Sample records for solid effluent streams

  1. Method and system for the removal of oxides of nitrogen and sulfur from combustion processes

    DOEpatents

    Walsh, John V.

    1987-12-15

    A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

  2. Sewage treatment method

    DOEpatents

    Fassbender, Alex G.

    1995-01-01

    The invention greatly reduces the amount of ammonia in sewage plant effluent. The process of the invention has three main steps. The first step is dewatering without first digesting, thereby producing a first ammonia-containing stream having a low concentration of ammonia, and a second solids-containing stream. The second step is sending the second solids-containing stream through a means for separating the solids from the liquid and producing an aqueous stream containing a high concentration of ammonia. The third step is removal of ammonia from the aqueous stream using a hydrothermal process.

  3. COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS

    EPA Science Inventory

    Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

  4. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS

    USGS Publications Warehouse

    Schultz, M.M.; Furlong, E.T.

    2008-01-01

    Treated wastewater effluent is a potential environmental point source for antidepressant pharmaceuticals. A quantitative method was developed for the determination of trace levels of antidepressants in environmental aquatic matrixes using solid-phase extraction coupled with liquid chromatography- electrospray ionization tandem mass spectrometry. Recoveries of parent antidepressants from matrix spiking experiments for the individual antidepressants ranged from 72 to 118% at low concentrations (0.5 ng/L) and 70 to 118% at high concentrations (100 ng/L) for the solid-phase extraction method. Method detection limits for the individual antidepressant compounds ranged from 0.19 to 0.45 ng/L. The method was applied to wastewater effluent and samples collected from a wastewater-dominated stream. Venlafaxine was the predominant antidepressant observed in wastewater and river water samples. Individual antidepressant concentrations found in the wastewater effluent ranged from 3 (duloxetine) to 2190 ng/L (venlafaxine), whereas individual concentrations in the waste-dominated stream ranged from 0.72 (norfluoxetine) to 1310 ng/L (venlafaxine). ?? 2008 American Chemical Society.

  5. Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste.

    PubMed

    Liedl, B E; Bombardiere, J; Chaffield, J M

    2006-01-01

    Thermophilic anaerobic treatment of poultry litter produces an effluent stream of digested materials that can be separated into solid and liquid fractions for use as a crop fertilizer. The majority of the phosphorus is partitioned into the solid fraction while the majority of the nitrogen is present in the liquid fraction in the form of ammonium. These materials were tested over six years as an alternative fertilizer for the production of vegetable, fruit, and grassland crops. Application of the solids as a field crop fertilizer for vegetables and blueberries resulted in lower yields than the other fertilizer treatments, but an increase in soil phosphorus over a four-year period. Application of the digested liquids on grass and vegetable plots resulted in similar or superior yields to plots treated with commercially available nitrogen fertilizers. Hydroponic production of lettuce using liquid effluent was comparable to a commercial hydroponic fertilizer regime; however, the effluent treatment for hydroponic tomato production required supplementation and conversion of ammonium to nitrate. While not a total fertilizer solution, our research shows the effectiveness of digested effluent as part of a nutrient management program which could turn a livestock residuals problem into a crop nutrient resource.

  6. Preliminary study of wastewater movement in Yellowstone National Park, Wyoming, July 1975 through September 1976

    USGS Publications Warehouse

    Cox, Edward Riley

    1976-01-01

    This report describes a study by the U.S. Geological Survey in cooperation with the National Park Service to determine the effects on nearby lakes and streams of wastewater effluents that percolate from sewage lagoons at four sites in Yellowstone National Park. A network of observation wells has been established near the sites, and data have been collected from the wells and from nearby streams. Ground-water mounds have built up under the lagoons as percolation of effluents occurred. Percolating effluents mix with ground water and form plumes of ground water that contain chemical constituents for the effluents. Each plume tends to move down the hydraulic gradient in a direction generally perpendicular to the water-level contours. Water-level contours and most likely areas of movement of the plumes are shown on maps. Tests using rhodamine WT dye and dissolved solids as tracers suggested that chemical constituents in the plumes travel at different velocities as a result of dispersion and adsorlption. Chemical constituents from effluent percolating from the Old Faithful lagoons probably discharge into nearby Iron Spring Creek. Constituents from lagoons at the other three sites studied probably have not reached nearby streams or lakes. (Woodard-USGS)

  7. Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069

    DOE PAGES

    Wells, Jr., Tyrone; Wei, Zhen; Ragauskas, Arthur J.

    2014-11-26

    Rhodococcus opacus DSM 1069 utilized pine organosolv pretreatment effluent as a sole carbon and energy source for 120 h at 1.5 w/v% solids concentration and accumulated a maximum of 26.99 ± 2.88% of its cellular dry weight in oils composed of oleic, palmitic, and stearic fatty acids. Here, these results establish the potential for lignocellulosic pretreatment effluent as a feedstock for microbial biodiesel production via oleaginous R. opacus and an interesting route for biorefinery waste stream optimization.

  8. Comparing Single species Toxicity Tests to Mesocosm Community-Level Responses to Total Dissolved Solids Comprised of Different Major Ions

    EPA Science Inventory

    Total Dissolved Solids (TDS) dosing studies representing different sources of ions were conducted from 2011-2015. Emergence responses in stream mesocosms were compared to single-species exposures using a whole effluent testing (WET) format and an ex-situ method (single species te...

  9. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidificationmore » treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.« less

  10. Temporal variability in domestic point source discharges and their associated impact on receiving waters.

    PubMed

    Richards, Samia; Withers, Paul J A; Paterson, Eric; McRoberts, Colin W; Stutter, Marc

    2016-11-15

    Discharges from the widely distributed small point sources of pollutants such as septic tanks contribute to microbial and nutrient loading of streams and can pose risks to human health and stream ecology, especially during periods of ecological sensitivity. Here we present the first comprehensive data on the compositional variability of septic tank effluents (STE) as a potential source of water pollution during different seasons and the associated links to their influence on stream waters. To determine STE parameters and nutrient variations, the biological and physicochemical properties of effluents sampled quarterly from 12 septic tank systems were investigated with concurrent analyses of upstream and downstream receiving waters. The study revealed that during the warmer dryer months of spring and summer, effluents were similar in composition, as were the colder wetter months of autumn and winter. However, spring/summer effluents differed significantly (P<0.05) from autumn/winter for concentrations of biological oxygen demand (BOD), arsenic, barium (Ba), cobalt, chromium, manganese, strontium (Sr), titanium, tungsten (W) and zinc (Zn). With the exception of BOD, Ba and Sr which were greater in summer and spring, the concentrations of these parameters were greater in winter. Receiving stream waters also showed significant seasonal variation (P≤0.05) in alkalinity, BOD, dissolved organic carbon, sulphate, sulphur, lithium, W, Zn and Escherichiacoli abundance. There was a clear significant influence of STE on downstream waters relative to upstream from the source (P<0.05) for total suspended solids, total particulate P and N, ammonium-N, coliforms and E. coli. The findings of this study found seasonal variation in STE and place effluent discharges as a factor affecting adjacent stream quality and call for appropriate measures to reduce or redirect STE discharges away from water courses. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Kinetics and capacities of phosphorus sorption to tertiary stage wastewater alum solids, and process implications for achieving low-level phosphorus effluents.

    PubMed

    Maher, Chris; Neethling, J B; Murthy, Sudhir; Pagilla, Krishna

    2015-11-15

    The role of adsorption and/or complexation in removal of reactive or unreactive effluent phosphorus by already formed chemical precipitates or complexes has been investigated. Potential operational efficiency gains resulting from age of chemically precipitated tertiary alum sludge and the recycle of sludge to the process stream was undertaken at the Iowa Hill Water Reclamation Facility which employs the DensaDeg(®) process (IDI, Richmond, VA) for tertiary chemical P removal to achieve a filtered final effluent total phosphorus concentration of <30 μg/L. The effect of sludge solids age was found to be insignificant over the solids retention time (SRT) of 2-8 days, indicating that the solids were unaffected by the aging effects of decreasing porosity and surface acidity. The bulk of solids inventory was retained in the clarifier blanket, providing no advantage in P removal from increased solids inventory at higher SRTs. When solids recycle was redirected from the traditional location of the flocculation reactor to a point just prior to chemical addition in the chemical mixing reactor, lower effluent soluble P concentrations at lower molar doses of aluminum were achieved. At laboratory scale, the "spent" or "waste" chemical alum sludge from P removal showed high capacity and rapid kinetics for P sorption from real wastewater effluents. Saturation concentrations were in the range of 8-29 mg soluble reactive P/g solids. Higher saturation concentrations were found at higher temperatures. Alum sludge produced without a coagulant aid polymer had a much higher capacity for P sorption than polymer containing alum sludge. The adsorption reaction reached equilibrium in less than 10 min with 50% or greater removal within the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence

    DTIC Science & Technology

    2014-10-30

    Paraffins DEFINITIONS Coalescence - the ability to shed water Conventional Material Source - crude oil, natural gas liquid condensates...heavy oil, shale oil, and oil sands Effluent - stream leaving a system Influent - stream entering a system Turnover - time required to flow the...separators are used onboard naval vessels (required onboard gas turbine ships and some diesel engine ships) and at shore stations to reduce solid and free

  13. Physicochemical assessment of industrial textile effluents of Punjab (India)

    NASA Astrophysics Data System (ADS)

    Bhatia, Deepika; Sharma, Neeta Raj; Kanwar, Ramesh; Singh, Joginder

    2018-06-01

    Urbanization and industrialization are generating huge quantities of untreated wastewater leading to increased water pollution and human diseases in India. The textile industry is one of the leading polluters of surface water and consumes about 200-270 tons of water to produce 1 ton of textile product. The primary objective of the present study was to investigate the pollution potential of textile industry effluent draining into Buddha Nallah stream located in Ludhiana, Punjab (India), and determine the seasonal variation in physicochemical parameters (pH, water temperature, total dissolved solids, total suspended solids, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of Buddha Nallah water. During summer months, for Site 1 and Site 2, the value of pH was in the alkaline range of 8.78 ± 0.47 and 8.51 ± 0.41, respectively. The values of pH in the rainy season were found to be in the range of 7.38 ± 0.58 and 7.11 ± 0.59 for Site 1 and Site 2, respectively. In the autumn and winter seasons, the average pH values were found to be in the range of 8.58 ± 1.40 and 8.33 ± 0.970, respectively. The maximum mean temperature in summer was recorded as 41.16 ± 4.99 °C, and lowest mean temperature in winter was recorded as 39.25 ± 2.25 °C at Site 2. The suspended solids were found to be highest (143.5 ± 75.01 and 139.66 ± 71.87 mg/L) in autumn for both the sites and lowest (86.50 + 15.10 mg/L) in the rainy season for Site 1. The values of BOD and COD of the textile effluent of both sites during all the seasons ranged from 121-580 to 240-990 mg/L, respectively, much higher than WHO water quality standard of 30 mg/L for BOD and 250 mg/L for COD. The present study deals with the collection of textile industry effluent and its characterization to find out the physicochemical load being drained by the effluent generated from textile industries, on the natural wastewater streams.

  14. Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain

    USGS Publications Warehouse

    Phillips, P.; Chalmers, A.

    2009-01-01

    Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.

  15. Fiber-Optic Chemiluminescent Biosensors for Monitoring Aqueous Alcohols and Other Water Quality Parameters

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E. (Inventor); Atwater, James E. (Inventor); Akse, James R. (Inventor); DeHart, Jeffrey L. (Inventor); Wheeler, Richard R. (Inventor)

    1998-01-01

    A "reagentless" chemiluminescent biosensor and method for the determination of hydrogen peroxide, ethanol and D-glucose in water is disclosed. An aqueous stream is basified by passing it through a solid phase base bed. Luminol is then dissolved in the basified effluent at a controlled rate. Oxidation of the luminol is catalyzed by the target chemical to produce emitted light. The intensity of the emitted light is detected as a measure of the target chemical concentration in the aqueous stream. The emitted light can be transmitted by a fiber optic bundle to a remote location from the aqueous stream for a remote reading of the target chemical concentration.

  16. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.« less

  17. 40 CFR Appendix E to Part 52 - Performance Specifications and, Specification Test Procedures for Monitoring Systems for Effluent...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...

  18. 40 CFR Appendix E to Part 52 - Performance Specifications and, Specification Test Procedures for Monitoring Systems for Effluent...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...

  19. Evaluation of ionic contribution to the toxicity of a coal-mine effluent using Ceriodaphnia dubia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, A.J.; Cherry, D.S.; Zipper, C.E.

    2005-08-01

    The United States Environmental Protection Agency has defined national in-stream water-quality criteria (WQC) for 157 pollutants. No WQC to protect aquatic life exist for total dissolved solids (TDS). Some water-treatment processes (e.g., pH modifications) discharge wastewaters of potentially adverse TDS into freshwater systems. Strong correlations between specific conductivity, a TDS surrogate, and several biotic indices in a previous study suggested that TDS caused by a coal-mine effluent was the primary stressor. Further acute and chronic testing in the current study with Ceriodaphnia dubia in laboratory-manipulated media indicated that the majority of the effluent toxicity could be attributed to the mostmore » abundant ions in the discharge, sodium (1952 mg/L) and/or sulfate (3672 mg/L), although the hardness of the effluent (792 43 mg/L as CaCO{sub 3}) ameliorated some toxicity. Based on laboratory testing of several effluent-mimicking media, sodium- and sulfate-dominated TDS was acutely toxic at approximately 7000 {mu} S/cm (5143 mg TDS/L), and chronic toxicity occurred at approximately 3200 {mu} S/cm (2331 mg TDS/L). At a lower hardness (88 mg/L as CaCO{sub 3}), acute and chronic toxicity end-points were decreased to approximately 5000 {mu} S/cm (3663 mg TDS/L) and approximately 2000 {mu} S/cm (1443 mg TDS/L), respectively. Point-source discharges causing in-stream TDS concentrations to exceed these levels may risk impairment to aquatic life.« less

  20. Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream

    USGS Publications Warehouse

    Bradley, Paul M.; Barber, Larry B.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Hubbard, Laura E.; Hutchinson, Kasey J.; Keefe, Steffanie H.; Kolpin, Dana W.

    2014-01-01

    Pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to high aqueous mobility, designed bioactivity, and effluent-driven hydraulic gradients. In October and December 2012, effluent contributed approximately 99% and 71%, respectively, to downstream flow in Fourmile Creek, Iowa, USA. Strong hydrologic connectivity was observed between surface-water and shallow-groundwater. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater at greater than 0.02 μg L−1 at distances up to 6 m from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed 43% and 55% of 110 total pharmaceutical analytes in surface-water samples in October and December, respectively, with 16% and 6%, respectively, detected in groundwater approximately 20 m from the stream bank. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.

  1. Application of constructed wetlands to the treatment of leachates from a municipal solid waste landfill in Ibadan, Nigeria.

    PubMed

    Aluko, Olufemi Oludare; Sridhar, M K C

    2005-06-01

    Leachates are wastewater generated principally from landfills and solid waste disposal sites. Leachates emanating from municipal wastes are a major source of surface and groundwater pollution worldwide. Globally, leachates have been implicated in low yield of farm produce, developmental anomalies, low birth weights, leukemia incidence, and other cancers in communities around the site. They have also been implicated in hazards to the environment, loss of biodiversity, and contamination of water sources. At Aba-Eku in Nigeria, leachates are being discharged into the Omi Stream without treatment. A study was conducted on a method of leachate treatment that passes the leachate through constructed wetlands using Ipomoea aquatica (Forsk), a locally available plant found close to the landfill site. The aim of the study was to evolve a sustainable and cost-effective method of treatment whose effluents can be discharged into the Omi Stream with no or minimal impact. The study was descriptive and analytical in design. Samples were collected and analyzed with standard methods for pH, suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia, nitrate, and trace metals. Raw leachates were turbid and amber in color and contained suspended solids (197.5 mg/L), ammonia (610.9 mg/L), lead (1.64 mg/L), iron (198.10 mg/L), and manganese (23.20 mg/L). When the leachates were passed through the constructed wetland with eight hours' detention time, effluents showed significant reductions in suspended solids (81.01 percent), BOD (86.03 percent), and ammonia (97.77 percent). The study shows that a constructed wetland is a feasible tool for the treatment of leachates before their disposal into the environment in Nigeria and can help safeguard environmental quality.

  2. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.; Nash, C.; Howe, A.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to themore » LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF evaporator to aid in planning for their disposition, and (3) generate concentrated evaporator bottoms for use in immobilization testing.« less

  3. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...

  4. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...

  5. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...

  6. Explosives Removal from Munitions Wastewaters

    DTIC Science & Technology

    1975-01-01

    activated carbon columns. Waste water, for the study was drawn as needed from the effluent of the i diatomaceous earth filters and stored in an 800-gallon...explosive Laterials, such as DNT and nitrocresols, from waste streams. The loaded adsorbent can be regenerated with solvent. To minimize operating costs...most effective is fixed-bed adsorption followir.nI clarification and filtration to remove suspended j solids. Activated carbon adsorbent is used at a

  7. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  8. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    USGS Publications Warehouse

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005 samplings, Boulder Creek downstream from the wastewater treatment plant was 40 percent effluent, and Fourmile Creek downstream from that wastewater treatment plant was 28 percent effluent. At each site, 300 individual constituents were determined to characterize the water. Most of the inorganic constituents were detected in all of the stream and treatment-plant effluent samples, whereas detection of synthetic organic compounds was more limited and contaminants typically occurred only in wastewater treatment-plant effluents and at downstream sites. Concentrations ranged from nanograms per liter to milligrams per liter.

  9. Method of purifying a gas stream using 1,2,3-triazolium ionic liquids

    DOEpatents

    Luebke, David; Nulwala, Hunald; Tang, Chau

    2014-12-09

    A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

  10. Pharmaceuticals and other organic chemicals in selected north-central and northwestern Arkansas streams

    USGS Publications Warehouse

    Haggard, B.E.; Galloway, J.M.; Green, W.R.; Meyer, M.T.

    2006-01-01

    Recently, our attention has focused on the low level detection of many antibiotics, pharmaceuticals, and other organic chemicals in water resources. The limited studies available suggest that urban or rural streams receiving wastewater effluent are more susceptible to contamination. The purpose of this study was to evaluate the occurrence of antibiotics, pharmaceuticals, and other organic chemicals at 18 sites on seven selected streams in Arkansas, USA, during March, April, and August 2004. Water samples were collected upstream and downstream from the influence of effluent discharges in northwestern Arkansas and at one site on a relatively undeveloped stream in north-central Arkansas. At least one antibiotic, pharmaceutical, or other organic chemical was detected at all sites, except at Spavinaw Creek near Mayesville, Arkansas. The greatest number of detections was observed at Mud Creek downstream from an effluent discharge, including 31 pharmaceuticals and other organic chemicals. The detection of these chemicals occurred in higher frequency at sites downstream from effluent discharges compared to those sites upstream from effluent discharges; total chemical concentration was also greater downstream. Wastewater effluent discharge increased the concentrations of detergent metabolites, fire retardants, fragrances and flavors, and steroids in these streams. Antibiotics and associated degradation products were only found at two streams downstream from effluent discharges. Overall, 42 of the 108 chemicals targeted in this study were found in water samples from at least one site, and the most frequently detected organic chemicals included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene (AHTN). ?? ASA, CSSA, SSSA.

  11. Thief carbon catalyst for oxidation of mercury in effluent stream

    DOEpatents

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  12. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater samples. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.

  13. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  14. Apparatuses and methods for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Kalnes, Tom N.

    2015-12-29

    Apparatuses and methods for deoxygenating a biomass-derived pyrolysis oil are provided herein. In one example, the method comprises of dividing a feedstock stream into first and second feedstock portions. The feedstock stream comprises the biomass-derived pyrolysis oil and has a temperature of about 60.degree. C. or less. The first feedstock portion is combined with a heated organic liquid stream to form a first heated diluted pyoil feed stream. The first heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen to form an intermediate low-oxygen pyoil effluent. The second feedstock portion is combined with the intermediate low-oxygen pyoil effluent to form a second heated diluted pyoil feed stream. The second heated diluted pyoil feed stream is contacted with a second deoxygenating catalyst in the presence of hydrogen to form additional low-oxygen pyoil effluent.

  15. Occurrence of pharmaceutical compounds in wastewater process streams in Dublin, Ireland.

    PubMed

    Lacey, Clair; Basha, Shaik; Morrissey, Anne; Tobin, John M

    2012-01-01

    The aim of this work is to establish baseline levels of pharmaceuticals in three wastewater treatment plant (WWTP) streams in the greater Dublin region to assess the removal efficiency of the selected WWTPs and to investigate the existence of any seasonal variability. Twenty compounds including several classes of antibiotics, acidic and basic pharmaceuticals, and prescribed medications were selected for investigation using a combination of membrane filtration, solid phase extraction (SPE) cleanup, and liquid chromatography-electrospray ionization tandem mass spectrometry. Fourteen of the selected compounds were found in the samples. Increased effluent concentrations, compared to influent concentrations, for a number of compounds (carbamazepine, clotrimazole, propranolol, nimesulide, furosemide, mefenamic acid, diclofenac, metoprolol, and gemfibrozil) were observed. The detected concentrations were generally below toxicity levels and based on current knowledge are unlikely to pose any threat to aquatic species. Mefenamic acid concentrations detected in both Leixlip and Swords effluents may potentially exert ecotoxicological effects with maximum risk quotients (i.e., ratio of predicted exposure concentration to predicted no effect concentration) of 4.04 and 1.33, respectively.

  16. Enhanced primary treatment of concentrated black water and kitchen residues within DESAR concept using two types of anaerobic digesters.

    PubMed

    Kujawa-Roeleveld, K; Elmitwalli, T; Zeeman, G

    2006-01-01

    Anaerobic digestion of concentrated domestic wastewater streams--black or brown water, and solid fraction of kitchen waste is considered as a core technology in a source separation based sanitation concept (DESAR--decentralised sanitation and reuse). A simple anaerobic digester can be implemented for an enhanced primary treatment or, in some situations, as a main treatment. Two reactor configurations were extensively studied; accumulation system (AC) and UASB septic tank at 15, 20 and 25 degrees C. Due to long retention times in an AC reactor, far stabilisation of treated medium can be accomplished with methanisation up to 60%. The AC systems are the most suitable to apply when the volume of waste to be treated is minimal and when a direct reuse of a treated medium in agriculture is possible. Digested effluent contains both liquid and solids. In a UASB septic tank, efficient separation of solids and liquid is accomplished. The total COD removal was above 80% at 25 degrees C. The effluent contains COD and nutrients, mainly in a soluble form. The frequency of excess sludge removal is low and sludge is well stabilised due to a long accumulation time.

  17. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  18. The Effects of Elevated Specific Conductivity on the Chronic Toxicity of Mining Influenced Streams Using Ceriodaphnia dubia

    PubMed Central

    Armstead, Mindy Yeager; Bitzer-Creathers, Leah; Wilson, Mandee

    2016-01-01

    Salinization of freshwater ecosystems as a result of human activities has markedly increased in recent years. Much attention is currently directed at evaluating the effects of increased salinity on freshwater biota. In the Central Appalachian region of the eastern United States, specific conductance from alkaline discharges associated with mountain top mining practices has been implicated in macroinvertebrate community declines in streams receiving coal mining discharges. Whole effluent toxicity testing of receiving stream water was used to test the hypothesis that mine discharges are toxic to laboratory test organisms and further, that toxicity is related to ionic concentrations as indicated by conductivity. Chronic toxicity testing using Ceriodaphnia dubia was conducted by contract laboratories at 72 sites with a total of 129 tests over a 3.5 year period. The database was evaluated to determine the ionic composition of mine effluent dominated streams and whether discharge constituents were related to toxicity in C. dubia. As expected, sulfate was found to be the dominant anion in streams receiving mining discharges with bicarbonate variable and sometimes a substantial component of the dissolved solids. Overall, the temporal variability in conductance was low at each site which would indicate fairly stable water quality conditions. Results of the toxicity tests show no relationship between conductance and survival of C. dubia in the mining influenced streams with the traditional toxicity test endpoints. However, consideration of the entire dataset revealed a significant inverse relationship between conductivity and neonate production. While conductivity explained very little of the high variability in the offspring production (r2 = 0.1304), the average numbers of offspring were consistently less than 20 neonates at the highest conductivities. PMID:27814378

  19. Lower food chain community study: thermal effects and post-thermal recovery in the streams and swamps of the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratieff, P.; Kondratieff, B.C.

    1985-07-01

    The effects of thermal stress on lower food chain communities of streams and swamps of the Savannah River Plant. Both the autotroph assemblages and the macro invertebrate communities were studied in streams receiving heated reactor effluent. To document stream and swamp ecosystem recovery from thermal stress, the same communities of organisms were studied in a stream/swamp ecosystem which had received heated reactor effluent in the past. (ACR)

  20. Toxicity of municipal wastewater effluents contaminated by pentachlorophenol in southwest Missouri

    USGS Publications Warehouse

    Wylie, G.D.; Finger, S.E.; Crawford, R.W.

    1990-01-01

    Toxicity of effluents from two sewage treatment plants in Joplin, Missouri, was tested using Ceriodaphnia dubia and Pimephales promelas. No test organisms survived in effluents from either plant, in effluents diluted with water from Turkey Creek (the receiving stream), or in water from Turkey Creek. Mortality was complete in all but the most dilute treatments of effluents, in which reconstituted water was used as the diluent. High concentrations of pentachlorophenol (130–970 μg liter−1) in effluents and the receiving stream likely caused mortality during the 7-day tests. Detectable concentrations of other phenolic compounds indicated the presence in Turkey Creek of other toxic by-products of pentachlorophenol manufacture. This study demonstrated the utility of biological tests of whole effluents to determine toxicity of wastewater effluents.

  1. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    USGS Publications Warehouse

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds, with the highest concentrations occurring in streams with the greatest WWTP effluent content. Biomarkers of endocrine disruption in the fish indicated long-term exposure to estrogenic chemicals in the wastewater impacted urban waterways.

  2. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    USGS Publications Warehouse

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or sources) of nitrate. Nitrate sources in the Geronimo Creek watershed include a predominance of nitrate from fertilizer applications, as well as a contribution from septic systems. Additional nitrate loading from these sources is ongoing. Chemical loadings of dissolved solids, chloride, and sulfate varied little among sampling events and were low at most sites because of low streamflow.In contrast to the Geronimo Creek watershed, nitrate sources in the Plum Creek watershed are dominated by effluent discharge from the major WWTPs in the upper and central parts of the watershed. Results indicate that discharge from these WWTPs accounts for the majority of base flow in the watershed. Nitrate concentrations in Plum Creek were dependent on flow conditions, with the highest concentrations measured at lower flows, when flow is dominated by WWTP effluent discharge. In addition to WWTP effluent discharge, the Plum Creek watershed, similar to the Geronimo Creek watershed, also is affected by historical and current loading of nitrate from fertilizer applications and from septic systems in the watershed. Chemical loadings of dissolved solids, chloride, sulfate, and nitrate in Plum Creek at lower flow conditions are highest at the upstream sites and decrease downstream as distance from the WWTPs increases, which is consistent with WWTP effluent as an important control on water quality. Under higher flow conditions, however, nitrate loads to Plum Creek increased by about a factor of three. These higher nitrate loads cannot be accounted for by WWTP effluent discharge from the five major WWTPs in the watershed. This additional loading indicates that nitrate is exported from the northeastern part of the watershed. In the lower part of the Plum Creek watershed, higher concentrations of dissolved solids, chloride, and sulfate occur, which might be affected by produced water associated with oil and gas exploration, or mixing with saline groundwater.

  3. W-007H B Plant Process Condensate Treatment Facility. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rippy, G.L.

    1995-01-20

    B Plant Process Condensate (BCP) liquid effluent stream is the condensed vapors originating from the operation of the B Plant low-level liquid waste concentration system. In the past, the BCP stream was discharged into the soil column under a compliance plan which expired January 1, 1987. Currently, the BCP stream is inactive, awaiting restart of the E-23-3 Concentrator. B Plant Steam Condensate (BCS) liquid effluent stream is the spent steam condensate used to supply heat to the E-23-3 Concentrator. The tube bundles in the E-23-3 Concentrator discharge to the BCS. In the past, the BCS stream was discharged into themore » soil column. Currently, the BCS stream is inactive. This project shall provide liquid effluent systems (BCP/BCS/BCE) capable of operating for a minimum of 20 years, which does not include the anticipated decontamination and decommissioning (D and D) period.« less

  4. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina. Final report on macroinvertebrate stream assessments for F/H area ETF effluent discharge, July 1987--February 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.

    1991-10-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents themore » results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.« less

  5. The effect of an industrial effluent on an urban stream benthic community: water quality vs habitat quality.

    PubMed

    Nedeau, Ethan J; Merritt, Richard W; Kaufman, Michael G

    2003-01-01

    We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.

  6. Process and system for treating waste water

    DOEpatents

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  7. Soil plutonium and cesium in stream channels and banks of Los Alamos liquid effluent-receiving areas.

    PubMed

    Nyhan, J W; White, G C; Trujillo, G

    1982-10-01

    Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238Pu, 239,240Pu and 137Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven yr after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams.

  8. Herpetofaunal and vegetational characterization of a thermally-impacted stream at the beginning of restoration

    Treesearch

    Catherine F. Bowers; Hugh G. Hanlin; David C. Guynn; John P. McLendon; James R. Davis

    2000-01-01

    Pen Branch, a third order stream on the Savannah River Site (SRS), located near Aiken, SC, USA, received thermal effluents from the cooling system of a nuclear production reactor from 1954 to 1988. The thermal effluent and increased flow destroyed vegetation in the stream corridor (i.e. impacted portion of the floodplain), and subsequent erosion created a braided...

  9. Evaluation of the Green Microalga Monoraphidium sp. Dek19 Growth Utilizing Ethanol Plant Side Streams and Potential for Biofuel Production

    NASA Astrophysics Data System (ADS)

    Colson, David Michael

    This research was conducted to evaluate the potential for growth of Monoraphidium sp. Dek19 using side streams from an ethanol plant for culture medium. Additionally, the potential of using enzymes to break down the cell wall material to release fermentable sugars and oil was examined. The ethanol streams selected were methanator influent, methanator effluent, and thin stillage. This species of microalgae has been previously studied and found to have the ability to grow in and remediate the effluent water from the DeKalb Sanitary District (DSD). The Monoraphidium sp. Dek19 was grown in various concentrations of the ethanol plant side streams concurrently with algae cultures grown in the DSD effluent. The algae cultures were grown in 250ml flasks to determine the optimal concentrations of the ethanol streams. The concentrations with the growth rate and cell counts closest to or higher than the DSD effluents were selected for further examination. These concentrations were repeated to evaluate the most optimal growth conditions using the ethanol streams in comparison to the DSD effluent grown algae. The selected growth condition for the ethanol streams was determined to be using the methanator effluent as the base water component with the thin stillage added to a 2% concentration. The 2% concentration showed an average increase in cell count to be 8.49% higher than the control cell count. The methanator influent was discarded as a base water component, as the growth of the algae was 40.18% less than that of the control. Other concentrations considered resulted in a decrease in cell. count ranging from 9.20-48.97%. The three closest growth results of the concentration of thin stillage and methanator effluent (1%, 2%, and 4%) were scaled up to 2L flasks to confirm the results on a larger scale. The results showed a greater reduction in the cell count of the 1% and 4% concentrations, 23.52% and 16.31% reduction in cell count respectively. The 2% concentration showed a similar increase in cell count as before at 12.59% increase in cell count over the control. The 2% concentration algae growth cultures were grown exclusively alongside of the control group of DSD effluent grown algae. The solutions were grown to carrying capacity and the algae biomass was extracted from the solution by centrifugation and air drying in a dehydrator. This was repeated until enough biomass was collected to conduct rehydration and a typical anaerobic fermentation process. The resuspended algae were pH adjusted to a pH of 5.2 ±0.2. The algae were treated with a combination of cellulase and alpha-amylase, and put through a liquefaction process at 80°C for 3 hours. The resulting solutions were analyzed using High Performance Liquid Chromatography (HPLC) to evaluate the sugar profile of each treatment. The liquefaction solutions were treated with further enzymes, nutrients, and yeast and ran through an anaerobic fermentation process. The fermentations were allowed to progress for 72 hours, and were again analyzed using an HPLC for ethanol and sugar profile. The fermentation results showed a potential of up to 0.587%w/v ethanol production in a 10% solids microalgae slurry. The remaining fermentation products were analyzed using a petroleum ether lipid extraction unit. This analysis showed that the DSD effluent microalgae had an average of 15.53% lipid content on a dry matter basis, and the methanator effluent with 2% thin stillage added resulted in 28.02% lipid content on a dry matter basis. The fermentation products were also treated with a demulsifier, spun down with a centrifuge, and examination of a released lipid layer was conducted. This analysis showed that there was a thin layer of oil on almost all treatments of the algae solutions when spun down in a centrifuge. These. results indicate that the cellulosic enzymes broke down the cell wall material sufficiently for the quick extraction of the oil without the use of hexane. The entirety of the resulting analysis showed that Monoraphidium sp. Dek19 is a viable option for growth using the side streams from an ethanol plant and the use of enzymes will breakdown the biomass of the algae for production of cellulosic ethanol. Additionally, the extraction of oil can be performed in a quicker and safer manner.

  10. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  11. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Fuqing; Shi Jian; Lv Wen

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of cornmore » stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.« less

  12. Vinasses: characterization and treatments.

    PubMed

    España-Gamboa, Elda; Mijangos-Cortes, Javier; Barahona-Perez, Luis; Dominguez-Maldonado, Jorge; Hernández-Zarate, G; Alzate-Gaviria, Liliana

    2011-12-01

    The final products of the ethanol industry are alcoholic beverages, industrial ethanol and biofuels. They are produced by the same production process, which includes fermentation and distillation of raw materials which come from plant biomass. At the end of the distillation process a waste effluent is obtained called vinasse or stillage. The direct disposal of stillages on land or in groundwater (rivers, streams or lakes), or even for the direct irrigation of crops, pollutes the environment due to their high organic contents, dissolved solids and many other compounds which are toxic or could be contaminants under certain environmental conditions. This work reviews the characterization of vinasses from different feedstock sources and the main treatments for conditioning the soluble solids of vinasses before their disposal.

  13. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.; Nash, C.; Mcclane, D.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to demonstrate evaporation of a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, in order to predict the composition of the effluents from the EMF evaporator to aid in planning for their disposition. This document describes the results of that test using the core simulant. This simulant formulation is designated as the “core simulant”; other additives will be included for specific testing, such as volatiles for evaporation or hazardous metals for measuring leaching properties of waste forms. The results indicate that the simulant can easily be concentrated via evaporation. During that the pH adjustment step in simulant preparation, ammonium is quickly converted to ammonia, and most of the ammonia was stripped from the simulated waste and partitioned to the condensate. Additionally, it was found that after concentrating (>12x) and cooling that a small amount of LiF and Na 3(SO 4)F precipitate out of solution. With the exception of ammonia, analysis of the condensate indicated very low to below detectable levels of many of the constituents in the simulant, yielding very high decontamination factors (DF).« less

  14. Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendleton, Justin; Bhavaraju, Sai; Priday, George

    As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodiummore » management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent simulant from the Parsons process in the CRU. The modular CRU is easily scalable as a standalone system for caustic recycling, or for NTTS integration or for use as an In-Tank Treatment System to process sodium bearing waste to meet LLW processing needs at the Hanford site. The standalone pilot operation of the CRU to recycle sodium from NTCR effluent places the technology demonstration at TRL level 6. Multiple operations were performed with the CRU to process up to 500 gallons of the NTCR effluent and demonstrate an efficient separation of up to 70 % of the sodium without solids precipitation while producing 10 M caustic. Batch mode operation was conducted to study the effects of chemistry variation, establish the processing rate, and optimize the process operating conditions to recycle caustic from the NTCR effluent. The performance of the CRU was monitored by tracking the density parameter to control the concentration of caustic produced. Different levels of sodium were separated in tests from the effluent at a fixed operating current density and temperature. The voltage of the modules remained stable during the unit operation which demonstrated steady operation to separate sodium from the NTCR effluent. The sodium transfer current efficiency was measured in testing based on the concentration of caustic produced. Measurements showed a current efficiency of 99.8% for sodium transfer from the NTCR effluent to make sodium hydroxide. The sodium and hydroxide contents of the anolyte (NTCR feed) and catholyte (caustic product) were measured before and after each batch test. In two separate batch tests, samples were taken at different levels of sodium separation and analyzed to determine the stability of the NTCR effluent after sodium separation. The stability characteristics and changes in physical and chemical properties of the NTCR effluent chemistry after separation of sodium hydroxide as a function of storage time were evaluated. Parameters such as level of precipitated alumina, total alkalinity, analysis of Al, Na, K, Cs, Fe, OH, nitrate, nitrite, total dissolved and undissolved solids, viscosity, density, and other parameters of the NTCR effluent were measured. Changes in rheology and properties of NTCR stream to support downstream handling of the effluent after sodium separation was the basis for the analysis. The results show that the NTCR effluent is stable without the precipitation of aluminum hydroxide after 70% of the sodium was separated from the effluent. (authors)« less

  15. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations. That simulant can be used in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. This document describes the method used to formulate a simulant of this LAW Melter Off-Gas Condensate stream, which, after pH adjustment, is the feed to the evaporator in the EMF.« less

  16. Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming--evaluation of a concept for a farm-scale biorefinery.

    PubMed

    Oleskowicz-Popiel, Piotr; Kádár, Zsófia; Heiske, Stefan; Klein-Marcuschamer, Daniel; Simmons, Blake A; Blanch, Harvey W; Schmidt, Jens Ejbye

    2012-01-01

    The addition of a biorefinery to an organic farm was investigated, where ethanol was produced from germinated rye grains and whey, and the effluent was separated into two streams: the protein-rich solid fraction, to be used as animal feed, and the liquid fraction, which can be co-digested with clover grass silage to produce biogas. A method for ethanol production from rye was applied by utilizing inherent amylase activity from germination of the seed. Biogas potential of ethanol fermentation effluent was measured through anaerobic digestion trials. The effluent from the trials was assumed to serve as natural fertilizer. A technoeconomic analysis was also performed; total capital investment was estimated to be approximately 4 M USD. Setting a methane selling price according to available incentives for "green electricity" (0.72 USD/m(3)) led to a minimum ethanol selling price of 1.89 USD/L (project lifetime 25 yr, at a discount rate 10%). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Development of Denitrifying and Nitrifying Bacteria and Their Co-occurrence in Newly Created Biofilms in Urban Streams

    NASA Astrophysics Data System (ADS)

    Vaessen, T. N.; Martí Roca, E.; Pinay, G.; Merbt, S. N.

    2015-12-01

    Biofilms play a pivotal role on nutrient cycling in streams, which ultimately dictates the export of nutrients to downstream ecosystems. The extent to which biofilms influence the concentration of dissolved nutrients, oxygen and pH in the water column may be determined by the composition of the microbial assemblages and their activity. Evidence of biological interactions among bacteria and algae are well documented. However, the development, succession and co-occurence of nitrifying and denitrifying bacteria remain poorly understood. These bacteria play a relevant role on the biogeochemical process associated to N cycling, and their relative abundance can dictate the fate of dissolved inorganic nitrogen in streams. In particular, previous studies indicated that nitrifiers are enhanced in streams receiving inputs from wastewater treatment plant (WWTP) effluents due to both increases in ammonium concentration and inputs of nitrifiers. However, less is known about the development of denitrifiers in receiving streams, although environmental conditions seem to favor it. We conducted an in situ colonization experiment in a stream receiving effluent from a WWTP to examine how this input influences the development and co-occurrence of nitrifying and denitrifying bacteria. We placed artificial substrata at different locations relative to the effluent and sampled them over time to characterize the developed biofilm in terms of bulk measurements (organic matter content and algae) as well as in terms of abundance of nitrifiers and denitrifiers (using qPCR). The results of this study contribute to a better understanding of the temporal dynamics of denitrifiers and nitrifiers in relation to the developed organic matter, dissolved oxygen and pH and the biomass accrual in stream biofilms under the influence of nutrients inputs from WWTP effluent. Ultimately, the results provide insights on the potential role of nitrifiers and denitrifiers on N cycling in WWTP effluent receiving streams.

  18. Water-quality assessment of White River between Lake Sequoyah and Beaver Reservoir, Washington County, Arkansas

    USGS Publications Warehouse

    Terry, J.E.; Morris, E.E.; Bryant, C.T.

    1982-01-01

    The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)

  19. Probabilistic analysis of risks to US drinking water intakes from 1,4-dioxane in domestic wastewater treatment plant effluents.

    PubMed

    Simonich, Staci Massey; Sun, Ping; Casteel, Ken; Dyer, Scott; Wernery, Dave; Garber, Kevin; Carr, Gregory; Federle, Thomas

    2013-10-01

    The risks of 1,4-dioxane (dioxane) concentrations in wastewater treatment plant (WWTP) effluents, receiving primarily domestic wastewater, to downstream drinking water intakes was estimated using distributions of measured dioxane concentrations in effluents from 40 WWTPs and surface water dilution factors of 1323 drinking water intakes across the United States. Effluent samples were spiked with a d8 -1,4-dioxane internal standard in the field immediately after sample collection. Dioxane was extracted with ENVI-CARB-Plus solid phase columns and analyzed by GC/MS/MS, with a limit of quantification of 0.30 μg/L. Measured dioxane concentrations in domestic wastewater effluents ranged from <0.30 to 3.30 μg/L, with a mean concentration of 1.11 ± 0.60 μg/L. Dilution of upstream inputs of effluent were estimated for US drinking water intakes using the iSTREEM model at mean flow conditions, assuming no in-stream loss of dioxane. Dilution factors ranged from 2.6 to 48 113, with a mean of 875. The distributions of dilution factors and dioxane concentration in effluent were then combined using Monte Carlo analysis to estimate dioxane concentrations at drinking water intakes. This analysis showed the probability was negligible (p = 0.0031) that dioxane inputs from upstream WWTPs could result in intake concentrations exceeding the USEPA drinking water advisory concentration of 0.35 μg/L, before any treatment of the water for drinking use. © 2013 SETAC.

  20. 40 CFR 60.266 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... effluent gas from exhaust stream “i”, dscm/hr (dscf/hr). P=average furnace power input, MW. K=conversion....8, the owner or operator shall not allow gaseous diluents to be added to the effluent gas stream after the fabric in an open pressurized fabric filter collector unless the total gas volume flow from...

  1. Spatiotemporal variations in estrogenicity, hormones, and endocrine-disrupting compounds in influents and effluents of selected wastewater-treatment plants and receiving streams in New York, 2008-09

    USGS Publications Warehouse

    Baldigo, Barry P.; Phillips, Patrick J.; Ernst, Anne G.; Gray, James L.; Hemming, Jocelyn D.C.

    2014-01-01

    Endocrine-disrupting compounds (EDCs) in wastewater effluents have been linked to changes in sex ratios, intersex (in males), behavioral modifications, and developmental abnormalities in aquatic organisms. Yet efforts to identify and regulate specific EDCs in complex mixtures are problematic because little is known about the estrogen activity (estrogenicity) levels of many common and emerging contaminants. The potential effects of EDCs on the water quality and health of biota in streams of the New York City water supply is especially worrisome because more than 150 wastewater-treatment plants (WWTPs) are permitted to discharge effluents into surface waters and groundwaters of watersheds that provide potable water to more than 9 million people. In 2008, the U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), New York State Department of Health (NYSDOH), and New York City Department of Environmental Protection (NYCDEP) began a pilot study to increase the understanding of estrogenicity and EDCs in effluents and receiving streams mainly in southeastern New York. The primary goals of this study were to document and assess the spatial and temporal variability of estrogenicity levels; the effectiveness of various treatment-plant types to remove estrogenicity; the concentrations of hormones, EDCs, and pharmaceuticals, personal care products (PPCPs); and the relations between estrogenicity and concentrations of hormones, EDCs, and PPCPs. The levels of estrogenicity and selected hormones, non-hormone EDCs, and PPCPs were characterized in samples collected seasonally in effluents from 7 WWTPs, once or twice in effluents from 34 WWTPs, and once in influents to 6 WWTPs. Estrogenicity was quantified, as estradiol equivalents, using both the biological e-screen assay and a chemical model. Results generally show that (1) estrogenicity levels in effluents varied spatially and seasonally, (2) a wide range of known and unknown EDCs were present in both WWTP effluents and receiving streams, (3) some effluents may be important sources of estrogenicity in weakly diluted streams, (4) measured levels of biological estrogenicity were often higher than estimated levels of chemical estrogenicity, and (5) the type of treatment had a large effect on the removal efficacy, and consequently, the estrogenicity levels observed in treated effluents.

  2. Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abitz, R.J.

    1996-12-31

    Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less

  3. Electrolytic pretreatment unit gaseous effluent conditioning

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1976-01-01

    The electrolytic pretreatment of urine is an advanced process that eliminates the need for handling and storing the highly corrosive chemicals that are normally used in water reclamation systems. The electrolytic pretreatment process also converts the organic materials in urine to gases (N2 and O2) that can be used to replenish those lost to space by leakage, venting, and air lock operations. The electrolytic process is more than a pretreatment, since it decreases the urine solids content by approximately one third, thus reducing the load and eventual solids storage requirements of the urine processing system. The evolved gases from the pretreatment step cannot, however, be returned directly to the atmosphere of a spacecraft without first removing several impurities including hydrogen, chlorine, and certain organic compounds. A treatment concept was developed that would decrease the impurities in the gas stream that emanates from an electrolysis unit to levels sufficiently low to allow the conditioned gas stream to be safely discharged to a spacecraft atmosphere. Two methods were experimentally demonstrated that can accomplish the desired cleanup. The bases of the two methods are, repectively: (1) raw urine scrubbing and (2) silica gel sorption.

  4. Potential tracers for tracking septic tank effluent discharges in watercourses.

    PubMed

    Richards, Samia; Withers, Paul J A; Paterson, Eric; McRoberts, Colin W; Stutter, Marc

    2017-09-01

    Septic tank effluent (STE) contributes to catchment nutrient and pollutant loads. To assess the role of STE discharges in impairment of surface water, it is essential to identify the sources of pollution by tracing contaminants in watercourses. We examined tracers that were present in STE to establish their potential for identifying STE contamination in two stream systems (low and high dilution levels) against the background of upstream sources. The studied tracers were microbial, organic matter fluorescence, caffeine, artificial sweeteners and effluent chemical concentrations. The results revealed that tracer concentration ratios Cl/EC, Cl/NH 4 -N, Cl/TN, Cl/TSS, Cl/turbidity, Cl/total coliforms, Cl/sucralose, Cl/saccharin and Cl/Zn had potential as tracers in the stream with low dilution level (P < 0.05). Fluorescence spectroscopy could detect STE inputs through the presence of the tryptophan-like peak, but was limited to water courses with low level of dilution and was positively correlated with stream Escherichia coli (E. coli) and soluble reactive phosphorus (SRP). The results also suggested that caffeine and artificial sweeteners can be suitable tracers for effluent discharge in streams with low and high level of dilution. Caffeine and saccharin were positively correlated with faecal coliforms, E. coli, total P and SRP, indicating their potential to trace discharge of a faecal origin and to be a marker for effluent P. Caffeine and SRP had similar attenuation behaviour in the receiving stream waters suggesting caffeine's potential role as a surrogate indicator for the behaviour of P downstream of effluent inputs. Taken together, results suggest that a single tracer alone was not sufficient to evaluate STE contamination of watercourses, but rather a combination of multiple chemical and physical tracing approaches should be employed. A multiple tracing approach would help to identify individual and cumulative STE inputs that pose risks to stream waters in order to prioritise and target effective mitigation measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of Kraft Mill effluent on the sexuality of fishes: An environmental early warning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, W.P.; Bortone, S.A.

    1992-01-01

    Arrhenoid or masculinized female fish species of the live-bearing family, Poeciliidae, have been observed for over thirteen years in specific southern streams which receive waste effluents from pulping mills. The complex mixture of organic compounds in kraft mill effluent (KME) has inhibited specific identification of causal agent(s). However, microbially degraded phytosterols (e.g. sitosterol or stigmastanol) in experimental exposures induce the same intersexual states that characterize affected female poeciliids sampled from KME streams. KME-polluted streams often exhibit a drastic reduction of fish species diversity and degrees of physiological stress, all of which suggests reduced reproduction in surviving forms. A potential ontogeneticmore » or developmental response is demonstrated in American eels captured in one of these streams as well. The authors examine available information, including laboratory and experimental field exposures, and suggest directions for additional research as well as the need for environmental concern.« less

  6. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams and fish in the Great Lakes Region and Upper Mississippi River

    USDA-ARS?s Scientific Manuscript database

    Urban streams are an integral part of the municipal wastewater treatment process by providing a point of discharge for wastewater treatment plant (WWTP) effluents and additional attenuation through dilution and transformation processes. The receiving surface waters also are a conduit for contaminan...

