupling matrix solid-phase dispersion extraction with ultra high performance liquid chromatography and UV detection. Compared with reflux extraction and ultrasonic extraction, the proposed method is quicker, more efficient and more environmental protection. Less than 10 min is needed from extraction to detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lopes, J H; Leão-Neto, J P; Silva, G T
2017-11-01
Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.
Friction Stir Welding of SiC/Aluminum Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
1999-01-01
Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.
Yao, Hongwei; Qiao, Jun -Wei; Gao, Michael; ...
2016-05-19
Guided by CALPHAD (Calculation of Phase Diagrams) modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 Å) obeys the rule of mixtures (ROM), but the Vickers microhardness (4.95 GPa) and the yield strength (1.5 GPa) are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Inmore » conclusion, thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.« less
Surface effects on friction-induced fluid heating in nanochannel flows.
Li, Zhigang
2009-02-01
We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.
Thermodynamic properties of small aggregates of rare-gas atoms
NASA Technical Reports Server (NTRS)
Etters, R. D.; Kaelberer, J.
1975-01-01
The present work reports on the equilibrium thermodynamic properties of small clusters of xenon, krypton, and argon atoms, determined from a biased random-walk Monte Carlo procedure. Cluster sizes ranged from 3 to 13 atoms. Each cluster was found to have an abrupt liquid-gas phase transition at a temperature much less than for the bulk material. An abrupt solid-liquid transition is observed for thirteen- and eleven-particle clusters. For cluster sizes smaller than 11, a gradual transition from solid to liquid occurred over a fairly broad range of temperatures. Distribution of number of bond lengths as a function of bond length was calculated for several systems at various temperatures. The effects of box boundary conditions are discussed. Results show the importance of a correct description of boundary conditions. A surprising result is the slow rate at which system properties approach bulk behavior as cluster size is increased.
Wang, Huilin; Jiang, Yan; Ding, Mingya; Li, Jin; Hao, Jia; He, Jun; Wang, Hui; Gao, Xiu-Mei; Chang, Yan-Xu
2018-02-03
A simple and effective sample preparation process based on miniaturized matrix solid-phase dispersion was developed for simultaneous determination of phenolic acids (gallic acid, chlorogenic acid, ferulic acid, 3,5-dicaffeoylqunic acid, 1,5-dicaffeoylqunic acid, rosmarinic acid, lithospermic acid, and salvianolic acid B), flavonoids (kaempferol-3-O-rutinoside, calycosin, and formononetin), lactones (ligustilide and butyllidephthalide), monoterpenoids (paeoniflorin), phenanthraquinones (cryptotanshinone), and furans (5-hydroxymethylfurfural) in Naoxintong capsule by ultra high-performance liquid chromatography. The optimized condition was that 25 mg Naoxintong powder was blended homogeneously with 100 mg Florisil PR for 4 min. One milliliter of methanol/water (75:25, v/v) acidified by 0.05% formic acid was selected to elute all components. It was found that the recoveries of the six types of components ranged from 61.36 to 96.94%. The proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography was successfully applied to simultaneous determination of the six types of components in Naoxintong capsules. The results demonstrated that the proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography could be used as an environmentally friendly tool for the extraction and determination of multiple bioactive components in natural products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, David V., E-mail: dvfried@mdanderson.org; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas; Mawlawi, Osama
2016-02-01
Purpose: To determine whether previously identified quantitative image features (QIFs) based on {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) (co-occurrence matrix energy and solidity) are able to isolate subgroups of patients who would receive a benefit or detriment from dose escalation in terms of overall survival (OS) or progression-free survival (PFS). Methods and Materials: Subgroups of a previously analyzed 225 patient cohort were generated with the use of 5-percentile increment cutoff values of disease solidity and primary tumor co-occurrence matrix energy. The subgroups were analyzed with a log-rank test to determine whether there was a difference in OS and PFS betweenmore » patients treated with 60 to 70 Gy and those receiving 74 Gy. Results: In the entire patient cohort, there was no statistical difference in terms of OS or PFS between patients receiving 74 Gy and those receiving 60 to 70 Gy. It was qualitatively observed that as disease solidity and primary co-occurrence matrix energy increased, patients receiving 74 Gy had an improved OS and PFS compared with those receiving 60 to 70 Gy. The opposite trend (detriment of receiving 74 Gy) was also observed regarding low values of disease solidity and primary co-occurrence matrix energy. Conclusions: FDG-PET–based QIFs were found to be capable of isolating subgroups of patients who received a benefit or detriment from dose escalation.« less
In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Marley, Garry M.
1993-01-01
Cinostatic bioreactor promotes formation of relatively large solid tumor spheroids exhibiting diameters from 750 to 2,100 micrometers. Process useful in studying efficacy of chemotherapeutic agents and of interactions between cells not constrained by solid matrices. Two versions have been demonstrated; one for anchorage-independent cells and one for anchorage-dependent cells.
Gassmann Theory Applies to Nanoporous Media
NASA Astrophysics Data System (ADS)
Gor, Gennady Y.; Gurevich, Boris
2018-01-01
Recent progress in extraction of unconventional hydrocarbon resources has ignited the interest in the studies of nanoporous media. Since many thermodynamic and mechanical properties of nanoscale solids and fluids differ from the analogous bulk materials, it is not obvious whether wave propagation in nanoporous media can be described using the same framework as in macroporous media. Here we test the validity of Gassmann equation using two published sets of ultrasonic measurements for a model nanoporous medium, Vycor glass, saturated with two different fluids, argon, and n-hexane. Predictions of the Gassmann theory depend on the bulk and shear moduli of the dry samples, which are known from ultrasonic measurements and the bulk moduli of the solid and fluid constituents. The solid bulk modulus can be estimated from adsorption-induced deformation or from elastic effective medium theory. The fluid modulus can be calculated according to the Tait-Murnaghan equation at the solvation pressure in the pore. Substitution of these parameters into the Gassmann equation provides predictions consistent with measured data. Our findings set up a theoretical framework for investigation of fluid-saturated nanoporous media using ultrasonic elastic wave propagation.
Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi
2018-06-13
Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.
Mechanism of Combustion of Heterogeneous Solid Propellants
1998-09-01
This suggests that under these conditions the matrix outflow is essentially premixed at the LLEF standoff height and premixed canopy flames (Figs. 4a...graphs like that in Fig. 5 are not available (or economically obtainable) for all the combinations of possible interest (O/F ratio, size of fine AP...HNIW matrix and the AP/matrix/AP sandwiches were essentially the same, suggesting that the matrix controlled the rate. In contrast, the rate of the
Xu, Bing; Shi, Peipei; Huang, Tengfei; Wang, Xuefeng; Andrews, Lester
2017-05-25
Infrared spectra of matrix isolated dibridged Si(μ-H) 2 MH 2 and tribridged Si(μ-H) 3 MH molecules (M = Zr and Hf) were observed following the laser-ablated metal atom reactions with SiH 4 during condensation in excess argon and neon, but only the latter species was observed with titanium. Assignments of the major vibrational modes, which included terminal MH, MH 2 and hydrogen bridge Si-H-M stretching modes, were confirmed by the appropriate SiD 4 isotopic shifts and density functional vibrational frequency calculations (B3LYP and BPW91). The Si-H-M hydrogen bridge bond is calculated as weak covalent interaction and compared with the C-H···M agostic interaction in terms of electron localization function (ELF) analysis and noncovalent interaction index (NCI) calculations. Furthermore, the different products of Ti, Zr, and Hf reactions with SiH 4 are discussed in detail.
Intricate Conformational Tunneling in Carbonic Acid Monomethyl Ester.
Linden, Michael M; Wagner, J Philipp; Bernhardt, Bastian; Bartlett, Marcus A; Allen, Wesley D; Schreiner, Peter R
2018-04-05
Disentangling internal and external effects is a key requirement for understanding conformational tunneling processes. Here we report the s- trans/ s- cis tunneling rotamerization of carbonic acid monomethyl ester (1) under matrix isolation conditions and make comparisons to its parent carbonic acid (3). The observed tunneling rate of 1 is temperature-independent in the 3-20 K range and accelerates when using argon instead of neon as the matrix material. The methyl group increases the effective half life (τ eff ) of the energetically disfavored s- trans-conformer from 3-5 h for 3 to 11-13 h for 1. Methyl group deuteration slows the rotamerization further (τ eff ≈ 35 h). CCSD(T)/cc-pVQZ//MP2/aug-cc-pVTZ computations of the tunneling probability suggest that the rate should be almost unaffected by methyl substitution or its deuteration. Thus the observed relative rates are puzzling, and they disagree with previous explanations involving fast vibrational relaxation after the tunneling event facilitated by the alkyl rotor.
Tritium containing polymers having a polymer backbone substantially void of tritium
Jensen, G.A.; Nelson, D.A.; Molton, P.M.
1992-03-31
A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.
Tritium containing polymers having a polymer backbone substantially void of tritium
Jensen, George A.; Nelson, David A.; Molton, Peter M.
1992-01-01
A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.
Matrix Optical Absorption in UV-MALDI MS
NASA Astrophysics Data System (ADS)
Robinson, Kenneth N.; Steven, Rory T.; Bunch, Josephine
2018-03-01
In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10-17 cm-2 was identified as a potential minimum for desorption/ionization of analytes.
Matrix Optical Absorption in UV-MALDI MS.
Robinson, Kenneth N; Steven, Rory T; Bunch, Josephine
2018-03-01
In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10 -17 cm -2 was identified as a potential minimum for desorption/ionization of analytes. Graphical Abstract ᅟ.
Marzec, K M; Reva, I; Fausto, R; Proniewicz, L M
2011-05-05
In the present work, γ-terpinene (a 1,4-diene derivative) and α-phellandrene (1,3-diene derivative) were isolated in cryogenic argon matrices and their structures, vibrational spectra, and photochemistries were characterized with the aid of FTIR spectroscopy and quantum chemical calculations performed at the DFT/B3LYP/6-311++G(d,p) level of approximation. The molecules bear one conformationally relevant internal rotation axis, corresponding to the rotation of the isopropyl group. The calculations provide evidence of three minima on the potential energy surfaces of the studied molecules, where the isopropyl group assumes the trans, gauche+, and gauche- conformations (T, G+, G-). The signatures of all these conformers were identified in the experimental matrix infrared spectra, with the T forms dominating, in agreement with the theoretical predicted abundances in gas phase at room temperature. In situ UV (λ > 200 nm) irradiation of matrix-isolated α-phellandrene led to its isomerization into an open-ring species. The photoproduct was found to exhibit the ZE configuration of its backbone, which to be formed from the reactant molecule does not require extensive structural rearrangements of both the reagent and matrix. γ-Terpinene was photostable when subjected to irradiation under the same experimental conditions. In addition, the liquid compounds at room temperature were also investigated by FTIR-ATR and FT-Raman spectroscopies.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.
Lang, Anthony J; Vyazovkin, Sergey
2008-09-11
Dissolving of ammonium nitrate in highly polar polymers such as poly(vinylpyrrolidone) and/or poly(acrylamide) can result in the formation of single-phase glassy solid materials, in which NH 4 (+) and NO 3 (-) are separated through an ion-dipole interaction with the polymer matrix. Below the glass transition temperature of the polymer matrix the resulting materials remain phase and thermally stable as demonstrated through the absence of decomposition as well as the solid-solid transitions and melting of ammonium nitrate. The structure of the materials is explored by Fourier transform infrared spectroscopy and density functional calculations. Differential scanning calorimetry, thermogravimetry, and isoconversional kinetic analysis are applied to characterize the thermal behavior of the materials.
Idelevich, Evgeny A; Grünastel, Barbara; Becker, Karsten
2017-01-01
Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption-ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. Copyright © 2016 American Society for Microbiology.
Heterogeneous fuel for hybrid rocket
NASA Technical Reports Server (NTRS)
Stickler, David B. (Inventor)
1996-01-01
Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.
Plasma methods for metals recovery from metal-containing waste.
Changming, Du; Chao, Shang; Gong, Xiangjie; Ting, Wang; Xiange, Wei
2018-04-27
Metal-containing waste, a kind of new wastes, has a great potential for recycling and is also difficult to deal with. Many countries pay more and more attention to develop the metal recovery process and equipment of this kind of waste as raw material, so as to solve the environmental pollution and comprehensively utilize the discarded metal resources. Plasma processing is an efficient and environmentally friendly way for metal-containing waste. This review mainly discuss various metal-containing waste types, such as printed circuit boards (PCBs), red mud, galvanic sludge, Zircon, aluminium dross and incinerated ash, and the corresponding plasma methods, which include DC extended transferred arc plasma reactor, DC non-transferred arc plasma torch, RF thermal plasma reactor and argon and argon-hydrogen plasma jets. In addition, the plasma arc melting technology has a better purification effect on the extraction of useful metals from metal-containing wastes, a great capacity of volume reduction of waste materials, and a low leaching toxicity of solid slag, which can also be used to deal with all kinds of metal waste materials, having a wide range of applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comparison of various stopping gases for 3He-based position sensitive neutron detectors
NASA Astrophysics Data System (ADS)
Doumas, A.; Smith, G. C.
2012-05-01
A range of solid state, scintillator and gas based detectors are being developed for use at the next generation of high flux neutron facilities. Since gas detectors are expected to continue to play a key role in future specific thermal neutron experiments, a comparison of the performance characteristics of prospective stopping gases is beneficial. Gas detectors typically utilize the reaction 3He(n,p)t to detect thermal neutrons; the 3He gas is used in a mixture containing a particular stopping gas in order to maintain relatively short ranges for the proton and triton pair emitted from the n-3He reaction. Common stopping gases include hydrocarbons (e.g. propane), carbon tetrafluoride, and noble gases such as argon and xenon. For this study, we utilized the Monte Carlo simulation code "Stopping and Range of Ions in Matter" to analyze the expected behavior of argon, xenon, carbon dioxide, difluoroethane and octafluoropropane as stopping gases for thermal neutron detectors. We also compare these findings to our previously analyzed performance of propane, butane and carbon tetrafluoride. A discussion of these gases includes their behavior in terms of proton and triton range, ionization distribution and straggle.
NASA Astrophysics Data System (ADS)
García-González, Leandro; Hernández-Torres, Julián; Mendoza-Barrera, Claudia; Meléndez-Lira, Miguel; García-Ramírez, Pedro J.; Martínez-Castillo, Jaime; Sauceda, Ángel; Herrera-May, Agustin L.; Muñoz Saldaña, Juan; Espinoza-Beltrán, Francisco J.
2008-08-01
Ti-Si-N-O coatings were deposited on AISI D2 tool steel and silicon substrates by dc reactive magnetron co-sputtering using a target of Ti-Si with a constant area ratio of 0.2. The substrate temperature was 400 °C and reactive atmosphere of nitrogen and argon. For all samples, argon flow was maintained constant at 25 sccm, while the flow of the nitrogen was varied to analyze the structural changes related to chemical composition and resistivity. According to results obtained by x-ray diffraction and stoichiometry calculations by x-ray energy dispersive spectroscopy the Ti-Si-N-O coatings contain two solid solutions. The higher crystalline part corresponds to titanium oxynitrure. Hardness tests on the coatings were carried out using the indentation work model and the hardness value was determined. Finally, the values of hardness were corroborated by nanoindentation test, and values of Young’s modulus and elastic recovery were discussed. We concluded that F2TSN sample ( F Ar = 25 sccm, F N = 5 sccm, P = 200 W, and P W = 8.9 × 10-3 mbar) presented the greatest hardness and the lowest resistivity values, due to its preferential crystalline orientation.
Single bubble perturbation in cavitation proximity of solid glass: hot spot versus distance.
Radziuk, Darya; Möhwald, Helmuth; Suslick, Kenneth
2014-02-28
A systematic study of the energy loss of a cavitation bubble in a close proximity of a glass surface is introduced for the first time in a low acoustic field (1.2-2.4 bar). Single bubble sonoluminescence (SBSL) is used as a tool to predict the temperature and pressure decrease of bubble (μm) versus surface distance. A glass as a model system is used to imitate the boundary conditions relevant for nano- or micromaterials. SBSL preequilibrated with 5% argon is perturbed by a glass rod with the tip (Z-perturbation) and with the long axis (X-perturbation) at a defined distance. From 2 mm to 500 μm argon-SBSL lines monotonically narrow and the effective emission temperature decreases from 9000 K to 6800 K comparable to multiple bubbles. The electron density decreases by two orders of magnitude in Z-perturbation and is by a factor of two higher in X-perturbation than the unperturbed cavitating bubble. The perturbed single bubble sonoluminescence pressure decreases from 2700 atm to 1200 atm at 2.4 bar. In water new non-SBSL SiO molecular emission lines are observed and OH emission disappears.
