Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B
2015-02-24
A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp
2016-07-06
Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.
A stable perovskite electrolyte in moist air for Li-ion batteries.
Li, Yutao; Xu, Henghui; Chien, Po-Hsiu; Wu, Nan; Xin, Sen; Xue, Leigang; Park, Kyusung; Hu, Yan-Yan; Goodenough, John B
2018-05-07
Solid-oxide Li+ electrolytes of a rechargeable cell are generally sensitive to moisture in the air, H+ exchanges for the mobile Li+ of the electrolyte and forms insulating surface phases at the electrolyte interfaces and in the grain boundaries of a polycrystalline membrane. These surface phases dominate the total interfacial resistance of a conventional rechargeable cell having a solid-electrolyte separator. We report a new perovskite Li+ solid electrolyte, Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05, having a Li-ion conductivity σLi = 4.8×10-4 S cm-1 at 25 oC that does not react with water having 3≤pH≤14. The solid electrolyte with a thin Li+-conducting polymer on its surface to prevent reduction of Ta5+ is wet by metallic lithium and provides low-impedance dendrite-free plating/stripping of a lithium anode. It is also stable on contact with a composite polymer cathode. With this solid electrolyte, we demonstrate excellent cycling performance of an all-solid-state Li/LiFePO4 cell, a Li-S cell with a polymer-gel cathode, and a supercapacitor. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrolyte for batteries with regenerative solid electrolyte interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Jie; Lu, Dongping; Shao, Yuyan
2017-08-01
An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.
Fuel cell membranes and crossover prevention
Masel, Richard I [Champaign, IL; York, Cynthia A [Newington, CT; Waszczuk, Piotr [White Bear Lake, MN; Wieckowski, Andrzej [Champaign, IL
2009-08-04
A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.
Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same
NASA Technical Reports Server (NTRS)
Liu, Chung Chiun (Inventor); Ward, Benjamin J. (Inventor); Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)
2011-01-01
A gas sensor includes a substrate and a pair of interdigitated metal electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, and Os. The electrodes each include an upper surface. A first solid electrolyte resides between the interdigitated electrodes and partially engages the upper surfaces of the electrodes. The first solid electrolyte is selected from the group consisting of NASICON, LISICON, KSICON, and .beta.''-Alumina (beta prime-prime alumina in which when prepared as an electrolyte is complexed with a mobile ion selected from the group consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+). A second electrolyte partially engages the upper surfaces of the electrodes and engages the first solid electrolyte in at least one point. The second electrolyte is selected from the group of compounds consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+ ions or combinations thereof.
Fabrication of copper-based anodes via atmosphoric plasma spraying techniques
Lu, Chun [Monroeville, PA
2012-04-24
A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.
High temperature solid electrolyte fuel cell configurations and interconnections
Isenberg, Arnold O.
1984-01-01
High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.
Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts
Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne
2014-08-12
Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.
Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi
2018-06-13
Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.
Solid polymer electrolyte composite membrane comprising laser micromachined porous support
Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA
2011-01-11
A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.
Solid polymer electrolyte composite membrane comprising plasma etched porous support
Liu, Han; LaConti, Anthony B.
2010-10-05
A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.
Fu, Kun (Kelvin); Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D.; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing
2017-01-01
Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10−3 to 10−4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries. PMID:28435874
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Kun; Gong, Yunhui; Liu, Boyang
Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less
Fu, Kun; Gong, Yunhui; Liu, Boyang; ...
2017-04-07
Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less
A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air
NASA Astrophysics Data System (ADS)
Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan
2005-05-01
The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.
Self-consistent modeling of electrochemical strain microscopy of solid electrolytes
Tselev, Alexander; Morozovska, Anna N.; Udod, Alexei; ...