  7. Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Dileep; Lorenzo-Martin, Cinta

    Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.

  8. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    NASA Astrophysics Data System (ADS)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  9. Biological assessment of aquaculture effects on effluent-receiving streams in Ghana using structural and functional composition of fish and macroinvertebrate assemblages.

    PubMed

    Ansah, Yaw Boamah; Frimpong, Emmanuel A; Amisah, Stephen

    2012-07-01

    Biological assessment of aquatic ecosystems is widely employed as an alternative or complement to chemical and toxicity testing due to numerous advantages of using biota to determine ecosystem condition. These advantages, especially to developing countries, include the relatively low cost and technical requirements. This study was conducted to determine the biological impacts of aquaculture operations on effluent-receiving streams in the Ashanti Region of Ghana. We collected water, fish and benthic macroinvertebrate samples from 12 aquaculture effluent-receiving streams upstream and downstream of fish farms and 12 reference streams between May and August of 2009, and then calculated structural and functional metrics for biotic assemblages. Fish species with non-guarding mode of reproduction were more abundant in reference streams than downstream (P = 0.0214) and upstream (P = 0.0251), and sand-detritus spawning fish were less predominant in reference stream than upstream (P = 0.0222) and marginally less in downstream locations (P = 0.0539). A possible subsidy-stress response of macroinvertebrate family richness and abundance was also observed, with nutrient (nitrogen) augmentation from aquaculture and other farming activities likely. Generally, there were no, or only marginal differences among locations downstream and upstream of fish farms and in reference streams in terms of several other biotic metrics considered. Therefore, the scale of impact in the future will depend not only on the management of nutrient augmentation from pond effluents, but also on the consideration of nutrient discharges from other industries like fruit and vegetable farming within the study area.

  10. 40 CFR 405.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Whey Subcategory § 405.122 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) For whey drying plants with an input equivalent to more than 57,000 lb/day of 40 percent solids whey (22,800 lb/day of solids...

  11. Biological treatment of habitation waste streams using full scale MABRs

    NASA Astrophysics Data System (ADS)

    Jackson, William; Barta, Daniel J.; Morse, Audra; Christenson, Dylan; Sevanthi, Ritesh

    Recycling waste water is a critical step to support sustainable long term habitation in space. Water is one of the largest contributors to life support requirements. In closed loop life support systems, membrane aerated biological reactors (MABRs) can reduce the dissolved organic carbon (DOC) and ammonia (NH3) concentration as well as decrease the pH, leading to a more stable solution with less potential to support biological growth or promote carryover of unionized ammonia as well as producing a higher quality brine. Over the last three years we have operated 3 full size MABRs ( 120L) treating a habitation type waste stream composed of urine, hygiene, and laundry water. The reactors varied in the specific surface area (260, 200, and 150 m2/m3) available for biofilm growth and gas transfer. The liquid side system was continually monitored for pH, TDS, and DO, and the influent and effluent monitored daily for DOC, TN, NOx, and NH4. The gas side system was continuously monitored for O2, CO2, and N2O in the effluent gas as well as pressure and flow rates. These systems have all demonstrated greater than 90% DOC reductions and ammonium conversion rates of 50-70% over a range of loading rates with effluent pH from 5-7.5. We have evaluated. In addition, to evaluating the impact of loading rates (10-70 l/d) we have also evaluated the impact of forced hibernation, the use of pure O2 on performance, the impact of pressurize operation to prevent de-gassing of N2 and to promote higher O2 transfer and a discontinuous feeding cycle to allow integration with desalination. Our analysis includes quantification of consumables (power and O2), waste products such as CO2 and N2O as well as solids production. Our results support the use of biological reactors to treat habitation waste streams as an alternative to the use of pretreatment and desalination alone.

  12. A Conceptual Model For Effluent-Dependent Riverine Environments

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.

    2001-12-01

    The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We structured the conceptual model around accepted riverine ecological models but with important departures signaling the unique characteristics of EDW communities. In many cases, in-stream habitat values were naturally limited by substrate, flow regimes, or other pre-discharge conditions. Our model is designed to give terrestrial habitat equal footing with in-stream resources in ecological assessment techniques. In the arid West, where in-stream water resources are becoming increasingly limited, EDWs offer important refugia and corridors for neotropical migratory birds and other habitat-limited wildlife species. These beneficial uses require different hydrological tools than in-stream systems for assessing habitat health.

  13. Influence of seasonality and vegetation on the attenuation of emerging contaminants in wastewater effluent-dominated streams. A preliminary study.

    PubMed

    Matamoros, Víctor; Rodríguez, Yolanda

    2017-11-01

    Treated wastewater from small communities is discharged into rivers or streams with a high biodiversity value. This is particularly important in Mediterranean countries, where most of the streams are dry almost all year round. This preliminary study assessed the occurrence and attenuation of 23 emerging contaminants (ECs) in 4 wastewater-dominated streams in which treated wastewater accounted for the entire stream flow. The concentration of ECs was monitored in the warm and cold seasons in the wastewater treatment plant (WWTP) effluent and at 6 downstream locations. The concentration of ECs in the WWTP effluents ranged from undetected to 12 μg L -1 . The attenuation of ECs 1 km downstream ranged from no removal to up to 80% (48% on average). The half-lives of ECs in the 4 streams ranged from 0.4 to 20 h (3.9 ± 3.5 h on average). Compounds such as benzodiazepine drugs and flame retardants were the most recalcitrant (half-lives >5 h). The highest attenuation of ECs and ammonia was observed in the stream completely covered by vegetation. The cumulative hazardous quotient 1 km downstream was reduced on average by more than 60%. Therefore, the results suggest that both seasonality and vegetation play an important role in in-stream attenuation of ECs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Metathesis process for preparing an alpha, omega-functionalized olefin

    DOEpatents

    Burdett, Kenneth A.; Mokhtarzadeh, Morteza; Timmers, Francis J.

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  15. Wastewater movement near four treatment and disposal sites in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Cox, E.R.

    1986-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the effects on nearby streams and lakes of treated wastewater effluents that percolate from sewage lagoons at four sites in Yellowstone National Park. A network of observation wells has been established near the sites, and water level and water quality data were collected from 1974 through 1982. Groundwater mounds occur under the lagoons as percolation of effluents occurs. The percolating effluents mix with groundwater and form plumes of water that contain chemical constituents from the effluents. These plumes move down the hydraulic gradient toward groundwater discharge areas. The directions of movement of percolating effluents have been determined by analyzing water samples from wells near the lagoons for specific conductance, chloride concentration, and nitrite plus nitrate concentration. Other constituents and properties also were determined. The percolating effluents are diluted by groundwater and have no discernible effects on the quality of water in the nearby streams and lakes. (USGS)

  16. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, W.L.

    1991-10-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presentsmore » the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.« less

  17. Scrubbers with a level head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedersen, G.C.; Bhattachararjee, P.K.

    1997-11-01

    The available methods for removing pollutants from a gas stream are numerous, to say the least. A popular method, scrubbers allow users to separate gases and solids by allowing the gas to come into contact with a liquid stream. In the end, the pollutants are washed away in the effluent, and the gas exits the system to be used in later processes or to be released into the atmosphere. For many years, counter-flow scrubber methods have been used for the lion`s share of the work in industries such as phosphate fertilizer and semiconductor chemicals manufacturing. Now these industries are exploringmore » the use of cross-flow scrubber design, which offers consistently high efficiency and low operating costs. In addition, the unit`s horizontal orientation makes maintenance easier than typical tower scrubbers. For certain classes of unit operations, cross-flow is now being recognized as a strong alternative to conventional counterflow technology.« less

  18. Accumulation of radium in sediments from continued disposal of produced water and hydraulic fracturing flowback water

    NASA Astrophysics Data System (ADS)

    Warner, N. R.; Menio, E. C.; Landis, J. D.; Vengosh, A.; Lauer, N.; Harkness, J.; Kondash, A.

    2014-12-01

    Recent public interest in high volume slickwater hydraulic fracturing (HVHF) has drawn increased interest in wastewater management practices by the public, researchers, industry, and regulators. The management of wastes, including both fluids and solids, poses many engineering challenges, including elevated total dissolved solids and elevated activities of naturally occurring radioactive materials (NORM). One management option for wastewater in particular, which is used in western Pennsylvania, USA, is treatment at centralized waste treatment facilities [1]. Previous studies conducted from 2010-2012 indicated that one centralized facility, the Josephine Brine Treatment facility, removed the majority of radium from produced water and hydraulic fracturing flowback fluid (HFFF) during treatment, but low activities of radium remained in treated effluent and were discharged to surface water [2]. Despite the treatment process and radium reduction, high activities (200 times higher than upstream/background) accumulated in stream sediments at the point of effluent discharge. Here we present new results from sampling conducted at two additional centralized waste treatment facilities (Franklin Brine Treatment and Hart Brine Treatment facilities) and Josephine Brine Treatment facility conducted in June 2014. Preliminary results indicate radium is released to surface water at very low (<50 pCi/L) to non-detectable activities, however; radium continues to accumulate in sediments surrounding the area of effluent release. Combined, the data indicate that 1) radium continues to be released to surface water streams in western Pennsylvania despite oil and gas operators voluntary ban on treatment and disposal of HFFF in centralized waste treatment facilities, 2) radium accumulation in sediments occurred at multiple brine treatment facilities and is not isolated to a single accidental release of contaminants or a single facility. [1] Wilson, J. M. and J. M. VanBriesen (2012). "Oil and Gas Produced Water Management and Surface Drinking Water Sources in Pennsylvania." Environmental Practice 14(04): 288-300. [2] Warner, N. R., C. A. Christie, R. B. Jackson and A. Vengosh (2013). "Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania." ES&T 47(20): 11849-11857.

  19. The effect of nutrient ratios on E. coli re-growth in urban streams

    NASA Astrophysics Data System (ADS)

    Aitkenhead-Peterson, J. A.; McCrary, K.; Gentry, T. J.; Harclerode, C. L.

    2010-12-01

    E. coli an indicator for fecal pathogens in aquatic systems, is one of the major impairments of streams and rivers in USA. We examined re-growth of E.coli in UV-treated wastewater effluent by spiking effluent with extract obtained from managed turf grass and ornamental tree foliage. Our original hypothesis that the increased quantity and quality of DOC would increase re-growth was rejected. Instead we found that the ratio of C:N:P of our extracts was able to explain between 64 and 89% of the variance in E. coli re-growth. The C:N:P ratio of treated sewage effluent of 0.64 was too low to produce re-growth which commenced at C:N:P ratio’s of around 3.7 at 24 hrs and > 5.8 at 12 hrs. As precipitation or irrigation water interacts with the landscape vegetation of urban golf courses, athletic fields, parks and homeowner gardens in urban watersheds prior to running off to streams and rivers its solution C:N:P ratio may be conducive to E. coli re-growth in those watersheds with wastewater treatment plant point source discharge. To test this theory further we examined E. coli and stream C:N:P ratio in four watersheds downstream of wastewater treatment plants. Here we found that stream C:N:P ratio explained 98% of the variance in E. coli. Interestingly this phenomenon only occurs in streams downstream of waste water treatment plants suggesting that revival of E. coli in sewage effluent is possible if watershed conditions are conducive to their re-growth.

  20. Streamflow and water quality of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, October 1984

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1987-01-01

    A diel (24-hour) water-quality survey was done to investigate the sources of dry-weather waste inputs attributable to other than permitted point-source effluent and to evaluate the waste-load assimilative capacity of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, in October 1984. Flow in the Grand Calumet River consists almost entirely of municipal and industrial effluents which comprised more than 90% of the 500 cu ft/sec flow observed at the confluence of the East Branch Grand Calumet River and the Indiana Harbor Ship Canal during the study. At the time of the study, virtually all of the flow in the West Branch Grand Calumet River was municipal effluent. Diel variations in streamflow of as much as 300 cu ft/sec were observed in the East Branch near the ship canal. The diel variation diminished at the upstream sampling sites in the East Branch. In the West Branch, the diel variation in flow was quite drastic; complete reversals of flow were observed at sampling stations near the ship canal. Average dissolved-oxygen concentrations at stations in the East Branch ranged from 5.7 to 8.2 mg/L and at stations in the West Branch from 0.8 to 6.6 mg/L. Concentrations of dissolved solids, suspended solids, biochemical-oxygen demand, ammonia, nitrite, nitrate, and phosphorus were substantially higher in the West Branch than in the East Branch. In the East Branch, only the Indiana Stream Pollution Control Board water-quality standards for total phosphorus and phenol were exceeded. In the West Branch, water-quality standards for total ammonia, chloride, cyanide, dissolved solids, fluoride, total phosphorus, mercury, and phenol were exceeded and dissolved oxygen was less than the minimum allowable. Three areas of significant differences between cumulative effluent and instream chemical-mass discharges were identified in the East Branch and one in the West Branch. The presence of unidentified waste inputs in the East Branch were indicated by differences in the chemical-mass discharges at three sites. Elevated suspended solids, biochemical-oxygen demand, and ammonia chemical-mass discharges at Columbia Avenue indicated the presence of a source of what may have been untreated sewage to the West Branch during the survey. (Author 's abstract)

  1. Blytheville AFB, Arkansas. Water quality management survey. Final report 11-14 Apr 83

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, G.R.; Gibson, D.P. Jr.

    1983-05-01

    The USAF OEHL conducted an on site water quality management survey at Blytheville AFB. Main areas of interest were (1) the wastewater treatment plant effluent fecal coliform count, and residual chlorine content, and (2) the stream sampling protocol. The drinking water plant, landfill and industrial shops were also included in the survey. Results of the survey indicated that the low residual chlorine content caused high fecal coliform counts in the wastewater effluent. The chemical parameters sampled in the stream monitoring program did not coincide with the requirements of the State of Arkansas and required modification. Recommendations were made to increasemore » the residual chlorine content of the wastewater effluent and to increase the mixing of the chlorine contact chamber. A list of the chemical parameters was included in the report for stream monitoring.« less

  2. 40 CFR 426.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable to the abrasive polishing and acid polishing waste water streams. Effluent characteristic Effluent... units (g/kkg of furnace pull) Fluoride 120.0 60.0 Lead 0.9 0.45 English units (lb/1,000 lb of furnace pull) Fluoride 0.12 0.06 Lead 0.0009 0.00045 [44 FR 50747, Aug. 29, 1979] ...

  3. 40 CFR 426.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicable to the abrasive polishing and acid polishing waste water streams. Effluent characteristic Effluent... units (g/kkg of furnace pull) Fluoride 120.0 60.0 Lead 0.9 0.45 English units (lb/1,000 lb of furnace pull) Fluoride 0.12 0.06 Lead 0.0009 0.00045 [44 FR 50747, Aug. 29, 1979] ...

  4. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

    USGS Publications Warehouse

    Barber, L.B.; Brown, G.K.; Nettesheim, T.G.; Murphy, E.W.; Bartell, S.E.; Schoenfuss, H.L.

    2011-01-01

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 ??g/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4- tert-octylphenol, and 4- tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (< 5 ??g/L). The biogenic steroidal hormones 17??-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (< 0.005 ??g/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed. ?? 2011.

  5. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater-facility-impacted stream reach.

    PubMed

    Bradley, Paul M; Barber, Larry B; Clark, Jimmy M; Duris, Joseph W; Foreman, William T; Furlong, Edward T; Givens, Carrie E; Hubbard, Laura E; Hutchinson, Kasey J; Journey, Celeste A; Keefe, Steffanie H; Kolpin, Dana W

    2016-10-15

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem. Published by Elsevier B.V.

  6. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater‑facility-impacted stream reach

    USGS Publications Warehouse

    Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.

    2016-01-01

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.

  7. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    USGS Publications Warehouse

    Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  8. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integratedmore » Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.« less

  9. Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis.

    PubMed

    Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G

    2015-06-01

    The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, Alex D.; McCabe, Daniel J.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to themore » LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate, along with entrained, volatile, and semi-volatile metals, such as Hg, As, and Se. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate that get recycled to the melter, and is a key objective of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of earlier tasks was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations and use it in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. The objective of this task was to test immobilization options for this evaporator bottoms aqueous stream. This document describes the method used to formulate a simulant of this EMF evaporator bottoms stream, immobilize it, and determine if the immobilized waste forms meet disposal criteria.« less

  11. Development of Software Sensors for Determining Total Phosphorus and Total Nitrogen in Waters

    PubMed Central

    Lee, Eunhyoung; Han, Sanghoon; Kim, Hyunook

    2013-01-01

    Total nitrogen (TN) and total phosphorus (TP) concentrations are important parameters to assess the quality of water bodies and are used as criteria to regulate the water quality of the effluent from a wastewater treatment plant (WWTP) in Korea. Therefore, continuous monitoring of TN and TP using in situ instruments is conducted nationwide in Korea. However, most in situ instruments in the market are expensive and require a time-consuming sample pretreatment step, which hinders the widespread use of in situ TN and TP monitoring. In this study, therefore, software sensors based on multiple-regression with a few easily in situ measurable water quality parameters were applied to estimate the TN and TP concentrations in a stream, a lake, combined sewer overflows (CSOs), and WWTP effluent. In general, the developed software sensors predicted TN and TP concentrations of the WWTP effluent and CSOs reasonably well. However, they showed relatively lower predictability for TN and TP concentrations of stream and lake waters, possibly because the water quality of stream and lake waters is more variable than that of WWTP effluent or CSOs. PMID:23307350

  12. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries.

    PubMed

    Agrawal, Archana; Sahu, K K

    2009-11-15

    Every metal and metallurgical industry is associated with the generation of waste, which may be a solid, liquid or gaseous in nature. Their impacts on the ecological bodies are noticeable due to their complex and hazardous nature affecting the living and non-living environment which is an alarming issue to the environmentalist. The increasingly stringent regulations regarding the discharge of acid and metal into the environment, and the increasing stress upon the recycling/reuse of these effluents after proper treatment have focused the interest of the research community on the development of new approaches for the recovery of acid and metals from industrial wastes. This paper is a critical review on the acidic waste streams generated from steel and electroplating industries particularly from waste pickle liquor and spent bleed streams. Various aspects on the generation of these streams and the methods used for their treatment either for the recovery of acid for reuse or disposal are being dealt with. Major stress is laid upon the hydrometallurgical methods such as solvent extraction.

  13. Concentrations of selected pharmaceuticals and antibiotics in south-central Pennsylvania waters, March through September 2006

    USGS Publications Warehouse

    Loper, Connie A.; Crawford, J. Kent; Otto, Kim L.; Manning, Rhonda L.; Meyer, Michael T.; Furlong, Edward T.

    2007-01-01

    This report presents environmental and quality-control data from analyses of 15 pharmaceutical and 31 antibiotic compounds in water samples from streams and wells in south-central Pennsylvania. The analyses are part of a study by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP) to define concentrations of selected emerging contaminants in streams and well water in Pennsylvania. Sampling was conducted at 11 stream sites and at 6 wells in 9 counties of south-central Pennsylvania. Five of the streams received municipal wastewater and 6 of the streams received runoff from agricultural areas dominated by animal-feeding operations. For all 11 streams, samples were collected at locations upstream and downstream of the municipal effluents or animal-feeding operations. All six wells were in agricultural settings. A total of 120 environmental samples and 21 quality-control samples were analyzed for the study. Samples were collected at each site in March/April, May, July, and September 2006 to obtain information on changes in concentration that could be related to seasonal use of compounds.For streams, 13 pharmaceuticals and 11 antibiotics were detected at least 1 time. Detections included analytical results that were estimated or above the minimum reporting limits. Seventy-eight percent of all detections were analyzed in samples collected downstream from municipal-wastewater effluents. For streams receiving wastewater effluents, the pharmaceuticals caffeine and para-xanthine (a degradation product of caffeine) had the greatest concentrations, 4.75 μg/L (micrograms per liter) and 0.853 μg/L, respectively. Other pharmaceuticals and their respective maximum concentrations were carbamazepine (0.516 μg/L) and ibuprofen (0.277 μg/L). For streams receiving wastewater effluents, the antibiotic azithromycin had the greatest concentration (1.65 μg/L), followed by sulfamethoxazole (1.34 μg/L), ofloxacin (0.329 μg/L), and trimethoprim (0.256 μg/L).For streams receiving runoff from animal-feeding operations, the only pharmaceuticals detected were acetaminophen, caffeine, cotinine, diphenhydramine, and carbamazepine. The maximum concentration for pharmaceuticals was 0.053 μg/L. Three streams receiving runoff from animal-feeding operations had detections of one or more antibiotic compound--oxytetracycline, sulfadimethoxine, sulfamethoxazole, and tylosin. The maximum concentration for antibiotics was 0.157 μg/L. The average number of compounds (pharmaceuticals and antibiotics) detected in sites downstream from animal-feeding operations was three. The average number of compounds detected downstream from municipal-wastewater effluents was 13.For wells used to supply livestock, four compounds were detected--two pharmaceuticals (cotinine and diphenhydramine) and two antibiotics (tylosin and sulfamethoxazole). There were five detections in all the well samples. The maximum concentration detected in well water was for cotinine, estimated to be 0.024 μg/L.Seasonal occurrence of pharmaceutical and antibiotic compounds in stream water varied by compound and site type. At four stream sites, the same compounds were detected in all four seasonal samples. At other sites, pharmaceutical or antibiotic compounds were detected only one time in seasonal samples. Winter samples collected in streams receiving municipalwastewater effluent had the greatest number of compounds detected (21). Research analytical methods were used to determine concentrations for pharmaceuticals and antibiotics. To assist in evaluating the quality of the analyses, detailed information is presented on laboratory methodology and results from qualitycontrol samples. Quality-control data include results for nine blanks, nine duplicate environmental sample pairs, and three laboratory-spiked environmental samples as well as the recoveries of compounds in laboratory surrogates and laboratory reagent spikes.

  14. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore, there was a positive relationship between aerobic ecosystem respiration and OM content in resuspended sediments. Our results suggest that WWTP effluents can be important sources of POC to recipient streams, and that the increased availability of POC enhances aerobic ecosystem respiration, especially when the dilution capacity of the recipient streams is low.

  15. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover.

    PubMed

    Xu, Fuqing; Shi, Jian; Lv, Wen; Yu, Zhongtang; Li, Yebo

    2013-01-01

    Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5L/kg VS(feed), while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6L/kg VS(feed). The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3g CaCO(3)/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Toxicity evaluation of the process effluent streams of a petrochemical industry.

    PubMed

    Reis, J L R; Dezotti, M; Sant'Anna, G L

    2007-02-01

    The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.

  17. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    USGS Publications Warehouse

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the remaining samples were archived. Biological characteristics were determined by using an in-vitro bioassay to determine total estrogenicity in water samples and a caged fish study to determine characteristics of fish from experiments that exposed fish to wastewater effluent in 2009. St. Cloud State University deployed and processed caged fathead minnows at 13 stream sites during September 2009 for the caged fish study. Measured fish data included length, weight, body condition factor, and vitellogenin concentrations.

  18. Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09

    USGS Publications Warehouse

    Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert

    2012-01-01

    Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen, caffeine, carbamazepine, and the four antibiotics tylosin, sulfadimethoxine, sulfamethoxazole, and oxytetracycline were detected in streamwater samples collected in 2006 from six paired stream sampling sites located upstream and downstream from animal-feeding operations. The highest reported concentration of these seven compounds was for the antibiotic sulfamethoxazole (157 ng/L), in a sample from the downstream site on Snitz Creek in Lancaster County, Pa. Twenty-one pharmaceutical compounds were detected in streamwater samples collected in 2006 from five paired stream sampling sites located upstream or downstream from a municipal wastewater-effluent-discharge site. The most commonly detected compounds and maximum concentrations were the anticonvulsant carbamazepine, 276 ng/L; the antihistamine diphenhydramine, 135 ng/L; and the antibiotics ofloxacin, 329 ng/L; sulfamethoxazole, 1,340 ng/L; and trimethoprim, 256 ng/L. A total of 51 different contaminants of emerging concern were detected in streamwater samples collected from 2007 through 2009 at 13 stream sampling sites located downstream from a wastewater-effluent-discharge site. The concentrations and numbers of compounds detected were higher in stream sites downstream from a wastewater-effluent-discharge site than in stream sites upstream from a wastewater-effluent-discharge site. This finding indicates that wastewater-effluent discharges are a source of contaminants of emerging concern; these contaminants were present more frequently in the streambed-sediment samples than in streamwater samples. Antibiotic compounds were often present in both the streamwater and streambed-sediment samples, but many OWCs were present exclusively in the streambed-sediment samples. Compounds with endocrine disrupting potential including detergent metabolites, pesticides, and flame retardants, were present in the streamwater and streambed-sediment samples. Killinger Creek, a stream where wastewater-effluent discharges contribute a large percentage of the total flow, stands out as a stream with particularly high numbers of compounds detected and detected at the highest concentrations measured in the reconnaissance sampling. Nineteen contaminants of emerging concern were detected in streamwater samples collected quarterly from 2007 through 2009 at 27 stream sites within 5 miles of a drinking-water intake. The number of contaminants and the concentrations detected at the stream sites within 5 miles of drinking-water intakes were generally very low (concentrations less than 50 ng/L), much lower than those at sites downstream from a wastewater-effluent discharge. The most commonly detected compounds and maximum concentrations were caffeine, 517 ng/L; carbamazepine, 95 ng/L; sulfamethoxazole, 146 ng/L; and estrone, 3.15 ng/L. The concentrations and frequencies of detection of some of the contaminants of emerging concern appear to vary by season, which could be explained by compound use, flow regime, or differences in degradation rates. Concentrations of some contaminants were associated with lower flows as a result of decreased in-stream dilution of wastewater effluents or other contamination sources. Twenty-two contaminants of emerging concern were detected once each in streamwater samples collected in 2007 and 2008 from 16 fish-health stream sites located statewide. The highest concentrations were for the OWCs, including flame retardants tri(2-butoxyethyl)phosphate (604 ng/L) and tri(2-chloroethyl)phosphate (272 ng/L) and the fragrance isoquinoline (330 ng/L). Far fewer numbers of contaminants of emerging concern were detected at the fish-health sites than at the wastewater-effluent-discharge sites. Most of the fish-health sites were not located directly downstream from a wastewater-effluent discharge, but there were multiple wastewater-effluent discharges in the drainage basins upstream from the sampling sites. No distinct pattern of contaminant occurrence could be discerned for the fish-health stream sites

  19. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Duck Creek, Madison, Tipton, and Hamilton counties, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    The Indiana State Board of Health is developing a State water-quality plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Duck Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The major point-source waste load affecting Duck Creek is the Elwood wastewater-treatment facility. Natural streamflow during the low flow is zero, so no benefit from dilution is provided. Natural reaeration at the low-flow condition (approximately 3 cubic feet per second), also low, is estimated to be less than 1 per day (base e at 20 Celsius). Consequently, the wasteload assimilative capacity of the stream is low. Effluent ammonia-nitrogen concentrations, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State ammonia-nitrogen toxicity standards (2.5 milligrams per liter from April to October and 4.0 milligrams per liter from November through March). The projected effluent ammonia-nitrogen load will also result in the present Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) not being met. Benthic-oxygen demand may also affect stream water quality. During the summer low-flow, a benthic-oxygen demand of only 0.6 gram per square meter per day would utilize all the streams 's available assimilative capacity. (USGS)

  20. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

    USGS Publications Warehouse

    Barber, Larry B.; Brown, Gregory K.; Nettesheim, Todd G.; Murphy, Elizabeth W.; Bartell, Stephen E.; Schoenfuss, Heiko L.

    2011-01-01

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impactedstreams, aquatic organisms such as fish are continuously exposed to biologically-activechemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 μg/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-activechemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4-tert-octylphenol, and 4-tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (cis-androsterone were detected at even lower concentrations (< 0.005 μg/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-activechemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed.

  1. DWPF Recycle Evaporator Simulant Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming,more » scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to aluminum oxide during the evaporation process. The following recommendations were made: Recycle from the DWTT should be metered in slowly to the ''typical'' recycle streams to avoid spikes in solids content to allow consistent processing and avoid process upsets. Additional studies should be conducted to determine acceptable volume ratios for the HEME dissolution and decontamination solutions in the evaporator feed. Dow Corning 2210 antifoam should be evaluated for use to control foaming. Additional tests are required to determine the concentration of antifoam required to prevent foaming during startup, the frequency of antifoam additions required to control foaming during steady state processing, and the ability of the antifoam to control foam over a range of potential feed compositions. This evaluation should also include evaluation of the degradation of the antifoam and impact on the silicon and TOC content of the condensate. The caustic HEME dissolution recycle stream should be neutralized to at least pH of 7 prior to blending with the acidic recycle streams. Dow Corning 2210 should be used during the evaporation testing using the radioactive recycle samples received from DWPF. Evaluation of additional antifoam candidates should be conducted as a backup for Dow Corning 2210. A camera and/or foam detection instrument should be included in the evaporator design to allow monitoring of the foaming behavior during operation. The potential for foam formation and high solids content should be considered during the design of the evaporator vessel.« less

  2. Catalysts for oxidation of mercury in flue gas

    DOEpatents

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  3. Optimized heat exchange in a CO2 de-sublimation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Larry; Terrien, Paul; Tessier, Pascal

    The present invention is a process for removing carbon dioxide from a compressed gas stream including cooling the compressed gas in a first heat exchanger, introducing the cooled gas into a de-sublimating heat exchanger, thereby producing a first solid carbon dioxide stream and a first carbon dioxide poor gas stream, expanding the carbon dioxide poor gas stream, thereby producing a second solid carbon dioxide stream and a second carbon dioxide poor gas stream, combining the first solid carbon dioxide stream and the second solid carbon dioxide stream, thereby producing a combined solid carbon dioxide stream, and indirectly exchanging heat betweenmore » the combined solid carbon dioxide stream and the compressed gas in the first heat exchanger.« less

  4. Tracking the Key Constituents of Concern of the WTP LAW Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabrouki, Ridha B.; Matlack, Keith S.; Abramowitz, Howard

    The testing results presented in the present report were also obtained on a DM10 melter system operated with the primary WTP LAW offgas system components with recycle, as specified in the statement of work (SOW) [6] and detailed in the Test Plan for this work [7]. The primary offgas system components include the SBS, the WESP, and a recycle system that allows recycle of liquid effluents back to the melter, as in the present baseline for the WTP LAW vitrification. The partitioning of technetium and other key constituents between the glass waste form, the offgas system liquid effluents, the offgasmore » stream that exits the WESP, and the liquid condensate from the vacuum evaporator were quantified in this work. The tests employed three different LAW streams spanning a range of waste compositions anticipated for WTP. Modifications to the offgas system and operational strategy were made to expedite the approach to steady state concentrations of key constituents in the glass and offgas effluent solutions during each test.« less

  5. Waste Load Allocation for Conservative Substances to Protect Aquatic Organisms

    NASA Astrophysics Data System (ADS)

    Hutcheson, M. R.

    1992-01-01

    A waste load allocation process is developed to determine the maximum effluent concentration of a conservative substance that will not harm fish and wildlife propagation. If this concentration is not exceeded in the effluent, the acute toxicity criterion will not be violated in the receiving stream, and the chronic criterion will not be exceeded in the zone of passage, defined in many state water quality standards to allow the movement of aquatic organisms past a discharge. Considerable simplification of the concentration equation, which is the heart of any waste load allocation, is achieved because it is based on the concentration in the receiving stream when the concentration gradient on the zone of passage boundary is zero. Consequently, the expression obtained for effluent concentration is independent of source location or stream morphology. Only five independent variables, which are routinely available to regulatory agencies, are required to perform this allocation. It aids in developing permit limits which are protective without being unduly restrictive or requiring large expenditures of money and manpower on field investigations.

  6. Effects of wastewater effluent discharge on stream quality in Indian Creek, Johnson County, Kansas

    USGS Publications Warehouse

    Graham, Jennifer L.; Foster, Guy M.

    2014-01-01

    Contaminants from point and other urban sources affect stream quality in Indian Creek, which is one of the most urban drainage basins in Johnson County, Kansas. The Johnson County Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities discharge to Indian Creek. Data collected by the U.S. Geological Survey, in cooperation with Johnson County Wastewater, during June 2004 through June 2013 were used to evaluate stream quality in Indian Creek. This fact sheet summarizes the effects of wastewater effluent discharge on physical, chemical, and biological conditions in Indian Creek downstream from the Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities.

  7. Process and system for removing sulfur from sulfur-containing gaseous streams

    DOEpatents

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  8. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  9. Ammonia Offgassing from SA9T

    NASA Technical Reports Server (NTRS)

    Monje, Oscar; Nolek, Sara D.; Wheeler, Raymond M.

    2011-01-01

    NH3 is a degradation product of SA9T, a solid-amine sorbent developed by Hamilton Sundstrand, that is continually emitted into the gas stream being conditioned by this sorbent. NH3 offgassing rates were measured using FTIR spectroscopy using a packed bed at similar contact times as offgassing tests conducted at Hamilton Sundstrand and at the Ames Research Center. The bed was challenged with moist air at several flow rates and humidities and NH3 concentration of the effluent was measured for several hours. The NH3 offgassing rates in open-loop testing were calculated from the steady state outlet NH3 concentration and flow rate. NH3 offgassing rates from SA9T were found to be influenced by the contact time with the adsorbent (flow rate) and by the humidity of the inlet gas stream, which are consistent with previous studies. Closed-loop vacuum-swing adsorption cycling rates verified that NH3 offgassing continues when a constant source of water vapor is present.

  10. Water quality in the Sugar Creek basin, Bloomington and Normal, Illinois

    USGS Publications Warehouse

    Prugh, Byron J.

    1978-01-01

    Urban runoff and overflows from combined sewers affect water quantity and quality in Sugar Creek within the twin cities of Bloomington and Normal, Illinois. Water-quality data from five primary and eight secondary locations showed three basic types of responses to climatic and hydrologic stresses. Stream temperatures and concentrations of dissolved oxygen, ammonia nitrogen, total phosphorus, biochemical oxygen demand, and fecal bacteria showed seasonal variations. Specific conductivity, pH, chloride, and suspended solids concentrations varied more closely with stream discharges. Total organic carbon, total nitrogen, total phosphorus, biochemical oxygen demand, and fecal coliform and fecal streptococcal bacteria concentrations exhibited variations indicative of intial flushing action during storm runoff. Selected analyses for herbicides, insecticides, and other complex organic compounds in solution and in bed material showed that these constituents were coming from sources other than the municipal sanitary treatment plant effluent. Analyses for 10 common metals: arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc showed changes in concentrations below the municipal sanitary plant outfall. (Woodard-USGS)

  11. Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia

    NASA Astrophysics Data System (ADS)

    Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.

  12. Comparison between mixed liquors of two side-stream membrane bioreactors treating wastewaters from waste management plants with high and low solids anaerobic digestion.

    PubMed

    Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Fernández-Giménez, E; Álvarez-Requena, C; Muñagorri-Mañueco, F; Ortiz-Villalobos, G

    2016-09-01

    In the last years, biological treatment plants for the previously separated organic fraction from municipal solid wastes (OFMSW) have gained importance. In these processes a liquid effluent (liquid fraction from the digestate and leachate from composting piles), which has to be treated previously to its discharge, is produced. In this paper, the characteristics of the mixed liquor from two full-scale membrane bioreactors treating the effluents of two OFMSW treatment plants have been evaluated in view to study their influence on membrane fouling in terms of filterability. For that, the mixed liquor samples have been ultrafiltrated in an UF laboratory plant. Besides, the effect of the influent characteristics to MBRs and the values of the chemical and physical parameters of the mixed liquors on the filterability have been studied. Results showed that the filterability of the mixed liquor was strongly influenced by the soluble microbial products in the mixed liquors and the influent characteristics to MBR. Permeate flux of MBR mixed liquor treating the most polluted wastewater was considerable the lowest (around 20 L/m(2) h for some samples), what was explained by viscosity and soluble microbial products concentration higher than those measured in other MBR mixed liquor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. 40 CFR Appendix A to Part 414 - Non-Complexed Metal-Bearing Waste Streams and Cyanide-Bearing Waste Streams

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...

  14. 40 CFR Appendix A to Part 414 - Non-Complexed Metal-Bearing Waste Streams and Cyanide-Bearing Waste Streams

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...

  15. 40 CFR Appendix A to Part 414 - Non-Complexed Metal-Bearing Waste Streams and Cyanide-Bearing Waste Streams

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...

  16. 40 CFR Appendix A to Part 414 - Non-Complexed Metal-Bearing Waste Streams and Cyanide-Bearing Waste Streams

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC... Picolines, mixed/Condensation of acetaldehyde + formaldehyde + ammonia Organic pigments, Azo/Diazotization...

  17. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of phosphorus from the anaerobic supernatant of OFMSW is an interesting research topic that has not yet been explored. At the moment, standardization in the design of facilities that treat anaerobic supernatant produced from the treatment of OFMSW is still under development. To move toward this direction, it is first necessary to assess the performance of alternative treatment options. It study concentrates existing data regarding the characteristics of the anaerobic supernatant produced from the treatment of OFMSW and from their co-digestion with other BOW. This provides data documenting the effect of the anaerobic digestion operating conditions on the supernatant quality and critically evaluates alternative options for the post-treatment of the liquid fraction produced from the anaerobic digestion process.

  18. Effects of intermittent aeration periods on a structured-bed reactor continuously fed on the post-treatment of sewage anaerobic effluent.

    PubMed

    Silva, Bruno Garcia; Damianovic, Márcia Helena Rissato Zamariolli; Foresti, Eugenio

    2018-04-20

    This study assessed the simultaneous nitrification and denitrification processes and remaining organic matter removal from anaerobic reactor effluent treating wastewater in a single reactor. A structured-bed reactor, with polyurethane foam as support media, was subjected to intermittent aeration and effluent recirculation. Aerated/non-aerated periods varied in the range of 2/1-1/3 h. The chemical oxygen demand (COD) in the effluent remained between 26 and 42 mg L -1 throughout all the aeration conditions. Aeration periods of 1/2 h removed 80 and 26% of Total Kjeldahl Nitrogen and Total Nitrogen, respectively. A low solid production was observed during the 300 days of operation, resulting in a solid retention time of 139 days. The results indicate that the non-aerated periods generated alkalinity that favored nitrification, maintaining low COD concentrations in the effluent. The structured bed reactor presented a low solid production and effluent loss below 20 mgSSV L -1 , similar to concentrations obtained in secondary decanters.

  19. 40 CFR 426.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limitations are applicable to the abrasive polishing and acid polishing waste water streams. Effluent... not exceed— Metric units (g/kkg of furnace pull) Fluoride 120.0 60.0 Lead 0.9 0.45 English units (lb/1,000 lb of furnace pull) Fluoride 0.12 0.06 Lead 0.0009 0.00045 [44 FR 50747, Aug. 29, 1979] ...

  20. 40 CFR 426.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... limitations are applicable to the abrasive polishing and acid polishing waste water streams. Effluent... not exceed— Metric units (g/kkg of furnace pull) Fluoride 120.0 60.0 Lead 0.9 0.45 English units (lb/1,000 lb of furnace pull) Fluoride 0.12 0.06 Lead 0.0009 0.00045 [44 FR 50747, Aug. 29, 1979] ...

  1. 40 CFR 426.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limitations are applicable to the abrasive polishing and acid polishing waste water streams. Effluent... not exceed— Metric units (g/kkg of furnace pull) Fluoride 120.0 60.0 Lead 0.9 0.45 English units (lb/1,000 lb of furnace pull) Fluoride 0.12 0.06 Lead 0.0009 0.00045 [44 FR 50747, Aug. 29, 1979] ...

  2. Pilot-scale tertiary MBBR nitrification at 1°C: characterization of ammonia removal rate, solids settleability and biofilm characteristics.

    PubMed

    Young, Bradley; Delatolla, Robert; Ren, Baisha; Kennedy, Kevin; Laflamme, Edith; Stintzi, Alain

    2016-08-01

    Pilot-scale moving bed biofilm reactor (MBBR) is used to investigate the kinetics and biofilm response of municipal, tertiary nitrification at 1°C. The research demonstrates that significant rates of tertiary MBBR nitrification are attainable and stable for extended periods of operation at 1°C, with a maximum removal rate of 230 gN/m(3) d at 1°C. At conventional nitrogen loading rates, low ammonia effluent concentrations below 5 mg-N/L were achieved at 1°C. The biofilm thickness and dry weight biofilm mass (massdw) were shown to be stable, with thickness values showing a correlation to the protein/polysaccharide ratio of the biofilm extracellular polymeric substances. Lastly, tertiary MBBR nitrification is shown to increase the effluent suspended solids concentrations by approximately 3 mg total suspended solids /L, with 19-60% of effluent solids being removed after 30 min of settling. The settleability of the effluent solids was shown to be correlated to the nitrogen loading of the MBBR system.

  3. FINAL REPORT FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) IN THE SECONDARY WASTE STREAM OF THE EFFLUENT TREATMENT FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; GUTHRIE MD

    2008-08-29

    This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.

  4. Impacts of sewage effluent on tree survival, water quality and nutrient removal in coastal plain swamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuenzler, E.J.

    1987-09-01

    An investigation was conducted of the impacts of sprayed municipal sewage on swamp tree survival and the effects of the swamp system on nutrient concentrations below the outfalls on two streams on the coastal plain of North Carolina. Effluent was discharged to one swamp stream by aerial spraying and to the other stream by way of a small ditch. Ninety-eight percent of the trees struck directly by the spray were dead within 18 months of the date spraying began. Both swamp systems removed sufficient quantities of nitrogen and phosphorus within a few kilometers to account for virtually all of themore » sewage nutrient load to the swamps.« less

  5. Assessment of selected inorganic constituents in streams in the Central Arizona Basins Study Area, Arizona and northern Mexico, through 1998

    USGS Publications Warehouse

    Anning, David W.

    2003-01-01

    Stream properties and water-chemistry constituent concentrations from data collected by the National Water-Quality Assessment and other U.S. Geological Survey water-quality programs were analyzed to (1) assess water quality, (2) determine natural and human factors affecting water quality, and (3) compute stream loads for the surface-water resources in the Central Arizona Basins study area. Stream temperature, pH, dissolved-oxygen concentration and percent saturation, and dissolved-solids, suspended-sediment, and nutrient concentration data collected at 41 stream-water quality monitoring stations through water year 1998 were used in this assessment. Water-quality standards applicable to the stream properties and water-chemistry constituent concentration data for the stations investigated in this study generally were met, although there were some exceedences. In a few samples from the White River, the Black River, and the Salt River below Stewart Mountain Dam, the pH in reaches designated as a domestic drinking water source was higher than the State of Arizona standard. More than half of the samples from the Salt River below Stewart Mountain Dam and almost all of the samples from the stations on the Central Arizona Project Canal?two of the three most important surface-water sources used for drinking water in the Central Arizona Basins study area?exceeded the U.S. Environmental Protection Agency drinking water Secondary Maximum Contaminant Level for dissolved solids. Two reach-specific standards for nutrients established by the State of Arizona were exceeded many times: (1) the annual mean concentration of total phosphorus was exceeded during several years at stations on the main stems of the Salt and Verde Rivers, and (2) the annual mean concentration of total nitrogen was exceeded during several years at the Salt River near Roosevelt and at the Salt River below Stewart Mountain Dam. Stream properties and water-chemistry constituent concentrations were related to streamflow, season, water management, stream permanence, and land and water use. Dissolved-oxygen percent saturation, pH, and nutrient concentrations were dependent on stream regulation, stream permanence, and upstream disposal of wastewater. Seasonality and correlation with streamflow were dependant on stream regulation, stream permanence, and upstream disposal of wastewater. Temporal trends in streamflow, stream properties, and water-chemistry constituent concentrations were common in streams in the Central Arizona Basins study area. Temporal trends in the streamflow of unregulated perennial reaches in the Central Highlands tended to be higher from 1900 through the 1930s, lower from the 1940s through the 1970s, and high again after the 1970s. This is similar to the pattern observed for the mean annual precipitation for the Southwestern United States and indicates long-term trends in flow of streams draining the Central Highlands were driven by long-term trends in climate. Streamflow increased over the period of record at stations on effluent-dependent reaches as a result of the increase in the urban population and associated wastewater returns to the Salt and Gila Rivers in the Phoenix metropolitan area and the Santa Cruz River in the Tucson metropolitan area. Concentrations of dissolved solids decreased in the Salt River below Stewart Mountain Dam and in the Verde River below Bartlett Dam. This decrease represents an improvement in the water quality and resulted from a concurrent increase in the amount of runoff entering the reservoirs. Stream loads of water-chemistry constituents were compared at different locations along the streams with one another, and stream loads were compared to upstream inputs of the constituent from natural and anthropogenic sources to determine the relative importance of different sources and to determine the fate of the water-chemistry constituent. Of the dissolved solids transported into the Basin and Range Lowlands each year

  6. Urban contributions of glyphosate and its degradate AMPA to streams in the United States

    USGS Publications Warehouse

    Kolpin, D.W.; Thurman, E.M.; Lee, E.A.; Meyer, M.T.; Furlong, E.T.; Glassmeyer, S.T.

    2006-01-01

    Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and water-solubility of glyphosate and AMPA has, until recently, made their analysis in water samples problematic. Thus, compared to other herbicides (e.g. atrazine) there are relatively few studies on the environmental occurrence of glyphosate and AMPA. In 2002, treated effluent samples were collected from 10 wastewater treatment plants (WWTPs) to study the occurrence of glyphosate and AMPA. Stream samples were collected upstream and downstream of the 10 WWTPs. Two reference streams were also sampled. The results document the apparent contribution of WWTP effluent to stream concentrations of glyphosate and AMPA, with roughly a two-fold increase in their frequencies of detection between stream samples collected upstream and those collected downstream of the WWTPs. Thus, urban use of glyphosate contributes to glyphosate and AMPA concentrations in streams in the United States. Overall, AMPA was detected much more frequently (67.5%) compared to glyphosate (17.5%).

  7. Spatial and temporal shifts in gross primary productivity, respiration, and nutrient concentrations in urban streams impacted by wastewater treatment plant effluent

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Toran, L.

    2017-12-01

    Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and spatial variability of nutrient stresses so that limitations on discharge can be better targeted.

  8. Influence of riparian alteration on canopy coverage and macrophyte abundance in Southeastern USA blackwater streams

    Treesearch

    Dean E. Fletcher; S. David Wilkins; J.V. McArthur; Gary K. Meffe

    2000-01-01

    Two tributary streams (Fourmile branch and Pen branch) located on the US Department of Energy's Savannah river site in west-central South Carolina, USA received thermal discharges from nuclear production reactors for over 30 years. Effluent releases produced stream water temperatures of over 50°C and stream flows of ten times above their base level. Consequently,...

  9. Proceedings of Shuttle Environmental Effects Program Review. [conferences

    NASA Technical Reports Server (NTRS)

    Potter, A. E. (Editor)

    1980-01-01

    Measurements of Titan exhaust cloud effluents are documented and compared, mesoscale and microphysical acid rain models are described, and a submesoscale model is proposed. Various instruments and facilities for measuring ice nuclei and other constituents of solid rocket motor exhaust effluents are discussed. Regional air quality monitoring and rain collection systems are described, and the ecological impact of solid rocket motor exhaust effluents is examined. The potential effect of space shuttle launches is estimated where data are adequate.

  10. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    USGS Publications Warehouse

    Barber, Larry B.; Hladik, Michelle; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by >90%.

  11. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection.

    PubMed

    Barber, Larry B; Hladik, Michelle L; Vajda, Alan M; Fitzgerald, Kevin C; Douville, Chris

    2015-10-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m(3) d(-1) design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration=2.7 μg L(-1); n=5) and 10 HDBPs (mean total concentration=4.5 μg L(-1)), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration=1.4 μg L(-1)) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by >90%. Copyright © 2015. Published by Elsevier B.V.

  12. Pathway-based analysis of fish transcriptomics data along effluent gradients in Minnesota rivers

    EPA Science Inventory

    As part of a larger effort to assess the health of streams and rivers influenced by municipal effluents in Minnesota, fathead minnows (Pimephales promelas; FHM) were exposed to ambient surface waters from three locations. The locations were generally representative of the state: ...

  13. Fecal Coliform and E. coli Concentrations in Effluent-Dominated Streams of the Upper Santa Cruz Watershed

    EPA Science Inventory

    Balancing water quality and water quantity concerns is an ongoing challenge for communities in the semi-arid southwest. Over pumping of groundwater aquifers and limited surface water resources have created effluent-dominated sections of watersheds. As rapid urbanization increases...

  14. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    USGS Publications Warehouse

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  15. N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A

    2014-09-02

    Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.

  16. High temperature electrolytic recovery of oxygen from gaseous effluents from the carbo-chlorination of lunar anorthite and the hydrogenation of ilmenite: A theoretical study

    NASA Technical Reports Server (NTRS)

    Erstfield, T. E.; Williams, R. J.