Machen, Alexandra; Kobayashi, Miwako; Connelly, Mary Robin
2013-01-01
Two novel protocols for inactivation and extraction were developed and used to identify 107 Mycobacterium clinical isolates, including Mycobacterium tuberculosis complex, from solid cultures using Vitek matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry. The protocol using heat inactivation with sonication and cell disruption with glass beads resulted in 82.2% and 88.8% species and genus level identifications, respectively. PMID:24068013
Electrochromic nanocomposite films
Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo
2018-04-10
The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.
Method of waste stabilization with dewatered chemically bonded phosphate ceramics
Wagh, Arun; Maloney, Martin D.
2010-06-29
A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.
Argon pneumoperitoneum is more dangerous than CO2 pneumoperitoneum during venous gas embolism.
Mann, C; Boccara, G; Grevy, V; Navarro, F; Fabre, J M; Colson, P
1997-12-01
We investigated the possibility of using argon, an inert gas, as a replacement for carbon dioxide (CO2). The tolerance of argon pneumoperitoneum was compared with that of CO2 pneumoperitoneum. Twenty pigs were anesthetized with enflurane 1.5%. Argon (n = 11) or CO2 (n = 9) pneumoperitoneum was created at 15 mm Hg over 20 min, and serial intravenous injections of each gas (ranging from 0.1 to 20 mL/kg) were made. Cardiorespiratory variables were measured. Transesophageal Doppler and capnographic monitoring were assessed in the detection of embolism. During argon pneumoperitoneum, there was no significant change from baseline in arterial pressure and pulmonary excretion of CO2, mean systemic arterial pressure (MAP), mean pulmonary artery pressure (PAP), or systemic and pulmonary vascular resistances, whereas CO2 pneumoperitoneum significantly increased these values (P < 0.05). During the embolic trial and from gas volumes of 2 and 0.2 mL/kg, the decrease in MAP and the increase in PAP were significantly higher with argon than with CO2 (P < 0.05). In contrast to CO2, argon pneumoperitoneum was not associated with significant changes in cardiorespiratory functions. However, argon embolism seems to be more deleterious than CO2 embolism. The possibility of using argon pneumoperitoneum during laparoscopy remains uncertain. Laparoscopic surgery requires insufflation of gas into the peritoneal cavity. We compared the hemodynamic effects of argon, an inert gas, and carbon dioxide in a pig model of laparoscopic surgery. We conclude that argon carries a high risk factor in the case of an accidental gas embolism.
New Tracers of Gas Migration in the Continental Crust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurz, Mark D.
2015-11-01
Noble gases are exceptional tracers in continental settings due to the remarkable isotopic variability between the mantle, crust, and atmosphere, and because they are inert. Due to systematic variability in physical properties, such as diffusion, solubility, and production rates, the combination of helium, neon, and argon provides unique but under-utilized indices of gas migration. Existing noble gas data sets are dominated by measurements of gas and fluid phases from gas wells, ground waters and hot springs. There are very few noble gas measurements from the solid continental crust itself, which means that this important reservoir is poorly characterized. The centralmore » goal of this project was to enhance understanding of gas distribution and migration in the continental crust using new measurements of noble gases in whole rocks and minerals from existing continental drill cores, with an emphasis on helium, neon, argon. We carried out whole-rock and mineral-separate noble gas measurements on Precambrian basement samples from the Texas Panhandle. The Texas Panhandle gas field is the southern limb of the giant Hugoton-Panhandle oil and gas field; it has high helium contents (up to ~ 2 %) and 3He/4He of 0.21 (± 0.03) Ra. Because the total amount of helium in the Panhandle gas field is relatively well known, crustal isotopic data and mass balance calculations can be used to constrain the ultimate source rocks, and hence the helium migration paths. The new 3He/4He data range from 0.03 to 0.11 Ra (total), all of which are lower than the gas field values. There is internal isotopic heterogeneity in helium, neon, and argon, within all the samples; crushing extractions yield less radiogenic values than melting, demonstrating that fluid inclusions preserve less radiogenic gases. The new data suggest that the Precambrian basement has lost significant amounts of helium, and shows the importance of measuring helium with neon and argon. The 4He/40Ar values are particularly useful in demonstrating helium loss because all the data falls well below the production ratio.« less
Paramagnetic Attraction of Impurity-Helium Solids
NASA Technical Reports Server (NTRS)
Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.
2003-01-01
Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, Owen; Davis, Barry; McCaffrey, John G., E-mail: john.mccaffrey@nuim.ie
2015-02-07
Irradiation of atomic europium isolated in the solid rare gases, with low intensity laser excitation of the y{sup 8}P←a{sup 8}S resonance transition at ca. 465 nm, is found to produce singly charged europium cations (Eu{sup +}) in large amounts in xenon and in smaller amounts in argon. Confirmation of the formation of matrix-isolated Eu{sup +} is obtained from characteristic absorption bands in the UV and in the visible spectral regions. The luminescence produced with excitation of the cation bands is presented in greatest detail for Eu/Xe and assigned. Excitation of the 4f{sup 7}({sup 8}S{sub 7/2})6p{sub 3/2} absorption bands of Eu{supmore » +} between 390 and 410 nm produces emission which is quite distinct from that resulting from excitation of the 4f{sup 7}({sup 8}S{sub 7/2})6p{sub 1/2} absorption (430 to 450 nm) features. The latter consists of narrow, resolved emission bands with Stokes shifts ten times smaller than the former. The observed spectral differences are discussed in relation to the different spatial symmetries of the p{sub 3/2} and p{sub 1/2} orbitals in these j-j coupled (7/2, 3/2){sub J} and the (7/2, 1/2){sub J} levels. Møller-Plesset calculations are conducted to obtain the molecular parameters of the neutral Eu-RG and cationic Eu{sup +}-RG diatomics (RG = Ar, Kr, Xe). From the short bond lengths and the strong binding energies obtained for the Eu{sup +}-RG species, these values suggest the isolation of the ion in small, possibly interstitial sites especially in xenon. In contrast, but consistent with previous work [O. Byrne and J. G. McCaffrey, J. Chem. Phys. 134, 124501 (2011)], the interaction potentials calculated herein for the Eu-RG diatomics suggest that the neutral Eu atom occupies tetra-vacancy (tv) and hexa-vacancy (hv) sites in the solid rare gas hosts. Possible reasons for the facile production of Eu{sup +} in the solid rare gases are discussed. The mechanism proposed is that atomic europium is also acting as an electron acceptor, providing a temporary trap for the ionised electron in the matrices.« less
Golzio, Muriel; Sersa, Gregor; Escoffre, Jean-Michel; Coer, Andrej; Vidic, Suzana; Teissie, Justin
2012-01-01
Abstract One of the applications of electroporation/electropulsation in biomedicine is gene electrotransfer, the wider use of which is hindered by low transfection efficiency in vivo compared with viral vectors. The aim of our study was to determine whether modulation of the extracellular matrix in solid tumors, using collagenase and hyaluronidase, could increase the transfection efficiency of gene electrotransfer in histologically different solid subcutaneous tumors in mice. Tumors were treated with enzymes before electrotransfer of plasmid DNA encoding either green fluorescent protein or luciferase. Transfection efficiency was determined 3, 9, and 15 days posttransfection. We demonstrated that pretreatment of tumors with a combination of enzymes significantly increased the transfection efficiency of electrotransfer in tumors with a high extracellular matrix area (LPB fibrosarcoma). In tumors with a smaller extracellular matrix area and less organized collagen lattice, the increase was not so pronounced (SA-1 fibrosarcoma and EAT carcinoma), whereas in B16 melanoma, in which only traces of collagen are present, pretreatment of tumors with hyaluronidase alone was more efficient than pretreatment with both enzymes. In conclusion, our results suggest that modification of the extracellular matrix could improve distribution of plasmid DNA in solid subcutaneous tumors, demonstrated by an increase in transfection efficiency, and thus have important clinical implications for electrogene therapy. PMID:21797718
Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhm, Han S.; Lim, Jin P.; Li, Shou Z.
2007-06-25
Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.
NASA Astrophysics Data System (ADS)
Moroz, Pavel
Growing fossil fuels consumption compels researchers to find new alternative pathways to produce energy. Along with new materials for the conversion of different types of energy into electricity innovative methods for efficient processing of energy sources are also introduced. The main criteria for the success of such materials and methods are the low cost and compelling performance. Among different types of materials semiconductor nanocrystals are considered as promising candidates for the role of the efficient and cheap absorbers for solar energy applications. In addition to the anticipated cost reduction, the integration of nanocrystals (NC) into device architectures is inspired by the possibility of tuning the energy of electrical charges in NCs via nanoparticle size. However, the stability of nanocrystals in photovoltaic devices is limited by the stability of organic ligands which passivate the surface of semiconductors to preserve quantum confinement. The present work introduces a new strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films: semiconductor matrix encapsulated nanocrystal arrays (SMENA). This methodology goes beyond the traditional ligand-interlinking scheme and relies on the encapsulation of morphologically-defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces. The main characteristics and properties of these solids were investigated and compared with ones of traditionally fabricated nanocrystal films using standard spectroscopic, optoelectronic and electronic techniques. As a proof of concept, we. We also characterized electron transport phenomena in different types of nanocrystal films using all-optical approach. By measuring excited carrier lifetimes in either ligand-linked or matrix-encapsulated PbS nanocrystal films containing a tunable fraction of insulating ZnS domains, we uniquely distinguish the dynamics of charge scattering on defects from other processes of exciton dissociation. The measured times are subsequently used to estimate the diffusion length and the carrier mobility for each film type within hopping transport regime. It is demonstrated that nanocrystal films encapsulated into semiconductor matrices exhibit a lower probability of charge scattering than nanocrystal solids cross-linked with either 3-mercaptopropionic acid or 1,2-ethanedithiol molecular linkers. The suppression of carrier scattering in matrix-encapsulated nanocrystal films is attributed to a relatively low density of surface defects at nanocrystal/matrix interfaces. High stability and low density of defects made it possible to fabricate infrared-emitting nanocrystal solids. Presently, an important challenge facing the development of nanocrystal infrared emitters concerns the fact that both the emission quantum yield and the stability of colloidal nanoparticles become compromised when nanoparticle solutions are processed into solids. Here, we address this issue by developing an assembly technique that encapsulates infrared-emitting PbS NCs into crystalline CdS matrices, designed to preserve NC emission characteristics upon film processing. Here, the morphology of these matrices was designed to suppress the nonradiative carrier decay, whereby increasing the exciton lifetime up to 1 mus, and boosting the emission quantum yield to an unprecedented 3.7% for inorganically encapsulated PbS NC solids.
Effects of argon gas flow rate on laser-welding.
Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro
2012-01-01
The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.
Urbanova, Martina; Gajdosova, Marketa; Steinhart, Miloš; Vetchy, David; Brus, Jiri
2016-05-02
Mucoadhesive buccal films (MBFs) provide an innovative way to facilitate the efficient site-specific delivery of active compounds while simultaneously separating the lesions from the environment of the oral cavity. The structural diversity of these complex multicomponent and mostly multiphase systems as well as an experimental strategy for their structural characterization at molecular scale with atomic resolution were demonstrated using MBFs of ciclopirox olamine (CPX) in a poly(ethylene oxide) (PEO) matrix as a case study. A detailed description of each component of the CPX/PEO films was followed by an analysis of the relationships between each component and the physicochemical properties of the MBFs. Two distinct MBFs were identified by solid-state NMR spectroscopy: (i) at low API (active pharmaceutical ingredient) loading, a nanoheterogeneous solid solution of CPX molecularly dispersed in an amorphous PEO matrix was created; and (ii) at high API loading, a pseudoco-crystalline system containing CPX-2-aminoethanol nanocrystals incorporated into the interlamellar space of a crystalline PEO matrix was revealed. These structural differences were found to be closely related to the mechanical and physicochemical properties of the prepared MBFs. At low API loading, the polymer chains of PEO provided sufficient quantities of binding sites to stabilize the CPX that was molecularly dispersed in the highly amorphous semiflexible polymer matrix. Consequently, the resulting MBFs were soft, with low tensile strength, plasticity, and swelling index, supporting rapid drug release. At high CPX content, however, the active compounds and the polymer chains simultaneously cocrystallized, leaving the CPX to form nanocrystals grown directly inside the spherulites of PEO. Interfacial polymer-drug interactions were thus responsible not only for the considerably enhanced plasticity of the system but also for the exclusive crystallization of CPX in the thermodynamically most stable polymorphic form, Form I, which exhibited reduced dissolution kinetics. The bioavailability of CPX olamine formulated as PEO-based MBFs can thus be effectively controlled by inducing the complete dispersion and/or microsegregation and nanocrystallization of CPX olamine in the polymer matrix. Solid-state NMR spectroscopy is an efficient tool for exploring structure-property relationships in these complex pharmaceutical solids.
21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for use...
21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for use...
Code of Federal Regulations, 2011 CFR
2011-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2012 CFR
2012-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2013 CFR
2013-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2010 CFR
2010-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2014 CFR
2014-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
The Physics Analysis of a Gas Attenuator with Argon as a Working Gas (Rev. 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D D; Bionta, R M; McKernan, M A
2006-01-03
A gas attenuator is an important element of the LCLS facility. The attenuator has to operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. A detailed design study of the attenuator based on the use of nitrogen as a working gas has been recently carried out by S. Shen [1]. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues; themore » design features will probably be not that different from the aforementioned nitrogen attenuator. Although specific results obtained in our note pertain to argon, the general framework (and many equations obtained) are applicable also to the nitrogen attenuator. In the past, an analysis of the attenuator based on the use of a noble gas has already been carried out [2]. This analysis was performed for an extremely stringent set of specifications. In particular, a very large diameter for the unobstructed x-ray beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole range of energies of the coherent radiation, from 800 eV to 8000 eV; the maximum attenuation was set at the level of 10{sup 4}; the use of solid attenuators was not allowed, as well as the use of rotating shutters. The need to reach a sufficient absorption at the high-energy end of the spectrum predetermined the choice of Xe as the working gas (in order to have a reasonable absorption at a not-too-high pressure). A sophisticated differential pumping system that included a Penning-type ion pump was suggested in order to minimize the gas leak into the undulator/accelerator part of the facility. A high cost of xenon meant also that an efficient (and expensive) gas-recovery system would have to be installed. The main parameter that determined the high cost and the complexity of the system was a large radius of the orifice. The present viewpoint allows for much smaller size of the orifice, a = 1.5 mm. The use of solid attenuators is also allowed for a higher-energy end of the spectrum. It is, therefore, worthwhile to reconsider various parameters of the gas attenuator for these much less stringent conditions. As a working gas we consider now the argon, which, on the one hand, provides reasonable absorption lengths and, on the other hand, is inexpensive enough to be exhausted into the atmosphere (no need for recovery). We concentrate on the processes in the main attenuation cell and just outside it, not touching upon a performance of the differential pumping system. The graphs presented in this report can serve for a general orientation only, not for getting exact numerical values of various parameters.« less
NASA Astrophysics Data System (ADS)
Zhang, Ying; Mao, Xuefei; Liu, Jixin; Wang, Min; Qian, Yongzhong; Gao, Chengling; Qi, Yuehan
2016-04-01
In this work, a solid sampling device consisting of a tungsten coil trap, porous carbon vaporizer and on-line ashing furnace of a Ni-Cr coil was interfaced with inductively coupled plasma mass spectrometry (ICP-MS). A modified double gas circuit system was employed that was composed of carrier and supplemental gas lines controlled by separate gas mass flow controllers. For Cd determination in food samples using the assembled solid sampling ICP-MS, the optimal ashing and vaporization conditions, flow rate of the argon-hydrogen (Ar/H2) (v:v = 24:1) carrier gas and supplemental gas, and minimum sampling mass were investigated. Under the optimized conditions, the limit of quantification was 0.5 pg and the relative standard deviation was within a 10.0% error range (n = 10). Furthermore, the mean spiked recoveries for various food samples were 99.4%-105.9% (n = 6). The Cd concentrations measured by the proposed method were all within the certified values of the reference materials or were not significantly different (P > 0.05) from those of the microwave digestion ICP-MS method, demonstrating the good accuracy and precision of the solid sampling ICP-MS method for Cd determination in food samples.
Argon gas: a potential neuroprotectant and promising medical therapy
2014-01-01
Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential. PMID:24533741
Ne matrix spectra of the sym-C6Br3F3+ radical cation
Bondybey, V.E.; Sears, T.J.; Miller, T.A.; Vaughn, C.; English, J.H.; Shiley, R.S.