2014-10-10
Electrochemical strain microscopy (ESM) employs a strong electromechanical coupling in solid ionic conductors to map ionic transport and electrochemical processes with nanometer-scale spatial resolution. To elucidate the mechanisms of the ESM image formation, we performed self-consistent numerical modeling of the electromechanical response in solid electrolytes under the probe tip in a linear, small-signal regime using the Boltzmann–Planck–Nernst–Einstein theory and Vegard's law while taking account of the electromigration and diffusion. We identified the characteristic time scales involved in the formation of the ESM response and found that the dynamics of the charge carriers in the tip-electrolyte system with blocking interfaces canmore » be described as charging of the diffuse layer at the tip-electrolyte interface through the tip contact spreading resistance. At the high frequencies used in the detection regime, the distribution of the charge carriers under the tip is governed by evanescent concentration waves generated at the tip-electrolyte interface. The ion drift length in the electric field produced by the tip determines the ESM response at high frequencies, which follows a 1/f asymptotic law. The electronic conductivity, as well as the electron transport through the electrode-electrolyte interface, do not have a significant effect on the ESM signal in the detection regime. The results indicate, however, that for typical solid electrolytes at room temperature, the ESM response originates at and contains information about the very surface layer of a sample, and the properties of the one-unit-cell-thick surface layer may significantly contribute to the ESM response, implying a high surface sensitivity and a high lateral resolution of the technique. On the other hand, it follows that a rigorous analysis of the ESM signals requires techniques that account for the discrete nature of a solid.« less
Oxide modified air electrode surface for high temperature electrochemical cells
Singh, Prabhakar; Ruka, Roswell J.
1992-01-01
An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.
NASA Astrophysics Data System (ADS)
Yang, Qi; Huang, Jie; Li, Yejing; Wang, Yi; Qiu, Jiliang; Zhang, Jienan; Yu, Huigen; Yu, Xiqian; Li, Hong; Chen, Liquan
2018-06-01
Surface modification of LiCoO2 with the ultrathin film of solid state electrolyte of Li1.4Al0.4Ti1.6(PO4)3 (LATP) has been realized by a new and facile solution-based method. The coated LiCoO2 reveals enhanced structural and electrochemical stability at high voltage (4.5 V vs Li+/Li) in half-cell with liquid electrolyte. Transmission electron microscopy (TEM) images show that a dense LATP coating layer is covered on the surface of LiCoO2 uniformly with thickness of less than 20 nm. The LATP coating layer is proven to be able to prevent the direct contact between the cathode and the electrolyte effectively and thus to suppress the side reactions of liquid electrolyte with LiCoO2 surface at high charging voltage. As a result, dissolution of Co3+ has been largely suppressed over prolonged cycling as indicated by the X-ray photoelectron spectroscopy (XPS) measurements. Due to this surface passivating feature, the electrochemical performance of 0.5 wt% LATP modified LiCoO2 has also been evaluated in an all solid lithium battery with poly(ethylene oxide)-based polymer electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective to suppress the oxidation of PEO at high voltage.
A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Gayatri; Rangasamy, Ezhiylmurugan; Li, Juchuan
2014-04-16
In lithium-ion conducting solid electrolytes the potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes is shown. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. We report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li 3AsS 4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li 3.334Ge 0.334As 0.666S 4more » has a high ionic conductivity of 1.12 mScm -1 at 27°C. Local Li + hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li + solid conductors. Finally, our study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.« less
Metallization pattern on solid electrolyte or porous support of sodium battery process
Kim, Jin Yong; Li, Guosheng; Lu, Xiaochuan; Sprenkle, Vincent L.; Lemmon, John P.
2016-05-31
A new battery configuration and process are detailed. The battery cell includes a solid electrolyte configured with an engineered metallization layer that distributes sodium across the surface of the electrolyte extending the active area of the cathode in contact with the anode during operation. The metallization layer enhances performance, efficiency, and capacity of sodium batteries at intermediate temperatures at or below about 200.degree. C.