    1979-01-01

    A thermodynamic analysis discusses the compositions of gaseous effluents from the reaction of carbon and chlorine and of hydrogen with lunar anorthite and ilmenite, respectively. The computations consider the effects of the indigenous volatiles on the solid/gas reactions and on the composition of the effluent gases. A theoretical parameterization of the high temperature electrolysis of such gases is given for several types of solid ceramic electrolytes, and the effect of oxygen removal on the effluents is computed. Potential chemical interactions between the gases and the ceramic electrolytes are analyzed and discussed.

  17. Unmixed fuel processors and methods for using the same

    DOEpatents

    Kulkarni, Parag Prakash; Cui, Zhe

    2010-08-24

    Disclosed herein are unmixed fuel processors and methods for using the same. In one embodiment, an unmixed fuel processor comprises: an oxidation reactor comprising an oxidation portion and a gasifier, a CO.sub.2 acceptor reactor, and a regeneration reactor. The oxidation portion comprises an air inlet, effluent outlet, and an oxygen transfer material. The gasifier comprises a solid hydrocarbon fuel inlet, a solids outlet, and a syngas outlet. The CO.sub.2 acceptor reactor comprises a water inlet, a hydrogen outlet, and a CO.sub.2 sorbent, and is configured to receive syngas from the gasifier. The regeneration reactor comprises a water inlet and a CO.sub.2 stream outlet. The regeneration reactor is configured to receive spent CO.sub.2 adsorption material from the gasification reactor and to return regenerated CO.sub.2 adsorption material to the gasification reactor, and configured to receive oxidized oxygen transfer material from the oxidation reactor and to return reduced oxygen transfer material to the oxidation reactor.

  18. Process for gasifying carbonaceous material from a recycled condensate slurry

    DOEpatents

    Forney, Albert J.; Haynes, William P.

    1981-01-01

    Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.

  19. Septic tank discharges as multi-pollutant hotspots in catchments.

    PubMed

    Richards, Samia; Paterson, Eric; Withers, Paul J A; Stutter, Marc

    2016-01-15

    Small point sources of pollutants such as septic tanks are recognised as significant contributors to streams' pathogen and nutrient loadings, however there is little data in the UK on which to judge the potential risks that septic tank effluents (STEs) pose to water quality and human health. We present the first comprehensive analysis of STE to help assess multi-pollutant characteristics, management-related risk factors and potential tracers that might be used to identify STE sources. Thirty-two septic tank effluents from residential households located in North East of Scotland were sampled along with adjacent stream waters. Biological, physical, chemical and fluorescence characterisation was coupled with information on system age, design, type of tank, tank management and number of users. Biological characterisation revealed that total coliforms and Escherichia coli (E. coli) concentration ranges were: 10(3)-10(8) and 10(3)-10(7)MPN/100 mL, respectively. Physical parameters such as electrical conductivity, turbidity and alkalinity ranged 160-1730 μS/cm, 8-916 NTU and 15-698 mg/L, respectively. Effluent total phosphorus (TP), soluble reactive P (SRP), total nitrogen (TN) and ammonium-N (NH4-N) concentrations ranged 1-32, <1-26, 11-146 and 2-144 mg/L, respectively. Positive correlations were obtained between phosphorus, sodium, potassium, barium, copper and aluminium. Domestic STE may pose pollution risks particularly for NH4-N, dissolved P, SRP, copper, dissolved N, and potassium since enrichment factors were >1651, 213, 176, 63, 14 and 8 times that of stream waters, respectively. Fluorescence characterisation revealed the presence of tryptophan peak in the effluent and downstream waters but not detected upstream from the source. Tank condition, management and number of users had influenced effluent quality that can pose a direct risk to stream waters as multiple points of pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. 300 area TEDF NPDES Permit Compliance Monitoring Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loll, C.M.

    1995-09-05

    This document presents the 300 Area Treated Effluent Disposal Facility (TEDF) National Pollutant Discharge Elimination System (NPDES) Permit Compliance Monitoring Plan (MP). The MP describes how ongoing monitoring of the TEDF effluent stream for compliance with the NPDES permit will occur. The MP also includes Quality Assurance protocols to be followed.

  1. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    USGS Publications Warehouse

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was achieved at the Middle Basin WWTF. At the Tomahawk Creek WWTF, after the addition of chemically enhanced primary treatment in 2009, effluent discharges also had total phosphorus concentrations below 1.5 mg/L. After the addition of biological nutrient removal, annual total nitrogen and phosphorus loads from the Middle Basin WWTF decreased by 42 and 54 percent, respectively, even though effluent volume increased by 11 percent. Annual total phosphorus loads from the Tomahawk Creek WWTF after the addition of chemically enhanced primary treatment decreased by 54 percent despite a 33-percent increase in effluent volume. Total nitrogen and phosphorus from the WWTFs contributed between 30 and nearly 100 percent to annual nutrient loads in Indian Creek depending on streamflow conditions. In-stream total nitrogen primarily came from wastewater effluent except during years with the highest streamflows. Most of the in-stream total phosphorus typically came from effluent during dry years and from other urban sources during wet years. During 2010 through 2013, annual mean discharge from the Middle Basin WWTF was about 75 percent of permitted design capacity. Annual nutrient loads likely will increase when the facility is operated at permitted design capacity; however, estimated maximum annual nutrient loads from the Middle Basin WWTF were 27 to 38 percent lower than before capacity upgrades and the addition of biological nutrient removal to treatment processes. Thus, the addition of biological nutrient removal to the Middle Basin wastewater treatment process should reduce overall nutrient loads from the facility even when the facility is operated at permitted design capacity. The effects of wastewater effluent on the water quality of Indian Creek were most evident during below-normal and normal streamflows (about 75 percent of the time) when wastewater effluent represented about 24 percent or more of total streamflow. Wastewater effluent had the most substantial effect on nutrient concentrations in Indian Creek. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 10 to 100 times higher than at the upstream sites, even after changes in treatment practices at the WWTFs. Median total phosphorus concentrations during below-normal and normal streamflows at a downstream site were 43 percent lower following improvements in wastewater treatment processes. Similar decreases in total nitrogen were not observed, likely because total nitrogen concentrations only decreased in Middle Basin effluent and wastewater contributed a higher percentage to streamflows when nutrient samples were collected during the after-upgrade period. The wastewater effluent discharges to Indian Creek caused changes in stream-water quality that may affect biological community structure and ecosystem processes, including higher concentrations of bioavailable nutrients (nitrate and orthophosphorus) and warmer water temperatures during winter months. Other urban sources of contaminants also caused changes in stream-water quality that may affect biological community structure and ecosystem processes, including higher turbidities downstream from construction areas and higher specific conductance and chloride concentrations during winter months. Chloride concentrations exceeded acute and chronic exposure criteria at all Indian Creek study sites, regardless of wastewater influence, for weeks or months during winter. Streambed sediment chemistry was affected by wastewater (elevated nutrient and organic wastewater-indicator compound concentrations) and other contaminants from urban sources (elevated polyaromatic hydrocarbon concentrations). Overall habitat conditions were suboptimal or marginal at all sites; general decline in habitat conditions along the upstream-downstream gradient likely was caused by the cumulative effects of urbanization with increasing drainage basin size. Wastewater effluent likely affected algal periphyton biomass and community composition, primary production, and community respiration in Indian Creek. Functional stream health, evaluated using a preliminary framework based on primary production and community respiration, was mildly or severely impaired at most downstream sites relative to an urban upstream Indian Creek site. The mechanistic cause of the changes in these biological variables are unclear, though elevated nutrient concentrations were positively correlated with algal biomass, primary production, and community respiration. Macroinvertebrate communities indicated impairment at all sites, and Kansas Department of Health and Environment aquatic life support scores indicated conditions nonsupporting of aquatic life, regardless of wastewater influences. Urban influences, other than wastewater effluent discharge, likely control macroinvertebrate community structure in Indian Creek. Changes in treatment processes at the Middle Basin and Tomahawk Creek WWTFs improved wastewater effluent quality and decreased nutrient loads, but wastewater effluent discharges still had negative effects on the environmental and biological conditions at downstream Indian Creek sites. Wastewater effluent discharge into Indian Creek likely contributed to changes in measures of ecosystem structure (streamflow, water and streambed-sediment chemistry, algal biomass, and algal periphyton community composition) and function (primary production and community respiration) along the upstream-downstream gradient. Wastewater effluent discharges maintained streamflows and increased nutrient concentrations, algal biomass, primary production, and community respiration at the downstream sites. Functional stream health was severely impaired downstream from the Middle Basin WWTF and mildly impaired downstream from the Tomahawk WWTF relative to the urban upstream site. As distance from the Middle Basin WWTF increased, nutrient concentrations, algal biomass, primary production, and community respiration decreased, and functional stream health was no longer impaired 9.5 kilometers downstream from the discharge relative to the urban upstream site. Therefore, although wastewater effluent caused persistent changes in environmental and biological conditions and functional stream health at sites located immediately downstream from WWTF effluent discharges, some recovery to conditions more similar to the urban upstream site occurred within a relatively short distance.

  2. Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste.

    PubMed

    Sheets, Johnathon P; Yang, Liangcheng; Ge, Xumeng; Wang, Zhiwu; Li, Yebo

    2015-10-01

    Effective treatment and reuse of the massive quantities of agricultural and food wastes generated daily has the potential to improve the sustainability of food production systems. Anaerobic digestion (AD) is used throughout the world as a waste treatment process to convert organic waste into two main products: biogas and nutrient-rich digestate, called AD effluent. Biogas can be used as a source of renewable energy or transportation fuels, while AD effluent is traditionally applied to land as a soil amendment. However, there are economic and environmental concerns that limit widespread land application, which may lead to underutilization of AD for the treatment of agricultural and food wastes. To combat these constraints, existing and novel methods have emerged to treat or reuse AD effluent. The objective of this review is to analyze several emerging methods used for efficient treatment and reuse of AD effluent. Overall, the application of emerging technologies is limited by AD effluent composition, especially the total solid content. Some technologies, such as composting, use the solid fraction of AD effluent, while most other technologies, such as algae culture and struvite crystallization, use the liquid fraction. Therefore, dewatering of AD effluent, reuse of the liquid and solid fractions, and land application could all be combined to sustainably manage the large quantities of AD effluent produced. Issues such as pathogen regrowth and prevalence of emerging organic micro-pollutants are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Filtration device for active effluents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerin, M.; Meunier, G.

    1994-12-31

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter.

  4. 40 CFR 421.52 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Primary Electrolytic Copper Refining Subcategory § 421.52 Effluent limitations guidelines...,000 lb of product) Total suspended solids 0.100 0.050 Copper 0.0017 0.0008 Cadmium 0.00006 0.00003...

  5. 40 CFR 421.52 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Primary Electrolytic Copper Refining Subcategory § 421.52 Effluent limitations guidelines...,000 lb of product) Total suspended solids 0.100 0.050 Copper 0.0017 0.0008 Cadmium 0.00006 0.00003...

  6. LEVELS OF SYNTHETIC MUSK COMPOUNDS IN ...

    EPA Pesticide Factsheets

    To test the ruggedness of a newly developed analytical method for synthetic musks, a 1-year monthly monitoring of synthetic musks in water and biota was conducted for LakeMead (near Las Vegas, Nevada) as well as for combined sewage-dedicated effluent streams feeding Lake Mead. Data obtained from analyses of combined effluent streams from three municipal sewage treatment plants, from the effluent-receiving lake water, and from whole carp (Cyprinus carpio) tissue, indicated bioconcentration of synthetic musks in carp (1400-4500 pg/g). That same data were evaluated for the prediction of levels of synthetic musk compounds in fish, using values from the source (sewage treatment plant effluent [STP]). This study confirmed the presence of polycyclic and nitro musks in STP effluent, Lake Mead water, and carp. The concentrations of the polycyclic and nitro musks found in Lake Mead carp were considerably lower than previous studies in Germany, other European countries, and Japan. The carp samples were found to have mostly the mono-amino-metabolites of the nitro musks and intact polycyclic musks, principally HHCB (Galaxolide®) and AHTN (Tonalide®). Finally, the determination of sufficiently high levels of Galaxolide® and 4-amino musk xylene in STP effluent may be used to infer the presence of trace levels of other classes of musk compounds in the lake water. To be presented is an overview of the chemistry, the monitoring methodology, andthe statistical evaluation of con

  7. Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: Occurrence and fate in water and sediment and selective uptake in fish neural tissue

    USGS Publications Warehouse

    Schultz, M.M.; Furlong, E.T.; Kolpin, D.W.; Werner, S.L.; Schoenfuss, H.L.; Barber, L.B.; Blazer, V.S.; Norris, D.O.; Vajda, A.M.

    2010-01-01

    Antidepressant pharmaceuticals are widely prescribed in the United States; release of municipal wastewater effluent is a primary route introducing them to aquatic environments, where little is known about their distribution and fate. Water, bed sediment, and brain tissue from native white suckers (Catostomus commersoni)were collected upstream and atpoints progressively downstream from outfalls discharging to two effluentimpacted streams, Boulder Creek (Colorado) and Fourmile Creek (Iowa). A liquid chromatography/tandem mass spectrometry method was used to quantify antidepressants, including fluoxetine, norfluoxetine (degradate), sertraline, norsertraline (degradate), paroxetine, Citalopram, fluvoxamine, duloxetine, venlafaxine, and bupropion in all three sample matrices. Antidepressants were not present above the limit of quantitation in water samples upstream from the effluent outfalls but were present at points downstream at ng/L concentrations, even at the farthest downstream sampling site 8.4 km downstream from the outfall. The antidepressants with the highest measured concentrations in both streams were venlafaxine, bupropion, and Citalopram and typically were observed at concentrations of at least an order of magnitude greater than the more commonly investigated antidepressants fluoxetine and sertraline. Concentrations of antidepressants in bed sediment were measured at ng/g levels; venlafaxine and fluoxetine were the predominant chemicals observed. Fluoxetine, sertraline, and their degradates were the principal antidepressants observed in fish brain tissue, typically at low ng/g concentrations. Aqualitatively different antidepressant profile was observed in brain tissue compared to streamwater samples. This study documents that wastewater effluent can be a point source of antidepressants to stream ecosystems and that the qualitative composition of antidepressants in brain tissue from exposed fish differs substantially from the compositions observed in streamwater and sediment, suggesting selective uptake. ?? 2010 American Chemical Society.

  8. 40 CFR 421.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspended solids 107.000 50.900 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Subpart M... .323 .135 Ammonia (as N) .000 .000 Total suspended solids 9.061 4.310 pH (1) (1) 1 Within the range of... Lead .283 .135 Zinc .983 .411 Ammonia (as N) .000 .000 Total suspended solids 27.600 13.130 pH (1) (1...

  9. Speciation and fate of copper in sewage treatment works with and without tertiary treatment: the effect of return flows.

    PubMed

    Innaa, D; Lester, J N; Scrimshawb, M D; Cartmell, E

    2014-01-01

    The removal of metals from wastewaters is becoming an important issue, with new environmental quality standards putting increased regulatory pressure on operators of sewage treatment works. The use of additional processes (tertiary treatment) following two-stage biological treatment is frequently seen as a way of improving effluent quality for nutrients and suspended solids, and this study investigates the impact of how back washes from these tertiary processes may impact the removal of copper during primary sedimentation. Seven sites were studied, three conventional two-stage biological treatment, and four with tertiary processes. It was apparent that fluxes of copper in traditional return flows made a significant contribution to the load to the primary treatment tanks, and that <1% of this was in the dissolved phase. Where tertiary processes were used, back wash liquors were also returned to the primary tanks. These return flows had an impact on copper removal in the primary tanks, probably due to their aerobic nature. Returning such aerobic back wash flows to the main process stream after primary treatment may therefore be worth consideration. The opportunity to treat consolidated liquor and sludge.flows in side-stream processes to remove toxic elements, as they are relatively concentrated, low volume flow streams, should also be evaluated.

  10. Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting selenium-laden coal ash effluents. 2. Tissue biochemistry evaluation.

    PubMed

    Lohner, T W; Reash, R J; Williams, M

    2001-11-01

    Sunfish were collected from a fly ash pond-receiving stream and an Ohio River reference site to assess biochemical responses to coal ash effluent exposure. Selenium levels in sunfish from the receiving stream were higher than toxic thresholds associated with adverse population effects and reproductive impairment. Tissue biochemistry was found to be indicative of metal exposure and effect, but varied widely. Liver glycogen was positively correlated with increased liver metal levels, indicating no adverse effect upon stored carbohydrate levels. Lipid levels decreased with increasing metals, indicating possible nutritional stress. Protein levels increased with increasing metal levels, possibly due to the synthesis of proteins to sequester the metals. ATPase, dUTPase, and alkaline phosphatase activity generally decreased with exposure to ash pond metals, but remained within normal physiological ranges. Fish condition factors and liver somatic indices were correlated with liver lipid levels, dUTPase activity, and gill ATPase and alkaline phosphatase activity. Exposure to coal ash effluents produced biochemical markers of exposure that were associated with fish condition indicators; however, the indices themselves were not significantly affected by effluent exposure.

  11. Anaerobic Digestion of Organic Fraction from Hydrothermal Liquefied Algae Wastewater Byproduct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Sebastian; Srinivas, Keerthi; Schmidt, Andrew J.

    We present that the wastewater stream from hydrothermal liquefaction (HTL) process used in biofuel production, contains a large amounts of organic compounds where several can be regarded as environmentally hazardous and requires significant treatment before disposal. In this study, semi-continuous anaerobic digestion is used to degrade the organic fraction of wastewater streams from HTL of the algae Tetraselmis (AgTet) and Chlorella (AgChlr). Results indicated high methane yields at 20-30% (v/v) HTL wastewater together with clarified manure, producing 327.2 mL/gVS in (or volatile solids in feed) for AgTet and 263.4 mL/gVS in for AgChlr. There was a significant reduction in methanemore » production at concentrations higher than 40% (v/v) HTL wastewater in the feed, possibly due to the accumulation of chloride salts or inhibitory compounds such as pyridines, piperidines and pyrrolidines. In conclusion, this was further confirmed by comparing COD, salt and the ammonia concentrations of the effluents after anaerobic digestion at different concentrations of wastewater in manure.« less

  12. Anaerobic Digestion of Organic Fraction from Hydrothermal Liquefied Algae Wastewater Byproduct

    DOE PAGES

    Fernandez, Sebastian; Srinivas, Keerthi; Schmidt, Andrew J.; ...

    2017-09-06

    We present that the wastewater stream from hydrothermal liquefaction (HTL) process used in biofuel production, contains a large amounts of organic compounds where several can be regarded as environmentally hazardous and requires significant treatment before disposal. In this study, semi-continuous anaerobic digestion is used to degrade the organic fraction of wastewater streams from HTL of the algae Tetraselmis (AgTet) and Chlorella (AgChlr). Results indicated high methane yields at 20-30% (v/v) HTL wastewater together with clarified manure, producing 327.2 mL/gVS in (or volatile solids in feed) for AgTet and 263.4 mL/gVS in for AgChlr. There was a significant reduction in methanemore » production at concentrations higher than 40% (v/v) HTL wastewater in the feed, possibly due to the accumulation of chloride salts or inhibitory compounds such as pyridines, piperidines and pyrrolidines. In conclusion, this was further confirmed by comparing COD, salt and the ammonia concentrations of the effluents after anaerobic digestion at different concentrations of wastewater in manure.« less

  13. Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Sangita, E-mail: sangpal@barc.gov.in; Goswami, D.; Meena, Sher Singh

    2016-05-23

    Uranium (U) gadolinium (Gd) and iron (Fe) containing alkaline waste simulated effluent (relevant to alkaline effluent of monazite ore) has been treated with a novel amphoteric resin viz, Polyamidehydroxamate (PAH) containing amide and hydroxamic acid groups. The resin has been synthesized in an eco-friendly manner by polymerization nad conversion to functional groups characterized by FT-IR spectra and architectural overview by SEM. Coloration of the loaded matrix and de-coloration after extraction of uranium is the special characteristic of the matrix. Effluent streams have been analyzed by ICP-AES, U loaded PAH has been characterized by FT-IR, EXAFS, Gd and Fe by X-raymore » energy values of EDXRF at 6.053 KeVand 6.405 KeV respectively. The remarkable change has been observed in Mössbauer spectrum of Fe-loaded PAH samples.« less

  14. Occurrence of pharmaceuticals and other organic wastewater constituents in selected streams in northern Arkansas, 2004

    USGS Publications Warehouse

    Galloway, Joel M.; Haggard, Brian E.; Meyers, Michael T.; Green, W. Reed

    2005-01-01

    The U.S. Geological Survey, in cooperation with the University of Arkansas and the U.S. Department of Agriculture, Agricultural Research Service, collected data in 2004 to determine the occurrence of pharmaceuticals and other organic wastewater constituents, including many constituents of emerging environmental concern, in selected streams in northern Arkansas. Samples were collected in March and April 2004 from 17 sites located upstream and downstream from wastewater- treatment plant effluent discharges on 7 streams in northwestern Arkansas and at 1 stream site in a relatively undeveloped basin in north-central Arkansas. Additional samples were collected at three of the sites in August 2004. The targeted organic wastewater constituents and sample sites were selected because wastewater-treatment plant effluent discharge provides a potential point source of these constituents and analytical techniques have improved to accurately measure small amounts of these constituents in environmental samples. At least 1 of the 108 pharmaceutical or other organic wastewater constituents was detected at all sites in 2004, except at Spavinaw Creek near Maysville, Arkansas. The number of detections generally was greater at sites downstream from municipal wastewater-treatment plant effluent discharges (mean = 14) compared to sites not influenced by wastewatertreatment plants (mean = 3). Overall, 42 of the 108 constituents targeted in the collected water-quality samples were detected. The most frequently detected constituents included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene.

  15. COMPARISON OF ESCHERICHIA COLI, TOTAL COLIFORM, AND FECAL COLIFORM POPULATIONS AS INDICATORS OF WASTEWATER TREATMENT EFFICIENCY

    EPA Science Inventory

    Escherichia coli, total coliform, and fecal coliform data were collected from two wastewater treatment facilities, a subsurface constructed wetlands, and the receiving stream. Results are presented from individual wastewater treatment process streams, final effluent and river sit...

  16. Use of ammonia to reduce the viscosity of bottoms streams produced in hydroconversion processes

    DOEpatents

    Zaczepinski, Sioma; Billimoria, Rustom M.; Tao, Frank; Lington, Christopher G.; Plumlee, Karl W.

    1984-01-01

    Coal, petroleum residuum and similar carbonaceous feed materials are subjected to hydroconversion in the presence of molecular hydrogen to produce a hydroconversion effluent which is then subjected to one or more separation steps to remove lower molecular weight liquids and produce a heavy bottoms stream containing high molecular weight liquids and unconverted carbonaceous material. The viscosity of the bottoms streams produced in the separation step or steps is prevented from increasing rapidly by treating the feed to the separation step or steps with ammonia gas prior to or during the separation step or steps. The viscosity of the heavy bottoms stream produced in the final separation step is also controlled by treating these bottoms with ammonia gas. In a preferred embodiment of the invention, the effluent from the hydroconversion reactor is subjected to an atmospheric distillation followed by a vacuum distillation and the feeds to these distillations are contacted with ammonia during the distillations.

  17. An evaluation of problems arising from acid mine drainage in the vicinity of Shasta Lake, Shasta County, California

    USGS Publications Warehouse

    Fuller, Richard H.; Shay, J.M.; Ferreira, R.F.; Hoffman, R.J.

    1978-01-01

    Streams draining the mined areas of massive sulfide ore deposits in the Shasta Mining Districts of northern California are generally acidic and contain large concentrations of dissolved metals, including iron, copper, and zinc. The streams, including Flat, Little Backbone, Spring, West Squaw, Horse, and Zinc Creeks, discharge into Shasta Reservoir and the Sacramento River and have caused numerous fish kills. The sources of pollution are discharge from underground mines, streams that flow into open pits, and streams that flow through pyritic mine dumps where the oxidation of pyrite and other sulfide minerals results in the production of acid and the mobilization of metals. Suggested methods of treatment include the use of air and hydraulic seals in the mines, lime neutralization of mine effluent, channeling of runoff and mine effluent away from mine and tailing areas, and the grading and sealing of mine dumps. A comprehensive preabatement and postabatement program is recommended to evaluate the effects of any treatment method used. (Woodard-USGS)

  18. A membrane assisted hybrid bioreactor for the post treatment of an anaerobic effluent from a fish canning factory.

    PubMed

    Oyanedel, V; Garrido, J M; Lema, J M; Méndez, R

    2003-01-01

    An innovative membrane assisted hybrid bioreactor was used to treat a mixture of two streams produced in a fish canning factory: a highly loaded stream that had previously been treated in an anaerobic contact reactor, and a second stream with a relatively low COD and N concentration. Experiments were carried out during two experimental stages: an aerobic stage, which is focused in the study on the aerobic oxidation of ammonia and COD and a nitrification-denitrification stage in which the study was mainly focused on the removal of nitrogen. Results of the aerobic period pointed out that it was feasible to achieve ammonia and COD removals of around 99% at OLR of 6.5 kg COD/m3 x d and NLR of 1.8 kg N-NH4+/m3 x d. Specific nitrifying activities of up to 0.78 g N-NH4+/g protein x d and 0.25 g N-NH4+/g VSS x d, were recorded for the attached and suspended biomass, respectively. Around 50-60% of the nitrifying capacity of the reactor was a result of the nitrifying capacity of the biofilm. During the nitrification-denitrification stage 76% of nitrogen removal was attained at an NLR of 0.8 kg N-NH4+/m3 x d. The biofilm nitrifying activity was not affected by the operating conditions of the system, as a result of the preferential consumption of COD by suspended biomass in the reactor. Thus, the combination of a hybrid system, with both suspended and attached biomass, and an ultrafiltration membrane module might be an alternative for treating wastewaters in compact biological systems. The intrinsic characteristics of the system made it feasible to operate at high OLR without problems related with the settling properties of the sludge or the drop in the nitrogen conversion. There were no solids in the effluent as a result of the use of the membrane filtration module.

  19. Genetic redundancy and persistence of plasmid-mediated trimethoprim/sulfamethoxazole resistant effluent and stream water Escherichia coli.

    PubMed

    Suhartono, Suhartono; Savin, Mary; Gbur, Edward E

    2016-10-15

    Antibiotic resistant bacteria may persist in effluent receiving surface water in the presence of low (sub-inhibitory) antibiotic concentrations if the bacteria possess multiple genes encoding resistance to the same antibiotic. This redundancy of antibiotic resistance genes may occur in plasmids harboring conjugation and mobilization (mob) and integrase (intI) genes. Plasmids extracted from 76 sulfamethoxazole-trimethoprim resistant Escherichia coli originally isolated from effluent and an effluent-receiving stream were used as DNA template to identify sulfamethoxazole (sul) and trimethoprim (dfr) resistances genes plus detect the presence of intI and mob genes using PCR. Sulfamethoxazole and trimethoprim resistance was plasmid-mediated with three sul (sul1, sul2 and sul3 genes) and four dfr genes (dfrA12, dfrA8, dfrA17, and dfrA1 gene) the most prevalently detected. Approximately half of the plasmids carried class 1 and/or 2 integron and, although unrelated, half were also transmissible. Sampling site in relationship to effluent input significantly affected the number of intI and mob but not the number of sul and dfr genes. In the presence of low (sub-inhibitory) sulfamethoxazole concentration, isolates persisted regardless of integron and mobilization gene designation, whereas in the presence of trimethoprim, the presence of both integron and mobilization genes made isolates less persistent than in the absence of both or the presence of a gene from either group individually. Regardless, isolates persisted in large concentrations throughout the experiment. Treated effluent containing antibiotic resistant bacteria may be an important source of integrase and mobilization genes into the stream environment. Sulfamethoxazole-trimethoprim resistant bacteria may have a high degree of genetic redundancy and diversity carrying resistance to each antibiotic, although the role of integrase and mobilization genes towards persistence is unclear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hydrology of coal-resource areas in the southern Wasatch Plateau, central Utah

    USGS Publications Warehouse

    Danielson, T.W.; Sylla, D.A.

    1982-01-01

    The study defines the surface and groundwater hydrology of coal-resources areas in the Southern Wasatch Plateau in Central Utah and, where possible, predicts the hydrologic impacts of underground mining. Discharge data at four streamflow gaging stations indicated that from 5 to 29% of the average annual precipitation on a drainage runs off streams, mainly during the snowmelt period (spring and summer). Most of the base flow of streams originates as spring discharge in the higher altitudes of drainages. Peak flows, average 7-day flood flows, and flood depths were related to basin characteristics in order to develop flood equations for ungaged sites. Chemical quality of surface water was suitable for most uses. Dissolved-solids concentrations ranged from 97 to 835 milligrams per liter in 61 samples collected throughout the area. Data from wells and coal-test holes, and a comprehensive spring inventory indicate that groundwater occurs in all geologic units exposed in the study area. The coal-bearing Blackhawk Formation and underlying Star Point Sandstone are saturated in most areas. Some future mining operations would require dewatering of the Star Point-Blackhawk aquifer. Most of the springs issue from the Flagstaff Limestone and North Horn Formation above the Star Point-Blackhawk aquifer. It is not known whether water in the Flagstaff and North Horn is perched. Dissolved-solids concentrations in groundwater ranged from 105 to 1,080 milligrams per liter in 87 analyzed samples. Water levels in wells, the discharge of springs, benthic invertebrates in streams, and quantity and quality of mine effluents all need to be monitored in order to detect changes in the hydrologic system caused by coal mining. (USGS)

  1. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  2. Fate of perfluoroalkyl substances within a small stream food web affected by sewage effluent.

    PubMed

    Cerveny, Daniel; Grabic, Roman; Fedorova, Ganna; Grabicova, Katerina; Turek, Jan; Zlabek, Vladimir; Randak, Tomas

    2018-05-01

    The fate of fourteen target perfluoroalkyl substances (PFASs) are described within a small stream affected by a sewage treatment plant (STP) effluent. Concentrations of target PFASs in samples of water, benthic macroinvertebrates and brown trout (Salmo trutta) are presented. Two hundred brown trout individuals originating from clean sites within the same stream were tagged and stocked into an experimental site affected by the STP's effluent. As a passive sampling approach, polar organic chemical integrative samplers (POCIS) were deployed in the water to reveal the water-macroinvertebrates-fish biotransformation processes of PFASs. Bioconcentration/bioaccumulation of target compounds was monitored one, three, and six months after stocking. Twelve of the fourteen target PFASs were found in concentration above the LOQ in at least one of the studied matrices. The compound pattern varied significantly between both the studied species and water samples. Concerning the accumulation of PFASs in fish, the highest concentrations were found in the liver of individuals sampled after three months of exposure. These concentrations rapidly decreased after six months although the water concentrations were slightly increasing during experiment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: An outdoor pilot-scale study.

    PubMed

    Van Den Hende, Sofie; Beelen, Veerle; Julien, Lucie; Lefoulon, Alexandra; Vanhoucke, Thomas; Coolsaet, Carlos; Sonnenholzner, Stanislaus; Vervaeren, Han; Rousseau, Diederik P L

    2016-10-01

    To replace costly mechanical aeration by photosynthetical aeration, upflow anaerobic sludge blanket (UASB) effluent of food-industry was treated in an outdoor MaB-floc raceway pond. Photosynthetic aeration was sufficient for nitrification, but the raceway effluent quality was below current discharge limits, despite the high hydraulic retention time (HRT) of 35days. Hereafter, conventional activated sludge (CAS) effluent of food-industry was treated in this pond to recover phosphorus. The two-day HRT results in a more realistic pond area, but the phosphorus removal efficiency was low (20%). High biomass productivities were obtained, i.e. 31.3 and 24.9ton total suspended solids hapond(-1)year(-1) for UASB and CAS effluent, respectively. Bioflocculation enabled successful harvesting of CAS effluent-fed MaB-flocs by settling and filtering at 150-250μm to 22.7% total solids. To conclude, MaB-floc raceway ponds cannot be recommended as the sole treatment for these food-industry effluents, but huge potential lies in added-value biomass production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 40 CFR 405.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Condensed Whey Subcategory § 405.112 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) For whey condensing plants with over 300,000 lb/day of fluid raw whey input (over 20,700 lb/day of solids or 14,160 lb/day of...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn

    Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2)more » convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.« less

  6. Electrolytic trapping of iodine from process gas streams

    DOEpatents

    Horner, Donald E.; Mailen, James C.; Posey, Franz A.

    1977-01-25

    A method for removing molecular, inorganic, and organic forms of iodine from process gas streams comprises the electrolytic oxidation of iodine in the presence of cobalt-III ions. The gas stream is passed through the anode compartment of a partitioned electrolytic cell having a nitric acid anolyte containing a catalytic amount of cobalt to cause the oxidation of effluent iodine species to aqueous soluble species.

  7. 40 CFR 421.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ammonia (as N) 4,773.000 2,098.000 Total suspended solids 1,468.000 698.300 pH (1) (1) 1 Within the range... 59.900 25.030 Ammonia (as N) 5,469.000 2,404.00 Total suspended solids 1,682.000 800.000 pH (1) (1) 1... suspended solids 0.000 0.000 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (d) Subpart J—Alkali...

  8. 40 CFR 421.72 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... .000 .000 Zinc .000 .000 Total suspended solids .000 .000 pH (1) (1) 1 Within the range of 7.5 to 10.0... solids 153,000.000 72,740.000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (d) Subpart G... granulated Lead 9,499.000 4,318.000 Zinc 8,405.000 3,512.000 Total suspended solids 236,000.000 112,300.000 p...

  9. 40 CFR 421.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ammonia (as N) 4,773.000 2,098.000 Total suspended solids 1,468.000 698.300 pH (1) (1) 1 Within the range... 59.900 25.030 Ammonia (as N) 5,469.000 2,404.00 Total suspended solids 1,682.000 800.000 pH (1) (1) 1... suspended solids 0.000 0.000 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all times. (d) Subpart J—Alkali...

  10. 40 CFR 421.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....833 3.070 Zinc 4.482 1.873 Ammonia (as N) 409.300 179.900 Total suspended solids 125.900 59.870 pH (1... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... (as N) 129.300 56.840 Total suspended solids 39.770 18.920 pH (1) (1) 1 Within the range of 7.5 to 10...

  11. 40 CFR 421.72 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... .000 .000 Zinc .000 .000 Total suspended solids .000 .000 pH (1) (1) 1 Within the range of 7.5 to 10.0... solids 153,000.000 72,740.000 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (d) Subpart G... granulated Lead 9,499.000 4,318.000 Zinc 8,405.000 3,512.000 Total suspended solids 236,000.000 112,300.000 p...

  12. 40 CFR 421.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....833 3.070 Zinc 4.482 1.873 Ammonia (as N) 409.300 179.900 Total suspended solids 125.900 59.870 pH (1... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... (as N) 129.300 56.840 Total suspended solids 39.770 18.920 pH (1) (1) 1 Within the range of 7.5 to 10...

  13. Position sensitive radioactivity detection for gas and liquid chromatography

    DOEpatents

    Cochran, Joseph L.; McCarthy, John F.; Palumbo, Anthony V.; Phelps, Tommy J.

    2001-01-01

    A method and apparatus are provided for the position sensitive detection of radioactivity in a fluid stream, particularly in the effluent fluid stream from a gas or liquid chromatographic instrument. The invention represents a significant advance in efficiency and cost reduction compared with current efforts.

  14. Membrane technology for sustainable treated wastewater reuse: agricultural, environmental and hydrological considerations.

    PubMed

    Oron, Gideon; Gillerman, Leonid; Bick, Amos; Manor, Yossi; Buriakovsky, Nisan; Hagin, Joseph

    2008-01-01

    Field experiments were conducted in agricultural fields in which secondary wastewater of the City of Arad (Israel) is reused for irrigation. For sustainable agricultural production and safe groundwater recharge the secondary effluent is further polished by a combined two-stage membrane pilot system. The pilot membrane system consists of two main in row stages: Ultrafiltration (UF) and Reverse Osmosis (RO). The UF stage is efficient in the removal of the pathogens and suspended organic matter while the successive RO stage provides safe removal of the dissolved solids (salinity). Effluents of various qualities were applied for agricultural irrigation along with continuous monitoring of the membrane system performance. Best agricultural yields were obtained when applying effluent having minimal content of dissolved solids (after the RO stage) as compared with secondary effluent without any further treatment and extended storage. In regions with shallow groundwater reduced soil salinity in the upper productive layers, maintained by extra membrane treatment, will guarantee minimal dissolved solids migration to the aquifers and minimize salinisation processes. (c) IWA Publishing 2008.

  15. Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-10-20

    Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.

  16. Methanol tailgas combustor control method

    DOEpatents

    Hart-Predmore, David J.; Pettit, William H.

    2002-01-01

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  17. NOx reduction in combustion with concentrated coal streams and oxygen injection

    DOEpatents

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Snyder, William J.

    2004-03-02

    NOx formation in the combustion of solid hydrocarbonaceous fuel such as coal is reduced by obtaining, from the incoming feed stream of fuel solids and air, a stream having a ratio of fuel solids to air that is higher than that of the feed steam, and injecting the thus obtained stream and a small amount of oxygen to a burner where the fuel solids are combusted.

  18. Alkylphenols, Other Endocrine-Active Chemicals, and Fish Responses in Three Streams in Minnesota - Study Design and Data, February-September 2007

    USGS Publications Warehouse

    Lee, Kathy E.; Schoenfuss, Heiko L.; Jahns, Nathan D.; Brown, Greg K.; Barber, Larry B.

    2008-01-01

    This report presents the study design and environmental data for an integrated chemical and biological study of three streams (South Fork Crow River, Redwood River, and Grindstone River) that receive wastewater in Minnesota. The objective of the study was to identify distribution patterns of endocrine-active chemicals and other organic chemicals indicative of wastewater, and to identify fish responses in the same streams. Endocrine-active chemicals are a class of chemicals that interfere with the natural regulation of endocrine systems, and an understanding of their distribution in aquatic systems is important so that aquatic organism exposure can be evaluated. This study was a cooperative effort of the U.S. Geological Survey (USGS), the Minnesota Pollution Control Agency, and St. Cloud State University (St. Cloud, Minn.). The USGS collected and analyzed water and quality-assurance samples and measured streamflow during six sampling events in each of three streams. Water samples were collected upstream from and at two successive points downstream from wastewater-treatment plant (WWTP) effluent discharge and from treated effluent from February through September 2007. Bed-sediment samples were collected during one sampling period at each of the stream locations. Water and bed-sediment samples were analyzed for endocrine-active chemicals including alkylphenols, alkylphenol polyethoxylates, and nonylphenol ethoxycarboxlylates (NPECs). Water samples also were analyzed for major ions, nutrients, and organic carbon. In addition, as part of an intensive time-series investigation, the USGS staff collected daily water samples for 8 weeks from the Redwood River near Marshall, Minn., for analyses of total alkylphenols and atrazine. St. Cloud State University staff collected and analyzed fish to determine male fish responses at all water sampling sites and at an additional site near the discharge of wastewater-treatment plant effluent to these streams. Male fish responses included the presence and concentration of vitellogenin in plasma, gonadosomatic indices, and histological characterizations of liver and testes tissue. Hydrologic, chemical and biological characteristics were different among sites. The percentage of streamflow contributed by WWTP effluent (ranging from less than 1 to 79 percent) was greatest at the South Fork Crow River and least at the Grindstone River. WWTP effluent generally contributed the greatest percentage of streamflow during winter and late summer when streamflows were low. A wide variety of chemicals were detected. More chemicals were detected in WWTP effluent samples than in stream samples during most time periods. The most commonly detected chemicals in samples collected monthly and analyzed at the USGS National Research Program Laboratory were 2,6-di-tert-butyl-1,4-benzoquinone, 2,6-di-tert-butyl-4-methylphenol, 3-beta-coprostanol, 4-methylphenol, 4-nonylphenol (NP), 4-tert-octylphenol, bisphenol A, cholesterol, ethylenediaminetetraacetic acid, and triclosan. The chemicals 4-nonylphenolmonoethoxycarboxylate (NP1EC), 4-nonylphenoldiethoxycarboxylate (NP2EC), and 4-nonylphenoltriethoxycarboxylate (NP3EC) also were detected. Excluding nondetections, the sum of NP1EC through NP3EC concentrations ranged from 5.1 to 260 ug/L among all samples. NP was detected in upstream, effluent, and downstream samples in each stream during at least one time period. NP was detected in 49 percent of environmental samples. Excluding nondetections, concentrations of NP ranged from 100 to 880 nanograms per liter among all samples. NP was also detected in more than one-half of the bed-sediment samples. The most commonly detected wastewater indicator chemicals in samples analyzed by schedule 4433 at the USGS National Water Quality Laboratory were 3,4-dichlorophenyl isocyanate, acetyl-hexamethyl-tetrahydronaphthalene, benzophenone, cholesterol, hexahydrohexamethyl-cyclopenta-benzopyran, N,N-diethyl-meta-toluamide, and

  19. Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang

    2010-08-10

    The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

  20. POLISHING INDUSTRIAL WASTE STREAM EFFLUENTS USING FLY ASH - NATURAL CLAY SORBENT COMBINATION

    EPA Science Inventory

    A laboratory evaluation of the use of acidic and basic fly ashes, bentonite, bauxite, illite, kaolinite, zeolite, vermiculite, and activated alumina is presented for polishing a 3.8 x 10 to the 6th power liters per day waste stream from the feldspar mining and processing industry...

  1. Parallel single-species and stream mesocosm exposures for grading major ion effects in doses mimicking energy extraction produced waters

    EPA Science Inventory

    Excess TDS/Major Ionic Stress/Elevated Conductivities appeared increasing in streams in Central and Eastern Appalachia. Direct discharges from permitted point sources and regional interest in setting eco-based effluent guidelines/aquatic life criteria, as well as potential differ...

  2. Partial oxidation of methane (POM) assisted solid oxide co-electrolysis

    DOEpatents

    Chen, Fanglin; Wang, Yao

    2017-02-21

    Methods for simultaneous syngas generation by opposite sides of a solid oxide co-electrolysis cell are provided. The method can comprise exposing a cathode side of the solid oxide co-electrolysis cell to a cathode-side feed stream; supplying electricity to the solid oxide co-electrolysis cell such that the cathode side produces a product stream comprising hydrogen gas and carbon monoxide gas while supplying oxygen ions to an anode side of the solid oxide co-electrolysis cell; and exposing the anode side of the solid oxide co-electrolysis cell to an anode-side feed stream. The cathode-side feed stream comprises water and carbon dioxide, and the anode-side feed stream comprises methane gas such that the methane gas reacts with the oxygen ions to produce hydrogen and carbon monoxide. The cathode-side feed stream can further comprise nitrogen, hydrogen, or a mixture thereof.

  3. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are decreasing salinity in groundwater transported to streams.

  4. Impact of potential phosphate mining on the hydrology of Osceola National Forest, Florida

    USGS Publications Warehouse

    Miller, James A.; Hughes, G.H.; Hull, R.W.; Vecchioli, John; Seaber, P.R.

    1978-01-01

    Potentially exploitable phosphate deposits underlie part of Osceola National Forest, Fla. Hydrologic conditions in the forest are comparable with those in nearby Hamilton County, where phosphate mining and processing have been ongoing since 1965. Given similarity of operations, hydroloigc effects of mining in the forest are predicted. Flow of stream receiving phosphate industry effluent would increase somewhat during mining, but stream quality would not be greatly affected. Local changes in the configuration of the water table and the quality of water in the surficial aquifer will occur. Lowering of the potentiometric surface of the Floridan aquifer because of proposed pumpage would be less than five feet at nearby communities. Flordian aquifer water quality would be appreciably changed only if industrial effluent were discharged into streams which recharge the Flordian through sinkholes. The most significant hydrologic effects would occur at the time of active mining: long-term effects would be less significant. (Woodard-USGS)

  5. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.

    PubMed

    Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A

    2017-03-01

    The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios (sample absorbance at 254 nm divided by sample absorbance at 365 nm), suggesting that organic matter optical properties may hold promise to predict indirect compound photodegradation rates for various effluent mixing ratios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Benefits and Costs of Pulp and Paper Effluent Controls Under the Clean Water Act

    NASA Astrophysics Data System (ADS)

    Luken, Ralph A.; Johnson, F. Reed; Kibler, Virginia

    1992-03-01

    This study quantifies local improvements in environmental quality from controlling effluents in the pulp and paper industry. Although it is confined to a single industry, this study is the first effort to assess the actual net benefits of the Clean Water Act pollution control program. An assessment of water quality benefits requires linking regulatory policy, technical effects, and behavioral responses. Regulatory policies mandate specific controls that influence the quantity and nature of effluent discharges. We identify a subset of stream segments suitable for analysis, describe water quality simulations and control cost calculations under alternative regulatory scenarios, assign feasible water uses to each segment based on water quality, and determine probable upper bounds for the willingness of beneficiaries to pay. Because the act imposes uniform regulations that do not account for differences in compliance costs, existing stream quality, contributions of other effluent sources, and recreation potential, the relation between water quality benefits and costs varies widely across sites. This variation suggests that significant positive net benefits have probably been achieved in some cases, but we conclude that the costs of the Clean Water Act as a whole exceed likely benefits by a significant margin.

  7. Investigating the composition characteristics of dissolved and particulate/colloidal organic matter in effluent-dominated stream using fluorescence spectroscopy combined with multivariable analysis.

    PubMed

    Yu, Min-Da; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhao, Xian-Wei; Zhang, Hui; Huang, Cai-Hong; Tan, Wenbing

    2018-03-01

    Fluorescence excitation-emission matrix (EEM) spectroscopy combined with principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to investigate the compositional characteristics of dissolved and particulate/colloidal organic matter and its correlations with nitrogen, phosphorus, and heavy metals in an effluent-dominated stream, Northern China. The results showed that dissolved organic matter (DOM) was comprised of fulvic-like, humic-like, and protein-like components in the water samples, and fulvic-like substances were the main fraction of DOM among them. Particulate/colloidal organic matter (PcOM) consisted of fulvic-like and protein-like matter. Fulvic-like substances existed in the larger molecular form in PcOM, and they comprised a large amount of nitrogen and polar functional groups. On the other hand, protein-like components in PcOM were low in benzene ring and bound to heavy metals. It could be concluded that nitrogen, phosphorus, and heavy metals in effluent had an effect on the compositional characteristics of natural DOM and PcOM, which may deepen our understanding about the environmental behaviors of organic matter in effluent.

  8. Research on denitrification efficiency of three types of solid carbon source

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Zhang, J. D.; Li, F.; Cao, Y. X.; Zhu, L. Y.; Xiao, M. S.

    2018-01-01

    C/N rates can greatly influence efficiency of denitrification. It is difficult for current treated effluent to reach GB18918-2002 primary effluent standard because of its low C/N rate. To improve the efficiency of denitrification, the quality of effluent, and realize the waste recycling, this article selected magnolia leaves, loofah and degradable meal box as the solid carbon source and set different solid-liquid ratio of magnolia leaves for periodic denitrification stage to study the change of NO3 --N, TN, COD, NO2 --N, NH4 +, PO4 3- and color. The results showed that in the condition of influent nitrate concentration of 40 mg/L, carbon dosage of 10 g, the reaction temperature of 25°C, the nitrate removal rates of magnolia leaves and loofah reached 89.0% and 96.8% respectively, rather higher than degradable meal box (56.3%). The TN removal rates of magnolia leaves (91.7%) and loofah (77.7%) were both higher than degradable meal box (53.9%), and the effluent TN concentration of loofah and degradable meal box reached 25.4 mg/L and 21.1 mg/L respectively, which couldn’t be discharged according to the primary effluent concentration standard of GB18918-2002. The released concentration of ammonia nitrogen and phosphate: loofah> magnolia> degradable meal box. The high solid-liquid ratio of magnolia leaves helped to improve the TN removal rate, which reached 75.0% (1:200) and 91.7% (1:100), but it caused higher released concentration of carbon, ammonia nitrogen and phosphate to effect system heavily. Under the integrated analysis, the low solid-liquid ratio (1:200) of magnolia leaves was more suitable to be the denitrification external carbon source.

  9. Methods for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  10. Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream

    PubMed Central

    Du, Bowen; Haddad, Samuel P.; Luek, Andreas; Scott, W. Casan; Saari, Gavin N.; Kristofco, Lauren A.; Connors, Kristin A.; Rash, Christopher; Rasmussen, Joseph B.; Chambliss, C. Kevin; Brooks, Bryan W.