1981-01-01
The electronic absorption and laser excited, wavelength resolved fluorescence spectra of the title cation have been observed in solid Ne matrix and vibrationally analysed. The vibrational structure of the excited B2A2??? state shows close similarity to the parent compound. The X2E??? ground state structure is strongly perturbed and irregular owing to a large Jahn-Teller distortion. The data are analysed in terms of a recently developed, sophisticated multimode Jahn-Teller theoretical model. We have generated the sym-C6Br3F3+ cations in solid Ne matrix and obtained their wavelength resolved emission and absorption spectra. T ground electronic X2E??? state exhibits an irregular and strongly perturbed vibrational structure, which can be successfully modeled using sophisticated multimode Jahn-Teller theory. ?? 1981.
An original architectured NiTi silicone rubber structure for biomedical applications.
Rey, T; Le Cam, J-B; Chagnon, G; Favier, D; Rebouah, M; Razan, F; Robin, E; Didier, P; Heller, L; Faure, S; Janouchova, K
2014-12-01
This paper deals with composite structures for biomedical applications. For this purpose, an architectured tubular structure composed of Nickel Titanium (NiTi) Shape Memory Alloy (SMA) and silicone rubber was fabricated. One of the main interests of such structures is to ensure a good adhesion between its two constitutive materials. A previous study of the authors (Rey et al., 2014) has shown that the adhesion between NiTi and silicone rubber can be improved by an adhesion promoter or plasma treatment. However, adhesion promoters are often not biocompatible. Hence, plasma treatment is favored to be used in the present study. Three different gases were tested; air, argon and oxygen. The effects of these treatments on the maximum force required to pull-out a NiTi wire from the silicone rubber matrix were investigated by means of pull-out tests carried out with a self-developed device. Among the three gases, a higher maximum force was obtained for argon gas in the plasma treatment. A tube shaped architectured NiTi/silicone rubber structure was then produced using this treatment. The composite was tested by means of a bulge test. Results open a new way of investigations for architectured NiTi-silicone structures for biomechanical applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge
NASA Astrophysics Data System (ADS)
Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.
2018-01-01
This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.
Rathore, Atul S; Sathiyanarayanan, L; Deshpande, Shreekant; Mahadik, Kakasaheb R
2016-11-01
A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid-phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave-assisted extraction and ultrasonic-assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion-trap mass spectrometry method was developed for quantitative analysis in multiple-reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C 18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r 2 > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid-phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time-saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ascone, I; Sabatucci, A; Bubacco, L; Di Muro, P; Salvato, B
2000-01-01
In this study, solid samples of hemoglobin and hemocyanin have been prepared by embedding the proteins into a saccharose-based matrix. These materials have been developed specifically for specimens for X-ray absorption spectroscopy (XAS). The preservation of protein conformation and active site organization was tested, making comparisons between the solid and the corresponding liquid samples, using resonance Raman, infra red, fluorescence and XAS. The XAS spectra of irradiated solid and liquid samples were then compared, and the preservation of biological activity of the proteins during both preparation procedure and X-ray irradiation was assessed. In all cases, the measurements clearly demonstrate that protein solid samples are both structurally and functionally quite well preserved, much better than those in the liquid state. The saccharose matrix provides an excellent protection against X-ray damages, allowing for longer exposure to the X-ray beam. Moreover, the demonstrated long-term stability of samples permits their preparation and storage in optimal conditions, allowing for the repetition of data collection with the same sample in several experimental sessions. The very high protein concentration that can be reached results in a significantly better signal-to-noise ratio, particularly useful for high molecular weight proteins with a low metal-to-protein ratio. On the bases of the above-mentioned results, we propose the new method as a standard procedure for the preparation of biological samples to be used for XAS spectroscopy.
Relation Between Pore Size and the Compressibility of a Confined Fluid
Gor, Gennady Y.; Siderius, Daniel W.; Rasmussen, Christopher J.; Krekelberg, William P.; Shen, Vincent K.; Bernstein, Noam
2015-01-01
When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here we report a simple relation between the pore size and isothermal compressibility of argon confined in these pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments. PMID:26590541
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Recent studies of the spectroscopy of large (up to approx. 50 carbon atoms) neutral and Ionized polycyclic aromatic hydrocarbons (PAHs) and Fullerenes isolated in inert gas matrices will be presented. The advantages and the limitations of matrix isolation spectroscopy for the study of the molecular spectroscopy of interstellar dust analogs will be discussed. The laboratory data will be compared to the astronomical spectra (the interstellar extinction, the diffuse interstellar bands). Finally, the spectra of PAH ions isolated in neon/argon matrices will be compared to the spectra obtained for PAH ion seeded in a supersonic expansion. The astrophysical implications and future perspectives will be discussed.
Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon
2014-11-26
We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.
46 CFR 151.50-36 - Argon or nitrogen.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...
46 CFR 151.50-36 - Argon or nitrogen.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...
46 CFR 151.50-36 - Argon or nitrogen.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...
46 CFR 151.50-36 - Argon or nitrogen.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...
46 CFR 151.50-36 - Argon or nitrogen.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping...
Sciamma, Ella M; Bengtson, Roger D; Rowan, W L; Keesee, Amy; Lee, Charles A; Berisford, Dan; Lee, Kevin; Gentle, K W
2008-10-01
We present a method to infer the electron temperature in argon plasmas using a collisional-radiative model for argon ions and measurements of electron density to interpret absolutely calibrated spectroscopic measurements of argon ion (Ar II) line intensities. The neutral density, and hence the degree of ionization of this plasma, can then be estimated using argon atom (Ar I) line intensities and a collisional-radiative model for argon atoms. This method has been tested for plasmas generated on two different devices at the University of Texas at Austin: the helicon experiment and the helimak experiment. We present results that show good correlation with other measurements in the plasma.
Cost analysis of composite fan blade manufacturing processes
NASA Technical Reports Server (NTRS)
Stelson, T. S.; Barth, C. F.
1980-01-01
The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.
Many-body perturbation theory using the density-functional concept: beyond the GW approximation.
Bruneval, Fabien; Sottile, Francesco; Olevano, Valerio; Del Sole, Rodolfo; Reining, Lucia
2005-05-13
We propose an alternative formulation of many-body perturbation theory that uses the density-functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a two-point one, which leads to excellent optical absorption and energy-loss spectra. The corresponding three-point vertex function and self-energy are then simply calculated via an integration, for any level of approximation. Moreover, we show the direct impact of this formulation on the time-dependent density-functional theory. Numerical results for the band gap of bulk silicon and solid argon illustrate corrections beyond the GW approximation for the self-energy.
Spectral irradiance standard for the ultraviolet - The deuterium lamp
NASA Technical Reports Server (NTRS)
Saunders, R. D.; Ott, W. R.; Bridges, J. M.
1978-01-01
A set of deuterium lamps is calibrated as spectral irradiance standards in the 200-350-nm spectral region utilizing both a high accuracy tungsten spectral irradiance standard and a newly developed argon mini-arc spectral radiance standard. The method which enables a transfer from a spectral radiance to a spectral irradiance standard is described. The following characteristics of the deuterium lamp irradiance standard are determined: sensitivity to alignment; dependence on input power and solid angle; reproducibility; and stability. The absolute spectral radiance is also measured in the 167-330-nm region. Based upon these measurements, values of the spectral irradiance below 200 nm are obtained through extrapolation.
High density crystalline boron prepared by hot isostatic pressing in refractory metal containers
Hoenig, C.L.
1993-08-31
Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.
High density crystalline boron prepared by hot isostatic pressing in refractory metal containers
Hoenig, Clarence L.
1993-01-01
Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.
Experimental investigation of particle surface interactions for turbomachinery application
NASA Astrophysics Data System (ADS)
Hamed, A.; Tabakoff, W.
This paper describes an experimental investigation to determine the particle restitution characteristics after impacting solid targets in a particulate flow wind tunnel. The tests simulate the two phase flow conditions encountered in turbomachinery operating in particle laden flow environments. Both incoming and rebounding velocities are measured using a three color Argon Ion laser in backward scattered mode through a window in the tunnel section containing the impact target. The experimental results are presented for ash particles impinging on RENE 41 targets at different impact conditions. The presented results are applicable to particle dynamics simulations in gas turbine engines and to the prediction of the associated blade surface erosion.
Two phase microstructure for Ag-Ni nanowires
NASA Astrophysics Data System (ADS)
Srivastava, Chandan; Rai, Rajesh Kumar
2013-03-01
In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of ˜200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase.
The Argon Geochronology Experiment (AGE)
NASA Technical Reports Server (NTRS)
Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.
2006-01-01
This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.
Chatterjee, Pabitra B; Crans, Debbie C
2012-09-03
Visible light facilitates a solid-to-solid photochemical aerobic oxidation of a hunter-green microcrystalline oxidovanadium(IV) compound (1) to form a black powder of cis-dioxidovanadium(V) (2) at ambient temperature. The siderophore ligand pyridine-2,6-bis(thiocarboxylic acid), H(2)L, is secreted by a microorganism from the Pseudomonas genus. This irreversible transformation of a metal monooxo to a metal dioxo complex in the solid state in the absence of solvent is unprecedented. It serves as a proof-of-concept reaction for green chemistry occurring in solid matrixes.
Gopi, R; Ramanathan, N; Sundararajan, K
2014-07-24
The 1:1 hydrogen-bonded complex of fluoroform and hydrogen chloride was studied using matrix-isolation infrared spectroscopy and ab initio computations. Using B3LYP and MP2 levels of theory with 6-311++G(d,p) and aug-cc-pVDZ basis sets, the structures of the complexes and their energies were computed. For the 1:1 CHF3-HCl complexes, ab initio computations showed two minima, one cyclic and the other acyclic. The cyclic complex was found to have C-H · · · Cl and C-F · · · H interactions, where CHF3 and HCl sub-molecules act as proton donor and proton acceptor, respectively. The second minimum corresponded to an acyclic complex stabilized only by the C-F · · · H interaction, in which CHF3 is the proton acceptor. Experimentally, we could trap the 1:1 CHF3-HCl cyclic complex in an argon matrix, where a blue-shift in the C-H stretching mode of the CHF3 sub-molecule was observed. To understand the nature of the interactions, Atoms in Molecules and Natural Bond Orbital analyses were carried out to unravel the reasons for blue-shifting of the C-H stretching frequency in these complexes.
Hisaki, Ichiro; Eda, Takeshi; Sonoda, Motohiro; Niino, Hiroyuki; Sato, Tadatake; Wakabayashi, Tomonari; Tobe, Yoshito
2005-03-04
To generate dibenzotetrakisdehydro[12]- and dibenzopentakisdehydro[14]annulenes ([12]- and [14]DBAs) having a highly deformed triyne moiety, [4.3.2]propellatriene-anneleted dehydro[12]- and dehydro[14]annulenes were prepared as their precursors. UV irradiation of the precursors resulted in the photochemical [2 + 2] cycloreversion to generate the strained [12]- and [14]DBAs, respectively. The [12]DBA was not detected by 1H NMR spectroscopy, but it was intercepted as Diels-Alder adducts in solution, suggesting its intermediacy. Its spectroscopic characterization was successfully carried out by UV-vis spectroscopy in a 2-methyltetrahydrofuran (MTHF) glass matrix at 77 K and by FT-IR spectroscopy in an argon matrix at 20 K. On the other hand, the [14]DBA was stable enough for observation by 1H and 13C NMR spectra in solution, though it was not isolated because of the low efficiency of the cycloreversion. The [14]DBA was also characterized by interception as Diels-Alder adducts in solution and by UV-vis spectroscopy in a MTHF glass matrix at 77 K. The kinetic stabilities of the DBAs are compared with the related dehydrobenzoannulenes with respect to the topology of the pi-systems. In addition, the tropicity of the [14]DBA is discussed based on its experimental and theoretical 1H NMR chemical shifts.
Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites
NASA Astrophysics Data System (ADS)
Özgün, Özgür; Dinler, İlyas
2018-05-01
Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.
Matrix Isolation and ab initio study of the noncovalent complexes between formamide and acetylene.
Mardyukov, Artur; Sánchez-García, Elsa; Sander, Wolfram
2009-02-12
Matrix isolation spectroscopy in combination with ab initio calculations is a powerful technique for the identification of weakly bound intermolecular complexes. Here, weak complexes between formamide and acetylene are studied, and three 1:1 complexes with binding energies of -2.96, -2.46, and -1.79 kcal/mol have been found at the MP2 level of theory (MP2/cc-pVTZ + ZPE + BSSE). The two most stable dimers A and B are identified in argon and nitrogen matrices by comparison between the experimental and calculated infrared frequencies. Both complexes are stabilized by the formamide C=O...HC acetylene and H...pi interactions. Large shifts have been observed experimentally for the C-H stretching vibrations of the acetylene molecule, in very good agreement with the calculated values. Eight 1:2 FMA-acetylene trimers (T-A to T-H) with binding energies between -5.44 and -2.62 kcal/mol (MP2/aug-cc-pVDZ + ZPE + BSSE) were calculated. The two most stable trimers T-A and T-B are very close in energy and have similar infrared spectra. Several weak bands that are in agreement with the calculated frequencies of the trimers T-A and T-B are observed under matrix isolation conditions. However, the differences are too small for a definitive assignment.
Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites
NASA Astrophysics Data System (ADS)
Özgün, Özgür; Dinler, İlyas
2018-07-01
Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.
Light detection and the wavelength shifter deposition in DEAP-3600
NASA Astrophysics Data System (ADS)
Broerman, B.; Retière, F.
2016-02-01
The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) uses liquid argon as a target medium to perform a direct-detection dark matter search. The 3600 kg liquid argon target volume is housed in a spherical acrylic vessel and viewed by a surrounding array of photomultiplier tubes. Ionizing particles in the argon volume produce scintillation light which must be wavelength shifted to be detected by the photomultiplier tubes. Argon scintillation and wavelength shifting, along with details on the application of the wavelength shifter to the inner surface of the acrylic vessel are presented.
MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
A finite difference method for a coupled model of wave propagation in poroelastic materials.
Zhang, Yang; Song, Limin; Deffenbaugh, Max; Toksöz, M Nafi
2010-05-01
A computational method for time-domain multi-physics simulation of wave propagation in a poroelastic medium is presented. The medium is composed of an elastic matrix saturated with a Newtonian fluid, and the method operates on a digital representation of the medium where a distinct material phase and properties are specified at each volume cell. The dynamic response to an acoustic excitation is modeled mathematically with a coupled system of equations: elastic wave equation in the solid matrix and linearized Navier-Stokes equation in the fluid. Implementation of the solution is simplified by introducing a common numerical form for both solid and fluid cells and using a rotated-staggered-grid which allows stable solutions without explicitly handling the fluid-solid boundary conditions. A stability analysis is presented which can be used to select gridding and time step size as a function of material properties. The numerical results are shown to agree with the analytical solution for an idealized porous medium of periodically alternating solid and fluid layers.
Claeys, Bart; Vervaeck, Anouk; Vervaet, Chris; Remon, Jean Paul; Hoogenboom, Richard; De Geest, Bruno G
2012-10-15
Here we evaluate poly(2-ethyl-2-oxazoline)s (PEtOx) as a matrix excipient for the production of oral solid dosage forms by hot melt extrusion (HME) followed by injection molding (IM). Using metoprolol tartrate as a good water-soluble model drug we demonstrate that drug release can be delayed by HME/IM, with the release rate controlled by the molecular weight of the PEtOx. Using fenofibrate as a lipophilic model drug we demonstrate that relative to the pure drug the dissolution rate is strongly enhanced by formulation in HME/IM tablets. For both drug molecules we find that solid solutions, i.e. molecularly dissolved drug in a polymeric matrix, are obtained by HME/IM. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Davis, W Clay; Knippel, Brad C; Cooper, Julia E; Spraul, Bryan K; Rice, Jeanette K; Smith, Dennis W; Marcus, R Kenneth
2003-05-15
A new approach for the analysis of particulate matter by radio frequency glow discharge optical emission spectrometry (rf-GD-OES) is described. Dispersion of the particles in a sol-gel sample matrix provides a convenient means of generating a thin film suitable for sputter-sampling into the discharge. Acid-catalyzed sol-gel glasses synthesized from tetramethyl orthosilicate were prepared and spun-cast on glass substrates. The resultant thin films on glass substrates were analyzed to determine the discharge operating conditions and resultant sputtering characteristics while a number of optical emission lines of the film components were monitored. Slurries of powdered standard reference materials NIST SRM 1884a (Portland Cement) and NIST SRM 2690 (Coal Fly Ash) dispersed in the sols were cast into films in the same manner. Use of the sol-gels as sample matrixes allows for background subtraction through the use of analytical blanks and may facilitate the generation of calibration curves via readily synthesized, matrix-matched analytical standards in solids analysis. Detection limits were determined for minor elements via the RSDB method to be in the range of 1-10 microg/g in Portland Cement and Coal Fly Ash samples for the elements Al, Fe, Mg, S, and Si. Values for Ca were in the range of 15-35 microg/g. This preliminary study demonstrates the possibility of incorporating various insoluble species, including ceramics and geological specimens in powder form, into a solid matrix for further analysis by either rf-GD-OES or MS.
Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han
2017-01-01
In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiu, Junshan; Dong, Lili; Qin, Hua; Liu, Yunyan; Yu, Jin
2016-12-01
The detection limit of trace metals in liquids has been improved greatly by laser-induced breakdown spectroscopy (LIBS) using solid substrate. A paper substrate and a metallic substrate were used as a solid substrate for the detection of trace metals in aqueous solutions and viscous liquids (lubricating oils) respectively. The matrix effect on quantitative analysis of trace metals in two types of liquids was investigated. For trace metals in aqueous solutions using paper substrate, the calibration curves established for pure solutions and mixed solutions samples presented large variation on both the slope and the intercept for the Cu, Cd, and Cr. The matrix effects among the different elements in mixed solutions were observed. However, good agreement was obtained between the measured and known values in real wastewater. For trace metals in lubricating oils, the matrix effect between the different oils is relatively small and reasonably negligible under the conditions of our experiment. A universal calibration curve can be established for trace metals in different types of oils. The two approaches are verified that it is possible to develop a feasible and sensitive method with accuracy results for rapid detection of trace metals in industrial wastewater and viscous liquids by laser-induced breakdown spectroscopy. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Rajagopalan, T.; Wang, X.; Lahlouh, B.; Ramkumar, C.; Dutta, Partha; Gangopadhyay, S.
2003-10-01
Nanocrystalline silicon carbide (SiC) thin films were deposited by plasma enhanced chemical vapor deposition technique at different deposition temperatures (Td) ranging from 80 to 575 °C and different gas flow ratios (GFRs). While diethylsilane was used as the source for the preparation of SiC films, hydrogen, argon and helium were used as dilution gases in different concentrations. The effects of Td, GFR and dilution gases on the structural and optical properties of these films were investigated using high resolution transmission electron microscope (HRTEM), micro-Raman, Fourier transform infrared (FTIR) and ultraviolet-visible optical absorption techniques. Detailed analysis of the FTIR spectra indicates the onset of formation of SiC nanocrystals embedded in the amorphous matrix of the films deposited at a temperature of 300 °C. The degree of crystallization increases with increasing Td and the crystalline fraction (fc) is 65%±2.2% at 575 °C. The fc is the highest for the films deposited with hydrogen dilution in comparison with the films deposited with argon and helium at the same Td. The Raman spectra also confirm the occurrence of crystallization in these films. The HRTEM measurements confirm the existence of nanocrystallites in the amorphous matrix with a wide variation in the crystallite size from 2 to 10 nm. These results are in reasonable agreement with the FTIR and the micro-Raman analysis. The variation of refractive index (n) with Td is found to be quite consistent with the structural evolution of these films. The films deposited with high dilution of H2 have large band gap (Eg) and these values vary from 2.6 to 4.47 eV as Td is increased from 80 to 575 °C. The size dependent shift in the Eg value has also been investigated using effective mass approximation. Thus, the observed large band gap is attributed to the presence of nanocrystallites in the films.
Argon Diffusion Measured in Rhyolite Melt at 100 MPa
NASA Astrophysics Data System (ADS)
Weldon, N.; Edwards, P. M.; Watkins, J. M.; Lesher, C. E.
2016-12-01
Argon diffusivity (D_{Ar} ) controls the rate and length scale of argon exchange between melt and gas phases and is used as a parameter to model noble gas fractionation during magma degassing. D_{Ar} may also be useful in geochronology to estimate the distribution of excess (non-radiogenic) atmospheric argon in lavas. Our measurements of D_{Ar} in molten anhydrous rhyolite near 1000 °C and 100 MPa add to the existing dataset. Using a rapid-quench cold seal pressure apparatus we exposed cylindrical charges drilled from a Miocene rhyolite flow near Buck Mtn., CA to a pure argon atmosphere resulting in a gradually lengthening argon concentration gradient between the saturated surface and the argon poor interior. Argon concentration was measured by electron microprobe along radial transects from the center to the surface of bisected samples. D_{Ar} was calculated for each transect by fitting relative argon concentration (as a function of distance from the surface) to Green's function (given each experiment's specific temperature, pressure and runtime). Variability (σ = 1.202{μm }^{2} /s) was smaller than in previous studies, but still greater than what is likely due to analytical or experimental uncertainty. We observed a symmetric geometric bias in the distribution of argon in our samples, possibly related to advective redistribution of argon accompanying the deformation of cylindrical charges into spheroids driven by surface tension. Average diffusivity, D_{Ar} = 4.791{μm }^{2} /s, is close to the predicted value, D_{Ar} = {μm }^{2} /s ( σ_{ \\bar{x} } = 1.576 {μm }^{2} /s), suggesting that Behrens and Zhang's (2001) empirical model is valid for anhydrous rhyolite melts to relatively higher temperatures and lower pressures. Behrens, H. and Y. Zhang (2001). "Ar diffusion in hydrous silicic melts: implications for volatile diffusion mechanisms and fractionation." Earth and Planetary Science Letters 192: 363-376.
Weng, Chih-Chiang; Liao, Juinn-Der; Chen, Hsin-Hung; Lin, Tung-Yi; Huang, Chih-Ling
2011-09-01
An aqueous solution containing Escherichia coli can be completely inactivated within a short treatment time using a capillary-tube-based oxygen/argon micro-plasma source. A capillary-tube-based oxygen/argon micro-plasma system with a hollow inner electrode was ignited by a 13.56 MHz radio frequency power supply with a matching network and characterised by optical emission spectroscopy. An aqueous solution containing E. coli was then treated at various the working distances, plasma exposure durations, and oxygen ratios in argon micro-plasma. The treated bacteria were then assessed and qualitatively investigated. The morphologies of treated bacteria were examined using a scanning electron microscope (SEM). In the proposed oxygen/argon micro-plasma system, the intensities of the main emission lines of the excited species, nitric oxide (NO), hydrated oxide (OH), argon (Ar), and atomic oxygen (O), fluctuated with the addition of oxygen to argon micro-plasma. Under a steady state of micro-plasma generation, the complete inactivation of E. coli in aqueous solution was achieved within 90 s of argon micro-plasma exposure time with a working distance of 3 mm. SEM micrographs reveal obvious morphological damage to the treated E. coli. The addition of oxygen to argon micro-plasma increased the variety of O-containing excited species. At a given supply power, the relative intensities of the excited species, NO and OH, correlated with the ultraviolet (UV) intensity, decreased. For the proposed capillary-tube-based micro-plasma system with a hollow inner electrode, the oxygen/argon micro-plasma source is efficient in inactivating E. coli in aqueous solution. The treatment time required for the inactivation process decreases with decreasing working distance or the increasing synthesised effect of reactive species and UV intensity.
Grüßer, Linda; Blaumeiser-Debarry, Rosmarie; Krings, Matthias; Kremer, Benedikt; Höllig, Anke; Rossaint, Rolf; Coburn, Mark
2017-01-01
Despite years of research, treatment of traumatic brain injury (TBI) remains challenging. Considerable data exists that some volatile anesthetics might be neuroprotective. However, several studies have also revealed a rather neurotoxic profile of anesthetics. In this study, we investigated the effects of argon 50%, desflurane 6% and their combination in an in vitro TBI model with incubation times similar to narcotic time slots in a daily clinical routine. Organotypic hippocampal brain slices of 5- to 7-day-old mice were cultivated for 14 days before TBI was performed. Slices were eventually incubated for 2 hours in an atmosphere containing no anesthetic gas, argon 50% or desflurane 6% or both. Trauma intensity was evaluated via fluorescent imagery. Our results show that neither argon 50% nor desflurane 6% nor their combination could significantly reduce the trauma intensity in comparison to the standard atmosphere. However, in comparison to desflurane 6%, argon 50% displayed a rather neuroprotective profile within the first 2 hours after a focal mechanical trauma ( P = 0.015). A 2-hour incubation in an atmosphere containing both gases, argon 50% and desflurane 6%, did not result in significant effects in comparison to the argon 50% group or the desflurane 6% group. Our findings demonstrate that within a 2-hour incubation time neither argon nor desflurane could affect propidium iodide-detectable cell death in an in vitro TBI model in comparison to the standard atmosphere, although cell death was less with argon 50% than with desflurane 6%. The results show that within this short time period processes concerning the development of secondary injury are already taking place and may be manipulated by argon.
Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion
NASA Astrophysics Data System (ADS)
Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup
2018-04-01
Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.
Conformers, infrared spectrum and UV-induced photochemistry of matrix-isolated furfuryl alcohol.
Araujo-Andrade, C; Gómez-Zavaglia, A; Reva, I D; Fausto, R
2012-03-08
The infrared spectra of furfuryl alcohol (2-furanmethanol, FFA) were investigated for FFA monomers isolated in low-temperature argon matrices. The structural interpretation of the obtained experimental spectra was assisted by analysis of the molecule's conformational landscape. According to the DFT(B3LYP)/6-311++G(d,p) calculations, five different minimum energy structures were found on the potential energy surface of the molecule. They can be defined by the orientation of the OCCO and CCOH dihedral angles: GG', GG, TG, TT, GT (G = +gauche, G' = -gauche, T = trans) and have a symmetry equivalent configuration: GG' = G'G, GG = G'G', TG = TG', GT = G'T. When zero-point energies are taken into account, only three (GG', GG, and TT) out of the five unique minima correspond to stable structures. The most stable conformer GG' (OCCO, 72.7°; CCOH, -59.3°), which in gas phase at room temperature accounts for ∼65% of the total population, was the only form isolated in the argon matrices at 14 K. The other two relevant forms convert into conformer GG' during matrix deposition. The low temperature glassy and crystalline states of FFA were also obtained and their infrared spectra assigned, suggesting the sole existence of the GG' conformer also in these phases. The photochemical behavior of FFA induced in situ, by tunable UV-laser, was also studied. The longest wavelength resulting in photochemical changes in the structure of the irradiated sample was found to be λ = 229 nm. Such UV irradiation of the matrix-isolated FFA led to production of formaldehyde and different isomeric C(4)H(4)O species. Cycloprop-2-ene-1-carbaldehyde and buta-2,3-dienal (two conformers) are the main initial C(4)H(4)O photoproducts formed upon short-time excitation at λ = 229 nm. But-3-ynal (two conformers) was the principal photoproduct resulting from prolonged excitation at λ= 229 nm, being consumed upon irradiation at shorter wavelengths (λ < 227.5 nm). Vinyl ketene is produced from FFA in the trans conformation and undergoes isomerization to the cis form upon irradiation at λ < 227.5 nm. Cyclopropene, propyne, allene, and CO were also identified in the irradiated matrices (in particular at the later stages of irradiation), suggesting that the photoproduced aldehydes partially decarbonylate during the performed photochemical experiments.
Chen, Richer; Okamoto, Hirokazu; Danjo, Kazumi
2006-07-01
We prepared matrix particles of acetaminophen (Act) with chitosan (Cht) as a carrier using a newly developed 4-fluid-nozzle spray dryer. Cht dissolves in acid solutions and forms a gel, but it does not dissolve in alkaline solutions. Therefore, we tested the preparation of controlled release matrix particles using the characteristics of this carrier. Act and Cht mixtures in prescribed ratios were dissolved in an acid solution. We evaluated the matrix particles by preparing a solid dispersion using a 4-fluid-nozzle spray dryer. Observation of the particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray drying process had atomized to several microns, and that they had become spherical. We investigated the physicochemical properties of the matrix particles by powder X-ray diffraction, differential scanning calorimetry, and dissolution rate analyses with a view to clarifying the effects of crystallinity on the dissolution rate. The powder X-ray diffraction peaks and the heat of the Act fusion in the spray-dried samples decreased with the increase of the carrier content, indicating that the drug was amorphous. These results indicate that the system formed a solid dispersion. Furthermore, we investigated the interaction between the drug and carrier using FT-IR analysis. The FT-IR spectroscopy for the Act solid dispersions suggested that the Act carboxyl group and the Cht amino group formed a hydrogen bond. In addition, the measurement results of the 13C CP/MAS solid-state NMR, indicated that a hydrogen bond had been formed between the Act carbonyl group and the Cht amino group. In the Act-Cht system, the 4-fluid-nozzle spray-dried preparation with a mixing ratio of 1 : 5 obtained a sustained release preparation in all pH test solutions.
The DarkSide direct dark matter search with liquid argon
NASA Astrophysics Data System (ADS)
Edkins, E.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2017-11-01
The DarkSide-50 direct dark matter detector is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator neutron veto (LSV) and a water Cerenkov muon veto (WCV). Located under 3800 m.w.e. at the Laboratori Nazionali del Gran Sasso, Italy, it is the only direct dark matter experiment currently operating background free. The atmospheric argon target was replaced with argon from underground sources in April, 2015. The level of 39Ar, a β emitter present in atmospheric argon (AAr), has been shown to have been reduced by a factor of (1.4 ± 0.2) x 103. The combined spin-independent WIMP exclusion limit of 2.0 x 10-44 cm2 (mχ = 100 GeV/c2) is currently the best limit on a liquid argon target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Jeter C.; Aalseth, Craig E.; Bonicalzi, Ricco
Age dating groundwater and seawater using 39Ar/Ar ratios is an important tool to understand water mass flow rates and mean residence time. For modern or contemporary argon, the 39Ar activity is 1.8 mBq per liter of argon. Radiation measurements at these activity levels require ultra low-background detectors. Low-background proportional counters have been developed at Pacific Northwest National Laboratory. These detectors use traditional mixtures of argon and methane as counting gas, and the residual 39Ar from commercial argon has become a predominant source of background activity in these detectors. We demonstrated sensitivity to 39Ar by using geological or ancient argon frommore » gas wells in place of commercial argon. The low level counting performance of these proportional counters is then demonstrated for sensitivities to 39Ar/Ar ratios sufficient to date water masses as old as 1000 years.« less
Zhao, Hailin; Mitchell, Sian; Ciechanowicz, Sarah; Savage, Sinead; Wang, Tianlong; Ji, Xunming; Ma, Daqing
2016-01-01
Perinatal hypoxic ischaemic encephalopathy (HIE) has a high mortality rate with neuropsychological impairment. This study investigated the neuroprotective effects of argon against neonatal hypoxic-ischaemic brain injury. In vitro cortical neuronal cell cultures derived from rat foetuses were subjected to an oxygen and glucose deprivation (OGD) challenge for 90 minutes and then exposed to 70% argon or nitrogen with 5% carbon dioxide and balanced with oxygen for 2 hours. In vivo, seven-day-old rats were subjected to unilateral common carotid artery ligation followed by hypoxic (8% oxygen balanced with nitrogen) insult for 90 minutes. They were exposed to 70% argon or nitrogen balanced with oxygen for 2 hours. In vitro, argon treatment of cortical neuronal cultures resulted in a significant increase of p-mTOR and Nuclear factor (erythroid-derived 2)-like 2(Nrf2) and protection against OGD challenge. Inhibition of m-TOR through Rapamycin or Nrf2 through siRNA abolished argon-mediated cyto-protection. In vivo, argon exposure significantly enhanced Nrf2 and its down-stream effector NAD(P)H Dehydrogenase, Quinone 1(NQO1) and superoxide dismutase 1(SOD1). Oxidative stress, neuroinflammation and neuronal cell death were significantly decreased and brain infarction was markedly reduced. Blocking PI-3K through wortmannin or ERK1/2 through U0126 attenuated argon-mediated neuroprotection. These data provide a new molecular mechanism for the potential application of argon as a neuroprotectant in HIE. PMID:27016422
Coarsening Experiment Being Prepared for Flight
NASA Technical Reports Server (NTRS)
Hickman, J. Mark
2001-01-01
The Coarsening in Solid-Liquid Mixtures-2 (CSLM-2) experiment is a materials science space flight experiment whose purpose is to investigate the kinetics of competitive particle growth within a liquid matrix. During coarsening, small particles shrink by losing atoms to larger particles, causing the larger particles to grow. In this experiment, solid particles of tin will grow (coarsen) within a liquid lead-tin eutectic matrix. The preceding figures show the coarsening of tin particles in a lead-tin eutectic as a function of time. By conducting this experiment in a microgravity environment, we can study a greater range of solid volume fractions, and the effects of sedimentation present in terrestrial experiments will be negligible. The CSLM-2 experiment is slated to fly onboard the International Space Station. The experiment will be run in the Microgravity Science Glovebox installed in the U.S. Laboratory module.