NASA Astrophysics Data System (ADS)
Visbal, Heidy; Fujiki, Satoshi; Aihara, Yuichi; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang
2014-12-01
The influence of selected carbonate species on LiNi0.8Co0.15Al0.05O2 (NCA) surface for all-solid-state lithium-ion battery (ASSB) with a sulfide based solid electrolyte was studied for its electrochemical properties, structural stabilities, and surface characteristics. The rated discharge performance improved with the reduction of the carbonate concentration on the NCA surface due to the decrease of the interface resistance. The species and coordination of the adsorbed carbonates on the NCA surface were analyzed by diffuse reflectance Fourier transformed infrared (DRIFT) spectroscopy. The coordination of the adsorbed carbonate anion was determined based on the degree of splitting of the ν3(CO) stretching vibrations. It is found that the surface carbonate species exists in an unidentate coordination on the surface. They react with the sulfide electrolyte to form an irreversible passivation layer. This layer obstructs the charge transfer process at the cathode/electrolyte interface, and results in the rise of the interface resistance and drop of the rated discharge capability.
Fraioli, Anthony V.
1984-01-01
A solid electrolyte structure for fuel cells and other electrochemical devices providing oxygen ion transfer by a multiplicity of exposed internal surfaces made of a composition containing an oxide of a multivalent transition metal and forming small pore-like passages sized to permit oxygen ion transfer while limiting the transfer of oxygen gas.
Elongated solid electrolyte cell configurations and flexible connections therefor
Reichner, P.
1989-10-17
A flexible, high temperature, solid oxide electrolyte electrochemical cell stack configuration is made, comprising a plurality of flattened, elongated, connected cell combinations, each cell combination containing an interior electrode having a top surface and a plurality of interior gas feed conduits, through its axial length, electrolyte contacting the interior electrode and exterior electrode contacting electrolyte, where a major portion of the air electrode top surface is covered by interconnection material, and where each cell has at least one axially elongated, electronically conductive, flexible, porous, metal fiber felt material in electronic connection with the air electrode through contact with a major portion of the interconnection material, the metal fiber felt being effective as a shock absorbent body between the cells. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Dongping; Tao, Jinhui; Yan, Pengfei
2017-02-10
Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, inmore » which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.« less
Horowitz, Yonatan; Han, Hui-Ling; Ross, Philip N.; ...
2015-12-11
The key factor in long-term use of batteries is the formation of an electrically insulating solid layer that allows lithium ion transport but stops further electrolyte redox reactions on the electrode surface, hence solid electrolyte interphase (SEI). In this paper, we have studied a common electrolyte, 1.0 M LiPF 6/ethylene carbonate (EC)/diethyl carbonate (DEC), reduction products on crystalline silicon (Si) electrodes in a lithium (Li) half-cell system under reaction conditions. We employed in situ sum frequency generation vibrational spectroscopy (SFG-VS) with interface sensitivity in order to probe the molecular composition of the SEI surface species under various applied potentials wheremore » electrolyte reduction is expected. We found that, with a Si(100)-hydrogen terminated wafer, a Si-ethoxy (Si-OC 2H 5) surface intermediate forms due to DEC decomposition. Our results suggest that the SEI surface composition varies depending on the termination of Si surface, i.e., the acidity of the Si surface. We provide the evidence of specific chemical composition of the SEI on the anode surface under reaction conditions. This supports an electrochemical electrolyte reduction mechanism in which the reduction of the DEC molecule to an ethoxy moiety plays a key role. Finally, these findings shed new light on the formation mechanism of SEI on Si anodes in particular and on SEI formation in general.« less
Interface Engineering of Garnet Solid Electrolytes
NASA Astrophysics Data System (ADS)
Cheng, Lei
Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low interfacial resistances. This opens new opportunities for garnet solid electrolyte in practical applications.
Multi-layered proton-conducting electrolyte
Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam
2017-06-27
The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).