    2014-01-01

    Though pharmaceuticals are increasingly observed in a variety of organisms from coastal and inland aquatic systems, trophic transfer of pharmaceuticals in aquatic food webs have not been reported. In this study, bioaccumulation of select pharmaceuticals was investigated in a lower order effluent-dependent stream in central Texas, USA, using isotope dilution liquid chromatography–tandem mass spectrometry (MS). A fish plasma model, initially developed from laboratory studies, was tested to examine observed versus predicted internal dose of select pharmaceuticals. Pharmaceuticals accumulated to higher concentrations in invertebrates relative to fish; elevated concentrations of the antidepressant sertraline and its primary metabolite desmethylsertraline were observed in the Asian clam, Corbicula fluminea, and two unionid mussel species. Trophic positions were determined from stable isotopes (δ15N and δ13C) collected by isotope ratio-MS; a Bayesian mixing model was then used to estimate diet contributions towards top fish predators. Because diphenhydramine and carbamazepine were the only target compounds detected in all species examined, trophic magnification factors (TMFs) were derived to evaluate potential trophic transfer of both compounds. TMFs for diphenhydramine (0.38) and carbamazepine (1.17) indicated neither compound experienced trophic magnification, which suggests that inhalational and not dietary exposure represented the primary route of uptake by fish in this effluent-dependent stream. PMID:25313153

  11. Swirl Flow Bioreactor coupled with Cu-alginate beads: A system for the eradication of Coliform and Escherichia coli from biological effluents.

    PubMed

    Atkinson, Sov; Thomas, Simon F; Goddard, Paul; Bransgrove, Rachel M; Mason, Paul T; Oak, Ajeet; Bansode, Anand; Patankar, Rohit; Gleason, Zachary D; Sim, Marissa K; Whitesell, Andrew; Allen, Michael J

    2015-05-21

    It is estimated that approximately 1.1 billion people globally drink unsafe water. We previously reported both a novel copper-alginate bead, which quickly reduces pathogen loading in waste streams and the incorporation of these beads into a novel swirl flow bioreactor (SFB), of low capital and running costs and of simple construction from commercially available plumbing pipes and fittings. The purpose of the present study was to trial this system for pathogen reduction in waste streams from an operating Dewats system in Hinjewadi, Pune, India and in both simulated and real waste streams in Seattle, Washington, USA. The trials in India, showed a complete inactivation of coliforms in the discharged effluent (Mean Log removal Value (MLRV) = 3.51), accompanied by a total inactivation of E. coli with a MLRV of 1.95. The secondary clarifier effluent also showed a 4.38 MLRV in viable coliforms during treatment. However, the system was slightly less effective in reducing E. coli viability, with a MLRV of 1.80. The trials in Seattle also demonstrated the efficacy of the system in the reduction of viable bacteria, with a LRV of 5.67 observed of viable Raoultella terrigena cells (100%).

  12. EBP2R - an innovative enhanced biological nutrient recovery activated sludge system to produce growth medium for green microalgae cultivation.

    PubMed

    Valverde-Pérez, Borja; Ramin, Elham; Smets, Barth F; Plósz, Benedek Gy

    2015-01-01

    Current research considers wastewater as a source of energy, nutrients and water and not just a source of pollution. So far, mainly energy intensive physical and chemical unit processes have been developed to recover some of these resources, and less energy and resource demanding alternatives are needed. Here, we present a modified enhanced biological phosphorus removal and recovery system (referred to as EBP2R) that can produce optimal culture media for downstream micro-algal growth in terms of N and P content. Phosphorus is recovered as a P-stream by diversion of some of the effluent from the upstream anaerobic reactor. By operating the process at comparably low solids retention times (SRT), the nitrogen content of wastewater is retained as free and saline ammonia, the preferred form of nitrogen for most micro-algae. Scenario simulations were carried out to assess the capacity of the EBP2R system to produce nutrient rich organic-carbon depleted algal cultivation media of target composition. Via SRT control, the quality of the constructed cultivation media can be optimized to support a wide range of green micro-algal growth requirements. Up to 75% of the influent phosphorus can be recovered, by diverting 30% of the influent flow as a P-stream at an SRT of 5 days. Through global sensitivity analysis we find that the effluent N-to-P ratio and the P recovered are mainly dependent on the influent quality rather than on biokinetics or stoichiometry. Further research is needed to demonstrate that the system performance predicted through the model-based design can be achieved in reality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Integration of the Anammox process to the rejection water and main stream lines of WWTPs.

    PubMed

    Morales, Nicolás; Val Del Río, Ángeles; Vázquez-Padín, José Ramón; Méndez, Ramón; Mosquera-Corral, Anuska; Campos, José Luis

    2015-12-01

    Nowadays the application of Anammox based processes in the wastewater treatment plants has given a step forward. The new goal consists of removing the nitrogen present in the main stream of the WWTPs to improve their energetic efficiencies. This new approach aims to remove not only the nitrogen but also to provide a better use of the energy contained in the organic matter. The organic matter will be removed either by an anaerobic psychrophilic membrane reactor or an aerobic stage operated at low solids retention time followed by an anaerobic digestion of the generated sludge. Then ammonia coming from these units will be removed in an Anammox based process in a single unit system. The second strategy provides the best results in terms of operational costs and would allow reductions of about 28%. Recent research works performed on Anammox based processes and operated at relatively low temperatures and/or low ammonia concentrations were carried out in single-stage systems using biofilms, granules or a mixture of flocculent nitrifying and granular Anammox biomasses. These systems allowed the appropriated retention of Anammox and ammonia oxidizing bacteria but also the proliferation of nitrite oxidizing bacteria which seems to be the main drawback to achieve the required effluent quality for disposal. Therefore, prior to the implementation of the Anammox based processes at full scale to the water line, a reliable strategy to avoid nitrite oxidation should be defined in order to maintain the process stability and to obtain the desired effluent quality. If not, the application of a post-denitrification step should be necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Assessment of the effluent quality from a gold mining industry in Ghana.

    PubMed

    Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L

    2013-06-01

    The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.

  15. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant December 1992--December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.; Hinzman, R.L.; Peterson, M.J.

    1995-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). The goals of BMP are to demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation of fish and other aquatic life, characterize potential health and environmental impacts, document the effects of pollution abatement facilities on stream biota, and recommend any program improvements that would increase effluent treatability. The BMP formore » PGDP consists of three major tasks: effluent and ambient toxicity monitoring, bioaccumulation studies, and ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report includes ESD activities occurring from December 1992 to December 1993, although activities conducted outside this time period are included as appropriate.« less

  16. Characterisation of coal washery effluent and optimisation of coagulation behaviour of Moringa oleifera seed as a coagulant.

    PubMed

    Kapse, Gaurav; Patoliya, Pruthvi; Samadder, S R

    2017-03-01

    The huge quantity of effluent generated in coal washing processes contains large amount of suspended and dissolved solids, clay minerals, coal fines and other impurities associated with raw coal. The present system of recirculation of the effluent is found to be ineffective in removing colloidal fines, which is the major part of the impurities present in washery effluent. Hence, there is a need for the assessment of a better technique for an efficient removal of these impurities. This study deals with detailed characterisation of coal washery effluent and fine particles present in it. For efficient removal of impurities, the suitability of biocoag-flocculation process using Moringa oleifera seed biomass as a natural coagulant was examined. Various doses of M. oleifera ranging from 0.2 to 3 mL/L were used in order to determine the optimal conditions. The impact of the variations in pH of the effluent (2-10), contact time (5-30 min), settlement time (5-50 min), temperature (10-50 °C) and the effluent dilution (1:0-1:5) was also assessed to optimise the treatment process. Post treatment analysis was carried out for determination of the different parameters such as pH, conductivity, turbidity, solids and settling velocity. Excellent reduction in turbidity (97.42%) and suspended solids (97.78%) was observed at an optimum dose of M. oleifera seed coagulant of 0.8 mL/L with an optimum contact time of 15 and at 20 min of settling time. In comparison with very few past studies of M. oleifera in the treatment of coal washery effluent with high dose and inadequate removal, this study stands to be a major highlight with low dose and high removal of the impurities. M. oleifera coagulant is considered to be an environment-friendly material, therefore, its application is recommended for simple and efficient treatment of coal washery effluent.

  17. Potential estrogenic effects of wastewaters on gene expression in Pimephales promelas and fish assemblages in streams of southeastern New York

    USGS Publications Warehouse

    Baldigo, Barry P.; George, Scott D.; Phillips, Patrick J.; Hemming, Joceyln D. C.; Denslow, Nancy D.; Kroll, Kevin J.

    2015-01-01

    Direct linkages between endocrine-disrupting compounds (EDCs) from municipal and industrial wastewaters and impacts on wild fish assemblages are rare. The levels of plasma vitellogenin (Vtg) and Vtg messenger ribonucleic acid (mRNA) in male fathead minnows (Pimephales promelas) exposed to wastewater effluents and dilutions of 17α-ethinylestradiol (EE2), estrogen activity, and fish assemblages in 10 receiving streams were assessed to improve understanding of important interrelations. Results from 4-d laboratory assays indicate that EE2, plasma Vtg concentration, and Vtg gene expression in fathead minnows, and 17β-estradiol equivalents (E2Eq values) were highly related to each other (R2 = 0.98–1.00). Concentrations of E2Eq in most effluents did not exceed 2.0 ng/L, which was possibly a short-term exposure threshold for Vtg gene expression in male fathead minnows. Plasma Vtg in fathead minnows only increased significantly (up to 1136 μg/mL) in 2 wastewater effluents. Fish assemblages were generally unaffected at 8 of 10 study sites, yet the density and biomass of 79% to 89% of species populations were reduced (63–68% were reduced significantly) in the downstream reach of 1 receiving stream. These results, and moderate to high E2Eq concentrations (up to 16.1 ng/L) observed in effluents during a companion study, suggest that estrogenic wastewaters can potentially affect individual fish, their populations, and entire fish communities in comparable systems across New York, USA. 

  18. Pollution profile and biodegradation characteristics of fur-suede processing effluents.

    PubMed

    Yildiz Töre, G; Insel, G; Ubay Cokgör, E; Ferlier, E; Kabdaşli, I; Orhon, D

    2011-07-01

    This study investigated the effect of stream segregation on the biodegradation characteristics of wastewaters generated by fur-suede processing. It was conducted on a plant located in an organized industrial district in Turkey. A detailed in-plant analysis of the process profile and the resulting pollution profile in terms of significant parameters indicated the characteristics of a strong wastewater with a maximum total COD of 4285 mg L(-1), despite the excessive wastewater generation of 205 m3 (ton skin)(-1). Respirometric analysis by model calibration yielded slow biodegradation kinetics and showed that around 50% of the particulate organics were utilized at a rate similar to that of endogenous respiration. A similar analysis on the segregated wastewater streams suggested that biodegradation of the plant effluent is controlled largely by the initial washing/pickling operations. The effect of other effluent streams was not significant due to their relatively low contribution to the overall organic load. The respirometric tests showed that the biodegradation kinetics of the joint treatment plant influent of the district were substantially improved and exhibited typical levels reported for tannery wastewater, so that the inhibitory impact was suppressed to a great extent by dilution and mixing with effluents of the other plants. The chemical treatment step in the joint treatment plant removed the majority of the particulate organics so that 80% of the available COD was utilized in the oxygen uptake rate (OUR) test, a ratio quite compatible with the biodegradable COD fractions of tannery wastewater. Consequently, process kinetics and especially the hydrolysis rate appeared to be significantly improved.

  19. New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, M. S.; Wilson, J.; Ahrendt, M.

    Specialty ion specific media were examined and developed for, not only pre- and post-outage waste streams, but also for very difficult outage waste streams. This work was carried out on first surrogate waste streams, then laboratory samples of actual waste streams, and, finally, actual on-site waste streams. This study was particularly focused on PWR wastewaters such as Floor Drain Tank (FDT), Boron Waste Storage Tank (BWST), and Waste Treatment Tank (WTT, or discharge tank). Over the last half decade, or so, treatment technologies have so greatly improved and discharge levels have become so low, that certain particularly problematic isotopes, recalcitrantmore » to current treatment skids, are all that remain prior to discharge. In reality, they have always been present, but overshadowed by the more prevalent and higher activity isotopes. Such recalcitrants include cobalt, especially Co 58 [both ionic/soluble (total dissolved solids, TDS) and colloidal (total suspended solids, TSS)] and antimony (Sb). The former is present in most FDT and BWST wastewaters, while the Sb is primarily present in BWST waste streams. The reasons Co 58 can be elusive to granulated activated carbon (GAC), ultrafiltration (UF) and ion exchange (IX) demineralizers is that it forms submicron colloids as well as has a tendency to form metal complexes with chelating agents (e.g., ethylene diamine tetraacetic acid, or EDTA). Such colloids and non-charged complexes will pass through the entire treatment skid. Antimony (Sb) on the other hand, has little or no ionic charge, and will, likewise, pass through both the filtration and de-min skids into the discharge tanks. While the latter will sometimes (the anionic vs. the cationic or neutral species) be removed on the anion bed(s), it will slough off (snow-plow effect) when a higher affinity anion (iodine slugs, etc.) comes along; thus causing effluents not meeting discharge criteria. The answer to these problems found in this study, during an actual Nuclear Power Plant (NPP) outage cycle and recovery (four months), was the down-select and development of a number of highly ion specific media for the specific removal of such elusive isotopes. Over three dozen media including standard cation and anion ion exchangers, specialty IX, standard carbons, and, finally, chemically doped media (e.g., carbon and alumina substrates). The latter involved doping with iron, manganese, and even metals. The media down-select was carried out on actual plant waste streams so that all possible outage affects were accounted for, and distribution coefficients (Kd's) were determined (vs. decontamination factors, DF's, or percent removals). Such Kd's, in milliliters of solution per gram of media (mug), produce data indicative of the longevity of the media in that particular waste stream. Herein, the down-select is reported in Pareto (decreasing order) tables. Further affects such as the presence of high cobalt concentrations, high boron concentrations, the presence of hydrazine and chelating agents, and extreme pH conditions. Of particular importance here is to avoid the affinity of competing ions (e.g., a Sb specific media having more than a slight affinity for Co). The latter results in the snow-plow effect of sloughing off 3 to 4 times the cobalt into the effluent as was in the feed upon picking up the Sb. The study was quite successful and resulted in the development of and selection of a resin-type and two granular media for antimony removal, and two resin-types and a granular media for cobalt removal. The decontamination factors for both media were hundreds to thousands of times that of the full filtration and de-min. (authors)« less

  20. Effluent monitoring of the December 10, 1974, Titan 3-E launch at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.

    1978-01-01

    Surface and airborne field measurements of the cloud behavior and effluent dispersion from a solid rocket motor launch vehicle are presented. The measurements were obtained as part of a continuing launch vehicle effluent monitoring program to obtain experimental field measurements in order to evaluate a model used to predict launch vehicle environmental impact. Results show that the model tends to overpredict effluent levels.

  1. Study on quality of effluent discharge by the Tiruppur textile dyeing units and its impact on river Noyyal, Tamil Nadu (India).

    PubMed

    Rajkumar, A Samuel; Nagan, S

    2010-10-01

    In Tiruppur, 729 textile dyeing units are under operation and these units generate 96.1 MLD of wastewater. The untreated effluent was discharged into the Noyyal River till 1997. After the issuance of directions by Tamil Nadu Pollution Control Board (TNPCB) in 1997, these units have installed 8 common effluent treatment plants (CETP) consisting of physical, chemical and biological treatment units. Some of the units have installed individual ETP (IETP). The treated effluent was finally discharged into the river. The dyeing units use sodium chloride in the dyeing process for efficient fixing of dye in the fabric efficiently. This contributes high total dissolved solids (TDS) and chlorides in the effluent. CETPs and IETPs failed to meet discharge standards of TDS and chlorides and thereby significantly affected the river water quality. TDS level in the river water was in the range of 900 - 6600 mg/L, and chloride was in the range of 230 - 2700 mg/L. Orathupalayam dam is located across Noyyal river at 32 km down stream of Tiruppur. The pollutants carried by the river were accumulated in the dam. TDS in the dam water was in the range of 4250 - 7900 mg/L and chloride was in the range of 1600 - 2700 mg/L. The dam sediments contain heavy metals of chromium, copper, zinc and lead. In 2006, the High Court has directed the dyeing units to install zero liquid discharge (ZLD) plant and to stop discharging of effluent into the river. Accordingly, the industries have installed and commissioned the ZLD plant consisting of RO plant and reject management system in 2010. The effluent after secondary treatment from the CETP is further treated in RO plant. The RO permeate is reused by the member units. The RO reject is concentrated in multiple effect evaporator (MEE)/ mechanical vacuum re-compressor (MVR). The concentrate is crystallized and centrifuged to recover salt. The salt recovered is reused. The liquid separated from the centrifuge is sent to solar evaporation pan. The salt collected in the solar pan is bagged and stored in secure land fill facility. Thus, the discharge into the river is now stopped. However, the damage caused to the groundwater and soil contamination in the river basin is yet to be restored.

  2. Settling and survival profile of enteric pathogens in the swine effluent for water reuse purpose.

    PubMed

    Fongaro, G; Kunz, A; Magri, M E; Schissi, C D; Viancelli, A; Philippi, L S; Barardi, C R M

    2016-11-01

    The present study evaluated the pathogens persistence and settling profile in swine effluent. We determined the enteric pathogens settling characteristics, their survival and inactivation profile in swine effluent (for water reuse purpose) and in sludge (generated after aerobic treatment - during secondary settling process). The study was performed in laboratorial-scale and in full-scale (manure treatment plant). Enteric viruses and enteric bacteria were used as biomarkers. Results showed that these enteric pathogens were significantly reduced from swine effluent during secondary settling process, and enteric viruses removal was correlated with the suspended solids decantation. The design of secondary settlers can be adapted to improve pathogens removal, by diminishing the solids loading rate per area and time, ending in higher hydraulic retention times. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Magnetic Characterization of Stream-Sediments From Buenos Aires Province, Argentina, Affected by Pollution

    NASA Astrophysics Data System (ADS)

    Chaparro, M. A.; Sinito, A. M.; Bidegain, J. C.; Gogorza, C. S.; Jurado, S.

    2001-12-01

    A wide urban area from Northeast of Buenos Aires Province is exposed to an important anthropogenic influence, mainly due to industrial activity. In this two water streams were chosen: one of them (Del Gato stream, G) next to La Plata City and the another one (El Pescado stream, P) on the outskirts of the city. Both streams have similar characteristics, although the first one (G) has a higher input of pollutants (fluvial effluents, fly ashes, solid wastes, etc.) than the last one (P). Sediments analyzed in this work are limes from continental origin of PostPampeano (Holocene). Although, some cores were affected by sandy-limy sediments with mollusc valves from Querandino Sea (Pleistocene - later Holocene) and limy sediments of chestnut color with calcareous concretions from the Ensenadense. Magnetic measurements and geochemical studies were carried out on the samples. Among the magnetic parameters, specific susceptibility (X), X frequency-dependence (Xfd%), X temperature-dependence, Natural Remanent Magnetization (NRM), Isothermal Remanent Magnetization (IRM), Saturation IRM (SIRM), coercivity of remanence (Bcr), S ratio and SIRM/X ratio, Anhysteric Remanent Magnetization (ARM), Magnetic and Thermal Demagnetization were studied. The magnetic characteristics for both sites indicate the predominance of magnetically soft minerals on G site and relatively hard minerals on P site. Magnetite is the main magnetic carrier, Pseudo Single Domain and Single Domain grains were found. Chemical studies show (in some cases) a high concentration for some heavy metals (Pb, Cu, Zn, Ni and Fe) on the upper 22-cm. Contents of heavy metals and ARM were correlated. Very good correlation (R> 0.81) is found for Cu, Zn, Ni, Fe and the sum (of Pb, Cu, Zn and Ni), and a weaker correlation for Pb.

  4. Examining the effects of metal mining mixtures on fathead minnow (Pimephales promelas) using field-based multi-trophic artificial streams.

    PubMed

    Rozon-Ramilo, Lisa D; Dubé, Monique G; Rickwood, Carrie J; Niyogi, Som

    2011-09-01

    This study illustrates the use of a mesocosm approach for assessing the independent effects of three treated metal mine effluents (MME) discharging into a common receiving environment and regulated under the same regulation. A field-based, multi-trophic artificial stream study was conducted in August 2008 to assess the effects of three metal mining effluents on fathead minnow (Pimephales promelas) in a 21-day reproduction bioassay. The nature of the approach allowed for assessment of both dietary and waterborne exposure pathways. Elements (e.g. Se, Co, Cl, Cu, Fe) were analyzed in several media (water, sediments) and tissues (biofilm, Chironomus dilutus, female fathead minnow (FHM) body, ovary, liver, gills). Significant increases in metal and micronutrient concentrations were observed in the water and biofilm tissues in all MME treatments [20% surface water effluent (SWE), 30% mine water effluent (MWE), and 45% process water effluent (PWE)], compared to reference. However, copper was the only element to significantly increase in the sediments when exposed to PWE. Co and Ni increased significantly in C. dilutus tissues in SWE (1.4- and 1.5-fold, respectively), Cu and Se also increased in chironomid tissues in PWE (5.2- and 3.3-fold, respectively); however, no significant increases in metals or micronutrients occurred in chironomid tissues when exposed to MWE compared to reference. There were no significant increases in metal concentrations in female FHM tissues (body, liver, gonads, gills) in any of the treatments suggesting that metals were either not bioavailable, lost from the females via the eggs, or naturally regulated through homeostatic mechanisms. Cumulative number of eggs per female per day increased significantly (∼127%) after exposure to SWE and decreased significantly (∼33%) after exposure to PWE when compared to reference. Mean total number of days to hatch was reduced in PWE compared to reference. This study shows the importance of isolating treatment streams in cumulative discharge environments to assess aquatic effects due to the different nature of the effluents. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Biodegradation of 17β-estradiol, estrone, and testosterone in stream sediments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Barber, L.B.; McMahon, P.B.; Gray, J.L.; Kolpin, D.W.

    2009-01-01

    The release of endocrine-disrupting chemicals (EDCs) in wastewater treatment plant (WWTP) effluent poses a significant threat to the ecology of surface water receptors, due to impacts on the hormonal control, sexual development, reproductive success and community structure of the indigenous aquatic organisms and associated wildlife. Among the EDCs commonly observed in WWTP effluent, the natural [e.g., 17??-estradiol (E2) and estrone (E1)] and synthetic [e.g., ethynylestradiol (EE2)] estrogens are particular concerns owing to their high endocrine reactivity in both in vitro and in vivo laboratory models. These reproductive hormones have been identified as the primary cause of estrogenic effects in wastewater effluent, with greater than 95% of the estrogen receptor agonist activity in effluent attributed to this contaminant group. The potentials for in situ biodegradation of 17??-estradiol (E2), estrone (E1), and testosterone (T) were investigated in three, hydrologically-distinct, WWTP-impacted streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream samples provided insight into the biodegradative potential of sediment microbial communities that were not under the immediate impact of WWTP effluent. Upstream sediment from all three systems demonstrated significant mineralization of the "A" ring of E2, E1 and T, with the potential of T biodegradation consistently greater than of E2 and no systematic difference in the potentials of E2 and E1. Downstream samples provided insight into the impacts of effluent on reproductive hormone biodegradation. Significant "A" ring mineralization was also observed in downstream sediment, with the potentials for E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, the potentials for E2 mineralization immediately downstream of the WWTP outfalls were more than double that of upstream samples. E2 mineralization was also observed in water, albeit at insufficient rate to prevent substantial downstream transport in the water column. The results of this study indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for nonconservative (destructive) attenuation of hormonal endocrine disruptors in effluent-impacted streams.

  6. 40 CFR 435.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY Offshore... 40 CFR 125.30-32, any existing point source subject to this subpart must achieve the following... Minimum of 1 mg/l and maintained as close to this concentration as possible. Sanitary M91M Floating solids...

  7. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  8. Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH.

    PubMed

    Miralles-Cuevas, S; Oller, I; Pérez, J A Sánchez; Malato, S

    2014-11-01

    In recent years, membrane technologies (nanofiltration (NF)/reverse osmosis (RO)) have received much attention for micropollutant separation from Municipal Wastewater Treatment Plant (MWTP) effluents. Practically all micropollutants are retained in the concentrate stream, which must be treated. Advanced Oxidation Processes (AOPs) have been demonstrated to be a good option for the removal of microcontaminants from water systems. However, these processes are expensive, and therefore, are usually combined with other techniques (such as membrane systems) in an attempt at cost reduction. One of the main costs in solar photo-Fenton comes from reagent consumption, mainly hydrogen peroxide and chemicals for pH adjustment. Thus, in this study, solar photo-Fenton was used to treat a real MWTP effluent with low initial iron (less than 0.2 mM) and hydrogen peroxide (less than 2 mM) concentrations. In order to work at neutral pH, iron complexing agents (EDDS and citrate) were used in the two cases studied: direct treatment of the MWTP effluent and treatment of the concentrate stream generated by NF. The degradation of five pharmaceuticals (carbamazepine, flumequine, ibuprofen, ofloxacin and sulfamethoxazole) spiked in the effluent at low initial concentrations (μg L(-1)) was monitored as the main variable in the pilot-plant-scale photo-Fenton experiments. In both effluents, pharmaceuticals were efficiently removed (>90%), requiring low accumulated solar energy (2 kJUV L(-1), key parameter in scaling up the CPC photoreactor) and low iron and hydrogen peroxide concentrations (reagent costs, 0.1 and 1.5 mM, respectively). NF provided a clean effluent, and the concentrate was positively treated by solar photo-Fenton with no significant differences between the direct MWTP effluent and NF concentrate treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of recirculation on organic matter removal in a hybrid constructed wetland system.

    PubMed

    Ayaz, S C; Findik, N; Akça, L; Erdoğan, N; Kinaci, C

    2011-01-01

    This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 +/- 4% for COD, 83 +/- 10% for BOD and 96 +/- 3% for suspended solids with average effluent concentrations of 9 +/- 5 mg/L COD, 6 +/- 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.

  10. Effects of a chronic lower range of triclosan exposure to a stream mesocosm community

    USGS Publications Warehouse

    Nietch, C.T.; Quinlan, E.L.; Lazorchak, J.; Impellitteri, C.; Raikow, D.; Walters, David M.

    2013-01-01

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is an antimicrobial found in consumer soaps and toothpaste. It is in treated wastewater effluents at low part per billion concentrations, representing a potentially chronic exposure condition for biota inhabiting receiving streams. A naturally colonized benthos was created using flow-through indoor mesocosms. Then the benthic communities were dosed to achieve different in-stream triclosan concentrations (Control, 0.1, 0.5, 1.0, 5.0, and 10 µg/L) for 56 days. Water quality parameters and endpoints from bacteria to macroinvertebrates plus interacting abiotic components were measured. Effects of triclosan on specific microbial endpoints were observed at all doses, including an effect on litter decomposition dynamics at doses 1.0 µg/L and higher. Resistance of periphytic bacteria to triclosan significantly increased in doses 0.5 µg/L and above. By the end of dosing, the antimicrobial appeared to stimulate the stream periphyton at the three lowest doses while the two highest doses exhibited decreased stocks of periphyton, including significantly lower bacteria cell densities, and cyanobacteria abundance compared to the control. Beside an effect on benthic ostracods, the changes that occurred in the periphyton did not translate to significant change in the colonizing nematodes, the macroinvertebrate community as a whole, or other measurements of stream function. The results shed light on the role a low, chronic exposure to triclosan may play in effluent dominated streams.

  11. Recovery of ammonia and production of high-grade phosphates from side-stream digester effluents using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    Phosphorus recovery was combined with ammonia recovery using gas-permeable membranes. In a first step, the ammonia and alkalinity were removed from municipal side-stream wastewater using low-rate aeration and a gas-permeable membrane manifold. In a second step, the phosphorus was removed using magne...

  12. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81more » Water Services waste water.« less

  13. An integrated microbial electrolysis-anaerobic digestion process combined with pretreatment of wastewater solids to improve hydrogen production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beegle, Jeff R.; Borole, Abhijeet P.

    A combined anaerobic digestion (AD) and microbial electrolysis cell (MEC) system, named here as ADMEC, was investigated in this paper to evaluate the energy recovery from pretreated wastewater solids. Alkaline and thermal hydrolysis pretreatment methods increased the solubility of organic compounds present in the raw solids by 25% and 20%, respectively. The soluble phase from pretreatment was separated and used for microbial electrolysis, whereas the insoluble fraction was fed into semi-continuous digesters. The digester effluent was later utilized as a second MEC substrate. The pretreatment had variable effects on AD and MEC performance. The methane content in AD biogas wasmore » higher in pretreated groups, 78.29 ± 2.89% and 73.2 ± 1.79%, for alkaline and thermal, than the control, 50.26 ± 0.53%, but the overall biogas production rates were lower than the control, 20 and 30 mL CH 4 gCOD -1 d -1 for alkaline and thermal compared to 80 mL CH 4 gCOD -1 d -1. The effluent streams from thermally pretreated digesters were the best substrate for microbial electrolysis, in terms of hydrogen production and efficiency. The MECs produced 1.7 ± 0.2 L-H 2 per L per day, 0.3 ± 0.1 L-H 2 per L per day, and 0.29 ± 0.1 L-H 2 per L per day, for thermal, alkaline, and control reactors. The productivity was lower compared to acetate and propionate controls, which yielded 5.79 ± 0.03 L-H 2 per L per day and 3.49 ± 0.10 L-H 2 per L per day, respectively. The pretreatment solubilized fractions were not ideal substrates for microbial electrolysis. Finally, a chemical oxygen demand (COD) mass balance showed that pretreatment shifts the electron flux away from methane and biomass sinks towards hydrogen production.« less

  14. An integrated microbial electrolysis-anaerobic digestion process combined with pretreatment of wastewater solids to improve hydrogen production

    DOE PAGES

    Beegle, Jeff R.; Borole, Abhijeet P.

    2017-08-17

    A combined anaerobic digestion (AD) and microbial electrolysis cell (MEC) system, named here as ADMEC, was investigated in this paper to evaluate the energy recovery from pretreated wastewater solids. Alkaline and thermal hydrolysis pretreatment methods increased the solubility of organic compounds present in the raw solids by 25% and 20%, respectively. The soluble phase from pretreatment was separated and used for microbial electrolysis, whereas the insoluble fraction was fed into semi-continuous digesters. The digester effluent was later utilized as a second MEC substrate. The pretreatment had variable effects on AD and MEC performance. The methane content in AD biogas wasmore » higher in pretreated groups, 78.29 ± 2.89% and 73.2 ± 1.79%, for alkaline and thermal, than the control, 50.26 ± 0.53%, but the overall biogas production rates were lower than the control, 20 and 30 mL CH 4 gCOD -1 d -1 for alkaline and thermal compared to 80 mL CH 4 gCOD -1 d -1. The effluent streams from thermally pretreated digesters were the best substrate for microbial electrolysis, in terms of hydrogen production and efficiency. The MECs produced 1.7 ± 0.2 L-H 2 per L per day, 0.3 ± 0.1 L-H 2 per L per day, and 0.29 ± 0.1 L-H 2 per L per day, for thermal, alkaline, and control reactors. The productivity was lower compared to acetate and propionate controls, which yielded 5.79 ± 0.03 L-H 2 per L per day and 3.49 ± 0.10 L-H 2 per L per day, respectively. The pretreatment solubilized fractions were not ideal substrates for microbial electrolysis. Finally, a chemical oxygen demand (COD) mass balance showed that pretreatment shifts the electron flux away from methane and biomass sinks towards hydrogen production.« less

  15. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Silver Creek, Clark and Floyd counties, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Silver Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Effluents from the Sellersburg and Clarksville-North wastewater-treatment facilities are the only point-source waste loads that significantly affect the water quality in the modeled segment of Silver Creek. Model simulations indicate that nitrification is the most significant factor affecting the dissolved-oxygen concentration in Silver Creek during summer and winter low flows. Natural streamflow in Silver Creek during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. Present ammonia-nitrogen and dissolved-oxygen concentrations of effluent from the Sellersburg and Clarksville-North wastewater-treatment facilities will violate current Indiana water-quality standards for ammonia toxicity and dissolved oxygen during summer and winter low flows. The current biochemical-oxygen demand limits for the Sellersburg and Clarksville-North wastewater-treatment facilities are not sufficient to maintain an average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams. Calculations of the stream 's assimilative capacity indicate that Silver Creek cannot assimilate additional waste loadings and meet current Indiana water-quality standards. (Kosco-USGS)

  16. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater.

    PubMed

    Simsek, Halis; Kasi, Murthy; Ohm, Jae-Bom; Murthy, Sudhir; Khan, Eakalak

    2016-04-01

    Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention due to increased regulatory requirements on effluent quality to protect receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs) (0.3, 0.7, 2, 3, 4, 5, 7, 8, and 13 days) to examine whether SRT could be used to control DON, biodegradable DON (BDON), and DON biodegradability (BDON/DON) levels in treated wastewater. Results indicated no trend between effluent DON and SRTs. Effluent BDON was comparable for SRTs of 0.3-4 days and had a decreasing trend with SRT after that. Effluent DON biodegradability (effluent BDON/effluent DON) ranging from 23% to 59% tended to decrease with SRT. Chemostat during longer SRTs, however, was contributing to non-biodegradable DON (NBDON) and this fraction of DON increased with SRT above 4 days. Model calibration results indicated that ammonification rate, and growth rates for ordinary heterotrophs, ammonia oxidizing bacteria and nitrite oxidizing bacteria were not constants but have a decreasing trend with increasing SRT. This study indicates the benefit of high SRTs in term of producing effluent with less DON biodegradability leading to relatively less oxygen consumption and nutrient support in receiving waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant▿

    PubMed Central

    Sima, Laura C.; Schaeffer, Julien; Le Saux, Jean-Claude; Parnaudeau, Sylvain; Elimelech, Menachem; Le Guyader, Françoise S.

    2011-01-01

    To evaluate membrane bioreactor wastewater treatment virus removal, a study was conducted in southwest France. Samples collected from plant influent, an aeration basin, membrane effluent, solid sludge, and effluent biweekly from October 2009 to June 2010 were analyzed for calicivirus (norovirus and sapovirus) by real-time reverse transcription-PCR (RT-PCR) using extraction controls to perform quantification. Adenovirus and Escherichia coli also were analyzed to compare removal efficiencies. In the influent, sapovirus was always present, while the norovirus concentration varied temporally, with the highest concentration being detected from February to May. All three human norovirus genogroups (GI, GII, and GIV) were detected in effluent, but GIV was never detected in effluent; GI and GII were detected in 50% of the samples but at low concentrations. In the effluent, sapovirus was identified only once. An adenovirus titer showing temporal variation in influent samples was identified only twice in effluent. E. coli was always below the limit of detection in the effluent. Overall, the removal of calicivirus varied from 3.3 to greater than 6.8 log units, with no difference between the two main genogroups. Our results also demonstrated that the viruses are blocked by the membrane in the treatment plant and are removed from the plant as solid sludge. PMID:21666029

  18. [Isolation, Identification and Characteristic Analysis of an Oil-producing Chlorella sp. Tolerant to High-strength Anaerobic Digestion Effluent].

    PubMed

    Yang, Chuang; Wang, Wen-guo; Ma, Dan-wei; Tang, Xiao-yu; Hu, Qi-chun

    2015-07-01

    A Chlorella strain tolerant to high-strength anaerobic digestion effluent was isolated from the anaerobic digestion effluent with a long-term exposure to air. The strain was identified as a Chlorella by morphological and molecular biological methods, and named Chlorella sp. BWY-1, The anaerobic digestion effluent used in this study was from a biogas plant with the raw materials of swine wastewater after solid-liquid separation. The Chlorella regularis (FACHB-729) was used as the control strain. The comparative study showed that Chlorella sp, BWY-Ihad relatively higher growth rate, biomass accumulation capacity and pollutants removal rate in BG11. and different concentrations of anaerobic digestion effluent. Chlorella sp. BWY-1 had the highest growth rate and biomass productivity (324.40 mg.L-1) in BG11, but its lipid productivity and lipid content increased with the increase of anaerobic digestion effluent concentration, In undiluted anaerobic digestion effluent, the lipid productivity and lipid content of Chlorella sp. BWY-1 were up to 44. 43% and 108. 70 mg.L-1, respectively. Those results showed that the isolated algal strain bad some potential applications in livestock wastewater treatment and bioenergy production, it could be combined with a solid-liquid separation, anaerobic fermentation and other techniques for processing livestock wastewater and producing biodiesel.

  19. Effects of urban wastewater on hyporheic habitat and invertebrates in Mediterranean streams.

    PubMed

    Sánchez-Morales, Marc; Sabater, Francesc; Muñoz, Isabel

    2018-06-18

    Wastewater discharges into fluvial ecosystems represent a significant and continuous source of fine particles and nutrients that can severely modify stream community composition and functionality. Depending on both wastewater and stream features (e.g., nutrient removal treatments and stream dilution capacity), the ecological effects can be more or less severe. To determine how hyporheic habitat and hyporheos are affected, we analysed eight Mediterranean streams both upstream and downstream of a wastewater effluent. The results demonstrated that environmental factors associated with clogging, such as the quantity of fine particulate and organic matter in sediment, were magnified downstream of the wastewater inputs. Likewise, dissolved nutrients also increased but depended to a greater extent on the presence of a wastewater treatment plant and on the nitrogen and phosphorus removal treatments. The hyporheic invertebrates were more affected by clogging than by eutrophication. Both richness and diversity parameters were negatively correlated with clogging features but were not correlated with eutrophication. The most affected taxa were Macrocrustaceans, Hydrachnidia and several insect species, which decreased or were not detected downstream of the effluents. On the contrary, other taxa such as Naididae (Oligochaeta), Orthocladiinae (Chironomidae) and Potamopyrgus antipodarum (Gastropoda) benefited from the wastewater inputs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Shifts in Nitrification Kinetics and Microbial Community during Bioaugmentation of Activated Sludge with Nitrifiers Enriched on Sludge Reject Water

    PubMed Central

    Yu, Lifang; Peng, Dangcong; Pan, Ruiling

    2012-01-01

    This study used two laboratory-scale sequencing batch reactors (SBRs) to evaluate the shifts in nitrification kinetics and microbial communities of an activated sludge sewage treatment system (main stream) during bioaugmentation with nitrifiers cultivated on real sludge reject water (side stream). Although bioaugmentation exerted a strong influence on the microbial community and the nitrification kinetics in the main stream, there was 58% of maximum ammonia uptake rate (AUR) and 80% of maximum nitrite uptake rate (NUR) loss of the seed source after bioaugmentation. In addition, nitrite accumulation occurred during bioaugmentation due to the unequal and asynchronous increase of the AUR (from 2.88 to 13.36 mg N/L·h) and NUR (from 0.76 to 4.34 mg N/L·h). FISH results showed that ammonia oxidizing bacteria (AOB) was inclined to be washed out with effluent in contrast to nitrite oxidizing bacteria (NOB), and Nitrosococcus mobilis lineage was the dominant AOB, while the dominant NOB in the main stream gradually transferred from Nitrospira to Nitrobacter. Nitrospina and Nitrococcus which existed in the seed source could not be detected in the main stream. It can be inferred that nitrite accumulation occurred due to the mismatch of NOB structure but washed out with effluent. PMID:23091354

  1. Treatment of wastewater containing a large amount of suspended solids by a novel multi-staged UASB reactor.

    PubMed

    Uemura, S; Harada, H; Ohashi, A; Torimura, S

    2005-12-01

    Treatment of artificial wastewater containing a large amount of suspended solids comprised of soybean processing waste and pig fodder was studied using a novel multi-staged upflow anaerobic sludge blanket reactor. The reactor consisted of three compartments, each containing a gas solid separator. The wastewater had chemical oxygen demand of approximately 21600 mg l(-1), suspended solids of 12800 mg l(-1), and an ammonia concentration of 945 mg l(-1). A continuous experiment without effluent circulation showed that the multi-staged reactor was not that effective for the treatment of wastewater containing a large amount of suspended solids. However, operation of the reactor with circulation of effluent enabled the reactor to achieve organic removal of 85% and approximately 70% methane conversion at loading rates of between 4.0 to 5.4 kg-chemical oxygen demand per cubic meter per day, meaning that the reactor was more effective when effluent was circulated. Morphological investigation revealed that the crude fiber in the sludge was partially degraded and that it had many small depressions on its surface. Evolved biogas may have become caught in these depressions of the fibers and caused washout of the sludge.

  2. Electrets used to measure exhaust cloud effluents from Solid Rocket Motor (SRM) during demonstration model (DM-2) static test firing

    NASA Technical Reports Server (NTRS)

    Susko, M.

    1978-01-01

    Electrets were compared with fixed flow samplers during static test firing. The measurement of the rocket exhaust effluents by samplers and electrets indicated that the Solid Rocket Motor had no significant effect on the air quality in the area sampled. The results show that the electrets (a passive device which needs no power) can be used effectively alongside existing measuring devices (which need power). By placing electrets in areas where no power is available, measurements may be obtained. Consequently, it is a valuable complementary instrument in measuring rocket exhaust effluents in areas where other measuring devices may not be able to assess the contaminants.

  3. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell.

    PubMed

    Pant, Deepak; Arslan, Doga; Van Bogaert, Gilbert; Gallego, Yolanda Alvarez; De Wever, Heleen; Diels, Ludo; Vanbroekhoven, Karolien

    2013-01-01

    In this study, domestic wastewater was given a second life as dilution medium for concentrated organic waste streams, in particular artificial food waste. A two-step continuous process with first volatile fatty acid (VFA)/hydrogen production and second electricity production in microbial fuel cells (MFCs) was employed. For primary treatment, bioreactors were optimized to produce hydrogen and VFAs. Hydrolysis of the solids and formation of fermentation products and hydrogen was monitored. In the second step, MFCs were operated batch-wise using the effluent rich in VFAs specifically acetic acid from the continuous reactor of the first step. The combined system was able to reduce the chemical oxygen demand load by 90%. The concentration of VFAs was also monitored regularly in the MFCs and showed a decreasing trend over time. Further, the anode potential changed from -500 to OmV vs. Ag/AgCl when the VFAs (especially acetate) were depleted in the system. On feeding the system again with the effluent, the anode potential recovered back to -500 mV vs. Ag/AgCl. Thus, the overall aim of converting chemical energy into electrical energy was achieved with a columbic efficiency of 46% generating 65.33 mA/m2 at a specific cell potential of 148 mV.

  4. Geochemical evolution of solutions derived from experimental weathering of sulfide-bearing rocks

    USGS Publications Warehouse

    Munk, L.; Faure, G.; Koski, R.

    2006-01-01

    The chemical composition of natural waters is affected by the weathering of geologic materials at or near the surface of the Earth. Laboratory weathering experiments of whole-rock sulfide rocks from the Shoe-Basin Mine (SBM) and the Pennsylvania Mine (PM) from the Peru Creek Basin, Summit County, Colorado, indicate that the mineral composition of the sulfide rocks, changes in pH, the duration of the experiment, and the formation of sorbents such as Fe and Al oxyhydroxides affect the chemical composition of the resulting solution. Carbonate minerals in the rock from SBM provide buffering capacity to the solution, contribute to increases in the pH and enhance the formation of Fe and Al oxyhydroxides, which sorb cations from solution. The final solution pH obtained in the experiments was similar to those measured in the field (i.e., 2.8 for PM and 5.0 for SBM). At PM, acidic, metal-rich mine effluent is discharged into Peru Creek where it mixes with stream water. As a result, the pH of the effluent increases causing Fe and Al oxyhydroxide and schwertmannite to precipitate. The resulting solids sorb metal cations from the water thereby improving the quality of the water in Peru Creek. ?? 2006.

  5. 40 CFR 421.302 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Primary and Secondary Titanium Subcategory § 421.302 Effluent limitations guidelines representing...) Chlorination off-gas wet air pollution control. BPT Limitations for the Primary and Secondary Titanium... Titanium 0.880 0.384 Oil and grease 18.720 11.230 Total suspended solids 38.380 18.250 pH (1) (1) AA1...

  6. 40 CFR 421.302 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Primary and Secondary Titanium Subcategory § 421.302 Effluent limitations guidelines representing...) Chlorination off-gas wet air pollution control. BPT Limitations for the Primary and Secondary Titanium... Titanium 0.880 0.384 Oil and grease 18.720 11.230 Total suspended solids 38.380 18.250 pH (1) (1) AA1...

  7. 40 CFR 421.302 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORY Primary and Secondary Titanium Subcategory § 421.302 Effluent limitations guidelines representing...) Chlorination off-gas wet air pollution control. BPT Limitations for the Primary and Secondary Titanium... Titanium 0.880 0.384 Oil and grease 18.720 11.230 Total suspended solids 38.380 18.250 pH (1) (1) AA1...

  8. 40 CFR 435.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY... provided in 40 CFR 125.30-32, any existing point source subject to this subpart must achieve the following... maintained as close to this concentration as possible. 3 There shall be no floating solids as a result of the...

  9. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water... 150.0 Fluoride 140.0 70.0 Lead 39.0 4.5 pH (1) (1) English units (lb/1,000 lb of furnace pull) Oil 0...

  10. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water... 150.0 Fluoride 140.0 70.0 Lead 39.0 4.5 pH (1) (1) English units (lb/1,000 lb of furnace pull) Oil 0...

  11. Method Description, Quality Assurance, Environmental Data, and other Information for Analysis of Pharmaceuticals in Wastewater-Treatment-Plant Effluents, Streamwater, and Reservoirs, 2004-2009

    USGS Publications Warehouse

    Phillips, Patrick J.; Smith, Steven G.; Kolpin, Dana W.; Zaugg, Steven D.; Buxton, Herbert T.; Furlong, Edward T.

    2010-01-01

    Abstract Wastewater-treatment-plant (WWTP) effluents are a demonstrated source of pharmaceuticals to the environment. During 2004-09, a study was conducted to identify pharmaceutical compounds in effluents from WWTPs (including two that receive substantial discharges from pharmaceutical formulation facilities), streamwater, and reservoirs. The methods used to determine and quantify concentrations of seven pharmaceuticals are described. In addition, the report includes information on pharmaceuticals formulated or potentially formulated at the two pharmaceutical formulation facilities that provide substantial discharge to two of the WWTPs, and potential limitations to these data are discussed. The analytical methods used to provide data on the seven pharmaceuticals (including opioids, muscle relaxants, and other pharmaceuticals) in filtered water samples also are described. Data are provided on method performance, including spike data, method detection limit results, and an estimation of precision. Quality-assurance data for sample collection and handling are included. Quantitative data are presented for the seven pharmaceuticals in water samples collected at WWTP discharge points, from streams, and at reservoirs. Occurrence data also are provided for 19 pharmaceuticals that were qualitatively identified. Flow data at selected WWTP and streams are presented. Between 2004-09, 35-38 effluent samples were collected from each of three WWTPs in New York and analyzed for seven pharmaceuticals. Two WWTPs (NY2 and NY3) receive substantial inflows (greater than 20 percent of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally less than 1 ug/L. Four pharmaceuticals (methadone, oxycodone, butalbital and metaxalone) in samples of NY3 effluent had median concentrations ranging from 3.4 to greater than 400 ug/L. Maximum concentrations of oxycodone (1,700 ug/L) and metaxalone (3,800 ug/L) in samples from NY3 effluent exceeded 1,000 ug/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 ug/L. These findings suggest that current 2 manufacturing practices at these PFFs can result in pharmaceutical concentrations from 10 to 1,000 times higher than those typically found in WWTP effluents.

  12. Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.

    PubMed

    Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M

    2017-06-01

    This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Certain Alaskan Waters by Cruise Vessel Operations § 159.319 Fecal coliform and total suspended solids... solids greater than 150 mg/l. (b) Graywater effluent discharges. [Reserved] ...

  14. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Certain Alaskan Waters by Cruise Vessel Operations § 159.319 Fecal coliform and total suspended solids... solids greater than 150 mg/l. (b) Graywater effluent discharges. [Reserved] ...

  15. Environment effects from SRB exhaust effluents: Technique development and preliminary assessment

    NASA Technical Reports Server (NTRS)

    Goldford, A. I.; Adelfang, S. I.; Hickey, J. S.; Smith, S. R.; Welty, R. P.; White, G. L.

    1977-01-01

    Techniques to determine the environmental effects from the space shuttle SRB (Solid Rocket Booster) exhaust effluents are used to perform a preliminary climatological assessment. The exhaust effluent chemistry study was performed and the exhaust effluent species were determined. A reasonable exhaust particle size distribution is constructed for use in nozzle analyses and for the deposition model. The preliminary assessment is used to identify problems that are associated with the full-scale assessment; therefore, these preliminary air quality results are used with caution in drawing conclusion regarding the environmental effects of the space shuttle exhaust effluents.

  16. PERFORMANCE OF TRICKLING FILTER PLANTS: RELIABILITY, STABILITY, VARIABILITY

    EPA Science Inventory

    Effluent quality variability from trickling filters was examined in this study by statistically analyzing daily effluent BOD5 and suspended solids data from 11 treatment plants. Summary statistics (mean, standard deviation, etc.) were examined to determine the general characteris...