TELEPHONIC PRESENTATION: MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
Argon Laser Treatment of Strawberry Hemangioma in Infancy
Achauer, Bruce M.; Vander Kam, Victoria M.
1985-01-01
Argon laser therapy is effective for removing port-wine stains and for reducing cutaneous vascular and pigmented lesions. Strawberry hemangiomas, being much thicker lesions than port-wine stains, were considered not appropriate for argon laser treatment. Using argon laser therapy in 13 cases of strawberry hemangioma, we achieved poor to dramatic results. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7. PMID:4082569
Argon dye photocoagulator for microsurgery of the interior structure of the eye
NASA Astrophysics Data System (ADS)
Wolinski, Wieslaw L.; Kazmirowski, Antoni; Kesik, Jerzy; Korobowicz, Witold; Spytkowski, Wojciech
1991-08-01
Argon-dye laser photocoagulator for the microsurgery of the interior structure of the eye is described. Some technical specifications like power stability shape of the spots and the dependence of the power on the tissue vs. wavelenght for dye laser are given. Argon-dye photocoagulator was designed and constructed including argon laser tube and dye laser in Institute of Microelectronics and Optoelectronics Technical University of Warsaw.
Argon laser induced changes to the carbonate content of enamel
NASA Astrophysics Data System (ADS)
Ziglo, M. J.; Nelson, A. E.; Heo, G.; Major, P. W.
2009-05-01
Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm -2) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation ( p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.
New generation nuclear fuel structures: Dense particles in selectively soluble matrix
NASA Astrophysics Data System (ADS)
Devlin, Dave; Jarvinen, Gordon; Patterson, Brian; Pattillo, Steve; Valdez, James; Liu, X.-Y.; Phillips, Jonathan
2009-11-01
We have developed a technology for dispersing sub-millimeter sized fuel particles within a bulk matrix that can be selectively dissolved. This may enable the generation of advanced nuclear fuels with easy separation of actinides and fission products. The large kinetic energy of the fission products results in most of them escaping from the sub-millimeter sized fuel particles and depositing in the matrix during burning of the fuel in the reactor. After the fuel is used and allowed to cool for a period of time, the matrix can be dissolved and the fission products removed for disposal while the fuel particles are collected by filtration for recycle. The success of such an approach would meet a major goal of the GNEP program to provide advanced recycle technology for nuclear energy production. The benefits of such an approach include (1) greatly reduced cost of the actinide/fission product separation process, (2) ease of recycle of the fuel particles, and (3) a radiation barrier to prevent theft or diversion of the recycled fuel particles during the time they are re-fabricated into new fuel. In this study we describe a method to make surrogate nuclear fuels of micrometer scale W (shell)/Mo (core) or HfO 2 particles embedded in an MgO matrix that allows easy separation of the fission products and their embedded particles. In brief, the method consists of physically mixing W-Mo or hafnia particles with an MgO precursor. Heating the mixture, in air or argon, without agitation, to a temperature is required for complete decomposition of the precursor. The resulting material was examined using chemical analysis, scanning electron microscopy, X-ray diffraction and micro X-ray computed tomography and found to consist of evenly dispersed particles in an MgO + matrix. We believe this methodology can be extended to actinides and other matrix materials.
Liu, Huihui; Li, Yajing; Yuan, Mengwei; Sun, Genban; Li, Huifeng; Ma, Shulan; Liao, Qingliang; Zhang, Yue
2018-06-21
Electrospinning and annealing methods are applied to prepare cobalt nanoparticles decorated in N-doped carbon nanofibers (Co/N-C NFs) with solid and macroporous structures. In detail, the nanocomposites are synthesized by carbonization of as-electrospun polyacrylonitrile/cobalt acetylacetonate nanofibers in an argon atmosphere. The solid Co/N-C NFs have lengths up to dozens of microns with an average diameter of ca. 500 nm and possess abundant cobalt nanoparticles on both the surface and within the fibers, and the cobalt nanoparticle size is about 20 nm. The macroporous Co/N-C NFs possess a hierarchical pore structure, and there are macropores (500 nm) and mesopores (2-50 nm) existing in this material. The saturation magnetization ( M s ) and coercivity ( H c ) of the solid Co/N-C NFs are 28.4 emu g -1 and 661 Oe, respectively, and those of the macroporous Co/N-C NFs are 23.3 emu g -1 and 580 Oe, respectively. The solid Co/N-C NFs exhibit excellent electromagnetic wave absorbability, and a minimum reflection loss (RL) value of -25.7 dB is achieved with a matching thickness of 2 mm for solid Co/N-C NFs when the filler loading is 5 wt %, and the effective bandwidth (RL ≤ -10 dB) is 4.3 GHz. Moreover, the effective microwave absorption can be achieved in the whole range of 1-18 GHz by adjusting the thickness of the sample layer and content of the dopant sample.
den Boer, Duncan; Li, Min; Habets, Thomas; Iavicoli, Patrizia; Rowan, Alan E; Nolte, Roeland J M; Speller, Sylvia; Amabilino, David B; De Feyter, Steven; Elemans, Johannes A A W
2013-07-01
Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.
Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.
Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf
2013-07-02
The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.
A HiPIMS plasma source with a magnetic nozzle that accelerates ions: application in a thruster
NASA Astrophysics Data System (ADS)
Bathgate, Stephen N.; Ganesan, Rajesh; Bilek, Marcela M. M.; McKenzie, David R.
2017-01-01
We demonstrate a solid fuel electrodeless ion thruster that uses a magnetic nozzle to collimate and accelerate copper ions produced by a high power impulse magnetron sputtering discharge (HiPIMS). The discharge is initiated using argon gas but in a practical device the consumption of argon could be minimised by exploiting the self-sputtering of copper. The ion fluence produced by the HiPIMS discharge was measured with a retarding field energy analyzer (RFEA) as a function of the magnetic field strength of the nozzle. The ion fraction of the copper was determined from the deposition rate of copper as a function of substrate bias and was found to exceed 87%. The ion fluence and ion energy increased in proportion with the magnetic field of the nozzle and the energy of the ions was found to follow a Maxwell-Boltzmann distribution with a directed velocity. The effectiveness of the magnetic nozzle in converting the randomized thermal motion of the ions into a jet was demonstrated from the energy distribution of the ions. The maximum ion exhaust velocity of at least 15.1 km/s, equivalent to a specific impulse of 1543 s was measured which is comparable to existing Hall thrusters and exceeds that of Teflon pulsed plasma thrusters.
Cathode degradation and erosion in high pressure arc discharges
NASA Technical Reports Server (NTRS)
Hardy, T. L.; Nakanishi, S.
1984-01-01
The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.
Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites
NASA Technical Reports Server (NTRS)
Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.
1988-01-01
Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.
Takeda, Koji; Gotoda, Yuto; Hirota, Daichi; Hidaka, Fumihiro; Sato, Tomo; Matsuura, Tsutashi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi
2017-03-06
The technique for homogeneously dispersing hydrophobic drugs in a water-soluble solid matrix (solid dispersion) is a subject that has been extensively investigated in the pharmaceutical industry. Herein, a novel technique for dispersing a solid, without the need to use a surfactant, is reported. A freeze-dried amorphous sugar sample was dissolved in an organic solvent, which contained a soluble model hydrophobic component. The suspension of the sugar and the model hydrophobic component was vacuum foam dried to give a solid powder. Four types of sugars and methanol were used as representative sugars and the organic medium. Four model drugs (indomethacin, ibuprofen, gliclazide, and nifedipine) were employed. Differential scanning calorimetry analyses indicated that the sugar and model drug (100:1) did not undergo segregation during the drying process. The dissolution of the hydrophobic drugs in water from the solid dispersion was then evaluated, and the results indicated that the C max and AUC 0-60 min of the hydrophobic drug in water were increased when the surfactant-free solid dispersion was used. Palatinose and/or α-maltose were superior to the other tested carbohydrates in increasing C max and AUC 0-60 min for all tested model drugs, and the model drug with a lower water solubility tended to exhibit a greater extent of over-dissolution.
NASA Astrophysics Data System (ADS)
Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni
2016-05-01
The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.
NASA Astrophysics Data System (ADS)
Taaca, Kathrina Lois M.; Vasquez, Magdaleno R.
2018-02-01
Silver-exchanged zeolite-chitosan (AgZ-Ch) composites with varying AgZ content were prepared by solvent casting and modified under argon (Ar) plasma excited by a 13.56 MHz radio frequency (RF) power source. Silver (Ag) was successfully incorporated in a natural zeolite host without losing its antibacterial activity against Escherichia coli and Staphylococcus aureus. The AgZ particles were incorporated into a chitosan matrix without making significant changes in the matrix structure. The composites also exhibited antibacterial sensitivity due to the inclusion of AgZ. Plasma treatment enhanced the surface wettability of polar and nonpolar test liquids of the composites. The average increase in total surface free energy after treatment was around 49% with the polar component having a significant change. Cytocompatibility tests showed at least 87% cell viability for pristine and plasma-treated composites comparable with supplemented RPMI as positive control. Hemocompatibility tests revealed that pristine composites does not promote hemolysis and the blood clotting ability is less than 10 min. Coupled with antibacterial property, the fabricated composites have promising biomedical applications.
Ionizing Shocks in Argon. Part 2: Transient and Multi-Dimensional Effects (Preprint)
2010-09-09
stability in ionizing monatomic gases. Part 1. Argon ,” J. Fluid Mech., 84, 55 (1978). 2M. P. F. Bristow and I. I. Glass, “ Polarizability of singly...Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Ionizing Shocks in Argon . Part 2: Transient...Physics. 14. ABSTRACT We extend the computations of ionizing shocks in argon to unsteady and multi-dimensional, using a collisional-radiative
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; ...
2018-03-01
Here, we investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the chargemore » state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Lastly, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.« less
Davini, S.; Agnes, P.; Agostino, L.; ...
2016-06-09
Here, the DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 10 3 relative to atmospheric argon.more » The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.« less
Simulation of argon response and light detection in the DarkSide-50 dual phase TPC
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Vincenzi, M.; Derbin, A. V.; De Rosa, G.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Martoff, C. J.; Meyers, P. D.; Milincic, R.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Sablone, D.; Sands, W.; Sanfilippo, S.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Zhu, C.; Zuzel, G.
2017-10-01
A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~107, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.
NASA Astrophysics Data System (ADS)
Davini, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2016-05-01
The DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 103 relative to atmospheric argon. The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
NASA Astrophysics Data System (ADS)
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.
2018-03-01
We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.
PRESENTED 04/05/2006: MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
PRESENTED MAY 10, 2005, MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
1986-07-01
bags. 3) Cushioning of mineral wool , vermiculite or equivalent. Required labeling FLAMMABLE SOLID FLAMMABLE SOLID and DANGEROUS WHEN WET Authorized modes...or equivalent material such as mineral wool . Only permitted, hazardous waste transport companies may carry lithium batteries for disposal. The
Tunable, rare earth-doped solid state lasers
Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.
1980-01-01
Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.
Matrix solid-phase dispersion extraction of sulfonamides from blood.
Zhang, Yupu; Xu, Xu; Liu, He; Zhai, Yujuan; Sun, Ye; Sun, Shuo; Zhang, Hanqi; Yu, Aimin; Wang, Yinghua
2012-02-01
Matrix solid-phase dispersion extraction was applied to the extraction of sulfadiazine, sulfamerazine, and sulfamethazine from human and animal bloods. The separation and determination of the analytes were carried out by high-performance liquid chromatography. The effects of the types of the dispersion adsorbents and elution solvents were investigated, and the highest recovery was obtained when diatomaceous earth was used as the dispersion adsorbent, while acetone was used as the elution solvent. Under the optimal conditions, the linear range for determining the sulfonamides in blood samples was 0.020-10.0 µg/mL, and the average recoveries of the three sulfonamides were higher than 87.5%.
NASA Technical Reports Server (NTRS)
Tielking, John T.
1989-01-01
Two algorithms for obtaining static contact solutions are described in this presentation. Although they were derived for contact problems involving specific structures (a tire and a solid rubber cylinder), they are sufficiently general to be applied to other shell-of-revolution and solid-body contact problems. The shell-of-revolution contact algorithm is a method of obtaining a point load influence coefficient matrix for the portion of shell surface that is expected to carry a contact load. If the shell is sufficiently linear with respect to contact loading, a single influence coefficient matrix can be used to obtain a good approximation of the contact pressure distribution. Otherwise, the matrix will be updated to reflect nonlinear load-deflection behavior. The solid-body contact algorithm utilizes a Lagrange multiplier to include the contact constraint in a potential energy functional. The solution is found by applying the principle of minimum potential energy. The Lagrange multiplier is identified as the contact load resultant for a specific deflection. At present, only frictionless contact solutions have been obtained with these algorithms. A sliding tread element has been developed to calculate friction shear force in the contact region of the rolling shell-of-revolution tire model.
Nanocellular foam with solid flame retardant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.
Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percentmore » flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.« less
Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min
2005-10-05
Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).
The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miriyala, N.; Liaw, P.K.; McHargue, C.J.
1997-04-01
Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fibermore » strength.« less
Inui, Hiroshi; Sawada, Kazuhiro; Oishi, Shigero; Ushida, Kiminori; McMahon, Robert J
2013-07-17
In the photodecompositions of 4-methoxyphenyl azide (1) and 4-methylthiophenyl azide (5) in argon matrixes at cryogenic temperatures, benzazirine intermediates were identified on the basis of IR spectra. As expected, the benzazirines photochemically rearranged to the corresponding ketenimines and triplet nitrenes. Interestingly, with the methylthio substituent, the rearrangement of benzazirine 8 to ketenimine 7 occurred at 1.49 × 10(-5) s(-1) even in the dark at 10 K, despite a computed activation barrier of 3.4 kcal mol(-1). Because this rate is 10(57) times higher than that calculated for passing over the barrier and because it shows no temperature dependence, the rearrangement mechanism is interpreted in terms of heavy-atom tunneling.
Tailored Waveform of Dielectric Barrier Discharge to Control Composite Thin Film Morphology.
Brunet, Paul; Rincón, Rocío; Matouk, Zineb; Chaker, Mohamed; Massines, Françoise
2018-02-06
Nanocomposite thin films of TiO 2 in a polymer-like matrix are grown in a filamentary argon (Ar) dielectric barrier discharge (DBD) from a suspension of TiO 2 nanoparticles in isopropanol (IPA). The sinusoidal voltage producing the plasma is designed to independently control the matrix growth rate and the transport of nanoparticle (NP) aggregates to the surface. The useful FSK (frequency shift keying) modulation mode is chosen to successively generate two sinusoidal voltages: a high frequency of 15 kHz and a low frequency ranging from 0.5 to 3 kHz. The coating surface coverage by the NPs and the thickness of the matrix are measured as a function of the FSK parameters. The duty cycle between these two signals is varied from 0 to 100%. It is observed that the matrix thickness is mainly controlled by the power of the discharge, which largely depends on the high-frequency value. The quantity of NPs deposited in the composite thin film is proportional to the duration of the low frequency applied. The FSK waveform has a double modulation effect, allowing us to obtain a uniform coating as the NPs are not affected by the high frequency and the matrix growth rate is limited when the low frequency is applied. When it is close to a frequency limit, the low frequency acts like a filter for the NP aggregates. The higher the frequency, the smaller the size of the aggregates transferred to the surface. By changing only the FSK modulation parameters, the thin film can be switched from superhydrophobic to superhydrophilic, and under suitable conditions, a nanocomposite thin film is obtained.
Studies on Charge Variation and Waves in Dusty Plasmas
NASA Astrophysics Data System (ADS)
Kausik, Siddhartha Sankar
Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move upward in the form of a collimated beam. Argon plasma is produced in an experimental setup consisting of a dust chamber, a plasma chamber and a diagnostic chamber (also called deflection chamber) by striking a discharge between incandescent tungsten filaments and the magnetic cage, which is grounded. Plasma thus produced is confined by a full line cusped magnetic field confinement system consisting of a cylindrically shaped cage made up of stainless steel channels filled up with cube shaped having 1.2 kG field strength at its surface.
Rupture in cemented granular media: application to wheat endosperm
NASA Astrophysics Data System (ADS)
Topin, V.; Delenne, J.-Y.; Radjai, F.