Elongated solid electrolyte cell configurations and flexible connections therefor
Reichner, Philip
1989-01-01
A flexible, high temperature, solid oxide electrolyte electrochemical cell stack configuration is made, comprising a plurality of flattened, elongated, connected cell combinations 1, each cell combination containing an interior electrode 2 having a top surface and a plurality of interior gas feed conduits 3, through its axial length, electrolyte 5 contacting the interior electrode and exterior electrode 8 contacting electrolyte, where a major portion of the air electrode top surface 7 is covered by interconnection material 6, and where each cell has at least one axially elongated, electronically conductive, flexible, porous, metal fiber felt material 9 in electronic connection with the air electrode 2 through contact with a major portion of the interconnection material 6, the metal fiber felt being effective as a shock absorbent body between the cells.
Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; ...
2017-11-20
Here, magnetite is a conversion anode material displaying multi-electron transfer during lithiation and delithiation. The solid electrolyte interphase (SEI) on magnetite, Fe 3O 4, electrodes for lithium ion batteries was deliberately modified through the use of fluoroethylene carbonate (FEC) electrolyte additive, improving both capacity retention and rate capability. Analysis showed reduction of FEC at higher voltage compared to non-fluorinated solvents with formation of a modified lithium flouride containing electrode surface.
Park, Joong Sun; An, Jihwan; Lee, Min Hwan; ...
2015-11-01
In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created withmore » yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.« less
Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells
Borglum, Brian P.; Bessette, Norman F.
2000-01-01
An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).
Electrode assembly for use in a solid polymer electrolyte fuel cell
Raistrick, Ian D.
1989-01-01
A gas reaction fuel cell may be provided with a solid polymer electrolyte membrane. Porous gas diffusion electrodes are formed of carbon particles supporting a catalyst which is effective to enhance the gas reactions. The carbon particles define interstitial spaces exposing the catalyst on a large surface area of the carbon particles. A proton conducting material, such as a perfluorocarbon copolymer or ruthenium dioxide contacts the surface areas of the carbon particles adjacent the interstitial spaces. The proton conducting material enables protons produced by the gas reactions adjacent the supported catalyst to have a conductive path with the electrolyte membrane. The carbon particles provide a conductive path for electrons. A suitable electrode may be formed by dispersing a solution containing a proton conducting material over the surface of the electrode in a manner effective to coat carbon surfaces adjacent the interstitial spaces without impeding gas flow into the interstitial spaces.
Highly Conductive Solid-State Hybrid Electrolytes Operating at Subzero Temperatures.
Kwon, Taeyoung; Choi, Ilyoung; Park, Moon Jeong
2017-07-19
We report a unique, highly conductive, dendrite-inhibited, solid-state polymer electrolyte platform that demonstrates excellent battery performance at subzero temperatures. A design based on functionalized inorganic nanoparticles with interconnected mesopores that contain surface nitrile groups is the key to this development. Solid-state hybrid polymer electrolytes based on succinonitrile (SN) electrolytes and porous nanoparticles were fabricated via a simple UV-curing process. SN electrolytes were effectively confined within the mesopores. This stimulated favorable interactions with lithium ions, reduced leakage of SN electrolytes over time, and improved mechanical strength of membranes. Inhibition of lithium dendrite growth and improved electrochemical stability up to 5.2 V were also demonstrated. The hybrid electrolytes exhibited high ionic conductivities of 2 × 10 -3 S cm -1 at room temperature and >10 -4 S cm -1 at subzero temperatures, leading to stable and improved battery performance at subzero temperatures. Li cells made with lithium titanate anodes exhibited stable discharge capacities of 151 mAh g -1 at temperatures below -10 °C. This corresponds to 92% of the capacity achieved at room temperature (164 mAh g -1 ). Our work represents a significant advance in solid-state polymer electrolyte technology and far exceeds the performance available with conventional polymeric battery separators.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.
1998-05-19
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik
1999-01-01
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik
1998-01-01
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.
1992-01-14
An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.
Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.
1992-01-01
An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.