  17. Coated armor system and process for making the same

    DOEpatents

    Chu, Henry S.; Lillo, Thomas M.; McHugh, Kevin M.

    2010-11-23

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  18. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  19. Armor systems including coated core materials

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-10-08

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  20. Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting selenium-laden coal ash effluents. 1. Hematological and population level assessment.

    PubMed

    Lohner, T W; Reash, R J; Willet, V E; Rose, L A

    2001-11-01

    Sunfish were collected from coal ash effluent-receiving streams and Ohio River watershed reference sites to assess the effects of exposure to low-level selenium concentrations. Selenium, copper, and arsenic concentrations were statistically higher in tissue samples from exposed fish than in reference fish. Leukopenia, lymphocytosis, and neutropenia were evident in exposed fish and were indicative of metal exposure and effect. White blood cell counts and percent lymphocyte values were significantly correlated with liver selenium concentrations. Plasma protein levels were significantly lower in exposed fish than in fish from the Ohio River, indicating that exposed fish may have been nutritionally stressed. Condition factors for fish from the ash pond-receiving streams were the same as, or lower than, those of fish from the reference sites. There was no evidence that the growth rate of fish in the receiving streams differed from that of fish in the reference streams. Despite liver selenium concentrations which exceeded reported toxicity thresholds and evidence of significant hematological changes, there were no significant differences in fish condition factors, liver-somatic indices, or length-weight regressions related to selenium.

  1. Twenty-five years of ecological recovery of East Fork Poplar Creek: review of environmental problems and remedial actions.

    PubMed

    Loar, James M; Stewart, Arthur J; Smith, John G

    2011-06-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

  2. Twenty-Five Years of Ecological Recovery of East Fork Poplar Creek: Review of Environmental Problems and Remedial Actions

    NASA Astrophysics Data System (ADS)

    Loar, James M.; Stewart, Arthur J.; Smith, John G.

    2011-06-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

  3. Removal of heavy metals from waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, M.D.; Kozaruk, J.M.; Melvin, M.

    1988-07-19

    A method for removing heavy metals from effluent water is described comprising performing sequentially the following steps: (a) adding from 7-333 ppm of an anionic surfactant to the effluent water to provide coagulatable heavy metal ion; (b) adjusting the effluent water pH to within the range of 8 to 10, (c) providing from 10-200 ppm of a cationic coagulant to coagulate the heavy metal ion, (d) providing from 0.3 to 5.0 ppm of a polymeric flocculant whereby a heavy metal containing floc is formed for removal from the effluent water, and, (e) then removing the floc from the effluent water,more » wherein the anionic surfactant is sodium lauryl ether sulfate. The cationic coagulant is selected from the group consisting of diallyl dimethylammonium chloride polymer, epichlorohydrin dimethylamine polymer, ethylene amine polymer, polyaluminum chloride, and alum; and the flocculant is an acrylamide/sodium acrylate copolymer having an RSV greater than 23.« less

  4. Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing.

    PubMed

    Rasmussen, M L; Khanal, S K; Pometto, A L; van Leeuwen, J Hans

    2014-01-01

    Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5 d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein - a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction.

    PubMed

    Koutsospyros, Agamemnon; Pavlov, Julius; Fawcett, Jacqueline; Strickland, David; Smolinski, Benjamin; Braida, Washington

    2012-06-15

    A reductive technology based on a completely mixed two-phase reactor (bimetallic particles and aqueous stream) was developed for the treatment of aqueous effluents contaminated with nitramines and nitro-substituted energetic materials. Experimental degradation studies were performed using solutions of three high energetics (RDX, HMX, TNT) and three insensitive-munitions components (NTO, NQ, DNAN). The study shows that, on laboratory scale, these energetic compounds are easily degraded in solution by suspensions of bimetallic particles (Fe/Ni and Fe/Cu) prepared by electro-less deposition. The type of bimetal pair (Fe/Cu or Fe/Ni) does not appear to affect the degradation kinetics of RDX, HMX, and TNT. The degradation of all components followed apparent first-order kinetics. The half-lives of all compounds except NTO were under 10 min. Additional parameters affecting the degradation processes were solids loading and initial pH. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. 40 CFR 421.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 59.900 25.030 Ammonia (as N) 5,469.000 2,404.00 Total suspended solids 1,682.000 800.000 pH (1) (1) 1... Ammonia (as N) 4,773.000 2,098.000 Total suspended solids 1,468.000 698.300 pH (1) (1) 1 Within the range... sodium tungstate (as W) produced Lead 0.000 0.000 Zinc 0.000 0.000 Ammonia (as N) 0.000 0.000 Total...

  7. 40 CFR 421.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 59.900 25.030 Ammonia (as N) 5,469.000 2,404.00 Total suspended solids 1,682.000 800.000 pH (1) (1) 1... Ammonia (as N) 4,773.000 2,098.000 Total suspended solids 1,468.000 698.300 pH (1) (1) 1 Within the range... sodium tungstate (as W) produced Lead 0.000 0.000 Zinc 0.000 0.000 Ammonia (as N) 0.000 0.000 Total...

  8. 40 CFR 421.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 59.900 25.030 Ammonia (as N) 5,469.000 2,404.00 Total suspended solids 1,682.000 800.000 pH (1) (1) 1... Ammonia (as N) 4,773.000 2,098.000 Total suspended solids 1,468.000 698.300 pH (1) (1) 1 Within the range... sodium tungstate (as W) produced Lead 0.000 0.000 Zinc 0.000 0.000 Ammonia (as N) 0.000 0.000 Total...

  9. 40 CFR 421.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....000 Fluoride 78,610.000 44,700.000 Total suspended solids 92,090.000 43,800.000 pH (1) (1) 1 Within... 26.4 Ammonia (as N) 29,330.0 12,890.0 Fluoride 7,700.0 4,378.0 Total suspended solids 9,020.0 4,290.0....740 Ammonia (as N) 28,590.000 12,570.000 Fluoride 7,508.000 4,269.000 Total suspended 8,795.000 4,183...

  10. 40 CFR 421.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....000 Fluoride 78,610.000 44,700.000 Total suspended solids 92,090.000 43,800.000 pH (1) (1) 1 Within... 26.4 Ammonia (as N) 29,330.0 12,890.0 Fluoride 7,700.0 4,378.0 Total suspended solids 9,020.0 4,290.0....740 Ammonia (as N) 28,590.000 12,570.000 Fluoride 7,508.000 4,269.000 Total suspended 8,795.000 4,183...

  11. 40 CFR 421.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....000 Fluoride 78,610.000 44,700.000 Total suspended solids 92,090.000 43,800.000 pH (1) (1) 1 Within... 26.4 Ammonia (as N) 29,330.0 12,890.0 Fluoride 7,700.0 4,378.0 Total suspended solids 9,020.0 4,290.0....740 Ammonia (as N) 28,590.000 12,570.000 Fluoride 7,508.000 4,269.000 Total suspended 8,795.000 4,183...

  12. 40 CFR 467.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and grease 7.32 4.39 Suspended solids 15.0 7.13 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all... solids 60.60 28.82 pH (1) (1) 1 With the range of 7.0 to 10.0 at all times. Subpart C Direct Chill... wastewater in which case the pH shall be within the range of 6.0 to 10.0 at all times. Subpart C Press Heat...

  13. 40 CFR 421.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Beryllium Carbonate Filtrate. BPT... suspended solids 9,430.0 4,485.0 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all times. (g) Process... Fluoride 3.535 2.010 Total Suspended Solids 4.141 1.970 pH (1) (1) 1 Within the range of 7.5 to 10.0 at all...

  14. 40 CFR 467.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and grease 7.32 4.39 Suspended solids 15.0 7.13 pH (1) (1) 1 Within the range of 7.0 to 10.0 at all... solids 60.60 28.82 pH (1) (1) 1 With the range of 7.0 to 10.0 at all times. Subpart C Direct Chill... wastewater in which case the pH shall be within the range of 6.0 to 10.0 at all times. Subpart C Press Heat...

  15. Polyelectrolyte flocculation of grain stillage for improved clarification and water recovery within bioethanol production facilities.

    PubMed

    Menkhaus, Todd J; Anderson, Jason; Lane, Samuel; Waddell, Evan

    2010-04-01

    Polyelectrolytes were investigated for flocculation of a corn whole stillage stream to improve solid-liquid clarification operations and reduce downstream utility requirements for evaporation and drying within a bioethanol process. Despite a negative zeta potential for the stillage solids, an anionic polyelectrolyte was found to provide the best flocculation. At the optimal dosage of 1.1mg polymer/g dry suspended solids, an anionic flocculant provided a clarified stream with only 0.15% w/w suspended solids (equivalent to a total dissolved solid to total suspended solid ratio greater than 40, and a viscosity reduction of 39% compared to an unflocculated "clarified" stream). The resulting solids cake had greater than 40% w/w solids, and more than 80% water recovery was found in the clarified stream. Addition of flocculant improved filtration flux by six fold and/or would allow for up to a 4-times higher flow rate if using a decanting centrifuge for clarification of corn stillage. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams

    USGS Publications Warehouse

    Barber, Larry B.; Keefe, Steffanie H.; Brown, Greg K.; Furlong, Edward T.; Gray, James L.; Kolpin, Dana W.; Meyer, Michael T.; Sandstrom, Mark W.; Zaugg, Steven D.

    2013-01-01

    Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 μg L–1) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 μg L–1), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications.

  17. Methods of producing armor systems, and armor systems produced using such methods

    DOEpatents

    Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M

    2013-02-19

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  18. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Sand Creek, Decatur County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)

  19. COMPONENTS IDENTIFIED IN ENERGY-RELATED WASTES AND EFFLUENTS

    EPA Science Inventory

    A state-of-the-art review of the characterization of solid wastes and aqueous effluents generated by energy-related processes was conducted. The reliability of these data was evaluated according to preselected criteria or sample source, sampling and analytical methodology, and da...

  20. Silver-mordenite for radiologic gas capture from complex streams. Dual catalytic CH 3I decomposition and I confinement

    DOE PAGES

    Nenoff, Tina M.; Rodriguez, Mark A.; Soelberg, Nick R.; ...

    2014-05-09

    The selective capture of radiological iodine ( 129I) is a persistent concern for safe nuclear energy. In these nuclear fuel reprocessing scenarios, the gas streams to be treated are extremely complex, containing several distinct iodine-containing molecules amongst a large variety of other species. Silver-containing mordenite (MOR) is a longstanding benchmark for radioiodine capture, reacting with molecular iodine (I 2) to form AgI. However the mechanisms for organoiodine capture is not well understood. Here we investigate the capture of methyl iodide from complex mixed gas streams by combining chemical analysis of the effluent gas stream with in depth characterization of themore » recovered sorbent. Tools applied include infrared spectroscopy, thermogravimetric analysis with mass spectrometry, micro X-ray fluorescence, powder X-ray diffraction analysis, and pair distribution function analysis. Moreover, the MOR zeolite catalyzes decomposition of the methyl iodide through formation of surface methoxy species (SMS), which subsequently reacts with water in the mixed gas stream to form methanol, and with methanol to form dimethyl ether, which are both detected downstream in the effluent. The liberated iodine reacts with Ag in the MOR pore to the form subnanometer AgI clusters, smaller than the MOR pores, suggesting that the iodine is both physically and chemically confined within the zeolite.« less

  1. Wetland-stream ecosystems of the western Kentucky coalfield: environmental disturbance and the shaping of aquatic community structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, P.L. Jr.

    1983-01-01

    The effects of surface mining effluents of the shaping of aquatic community structure in wetland-stream ecosystems of the western Kentucky coalfield were examined. Three variously impacted drainage systems were utilized for the investigation of cause-and-effect relationships. Clear Creek wetland-stream ecosystem had a uniformly low pH, high conductivity and high dissolved minerals load linked to the oozing of old, unreclaimed surface mine spoils. Cypress Creek wetland-stream ecosystem exhibited a slug-pulsing of mine drainage effluents tied to active surface mining limited to the headwaters region. Henderson Sloughs-Pond Creek wetland-stream ecosystem had no mining impact and was utilized as a comparison site. Macroinvertebratemore » taxa and diversity were considerably lowered in the systems receiving mine drainage. The Shannon-Weaver diversity index (H) was 0.61 for Clear Creek, 1.80 for Cypress Creek and 2.01 for Henderson Sloughs. Large numbers of chironomid larvae dominated the benthic community of Clear Creek while mayflies, caddisflies and crustaceans were the major components of the Cypress Creek community. Henderson Sloughs-Pond Creek had an even more diverse community of mayflies, caddisflies, crustaceans, molluscs and odonates. Fishes followed the same general trend, being almost absent in Clear Creek (H - 0.47), slightly depressed in Cypress Creek (H = 1.74) and generally diverse in Henderson Sloughs (H = 2.37).« less

  2. Assessing ecotoxicity of biomining effluents in stream ecosystems by in situ invertebrate bioassays: A case study in Talvivaara, Finland.

    PubMed

    Salmelin, Johanna; Leppänen, Matti T; Karjalainen, Anna K; Vuori, Kari-Matti; Gerhardt, Almut; Hämäläinen, Heikki

    2017-01-01

    Mining of sulfide-rich pyritic ores produces acid mine drainage waters and has induced major ecological problems in aquatic ecosystems worldwide. Biomining utilizes microbes to extract metals from the ore, and it has been suggested as a new sustainable way to produce metals. However, little is known of the potential ecotoxicological effects of biomining. In the present study, biomining impacts were assessed using survival and behavioral responses of aquatic macroinvertebrates at in situ exposures in streams. The authors used an impedance conversion technique to measure quantitatively in situ behavioral responses of larvae of the regionally common mayfly, Heptagenia dalecarlica, to discharges from the Talvivaara mine (Sotkamo, Northern Finland), which uses a biomining technique. Behavioral responses measured in 3 mine-impacted streams were compared with those measured in 3 reference streams. In addition, 3-d survival of the mayfly larvae and the oligochaete Lumbriculus variegatus was measured in the study sites. Biomining impacts on stream water quality included increased concentrations of sulfur, sulfate, and metals, especially manganese, cadmium, zinc, sodium, and calcium. Survival of the invertebrates in the short term was not affected by the mine effluents. In contrast, apparent behavioral changes in mayfly larvae were detected, but these responses were not consistent among sites, which may reflect differing natural water chemistry of the study sites. Environ Toxicol Chem 2017;36:147-155. © 2016 SETAC. © 2016 SETAC.

  3. 33 CFR 159.126a - Suspended solids test: Type II devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Suspended solids test: Type II... Suspended solids test: Type II devices. During the sewage processing test (§ 159.121) 40 effluent samples... suspended solids in accordance with 40 CFR part 136. The arithmetic mean of the total suspended solids in 38...

  4. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  5. Process and system for removing impurities from a gas

    DOEpatents

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  6. Towards the development of a novel construction solid waste (CSW) based constructed wetland system for tertiary treatment of secondary sewage effluents.

    PubMed

    Yang, Y; Zhang, L; Zhao, Y Q; Wang, S P; Guo, X C; Guo, Y; Wang, L; Ren, Y X; Wang, X C

    2011-01-01

    This study was conducted to examine the possibility of using construction solid waste (CSW), an inevitable by-product of the construction and demolition process, as the main substrate in a laboratory scale multi-stage constructed wetland system (CWs) to improve phosphorus (P) removal from secondary sewage effluent. A tidal-flow operation strategy was employed to enhance the wetland aeration. This will stimulate aerobic biological processes and benefit the organic pollutants decomposition and nitrification process for ammoniacal-nitrogen (NH(+)(4)-N) removal. The results showed that the average P concentration in the secondary sewage effluent was reduced from 1.90 mg-P/L to 0.04 mg-P/L. CSW presents excellent P removal performance. The average NH(+)(4)-N concentration was reduced from 9.94 mg-N/L to 1.0 mg-N/L through nitrification in the system. The concentration of resultant nitrite and nitrate in the effluent of the CSW based CWs ranged from 0.1 to 2.4 mg-N/L and 0.01 to 0.8 mg-N/L, respectively. The outcome of this study has shown that CSW can be successfully used to act as main substrate in CWs. The application of CSW based CWs on improving N and P removals from secondary sewage effluent presents a win-win scenario. Such the reuse of CSW will benefit both the CSW disposal and nutrient control from wastewater. More significantly, such the application can transfer the CSW from a 'waste' to 'useful' material and can ease the pressure of construction waste solid management. Meanwhile, the final effluent from the CSW-based CWs can be used as non-potable water source in landscape irrigation, agriculture and industrial process.

  7. ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT

    EPA Science Inventory

    Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...

  8. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOEpatents

    Durai-Swamy, Kandaswamy

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  9. 40 CFR 418.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed— Total phosphorus (as P) 105 35 Fluoride 75 25 TSS 150 50 The total suspended solid limitation set...) Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Total phosphorus...

  10. 40 CFR 418.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceed— Total phosphorus (as P) 105 35 Fluoride 75 25 TSS 150 50 The total suspended solid limitation set...) Maximum for any 1 day Average of daily values for 30 consecutive days shall not exceed— Total phosphorus...

  11. IDENTIFICATION OF COMPONENTS OF ENERGY-RELATED WASTES AND EFFLUENTS

    EPA Science Inventory

    A state-of-the-art review on the characterization of organic and elemental substances in energy-related liquid and solid effluents was conducted. Previous and on-going research programs and reports were reviewed to summarize the existing and probable future data on chemical eleme...

  12. Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques.

    PubMed

    Alejo, Luz; Atkinson, John; Guzmán-Fierro, Víctor; Roeckel, Marlene

    2018-05-16

    Computational self-adapting methods (Support Vector Machines, SVM) are compared with an analytical method in effluent composition prediction of a two-stage anaerobic digestion (AD) process. Experimental data for the AD of poultry manure were used. The analytical method considers the protein as the only source of ammonia production in AD after degradation. Total ammonia nitrogen (TAN), total solids (TS), chemical oxygen demand (COD), and total volatile solids (TVS) were measured in the influent and effluent of the process. The TAN concentration in the effluent was predicted, this being the most inhibiting and polluting compound in AD. Despite the limited data available, the SVM-based model outperformed the analytical method for the TAN prediction, achieving a relative average error of 15.2% against 43% for the analytical method. Moreover, SVM showed higher prediction accuracy in comparison with Artificial Neural Networks. This result reveals the future promise of SVM for prediction in non-linear and dynamic AD processes. Graphical abstract ᅟ.

  13. Ultrafiltration of thin stillage from conventional and e-mill dry grind processes.

    PubMed

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2011-05-01

    We used ultrafiltration (UF) to evaluate membrane filtration characteristics of thin stillage and determine solids and nutrient compositions of filtered streams. To obtain thin stillage, corn was fermented using laboratory methods. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Two regenerated cellulose membranes (10 and 100 kDa molecular weight cutoffs) were evaluated with the objective of retaining solids as well as maximizing permeate flux. Optimum pressures for 10 and 100 kDa membranes were 207 and 69 kPa, respectively. Total solids, ash, and neutral detergent fiber contents of input TS streams of dry grind and E-Mill processes were similar; however, fat and protein contents were different (p < 0.05). Retentate obtained from conventional thin stillage fractionation had higher mean total solids contents (27.6% to 27.8%) compared to E-Mill (22.2% to 23.4%). Total solids in retentate streams were found similar to those from commercial evaporators used in industry (25% to 35% total solids). Fat contents of retentate streams ranged from 16.3% to 17.5% for the conventional process. A 2% increment in fat concentration was observed in the E-Mill retentate stream. Thin stillage ash content was reduced 60% in retentate streams.

  14. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory R. Mockos; William A. Smith; Frank J. Loge

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensatemore » system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.« less

  15. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    NASA Astrophysics Data System (ADS)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  16. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  17. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  18. Liquid secondary waste. Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less

  19. Combined sewage overflows (CSO) are major urban breeding sites for Culex quinquefasciatus in Atlanta, Georgia.

    PubMed

    Calhoun, Lisa M; Avery, Melissa; Jones, Leeann; Gunarto, Karina; King, Raymond; Roberts, Jacquelin; Burkot, Thomas R

    2007-09-01

    A longitudinal study of mosquito ecology in Tanyard Creek, an urban stream in Atlanta, GA, that receives combined storm and waste water effluent from the Atlanta combined sewage overflow system, was undertaken in 2006. Culex quinquefasciatus was the dominant species found, but Culex restuans was also abundant during the spring with limited numbers of Culex nigripalpis and Anopheles punctipennis also collected. Significant differences in mosquito densities were found with greater densities associated with side pools of water and stagnant water. Mosquito numbers are regulated largely by flooding of the stream by effluent discharges exceeding 15 kgal/min. These floods are associated with significant immediate reductions, but not complete elimination, of mosquitoes from Tanyard Creek. Mosquito numbers rebound within 5-10 days after such floods and rapidly reach high densities.

  20. Combination of anaerobic effluent and lignocellulosic bacterial consortium to reduce vermicomposting time

    USDA-ARS?s Scientific Manuscript database

    Utilization of solid bio-fertilizers is an alternative to avoid chemical degradation of soil. Anaerobic biodigestor effluents/digestates have been used effectively as fertilizers. However, they may have several risk factors such as the presence of pathogens and heavy metals. Vermicomposting could he...

  1. THE ROLE OF INORGANIC ION IMBALANCE IN AQUATIC TOXICITY TESTING

    EPA Science Inventory

    Effluent toxicity testing methods have been well defined, but to a large part have not attempted to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role that various total dissolved solids in effluents have on regula...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, S.; Wong, K.V.; Nemerow, N.

    Characterization of the following waste streams: air-classified light (ACL), digester slurry, filter cake, filtrate, washwater input and washwater effluent has been made for the Refcom facility in order to assess the effects of these waste streams, if discharged into the environment. Special laboratory studies to evaluate the effect of plastics on anaerobic digestion have been undertaken. A separate report has been furnished describing the studies of lab-model digesters. Data collected for ACL has been statistically analyzed.

  3. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  4. Fremont Lake, Wyoming - Preliminary survey of a large mountain lake: A section in Geological Survey research 1972, Chapter D

    USGS Publications Warehouse

    Rickert, David A.; Leopold, Luna Bergere

    1972-01-01

    Fremont Lake, at an altitude of 2,261 m, has an area of 20.61 km2 and a volume of 1.69 km3. The maximum depth is 185 m, which makes it the seventh deepest natural lake in the conterminous United States. Theoretical renewal time is 11.1 years. Temperature data for 1971 indicate that vernal circulation extended to a depth of less than 90 m. The summer heat income was 19,450 cal/cm2. The dissolved-oxygen curve is orthograde, with a slight metalimnetic maximum, and a tendency toward decreasing concentrations at depth. At 180 m, oxygen was at 80 percent of saturation in late July 1970. The lake has a remarkably low dissolved-solids content of 12.8 mg/l, making it one of the most dilute medium-sized lakes in the world. Detailed chemical data are given for the water column at three sites in the lake and for the influent and effluent streams. Net plankton included representatives of seven genera of phytoplankters and three genera of zooplankters. A reconnaissance indicated substantially no bacteriological contamination in the lake, but there was an appreciable amount in two minor streams in the vicinity of a summer-home colony.

  5. The effect of pretreatments on surfactin production from potato process effluent by Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. N. Thompson; S. L. Fox; G. A. Bala

    2000-05-07

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  6. Micropollutants in source separated wastewater streams and recovered resources of source separated sanitation.

    PubMed

    Butkovskyi, A; Leal, L Hernandez; Zeeman, G; Rijnaarts, H H M

    2017-07-01

    The quality of anaerobic sludge and struvite from black water treatment system, aerobic sludge from grey water treatment system and effluents of both systems was assessed for organic micropollutant content in order to ensure safety when reusing these products. Use of anaerobic black water sludge and struvite as soil amendments is recommended based on the low micropollutant content. Aerobic grey water sludge is recommended for disposal, because of the relatively high micropollutant concentrations, exceeding those in sewage sludge. Effluents of black and grey water treatment systems require post-treatment prior to reuse, because the measured micropollutant concentrations in the effluents are above ecotoxicological thresholds. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal.

    PubMed

    Martín, J; Camacho-Muñoz, D; Santos, J L; Aparicio, I; Alonso, E

    2012-11-15

    The occurrence of sixteen pharmaceutically active compounds in influent and effluent wastewater and in primary, secondary and digested sludge in one-year period has been evaluated. Solid-water partition coefficients (Kd) were calculated to evaluate the efficiency of removal of these compounds from wastewater by sorption onto sludge. The ecotoxicological risk to aquatic and terrestrial ecosystems, due to wastewater discharges to the receiving streams and to the application of digested sludge as fertilizer onto soils, was also evaluated. Twelve of the pharmaceuticals were detected in wastewater at mean concentrations from 0.1 to 32 μg/L. All the compounds found in wastewater were also found in sewage sludge, except diclofenac, at mean concentrations from 8.1 to 2206 μg/kg dm. Ibuprofen, salicylic acid, gemfibrozil and caffeine were the compounds at the highest concentrations. LogKd values were between 1.17 (naproxen) and 3.48 (carbamazepine). The highest ecotoxicological risk in effluent wastewater and digested sludge is due to ibuprofen (risk quotient (RQ): 3.2 and 4.4, respectively), 17α-ethinylestradiol (RQ: 12 and 22, respectively) and 17β-estradiol (RQ: 12 and 359, respectively). Ecotoxicological risk after wastewater discharge and sludge disposal is limited to the presence of 17β-estradiol in digested-sludge amended soil (RQ: 2.7). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor.

    PubMed

    Barton, Lauren E; Auffan, Melanie; Bertrand, Marie; Barakat, Mohamed; Santaella, Catherine; Masion, Armand; Borschneck, Daniel; Olivi, Luca; Roche, Nicolas; Wiesner, Mark R; Bottero, Jean-Yves

    2014-07-01

    Engineered nanomaterials (ENMs) are used to enhance the properties of many manufactured products and technologies. Increased use of ENMs will inevitably lead to their release into the environment. An important route of exposure is through the waste stream, where ENMs will enter wastewater treatment plants (WWTPs), undergo transformations, and be discharged with treated effluent or biosolids. To better understand the fate of a common ENM in WWTPs, experiments with laboratory-scale activated sludge reactors and pristine and citrate-functionalized CeO2 nanoparticles (NPs) were conducted. Greater than 90% of the CeO2 introduced was observed to associate with biosolids. This association was accompanied by reduction of the Ce(IV) NPs to Ce(III). After 5 weeks in the reactor, 44 ± 4% reduction was observed for the pristine NPs and 31 ± 3% for the citrate-functionalized NPs, illustrating surface functionality dependence. Thermodynamic arguments suggest that the likely Ce(III) phase generated would be Ce2S3. This study indicates that the majority of CeO2 NPs (>90% by mass) entering WWTPs will be associated with the solid phase, and a significant portion will be present as Ce(III). At maximum, 10% of the CeO2 will remain in the effluent and be discharged as a Ce(IV) phase, governed by cerianite (CeO2).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David Neal; Fox, Sandra Lynn; Bala, Greg Alan

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  10. Erratum: Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    PubMed

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-10-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. © 2010 SETAC.

  11. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment.

    PubMed

    Bock, Michael; Lyndall, Jennifer; Barber, Timothy; Fuchsman, Phyllis; Perruchon, Elyse; Capdevielle, Marie

    2010-07-01

    The fate and partitioning of the antimicrobial compound, triclosan, in wastewater treatment plants (WWTPs) is evaluated using a probabilistic fugacity model to predict the range of triclosan concentrations in effluent and secondary biosolids. The WWTP model predicts 84% to 92% triclosan removal, which is within the range of measured removal efficiencies (typically 70% to 98%). Triclosan is predominantly removed by sorption and subsequent settling of organic particulates during primary treatment and by aerobic biodegradation during secondary treatment. Median modeled removal efficiency due to sorption is 40% for all treatment phases and 31% in the primary treatment phase. Median modeled removal efficiency due to biodegradation is 48% for all treatment phases and 44% in the secondary treatment phase. Important factors contributing to variation in predicted triclosan concentrations in effluent and biosolids include influent concentrations, solids concentrations in settling tanks, and factors related to solids retention time. Measured triclosan concentrations in biosolids and non-United States (US) effluent are consistent with model predictions. However, median concentrations in US effluent are over-predicted with this model, suggesting that differences in some aspect of treatment practices not incorporated in the model (e.g., disinfection methods) may affect triclosan removal from effluent. Model applications include predicting changes in environmental loadings associated with new triclosan applications and supporting risk analyses for biosolids-amended land and effluent receiving waters. (c) 2010 SETAC.

  12. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the radionuclides that is volatile in the melter and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 (99Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentrations in the LAW Off-Gas Condensate are 129I, 90Sr, 137Cs, and 241Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. At this time, these scoping tests did not evaluate the partitioning of the radionuclides to the evaporator condensate, since ample data are available separately from other experience in the DOE complex. Results from the evaporation testing show that the neutral SBS simulant first forms turbidity at ~7.5X concentration, while the alkaline-adjusted simulant became turbid at ~3X concentration. The major solid in both cases was Kogarkoite, Na3FSO4. Sodium and lithium fluorides were also detected. Minimal solids were formed in the evaporator bottoms until a substantial fraction of liquid was removed, indicating that evaporation could minimize storage volume issues. Achievable concentration factors without significant insoluble solids were 17X at alkaline pH, and 23X at neutral pH. In both runs, significant ammonia carried over and was captured in the condenser with the water condensate. Results also indicate that with low insoluble solids formation in the initial testing at neutral pH, the use of Reverse Osmosis is a potential alternate method for concentrating the solution, although an evaluation is needed to identify equipment that can tolerate insoluble solids. Most of the ammonia remains in the evaporator bottoms during the neutral pH evaporation, but partitions to the condensate during alkaline evaporation. Disposition of both streams needs to consider the management of ammonia vapor and its release. Since this is an initial phase of testing, additional tasks related to evaporation methods are expected to be identified for development. These tasks likely include evaluation and testing of composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and evaporator condensate disposition.« less

  13. Regional assessments of the Nation's water quality—Improved understanding of stream nutrient sources through enhanced modeling capabilities

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed assessments of stream nutrients in six major regions extending over much of the conterminous United States. SPARROW (SPAtially Referenced Regressions On Watershed attributes) models were developed for each region to explain spatial patterns in monitored stream nutrient loads in relation to human activities and natural resources and processes. The model information, reported by stream reach and catchment, provides contrasting views of the spatial patterns of nutrient source contributions, including those from urban (wastewater effluent and diffuse runoff from developed land), agricultural (farm fertilizers and animal manure), and specific background sources (atmospheric nitrogen deposition, soil phosphorus, forest nitrogen fixation, and channel erosion).

  14. Water-quality and ancillary data collected from the Arroyo Colorado near Rio Hondo, Texas, 2006

    USGS Publications Warehouse

    Roussel, Meghan C.; Canova, Michael G.; Asquith, William H.; Kiesling, Richard L.

    2007-01-01

    The Arroyo Colorado is in the lower Rio Grande Valley of southern Texas and extends from near Mission, Texas, eastward to the Laguna Madre estuarine and coastal marine system, which separates Padre Island from the Texas mainland. Streamflow in the Arroyo Colorado primarily is sustained by effluent from municipal wastewater-treatment plants along the stream banks. Since 1986, the tidal segment of the Arroyo Colorado from the port of Harlingen to the Laguna Madre has been designated by the State of Texas as an impaired water body because of low dissolved oxygen concentrations. Efforts to develop predictive water-quality models for the tidal segment of the Arroyo Colorado have been hampered by a lack of physical, biological, and biochemical data. Specifically, data on primary algal productivity, nutrient cycling, sediment deposition rates, and the relations between these processes and dissolved oxygen dynamics in the stream have been inadequate to support water-quality modeling efforts. The U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, did a study in 2006 to collect data associated with primary algal productivity, nutrient cycling, and dissolved oxygen dynamics in the tidal segment (2201) of the Arroyo Colorado near Rio Hondo. Specific objectives of the study were to (1) characterize water quality by measuring basic properties; (2) characterize the concentrations of carbon and nutrients, biochemical oxygen demand, total organic carbon, total suspended solids, and volatile suspended solids; (3) measure the seasonal differences of nutrient-dependent algal growth and algal production in the water column; (4) measure oxygen respiration or production rates; and (5) measure rates of sediment deposition.

  15. Dissolved solids in basin-fill aquifers and streams in the southwestern United States

    USGS Publications Warehouse

    Anning, David W.; Bauch, Nancy J.; Gerner, Steven J.; Flynn, Marilyn E.; Hamlin, Scott N.; Moore, Stephanie J.; Schaefer, Donald H.; Anderholm, Scott K.; Spangler, Lawrence E.

    2007-01-01

    The U.S. Geological Survey National Water-Quality Assessment Program performed a regional study in the Southwestern United States (Southwest) to describe the status and trends of dissolved solids in basin-fill aquifers and streams and to determine the natural and human factors that affect dissolved solids. Basin-fill aquifers, which include the Rio Grande aquifer system, Basin and Range basin-fill aquifers, and California Coastal Basin aquifers, are the most extensively used ground-water supplies in the Southwest. Rivers, such as the Colorado, the Rio Grande, and their tributaries, are also important water supplies, as are several smaller river systems that drain internally within the Southwest, or drain externally to the Pacific Ocean in southern California. The study included four components that characterize (1) the spatial distribution of dissolved-solids concentrations in basin-fill aquifers, and dissolved-solids concentrations, loads, and yields in streams; (2) natural and human factors that affect dissolved-solids concentrations; (3) major sources and areas of accumulation of dissolved solids; and (4) trends in dissolved-solids concentrations over time in basin-fill aquifers and streams, and the relation of trends to natural or human factors.

  16. L-286 Acceptance Test Record

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HARMON, B.C.

    2000-01-14

    This document provides a detailed account of how the acceptance testing was conducted for Project L-286, ''200E Area Sanitary Water Plant Effluent Stream Reduction''. The testing of the L-286 instrumentation system was conducted under the direct supervision

  17. Levels of synthetic musk compounds in municipal wastewater for potential estimation of biota exposure in receiving waters.

    PubMed

    Osemwengie, Lantis I; Gerstenberger, Shawn L

    2004-06-01

    We analyzed water samples from the confluence of three municipal sewage treatment effluent streams, surface water, and whole carp (Cyprinus carpio) for synthetic musks for a period of 7-12 months. The lipid content of each fish was determined and compared with the concentration of musks in the whole fish tissue. Enhanced methods were used for water sampling and musk extraction. The data presented here provide insight as to the relationship between concentrations of synthetic musks in the municipal effluent and associated biota. This study confirmed the presence of polycyclic and nitro musk compounds in sewage effluent, Lake Mead water, and carp. The concentrations were found to be considerably lower than previous studies conducted in other countries. This study also provides data for polycyclic and nitro musk compounds, as well as some of the nitro musk metabolites in sewage treatment plant effluent, lake water, and carp.

  18. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis [Allentown, PA; Miller, Christopher Francis [Macungie, PA

    2008-09-16

    Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

  19. Analysis of the measured effects of the principal exhaust effluents from solid rocket motors

    NASA Technical Reports Server (NTRS)

    Dawbarn, R.; Kinslow, M.; Watson, D. J.

    1980-01-01

    The feasibility of conducting environmental chamber tests using a small rocket motor to study the physical processes which occur when the exhaust products from solid motors mix with the ambient atmosphere was investigated. Of particular interest was the interaction between hydrogen chloride, aluminum oxide, and water vapor. Several types of instruments for measuring HCl concentrations were evaluated. Under some conditions it was noted that acid aerosols were formed in the ground cloud. These droplets condensed on Al2O3 nuclei and were associated with the rocket exhaust cooling during the period of plume rise to stabilization. Outdoor firings of the solid rocket motors of a 6.4 percent scaled model of the space shuttle were monitored to study the interaction of the exhaust effluents with vegetation downwind of the test site. Data concerning aluminum oxide particles produced by solid rocket motors were evaluated.

  20. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  1. 40 CFR 451.11 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... application of the best practicable control technology currently available (BPT). 451.11 Section 451.11... § 451.11 Effluent limitations attainable by the application of the best practicable control technology... professional judgment) representing the application of BPT: (a) Solids control. The permittee must: (1) Employ...

  2. 40 CFR 451.11 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... application of the best practicable control technology currently available (BPT). 451.11 Section 451.11... § 451.11 Effluent limitations attainable by the application of the best practicable control technology... professional judgment) representing the application of BPT: (a) Solids control. The permittee must: (1) Employ...

  3. Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF).

    PubMed

    Robinson, Tim; Nigam, Poonam Singh

    2008-12-01

    A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue.

  4. Partial characterization of an effluent produced by cooking of Jumbo squid (Dosidicus gigas) mantle muscle.

    PubMed

    Rosas-Romero, Zaidy G; Ramirez-Suarez, Juan C; Pacheco-Aguilar, Ramón; Lugo-Sánchez, Maria E; Carvallo-Ruiz, Gisela; García-Sánchez, Guillermina

    2010-01-01

    Jumbo squid (Dosidicus gigas) mantle muscle was cooked simulating industrial procedures (95 degrees C x 25 min, 1.2:5 muscle:water ratio). The effluent produced was analyzed for chemical and biochemical oxygen demands (COD and BOD(5), respectively), proximate analysis, flavor-related compounds (free amino acids, nucleotides and carbohydrates) and SDS-PAGE. The COD and BOD(5) exhibited variation among samplings (N=3) (27.4-118.5 g O(2)/L for COD and 11.3-26.7 g O(2)/L for BOD(5)). The effluent consisted of 1% total solids, 75% of which represented crude protein. Sixty percent of the total free amino acid content, which imparts flavor in squid species, corresponded to glutamic acid, serine, glycine, arginine, alanine, leucine and lysine. The nucleotide concentration followed this order, Hx>ADP>AMP>ATP>IMP>HxR. The variation observed in the present work was probably due to physiological maturity differences among the squid specimens (i.e., juvenile versus mature). Solids present in squid cooking effluent could be recovered and potentially used as flavor ingredients in squid-analog production by the food industry.

  5. A bleached-kraft mill effluent fraction causing induction of a fish mixed-function oxygenase enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnison, B.K.; Hodson, P.V.; Nuttley, D.J.

    1996-09-01

    Pulp mill effluents contain a myriad of chemicals that have the potential to cause deleterious effects on aquatic biota in receiving waters. Some of these chemicals evoke an acute lethal response of exposed biota while others evoke sublethal responses. One such sublethal response is the induction of mixed-function oxygenases (MFO) in fish, specifically the CYP1A1 enzyme ethoxy-resorufin-o-deethylase (EROD). Compounds causing MFO induction include congeners of polychlorinated biphenyls (PCBs), dioxins, furans, and polycyclic aromatic hydrocarbons (PAHs). The authors followed the partitioning of the inducing chemicals in pulp mill effluent fractions by Toxicity Identification Evaluation (TIE), or bioassay-driven chemical analysis. This proceduremore » was eventually modified to a more direct technique involving centrifugation, filtration, cleanup procedures, and C{sub 18} solid-phase adsorption. The extracts from the fractionation of two pulp mill effluents after secondary treatment were tested for EROD-inducing activity in a 4-d rainbow trout bioassay. The methanol extracts of particulates/colloids showed significant inducing capacity in Mill A effluent but not in Mill B effluent. The C{sub 18} methanol extracts induced activity from both effluents, with extracts from Mill A causing the greatest response. The particulate/colloidal extract (Mill A) was used as the source material for chemicals which caused EROD induction. The fraction was purified by solid-phase extraction techniques and reverse-phase high-performance liquid chromatography. The majority of the EROD activity was found in the moderately nonpolar region of the chromatogram (K{sub ow} = 4.6 to 5.1).« less

  6. Effect of wastewater treatment facility closure on endocrine disrupting chemicals in a Coastal Plain stream

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Clark, Jimmy M.

    2016-01-01

    Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insight into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The U.S. Geological Survey assessed the fate of select endocrine disrupting chemicals (EDC) in surface water and streambed sediment one year before and one year after closure of a long-term WWTF located within the Spirit Creek watershed at Fort Gordon, Georgia. Sample sites included a WWTF-effluent control located upstream from the outfall, three downstream effluent-impacted sites located between the outfall and Spirit Lake, and one downstream from the lake's outfall. Prior to closure, the 2.2-km stream segment downstream from the WWTF outfall was characterized by EDC concentrations significantly higher (α = 0.05) than at the control site; indicating substantial downstream transport and limited in-stream attenuation of EDC, including pharmaceuticals, estrogens, alkylphenol ethoxylate (APE) metabolites, and organophosphate flame retardants (OPFR). Wastewater-derived pharmaceutical, APE metabolites, and OPFR compounds were also detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon under effluent discharge conditions. After the WWTF closure, no significant differences in concentrations or numbers of detected EDC compounds were observed between control and downstream locations. The results indicated EDC pseudo-persistence under preclosure, continuous supply conditions, with rapid attenuation following WWTF closure. Low concentrations of EDC at the control site throughout the study and comparable concentrations in downstream locations after WWTF closure indicated additional, continuing, upstream contaminant sources within the Spirit Creek watershed. 

  7. Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters.

    PubMed

    Withers, P J A; Jarvie, H P; Stoate, C

    2011-04-01

    Septic tank systems (STS) are a potential source of nutrient emissions to surface waters but few data exist in the UK to quantify their significance for eutrophication. We monitored the impact of STS on nutrient concentrations in a stream network around a typical English village over a 1-year period. Septic tank effluent discharging via a pipe directly into one stream was highly concentrated in soluble N (8-63mgL(-1)) and P (<1-14mgL(-1)) and other nutrients (Na, K, Cl, B and Mn) typical of detergent and household inputs. Ammonium-N (NH(4)N) and soluble reactive P (SRP) fractions were dominant (70-85% of total) and average concentrations of nitrite-N (NO(2)N) were above levels considered harmful to fish (0.1mgL(-1)). Lower nutrient concentrations were recorded at a ditch and a stream site, but range and average values downstream of rural habitation were still 4 to 10-fold greater than those in upstream sections. At the ditch site, where flow volumes were low, annual flow-weighted concentrations of NH(4)N and SRP increased from 0.04 and 0.07mgL(-1), respectively upstream to 0.55 and 0.21mgL(-1) downstream. At the stream site, flow volumes were twice as large and flow-weighted concentrations increased much less; from 0.04 to 0.21mgL(-1) for NH(4)N and from 0.06 to 0.08mgL(-1) for SRP. At all sites, largest nutrient concentrations were recorded under low flow and stream discharge was the most important factor determining the eutrophication impact of septic tank systems. The very high concentrations, intercorrelation and dilution patterns of SRP, NH(4)-N and the effluent markers Na and B suggested that soakaways in the heavy clay catchment soils were not retaining and treating the septic tank effluents efficiently, with profound implications for stream biodiversity. Water companies, water regulators and rural communities therefore need to be made more aware of the potential impacts of STS on water quality so that their management can be optimised to reduce the risk of potential eutrophication and toxicity to aquatic ecosystems during summer low flow periods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Titanium dioxide nanoparticle exposure reduces algal biomass and alters algal assemblage composition in wastewater effluent-dominated stream mesocosms.

    PubMed

    Wright, Moncie V; Matson, Cole W; Baker, Leanne F; Castellon, Benjamin T; Watkins, Preston S; King, Ryan S

    2018-06-01

    A 5-week mesocosm experiment was conducted to investigate the toxicity of titanium dioxide nanoparticles (TiO 2 NPs) to periphytic algae in an environmentally-realistic scenario. We used outdoor experimental streams to simulate the characteristics of central Texas streams receiving large discharges of wastewater treatment plant effluent during prolonged periods of drought. The streams were continually dosed and maintained at two concentrations. The first represents an environmentally relevant concentration of 0.05 mg L -1 (low concentration). The second treatment of 5 mg L -1 (high concentration) was selected to represent a scenario where TiO 2 NPs are used for photocatalytic degradation of pharmaceuticals in wastewater. Algal cell density, chlorophyll-a, ash-free dry mass, algal assemblage composition, and Ti accumulation were determined for the periphyton in the riffle sections of each stream. The high concentration treatment of TiO 2 NPs significantly decreased algal cell density, ash-free dry mass, and chlorophyll-a, and altered algal assemblage composition. Decreased abundance of three typically pollution-sensitive taxa and increased abundance of two genera associated with heavy metal sorption and organic pollution significantly contributed to algal assemblage composition changes in response to TiO 2 NPs. Benefits of the use of TiO 2 NPs in wastewater treatment plants will need to be carefully weighed against the demonstrated ability of these NPs to cause large changes in periphyton that would likely propagate significant effects throughout the stream ecosystem, even in the absence of direct toxicity to higher trophic level organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for East Fork White River, Bartholomew County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Peters, James G.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in East Fork White River, Bartholomew County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand and the headwater concentrations of carbonaceous biochemical-oxygen demand, nitrogenous biochemical-oxygen demand, and dissolved oxygen are the most significant factors affecting the dissolved-oxygen concentration of East Fork White River downstream from the Columbus wastewater-treatment facility. The effect of effluent from the facility on the water quality of East Fork White River was minimal. The model also indicates that, with a benthic-oxygen demand of approximately 0.65 gram per square meter per day, the stream has no additional waste-load assimilative capacity during summer low flows. Regardless of the quality of the Columbus wastewater effluent, the minimum 24-hour average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams, would not be met. Ammonia toxicity is not a limiting water-quality criterion during summer and winter low flows. During winter low flows, the current carbonaceous biochemical-oxygen demand limits for the Columbus wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard. (USGS)

  10. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review.

    PubMed

    Crone, Brian C; Garland, Jay L; Sorial, George A; Vane, Leland M

    2016-11-01

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10-30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11-100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Microporous membranes can recover up to 98.9% of dissolved methane in AnMBR effluents which have low COD and SS concentrations. Sequential Down-flow Hanging Sponge (DHS) reactors have been used to recover between 57 and 88% of dissolved methane from Upflow Anaerobic Sludge Blanket (UASB) reactor effluent at concentrations of greater than 30% and oxidize the rest for a 99% removal of total dissolved methane. They can also remove 90% of suspended solids and COD in UASB effluents and produce a high quality effluent. In situ degassing can increase process stability, COD removal, biomass retention, and headspace methane concentrations. A model for estimating energy consumption associated with membrane-based dissolved methane recovery predicts that recovered dissolved and headspace methane may provide all the energy required for operation of an anaerobic system treating DWW at psychrophilic temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of coal-mine discharges on the quality of the Stonycreek River and its tributaries, Somerset and Cambria counties, Pennsylvania

    USGS Publications Warehouse

    Williams, Donald R.; Sams, James I.; Mulkerrin, Mary E.

    1996-01-01

    This report describes the results of a study by the U.S. Geological Survey, done in cooperation with the Somerset Conservation District, to locate and sample abandoned coal-mine discharges in the Stonycreek River Basin, to prioritize the mine discharges for remediation, and to determine the effects of the mine discharges on water quality of the Stonycreek River and its major tributaries. From October 1991 through November 1994, 270 abandoned coal-mine discharges were located and sampled. Discharges from 193 mines exceeded U.S. Environmental Protection Agency effluent standards for pH, discharges from 122 mines exceeded effluent standards for total-iron concentration, and discharges from 141 mines exceeded effluent standards for total-manganese concentration. Discharges from 94 mines exceeded effluent standards for all three constituents. Only 40 mine discharges met effluent standards for pH and concentrations of total iron and total manganese.A prioritization index (PI) was developed to rank the mine discharges with respect to their loading capacity on the receiving stream. The PI lists the most severe mine discharges in a descending order for the Stonycreek River Basin and for subbasins that include the Shade Creek, Paint Creek, Wells Creek, Quemahoning Creek, Oven Run, and Pokeytown Run Basins.Passive-treatment systems that include aerobic wetlands, compost wetlands, and anoxic limestone drains (ALD's) are planned to remediate the abandoned mine discharges. The successive alkalinity-producing-system treatment combines ALD technology with the sulfate reduction mechanism of the compost wetland to effectively remediate mine discharge. The water quality and flow of each mine discharge will determine which treatment system or combination of treatment systems would be necessary for remediation.A network of 37 surface-water sampling sites was established to determine stream-water quality during base flow. A series of illustrations show how water quality in the mainstem deteriorates downstream because of inflows from tributaries affected by acidic mine discharges. From the upstream mainstem site (site 801) to the outflow mainstem site (site 805), pH decreased from 6.8 to 4.2, alkalinity was completely depleted by inflow acidities, and total-iron discharges increased from 30 to 684 pounds per day. Total-manganese and total-sulfate discharges increased because neither constituent precipitates readily. Also, discharges of manganese and sulfate entering the mainstem from tributary streams have a cumulative effect.Oven Run and Pokeytown Run are two small tributary streams significantly affected by acidic mine drainage (AMD) that flow into the Stonycreek River near the town of Hooversville. The Pokeytown Run inflow is about 0.5 mile downstream from the Oven Run inflow. These two streams are the first major source of AMD flowing into the Stonycreek River. Data collected on the Stonycreek River above the Oven Run inflow and below the Pokeytown Run inflow show a decrease in pH from 7.6 to 5.1, a decrease in alkalinity concentration from 42 to 2 milligrams per liter, an increase in total sulfate discharge from 18 to 41 tons per day, and an increase in total iron discharge from 29 to 1,770 pounds per day. Data collected at three mainstem sites on the Stonycreek River below Oven Run and Pokeytown Run show a progressive deterioration in river water quality from AMD.Shade Creek and Paint Creek are other tributary streams to the Stonycreek River that have a significant negative effect on water quality of the Stonycreek River. One third of the abandoned-mine discharges sampled were in the Shade Creek and Paint Creek Basins.