2009-06-01
The mechanical origin of the wheat hardness used to classify wheat flours is an open issue. Wheat endosperm can be considered as a cemented granular material, consisting of densely packed solid particles (the starch granules) and a pore-filling solid matrix (the protein) sticking to the particles. We use the lattice element method to investigate cemented granular materials with a texture close to that of wheat endosperm and with variable matrix volume fraction and particle-matrix adherence. From the shape of the probability density of vertical stresses we distinguish weak, intermediate and strong stresses. The large stresses occur mostly at the contact zones as in noncohesive granular media with a decreasing exponential distribution. The weak forces reflect the arching effect. The intermediate stresses belong mostly to the bulk of the particles and their distribution is well fit to a Gaussian distribution. We also observe that the stress chains are essentially guided by the cementing matrix in tension and by the particulate backbone in compression. Crack formation is analyzed in terms of particle damage as a function of matrix volume fraction and particle-matrix adherence. Our data provide evidence for three regimes of crack propagation depending on the crack path through the material. We find that particle damage scales well with the relative toughness of the particle-matrix interface. The interface toughness appears therefore to be strongly correlated with particle damage and determines transition from soft to hard behavior in wheat endosperm.
Non-covalent interactions of a drug molecule encapsulated in a hybrid silica gel.
Paul, Geo; Steuernagel, Stefan; Koller, Hubert
2007-12-28
The drug molecule Propranolol has been encapsulated by a sol-gel process in an organic-inorganic hybrid matrix by in-situ self-assembly; the 2D HETCOR solid state NMR spectroscopy provides direct proof of the intimate spatial relationship between the host matrix and guest drug molecules.
Lithium alloy negative electrodes
NASA Astrophysics Data System (ADS)
Huggins, Robert A.
The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.
Litwin, Patrick D; Reis Dib, Anna Luisa; Chen, John; Noga, Michelle; Finlay, Warren H; Martin, Andrew R
2017-06-14
Argon has the potential to be a novel inhaled therapeutic agent, owing to the neuroprotective and organoprotective properties demonstrated in preclinical studies. Before human trials are performed, an understanding of varying gas properties on airway resistance during inhalation is essential. This study predicts the effect of an 80% argon/20% oxygen gas mixture on the pressure drop through conducting airways, and by extension the airway resistance, and then verifies these predictions experimentally using 3-D printed adult tracheobronchial airway replicas. The predicted pressure drop was calculated using established analytical models of airway resistance, incorporating the change in viscosity and density of the 80% argon/20% oxygen mixture versus that of air. Predicted pressure drop for the argon mixture increased by approximately 29% compared to that for air. The experimental results were consistent with this prediction for inspiratory flows ranging from 15 to 90slpm. These results indicate that established analytical models may be used to predict increases in conducting airway resistance for argon/oxygen mixtures, compared with air. Such predictions are valuable in predicting average patient response to breathing argon/oxygen mixtures, and in selecting or designing delivery systems for use in administration of argon/oxygen mixtures to critically ill or injured patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inhaled 45-50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia.
Broad, Kevin D; Fierens, Igor; Fleiss, Bobbi; Rocha-Ferreira, Eridan; Ezzati, Mojgan; Hassell, Jane; Alonso-Alconada, Daniel; Bainbridge, Alan; Kawano, Go; Ma, Daqing; Tachtsidis, Ilias; Gressens, Pierre; Golay, Xavier; Sanders, Robert D; Robertson, Nicola J
2016-03-01
Cooling to 33.5°C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia-ischemia we assessed whether inhaled 45-50% Argon from 2-26h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy, and immunohistochemistry. Following cerebral hypoxia-ischemia, 20 Newborn male Large White piglets<40h were randomized to: (i) Cooling (33°C) from 2-26h (n=10); or (ii) Cooling and inhaled 45-50% Argon (Cooling+Argon) from 2-26h (n=8). Whole-brain phosphorus-31 and regional proton MRS were acquired at baseline, 24 and 48h after hypoxia-ischemia. EEG was monitored. At 48h after hypoxia-ischemia, cell death (TUNEL) was evaluated over 7 brain regions. There were no differences in body weight, duration of hypoxia-ischemia or insult severity; throughout the study there were no differences in heart rate, arterial blood pressure, blood biochemistry and inotrope support. Two piglets in the Cooling+Argon group were excluded. Comparing Cooling+Argon with Cooling there was preservation of whole-brain MRS ATP and PCr/Pi at 48h after hypoxia-ischemia (p<0.001 for both) and lower (1)H MRS lactate/N acetyl aspartate in white (p=0.03 and 0.04) but not gray matter at 24 and 48h. EEG background recovery was faster (p<0.01) with Cooling+Argon. An overall difference between average cell-death of Cooling versus Cooling+Argon was observed (p<0.01); estimated cells per mm(2) were 23.9 points lower (95% C.I. 7.3-40.5) for the Cooling+Argon versus Cooling. Inhaled 45-50% Argon from 2-26h augmented hypothermic protection at 48h after hypoxia-ischemia shown by improved brain energy metabolism on MRS, faster EEG recovery and reduced cell death on TUNEL. Argon may provide a cheap and practical therapy to augment cooling for neonatal encephalopathy. Copyright © 2015. Published by Elsevier Inc.
Lunar exospheric argon modeling
NASA Astrophysics Data System (ADS)
Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.
2015-07-01
Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap argon, 0.007% of the total lunar surface, is consistent with the presence of adsorbed water in such PSRs.
Duque, Luisa; Körber, Martin; Bodmeier, Roland
2018-05-30
The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired. Copyright © 2018. Published by Elsevier B.V.
Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.
Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M
2013-11-01
In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area. © 2013.
Guennoun, Zohra; Aupetit, Christian; Mascetti, Joëlle
2011-03-17
Photochemistry of a polyaromatic hydrocarbon, pyrene C(16)H(10), with water has been investigated at cryogenic temperatures. Photoprocessing of this species, performed at λ > 235 nm, in argon matrices, adsorbed onto amorphous water surfaces, and trapped in solid water, led to the formation of ketonic isomers, C(16)H(10)O, and possibly quinones. These species have been identified for the first time by infrared spectroscopy with the support of isotopic substitution experiments and DFT calculations. These oxidized pyrene-like species, of atmospherical and astrochemical interest, most likely arise from a tautomeric rearrangement of their analogous hydroxylated molecules, these latter being formed by reaction of water with pyrene cations.
High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.
Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud
2012-03-01
This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.
Induction simulation of gas core nuclear engine
NASA Technical Reports Server (NTRS)
Poole, J. W.; Vogel, C. E.
1973-01-01
The design, construction and operation of an induction heated plasma device known as a combined principles simulator is discussed. This device incorporates the major design features of the gas core nuclear rocket engine such as solid feed, propellant seeding, propellant injection through the walls, and a transpiration cooled, choked flow nozzle. Both argon and nitrogen were used as propellant simulating material, and sodium was used for fuel simulating material. In addition, a number of experiments were conducted utilizing depleted uranium as the fuel. The test program revealed that satisfactory operation of this device can be accomplished over a range of operating conditions and provided additional data to confirm the validity of the gas core concept.
Solid state amorphization in the Al-Fe binary system during high energy milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J.
2013-12-16
In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{submore » 2}.« less
Structural Aspects LiNbO3 Nanoparticles and Their Ferromagnetic Properties
Diaz-Moreno, Carlos A.; Farias-Mancilla, Rurik; Elizalde-Galindo, Jose T.; González-Hernández, Jesus; Hurtado-Macias, Abel; Bahena, Daniel; José-Yacamán, Miguel; Ramos, Manuel
2014-01-01
We present a solid-state synthesis of ferromagnetic lithium niobate nanoparticles (LiNbO3) and their corresponding structural aspects. In order to investigate the effect of heat treatments, two batches of samples with a heat-treated (HT) and non-heat-treated (nHT) reduction at 650 °C in 5% of hydrogen/argon were considered to investigate the multiferroic properties and their corresponding structural aspects; using magnetometry and scanning transmission electron microscopy (STEM). Results indicate the existence of ferromagnetic domains with a magnetic moment per unit cell of 5.24 × 10−3 μB; caused mainly due to voids and defects on the nanoparticle surface, as confirmed by STEM measurements. PMID:28788242
Solid wastes integrated management in Rio de Janeiro: input-output analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimenteira, C.A.P.; Carpio, L.G.T.; Rosa, L.P.
2005-07-01
This paper analyzes the socioeconomic aspects of solid waste management in Rio de Janeiro. An 'input-output' methodology was used to examine how the secondary product resulting from recycling is re-introduced into the productive process. A comparative profile was developed from the state of recycling and the various other aspects of solid waste management, both from the perspective of its economic feasibility and from the social aspects involved. This was done analyzing the greenhouse gas emissions and the decreased energy consumption. The effects of re-introducing recycled raw materials into the matrix and the ensuing reduction of the demand for virgin rawmore » materials was based on the input-output matrix for the State of Rio de Janeiro. This paper also analyzes the energy savings obtained from recycling and measures the avoided emissions of greenhouse gases.« less
Fate and mobility of pharmaceuticals in solid matrices.
Drillia, Panagiota; Stamatelatou, Katerina; Lyberatos, Gerasimos
2005-08-01
The sorption and mobility of six pharmaceuticals were investigated in two soil types with different organic carbon and clay content, and in bacterial biomass (aerobic and anaerobic). The pharmaceuticals examined were carbamazepine, propranolol, diclofenac sodium, clofibric acid, sulfamethoxazole and ofloxacin. The sorption experiments were performed according to the OECD test Guideline 106. The distribution coefficients determined by this batch equilibrium method varied with the pharmaceutical tested and the solid matrix type. Ofloxacin was particularly strongly adsorbed (except of the case of using anaerobic biomass for the solid matrix) while clofibric acid was found to be weakly adsorbed. The fate of pharmaceuticals in soil was also assessed using lysimeters. Important parameters that were studied were: the pharmaceutical loading rate and the hydraulic loading rate for adsorption and the rate and duration of a "rain" event for desorption. Major differences in the mobility of the six pharmaceuticals were observed and correlated with the adsorption/desorption properties of the compounds.
Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.
Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J
1996-06-01
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.
NASA Astrophysics Data System (ADS)
Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.; Mushtaq, Sohail
2014-02-01
The emission spectra of manganese observed using a Grimm-type glow discharge in pure argon, argon with 0.3% v/v hydrogen and pure neon were studied in order to identify major excitation and ionization processes of manganese in the plasma. A new procedure is proposed, in which each observed emission line is associated with the corresponding transition between different states of the Mn atom or Mn ion, and, by considering all the observed transitions from and into a specific state, a measure of the total rate is determined at which this state is radiatively populated and depopulated. These resulting population/depopulation rates are then plotted as function of level energy. Such plots, called here “transition rate diagrams”, show the role of individual states in the formation of the observed spectrum and can be used to identify possible selective excitation processes. Also, cascade excitation by radiative decay of higher excited states can be conveniently evaluated in this way. A detailed description of the observed Mn I and Mn II spectra is given for Ar, Ar-H2 and Ne plasmas and relevant excitation/ionization mechanisms are discussed. Matrix effects in analysis of manganese by glow discharge spectroscopy are discussed. A list of important Mn I and Mn II lines excited in the glow discharge plasma is given.
Results from the first use of low radioactivity argon in a dark matter search
NASA Astrophysics Data System (ADS)
Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration
2016-04-01
Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).
Results from the first use of low radioactivity argon in a dark matter search
Agnes, P.
2016-04-08
Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10 3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data,more » accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10 -44 cm 2 (8.6 x 10 -44 cm 2, 8.0 x 10 -43 cm 2) for a WIMP mass of 100 GeV/c 2 (1 TeV/c 2 , 10 TeV/c 2).« less
A study of dielectric breakdown along insulators surrounding conductors in liquid argon
Lockwitz, Sarah; Jostlein, Hans
2016-03-22
High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of highmore » voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.« less
Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando
2018-01-26
The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Owen, T.; Biemann, K.
1976-01-01
The composition of the Martian atmosphere was determined by the mass spectrometer in the molecular analysis experiment. The presence of argon and nitrogen was confirmed and a value of 1 to 2750 plus or minus 500 for the ratio of argon-36 to argon-40 was established. A preliminary interpretation of these results suggests that Mars had a slightly more massive atmosphere in the past, but that much less total outgassing has occurred on Mars than on earth.
Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.
Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji
2012-02-13
A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.
A double medium model for diffusion in fluid-bearing rock
NASA Astrophysics Data System (ADS)
Wang, H. F.
1993-09-01
The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.
Properties of various plasma surface treatments for low-temperature Au–Au bonding
NASA Astrophysics Data System (ADS)
Yamamoto, Michitaka; Higurashi, Eiji; Suga, Tadatomo; Sawada, Renshi; Itoh, Toshihiro
2018-04-01
Atmospheric-pressure (AP) plasma treatment using three different types of gases (an argon-hydrogen mixed gas, an argon-oxygen mixed gas, and a nitrogen gas) and low-pressure (LP) plasma treatment using an argon gas were compared for Au–Au bonding with thin films and stud bumps at low temperature (25 or 150 °C) in ambient air. The argon-hydrogen gas mixture AP plasma treatment and argon LP plasma treatment were found to distinctly increase the shear bond strength for both samples at both temperatures. From X-ray photoelectron spectroscopy (XPS) analysis, the removal of organic contaminants on Au surfaces without the formation of hydroxyl groups and gold oxide is considered effective in increasing the Au–Au bonding strength at low temperature.
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan
2012-01-01
Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.
Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2015-01-01
The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562
NASA Technical Reports Server (NTRS)
Bhattacharjee, Subrata; Altenkirch, Robert A.; Worley, Regis; Tang, Lin; Bundy, Matt; Sacksteder, Kurt; Delichatsios, Michael A.
1997-01-01
The effort described here is a reflight of the Solid Surface Combustion Experiment (SSCE), with extension of the flight matrix first and then experiment modification. The objectives of the reflight are to extend the understanding of the interplay of the radiative processes that affect the flame spread mechanisms.
Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał
2018-01-01
Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297
Method and apparatus for assembling solid oxide fuel cells
Szreders, B.E.; Campanella, N.
1988-05-11
This invention relates generally to solid oxide fuel power generators and is particularly directed to improvements in the assembly and coupling of solid oxide fuel cell modules. A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing. 17 figs.
Claeys, Bart; De Coen, Ruben; De Geest, Bruno G; de la Rosa, Victor R; Hoogenboom, Richard; Carleer, Robert; Adriaensens, Peter; Remon, Jean Paul; Vervaet, Chris
2013-11-01
Polymethacrylates such as Eudragit® polymers are well established as drug delivery matrix. Here, we synthesize several Eudragit E PO (n-butyl-, dimethylaminoethyl-, methyl-methacrylate-terpolymer) analogues via free radical polymerization. These polymers are processed via hot melt extrusion, followed by injection molding and evaluated as carriers to produce immediate release solid solution tablets. Three chemical modifications increased the glass transition temperature of the polymer: (a) substitution of n-butyl by t-butyl groups, (b) reduction of the dimethylaminoethyl methacrylate (DMAEMA) content, and (c) incorporation of a bulky isobornyl repeating unit. These structural modifications revealed the possibility to increase the mechanical stability of the tablets via altering the polymer Tg without influencing the drug release characteristics and glassy solid solution forming properties. The presence of DMAEMA units proved to be crucial with respect to API/polymer interaction (essential in creating glassy solid solutions) and drug release characteristics. Moreover, these chemical modifications accentuate the need for a more rational design of (methacrylate) polymer matrix excipients for drug formulation via hot melt extrusion and injection molding. Copyright © 2013 Elsevier B.V. All rights reserved.
Rombaldi, Caroline; de Oliveira Arias, Jean Lucas; Hertzog, Gabriel Ianzer; Caldas, Sergiane Souza; Vieira, João P; Primel, Ednei Gilberto
2015-06-01
The use of golden mussel shells as a solid support in vortex-assisted matrix solid-phase dispersion (MSPD) was evaluated for the first time for extraction of residues of 11 pesticides and nine pharmaceutical and personal care products from mussel tissue samples. After they had been washed, dried, and milled, the mussel shells were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The MSPD procedure with analysis by liquid chromatography-tandem mass spectrometry allowed the determination of target analytes at trace concentrations (nanograms per gram), with mean recoveries ranging from 61 to 107 % and relative standard deviations lower than 18 %. The optimized method consisted of dispersion of 0.5 g of mussel tissue, 0.5 g of NaSO4, and 0.5 g of golden mussel shell for 5 min, and subsequent extraction with 5 mL of ethyl acetate. The matrix effect was evaluated, and a low effect was found for all compounds. The results showed that mussel shell is an effective material and a less expensive material than materials that have traditionally been used, i.e., it may be used in the MSPD dispersion step during the extraction of pesticides and pharmaceutical and personal care products from golden mussel tissues. Graphical Abstract Vortex-assited matrix solid-phase dispersion for extraction of 11 pesticides and 9 PPCPs care products from mussel tissue samples.