Qu, Weiguo; Dorjpalam, Enkhtuvshin; Rajagopalan, Ramakrishnan; Randall, Clive A
2014-04-01
The in situ modification of a lithium hexafluorophosphate-based electrolyte using a molybdenum oxide catalyst and small amount of water (1 vol %) yields hydrolysis products such as mono-, di-, and alkylfluorophosphates. The electrochemical stability of ultrahigh-purity, high-surface-area carbon electrodes derived from polyfurfuryl alcohol was tested using the modified electrolyte. Favorable modification of the solid electrolyte interface (SEI) layer on the activated carbon electrode increased the cyclable electrochemical voltage window (4.8-1.2 V vs. Li/Li(+)). The chemical modification of the SEI layer induced by electrolyte additives was characterized by using X-ray photoelectron spectroscopy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chae, Seulki; Lee, Jeong Beom; Lee, Jae Gil; Lee, Tae-jin; Soon, Jiyong; Ryu, Ji Heon; Lee, Jin Seok; Oh, Seung M.
2017-12-01
Vinylene carbonate (VC) is attached in a ring-opened form on a graphite surface by molecular layer deposition (MLD) method, and its role as a solid electrolyte interphase (SEI) former is studied. When VC is added into the electrolyte solution of a graphite/LiNi0.5Mn1.5O4 (LNMO) full-cell, it is reductively decomposed to form an effective SEI on the graphite electrode. However, VC in the electrolyte solution has serious adverse effects due to its poor stability against electrochemical oxidation on the LNMO positive electrode. A excessive acid generation as a result of VC oxidation is observed, causing metal dissolution from the LNMO electrode. The dissolved metal ions are plated on the graphite electrode to destroy the SEI layer, eventually causing serious capacity fading and poor Coulombic efficiency. The VC derivative on the graphite surface also forms an effective SEI layer on the graphite negative electrode via reductive decomposition. The detrimental effects on the LNMO positive electrode, however, can be avoided because the bonded VC derivative on the graphite surface cannot move to the LNMO electrode. Consequently, the graphite/LNMO full-cell fabricated with the VC-attached graphite outperforms the cells without VC or with VC in the electrolyte, in terms of Coulombic efficiency and capacity retention.
Takeda, Sahori; Morimura, Wataru; Liu, Yi-Hung; Sakai, Tetsuo; Saito, Yuria
2016-08-15
Improvement of lithium ion batteries (LIBs) in terms of performance and robustness requires good understanding of the reaction processes. The analysis of the individual degradation products in LIB electrolytes and on the surface of the electrodes provides vital information in this regard. In this study, mass spectrometric analytical methods were utilized for the identification of the individual degradation products. The degradation products in the electrolytes recovered from cycle-tested cells were separated by liquid chromatography (LC) and their mass spectrometric analysis was conducted by electrospray ionization mass spectrometry (ESI-MS). For identification of degradation products on the surface of electrodes, atmospheric solid analysis probe (ASAP)-MS analysis was conducted by time-of-flight mass spectrometry with an ASAP probe and an atmospheric pressure chemical ionization source. The degradation products in the electrolytes, namely carbonate oligomers and organophosphates, were identified simultaneously by LC/ESI-MS. Their formation mechanisms were estimated, which explain their different compositions at different temperatures. One degradation product was found on the anode surface by ASAP-MS, and its formation mechanism was explained similarly to those in the electrolyte. The results suggest that the electrolyte degradation is correlated with the formation of a solid electrolyte interphase, which is an important factor in the performance of LIBs. We expect that further investigation of the degradation products by LC/ESI-MS and ASAP-MS will be helpful for studying their degradation processes in LIBs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Effect of surface microstructure on electrochemical performance of garnet solid electrolytes.