  12. Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting selenium-laden coal ash effluents. 3. Serum chemistry and fish health indicators.

    PubMed

    Lohner, T W; Reash, R J; Willet, V E; Fletcher, J

    2001-11-01

    Sunfish were collected from fly ash discharge-receiving streams to assess the possible effects of exposure to elevated selenium. Concentrations of selenium, copper, and arsenic were statistically higher in fish tissue (liver) samples from effluent-exposed fish than in reference fish. Several biomarkers were indicative of metal exposure and effect. Plasma protein levels and cholesterol levels were significantly lower in exposed fish, indicating nutritional stress. Ion levels (i.e., K) increased with exposure to ash pond metals, indicating possible gill damage. Fish from the receiving streams also had increased serum glucose and osmolality indicating possible acute stress due to sampling. Fish health assessments revealed a lower incidence of fin erosion, kidney discoloration, urolithiasis or nephrocalcinosis, liver discoloration, and parasites in exposed fish and a higher incidence of skin, eye, and gill aberrations. Condition factors of exposed fish were correlated with biomarker response and were the same as or lower than those of reference fish, but not related to selenium levels. Although several serum biochemical indicators differed between the ash pond-receiving stream and reference sites, pollutant exposure was apparently not sufficient to cause functional damage to critical organ systems.

  13. Implementing the NPDES program: An update on the WET ...

    EPA Pesticide Factsheets

    The U.S. EPA has utilized the Clean Water Act - National Pollutant Discharge Elimination System permitting program to protect waters of the U.S for over 40 years. NPDES permit effluent limitations serve as the primary mechanism for controlling discharges of pollutants to receiving waters. When developing effluent limitations for an NPDES permit, a permit writer must consider limits based on both the technology available to control the pollutants (i.e., technology-based effluent limits) and limits that are protective of the water quality standards of the receiving water (i.e., water quality-based effluent limits). WET testing is one of the water quality-based effluent limitation mechanisms available to permit writers that is useful in determining how the additive, synergistic and compounding effects of toxic effluents effect streams. This presentation will provide an overview of the current EPA NPDES permit program direction for increasing the efficacy of NPDES permits program administered by the U.S. EPA and States. The training implementation plan is expected to provide permit writers with a clearer understanding of WET requirements as established via the U.S. EPA WET test manuals, NPDES permitting regulatory authorities, and the WET science which has been long established. not applicable

  14. Catalytic oxidation for treatment of ECLSS and PMMS waste streams

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Jolly, Clifford D.

    1991-01-01

    It is shown that catalytic oxidation is an effective technique for the removal of trace organic contaminants in a multifiltration potable processor's effluent. Essential elements of this technology are devices that deliver oxygen to the influent, and remove gaseous reaction byproducts from the effluent, via hollow-tube, gas-permeable membranes. Iodine, which poisons existing catalysis, is removed by a small deiodination bed prior to catalytic reactor entrance. The catalyst used is a mixture of Pt and Ru deposited on carbon, operating at 125-160 C and 39-90 psi pressures.

  15. USARCENT AOR Contingency Base Waste Stream Analysis: An Analysis of Solid Waste Streams at Five Bases in the U. S. Army Central (USARCENT) Area of Responsibility

    DTIC Science & Technology

    2013-03-31

    certainly remain comingled with other solid waste. For example, some bases provided containers for segregation of recyclables including plastic and...prevalent types of solid waste are food (19.1% by average sample weight), wood (18.9%), and plastics (16.0%) based on analysis of bases in...within the interval shown. Food and wood wastes are the largest components of the average waste stream (both at ~19% by weight), followed by plastic

  16. BIOMONITORING TO ACHIEVE CONTROL OF TOXIC EFFLUENTS

    EPA Science Inventory

    This 48 - page Technology Transfer Report provides a case study of how water quality-based toxicity control procedures can be combined with chemical analyses and biological stream surveys to achieve more effective water pollution control. t describes how regulatory agencies used ...

  17. COAL CONVERSION CONTROL TECHNOLOGY. VOLUME I. ENVIRONMENTAL REGULATIONS; LIQUID EFFLUENTS

    EPA Science Inventory

    This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental ...

  18. ALKYLPHENOL (APE) MONITORING AND ASSESSMENT OF REGION 5

    EPA Science Inventory

    Two draft reports have been prepared for publication - a USGS document titled "Alkylphenols and hormones in wastewater treatment plant influents, effluents, and receiving streams of the Great Lakes Region" and a journal article titled "Biological responses of male fatehead minno...

  19. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.

    PubMed

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2018-07-01

    A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Dissolved Solids in Streams of the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Anning, D. W.; Flynn, M.

    2014-12-01

    Studies have shown that excessive dissolved-solids concentrations in water can have adverse effects on the environment and on agricultural, municipal, and industrial water users. Such effects motivated the U.S. Geological Survey's National Water-Quality Assessment Program to develop a SPAtially-Referenced Regression on Watershed Attributes (SPARROW) model to improve the understanding of dissolved solids in streams of the United States. Using the SPARROW model, annual dissolved-solids loads from 2,560 water-quality monitoring stations were statistically related to several spatial datasets serving as surrogates for dissolved-solids sources and transport processes. Sources investigated in the model included geologic materials, road de-icers, urban lands, cultivated lands, and pasture lands. Factors affecting transport from these sources to streams in the model included climate, soil, vegetation, terrain, population, irrigation, and artificial-drainage characteristics. The SPARROW model was used to predict long-term mean annual conditions for dissolved-solids sources, loads, yields, and concentrations in about 66,000 stream reaches and corresponding incremental catchments nationwide. The estimated total amount of dissolved solids delivered to the Nation's streams is 272 million metric tons (Mt) annually, of which 194 million Mt (71%) are from geologic sources, 38 million Mt (14%) are from road de-icers, 18 million Mt (7%) are from pasture lands, 14 million Mt (5 %) are from urban lands, and 8 million Mt (3%) are from cultivated lands. The median incremental-catchment yield delivered to local streams is 26 metric tons per year per square kilometer [(Mt/yr)/km2]. Ten percent of the incremental catchments yield less than 4 (Mt/yr)/km2, and 10 percent yield more than 90 (Mt/yr)/km2. In 13% of the reaches, predicted flow-weighted concentrations exceed 500 mg/L—the U.S. Environmental Protection Agency secondary non-enforceable drinking-water standard.

  1. Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams

    USGS Publications Warehouse

    Kolpin, Dana W.; Schenzel, Judith; Meyer, Michael T.; Phillips, Patrick J.; Hubbard, Laura E.; Scott, Tia-Marie; Bucheli, Thomas D.

    2014-01-01

    To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown

  2. Method for high temperature mercury capture from gas streams

    DOEpatents

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  3. Paper plant effluent revisited-southern Lake Champlain, Vermont and New York

    USGS Publications Warehouse

    Haupt, R.S.; Folger, D.W.

    1993-01-01

    We used geologic and geochemical techniques to document the change with time of the distribution and concentration of contaminated bottom sediments in southern Lake Champlain near an International Paper Company plant. Our work, initiated in 1972, was expanded on behalf of Vermont citizens in a class-action suit against the International Paper Company. To update our 1972-1973 results, we collected nine cores in 1988 upstream and downstream from the paper plant effluent diffuser. Water content, volatile solids, organic carbon, and three ratios, Al/Si, Cl/Si, and S/Si, in addition to megascopic and microscopic observations, were evaluated to identify and trace the distribution of effluent and to measure the thickness of sediment affected by or containing components of effluent. Analyses were carried out on samples from the cores as well as from effluent collected directly from the plant's waste treatment facility. In 1973, two years after the plant opened, we cored near the diffuser; sediment contaminated with effluent was 4.5 cm thick. In 1988, in the same area, sediment contaminated with effluent was 17 cm thick. In 15 years, water content increased from 72 to 85 percent, volatile solids from 7 to 20 percent, and organic carbon from 2 to 12 percent. Cl/Si and S/Si were high only near the diffuser and were zero elsewhere. In the area of the diffuser, contaminated sediment appears to be accumulating at a rate of about 1 cm/yr. At a control location 22 km upstream (south) from the plant, the top, poorly consoli-dated layer was only 1 cm or less thick both in 1973 and in 1988. The class-action suit was settled in favor of the plaintiffs for $5 million. ?? 1993 Springer-Verlag.

  4. Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters.

    PubMed

    Güngör, Kerem; Karthikeyan, K G

    2008-01-01

    The effect of anaerobic digestion on phosphorus (P) forms and water P extractability was investigated using dairy manure samples from six full-scale on-farm anaerobic digesters in Wisconsin, USA. On an average, total dissolved P (TDP) constituted 12 +/- 4% of total P (TP) in the influent to the anaerobic digesters. Only 7 +/- 2% of the effluent was in a dissolved form. Dissolved unreactive P (DUP), comprising polyphosphates and organic P, dominated the dissolved P component in both the influent and effluent. In most cases, it appeared that the fraction of DUP mineralized during anaerobic digestion became subsequently associated with particulate-bound solids. Geochemical equilibrium modeling with Mineql+ indicated that dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, octacalcium phosphate, newberyite, and struvite were the probable solid phases in both the digester influent and effluent samples. The water-extractable P (WEP) fraction in undigested manure ranged from 45% to 70% of TP, which reduced substantially after anaerobic digestion to 25% to 45% of TP. Anaerobic digestion of dairy manure appears capable of reducing the fraction of P that is immediately available by increasing the stability of the solid phases controlling P solubility.

  5. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    DOEpatents

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  6. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  7. Use of once-through treat gas to remove the heat of reaction in solvent hydrogenation processes

    DOEpatents

    Nizamoff, Alan J.

    1980-01-01

    In a coal liquefaction process wherein feed coal is contacted with molecular hydrogen and a hydrogen-donor solvent in a liquefaction zone to form coal liquids and vapors and coal liquids in the solvent boiling range are thereafter hydrogenated to produce recycle solvent and liquid products, the improvement which comprises separating the effluent from the liquefaction zone into a hot vapor stream and a liquid stream; cooling the entire hot vapor stream sufficiently to condense vaporized liquid hydrocarbons; separating condensed liquid hydrocarbons from the cooled vapor; fractionating the liquid stream to produce coal liquids in the solvent boiling range; dividing the cooled vapor into at least two streams; passing the cooling vapors from one of the streams, the coal liquids in the solvent boiling range, and makeup hydrogen to a solvent hydrogenation zone, catalytically hydrogenating the coal liquids in the solvent boiling range and quenching the hydrogenation zone with cooled vapors from the other cooled vapor stream.

  8. Assessing effects of a mining and municipal sewage effluent mixture on fathead minnow (Pimephales promelas) reproduction using a novel, field-based trophic-transfer artificial stream.

    PubMed

    Rickwood, Carrie J; Dubé, Monique G; Weber, Lynn P; Lux, Sarah; Janz, David M

    2008-01-31

    The Junction Creek watershed, located in Sudbury, ON, Canada receives effluent from three metal mine wastewater treatment plants, as well as a municipal wastewater (MWW) discharge. Effects on fish have been documented within the creek (decreased egg size and increased metal body burdens). It has been difficult to identify the cause of the effects observed due to the confounded nature of the creek. The objectives of this investigation were to assess the: (1) effects of a mine effluent and municipal wastewater (CCMWW) mixture on fathead minnow (FHM; Pimephales promelas) reproduction in an on-site artificial stream and (2) importance of food (Chironomus tentans) as a source of exposure using a trophic-transfer system. Exposures to CCMWW through the water significantly decreased egg production and spawning events. Exposure through food and water using the trophic-transfer system significantly increased egg production and spawning events. Embryos produced in the trophic-transfer system showed similar hatching success but increased incidence and severity of deformities after CCMWW exposure. We concluded that effects of CCMWW on FHM were more apparent when exposed through the water. Exposure through food and water may have reduced effluent toxicity, possibly due to increased nutrients and organic matter, which may have reduced metal bioavailability. More detailed examination of metal concentrations in the sediment, water column, prey (C. tentans) and FHM tissues is recommended to better understand the toxicokinetics of potential causative compounds within the different aquatic compartments when conducting exposures through different pathways.

  9. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Treesearch

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  10. Water resources of Sedgwick County, Kansas

    USGS Publications Warehouse

    Bevans, H.E.

    1989-01-01

    Hydrologic data from streams, impoundments, and wells are interpreted to: (1) document water resources characteristics; (2) describe causes and extent of changes in water resources characteristics; and (3) evaluate water resources as sources of supply. During 1985, about 134,200 acre-ft of water (84% groundwater) were used for public (42%), irrigation, (40%), industrial (14%), and domestic (4%) supplies. Streamflow and groundwater levels are related directly to precipitation, and major rivers are sustained by groundwater inflow. Significant groundwater level declines have occurred only in the Wichita well field. The Arkansas and Ninnescah Rivers have sodium chloride type water; the Little Arkansas River, calcium bicarbonate type water. Water quality characteristics of water in small streams and wells depend primarily on local geology. The Wellington Formation commonly yields calcium sulfate type water; Ninnescah Shale and unconsolidated deposits generally yield calcium bicarbonate type water. Sodium chloride and calcium sulfate type water in the area often have dissolved-solids concentrations exceeding 1,000 mg/L. Water contamination by treated sewage effluent was detected inparts of the Arkansas River, Little Arkansas River, and Cowskin Creek. Nitrite plus nitrate as nitrogen contamination was detected in 11 of 101 wells; oilfield brine was detected in the Wichita-Valley Center Floodway, Prairie Creek, Whitewater Creek, and 16 of 101 wells; and agricultural pesticides were detected in 8 of 14 impoundments and 5 of 19 wells. Generally, the water is acceptable for most uses. (USGS)

  11. Biodegradation of 17β-Estradiol, Estrone and Testosterone in Stream Sediments

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Chapelle, F. H.; Barber, L. B.; McMahon, P. B.; Gray, J. L.; Kolpin, D. W.

    2009-12-01

    The potentials for in situ biodegradation of 17β-estradiol (E2), estrone (E1), and testosterone (T) were investigated in three, hydrologically-distinct, WWTP-impacted streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream samples provided insight into the biodegradative potential of sediment microbial communities that were not under the immediate impact of WWTP effluent. Upstream sediment from all three systems demonstrated significant mineralization of the “A” ring of E2, E1 and T, with the potential of T biodegradation consistently greater than of E2 and no systematic difference in the potentials of E2 and E1. Downstream samples provided insight into the impacts of effluent on reproductive hormone biodegradation. Significant “A” ring mineralization was also observed in downstream sediment, with the potentials for E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, the potentials for E2 mineralization immediately downstream of the WWTP outfalls were more than double that of upstream samples. E2 mineralization was also observed in water, albeit at insufficient rate to prevent substantial downstream transport in the water column. The results of this study indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for non-conservative (destructive) attenuation of hormonal endocrine disruptors in effluent-impacted streams.

  12. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Cedar Creek, Dekalb and Allen counties, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Peters, J.G.; Ayers, M.A.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in Cedar Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that the dissolved-oxygen concentration of the Auburn wastewater effluent and nitrification are the most significant factors affecting the dissolved-oxygen concentration in Cedar Creek during summer low flows. The observed dissolved-oxygen concentration of the Auburn wastewater effluent was low and averaged 30 percent of saturation. Projected nitrogenous biochemical-oxygen demand loads, from the Indiana State Board of Health, for the Auburn and Waterloo wastewater-treatment facilities will result in violations of the current instream dissolved-oxygen standard (5 mg/l), even with an effluent dissolved-oxygen concentration of 80 percent saturation. Natural streamflow for Cedar Creek upstream from the confluence of Willow and Little Cedar Creeks is small compared with the waste discharge, so benefits of dilution for Waterloo and Auburn are minimal. The model also indicates that, during winter low flows, ammonia toxicity, rather than dissolved oxygen, is the limiting water-quality criterion in the reach of Cedar Creek downstream from the wastewater-treatment facility at Auburn and the confluence of Garrett ditch. Ammonia-nitrogen concentrations predicted for 1978 through 2000 downstream from the Waterloo wastewater-treatment facility do not exceed Indiana water-quality standards for streams. Calculations of the stream 's assimilative capacity indicate that future waste discharge in the Cedar Creek basin will be limited to the reaches between the Auburn wastewater-treatment facility and County Road 68. (Kosco-USGS)

  13. Optimization of circular plate separators with cross flow for removal of oil droplets and solid particles.

    PubMed

    Ngu, Hei; Wong, Kien Kuok; Law, Puong Ling

    2012-04-01

    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.

  14. Dissolved Solids as HD Bioeffluent Toxicants.

    DTIC Science & Technology

    1998-12-01

    12 The question still remains about whether the toxicity of the SBR effluent was caused by either the animals’ inability to osmoregulate in a high...the dissolved solids. The inability of freshwater organisms to osmoregulate in such high saline environments caused toxicity. Freshwater organisms are

  15. Long-term evaluation of lethal and sublethal toxicity of industrial effluents using Daphnia magna and Moina macrocopa.

    PubMed

    Yi, Xianliang; Kang, Sung-Wook; Jung, Jinho

    2010-06-15

    Acute toxicity and feeding rate inhibition of effluent from a wastewater treatment plant and its adjacent stream water on Daphnia magna and Moina macrocopa were comparatively studied. The acute toxicity of the final effluent (FE) fluctuated greatly over the sampling period from January to August 2009. Toxicity identification results of the FE in July 2009 showed that Cu originating from the Fenton's reagent was likely a key toxicant. In addition, the feeding rate of both species was still inhibited by the FEs in which acute toxicity was not observed. These findings indicate that the feeding response would be a useful tool for monitoring sublethal effects of industrial effluents. For the acute toxicity test, M. macrocopa was more sensitive than D. magna, but the opposite result was true in the case of the feeding rate inhibition. These suggest that different species have different sensitivities to toxic chemicals and to the test methods. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis)

    USGS Publications Warehouse

    Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.

    2016-01-01

    The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall. 

  17. PLANNING STUDY TO MODEL AND MONITOR COAL PILE RUNOFF. PHASE I

    EPA Science Inventory

    The report describes a planning study for predicting and monitoring the hydrologic and chemical characteristics of effluent streams resulting from precipitation impacting on open storage of coal. It includes: a survey of utilities on storage habits and treatment systems for coal ...

  18. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant December 1990 to November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.

    1994-03-01

    On September 23, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous Diffusion Plant (PGDP). Beginning in fall 1991, the Environmental Sciences Division (ESD) at Oak Ridge National Lab (ORNL) added data collection and report preparation to its responsibilities for the PGDP BMP. The BMP has been continued because it has proven to be extremely valuable in identifying those effluents with the potential for adversely affecting instream fauna, assessing the ecological health of receiving streams, guiding plans for remediation, andmore » protecting human health. In September 1992, a renewed permit was issued which requires toxicity monitoring of continuous and intermittent outfalls on a quarterly basis. The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities. This report includes ESD/ORNL activities occurring from December 1990 to November 1992.« less

  19. Performance comparison of tin oxide anodes to commercially available dimensionally stable anodes.

    PubMed

    Watts, Richard J; Finn, Dennis D; Wyeth, Megan S; Teel, Amy L

    2008-06-01

    Dimensionally stable anodes (DSAs) demonstrate potential for the electrochemical treatment of industrial waste streams and disinfection of effluent. Oxidation by laboratory-prepared tin oxide DSAs was compared with that of commercially available ruthenium oxide, iridium oxide, and mixed metal oxide DSAs, using hexanol as a probe molecule. The performance of the four anodes was similar in two-chamber reactors, in which the anode cell was separated from the cathode cell by a Nafion membrane, which allows transmission of current between the chambers, but not passage of chemical constituents. The anodes were then evaluated in single-cell reactors, which are more representative of potential treatment and disinfection applications. However, in the single-cell reactors, the tin oxide anodes were significantly more effective at oxidation and generated higher quality cyclic voltammograms than the other DSAs. These results suggest that tin oxide anodes have greater potential than the three commercially available DSAs tested for industrial waste stream treatment and effluent disinfection.

  20. Use of biological characteristics of common carp (Cyprinus carpio) to indicate exposure to hormonally active agents in selected Minnesota streams, 1999

    USGS Publications Warehouse

    Lee, Kathy E.; Blazer, Vicki; Denslow, Nancy D.; Goldstein, Robert M.; Talmage, Philip J.

    2000-01-01

    The presence of HAAs in selected Minnesota streams was indicated by biological characteristics in common carp. Biological characteristics used in this study identified WWTP effluent as a potential source of HAAs. Additionally, fish located at sites upstream of WWTP effluent primarily draining agricultural land show indications of HAAs, which may be the result of agricultural runoff or other sources of HAAs. There was variability among all sites and among sites within each site group. Differences among sites may be due to differences in water chemistry or fish exposure time. Natural variation in the biological characteristics may account for some of the differences observed in this study. This study and others indicate the presence of HAAs in surface water and the potential signs of endocrine disruption in resident fish populations. Detailed controlled studies could confirm the effects of particular chemicals such as pesticides or components of WWTPs on fish reproduction and population structure.

  1. Solid-phase materials for chelating metal ions and methods of making and using same

    DOEpatents

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  2. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Stennis Space Center's aquaculture research program has led to an attractive wastewater treatment for private homes. The system consists of a septic tank or tanks for initial sewage processing and a natural secondary treatment facility for further processing of septic tanks' effluent, consisting of a narrow trench, which contains marsh plants and rocks, providing a place for microorganisms. Plants and microorganisms absorb and digest, thus cleansing partially processed wastewater. No odors are evident and cleaned effluent may be discharged into streams or drainage canals. The system is useful in rural areas, costs about $1,900, and requires less maintenance than mechanical systems.

  3. Detoxification of kraft pulp ECF bleaching effluents by catalytic hydrotreatment.

    PubMed

    Calvo, L; Gilarranz, M A; Casas, J A; Mohedano, A F; Rodríguez, J J

    2007-02-01

    Two different effluents from the D(1) and E(1) stages of the ECF bleaching of Eucalyptus globulus kraft pulp were treated by catalytic hydrogenation in a trickle bed reactor using commercial and homemade Pd/AC catalysts. The reactor was fed with the bleaching effluent and a H(2)/N(2) gas stream. The variables studied were space-time (1.4-5g(cat)min/mL), gas to liquid flow ratio (286-1000vol.), gas feed concentration (H(2):N(2), 1:1-1:7.3vol.), temperature (25-100 degrees C) and pressure (1-11bar). Hydrotreatment performance was evaluated in terms of ecotoxicity, adsorbable organic halogen (AOX), chemical oxygen demand (COD), biological oxygen demand (BOD(5)) and colour removal. In all the runs, the ecotoxicity of the effluents decreased as a result of the treatment, achieving reductions that ranged from 70% to 98%. Simultaneously to the reduction of toxicity, the hydrotreatment led to a decrease of the colour of the effluents, being the decrease significantly higher in the case of E(1) effluent. The AOX content was reduced by 85% and 23% for E(1) and D(1) effluents, respectively. In the case of D(1) effluent the removal of ecotoxicity was significantly higher than that of AOX, which indicates that much of the toxicity of the effluent must be associated to non-chlorinated organics. In spite of the important reduction of ecotoxicity, the biodegradability of the effluents only increased slightly. The homemade catalysts, prepared from activated carbons with a high external or non-microporous surface area and mesopore volume and a convenient surface chemistry showed a higher efficiency than the commercial one.

  4. Mass Balance of Fipronil and Total Toxicity of Fipronil-Related Compounds in Process Streams during Conventional Wastewater and Wetland Treatment

    PubMed Central

    2015-01-01

    Attenuation of the pesticide fipronil and its major degradates was determined during conventional wastewater treatment and wetland treatment. Analysis of flow-weighted composite samples by liquid and gas chromatography–tandem mass spectrometry showed fipronil occurrence at 12–31 ng/L in raw sewage, primary effluent, secondary effluent, chlorinated effluent, and wetland effluent. Mean daily loads of total fipronil related compounds in raw sewage and in plant effluent after chlorination were statistically indistinguishable (p = 0.29; n = 10), whereas fipronil itself was partially removed (25 ± 3%; p = 0.00025; n = 10); the associated loss in toxicity was balanced by the formation of toxic fipronil degradates, showing conventional treatment to be unfit for reducing overall toxicity. In contrast to these findings at the municipal wastewater treatment, both parental fipronil and the sum of fipronil-related compounds were removed in the wetland with efficiencies of 44 ± 4% and 47 ± 13%, respectively. Total fipronil concentrations in plant effluent (28 ± 6 ng/L as fipronil) were within an order of magnitude of half-maximal effective concentrations (EC50) of nontarget invertebrates. This is the first systematic assessment of the fate of fipronil and its major degradates during full-scale conventional wastewater and constructed wetland treatment. PMID:26710933

  5. Novel two stage bio-oxidation and chlorination process for high strength hazardous coal carbonization effluent.

    PubMed

    Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas

    2011-05-15

    Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Pyrolysis with cyclone burner

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.

    1978-07-25

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.

  7. Pyrolysis with staged recovery

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  8. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    USGS Publications Warehouse

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  9. Effects of spray-irrigated treated effluent on water quantity and quality, and the fate and transport of nitrogen in a small watershed, New Garden Township, Chester County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.; Galeone, Daniel G.; Veneziale, John M.; Olson, Leif E.; O'Brien, David L.

    2005-01-01

    An increasing number of communities in Pennsylvania are implementing land-treatment systems to dispose of treated sewage effluent. Disposal of treated effluent by spraying onto the land surface, instead of discharging to streams, may recharge the ground-water system and reduce degradation of stream-water quality. The U.S. Geological Survey (USGS), in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP) and the Chester County Water Resources Authority (CCWRA) and with assistance from the New Garden Township Sewer Authority, conducted a study from October 1997 through December 2001 to assess the effects of spray irrigation of secondary treated sewage effluent on the water quantity and quality and the fate and transport of nitrogen in a 38-acre watershed in New Garden Township, Chester County, Pa. On an annual basis, the spray irrigation increased the recharge to the watershed. Compared to the annual recharge determined for the Red Clay Creek watershed above the USGS streamflow-gaging station (01479820) near Kennett Square, Pa., the spray irrigation increased annual recharge in the study watershed by approximately 8.8 in. (inches) in 2000 and 4.3 in. in 2001. For 2000 and 2001, the spray irrigation increased recharge 65-70 percent more than the recharge estimates determined for the Red Clay Creek watershed. The increased recharge was equal to 30-39 percent of the applied effluent. The spray-irrigated effluent increased base flow in the watershed. The magnitude of the increase appeared to be related to the time of year when the application rates increased. During the late fall through winter and into the early spring period, when application rates were low, base flow increased by approximately 50 percent over the period prior to effluent application. During the early spring through summer to the late fall period, when application rates were high, base flow increased by approximately 200 percent over the period prior to effluent application. The spray-irrigated effluent affected the ground-water quality of the shallow aquifer differently on the hilltop and hillside topographic settings of the watershed where spray irrigation was being applied (application area). Concentrations of nitrate-nitrogen (nitrate N) and chloride (Cl) in the effluent were higher than concentrations of these constituents in shallow ground water from wells on the hilltop and hillside prior to start of spray irrigation. In water from wells on the hilltop, concentrations of nitrate N and Cl increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. In water from wells on the hillside, which were on the eastern part of the application area, nitrate N and Cl concentrations increased in samples collected during effluent application compared to samples collected prior to effluent application. Also, increasing trends in concentration of these two constituents were evident through the study period. However, on the hillside of the western application area, the ground-water quality was not affected by the spray-irrigated effluent because of the greater thickness of unconsolidated material and higher amounts of clay present in those unconsolidated sands. Although nitrate N concentrations increased in water from hilltop and hillside wells in the application area, the nitrate N concentrations were below the effluent concentration. A combination of plant uptake, biological activity, and denitrification may be the processes accounting for the lower nitrate N concentrations in shallow ground water compared to the spray-irrigated effluent. Cl concentrations in water from hilltop western application area well Ch-5173 increased during the study period but were an order of magnitude less than the input effluent concentration. Cl concentrations in shallow ground water in the e

  10. Determination of iodinated X-ray contrast media in sewage by solid-phase extraction and liquid chromatography tandem mass spectrometry.

    PubMed

    Echeverría, S; Borrull, F; Fontanals, N; Pocurull, E

    2013-11-15

    A method for the quantitative determination of five iodinated X-ray contrast media (ICMs) in sewage was developed by solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry. A fused-core analytical column was successfully applied for the first time for the separation of ICMs. Oasis HLB was selected from the sorbents tested because of its higher recoveries. The optimized method allowed the determination of the ICMs at low ng/L levels in both influent and effluent sewage, with detection limits of 40 ng/L and 10 ng/L for most compounds in influent and effluent sewage, respectively. The five ICMs studied were determined in all samples analysed, with iopromide being the analyte found at the highest concentration (8.9 µg/L), while iopamidol was the analyte found at lowest concentration (1.3 µg/L) in influent sewage. Effluent sewage did not show a significant decrease in ICM concentrations. © 2013 Elsevier B.V. All rights reserved.

  11. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    PubMed

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.

  12. Nutrient removal of effluent from quail farm through cultivation of Wolffia arrhiza.

    PubMed

    Suppadit, T

    2011-08-01

    The objective of this work was to study the nutrient removal using the Wolffiaarrhiza during the treatment of laying quails farm effluent. The relationship between W. arrhiza biomass and treatment time, the change in water qualities, and nitrogen-balance (N-balance) were evaluated. The results showed that a biomass of 12.0g of W. arrhiza per liter of effluent and a treatment period of 30 days were found to provide the best conditions for W. arrhiza's growth and the quality of the treated effluent in terms of biological oxygen demand, suspended solids, total phosphorus, nitrate, total ammonia nitrogen and total Kjeldahl nitrogen. The pH and salinity were similar for each level of biomass. The W. arrhiza biomasses of 4.00-12.0g/l of effluent were suitable for W. arrhiza survival over time. Since W. arrhiza can fix N in the atmosphere, it can grow very well in effluent containing a low level of N. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Complete physico-chemical treatment for coke plant effluents.

    PubMed

    Ghose, M K

    2002-03-01

    Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites.

  14. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater.

    PubMed

    Kim, Kyoung-Yeol; Yang, Wulin; Ye, Yaoli; LaBarge, Nicole; Logan, Bruce E

    2016-05-01

    Anaerobic fluidized membrane bioreactors (AFMBRs) have been mainly developed as a post-treatment process to produce high quality effluent with very low energy consumption. The performance of an AFMBR was examined using the effluent from a microbial fuel cell (MFC) treating domestic wastewater, as a function of AFMBR hydraulic retention times (HRTs) and organic matter loading rates. The MFC-AFMBR achieved 89 ± 3% removal of the chemical oxygen demand (COD), with an effluent of 36 ± 6 mg-COD/L over 112 days operation. The AFMBR had very stable operation, with no significant changes in COD removal efficiencies, for HRTs ranging from 1.2 to 3.8h, although the effluent COD concentration increased with organic loading. Transmembrane pressure (TMP) was low, and could be maintained below 0.12 bar through solids removal. This study proved that the AFMBR could be operated with a short HRT but a low COD loading rate was required to achieve low effluent COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Utilization of artificial recharged effluent as makeup water for industrial cooling system: corrosion and scaling.

    PubMed

    Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi

    2016-01-01

    The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed.

  16. Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover.

    PubMed

    Li, Yueh-Fen; Shi, Jian; Nelson, Michael C; Chen, Po-Hsu; Graf, Joerg; Li, Yebo; Yu, Zhongtang

    2016-01-01

    The objective of this study was to understand how the non-microbial factors of L-AD effluent affected the microbiome composition and successions in the SS-AD digesters using both Illumina sequencing and qPCR quantification of major genera of methanogens. The SS-AD digesters started with a feedstock/total effluent (F/Et) ratio 2.2 (half of the effluent was autoclaved) performed stably, while the SS-AD digesters started with a 4.4 F/Et ratio (no autoclaved effluent) suffered from digester acidification, accumulation of volatile fatty acids, and ceased biogas production two weeks after startup. Some bacteria and methanogens were affected by non-microbial factors of the L-AD fluent. Alkalinity, the main difference between the two F/Et ratios, may be the crucial factor when SS-AD digesters were started using L-AD effluent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE

    DOEpatents

    Reinhart, G.M.; Collopy, T.J.

    1962-11-13

    A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)

  18. Production of bacterial cellulose from alternate feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  19. Production of Bacterial Cellulose from Alternate Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  20. Use of stable isotopes of carbon, nitrogen, and sulfer to identify sources of nitrogen in surface waters in the Lower Susquehanna River basin, Pennsylvania

    USGS Publications Warehouse

    Cravotta, C.A.

    1995-01-01

    Stable isotopes of carbon (C), nitrogen (N), and sulfur (S) in nitrogen sources and nearby samples of topsoil, subsoil, runoff water, and stream water were measured to evaluate the feasibility of using isotopic data to identify nitrogen sources in stream water from forested, agricultural, or suburban land-use areas. Chemical and isotopic compositions were measured for six N-source types consisting of rain water, forest-leaf litter, synthetic fertilizer, farm-animal manure, municipal-sewage effluent and sludge, and septic-tank effluent and sludge. Compositions of topsoil, subsoil, runoff water, and stream water were measured to evaluate changes in compositions of transported N-containing materials near the N source. Animal manure, human waste (sewage plus septic), and forest-leaf litter can be distinguished on the basis of C; however, most N-sources can not be distinguished on the basis of N and S, owing to wide ranges of compositions and overlap among different N-source types. Although values of N for soil and runoff-water samples are qualitatively similar to those of the applied N source, values of C and S for runoff-water and stream-water samples appear to reflect the compositions of relatively large reservoirs of the elements in soil organic matter and minerals, respectively, and not the composition of the applied N source. Because of incomplete chemical transfor- mations, the ratio of organic carbon to total nitrogen for particulates in runoff or stream waters generally is lower than that for associated, nearby soils, and isotopic compositions commonly differ between particulate and dissolved fractions in the water.

  1. Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester.

    PubMed

    Browne, James D; Allen, Eoin; Murphy, Jerry D

    2013-01-01

    This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS(-1) for pig slurry to as high as 787 L CH4 kg VS(-1) for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 m(n)(3) t(-1)) followed by cheese waste (38 m(n)(3) t(-1)) and abattoir waste (36 m(n)(3) t(-1)). It was suggested that waste water sludge (16 m(n)(3) t(-1)) and pig slurry (4 m(n)(3) t(-1)) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.

  2. Effect of initial conditions on constant pressure mixing between two turbulent streams

    NASA Astrophysics Data System (ADS)

    Kangovi, S.

    1983-02-01

    It is pointed out that a study of the process of mixing between two dissimilar streams has varied applications in different fields. The applications include the design of an after burner in a high by-pass ratio aircraft engine and the disposal of effluents in a stream. The mixing process determines important quantities related to the energy transfer from main stream to the secondary stream, the temperature and velocity profiles, and the local kinematic and dissipative structure within the mixing region, and the growth of the mixing layer. Hill and Page (1968) have proposed the employment of an 'assumed epsilon' method in which the eddy viscosity model of Goertler (1942) is modified to account for the initial boundary layer. The present investigation is concerned with the application of the assumed epsilon technique to the study of the effect of initial conditions on the development of the turbulent mixing layer between two compressible, nonisoenergetic streams at constant pressure.

  3. Effects of a Chronic Lower Range of Triclosan Exposure on a Stream Mesocosm Community

    EPA Science Inventory

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is an antimicrobial found in consumer soaps and toothpaste. It is in treated wastewater effluents at low part per billion concentrations, representing a potentially chronic exposure condition for biota inhabiting receiving strea...

  4. Evaluating impacts of pulp and paper mill process changes on bioactive contaminant loading to St. Louis Bay.

    EPA Science Inventory

    As a convergence point for human waste streams, wastewater treatment plants are recognized as point sources through which contaminants originating from domestic, industrial, and commercial activities enter surface waters. Effluent from the Western Lake Superior Sanitary District ...

  5. Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.

    PubMed

    Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif

    2007-06-25

    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).

  6. Water quality of streams and springs, Green River Basin, Wyoming

    USGS Publications Warehouse

    DeLong, L.L.

    1986-01-01

    Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)

  7. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  8. A SURROGATE SUBCHRONIC TOXICITY TEST METHOD FOR WATERS WITH HIGH TOTAL DISSOLVED SOLIDS

    EPA Science Inventory

    Total dissolved solids (TDS) are often identified as a toxicant in whole-effluent toxicity (WET) testing. The primary test organism used in WET testing, Ceriodaphnia dubia, is very sensitive to TDS ions, which can be problematic when differentiating the toxicity of TDS from those...

  9. Anthropogenic mercury emissions from 1980 to 2012 in China.

    PubMed

    Huang, Ying; Deng, Meihua; Li, Tingqiang; Japenga, Jan; Chen, Qianqian; Yang, Xiaoe; He, Zhenli

    2017-07-01

    China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980-2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980-2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health. Copyright © 2017. Published by Elsevier Ltd.

  10. Integration of biological method and membrane technology in treating palm oil mill effluent.

    PubMed

    Zhang, Yejian; Yan, Li; Qiao, Xiangli; Chi, Lina; Niu, Xiangjun; Mei, Zhijian; Zhang, Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  11. Pharmaceuticals in on-site sewage effluent and ground water, Western Montana

    USGS Publications Warehouse

    Godfrey, E.; Woessner, W.W.; Benotti, M.J.

    2007-01-01

    Human use of pharmaceuticals results in the excretion and disposal of compounds that become part of municipal and domestic waste streams. On-site waste water disposal and leaking city sewer systems can provide avenues for the migration of effluent to the underlying aquifers. This research assessed the occurrence and persistence of 22 target pharmaceuticals in septic tank effluent and two shallow, coarse-grained aquifers in western Montana. Twelve compounds (acetaminophen, caffeine, codeine, carbamazepine, cotinine, erythromycin-18, nicotine, paraxanthine, ranitidine, sulfamethoxazole, trimethoprim, and warfarin) were detected in a high school septic tank effluent. Three of the 12 compounds, carbamazepine, sulfamethoxazole, and nicotine, were detected in the underlying sand and gravel aquifer after effluent percolation through a 2.0-m thick sand vadose zone. Sampling of a second sand, gravel, and cobble dominated unconfined aquifer, partially overlain by septic systems and a city sewer system, revealed the presence of caffeine, carbamazepine, cotinine, nicotine, and trimethoprim. The presence of carbamazepine and sulfamethoxazole in these aquifers appears to correlate with local usage based on a reported monthly prescription volume. This work highlights the need for expanding geochemical investigations of sewage waste impacted ground water systems to include sampling for selected pharmaceuticals. ?? 2007 National Ground Water Association.

  12. Pharmaceuticals in on-site sewage effluent and ground water, Western Montana.

    PubMed

    Godfrey, Emily; Woessner, William W; Benotti, Mark J

    2007-01-01

    Human use of pharmaceuticals results in the excretion and disposal of compounds that become part of municipal and domestic waste streams. On-site waste water disposal and leaking city sewer systems can provide avenues for the migration of effluent to the underlying aquifers. This research assessed the occurrence and persistence of 22 target pharmaceuticals in septic tank effluent and two shallow, coarse-grained aquifers in western Montana. Twelve compounds (acetaminophen, caffeine, codeine, carbamazepine, cotinine, erythromycin-18, nicotine, paraxanthine, ranitidine, sulfamethoxazole, trimethoprim, and warfarin) were detected in a high school septic tank effluent. Three of the 12 compounds, carbamazepine, sulfamethoxazole, and nicotine, were detected in the underlying sand and gravel aquifer after effluent percolation through a 2.0-m thick sand vadose zone. Sampling of a second sand, gravel, and cobble dominated unconfined aquifer, partially overlain by septic systems and a city sewer system, revealed the presence of caffeine, carbamazepine, cotinine, nicotine, and trimethoprim. The presence of carbamazepine and sulfamethoxazole in these aquifers appears to correlate with local usage based on a reported monthly prescription volume. This work highlights the need for expanding geochemical investigations of sewage waste impacted ground water systems to include sampling for selected pharmaceuticals.

  13. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Henins, I.; Park, J.; Selwyn, G. S.

    1999-05-01

    The atmospheric pressure plasma jet (APPJ) [A. Schütze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O2*, He*) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products.

  14. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    DOEpatents

    Lundberg, Wayne

    2010-05-04

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  15. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    DOEpatents

    Lundberg, Wayne

    2010-08-24

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  16. Electrets used in measuring rocket exhaust effluents from the space shuttle's solid rocket booster during static test firing, DM-3

    NASA Technical Reports Server (NTRS)

    Susko, M.

    1979-01-01

    The purpose of this experimental research was to compare Marshall Space Flight Center's electrets with Thiokol's fixed flow air samplers during the Space Shuttle Solid Rocket Booster Demonstration Model-3 static test firing on October 19, 1978. The measurement of rocket exhaust effluents by Thiokol's samplers and MSFC's electrets indicated that the firing of the Solid Rocket Booster had no significant effect on the quality of the air sampled. The highest measurement by Thiokol's samplers was obtained at Plant 3 (site 11) approximately 8 km at a 113 degree heading from the static test stand. At sites 11, 12, and 5, Thiokol's fixed flow air samplers measured 0.0048, 0.00016, and 0.00012 mg/m3 of CI. Alongside the fixed flow measurements, the electret counts from X-ray spectroscopy were 685, 894, and 719 counts. After background corrections, the counts were 334, 543, and 368, or an average of 415 counts. An additional electred, E20, which was the only measurement device at a site approximately 20 km northeast from the test site where no power was available, obtained 901 counts. After background correction, the count was 550. Again this data indicate there was no measurement of significant rocket exhaust effluents at the test site.

  17. Removal of Antibiotics in Biological Wastewater Treatment Systems-A Critical Assessment Using the Activated Sludge Modeling Framework for Xenobiotics (ASM-X).

    PubMed

    Polesel, Fabio; Andersen, Henrik R; Trapp, Stefan; Plósz, Benedek Gy

    2016-10-04

    Many scientific studies present removal efficiencies for pharmaceuticals in laboratory-, pilot-, and full-scale wastewater treatment plants, based on observations that may be impacted by theoretical and methodological approaches used. In this Critical Review, we evaluated factors influencing observed removal efficiencies of three antibiotics (sulfamethoxazole, ciprofloxacin, tetracycline) in pilot- and full-scale biological treatment systems. Factors assessed include (i) retransformation to parent pharmaceuticals from e.g., conjugated metabolites and analogues, (ii) solid retention time (SRT), (iii) fractions sorbed onto solids, and (iv) dynamics in influent and effluent loading. A recently developed methodology was used, relying on the comparison of removal efficiency predictions (obtained with the Activated Sludge Model for Xenobiotics (ASM-X)) with representative measured data from literature. By applying this methodology, we demonstrated that (a) the elimination of sulfamethoxazole may be significantly underestimated when not considering retransformation from conjugated metabolites, depending on the type (urban or hospital) and size of upstream catchments; (b) operation at extended SRT may enhance antibiotic removal, as shown for sulfamethoxazole; (c) not accounting for fractions sorbed in influent and effluent solids may cause slight underestimation of ciprofloxacin removal efficiency. Using tetracycline as example substance, we ultimately evaluated implications of effluent dynamics and retransformation on environmental exposure and risk prediction.

  18. Impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan.

    PubMed

    Mulk, Shahi; Azizullah, Azizullah; Korai, Abdul Latif; Khattak, Muhammad Nasir Khan

    2015-02-01

    Industries play an important role in improving the living standard but at the same time cause several environmental problems. Therefore, it is necessary to evaluate the impact of industries on the quality of environment. In the present study, the impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan was evaluated. Water and sediment samples were collected at three different sampling sites (upstream, industrial, and downstream sites) from Barandu River and their physicochemical properties were inter-compared. In addition, different marble stones and mix water (wastewater) from marble industry were analyzed. The measured physicochemical parameters of river water including pH, electrical conductivity (EC), alkalinity, total hardness, Ca and Mg hardness, total dissolved solid (TDS), total suspended solids (TSS), sulfates (SO4 (2-)), sodium (Na(+)), potassium (K(+)), nitrites (NO2 (-)), nitrate (NO3 (-)), chloride (Cl(-)), calcium (Ca(2+)), and magnesium (Mg(2+)) were found to be significantly altered by effluent discharges of marble industries. Similarly, heavy metal concentrations in both water and sediments of the river were significantly increased by marble industry wastewater. It is concluded that large quantities of different pollutants are added to Barandu River due to direct disposal of marble industry effluents which degrades its quality. Therefore, it is recommended that direct disposal of marble industry wastewater should be banned and all effluents must be properly treated before discharging in the river water.

  19. Asparagus densiflorus in a vertical subsurface flow phytoreactor for treatment of real textile effluent: A lab to land approach for in situ soil remediation.

    PubMed

    Watharkar, Anuprita D; Kadam, Suhas K; Khandare, Rahul V; Kolekar, Parag D; Jeon, Byong-Hun; Jadhav, Jyoti P; Govindwar, Sanjay P

    2018-05-30

    This study explores the potential of Asparagus densiflorus to treat disperse Rubin GFL (RGFL) dye and a real textile effluent in constructed vertical subsurface flow (VSbF) phytoreactor; its field cultivation for soil remediation offers a real green and economic way of environmental management. A. densiflorus decolorized RGFL (40 gm L -1 ) up to 91% within 48 h. VSbF phytoreactor successfully reduced American dye manufacture institute (ADMI), BOD, COD, Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) of real textile effluent by 65%, 61%, 66%, 48% and 66%, respectively within 6 d. Oxidoreductive enzymes such as laccase (138%), lignin peroxidase (129%), riboflavin reductase (111%) were significantly expressed during RGFL degradation in A. densiflorus roots, while effluent transformation caused noteworthy induction of enzymes like, tyrosinase (205%), laccase (178%), veratryl oxidase (52%). Based on enzyme activities, UV-vis spectroscopy, FTIR and GC-MS results; RGFL was proposed to be transformed to 4-amino-3- methylphenyl (hydroxy) oxoammonium and N, N-diethyl aniline. Anatomical study of the advanced root tissue of A. densiflorus exhibited the progressive dye accumulation and removal during phytoremediation. HepG2 cell line and phytotoxicity study demonstrated reduced toxicity of biotransformed RGFL and treated effluent by A. densiflorus, respectively. On field remediation study revealed a noteworthy removal (67%) from polluted soil within 30 d. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A Reconnaissance for Emerging Contaminants in the South Branch Potomac River, Cacapon River, and Williams River Basins, West Virginia, April-October 2004

    USGS Publications Warehouse

    Chambers, Douglas B.; Leiker, Thomas J.

    2006-01-01

    In 2003 a team of scientists from West Virginia Division of Natural Resources and the U. S. Geological Survey found a high incidence of an intersex condition, oocytes in the testes, among smallmouth bass (Micropterus dolomieu) in the South Branch Potomac River and the Cacapon River of West Virginia, indicating the possible presence of endocrine-disrupting compounds (EDCs). Possible sources of EDCs include municipal and domestic wastewater, and agricultural and industrial activities. Several sampling strategies were used to identify emerging contaminants, including potential EDCs, and their possible sources in these river basins and at an out-of-basin reference site. Passive water-sampling devices, which accumulate in-stream organic chemical compounds, were deployed for 40-41 days at 8 sampling sites. Sampler extracts were analyzed for a broad range of polar and non-polar organic compounds including pesticides, flame retardants, pharmaceuticals, and personal-care products. Analysis of passive-sampler extracts found 4 compounds; hexachloro-benzene; pentachloroanisole; 2,2',4,4',5-penta-bromo-diphenyl ether (BDE 47); and 2,2',4,4',6-penta-bromo-diphenyl ether (BDE 99) to be present at every sampled site, including the reference site, and several sites had detectable quantities of other compounds. No detectable quantity of any antibiotics was found in any passive-sampler extract. Effluent samples were analyzed for 39 antibiotics as tracers of human and agricultural waste. Additionally, poultry-processing plant effluent was sampled for roxarsone, an organoarsenic compound used as a poultry-feed additive, and other arsenic species as tracers of poultry waste. Antibiotics were detected in municipal wastewater, aquaculture, and poultry-processing effluent, with the highest number of antibiotics and the greatest concentrations found in municipal effluent. Arsenate was the only arsenic species detected in the poultry-processing plant effluent, at a concentration of 1.0 ?g/L. Water samples were collected from 7 stream sites and analyzed for arsenic species, including roxarsone. Arsenate was detected in samples from 6 of the 7 stream samples, in concentrations ranging from 0.3 to 0.5 ?g/L. Additionally, the analysis of smallmouth bass blood plasma for potential EDCs indicated the presence of several compounds including some found in the passive sampler extracts, specifically BDE 47 and BDE 99. Data from this reconnaissance will help to focus efforts for further studies of the occurrence of emerging contaminants, EDCs, and intersex in smallmouth bass in these Potomac River tributaries.