Raina, Shweta A; Alonzo, David E; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S
2014-10-06
The commercial and clinical success of amorphous solid dispersions (ASD) in overcoming the low bioavailability of poorly soluble molecules has generated momentum among pharmaceutical scientists to advance the fundamental understanding of these complex systems. A major limitation of these formulations stems from the propensity of amorphous solids to crystallize upon exposure to aqueous media. This study was specifically focused on developing analytical techniques to evaluate the impact of polymers on the crystallization behavior during dissolution, which is critical in designing effective amorphous formulations. In the study, the crystallization and polymorphic conversions of a model compound, nifedipine, were explored in the absence and presence of polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and HPMC-acetate succinate (HPMC-AS). A combination of analytical approaches including Raman spectroscopy, polarized light microscopy, and chemometric techniques such as multivariate curve resolution (MCR) were used to evaluate the kinetics of crystallization and polymorphic transitions as well as to identify the primary route of crystallization, i.e., whether crystallization took place in the dissolving solid matrix or from the supersaturated solutions generated during dissolution. Pure amorphous nifedipine, when exposed to aqueous media, was found to crystallize rapidly from the amorphous matrix, even when polymers were present in the dissolution medium. Matrix crystallization was avoided when amorphous solid dispersions were prepared, however, crystallization from the solution phase was rapid. MCR was found to be an excellent data processing technique to deconvolute the complex phase transition behavior of nifedipine.
Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D
2014-04-01
A method using dual process columns of Matrix Solid Phase Dispersion (MSPD) and Solid Phase Extraction (SPE) has been developed for extracting and cleaning-up of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine and terbutryn) in seaweed samples. Under optimized conditions, samples were blended with 2g of octasilyl-derivatized silica (C8) and transferred into an SPE cartridge containing ENVI-Carb II/PSA (0.5/0.5 g) as a clean up co-sorbent. Then the dispersed sample was washed with 10 mL of n-hexane and triazines were eluted with 20 mL ethyl acetate and 5 mL acetonitrile. Finally the extract was concentrated to dryness, re-constituted with 1 mL methanol:water (1:1) and injected into the HPLC-DAD system. The linearity of the calibration curves was excellent in matrix matched standards, and yielded the coefficients of determination>0.995 for all the target analytes. The recoveries ranged from 75% to 100% with relative standard deviations lower than 7%. The achieved LOQs (<10 µg kg(-1)) for all triazines under study permits to ensure proper determination at the maximum allowed residue levels set in the European Union Legislation. Samples of three seaweeds were subjected to the procedure proving the suitability of MSPD method for the analysis of triazines in different seaweeds samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate.
Gonzalez Novoa, Gelsys Ananay; Heinämäki, Jyrki; Mirza, Sabir; Antikainen, Osmo; Colarte, Antonio Iraizoz; Paz, Alberto Suzarte; Yliruusi, Jouko
2005-02-01
Solid-state compatibility and in vitro dissolution of direct-compressed sustained-release matrices of polyvinylacetate (PVAc) and polyvinylpyrrolidone (PVP) containing ibuprofen as a model drug were studied. Polyvinylalcohol (PVA) was used as an alternative water-soluble polymer to PVP. Differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) were used for characterizing solid-state polymer-polymer and drug-polymer interactions. The mechanical treatment for preparing physical mixtures of polyvinyl polymers and the drug (i.e. simple blending or stressed cogrinding) was shown not to affect the physical state of the drug and the polymers. With the drug-polymer mixtures the endothermic effect due to drug melting was always evident, but a considerable modification of the melting point of the drug in physical binary mixtures (drug:PVP) was observed, suggesting some interaction between the two. On the other hand, the lack of a significant shift of the melting endothermic peak of the drug in physical tertiary drug-polymer mixtures revealed no evidence of solid-state interaction between the drug and the present polymers. Sustained-release dissolution profiles were achieved from the direct-compressed matrices made from powder mixtures of the drug and PVAc combined with PVP, and the proportion of PVAc in the mixture clearly altered the drug release profiles in vitro. The drug release from the present matrix systems is controlled by both diffusion of the drug through the hydrate matrix and the erosion of the matrix itself.
The Molecular Pathway of Argon-Mediated Neuroprotection
Ulbrich, Felix; Goebel, Ulrich
2016-01-01
The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in animals, argon administration after individual injury demonstrated favorable effects, particularly increased cell survival and even improved neuronal function. As an inert molecule, argon did not show signs of adverse effects in the in vitro and in vivo model used, while being comparably cheap and easy to apply. However, the molecular mechanism by which argon is able to exert its protective and beneficial characteristics remains unclear. Although there are many pieces missing to complete the signaling pathway throughout the cell, it is the aim of this review to summarize the known parts of the molecular pathways and to combine them to provide a clear insight into the cellular pathway, starting with the receptors that may be involved in mediating argons effects and ending with the translational response. PMID:27809248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lock, E. H., E-mail: evgeniya.lock@nrl.navy.mil, E-mail: scott.walton@nrl.navy.mil; Petrova, Tz. B.; Petrov, G. M.
2016-04-15
The effect of nitrogen addition on the emission intensities of the brightest argon lines produced in a low pressure argon/nitrogen electron beam-generated plasmas is characterized using optical emission spectroscopy. In particular, a decrease in the intensities of the 811.5 nm and 763.5 nm lines is observed, while the intensity of the 750.4 nm line remains unchanged as nitrogen is added. To explain this phenomenon, a non-equilibrium collisional-radiative model is developed and used to compute the population of argon excited states and line intensities as a function of gas composition. The results show that the addition of nitrogen to argon modifies the electron energymore » distribution function, reduces the electron temperature, and depopulates Ar metastables in exchange reactions with electrons and N{sub 2} molecules, all of which lead to changes in argon excited states population and thus the emission originating from the Ar 4p levels.« less
Measurement of the attenuation length of argon scintillation light in the ArDM LAr TPC
NASA Astrophysics Data System (ADS)
Calvo, J.; Cantini, C.; Crivelli, P.; Daniel, M.; Di Luise, S.; Gendotti, A.; Horikawa, S.; Molina-Bueno, L.; Montes, B.; Mu, W.; Murphy, S.; Natterer, G.; Nguyen, K.; Periale, L.; Quan, Y.; Radics, B.; Regenfus, C.; Romero, L.; Rubbia, A.; Santorelli, R.; Sergiampietri, F.; Viant, T.; Wu, S.
2018-01-01
We report on a measurement of the attenuation length for the scintillation light in the tonne size liquid argon target of the ArDM dark matter experiment. The data was recorded in the first underground operation of the experiment in single-phase operational mode. The results were achieved by comparing the light yield spectra from 39Ar and 83mKr to a description of the ArDM setup with a model of full light ray tracing. A relatively low value close to 0.5 m was found for the attenuation length of the liquid argon bulk to its own scintillation light. We interpret this result as a presence of optically active impurities in the liquid argon which are not filtered by the installed purification systems. We also present analyses of the argon gas employed for the filling and discuss cross sections in the vacuum ultraviolet of various molecules in respect to purity requirements in the context of large liquid argon installations.
Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie
2016-02-01
The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.
Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers
NASA Technical Reports Server (NTRS)
Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.
1995-01-01
Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.
Transition rate diagrams and excitation of titanium in a glow discharge in argon and neon
NASA Astrophysics Data System (ADS)
Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.
2018-06-01
Emission spectra of titanium in a Grimm-type glow discharge in argon and neon were studied using the formalism of transition rate diagrams. Ti I spectra in argon and neon discharges are similar, without signs of selective excitation, and populations of Ti I levels exhibit a decreasing trend as function of energy, except for some scatter. A major excitation process of Ti II in argon discharge is charge transfer from argon ions to neutral titanium. In neon discharge, a strong selective excitation was observed of Ti II levels at ≈13.3-13.4 eV relative to the Ti I ground state. It was attributed to charge transfer from doubly charged titanium ions to neutral titanium, while the Ti++ ions are produced by charge transfer and ionization of neutral titanium by neon ions. Cascade excitation is important for Ti II levels up to an energy of ≈13 eV relative to the Ti I ground state, both in argon and neon discharges.
Magnetic process for removing heavy metals from water employing magnetites
Prenger, F. Coyne; Hill, Dallas D.; Padilla, Dennis D.; Wingo, Robert M.; Worl, Laura A.; Johnson, Michael D.
2003-07-22
A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.
Magnetic process for removing heavy metals from water employing magnetites
Prenger, F. Coyne; Hill, Dallas D.
2006-12-26
A process for removing heavy metals from water is provided. The process includes the steps of introducing magnetite to a quantity of water containing heavy metal. The magnetite is mixed with the water such that at least a portion of, and preferably the majority of, the heavy metal in the water is bound to the magnetite. Once this occurs the magnetite and absorbed metal is removed from the water by application of a magnetic field. In most applications the process is achieved by flowing the water through a solid magnetized matrix, such as steel wool, such that the magnetite magnetically binds to the solid matrix. The magnetized matrix preferably has remnant magnetism, but may also be subject to an externally applied magnetic field. Once the magnetite and associated heavy metal is bound to the matrix, it can be removed and disposed of, such as by reverse water or air and water flow through the matrix. The magnetite may be formed in-situ by the addition of the necessary quantities of Fe(II) and Fe(III) ions, or pre-formed magnetite may be added, or a combination of seed and in-situ formation may be used. The invention also relates to an apparatus for performing the removal of heavy metals from water using the process outlined above.
Aznar, Ramón; Albero, Beatriz; Sánchez-Brunete, Consuelo; Miguel, Esther; Martín-Girela, Isabel; Tadeo, José L
2017-03-01
A multiresidue method was developed for the simultaneous determination of 31 emerging contaminants (pharmaceutical compounds, hormones, personal care products, biocides, and flame retardants) in aquatic plants. Analytes were extracted by ultrasound-assisted matrix solid-phase dispersion (UA-MSPD) and determined by gas chromatography-mass spectrometry after sylilation, The method was validated for different aquatic plants (Typha angustifolia, Arundo donax, and Lemna minor) and a semiaquatic cultivated plant (Oryza sativa) with good recoveries at concentrations of 100 and 25 ng g -1 wet weight, ranging from 70 to 120 %, and low method detection limits (0.3 to 2.2 ng g -1 wet weight). A significant difference of the chromatographic response was observed for some compounds in neat solvent versus matrix extracts, and therefore, quantification was carried out using matrix-matched standards in order to overcome this matrix effect. Aquatic plants taken from rivers located at three Spanish regions were analyzed, and the compounds detected were parabens, bisphenol A, benzophenone-3, cyfluthrin, and cypermethrin. The levels found ranged from 6 to 25 ng g -1 wet weight except for cypermethrin that was detected at 235 ng g -1 wet weight in O. sativa samples.
Li, Fumin; Wang, Jun; Jenkins, Rand
2016-05-01
There is an ever-increasing demand for high-throughput LC-MS/MS bioanalytical assays to support drug discovery and development. Matrix effects of sofosbuvir (protonated) and paclitaxel (sodiated) were thoroughly evaluated using high-throughput chromatography (defined as having a run time ≤1 min) under 14 elution conditions with extracts from protein precipitation, liquid-liquid extraction and solid-phase extraction. A slight separation, in terms of retention time, between underlying matrix components and sofosbuvir/paclitaxel can greatly alleviate matrix effects. High-throughput chromatography, with proper optimization, can provide rapid and effective chromatographic separation under 1 min to alleviate matrix effects and enhance assay ruggedness for regulated bioanalysis.
Exposure of cultured cells to particulate matter air pollution is usually accomplished by collecting particles on a solid matrix, extracting the particles from the matrix, suspending them in liquid, and applying the suspension to cells grown on plastic and submerged in medium. Th...
NASA Astrophysics Data System (ADS)
Cornelison, Dave; Bulak, Michal
2017-06-01
The study of solid-liquid equilibrium is well established for alloys likely to be found on hot, rocky extra-solar planets. However, in atmospheres established above these magmas, molecules released from the components of the melt can react to form adducts; new molecules containing fragments of these precursors. These adducts are not predicted from equilibrium modeling codes unless their thermodynamic properties are input prior to simulation. In addition, the spectroscopic properties and vapor pressures relative to their melt conditions may be poorly known. Using a Knudsen cell heated in a custom e-beam evaporator, the binary systems of SiO2/Al2O3 and SiO2/CaO were synthesized at temperatures above 2000 K. The molecules evaporated from the melts were deposited into an Argon matrix held at 15 K and studied using mass spectrometry and FTIR. The results were then compared to molecular stability calculations derived from ab-initio molecular dynamics simulations using VASP©, and to IR spectra obtained using Gaussian©. Based on this analysis, a set of molecular adducts was found for each of the two alloy systems. The thermodynamic properties of each adduct were then simulated and used as input parameters for equilibrium calculations of vapor pressures as a function of temperature. The applications of these results to exoplanet observations is also discussed. This work was supported by NASA EPSCoR (Experimental Program to Stimulate Competitive Research). NNX13AE52A , “Understanding the Atmospheres of Hot Earths and the Impact on Solar System Formation”with NASA Glenn Research Center, Missouri State University and Washington University, St. Louis
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... Furnaces and Argon Oxygen Decarburization Vessels (Renewal) AGENCY: Environmental Protection Agency (EPA... www.regulations.gov . Title: NSPS for Steel Plants: Electric Arc Furnaces and Argon Oxygen.... Respondents/Affected Entities: Owners or operator of electric arc furnaces and argon oxygen decarburization...
NASA Astrophysics Data System (ADS)
Fantozzi, D.; Matikainen, V.; Uusitalo, M.; Koivuluoto, H.; Vuoristo, P.
2018-01-01
Highly corrosion- and wear-resistant thermally sprayed chromium carbide (Cr3C2)-based cermet coatings are nowadays a potential highly durable solution to allow traditional fluidized bed combustors (FBC) to be operated with ecological waste and biomass fuels. However, the heat input of thermal spray causes carbide dissolution in the metal binder. This results in the formation of carbon saturated metastable phases, which can affect the behavior of the materials during exposure. This study analyses the effect of carbide dissolution in the metal matrix of Cr3C2-50NiCrMoNb coatings and its effect on chlorine-induced high-temperature corrosion. Four coatings were thermally sprayed with HVAF and HVOF techniques in order to obtain microstructures with increasing amount of carbide dissolution in the metal matrix. The coatings were heat-treated in an inert argon atmosphere to induce secondary carbide precipitation. As-sprayed and heat-treated self-standing coatings were covered with KCl, and their corrosion resistance was investigated with thermogravimetric analysis (TGA) and ordinary high-temperature corrosion test at 550 °C for 4 and 72 h, respectively. High carbon dissolution in the metal matrix appeared to be detrimental against chlorine-induced high-temperature corrosion. The microstructural changes induced by the heat treatment hindered the corrosion onset in the coatings.
Core-melt source reduction system
Forsberg, C.W.; Beahm, E.C.; Parker, G.W.
1995-04-25
A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.
Core-melt source reduction system
Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.
1995-01-01
A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.
Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M
2009-05-01
The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (<150 nm) and the presence of PEG 3350 did not interfere with the process of self-microemulsification.
Methods to Stabilize and Destabilize Ammonium Borohydride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Thomas K.; Karkamkar, Abhijeet J.; Bowden, Mark E.
2013-01-21
Ammonium borohydride, NH4BH4, has a high hydrogen content of ρm = 24.5 wt% H2 and releases 18 wt% H2 below T = 160 °C. However, the half-life of bulk NH4BH4 at ambient temperatures, ~6 h, is insufficient for practical applications. The decomposition of NH4BH4 (ABH2) was studied at variable hydrogen and argon back pressures to investigate possible pressure mediated stabilization effects. The hydrogen release rate from solid ABH2 at ambient temperatures is reduced by ~16 % upon increasing the hydrogen back pressure from 5 to 54 bar. Similar results were obtained using argon pressure and the observed stabilization may bemore » explained by a positive volume of activation in the transition state leading to hydrogen release. Nanoconfinement in mesoporous silica, MCM-41, was investigated as alternative means to stabilize NH4BH4. However, other factors appear to significantly destabilize NH4BH4 and it rapidly decomposes at ambient temperatures into [(NH3)2BH2][BH4] (DADB) in accordance with the bulk reaction scheme. The hydrogen desorption kinetics from nanoconfined [(NH3)2BH2][BH4] is moderately enhanced as evidenced by a reduction in the DSC decomposition peak temperature of ΔT = -13 °C as compared to the bulk material. Finally, we note a surprising result, storage of DADB at temperature < -30 °C transformed, reversibly, the [(NH3)2BH2][BH4] into a new low temperature polymorph as revealed by both XRD and solid state MAS 11B MAS NMR. TA & AK are thankful for support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle.« less
21 CFR 868.1075 - Argon gas analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An...
21 CFR 868.1075 - Argon gas analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An...
The LArIAT experiment: first measurement of the inclusive total pion cross-section in Argon
NASA Astrophysics Data System (ADS)
de María Blaszczyk, Flor
2018-05-01
In light of future large neutrino experiments such as DUNE, an excellent understanding of LArTPCs is required. The Liquid Argon In A Test-beam (LArIAT) experiment, located in the Fermilab Test Beam Facility, is designed to characterize the performance of LArTPCs and improve the reconstruction algorithms but also to measure the cross-sections of charged particles in Argon. The goals and experimental layout will be presented, as well as the world’s first inclusive total pion interaction cross-section on Argon measured by LArIAT.
ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies
NASA Technical Reports Server (NTRS)
Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.
1989-01-01
Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.
Soft Argon-Propane Dielectric Barrier Discharge Ionization.
Schütz, Alexander; Lara-Ortega, Felipe J; Klute, Felix David; Brandt, Sebastian; Schilling, Michael; Michels, Antje; Veza, Damir; Horvatic, Vlasta; García-Reyes, Juan F; Franzke, Joachim
2018-03-06
Dielectric barrier discharges (DBDs) have been used as soft ionization sources (DBDI) for organic mass spectrometry (DBDI-MS) for approximately ten years. Helium-based DBDI is often used because of its good ionization efficiency, low ignition voltage, and homogeneous plasma conditions. Argon needs much higher ignition voltages than helium when the same discharge geometry is used. A filamentary plasma, which is not suitable for soft ionization, may be produced instead of a homogeneous plasma. This difference results in N 2 , present in helium and argon as an impurity, being Penning-ionized by helium but not by metastable argon atoms. In this study, a mixture of argon and propane (C 3 H 8 ) was used as an ignition aid to decrease the ignition and working voltages, because propane can be Penning-ionized by argon metastables. This approach leads to homogeneous argon-based DBDI. Furthermore, operating DBDI in an open environment assumes that many uncharged analyte molecules do not interact with the reactant ions. To overcome this disadvantage, we present a novel approach, where the analyte is introduced in an enclosed system through the discharge capillary itself. This nonambient DBDI-MS arrangement is presented and characterized and could advance the novel connection of DBDI with analytical separation techniques such as gas chromatography (GC) and high-pressure liquid chromatography (HPLC) in the near future.
Behavior of Excited Argon Atoms in Inductively Driven Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEBNER,GREGORY A.; MILLER,PAUL A.
1999-12-07
Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the datamore » suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the molecular species present in this discharge, it does not appear to be a significant source of dissociation. The major source of interaction between the argon and the molecular species BCl{sub 3} and Cl{sub 2} appears to be through modification of the electron density.« less
Novel carbon-ion fuel cells. Final report, October 1, 1993--September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocks, F.H.
1997-01-01
Mixed lanthanide dicarbides having the fluorite crystal structure have been synthesized using the elemental lanthanide metals and elemental carbon that was 99.9% pure carbon-13 isotope. A two step process of first, arc furnace melting of the components, followed by an annealing step in a high vacuum furnace, was adopted as the standard method of fabricating small cast ingots of the dicarbides. The crystal structure of the various lanthanide dicarbides produced were confirmed by x-ray diffraction under protective atmospheres at both room temperature at Duke University and at high temperature at Oak Ridge National Laboratory. After more than 15 combinations ofmore » cerium or lanthanum with dopants were tried, low temperature x-ray diffraction showed that Ce{sub .5}Er{sub .5}C{sub 2} had been successfully stabilized and had the desired fluorite crystal structure at room temperature. The fluorite crystal structure lanthanide dicarbide cast ingots were further prepared by having flat and clean surfaces ground onto their surfaces by high-speed milling machines inside argon gas atmosphere gloveboxes. The surfaces thus created were then coated with carbon-12 by the arc evaporation method under low pressure argon gas. The coated ingots were then allowed to have carbon diffusion occur from the surface coating of carbon-12 into the ingot of dicarbide that had been synthesized from carbon-13. After the diffusion run, the cast ingots were slit down the axis perpendicular to the carbon coating. The fracture surface created was then squared and polished by high,speed milling in a glove box with a argon atmosphere. The high diffusion co-efficient of carbon in lanthanide dicarbides having the fluorite crystal structure would make possible the manufacture of a carbon-ion electrolyte for use in a battery or a fuel cell that could consume solid carbon as it`s feedstock.« less
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.
Viscoelastic effect on acoustic band gaps in polymer-fluid composites
NASA Astrophysics Data System (ADS)
Merheb, B.; Deymier, P. A.; Muralidharan, K.; Bucay, J.; Jain, M.; Aloshyna-Lesuffleur, M.; Greger, R. W.; Mohanty, S.; Berker, A.
2009-10-01
In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals.
Jang, Eric B; Ramsey, Amanda; Carvalho, Lori A
2013-04-01
The oriental fruit fly, Bactrocera dorsalis (Hendel) is a major pest of many fruit crops worldwide. Current detection programs by federal and state agencies in the United States use a grid of traps consisting of liquid methyl eugenol (lure) and naled (toxicant) applied to cotton wicks and hung inside the trap. In recent years efforts have been made to incorporate these chemicals into various solid-type matrices that could be individually packaged to reduce human exposure to the chemicals and improve handling. New solid formulations containing methyl eugenol and either naled or dichlorovinyl dimethyl phosphate toxicants were compared with the standard formulations on cotton wicks in large scale field evaluation in Hawaii. Two reduced risk toxicants (spinosad and Rynaxypyr) were also evaluated. In one test the solid lure-toxicant-matrix combinations were sent to California to be weathered under California climate conditions and then sent back to Hawaii for evaluation. The polymer matrices with lure and toxicant were found to be as attractive as baited wicks and have the same longevity of attraction regardless of being weathered in Hawaii or in California. The new ingestible toxicants were also effective, although further testing of these ingestible lure + toxicant + matrix products is necessary.
Nitrous Oxide/Paraffin Hybrid Rocket Engines
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Snyder, Gary
2010-01-01
Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.
Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix
NASA Astrophysics Data System (ADS)
Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael
2017-04-01
Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.
Yang, Yu-Tsai; Di Pasqua, Anthony J.; Zhang, Yong; Sueda, Katsuhiko; Jay, Michael
2015-01-01
The penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was incorporated into a solid dispersion for oral administration by the solvent evaporation method using blends of polyvinylpyrrolidone (PVP), Eudragit® RL PO and α-tocopherol. D-optimal mixture design was used to optimize the formulation. Formulations that had a high concentration of both Eudragit® RL PO and α-tocopherol exhibited low water absorption and enhanced stability of the DTPA prodrug. Physicochemical properties of the optimal formulation were evaluated using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). In vitro release of the prodrug was evaluated using the USP Type II apparatus dissolution method. DSC studies indicated that the matrix had an amorphous structure, while FTIR spectrometry showed that DTPA penta-ethyl ester and excipients did not react with each other during formation of the solid dispersion.. Dissolution testing showed that the optimized solid dispersion exhibited a prolonged release profile, which could potentially result in a sustained delivery of DTPA penta-ethyl to enhance bioavailability. In conclusion, DTPA penta-ethyl ester was successfully incorporated into a solid matrix with high drug loading and improved stability compared to prodrug alone. PMID:24047113
Khater, Mohammad M.; El-Shorbagy, Mohammad S.; Selima, Adel A.
2016-01-01
AIM To compare argon laser photocoagulation and intrastromal injection of voriconazole as adjunctive treatment modalities in cases of resistant mycotic corneal ulcers. METHODS Two groups each of them included 20 cases of resistant mycotic corneal ulcers. Both groups treated with local and systemic specific antimicrobial drugs guided with culture and sensitivity results. In one group argon laser photocoagulation was used as an adjunctive therapy to the specific antifungal drugs and in the other group, intrastromal injection of voriconazole was done besides the specific antifungal drugs. The 40 cases included in the study were proven according to culture and sensitivity to be 28 cases with pure fungal results and 12 cases with mixed (fungal and bacterial). In argon laser group, argon laser irradiation of the corneal ulcer was performed using argon laser 532 nm wavelength (Carl Zeiss LSL 532s AG; Meditec, Inc.) after fluorescein staining. In the other group, voriconazole solution (500 µg/mL) was prepared and injected in the corneal stroma. All cases were followed up for 3mo after healing was achieved. RESULTS Complete healing of the epithelial defect and resolution of stromal infiltration with no adverse effects were achieved in argon laser group in duration ranged from 2-4wk in 90% of cases. In voriconazole group 4 cases needed amniotic membrane graft due to thinning and 16 cases healed in duration ranged from 2-6wk (80% of cases). CONCLUSION Argon laser photocoagulation is superior to intrastromal voriconazole injection in treatment of resistant fungal corneal ulcers. PMID:26949639
Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory
NASA Astrophysics Data System (ADS)
Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert
2018-02-01
Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.
Alexandre, Bergé; Barbara, Giroud; Laure, Wiest; Bruno, Domenjoud; Adriana, Gonzalez-Ospina; Emmanuelle, Vulliet
2016-06-10
Discharges of surfactants from wastewater treatment plants are often considered as the principal vector of pollution into the environment. The analysis of complex matrices, such as urban wastewater, suspended solids and biological sludge requires careful preparation of the sample to obtain a sensitive, selective and reproducible analysis. A simple, fast, effective and multi-residue method based on the SPE (water) and QuEChERS (solid matrices) approaches using synthetic matrices for validation and quantification, has been developed for the determination of 16 surfactants in wastewater, suspended solids and biological sludge. This work resulted in an innovative method that was validated to detect and assess several classes of surfactants such as quaternary ammonium compounds, betaïns, alkylphenols and their ethoxylated or sulfated derivatives in urban wastewater and solid matrices. The optimised extraction method exhibited recoveries comprised between 83% and 120% for all the tested compounds in the dissolved matrix and between 50% and 109% for particulate matrix. The limits of quantification of all compounds were comprised between 0.1 and 1.0μg/L for dissolved matrix and between 2 and 1000ng/g (dry weight) in particulate matrix. Linearity was assessed for all compounds within the [LOQ-250LOQ] range. Confidence intervals were also computed in real matrices with less than 15% margin of error for all studied surfactants. This work has confirmed, first and foremost, that surfactants are indeed highly concentrated in urban wastewater. As expected, linear alkylbenzene sulfonates were present at significant concentrations (up to 1-2mg/L). In addition, although biological processing results in significant removal of the total pollution, the residual concentrations at output of WWTP remain significant (up to 100μg/L). Copyright © 2016 Elsevier B.V. All rights reserved.
Solution and shock-induced exsolution of argon in vitreous carbon
NASA Technical Reports Server (NTRS)
Gazis, Carey; Ahrens, Thomas J.
1991-01-01
To add to the knowledge of noble gas solution and exsolution in carbonaceus material, experiments were performed on vitreous carbon. Ar-rich vitreous carbon samples were prepared under vapor-saturated conditions using argon as the pressurizing medium. Solubility data were obtained for temperatures of 773 to 973 K and pressures of 250 to 1500 bars. Up to 7 wt pct Ar was dissolved in the carbon. The solubility data were compared to a thermodynamic model of argon atoms dissolving into a fixed population of 'holes' in the carbon. Two variations of the model yielded estimates of the enthalpy of solution of Ar in vitreous carbon equal to about -4700 cal/mole. Preliminary shock experiments showed that 28 percent of the total argon was released by driving 4 GPa shocks into the argon-rich carbon. It was demonstrated that shock-induced argon loss is not simply caused by the impact-induced diminution of grain size. The present value of shock pressure required for partial impact devolatilization of Ar from carbon is below the range (5-30 GPa) at which H2O is released from phyllosilicates.
Performance characterization and transient investigation of multipropellant resistojets
NASA Technical Reports Server (NTRS)
Braunscheidel, Edward P.
1989-01-01
The multipropellant resistojet thruster design initially was characterized for performance in a vacuum tank using argon, carbon dioxide, nitrogen, and hydrogen, with gas inlet pressures ranging from 13.7 to 310 kPa (2 to 45 psia) over a heat exchanger temperature range of ambient to 1200 C (2200 F). Specific impulse, the measure of performance, had values ranging from 120 to 600 seconds for argon and hydrogen respectively, with a constant heat exchanger temperature of 1200 C (2200 F). When operated under ambient conditions typical specific impulse values obtained for argon and hydrogen ranged from 55 to 290 seconds, respectively. Performance measured with several mixtures of argon and nitrogen showed no significant deviation from predictions obtained by directly weighting the argon and nitrogen individual performance results. Another aspect of the program investigating transient behavior, showed responses depended heavily on the start-up scenario used. Steady state heater temperatures were achieved in 20 to 75 minutes for argon, and in 10 to 90 minutes for hydrogen. Steady state specific impulses were achieved in 25 to 60, and 20 to 60 minutes respectively.
NASA Astrophysics Data System (ADS)
Coman, Tudor; Timpu, Daniel; Nica, Valentin; Vitelaru, Catalin; Rambu, Alicia Petronela; Stoian, George; Olaru, Mihaela; Ursu, Cristian
2017-10-01
Highly conductive transparent Al-doped ZnO (AZO) thin films were obtained at room temperature through sequential PLD (SPLD) from Zn and Al metallic targets in an oxygen/argon gas mixture. We have investigated the structural, electrical and optical properties as a function of the oxygen/argon pressure ratio in the chamber. The measured Hall carrier concentration was found to increase with argon injection from 1.3 × 1020 to 6.7 × 1020 cm-3, while the laser shots ratio for Al/Zn targets ablation was kept constant. This increase was attributed to an enhancement of the substitution doping into the ZnO lattice. The argon injection also leads to an increase of the Hall mobility up to 20 cm2 V-1 s-1, attributed to a reduction of interstitial-type defects. Thus, the approach of using an oxygen/argon gas mixture during SPLD from metallic targets allows obtaining at room temperature AZO samples with high optical transmittance (about 90%) and low electrical resistivity (down to 5.1 × 10-4 Ω cm).
Silsesquioxanes as precursors to ceramic composites
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Hyatt, Lizbeth H.; Gorecki, Joy; Damore, Lisa
1987-01-01
Silsesquioxanes having the general structure RSiO sub 1.5, where R = methyl, propyl, or phenyl, melt flow at 70 to 100 C. Above 100 C, free -OH groups condense. At 225 C further crosslinking occurs, and the materials form thermosets. Pyrolysis, with accompanying loss of volatiles, takes place at nominally 525 C. At higher temperatures, the R group serves as an internal carbon soruce for carbo-thermal reduction to SiC accompanied by the evolution of CO. By blending silsesquioxanes with varying R groups, both the melt rheology and composition of the fired ceramic can be controlled. Fibers can be spun from the melt which are stable in argon in 1400 C. The silsesquioxanes also were used as matrix precursors for Nicalon and alpha-SiC platelet reinforced composites.
Polar nephelometer for atmospheric particulate studies
NASA Technical Reports Server (NTRS)
Hansen, M. Z.; Evans, W. H.
1980-01-01
A polar nephelometer for use in studying atmospheric aerosols was developed. The nephelometer detects molecular scatter from air and measures scattering from very clean air using pure molecular scattering for calibration. A compact system using a folded light path with an air cooled argon laser for the light source was designed. A small, sensitive detector unit permits easy angular rotation for changing the scattering angle. A narrow detector field of view of + or - 1/4 degree of scattering along with a single wavelength of incident light is used to minimize uncertainties in the scattering theory. The system is automated for data acquisition of the scattering matrix elements over an angular range from 2 degrees to 178 degrees of scattering. Both laser output and detector sensitivity are monitored to normalize the measured light scattering.
Nanoparticles That "Remember" Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klajn, Rafal; Browne, Kevin P.; Siowling, Soh
2010-06-02
Photoresponsive gold nanoparticles dispersed in a solid/frozen matrix provide a basis for sensors that “remember” whether the sample has ever exceeded the melting temperature of the matrix. The operation of these sensors rests on the ability to photoinduce metastable electric dipoles on NP surfaces – upon melting, these dipoles drive NP aggregation, precipitation, and crosslinking. These events are manifested by a pronounced color change.
Partitioning Tungsten between Matrix Precursors and Chondrule Precursors through Relative Settling
NASA Astrophysics Data System (ADS)
Hubbard, Alexander
2016-08-01
Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.