  1. Pneumatic conveyance apparatus and process

    DOEpatents

    Heckendorn, Frank M.; Matzolf, Athneal D.; Hera, Kevin R.

    2010-05-04

    A pneumatic nozzle capable of removing dry solid debris, liquids, and mixtures of solid and liquid waste is provided. The pneumatic nozzle uses a pressurized gas stream to push materials through the nozzle. The force of a pressurized gas stream provides a partial vacuum to allow material to be introduced into an opening of a nozzle via a slight suction force. Thereafter, individual particles and materials introduced into the pneumatic nozzle are pushed by a stream of pressurized gas through the nozzle.

  2. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    PubMed

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to avoid environmental impact. Due to the biodegradability of manure, anaerobic digestion is an interesting alternative to treat these effluents. The low volatile solid concentration in the swine manure suggests the need for solid-liquid separation as a tool to improve biogas generation capacity. The present study aimed to determine the influence of simplified and cheap solid-liquid separation strategies (based on screening and settling) and different manure of each swine production phases (gestating and farrowing sows houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sows house (GSH-a and GSH-b), two farrowing sows house (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). The Biochemical Methane Production (BMP) tests were performed according to international standard procedure (VDI 4630). The settled sludge fraction responds for 20-30% of raw manure volume, producing 40-60% of the total methane yield. The methane potential of settled sludge fraction was about 2 times higher than the supernatant fraction. There are differences on biogas yield between the raw manure of different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH 970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences are relative to production phase (feed type, feeding techniques, etc.), but also the management of the effluent inside the facilities (water management). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Using Financial Incentives to Manage the Solid Waste Stream.

    ERIC Educational Resources Information Center

    Spindler, Charles J.

    1991-01-01

    This paper reviews two approaches to solid waste stream management that encourage recycling in the beverage industry, a model categorizing public policies directed at diverting postconsumer waste from the waste system, and industry initiatives in the context of these policies. Preemptive and compelled partnerships represent innovations in…

  4. Community-Level Effects of Excess Total Dissolved Solids Doses Using Model Streams

    EPA Science Inventory

    Model stream chronic dosing studies (42 days) were conducted with four different total dissolved solids (TDS) recipes. The recipes differed in their relative dominance of major ions. One was made from sodium and calcium chloride salts only. Another was similar to the first, but a...

  5. Assessing element distribution and speciation in a stream at abandoned Pb-Zn mining site by combining classical, in-situ DGT and modelling approaches.

    PubMed

    Omanović, Dario; Pižeta, Ivanka; Vukosav, Petra; Kovács, Elza; Frančišković-Bilinski, Stanislav; Tamás, János

    2015-04-01

    The distribution and speciation of elements along a stream subjected to neutralised acid mine drainage (NAMD) effluent waters (Mátra Mountain, Hungary; Toka stream) were studied by a multi-methodological approach: dissolved and particulate fractions of elements were determined by HR-ICPMS, whereas speciation was carried out by DGT, supported by speciation modelling performed by Visual MINTEQ. Before the NAMD discharge, the Toka is considered as a pristine stream, with averages of dissolved concentrations of elements lower than world averages. A considerable increase of element concentrations caused by effluent water inflow is followed by a sharp or gradual concentration decrease. A large difference between total and dissolved concentrations was found for Fe, Al, Pb, Cu, Zn and As in effluent water and at the first downstream site, with high correlation factors between elements in particulate fraction, indicating their common behaviour, governed by the formation of ferri(hydr)oxides (co)precipitates. In-situ speciation by the DGT technique revealed that Zn, Cd, Ni, Co, Mn and U were predominantly present as a labile, potentially bioavailable fraction (>90%). The formation of strong complexes with dissolved organic matter (DOM) resulted in a relatively low DGT-labile concentration of Cu (42%), while low DGT-labile concentrations of Fe (5%) and Pb (12%) were presumably caused by their existence in colloidal (particulate) fraction which is not accessible to DGT. Except for Fe and Pb, a very good agreement between DGT-labile concentrations and those predicted by the applied speciation model was obtained, with an average correlation factor of 0.96. This study showed that the in-situ DGT technique in combination with model-predicted speciation and classical analysis of samples could provide a reasonable set of data for the assessment of the water quality status (WQS), as well as for the more general study of overall behaviour of the elements in natural waters subjected to high element loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater.

    PubMed

    Ioannou-Ttofa, L; Michael-Kordatou, I; Fattas, S C; Eusebio, A; Ribeiro, B; Rusan, M; Amer, A R B; Zuraiqi, S; Waismand, M; Linder, C; Wiesman, Z; Gilron, J; Fatta-Kassinos, D

    2017-05-01

    Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as a 'cut off criterion', since the most cost-effective option in not always the optimum one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors.

    PubMed

    Massé, D I; Croteau, F; Masse, L

    2007-11-01

    The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.

  8. Recovery of ammonia and production of high-grade phosphates from digester effluents (municipal and livestock)

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) recovery of anaerobically digested swine wastewater and side-stream municipal wastewater via magnesium precipitation was enhanced by combining it with the recovery of ammonia (NH3) through gas-permeable membranes and low-rate aeration. The low-rate aeration stripped the natural carbon...

  9. Pathway-based Analysis of Fish Transcriptomics Data across Effluent Gradients in Minnesota Rivers

    EPA Science Inventory

    As part of a larger effort to assess the health of streams and rivers in Minnesota, a series of caged fish experiments were conducted in three locations: Ely, Hutchinson, and Rochester. The experimental design placed caged fish (fathead minnows, Pimephales promelas; FHM) across ...

  10. Contamination Profiles and Mass Loadings of Macrolide Antibiotics and Illicit Drugs from a Small Urban Wastewater Treatment Plant

    EPA Science Inventory

    Information is limited regarding sources, distribution, environmental behavior, and fate of prescribed and illicit drugs. Wastewater treatment plant (WWTP) effluents can be one of the sources of pharmaceutical and personal care products (PPCP) into streams, rivers and lakes. The ...

  11. Assessing Waste Water Treatment Plant Effluents For Thyroid Hormone Disrupting Activity

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two ass...

  12. Assessing Waste Water Treatment Plant Effluent for Thyroid Hormone Disruption

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two assa...

  13. 40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Pt. 414, App. B... dyes, Azo (including metallized) Organic pigments, miscellaneous lakes and toners Copper Disperse dyes...-acetamidoanisole Azo dyes, metallized/Azo dye + metal acetate Direct dyes, Azo Disperse dyes, Azo and Vat Organic...

  14. 40 CFR 63.10448 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) National Emission Standards for Hospital Ethylene Oxide Sterilizers Other Requirements and... Clean Air Act (CAA), in 40 CFR 63.2, and in this section as follows: Aeration process means any time... equipment that reduces the quantity of ethylene oxide in the effluent gas stream from sterilization and...

  15. 40 CFR 63.10448 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hospital Ethylene Oxide Sterilizers Other Requirements and... Clean Air Act (CAA), in 40 CFR 63.2, and in this section as follows: Aeration process means any time... equipment that reduces the quantity of ethylene oxide in the effluent gas stream from sterilization and...

  16. Ballast Water Self Monitoring

    DTIC Science & Technology

    2011-11-01

    Analytical Methods .........................................................22  7 Estimated Capital Cost for Vessels Needing Additional Ballast Water...streams; narrative water-quality based effluent limits; inspection, monitoring, recordkeeping, and reporting requirements; and additional requirements...decline of several pelagic fish species in the Sacramento-San Joaquin River Delta by reducing the plankton food base of the ecosystem (California State

  17. Influence of Drought and Total Phosphorus on Diel pH in Wadeable Streams: Implications for Ecological Risk Assessment of Ionizable Contaminants

    EPA Science Inventory

    Climatological influences on site-specific ecohydrology are particularly germane in semiarid regions where instream flows are strongly influenced by effluent discharges. Because many traditional and emerging aquatic contaminants, such as pharmaceuticals, are ionizable, we examin...

  18. Ground Water Flow No Longer A Mystery

    ERIC Educational Resources Information Center

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  19. Instrumentation of sampling aircraft for measurement of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.

    1977-01-01

    An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.

  20. Implementation of CFD modeling in the performance assessment and optimization of secondary clarifiers: the PVSC case study.

    PubMed

    Xanthos, S; Ramalingam, K; Lipke, S; McKenna, B; Fillos, J

    2013-01-01

    The water industry and especially the wastewater treatment sector has come under steadily increasing pressure to optimize their existing and new facilities to meet their discharge limits and reduce overall cost. Gravity separation of solids, producing clarified overflow and thickened solids underflow has long been one of the principal separation processes used in treating secondary effluent. Final settling tanks (FSTs) are a central link in the treatment process and often times act as the limiting step to the maximum solids handling capacity when high throughput requirements need to be met. The Passaic Valley Sewerage Commission (PVSC) is interested in using a computational fluid dynamics (CFD) modeling approach to explore any further FST retrofit alternatives to sustain significantly higher plant influent flows, especially under wet weather conditions. In detail there is an interest in modifying and/or upgrading/optimizing the existing FSTs to handle flows in the range of 280-720 million gallons per day (MGD) (12.25-31.55 m(3)/s) in compliance with the plant's effluent discharge limits for total suspended solids (TSS). The CFD model development for this specific plant will be discussed, 2D and 3D simulation results will be presented and initial results of a sensitivity study between two FST effluent weir structure designs will be reviewed at a flow of 550 MGD (∼24 m(3)/s) and 1,800 mg/L MLSS (mixed liquor suspended solids). The latter will provide useful information in determining whether the existing retrofit of one of the FSTs would enable compliance under wet weather conditions and warrants further consideration for implementing it in the remaining FSTs.

  1. Significance of dissolved methane in effluents of anaerobically ...

    EPA Pesticide Factsheets

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  2. Treatment of cosmetic effluent in different configurations of ceramic UF membrane based bioreactor: Toxicity evaluation of the untreated and treated wastewater using catfish (Heteropneustes fossilis).

    PubMed

    Banerjee, Priya; Dey, Tanmoy Kumar; Sarkar, Sandeep; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-03-01

    Extensive usage of pharmaceutical and personal care products (PPCPs) and their discharge through domestic sewage have been recently recognized as a new generation environmental concern which deserves more scientific attention over the classical environmental pollutants. The major issues of this type of effluent addressed in this study were its colour, triclosan and anionic surfactant (SDS) content. Samples of cosmetic effluent were collected from different beauty treatment salons and spas in and around Kolkata, India and treated in bioreactors containing a bacterial consortium isolated from activated sludge samples collected from a common effluent treatment plant. Members of the consortium were isolated and identified as Klebsiella sp., Pseudomonas sp., Salmonella sp. and Comamonas sp. The biotreated effluent was subjected to ultrafiltration (UF) involving indigenously prepared ceramic membranes in both side-stream and submerged mode. Analysis of the MBR treated effluent revealed 99.22%, 98.56% and 99.74% removal of colour, triclosan and surfactant respectively. Investigation of probable acute and chronic cyto-genotoxic potential of the untreated and treated effluents along with their possible participation in triggering oxidative stress was carried out with Heteropneustes fossilis (Bloch). Comet formation recorded in both liver and gill cells and micronucleus count in peripheral erythrocytes of individuals exposed to untreated effluent increased with duration of exposure and was significantly higher than those treated with UF permeates which in turn neared control levels. Results of this study revealed successful application of the isolated bacterial consortium in MBR process for efficient detoxification of cosmetic effluent thereby conferring the same suitable for discharge and/or reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Pyrolysis of carbonaceous materials with solvent quench recovery

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Knell, Everett W.; Mirza, Zia I.; Winter, Bruce L.

    1978-04-18

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue. Apparatus useful for practicing this process are disclosed.

  4. Effects of residential wastewater treatment systems on ground-water quality in west-central Jefferson County, Colorado

    USGS Publications Warehouse

    Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.

    1981-01-01

    The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)

  5. Regeneration of zinc chloride hydrocracking catalyst

    DOEpatents

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  6. Application of chemical coagulation aids for the removal of suspended solids (TSS) and phosphorus from the microscreen effluent discharge of an intensive recirculating aquaculture system

    USGS Publications Warehouse

    Ebeling, J.M.; Ogden, S.R.; Sibrell, P.L.; Rishel, K.L.

    2004-01-01

    An evaluation of two commonly used coagulation-flocculation aids (alum and ferric chloride) was conducted to determine optimum conditions for treating the backwash effluent from microscreen filters in an intensive recirculating aquaculture system. Tests were carried out to evaluate the dosages and conditions (mixing and flocculation stirring speeds, durations, and settling times) required to achieve optimum waste capture. The orthophosphate removal efficiency for alum and ferric chloride were greater than 90% at a dosage of 60 mg/L. Optimum turbidity removal was achieved with a 60-mg/L dosage for both alum and ferric chloride. Both alum and ferric chloride demonstrated excellent removal of suspended solids from initial total suspended solid values of approximately 320 mg/L to approximately 10 mg/L at a dosage of 60 mg/L. Flocculation and mixing speed and duration played only a minor role in the removal efficiencies for both orthophosphates and suspended solids. Both coagulation-flocculation aids also exhibited excellent settling characteristics, with the majority of the floc quickly settling out in the first 5 min.

  7. Electrocoagulation efficiency of the tannery effluent treatment using aluminium electrodes.

    PubMed

    Espinoza-Quiñones, Fernando R; Fornari, Marilda M T; Módenes, Aparecido N; Palácio, Soraya M; Trigueros, Daniela E G; Borba, Fernando H; Kroumov, Alexander D

    2009-01-01

    An electro-coagulation laboratory scale system using aluminium plates electrodes was studied for the removal of organic and inorganic pollutants as a by-product from leather finishing industrial process. A fractional factorial 2(3) experimental design was applied in order to obtain optimal values of the system state variables. The electro-coagulation (EC) process efficiency was based on the chemical oxygen demand (COD), turbidity, total suspended solid, total fixed solid, total volatile solid, and chemical element concentration values. Analysis of variance (ANOVA) for final pH, total fixed solid (TFS), turbidity and Ca concentration have confirmed the predicted models by the experimental design within a 95% confidence level. The reactor working conditions close to real effluent pH (7.6) and electrolysis time in the range 30-45 min were enough to achieve the cost effective reduction factors of organic and inorganic pollutants' concentrations. An appreciable improvement in COD removal efficiency was obtained for electro-coagulation treatment. Finally, the technical-economical analysis results have clearly shown that the electro-coagulation method is very promising for industrial application.

  8. Furfural production by 'acidic steam stripping' of lignocellulose.

    PubMed

    van Buijtenen, Jeroen; Lange, Jean-Paul; Espinosa Alonso, Leticia; Spiering, Wouter; Polmans, Rob F; Haan, Rene J

    2013-11-01

    Furfural and acetic acid are produced with approximately 60 and 90 mol % yield, respectively, upon stripping bagasse with a gaseous stream of HCl/steam and condensing the effluent to water/furfural/acetic acid. The reaction kinetics is 1(st)  order in furfural and 0.5(th)  order in HCl. A process concept with full recycling of the reaction effluents is proposed to reduce the energy demand to <10 tonsteam  tonfurfural (-1) and facilitate the product recovery through a simple liquid/liquid separation of the condensate into a water-rich and a furfural-rich phase. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing.

    PubMed

    Mezzanotte, V; Fornaroli, R; Canobbio, S; Zoia, L; Orlandi, M

    2013-04-01

    Experimental tests have been conducted to investigate the efficiency and the by-product generation of high dose ozonation (10-60 mg O3 L(-1)) for complete colour removal from a treated effluent with an important component of textile dyeing wastewater. The effluent is discharged into an effluent-dominated stream where no dilution takes place, and, thus, the quality requirement for the effluents is particularly strict. 30, 60 and 90 min contact times were adopted. Colour was measured as absorbance at 426, 558 and 660 nm wavelengths. pH was monitored throughout the experiments. The experimental work showed that at 50 mg L(-1) colour removal was complete and at 60 mg O3 L(-1) the final aldehyde concentration ranged between 0.72 and 1.02 mg L(-1). Glyoxal and methylglyoxal concentrations were directly related to colour removal, whereas formaldehyde, acetaldehyde, acetone and acrolein were not. Thus, the extent of colour removal can be used to predict the increase in glyoxal and methylglyoxal concentrations. As colour removal can be assessed by a simple absorbance measurement, in contrast to the analysis of specific carbonyl compounds, which is much longer and complex, the possibility of using colour removal as an indicator for predicting the toxic potential of ozone by-products for textile effluents is of great value. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Endocrine active chemicals and endocrine disruption in Minnesota streams and lakes: implications for aquatic resources, 1994-2008

    USGS Publications Warehouse

    Lee, Kathy E.; Schoenfuss, Heiko L.; Barber, Larry B.; Writer, Jeff H.; Blazer, Vicki; Keisling, Richard L.; Ferrey, Mark L.

    2010-01-01

    Although these studies indicate that wastewater-treatment plant effluent is a conduit for endocrine active chemicals to surface waters, endocrine active chemicals also were present in surface waters with no obvious wastewater-treatment plant effluent sources. Endocrine active chemicals were detected and indicators of endocrine disruption in fish were measured at numerous sites upstream from discharge of wastewater-treatment plant effluent. These observations indicate that other unidentified sources of endocrine active chemicals exist, such as runoff from land surfaces, atmospheric deposition, inputs from onsite septic systems, or other groundwater sources. Alternatively, some endocrine active chemicals may not yet have been identified or measured. The presence of biological indicators of endocrine disruption in male fish indicates that the fish are exposed to endocrine active chemicals. However indicators of endocrine disruption in male fish does not indicate an effect on fish reproduction or changes in fish populations.

  11. Effect of treatment in a constructed wetland on toxicity of textile wastewater

    USGS Publications Warehouse

    Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.

    2003-01-01

    Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.

  12. An unexpected truth: increasing nitrate loading can decrease nitrate export from watersheds

    NASA Astrophysics Data System (ADS)

    Askarizadeh Bardsiri, A.; Grant, S. B.; Rippy, M.

    2015-12-01

    The discharge of anthropogenic nitrate (e.g., from partially treated sewage, return flows from agricultural irrigation, and runoff from animal feeding operations) to streams can negatively impact both human and ecosystem health. Managing these many point and non-point sources to achieve some specific end-point—for example, reducing the annual mass of nitrate exported from a watershed—can be a challenge, particularly in rapidly growing urban areas. Adding to this complexity is the fact that streams are not inert: they too can add or remove nitrate through assimilation (e.g., by stream-associated plants and animals) and microbially-mediated biogeochemical reactions that occur in streambed sediments (e.g., respiration, ammonification, nitrification, denitrification). By coupling a previously published correlation for in-stream processing of nitrate [Mulholland et al., Nature, 2008, 452, 202-205] with a stream network model of the Jacksons Creek watershed (Victoria, Australia) I demonstrate that managing anthropogenic sources of stream nitrate without consideration of in-stream processing can result in a number of non-intuitive "surprises"; for example, wastewater effluent discharges that increase nitrate loading but decrease in-stream nitrate concentrations can reduce the mass of nitrate exported from a watershed.

  13. Analysis of the Injection of a Heated, Turbulent Jet into a Moving Mainstream, with Emphasis on a Thermal Discharge in a Waterway. Ph.D. Thesis - Virginia Polytechnic Inst. and State Univ., Blacksburg

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1972-01-01

    An experimental and theoretical investigation was undertaken to study the trajectory and growth of thermal effluents having a range of discharge velocities and temperatures. The discharge of a turbulent effluent into a waterway was mathematically modeled as a submerged jet injection process by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the location and size of the effluent with respect to the discharge point. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the effluent were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  14. The innovative moving bed biofilm reactor/solids contact reaeration process for secondary treatment of municipal wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusten, B.; McCoy, M.; Proctor, R.

    1998-07-01

    The innovative moving bed biofilm reactor/solids contact reaeration (MBBR/SCR) process has been chosen for a new wastewater treatment plant serving a population of 200,000 at Moa Point, Wellington, New Zealand. Because the MBBR/SCR combination was new, a pilot-scale demonstration project was made part of the contract. Thorough pilot tests using a wide range of organic loads under both steady and transient-flow conditions demonstrated that the MBBR/SCR process produced the required effluent quality at loads higher than used in the original design. At 3 days mean cell residence time (MCRT) in the SCR stage, a final effluent with a 5-day biochemicalmore » oxygen demand (BOD{sub 5}) of less than 10 mg/L was achieved at an organic load on the MBBR of 15 g BOD{sub 5}/m{sup 2}{center_dot}d (5.0 kg BOD{sub 5}/m{sup 3}{center_dot}d). With the same MCRT, a final effluent of less than 15 mg BOD{sub 5}/L was achieved at an organic load on the MBBR of 20 g BOD{sub 5}/m{sup 2}{center_dot}d (6.7 kg BOD{sub 5}/m{sup 3}{center_dot}d). Dynamic loading tests demonstrated that a good-quality effluent was produced with a diurnal peak-hour load on the MBBR of more than 40 g BOD{sub 5}/m{sup 2}{center_dot}d (13.3 kg BOD{sub 5}/m{sup 3}{center_dot}d). The MBBR/SCR process was more compact and significantly cheaper than a conventional trickling filter/solids contact or activated-sludge process at the Moa Point site.« less

  15. The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.

    1976-01-01

    A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.

  16. 40 CFR 421.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Lead .283 .135 Zinc .983 .411 Ammonia (as N) .000 .000 Total suspended solids 27.600 13.130 pH (1) (1... Antimony 7.491 3.341 Arsenic 5.455 2.245 Lead 1.096 .522 Zinc 3.811 1.592 Ammonia (as N) .000 .000 Total... Antimony .129 .058 Arsenic .094 .039 Lead .019 .009 Zinc .066 .027 Ammonia (as N) .000 .000 Total suspended...

  17. 40 CFR 421.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Lead .283 .135 Zinc .983 .411 Ammonia (as N) .000 .000 Total suspended solids 27.600 13.130 pH (1) (1... Antimony 7.491 3.341 Arsenic 5.455 2.245 Lead 1.096 .522 Zinc 3.811 1.592 Ammonia (as N) .000 .000 Total... Antimony .129 .058 Arsenic .094 .039 Lead .019 .009 Zinc .066 .027 Ammonia (as N) .000 .000 Total suspended...

  18. 40 CFR 421.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Lead .283 .135 Zinc .983 .411 Ammonia (as N) .000 .000 Total suspended solids 27.600 13.130 pH (1) (1... Antimony 7.491 3.341 Arsenic 5.455 2.245 Lead 1.096 .522 Zinc 3.811 1.592 Ammonia (as N) .000 .000 Total... Antimony .129 .058 Arsenic .094 .039 Lead .019 .009 Zinc .066 .027 Ammonia (as N) .000 .000 Total suspended...

  19. 40 CFR 421.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... from precipitation and filtration of film stripping solutions Copper 1.843 .970 Zinc 1.416 .592 Ammonia... silver precipitated Copper 109.400 57.570 Zinc 84.050 35.120 Ammonia (as N) 7,674.000 3,374.000 Total...

  20. 40 CFR 421.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... from precipitation and filtration of film stripping solutions Copper 1.843 .970 Zinc 1.416 .592 Ammonia... silver precipitated Copper 109.400 57.570 Zinc 84.050 35.120 Ammonia (as N) 7,674.000 3,374.000 Total...

  1. 40 CFR 421.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ammonia (as N) 6,712.000 2,951.000 Total suspended solids 2,065.000 981.800 pH (1) (1) 1 Within the range... from precipitation and filtration of film stripping solutions Copper 1.843 .970 Zinc 1.416 .592 Ammonia... silver precipitated Copper 109.400 57.570 Zinc 84.050 35.120 Ammonia (as N) 7,674.000 3,374.000 Total...

  2. 40 CFR 421.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Lead .283 .135 Zinc .983 .411 Ammonia (as N) .000 .000 Total suspended solids 27.600 13.130 pH (1) (1... Antimony 7.491 3.341 Arsenic 5.455 2.245 Lead 1.096 .522 Zinc 3.811 1.592 Ammonia (as N) .000 .000 Total... Antimony .129 .058 Arsenic .094 .039 Lead .019 .009 Zinc .066 .027 Ammonia (as N) .000 .000 Total suspended...

  3. [Impact of liquid volume of recycled methanogenic effluent on anaerobic hydrolysis].

    PubMed

    Hao, Li-ping; Lü, Fan; He, Pin-jing; Shao, Li-ming

    2008-09-01

    Methanogenic effluent was recycled to regulate hydrolysis during two-phase anaerobic digestion of organic solid wastes. In order to study the impact of recycled effluent's volume on hydrolysis, four hydrolysis reactors filled with vegetable and flower wastes were constructed, with different liquid volumes of recycled methanogenic effluent, i.e., 0.1, 0.5, 1.0, 2.0 m3/(m3 x d), respectively. The parameters related to hydrolytic environment (pH, alkalinity, ORP, concentrations of ammonia and reducing sugar), microbial biomass and hydrolysis efficiency (accumulated SCOD, accumulated reducing sugar, and hydrolysis rate constants) were monitored. This research shows that recycling methanogenic effluent into the hydrolysis reactor can enhance its buffer capability and operation stability; higher recycled volume is favorable for microbial anabolism and further promotes hydrolysis. After 9 days of reaction, the accumulated SCOD in the hydrolytic effluent reach 334, 407, 413, 581 mg/g at recycled volumes of 0.1, 0.5, 1.0, 2.0 m3/(m3 x d) and their first-order hydrolysis rate kinetic constants are 0.065, 0.083, 0.089, 0.105 d(-1), respectively.

  4. FURTHER EVALUATION OF TRICKLE BED BIOFILTER PERFORMANCE AS A FUNCTION OF LADING, RESIDENCE TIME, AND BIOMASS CONTROL

    EPA Science Inventory

    The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical engineered control of VOCs in effluent air streams. rickle bed air biofilters (TBABS) are especially applicable for treating VOCs at high loadings. or long term...

  5. LEVELS OF SYNTHETIC MUSK COMPOUNDS IN MUNICIPAL WASTEWATER FOR ESTIMATING BIOTA EXPOSURE IN RECEIVING WATER

    EPA Science Inventory

    To test the ruggedness of a newly developed analytical method for synthetic musks, a 1-year monthly monitoring of synthetic musks in water and biota was conducted for Lake

    Mead (near Las Vegas, Nevada) as well as for combined sewage-dedicated effluent streams feeding Lake ...

  6. 40 CFR 60.446 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the web substrate. (b) Method 25 shall be used to determine the VOC concentration, in parts per... equivalent, and each effluent gas stream emitted directly to the atmosphere. Methods 1, 2, 3, and 4 shall be... minimum sampling volume must be 0.003 dscm except that shorter sampling times or smaller volumes, when...

  7. 40 CFR 60.446 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the web substrate. (b) Method 25 shall be used to determine the VOC concentration, in parts per... equivalent, and each effluent gas stream emitted directly to the atmosphere. Methods 1, 2, 3, and 4 shall be... minimum sampling volume must be 0.003 dscm except that shorter sampling times or smaller volumes, when...

  8. Temperature Effect on the Sorption of Radionuclides by Freshwater Algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R.S.

    2003-01-06

    The heavy waters of the reactor effluent streams within the Savannah River Plant area transport very low concentrations of fission and activation products through miles of natural streambeds and swamps to the Savannah River. This study emphasizes the effects of environmental factors on the sorption of radionuclides by representative species.

  9. Operation of a sampling train for the analysis of environmental species in coal gasification gas-phase process streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pochan, M.J.; Massey, M.J.

    1979-02-01

    This report discusses the results of actual raw product gas sampling efforts and includes: Rationale for raw product gas sampling efforts; design and operation of the CMU gas sampling train; development and analysis of a sampling train data base; and conclusions and future application of results. The results of sampling activities at the CO/sub 2/-Acceptor and Hygas pilot plants proved that: The CMU gas sampling train is a valid instrument for characterization of environmental parameters in coal gasification gas-phase process streams; depending on the particular process configuration, the CMU gas sampling train can reduce gasifier effluent characterization activity to amore » single location in the raw product gas line; and in contrast to the slower operation of the EPA SASS Train, CMU's gas sampling train can collect representative effluent data at a rapid rate (approx. 2 points per hour) consistent with the rate of change of process variables, and thus function as a tool for process engineering-oriented analysis of environmental characteristics.« less

  10. Performance of UASB septic tank for treatment of concentrated black water within DESAR concept.

    PubMed

    Kujawa-Roeleveld, K; Fernandes, T; Wiryawan, Y; Tawfik, A; Visser, M; Zeeman, G

    2005-01-01

    Separation of wastewater streams produced in households according to their origin, degree of pollution and affinity to a specific treatment constitutes a starting point in the DESAR concept (decentralised sanitation and reuse). Concentrated black water and kitchen waste carry the highest load of organic matter and nutrients from all waste(water)streams generated from different human activities. Anaerobic digestion of concentrated black water is a core technology in the DESAR concept. The applicability of the UASB septic tank for treatment of concentrated black water was investigated under two different temperatures, 15 and 25 degrees C. The removal of total COD was dependent on the operational temperature and attained 61 and 74% respectively. A high removal of the suspended COD of 88 and 94% respectively was measured. Effluent nutrients were mainly in the soluble form. Precipitation of phosphate was observed. Effective sludge/water separation, long HRT and higher operational temperature contributed to a reduction of E. coli. Based on standards there is little risk of contamination with heavy metals when treated effluent is to be applied in agriculture as fertiliser.

  11. Report on the biological monitoring program at Paducah Gaseous Diffusion Plant, January--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.; Konetsky, B.K.; Peterson, M.J.

    1997-06-01

    On September 24, 1987, the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet issued an Agreed Order that required the development of a Biological Monitoring Program (BMP) for the Paducah Gaseous diffusion Plant (PGDP). The PGDP BMP was conducted by the University of Kentucky Between 1987 and 1992 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of BMP are to (1) demonstrate that the effluent limitations established for PGDP protect and maintain the use of Little Bayou and Big Bayou creeks for growth and propagation ofmore » fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream. The BMP for PGDP consists of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (i.e., benthic macroinvertebrates and fish). This report focuses on ESD activities occurring from January 1996 to December 1996, although activities conducted outside this time period are included as appropriate.« less

  12. Reach-scale predictions of the transport and fate of contaminants of emerging concern using a multi-tracer injection at Fourmile Creek (Ankeny, Iowa)

    NASA Astrophysics Data System (ADS)

    Cullin, J. A.; Ward, A. S.; Cwiertny, D. M.; Barber, L. B.; Kolpin, D. W.; Bradley, P. M.; Keefe, S. H.; Hubbard, L. E.

    2013-12-01

    Contaminants of emerging concern (CECs) are an unregulated suite of constituents possessing the potential to cause a host of reproductive and developmental problems in humans and wildlife. CECs are frequently detected in environmental waters. Degradation pathways of several CECs are well-characterized in idealized laboratory settings, but CEC fate and transport in complex field settings is poorly understood. In the present study we used a multi-tracer solute injection study to quantify physical transport, photodegradation, and sorption in a wastewater effluent-impacted stream. Conservative tracers were used to quantify physical transport processes in the stream. Use of reactive fluorescent tracers allows for isolation of the relative contribution of photodegradation and sorption within the system. Field data was used to calibrate a one-dimensional transport model allowing us to use forward modeling to predict the transport of sulfamethoxazole, an antibiotic documented to be present in the wastewater effluent and in Fourmile Creek which is susceptible to both sorption and photolysis. Forward modeling will predict both temporal persistence and spatial extent of sulfamethoxazole in Fourmile Creek

  13. Thermal discharges from Paducah Gaseous Diffusion Plant outfalls: Impacts on stream temperatures and fauna of Little Bayou and Big Bayou Creeks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, W.K.; Ryon, M.G.; Hinzman, R.L.

    1996-03-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the US Enrichment Corporationmore » (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7 C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.« less

  14. Thermal Discharges from Paducah Gaseous Diffusion Plant Outfalls: Impacts on Stream Temperatures and Fauna of Little Bayou and Big Bayou Creeks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, W.K.

    1999-01-01

    The development of a biological monitoring plan for the receiving streams of the Paducah Gaseous Diffusion Plant (PGDP) began in the late 1980s, because of an Agreed Order (AO) issued in September 1987 by the Kentucky Division of Water (KDOW). Five years later, in September 1992, more stringent effluent limitations were imposed upon the PGDP operations when the KDOW reissued Kentucky Pollutant Discharge Elimination System permit No. KY 0004049. This action prompted the US Department of Energy (DOE) to request a stay of certain limits contained in the permit. An AO is being negotiated between KDOW, the United States Enrichmentmore » Corporation (USEC), and DOE that will require that several studies be conducted, including this stream temperature evaluation study, in an effort to establish permit limitations. All issues associated with this AO have been resolved, and the AO is currently being signed by all parties involved. The proposed effluent temperature limit is 89 F (31.7C) as a mean monthly temperature. In the interim, temperatures are not to exceed 95 F (35 C) as a monthly mean or 100 F (37.8 C) as a daily maximum. This study includes detailed monitoring of instream temperatures, benthic macroinvertebrate communities, fish communities, and a laboratory study of thermal tolerances.« less

  15. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation--Economic and energy assessment.

    PubMed

    Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2015-06-01

    Landfilling the organic fraction of municipal solid waste (OFMSW) leads to greenhouse gas emissions and loss of valuable resources. Sustainable and cost efficient solutions need to be developed to solve this problem. This study evaluates the feasibility of using dark fermentation (DF) to convert the OFMSW to volatile fatty acids (VFAs), fertilizer and H2. The VFAs in the DF effluent can be used directly as substrate for subsequent bioprocesses or purified from the effluent for industrial use. DF of the OFMSW in Abu Dhabi will be economically sustainable once VFA purification can be accomplished on large scale for less than 15USD/m(3)(effluent). With a VFA minimum selling price of 330 USD/tCOD, DF provides a competitive carbon source to sugar. Furthermore, DF is likely to use less energy than conventional processes that produce VFAs, fertilizer and H2. This makes DF of OFMSW a promising waste treatment technology and biorefinery platform. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The effect of residual cationic polymers in swine wastewater on the fouling of reverse osmosis membranes.

    PubMed

    Pedersen, C O; Masse, L; Hjorth, M

    2014-01-01

    Solid-liquid separation with flocculation can be used as pre-treatment for reverse osmosis (RO) filtration as it produces a liquid fraction (LF) low in suspended solids (SS). However, residual polymers in the LF may foul the membrane. Membrane fouling during RO filtration of swine wastewater containing polymers was investigated with respect to polymer charge density (CD), effluent SS concentration and membrane surface charge. Effluents with 765 mg/L SS and without SS were spiked with low and medium CD polymers (0-40 mg/L effluent) then processed with RO membranes having low and high negative surface charges. Fouling intensity was evaluated by comparing permeate flux and water flux recovery of fouled and cleaned membranes. For effluents containing SS, the presence of polymer reduced permeate flux by 4-16% and water flux recovery of the fouled membrane by 0-18%, relative to effluents without polymer. The extent of the fouling was higher with the low than the medium CD polymer. The fouling was mostly reversible as cleaning allowed for over 95% flux recovery, but the membrane with high negative surface charge was more susceptible to irreversible fouling. Adding the low CD polymer to feed without SS had no effect on permeate flux or flux recovery. Membrane fouling thus appeared to be caused by the polymer changing SS-membrane interaction. If flocculation is applied to pre-treat manure, a medium CD polymer should be used to optimize SS removal and a membrane with low surface charge should be selected to minimize fouling.

  17. Hydrogeologic, water-quality and biogeochemical data collected at a septage-treatment facility, Orleans, Cape Cod, Massachusetts, October 1988 through December 1992

    USGS Publications Warehouse

    DeSimone, Leslie A.; Howes, Brian Louis

    1995-01-01

    Hydrogeologic, water-quality, and biogeochemical data were collected at the site of a septage- treatment facility in Orleans, Massachusetts, from October 1988 through December 1992, where a nitrogen-rich effluent is discharged to the underlying glacial aquifer. The data were collected as part of a study done by the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, Office of Watershed Management, to investigate the effect of effluent discharge on ground-water quality and the transport of effluent nitrogen through the aquifer. Hydrogeologic data include lithologic logs and ground-water levels. Water-quality data include chemical analyses of the treated septage effluent, of ground water at the water table beneath the infiltration beds, and of ground water throughout the aquifer. Dissolved concentrations of dinitrogen gas, nitrous oxide, and dissolved inorganic carbon also were measured. Biogeochemical data include concentrations of total ammonium and solid-phase carbon and nitrogen in aquifer sediments and sediments from the effluent-infiltration beds.

  18. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    PubMed

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    PubMed

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pH<7.5, removal rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A new multiple-stage electrocoagulation process on anaerobic digestion effluent to simultaneously reclaim water and clean up biogas.

    PubMed

    Liu, Zhiguo; Stromberg, David; Liu, Xuming; Liao, Wei; Liu, Yan

    2015-03-21

    A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Export of Dissolved Methane and Carbon Dioxide with Effluents from Municipal Wastewater Treatment Plants.

    PubMed

    Alshboul, Zeyad; Encinas-Fernández, Jorge; Hofmann, Hilmar; Lorke, Andreas

    2016-06-07

    Inland waters play an important role for regional and global scale carbon cycling and are significant sources of the atmospheric greenhouse gases methane (CH4) and carbon dioxide (CO2). Although most studies considered the input of terrestrially derived organic and inorganic carbon as the main sources for these emissions, anthropogenic sources have rarely been investigated. Municipal wastewater treatment plants (WWTPs) could be additional sources of carbon by discharging the treated wastewater into the surrounding aquatic ecosystems. Here we analyze seasonally resolved measurements of dissolved CH4 and CO2 concentrations in effluents and receiving streams at nine WWTPs in Germany. We found that effluent addition significantly altered the physicochemical properties of the streamwater. Downstream of the WWTPs, the concentrations of dissolved CH4 and CO2 were enhanced and the atmospheric fluxes of both gases increased by a factor of 1.2 and 8.6, respectively. The CH4 exported with discharged effluent, however, accounted for only a negligible fraction (0.02%) of the estimated total CH4 emissions during the treatment process. The CH4 concentration in the effluent water was linearly related to the organic load of the wastewater, which can provide an empirical basis for future attempts to add WWTPs inputs to regional-scale models for inland water-carbon fluxes.

  2. Bioremediation of an iron-rich mine effluent by Lemna minor.

    PubMed

    Teixeira, S; Vieira, M N; Espinha Marques, J; Pereira, R

    2014-01-01

    Contamination of water resources by mine effluents is a serious environmental problem. In a old coal mine, in the north of Portugal (São Pedro da Cova, Gondoma),forty years after the activity has ended, a neutral mine drainage, rich in iron (FE) it stills being produced and it is continuously released in local streams (Ribeiro de Murta e Rio Ferreira) and in surrounding lands. The species Lemna minor has been shown to be a good model for ecotoxicological studies and it also has the capacity to bioaccumulate metals. The work aimed test the potential of the species L. minor to remediate this mine effluent, through the bioaccumulation of Fe, under greenhouse experiments and, at the same time, evaluate the time required to the maximum removal of Fe. The results have shown that L. minor was able to grow and develop in the Fe-rich effluent and bioaccumulating this element. Throughout the 21 days of testing it was found that there was a meaningful increase in the biomass of L. minor both in the contaminated and in the non-contaminated waters. It was also found that bioaccumulation of Fe (iron) occurred mainly during the first 7 days of testing. It was found that L. minor has potential for the bioremediation of effluents rich in iron.

  3. Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant.

    PubMed

    Grabicova, Katerina; Grabic, Roman; Blaha, Martin; Kumar, Vimal; Cerveny, Daniel; Fedorova, Ganna; Randak, Tomas

    2015-04-01

    Aquatic organisms can be affected not only via polluted water but also via their food. In the present study, we examined bioaccumulation of seventy pharmaceuticals in two benthic organisms, Hydropsyche sp. and Erpobdella octoculata in a small stream affected by the effluent from a sewage treatment plant (STP) in Prachatice (South Bohemia region, Czech Republic). Furthermore, water samples from similar locations were analyzed for all seventy pharmaceuticals. In water samples from a control locality situated upstream of the STP, ten of the seventy pharmaceuticals were found with average total concentrations of 200 ng L(-1). In water samples collected at STP-affected sites (downstream the STP's effluent), twenty-nine, twenty-seven and twenty-nine pharmaceuticals were determined at average total concentrations of 2000, 2100 and 1700 ng L(-1), respectively. Six of the seventy pharmaceuticals (azithromycin, citalopram, clarithromycin, clotrimazole, sertraline, and verapamil) were found in Hydropsyche. Four pharmaceuticals (clotrimazole, diclofenac, sertraline, and valsartan) were detected in Erpobdella. Using evaluation criterion bioconcentration factor (BCF) is higher than 2000 we can assign azithromycin and sertraline as bioaccumulative pharmaceuticals. Even pharmaceuticals present at low levels in water were found in benthic organisms at relatively high concentrations (up to 85 ng g(-1) w.w. for azithromycin). Consequently, the uptake of pharmaceuticals via the food web could be an important exposure pathway for the wild fish population. Copyright © 2014. Published by Elsevier Ltd.

  4. Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: Turbidity removal

    NASA Astrophysics Data System (ADS)

    Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md

    2017-10-01

    Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.

  5. Effect of solids retention time on the bioavailability of organic carbon in anaerobically digested swine waste.

    PubMed

    Kinyua, Maureen N; Cunningham, Jeffrey; Ergas, Sarina J

    2014-06-01

    Anaerobic digestion (AD) can be used to stabilize and produce energy from livestock waste; however, digester effluents may require further treatment to remove nitrogen. This paper quantifies the effects of varying solids retention time (SRT) methane yield, volatile solids (VS) reduction and organic carbon bioavailability for denitrification during swine waste AD. Four bench-scale anaerobic digesters, with SRTs of 14, 21, 28 and 42 days, operated with swine waste feed. Effluent organic carbon bioavailability was measured using anoxic microcosms and respirometry. Excellent performance was observed for all four digesters, with >60% VS removal and CH4 yields between 0.1 and 0.3(m(3)CH4)/(kg VS added). Organic carbon in the centrate as an internal organic carbon source for denitrification supported maximum specific denitrification rates between 47 and 56(mg NO3(-)-N)/(g VSS h). The digester with the 21-day SRT had the highest CH4 yield and maximum specific denitrification rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Inventing Wastewater: The Social and Scientific Construction of Effluent in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Brideau, J. M.; Ng, M.; Hoover, J. H.; Hale, R. L.; Thomas, B.; Vogel, R. M.; Northeast ConsortiumHydrologic Synthesis Summer Institute, 2010--Biogeochemistry

    2010-12-01

    Title: Inventing Wastewater: The Social and Scientific Construction of Effluent in the Northeastern United States Authors: Jeffrey Brideau, Melissa Ng, Joseph Hoover, Rebecca Hale, Brian Thomas, and Richard Vogel Presented by: Jeffrey Brideau B.A., M.A., PhD Candidate, Department of History, University of Maryland Regulation of pollution is a prevalent part of contemporary American society. Scientists and policy makers have established acceptable effluent thresholds, with the ostensible goal of protecting human and stream health. However, this ubiquity of regulation is a recent phenomenon, and institutional mechanisms for effluent control were virtually non-existent in the early 20th century. Nonetheless, these same decades witnessed the emergence of nascent efforts at water pollution abatement. This project aims to explore social and scientific perceptions of wastewater, and begins with the simple premise that socio-cultural values underlay human decision-making in water management, and that wastewater is imbued with a matrix of human values that are continuously renegotiated. So what were the primary motivations for abatement efforts? Were they aesthetic and olfactory, or scientific concern for public and stream health? This paper proposes that there are social as well as scientific thresholds for pollutant loads. Collaborating with a team of interdisciplinary researchers we have created and aggregated discrete data sets to model, using export coefficient and linear regression modeling techniques, historic pollutant loading in the Northeastern United States. Concurrently, we have drawn on historical narratives of agitation by abatement advocates, nuisance laws, regulatory regimes, and changing scientific understanding; and contrasting the modeling results with these narratives allows this project to quantitatively determine where social thresholds lay in relation to their scientific counterparts. This project’s novelty lies in its use of existing narratives of wastewater and remediation efforts in tandem with the scientific quantification of pollutant loads in affected streams. In essence, the success of this project was predicated on the ability of the associated researchers to contribute their expertise, perform collaborative analysis, and, ultimately, produce a product that transcends traditional disciplinary boundaries. This paper represents one facet of that larger project. By determining the social thresholds of pollution loading, and where they converge with, or diverge from scientific thresholds, provides insight into why, when, and where various pollutants became offensive.

  7. Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.

    PubMed

    Ferreira, Elzimar Tadeu de F; Balestieri, José Antonio P

    2018-03-01

    The Brazilian National Solid Waste Policy has been implemented with some difficulty, especially in convincing the different actors of society about the importance of conscious awareness among every citizen and businesses concerning adequate solid waste disposal and recycling. Technologies for recovering energy from municipal solid waste were considered in National Solid Waste Policy (NSWP), given that their technical and environmental viability is ensured, being the landfill biogas burning in internal combustion engines and solid waste incineration suggested options. In the present work, an analysis of current technologies and a collection of basic data on electricity generation using biogas from waste/liquid effluents is presented, as well as an assessment of the installation of a facility that harnesses biogas from waste or liquid effluents for producing electricity. Two combined cycle concepts were evaluated with capacity in the range 4-11 MW, gas turbine burning landfill biogas and an incinerator that burns solid waste hybrid cycle, and a solid waste gasification system to burn syngas in gas turbines. A comparative analysis of them demonstrated that the cycle with gasification from solid waste has proved to be technically more appealing than the hybrid cycle integrated with incineration because of its greater efficiency and considering the initially defined guidelines for electricity generation. The economic analysis does not reveal significant attractive values; however, this is not a significant penalty to the project given the fact that this is a pilot low-capacity facility, which is intended to be constructed to demonstrate appropriate technologies of energy recovery from solid waste.

  8. Spray process for the recovery of CO.sub.2 from a gas stream and a related apparatus

    DOEpatents

    Soloveichik, Grigorii Lev; Perry, Robert James; Wood, Benjamin Rue; Genovese, Sarah Elizabeth

    2014-02-11

    A method for recovering carbon dioxide (CO.sub.2) from a gas stream is disclosed. The method includes the step of reacting CO.sub.2 in the gas stream with fine droplets of a liquid absorbent, so as to form a solid material in which the CO.sub.2 is bound. The solid material is then transported to a desorption site, where it is heated, to release substantially pure CO.sub.2 gas. The CO.sub.2 gas can then be collected and used or transported in any desired way. A related apparatus for recovering carbon dioxide (CO.sub.2) from a gas stream is also described herein.

  9. 40 CFR 421.252 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.546 0.260 Mercury 0.325 0.130 Silver 0.533 0.221 Zinc 1.898 0.793 Gold 0.130 Oil....164 0.068 Zinc 0.584 0.244 Gold 0.040 Oil and grease 8.000 4.800 Total suspended solids 16.400 7.800 p...

  10. 40 CFR 421.252 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.546 0.260 Mercury 0.325 0.130 Silver 0.533 0.221 Zinc 1.898 0.793 Gold 0.130 Oil....164 0.068 Zinc 0.584 0.244 Gold 0.040 Oil and grease 8.000 4.800 Total suspended solids 16.400 7.800 p...

  11. 40 CFR 421.252 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.546 0.260 Mercury 0.325 0.130 Silver 0.533 0.221 Zinc 1.898 0.793 Gold 0.130 Oil....164 0.068 Zinc 0.584 0.244 Gold 0.040 Oil and grease 8.000 4.800 Total suspended solids 16.400 7.800 p...

  12. 40 CFR 421.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-tantalum oxide dried Lead 16.140 7.685 Zinc 56.100 23.440 Ammonia (as N) 5,122.000 2,252.000 Fluoride 1,345... digested Lead 2.612 1.244 Zinc 9.080 3.794 Ammonia (as N) 829.000 364.500 Fluoride 217.700 124.400 Total....851 Zinc 13.520 5.647 Ammonia (as N) 1,233.000 542.500 Fluoride 324.000 185.100 Total Suspended Solids...

  13. 40 CFR 421.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-tantalum oxide dried Lead 16.140 7.685 Zinc 56.100 23.440 Ammonia (as N) 5,122.000 2,252.000 Fluoride 1,345... digested Lead 2.612 1.244 Zinc 9.080 3.794 Ammonia (as N) 829.000 364.500 Fluoride 217.700 124.400 Total....851 Zinc 13.520 5.647 Ammonia (as N) 1,233.000 542.500 Fluoride 324.000 185.100 Total Suspended Solids...

  14. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent.

    PubMed

    Dickinson, Michelle; Scott, Thomas B

    2010-06-15

    Zero-valent iron nanoparticles (INP) were investigated as a remediation strategy for a uranium-contaminated waste effluent from AWE, Aldermaston. Nanoparticles were introduced to the effluent, under both oxic and anoxic conditions, and allowed to react for a 28-d period during which the liquid and nanoparticle solids were periodically sampled. Analysis of the solution indicated that under both conditions U was removed to <1.5% of its initial concentration within 1h of introduction and remained at similar concentrations until approximately 48 h. A rapid release of Fe into solution was also recorded during this initial period; attributed to the limited partial dissolution of the INP. XPS analyses of the reacted nanoparticulate solids between 1 and 48 h showed an increased Fe(III):Fe(II) ratio, consistent with the detection of iron oxidation products (akaganeite and magnetite) by XRD and FIB. XPS analysis also recorded uranium on the recovered particulates indicating the chemical reduction of U(VI) to U(IV) within 1h. Following the initial retention period U-dissolution of U was recorded from 48 h, and attributed to reoxidation. The efficient uptake and retention of U on the INP for periods up to 48 h provide proof that INP may be effectively used for the remediation of complex U-contaminated effluents. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Determination of dilution factors for discharge of aluminum-containing wastes by public water-supply treatment facilities into lakes and reservoirs in Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Massey, Andrew J.; Brandt, Sara L.

    2011-09-16

    Dilution of aluminum discharged to reservoirs in filter-backwash effluents at water-treatment facilities in Massachusetts was investigated by a field study and computer simulation. Determination of dilution is needed so that permits for discharge ensure compliance with water-quality standards for aquatic life. The U.S. Environmental Protection Agency chronic standard for aluminum, 87 micrograms per liter (μg/L), rather than the acute standard, 750 μg/L, was used in this investigation because the time scales of chronic exposure (days) more nearly match rates of change in reservoir concentrations than do the time scales of acute exposure (hours).Whereas dilution factors are routinely computed for effluents discharged to streams solely on the basis of flow of the effluent and flow of the receiving stream, dilution determination for effluents discharged to reservoirs is more complex because (1), compared to streams, additional water is available for dilution in reservoirs during low flows as a result of reservoir flushing and storage during higher flows, and (2) aluminum removal in reservoirs occurs by aluminum sedimentation during the residence time of water in the reservoir. Possible resuspension of settled aluminum was not considered in this investigation. An additional concern for setting discharge standards is the substantial concentration of aluminum that can be naturally present in ambient surface waters, usually in association with dissolved organic carbon (DOC), which can bind aluminum and keep it in solution.A method for dilution determination was developed using a mass-balance equation for aluminum and considering sources of aluminum from groundwater, surface water, and filter-backwash effluents and losses caused by sedimentation, water withdrawal, and spill discharge from the reservoir. The method was applied to 13 reservoirs. Data on aluminum and DOC concentrations in reservoirs and influent water were collected during the fall of 2009. Complete reservoir volume was determined to be available for mixing on the basis of vertical and horizontal aluminum-concentration profiling. Losses caused by settling of aluminum were assumed to be proportional to aluminum concentration and reservoir area. The constant of proportionality, as a function of DOC concentration, was established by simulations in each of five reservoirs that differed in DOC concentration.In addition to computing dilution factors, the project determined dilution factors that would be protective with the same statistical basis (frequency of exceedance of the chronic standard) as dilutions computed for streams at the 7-day-average 10-year-recurrence annual low flow (the 7Q10). Low-flow dilutions are used for permitting so that receiving waters are protected even at the worst-case flow levels. The low-flow dilution factors that give the same statistical protection are the lowest annual 7-day-average dilution factors with a recurrence of 10 years, termed 7DF10s. Determination of 7DF10 values for reservoirs required that long periods of record be simulated so that dilution statistics could be determined. Dilution statistics were simulated for 13 reservoirs from 1960 to 2004 using U.S. Geological Survey Firm-Yield Estimator software to model reservoir inputs and outputs and present-day values of filter-effluent discharge and aluminum concentration.Computed settling velocities ranged from 0 centimeters per day (cm/d) at DOC concentrations of 15.5 milligrams per liter (mg/L) to 21.5 cm/d at DOC concentrations of 2.7 mg/L. The 7DF10 values were a function of aluminum effluent discharged. At current (2009) effluent discharge rates, the 7DF10 values varied from 1.8 to 115 among the 13 reservoirs. In most cases, the present-day (2009) discharge resulted in receiving water concentrations that did not exceed the standard at the 7DF10. Exceptions were one reservoir with a very small area and three reservoirs with high concentrations of DOC. Maximum permissible discharges were determined for water-treatment plants by adjusting discharges upward in simulations until the 7DF10 resulted in reservoir concentrations that just met the standard. In terms of aluminum flux, these discharges ranged from 0 to 28 kilograms of aluminum per day.

  16. Spatially referenced statistical assessment of dissolved-solids load sources and transport in streams of the Upper Colorado River Basin

    USGS Publications Warehouse

    Kenney, Terry A.; Gerner, Steven J.; Buto, Susan G.; Spangler, Lawrence E.

    2009-01-01

    The Upper Colorado River Basin (UCRB) discharges more than 6 million tons of dissolved solids annually, about 40 to 45 percent of which are attributed to agricultural activities. The U.S. Department of the Interior estimates economic damages related to salinity in excess of $330 million annually in the Colorado River Basin. Salinity in the UCRB, as measured by dissolved-solids load and concentration, has been studied extensively during the past century. Over this period, a solid conceptual understanding of the sources and transport mechanisms of dissolved solids in the basin has been developed. This conceptual understanding was incorporated into the U.S. Geological Survey Spatially Referenced Regressions on Watershed Attributes (SPARROW) surface-water quality model to examine statistically the dissolved-solids supply and transport within the UCRB. Geologic and agricultural sources of dissolved solids in the UCRB were defined and represented in the model. On the basis of climatic and hydrologic conditions along with data availability, water year 1991 was selected for examination with SPARROW. Dissolved-solids loads for 218 monitoring sites were used to calibrate a dissolved-solids SPARROW model for the UCRB. The calibrated model generally captures the transport mechanisms that deliver dissolved solids to streams of the UCRB as evidenced by R2 and yield R2 values of 0.98 and 0.71, respectively. Model prediction error is approximated at 51 percent. Model results indicate that of the seven geologic source groups, the high-yield sedimentary Mesozoic rocks have the largest yield of dissolved solids, about 41.9 tons per square mile (tons/mi2). Irrigated sedimentary-clastic Mesozoic lands have an estimated yield of 1,180 tons/mi2, and irrigated sedimentary-clastic Tertiary lands have an estimated yield of 662 tons/mi2. Coefficients estimated for the seven landscape transport characteristics seem to agree well with the conceptual understanding of the role they play in the delivery of dissolved solids to streams in the UCRB. Predictions of dissolved-solids loads were generated for more than 10,000 stream reaches of the stream network defined in the UCRB. From these estimates, the downstream accumulation of dissolved solids, including natural and agricultural components, were examined in selected rivers. Contributions from each of the 11 dissolved-solids sources were also examined at select locations in the Grand, Green, and San Juan Divisions of the UCRB. At the downstream boundary of the UCRB, the Colorado River at Lees Ferry, Arizona, monitoring site, the dissolved-solids contribution of irrigated agricultural lands and natural sources were about 45 and 57 percent, respectively. Finally, model predictions, including the contributions of natural and agricultural sources for selected locations in the UCRB, were compared with results from two previous studies.

  17. 40 CFR 220.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... matter of any kind or description, including, but not limited to, dredged material, solid waste... discharge of effluent incidental to the propulsion of, or operation of motor-driven equipment on, vessels...

  18. 40 CFR 220.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... matter of any kind or description, including, but not limited to, dredged material, solid waste... discharge of effluent incidental to the propulsion of, or operation of motor-driven equipment on, vessels...

  19. Thiocyanate, calcium and sulfate as causes of toxicity to Ceriodaphnia dubia in a hard rock mining effluent.

    PubMed

    Brix, Kevin V; Gerdes, Robert; Grosell, Martin

    2010-10-01

    A series of Toxicity Identification Evaluations (TIEs) to identify the cause(s) of observed toxicity to Ceriodaphnia dubia have been conducted on a hard rock mining effluent. Characteristic of hard rock mining discharges, the effluent has elevated (∼3000 mg l(-1)) total dissolved solids (TDS) composed primarily of Ca(2+) and SO(4)(2-). The effluent typically exhibits 6-12 toxic units (TUs) when tested with C. dubia. Phase I and II toxicity identification evaluations (TIEs) indicated Ca(2+) and SO(4)(2-) contributed only ∼4 TUs of toxicity, but this was likely an underestimate due to problems with simulating the supersaturated CaSO(4) concentrations in the effluent. Treatment of the effluent with BaCO(3) to precipitate Ca(2+) and SO(4)(2-) revealed that these ions contribute ∼6 TUs of the observed toxicity, but the remaining source(s) of toxicity (up to 6 TUs) remained unidentified. Subsequent investigations identified thiocyanate (SCN(-)) in the effluent at 100-150 μM. Toxicity tests reveal that C. dubia are sensitive to SCN(-) with an estimated IC25 of 8.3 μΜ for reproduction in moderately hard water suggesting between 12 and 18 TUs of toxicity in the effluent. Additional experiments demonstrated that SCN(-) toxicity is reduced in the high TDS matrix of the mining effluent. Testing of a mock effluent simulating the major ion and SCN(-) concentrations resulted in 10.4 TUs, suggesting that Ca(2+), SO(4)(2-) and SCN(-) are the three toxicants present in this effluent. This research suggests SCN(-) may be a more common cause of toxicity in mining effluents than is generally recognized. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Impact of recycled effluent on the hydrolysis during anaerobic digestion of vegetable and flower waste.

    PubMed

    Lü, F; He, P J; Hao, L P; Shao, L M

    2008-01-01

    Two trials were established to investigate the effect of recycled effluent on hydrolysis during anaerobic co-digestion of vegetable and flower waste. Trial I evaluated the effect by regulating the flow rate of recycled effluent, while Trial II regulated the ratio of hydrolytic effluent to methanogenic effluent, which were recycled to hydrolysis reactor. Results showed that the recirculation of methanogenic effluent could enhance the buffer capability and operation stability of hydrolysis reactor. Higher recycled flow rate was favourable for microbial anabolism and further promoted hydrolysis. After 9 days of hydrolysis, the cumulative SCOD in the hydrolytic effluent reached 334, 407, 413, 581 mg/g at recycled flow rates of 0.1, 0.5, 1.0, 2.0 m3/(m3 x d), respectively. It was feasible to recycling a mixture of hydrolytic and methanogenic effluent to the hydrolysis reactor. This research showed that partially introducing hydrolytic effluent into the recycled liquid could enhance hydrolysis, while excessive recirculation of hydrolytic effluent will inhibit the hydrolysis. The flow ratio 1:3 of hydrolytic to methanogenic effluent was found to provide the highest hydrolysis efficiency and degradation rate of lignocelluloses-type biomass, among four ratios of 0:1, 1:3, 1:1 and 3:1. Under this regime, after 9 days of hydrolysis, the cumulative TOC and TN in the hydrolytic effluent reached 162 mg/g and 15 mg/g, the removal efficiency of TS, VS, C and cellulose in the solid phase were 60.66%, 62.88%, 58.35% and 49.12%, respectively. The flow ratio affected fermentation pathways, i.e. lower ratio favoured propionic acid fermentation and the generation of lactic acid while higher ratio promoted butyric acid fermentation. IWA Publishing 2008.

  1. Pulverized fuel-oxygen burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through themore » solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.« less

  2. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States.

    PubMed

    Anning, David W

    2011-10-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km(2) for catchments with little or no natural or human-related solute sources in them to 563,000 (kg/year)/km(2) for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km(2) for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km(2) for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km(2) for the Salton Sea accounting unit.

  3. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States1

    PubMed Central

    Anning, David W

    2011-01-01

    Abstract Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km2 for catchments with little or no natural or human-related solute sources in them to 563,000 (kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km2 for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km2 for the Salton Sea accounting unit. PMID:22457583

  4. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Treesearch

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  5. Gas stream cleaning system and method

    DOEpatents

    Kunchal, S. Kumar; Erck, Louis J.; Harris, Harry A.

    1979-04-13

    An oil mist and solid particle laden gas from an oil shale retorting operation is initially treated with a temperature controlled oil spray and then by a coalescer to reduce the quantity of oil mist and remove most of the solid particle content of the gas stream and then finally treated by an electrostatic precipitator to essentially remove the oil mist remaining in the gas.

  6. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    PubMed

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes.

    PubMed

    Dhiman, Saurabh Sudha; Shrestha, Namita; David, Aditi; Basotra, Neha; Johnson, Glenn R; Chadha, Bhupinder S; Gadhamshetty, Venkataramana; Sani, Rajesh K

    2018-06-01

    Residual solid and liquid streams from the one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process were treated with two separate biochemical routes for renewable energy transformation. The solid residual stream was subjected to thermophilic anaerobic digestion (TAD), which produced 95 ± 7 L methane kg -1 volatile solid with an overall energy efficiency of 12.9 ± 1.7%. A methanotroph, Methyloferula sp., was deployed for oxidation of mixed TAD biogas into methanol. The residual liquid stream from CRUDE process was used in a Microbial Fuel Cell (MFC) to produce electricity. Material balance calculations confirmed the integration of biochemical routes (i.e. CRUDE, TAD, and MFC) for developing a sustainable approach of energy regeneration. The current work demonstrates the utilization of different residual streams originated after food waste processing to release minimal organic load to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. An industrial ecology approach to municipal solid waste ...

    EPA Pesticide Factsheets

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  9. Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout.

    PubMed

    Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas

    2009-01-01

    Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.

  10. Report on the Biological Monitoring Program at Paducah Gaseous Diffusion Plant, January--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kszos, L.A.

    1996-04-01

    The BMP for PGDP consists of three major tasks: (1) effluent and ambient toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of stream communities (benthic macroinvertebrates, fish). This report focuses on ESD activities occurring from Jan. 1995 to Dec. 1995, although activities conducted outside this period are included as appropriate.

  11. Nitrification in four acidic streams in southern New Jersey

    USGS Publications Warehouse

    Schornick, James C.; Ram, Neil M.

    1978-01-01

    Four characteristically acidic streams in southern New Jersey were investigated to determine the effect of secondary effluent on nitrification in the receiving waters. Chemical and microbiological data were obtained at four sites on each stream. From these data seven factors were evaluated to determine the proclivity of each stream to nitrify. pH, water temperature, and dissolved oxygen were used to describe the general condition of the streams, while neutralization of alkalinity, nitrogen species concentration trends, biological and nitrogenous oxygen demand incubations, and nitrifying bacteria densities were used to determine the actual presence of nitrification in each stream. Each stream had a unique distribution of conditions, making it possible to qualitatively rank the streams according to their proclivity to nitrify. Hay StackBrook showes strong evidence for nitrification on the basis of all four nitrification indicators, whereas Landing Creek showed little, if any, evidence of nitrification. Hammonton Creek is apparently nitrifying, but because of the uncertainty in the downstream trends of the nitrogen species and a lower level of alkalinity neutralization, it is nitrifying less than Hay Stack Brook. Squankum Branch also showed some evidence for nitrification, mostly on the basis of the biological and nitrogenous oxygen demand incubations. Although these streams are acidic in character, acidity does not appear to be an exclusive factor in determining whether a stream will undergo nitrification. (Woodard-USGS)

  12. Estimating risks for water-quality exceedances of total-copper from highway and urban runoff under predevelopment and current conditions with the Stochastic Empirical Loading and Dilution Model (SELDM)

    USGS Publications Warehouse

    Granato, Gregory E.; Jones, Susan C.; Dunn, Christopher N.; Van Weele, Brian

    2017-01-01

    The stochastic empirical loading and dilution model (SELDM) was used to demonstrate methods for estimating risks for water-quality exceedances of event-mean concentrations (EMCs) of total-copper. Monte Carlo methods were used to simulate stormflow, total-hardness, suspended-sediment, and total-copper EMCs as stochastic variables. These simulations were done for the Charles River Basin upstream of Interstate 495 in Bellingham, Massachusetts. The hydrology and water quality of this site were simulated with SELDM by using data from nearby, hydrologically similar sites. Three simulations were done to assess the potential effects of the highway on receiving-water quality with and without highway-runoff treatment by a structural best-management practice (BMP). In the low-development scenario, total copper in the receiving stream was simulated by using a sediment transport curve, sediment chemistry, and sediment-water partition coefficients. In this scenario, neither the highway runoff nor the BMP effluent caused concentration exceedances in the receiving stream that exceed the once in three-year threshold (about 0.54 percent). In the second scenario, without the highway, runoff from the large urban areas in the basin caused exceedances in the receiving stream in 2.24 percent of runoff events. In the third scenario, which included the effects of the urban runoff, neither the highway runoff nor the BMP effluent increased the percentage of exceedances in the receiving stream. Comparison of the simulated geometric mean EMCs with data collected at a downstream monitoring site indicates that these simulated values are within the 95-percent confidence interval of the geometric mean of the measured EMCs.

  13. Tritium monitor and collection system

    DOEpatents

    Bourne, G.L.; Meikrantz, D.H.; Ely, W.E.; Tuggle, D.G.; Grafwallner, E.G.; Wickham, K.L.; Maltrud, H.R.; Baker, J.D.

    1992-01-14

    This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next on-line getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter. 7 figs.

  14. Prediction analysis of effluent removal in a septic sludge treatment plant: a biomimetics engineering approach.

    PubMed

    Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani

    2014-09-20

    Effluent discharge from septic tanks is affecting the environment in developing countries. The most challenging issue facing these countries is the cost of inadequate sanitation, which includes significant economic, social, and environmental burdens. Although most sanitation facilities are evaluated based on their immediate costs and benefits, their long-term performance should also be investigated. In this study, effluent quality-namely, the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solid (TSS)-was assessed using a biomimetics engineering approach. A novel immune network algorithm (INA) approach was applied to a septic sludge treatment plant (SSTP) for effluent-removal predictive modelling. The Matang SSTP in the city of Kuching, Sarawak, on the island of Borneo, was selected as a case study. Monthly effluent discharges from 2007 to 2011 were used for training, validating, and testing purposes using MATLAB 7.10. The results showed that the BOD effluent-discharge prediction was less than 50% of the specified standard after the 97(th) month of operation. The COD and TSS effluent removals were simulated at the 85(th) and the 121(st) months, respectively. The study proved that the proposed INA-based SSTP model could be used to achieve an effective SSTP assessment and management technique.

  15. Effects of suburban development on runoff generation in the Croton River basin, New York, USA

    USGS Publications Warehouse

    Burns, D.; Vitvar, T.; McDonnell, J.; Hassett, J.; Duncan, J.; Kendall, C.

    2005-01-01

    The effects of impervious area, septic leach-field effluent, and a riparian wetland on runoff generation were studied in three small (0.38-0.56 km 2) headwater catchments that represent a range of suburban development (high density residential, medium density residential, and undeveloped) within the Croton River basin, 70 km north of New York City. Precipitation, stream discharge, and groundwater levels were monitored at 10-30 min intervals for 1 year, and stream water and groundwater samples were collected biweekly for ??18O, NO3-, and SO42- analysis for more than 2 years during an overlapping period in 2000-2002. Data from 27 storms confirmed that peak magnitudes increased and recession time decreased with increasing development, but lags in peak arrival and peak discharge/mean discharge were greatest in the medium density residential catchment, which contains a wetland in which storm runoff is retained before entering the stream. Baseflow during a dry period from Aug. 2001-Feb. 2002 was greatest in the high-density residential catchment, presumably from the discharge of septic effluent through the shallow groundwater system and into the stream. In contrast, moderate flows during a wet period from Mar.-Aug. 2002 were greatest in the undeveloped catchment, possibly as a result of greater subsurface storage or greater hydraulic conductivity at this site. The mean residence time of baseflow was about 30 weeks at all three catchments, indicating that human influence was insufficient to greatly affect the groundwater recharge and discharge properties that determine catchment residence time. These results suggest that while suburban development and its associated impervious surfaces and storm drains accelerate the transport of storm runoff into streams, the combined effects of remnant natural landscape features such as wetlands and human alterations such as deep groundwater supply and septic systems can change the expected effects of human development on storm runoff and groundwater recharge. ?? 2005 Elsevier B.V. All rights reserved.

  16. Cyanobacterial flora from polluted industrial effluents.

    PubMed

    Parikh, Amit; Shah, Vishal; Madamwar, Datta

    2006-05-01

    Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.

  17. Control of Effluent Gases from Solid Waste Processing using Impregnated Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Li, Jing; Fisher, John; Wignarajah, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored. Data showing decomposition of NO on metal impregnated carbon nanotubes is presented. Comparisons are made of the existing TCCS systems with the carbon nanotube based technology for removing NOx based on mass/energy penalties.

  18. Effect of agitation on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas

    NASA Astrophysics Data System (ADS)

    Trisakti, Bambang; Irvan, Zahara, Intan; Taslim, Turmuzi, Muhammad

    2017-05-01

    This study is an assessment of the effect of agitation on biogas production on methanogenesis stage. Methanogenesis is the second stage of two-stage anaerobic digestion of palm oil effluent (POME) into biogas. The purpose of this study is to get the effect of agitation on growth of microorganisms, degradation of organic substances, and biogas production and composition. Initially, the suitable loading up was determined by varying the HRT at 100, 40, 6, and 4 days in the continuous stirred tank reactor (CSTR) with agitation rate 100 rpm, pH 6.7-7.5, at room temperature. Next, effect of agitation on the process was determined by varying agitation rate at 50, 100, 150, and 200 rpm. The substrate used was the effluent of the acidogenesis stage that fed to the CSTR four times a day. Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Production and composition of biogas were also determined by measuring the volume of biogas and content of H2S and CO2. The result showed that the pH and alkalinity it was still within the range of methanogenesis process. The growth of microorganisms were increased with the increasing of agitation rate. However, the best degradation of organic substances, biogas production, and biogas composition were achieved at 100 rpm. The VS decomposition, COD removal, biogas production, CO2 content, and CH4 content at 100 rpm were 67.44 ± 3.59%, 81.00%, 58.87 ± 6.27 L/kg-ΔVS, 23.36%, and 76.64%, respectively.

  19. Investigation on the Influence of Bio-catalytic Enzyme Produced from Fruit and Vegetable Waste on Palm Oil Mill Effluent

    NASA Astrophysics Data System (ADS)

    Rasit, Nazaitulshila; Chee Kuan, Ooi

    2018-04-01

    Pre-consumer waste from supermarkets, such as vegetables and fruits dreg are always discarded as solid waste and disposed to landfill. Implementing waste recovery method as a form of waste management strategy will reduce the amount of waste disposed. One of the ways to achieve this goal is through fermentation of the pre-consumer supermarket waste to produce a solution known as garbage enzyme. This study has been conducted to produce and characterize biocatalytic garbage enzyme and to evaluate its influence on palm oil mill effluent as a pre-treatment process before further biological process takes place. Garbage enzyme was produced by three-month long fermentation of a mixture of molasses, pre-consumer supermarket residues, and water in the ratio of 1:3:10. Subsequently, the characterization of enzyme was conducted based on pH, total solids (TS), total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), and enzyme activities. The influence of produced enzyme was evaluated on oil & grease (O&G), TSS and COD of palm oil mill effluent (POME). Different levels of dilution of garbage enzyme to POME samples (5%, 10%, 15%) were explored as pre-treatment (duration of six days) and the results showed that the garbage enzyme contained bio-catalytic enzyme such as amylase, protease, and lipase. The pre-treatment showed removal of 90% of O&G in 15% dilution of garbage enzyme. Meanwhile, reduction of TSS and COD in dilution of 10% garbage enzyme were measured at 50% and 25% respectively. The findings of this study are important to analyse the effectiveness of pre-treatment for further improvement of anaerobic treatment process of POME, especially during hydrolysis stage.

  20. The effects of stream channelization on bottom dwelling organisms : phase 2 report : 1975 construction season.

    DOT National Transportation Integrated Search

    1976-01-01

    Three construction projects affecting streams are being monitored. On two of the projects, those affecting Meadow Run and Moores Creek, the streams are being monitored for flow, suspended solids, rainfall, and benthic populations. Construction has be...

  1. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOEpatents

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  2. An anaerobic-aerobic sequential batch process with simultaneous methanogenesis and short-cut denitrification for the treatment of marine biofoulings.

    PubMed

    Akizuki, S; Toda, T

    2018-04-01

    Although combination of denitritation and methanogenesis for wastewater treatment has been widely investigated, an application of this technology to solid waste treatment has been rarely studied. This study investigated an anaerobic-aerobic batch system with simultaneous denitritation-methanogenesis as an effective treatment for marine biofoulings, which is a major source of intermittently discharged organic solid wastes. Preliminary NO 2 - -exposed sludge was inoculated to achieve stable methanogenesis process without NO 2 - inhibition. Both high NH 4 + -N removal of 99.5% and high NO 2 - -N accumulation of 96.4% were achieved on average during the nitritation step. Sufficient CH 4 recovery of 101 L-CH 4 kg-COD -1 was achieved, indicating that the use of NO 2 - -exposed sludge is effective to avoid NO 2 - inhibition on methanogenesis. Methanogenesis was the main COD utilization pathway when the substrate solubilization occurred actively, while denitritation was the main when solubilization was limited because of substrate shortage. The results showed a high COD removal efficiency of 96.0% and a relatively low nitrogen removal efficiency of 64.4%. Fitting equations were developed to optimize the effluent exchange ratio. The estimated results showed that the increase of effluent exchange ratio during the active solubilization period increased the nitrogen removal efficiency but decreased CH 4 content in biogas. An appropriate effluent exchange ratio with high anaerobic effluent quality below approximately 120 mg-N L -1 as well as sufficient CH 4 gas quality which can be used as fuel for gas engine generator was achieved by daily effluent exchange of 80% during the first week and 5% during the subsequent 8 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Apparatus for mixing char-ash into coal stream

    DOEpatents

    Blaskowski, Henry J.

    1982-03-16

    Apparatus for obtaining complete mixing of char with coal prior to the introduction of the mixture into the combustor (30) of a coal gasifier (10). The coal is carried in one air stream (22), and the char in another air stream (54), to a riffle plate arrangement (26), where the streams of solid are intimately mixed or blended.

  4. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents.

    PubMed

    Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula

    2018-08-01

    Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for concentrations up to 5%. The findings suggest the need to employ wider variety of aquatic organisms for better understanding and complete toxicity evaluation of long-term effects. The study demonstrates the potential to tailor ACP system parameters to control pertinent microbial targets (mono/poly-microbial, vegetative or spore form) found in complex and nutritious wastewater effluents whilst maintaining a safe eco-toxicity profile for aquatic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Spatial variation in basic chemistry of streams draining a volcanic landscape on Costa Rica's Caribbean slope

    USGS Publications Warehouse

    Pringle, C.M.; Triska, F.J.; Browder, G.

    1990-01-01

    Spatial variability in selected chemical, physical and biological parameters was examined in waters draining relatively pristine tropical forests spanning elevations from 35 to 2600 meters above sea level in a volcanic landscape on Costa Rica's Caribbean slope. Waters were sampled within three different vegetative life zones and two transition zones. Water temperatures ranged from 24-25 ??C in streams draining lower elevations (35-250 m) in tropical wet forest, to 10 ??C in a crater lake at 2600 m in montane forest. Ambient phosphorus levels (60-300 ??g SRP L-1; 66-405 ??g TP L-1) were high at sites within six pristine drainages at elevations between 35-350 m, while other undisturbed streams within and above this range in elevation were low (typically <30.0 ??g SRP L-1). High ambient phosphorus levels within a given stream were not diagnostic of riparian swamp forest. Phosphorus levels (but not nitrate) were highly correlated with conductivity, Cl, Na, Ca, Mg and SO4. Results indicate two major stream types: 1) phosphorus-poor streams characterized by low levels of dissolved solids reflecting local weathering processes; and 2) phosphorus-rich streams characterized by relatively high Cl, SO4, Na, Mg, Ca and other dissolved solids, reflecting dissolution of basaltic rock at distant sources and/or input of volcanic brines. Phosphorus-poor streams were located within the entire elevation range, while phosphorus-rich streams were predominately located at the terminus of Pleistocene lava flows at low elevations. Results indicate that deep groundwater inputs, rich in phosphorus and other dissolved solids, surface from basaltic aquifers at breaks in landform along faults and/or where the foothills of the central mountain range merge with the coastal plain. ?? 1990 Kluwer Academic Publishers.

  6. Evaluation of the operating performance of conventional versus flocculator secondary clarifiers at the Kuwahee Wastewater Treatment Plant, Knoxville, Tennessee.

    PubMed

    Moreno, Patricio A; Reed, Gregory D

    2007-05-01

    The difference in performance of three differently designed circular secondary clarifiers in the same wastewater treatment plant was analyzed in this paper. Data obtained using flocculated suspended solids and disperse suspended solids tests were analyzed using statistical tools. The conventional clarifier showed more variability in the average effluent suspended solids concentration when compared with the flocculator-clarifiers. Furthermore, a difference in performance among the two different flocculator-clarifiers was found.

  7. Environmental effects of dredging. Documentation of the settle module for ADDAMS: Design of confined disposal facilities for solids retention and initial storage. Technical notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, D.F.; Schroeder, P.R.

    This technical note documents the SETTLE computer program which facilitates the design of a confined disposal facility (CDF) to retain solids, provide initial storage, and meet effluent discharge limitations for suspended solids during a dredged matenal disposal operation. Detailed information can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. SETTLE is a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).

  8. Storm water runoff-a source of emerging contaminants in urban streams

    NASA Astrophysics Data System (ADS)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This study demonstrated that urband storm water runoff could be a significant source, in addition to WWTP effluent, contributing to the widespread occurrence of ECs in aquatic environment.

  9. Screening and evaluation of polymers as flocculation aids for the treatment of aquacultural effluents

    USGS Publications Warehouse

    Ebeling, J.M.; Rishel, K.L.; Sibrell, P.L.

    2005-01-01

    As environmental regulations become more stringent, environmentally sound waste management and disposal are becoming increasingly more important in all aquaculture operations. One of the primary water quality parameters of concern is the suspended solids concentration in the discharged effluent. For example, EPA initially considered the establishment of numerical limitations for only one single pollutant: total suspended solids (TSS). For recirculation systems, the proposed TSS limitations would have applied to solids polishing or secondary solids removal technology. The new rules and regulations from EPA (August 23, 2004) require only qualitative TSS limits, in the form of solids control best management practices (BMP), allowing individual regional and site specific conditions to be addressed by existing state or regional programs through NPDES permits. In recirculation systems, microscreen filters are commonly used to remove the suspended solids from the process water. Further concentration of suspended solids from the backwash water of the microscreen filter could significantly reduce quantity of discharge water. And in some cases, the backwash water from microscreen filters needs to be further concentrated to minimize storage volume during over wintering for land disposal or other final disposal options. In addition, this may be required to meet local, state, and regional discharge water quality. The objective of this research was an initial screening of several commercially available polymers routinely used as coagulation-flocculation aids in the drinking and wastewater treatment industry and determination of their effectiveness for the treatment of aquaculture wastewater. Based on the results of the initial screening, a further evaluation of six polymers was conducted to estimate the optimum polymer dosage for flocculation of aquaculture microscreen effluent and overall solids removal efficiency. Results of these evaluations show TSS removal was close to 99% via settling, with final TSS values ranging from as low as 10-17 mg/L. Although not intended to be used for reactive phosphorus (RP) removal, RP was reduced by 92-95% by removing most of the TSS in the wastewater to approximately 1 mg/L-P. Dosage requirements were fairly uniform, requiring between 15 and 20 mg/L of polymer. Using these dosages, estimated costs range from $4.38 to $13.08 per metric tonne of feed. ?? 2005 Elsevier B.V. All rights reserved.

  10. Recuperation de la matiere organique biodegradable presente dans l'effluent d'un MBBR a forte charge

    NASA Astrophysics Data System (ADS)

    Brosseau, Catherine

    High-rate processes are receiving great interest due to their potential to favor the energy balance of water resource recovery facilities (WRRFs) either for their design or retrofit. Anaerobic digestion is a process that allows the valorization of organic biodegradable matter contained in sludge into biogas. This process also produces a stabilized sludge named digestate or biosolids that can be reused for agriculture purposes. This project proposed a secondary treatment train composed of a high-rate moving bed biofilm reactor (HR-MBBR) to biotransform colloidal and soluble biodegradable organics into particulate matter followed by an enhanced and compact physico-chemical separation process to recover mainly particulate organics and a part of the colloidal matter. A high-rate biological process operated at a low hydraulic retention time aimed at transforming colloidal and soluble fractions of organic matter into a particulate fraction for recovery by downstream separation process. The HR-MBBR effluent solids are known for their poor settleability, therefore requiring an efficient separation process downstream to ensure their recovery and to meet the effluent discharge regulations. The global objective of this project was to maximize the recovery of organic biodegradable matter for valorization into biogas by anaerobic digestion with an innovative treatment train combining an HR-MBBR and a separation process. The specific objectives of this report were 1) to characterize the HR-MBBR effluent solids and 2) to determine the efficiency of several physico-chemical separation processes combined with unbiodegradable or natural based coagulants and polymers. Effluents of lab-scale HR-MBBR fed with a synthetic soluble or domestic wastewater influent and the effluent of a full-scale HR-MBBR were used to evaluate the efficiency of separation processes adapted at bench-scale in jar-tests experiments. The processes studied were conventionnal settling, ballasted flocculation, dissolved air flotation and an innovative enhanced flotation process. Unlike conventional settling and dissolved air flotation, ballasted flocculation and enhanced flotation use a ballasted or flotation agent to accelerate the sludge settling or flotation rate. The original scientific hypothesis of this project is that the combination of enhanced flotation and natural based chemicals can meet a target total suspended solids (TSS) concentration of less or equal to 10 mg TSS/L in the clarified effluent of an HR-MBBR. The separation processes efficiencies were evaluated based on their TSS recoveries. Monitoring the chemical oxygen demand (COD) fractions allowed to better understand the underlying mechanisms of organic matter biotransformation and capture throughout the proposed treatment train. The concentration of solids expressed in TSS concentration in the MBBR effluent with a synthetic soluble influent was kept very low, from 27 to 61 mg TSS/L, which is about 2 to 9 times less than the expected concentration for an MBBR fed with domestic wastewater. Without the presence of particulate matter in the influent, the particulate matter in the MBBR effluent represented only the production of biomass detached by the shearing forces between the carriers. The TSS concentration and the efficiency of colloidal and soluble matter biotransformation into particulate matter increased with the MBBR hydraulic retention time. Wide volumetric particle size distributions ranging from 5 to 1000 mum in the lab-scale MBBR effluent were observed with a higher proportion of particles larger than 100 mum for a synthetic feed, and a higher proportion of small size particles of 30 mum for a domestic wastewater feed. The presence of lots of small size particles was attributed to unsettleable solids in the influent unchanged in the reactor. Despite the high proportion of large size particles for the MBBR with a synthetic feed, poor settleability of effluent solids was observed as static settling could only achieve TSS recoveries between 35 to 78%. Hence, coagulating agents were necessary to enhance the solids recovery. The combination of the innovative enhanced flotation process and unbiodegradable chemicals allowed to achieve TSS recovery efficiencies up to 97%. The enhanced flotation efficiency was reduced when using natural based chemicals, especially the natural based polymer which was not suited to treat waters with such high TSS concentrations. The hypothesis of the residual TSS concentration of 10 mg TSS/L was verified for half of the HR-MBBR operating conditions and the recovery efficiency did not seem to be influenced by the reactor hydraulic retention time, organic loading rate and temperature. More experiments are needed to confirm the effect of these parameters on TSS recovery efficiency. Although natural based chemicals reduced the coagulation and flocculation efficiency, they allowed a decrease in sludge production, which can represent a significant cost benefit. These chemicals resulted in an increase of 33 to 60% of the total COD of the MBBR effluent, compared to the unbiodegradable chemicals which only contributed about 2%. Natural based chemicals are recommended over unbiodegradable ones to promote the use of high biodegradability potential chemicals and to reduce the production of chemical sludge. However, to offset the increase of total COD, it may be required to add a treatment downstream to meet target secondary treatment COD concentration. Conventionnal settling and ballasted flocculation offered similar TSS recovery efficiencies to enhanced flottation (88% TSS recovery efficiency). The efficiency was reduced by 34% when using the dissolved air flotation process, much lower than the ones expected for such a separation process. The efficiency reduction was attributed to non-optimized and unadapted flotation lab-scale setups to treat medium strength wastewater. A similar innovative treatment train is currently being tested at pilot-scale in order to evaluate its carbon footprint and its potential to be eventually transposed to full-scale. Furthermore, the biodegradability and the biochemical methane production of the natural based chemicals are being determined. This project allowed to determine the potential of the innovative enhanced flotation process to recover the HR-MBBR solids when combined with natural based chemicals which are currently not often used in wastewater treatment for resource recovery.

  11. The effects of stream channelization on bottom dwelling organisms : phase 1 report : 1974 construction season.

    DOT National Transportation Integrated Search

    1975-01-01

    Two streams being channelized under Department contracts have been monitored since June 1974. Suspended solids, flow, rainfall and benthic population measurements have been obtained at various times for each stream. At present, all but the benthic po...

  12. Assessing Endocrine Disrupting Chemicals In Landfills, Solid Waste Sites and Wastewater

    EPA Pesticide Factsheets

    EPA researchers are assessing waste water effluents to measure their effects on ecosystems and aquatic animals while also developing innovative solutions to reduce concentrations of potential endocrine disrupting chemicals.

  13. The impact of Mpererwe landfill in Kampala Uganda, on the surrounding environment

    NASA Astrophysics Data System (ADS)

    Mwiganga, M.; Kansiime, F.

    Mpererwe landfill site receives solid wastes from the city of Kampala, Uganda. This study was carried out to assess and evaluate the appropriateness of the location and operation of this landfill, to determine the composition of the solid waste dumped at the landfill and the extent of contamination of landfill leachate to the neighbouring environment (water, soil and plants). Field observations and laboratory measurements were carried out to determine the concentration of nutrients, metals and numbers of bacteriological indicators in the landfill leachate. The landfill is not well located as it is close to a residential area (<200 m) and cattle farms. It is also located upstream of a wetland. The landfill generates nuisances like bad odour; there is scattering of waste by scavenger birds, flies and vermin. Industrial and hospital wastes are disposed of at the landfill without pre-treatment. The concentration of variables (nutrients, bacteriological indicators, BOD and heavy metals) in the leachate were higher than those recommended in the National Environment Standards for Discharge of Effluent into Water and on Land. A composite sample that was taken 1500 m down stream indicated that the wetland considerably reduced the concentration of the parameters that were measured except for sulfides. Despite the fact that there was accumulation of metals in the sediments, the concentration has not reached toxic levels to humans. Soil and plant analyses indicated deficiencies of zinc and copper. The concentration of these elements was lowest in the leachate canal.

  14. SOLIDS PRECIPITATION EVENT IN MCU CAUSAL ANALYSIS AND RECOMMENDATIONS FROM SOLIDS RECOVERY TEAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, A.; Aponte, C.

    A process upset occurred in the Modular Caustic-Side Solvent Extraction Unit (MCU) facility on April 6th, 2014. During recovery efforts, a significant amount of solids were found in the Salt Solution Feed Tank (SSFT), Salt Solution Receipt Tanks (SSRTs), two extraction contactors, and scrub contactors. The solids were identified by Savannah River National Laboratory (SRNL) as primarily sodium oxalate and sodium alumina silicate (NAS) with the presence of some aluminum hydroxide. NAS solids have been present in the SSFT since simulant runs during cold chemical startup of MCU in 2007, and have not hindered operations since that time. During themore » process upset in April 2014, the oxalate solids partially blocked the aqueous outlet of the extraction contactors, causing salt solution to exit through the contactor organic outlet to the scrub contactors with the organic phase. This salt solution overwhelmed the scrub contactors and passed with the organic phase to the strip section of MCU. The partially reversed flow of salt solution resulted in a Strip Effluent (SE) stream that was high in Isopar™ L, pH and sodium. The primary cause of the excessive solids accumulation in the SSRTs and SSFT at MCU is attributed to an increase in the frequency of oxalic acid cleaning of the 512-S primary filter. Agitation in the SSRTs at MCU in response to cold weather likely provided the primary mechanism to transfer the solids to the contactors. Sources of the sodium oxalate solids are attributed to the oxalic acid cleaning solution used to clean the primary filter at the Actinide Removal Process (ARP) filtration at 512-S, as well as precipitation from the salt batch feed, which is at or near oxalate saturation. The Solids Recovery Team was formed to determine the cause of the solids formation and develop recommendations to prevent or mitigate this event in the future. A total of 53 recommendations were generated. These recommendations were organized into 4 focus areas: • Improve understanding of oxalate equilibrium and kinetics in salt solutions • Reduction/elimination of oxalic acid cleaning in 512-S • Flowsheet optimization • Improving diagnostic capability The recommendations implemented prior to resumption of MCU operations provide a risk mitigation or detection function through additional sampling and observation. The longer term recommendations provide a framework to increase the basic process knowledge of both oxalate chemistry and filtration behavior and then facilitate decisions that improve the salt flowsheet as a system.« less

  15. Erosion/corrosion of turbine airfoil materials in the high-velocity effluent of a pressurized fluidized coal combustor

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Rowe, A. P.; Lowell, C. E.

    1978-01-01

    Four candidate turbine airfoil superalloys were exposed to the effluent of a pressurized fluidized bed with a solids loading of 2 to 4 g/scm for up to 100 hours at two gas velocities, 150 and 270 m/sec, and two temperatures, 730 deg and 795 C. Under these conditions, both erosion and corrosion occurred. The damaged specimens were examined by cross-section measurements, scanning electron and light microscopy, and X-ray analysis to evaluate the effects of temperature, velocity, particle loading, and alloy material. Results indicate that for a given solids loading the extent of erosion is primarily dependent on gas velocity. Corrosion occurred only at the higher temperature. There was little difference in the erosion/corrosion damage to the four alloys tested under these severe conditions.

  16. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries.

    PubMed

    Bielen, Ana; Šimatović, Ana; Kosić-Vukšić, Josipa; Senta, Ivan; Ahel, Marijan; Babić, Sanja; Jurina, Tamara; González Plaza, Juan José; Milaković, Milena; Udiković-Kolić, Nikolina

    2017-12-01

    Effluents from pharmaceutical industries are recognized as significant contributors to aquatic pollution with antibiotics. Although such pollution has been mostly reported in Asia, knowledge on industrial discharges in other regions of the world, including Europe, and on the effects associated with such exposures is still limited. Thus, we performed chemical, microbiological and ecotoxicological analyses of effluents from two Croatian pharmaceutical industries during four seasons. In treated effluents of the company synthesizing macrolide antibiotic azithromycin (AZI), the total concentration of AZI and two macrolide by-products from its synthesis was 1-3 orders of magnitude higher in winter and springtime (up to 10.5 mg/L) than during the other two seasons (up to 638 μg/L). Accordingly, the highest total concentrations (up to 30 μg/L) in the recipient river were measured in winter and spring. Effluents from second company formulating veterinary antibiotics contained fluoroquinolones, trimethoprim, sulfonamides and tetracyclines ranging from low μg/L to approx. 200 μg/L. Low concentrations of these antibiotics, from below the limit of quantification to approx. few μg/L, have also been measured in the recipient stream. High frequency of culturable bacteria resistant to AZI (up to 83%) or sulfamethazine (up to 90%) and oxytetracycline (up to 50%) were also found in studied effluents. Finally, we demonstrated that toxicity to algae and water fleas often exceeded the permitted values. Most highly contaminated effluents induced multiple abnormalities in zebrafish embryos. In conclusion, using a wide array of analyses we have demonstrated that discharges from pharmaceutical industries can pose a significant ecological and public health concern due to their toxicity to aquatic organisms and risks for promoting development and spread of antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gene expression fingerprints of largemouth bass (Micropterus salmoides) exposed to pulp and paper mill effluents.

    PubMed

    Denslow, Nancy D; Kocerha, Jannet; Sepúlveda, Maria S; Gross, Timothy; Holm, Stewart E

    2004-08-18

    Effluents from pulp and paper mills that historically have used elemental chlorine in the bleaching process have been implicated in inhibiting reproduction in fish. Compounds with estrogenic and androgenic binding affinities have been found in these effluents, suggesting that the impairment of reproduction is through an endocrine-related mode of action. To date, a great deal of attention has been paid to phytoestrogens and resin acids that are present in mill process streams as a result of pulping trees. Estrogen and estrogen mimics interact directly with the estrogen receptor and have near immediate effects on gene transcription by turning on the expression of a unique set of genes. Using differential display (DD) RT-PCR, we examined changes in gene expression induced by exposure to paper mill effluents. Largemouth bass were exposed to 0, 10, 20, 40, and 80% paper mill effluent concentrations in large flow-through tanks for varied periods of time including 7, 28 or 56 days. Plasma hormone levels in males and females and plasma vitellogenin (Vtg) in females decreased with dose and time. Measurements of changes in gene expression using DD RT-PCR suggest that the gene expression patterns of male fish do not change much with exposure, except for the induction of a few genes including CYP 1A, a protein that is induced through the action of the Ah receptor in response to dioxin and similar polyaromatic hydrocarbons. However, in the case of females, exposure to these effluents resulted in an up-regulation of CYP 1A that was accompanied by a generalized down-regulation of genes normally expressed during the reproductive season. These antiestrogenic changes are in agreement with previous studies in bass exposed to these effluents, and could result in decreased reproductive success in affected populations.

  18. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States

    USGS Publications Warehouse

    Anning, D.W.

    2011-01-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from <10(kg/year)/km2 for catchments with little or no natural or human-related solute sources in them to 563,000(kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved-solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved-solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil-pore or sediment-pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000(kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000(kg/year)/km2 for the Middle Gila, Lower Gila-Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000(kg/year)/km2 for the Salton Sea accounting unit. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  19. Particle effects on ultraviolet disinfection of coliform bacteria in recycled water.

    PubMed

    Jolis, D; Lam, C; Pitt, P

    2001-01-01

    Pilot- and bench-scale coliform inactivation tests with UV irradiation were used to show how suspended solids remaining in filtered secondary effluent affect the efficiency of the UV disinfection process. Observed kinetic inactivation rates decreased with increasing suspended particle sizes of 7 microm or larger present in tertiary effluent. First-order inactivation rates estimated from collimated beam dose-response curves for discrete ranges of UV doses were substantially different, which should caution researchers not to compare inactivation data obtained with largely dissimilar UV doses or suspended particle distributions. A dose of approximately 800 J/m2 was identified as the minimum dose that will consistently meet the California wastewater reclamation coliform criterion when applied to in-line filtration effluent.

  20. Feasibility of bioengineered two-stages sequential batch reactor and filtration-adsorption process for complex agrochemical effluent.

    PubMed

    Manekar, Pravin; Biswas, Rima; Urewar, Chaitali; Pal, Sukdeb; Nandy, Tapas

    2013-11-01

    In the present study, the feasibility of a bioengineered two-stages sequential batch reactor (BTSSBR) followed by filtration-adsorption process was investigated to treat the agrochemical effluent by overcoming factor affecting process stability such as microbial imbalance and substrate sensitivity. An air stripper stripped 90% of toxic ammonia, and combined with other streams for bio-oxidation and filtration-adsorption. The BTSSBR system achieved bio-oxidation at 6 days hydraulic retention time by fending off microbial imbalance and substrate sensitivity. The maximum reduction in COD and BOD by heterotrophic bacteria in the first reactor was 87% and 90%, respectively. Removal of toxic ammoniacal-nitrogen by autotrophic bacteria in a post-second stage bio-oxidation was 97%. The optimum filtration and adsorption of pollutants were achieved at a filtration rate of 10 and 9 m(3)m(-2)h(-1), respectively. The treatment scheme comprising air stripper, BTSSBR and filtration-adsorption process showed a great promise for treating the agrochemical effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

Top