Cheng, Lei; Chen, Wei; Kunz, Martin; Persson, Kristin; Tamura, Nobumichi; Chen, Guoying; Doeff, Marca
2015-01-28
Cubic garnet phases based on Al-substituted Li7La3Zr2O12 (LLZO) have high ionic conductivities and exhibit good stability versus metallic lithium, making them of particular interest for use in next-generation rechargeable battery systems. However, high interfacial impedances have precluded their successful utilization in such devices until the present. Careful engineering of the surface microstructure, especially the grain boundaries, is critical to achieving low interfacial resistances and enabling long-term stable cycling with lithium metal. This study presents the fabrication of LLZO heterostructured solid electrolytes, which allowed direct correlation of surface microstructure with the electrochemical characteristics of the interface. Grain orientations and grain boundary distributions of samples with differing microstructures were mapped using high-resolution synchrotron polychromatic X-ray Laue microdiffraction. The electrochemical characteristics are strongly dependent upon surface microstructure, with small grained samples exhibiting much lower interfacial resistances and better cycling behavior than those with larger grain sizes. Low area specific resistances of 37 Ω cm(2) were achieved; low enough to ensure stable cycling with minimal polarization losses, thus removing a significant obstacle toward practical implementation of solid electrolytes in high energy density batteries.
Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells
2016-01-01
We employed operando anomalous surface X-ray diffraction to investigate the buried interface between the cathode and the electrolyte of a model solid oxide fuel cell with atomic resolution. The cell was studied under different oxygen pressures at elevated temperatures and polarizations by external potential control. Making use of anomalous X-ray diffraction effects at the Y and Zr K-edges allowed us to resolve the interfacial structure and chemical composition of a (100)-oriented, 9.5 mol % yttria-stabilized zirconia (YSZ) single crystal electrolyte below a La0.6Sr0.4CoO3−δ (LSC) electrode. We observe yttrium segregation toward the YSZ/LSC electrolyte/electrode interface under reducing conditions. Under oxidizing conditions, the interface becomes Y depleted. The yttrium segregation is corroborated by an enhanced outward relaxation of the YSZ interfacial metal ion layer. At the same time, an increase in point defect concentration in the electrolyte at the interface was observed, as evidenced by reduced YSZ crystallographic site occupancies for the cations as well as the oxygen ions. Such changes in composition are expected to strongly influence the oxygen ion transport through this interface which plays an important role for the performance of solid oxide fuel cells. The structure of the interface is compared to the bare YSZ(100) surface structure near the microelectrode under identical conditions and to the structure of the YSZ(100) surface prepared under ultrahigh vacuum conditions. PMID:27346923
Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.
Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei
2018-04-09
Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.
Leung, Kevin
2016-12-10
The density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (001) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on graphite anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is far from sufficient. Key steps that facilitate Mn(II) loss include concerted liquid/solid-state motions; proton-induced weakening of Mn–O bonds forming mobile OH – surface groups; and chemicalmore » reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI components facilitate electrochemical reduction and decomposition of LEDC. Our findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less
Yoon, Kyungho; Kim, Jung-Joon; Seong, Won Mo; Lee, Myeong Hwan; Kang, Kisuk
2018-05-23
All-solid-state batteries are considered as one of the attractive alternatives to conventional lithium-ion batteries, due to their intrinsic safe properties benefiting from the use of non-flammable solid electrolytes in ASSBs. However, one of the issues in employing the solid-state electrolyte is the sluggish ion transport kinetics arising from the chemical and physical instability of the interfaces among solid components including electrode material, electrolyte and additive agents. In this work, we investigate the stability of the interface between carbon conductive agents and Li 10 GeP 2 S 12 in a composite cathode and its effect on the electrochemical performance of ASSBs. It is found that the inclusion of various carbon conductive agents in composite cathode leads to inferior kinetic performance of the cathode despite expectedly enhanced electrical conductivity of the composite. We observe that the poor kinetic performance is attributed to a large interfacial impedance which is gradually developed upon the inclusions of the various carbon conductive agents regardless of their physical differences. The analysis through X-ray Photoelectron Spectroscopy suggests that the carbon additives in the composite cathode stimulate the electrochemical decomposition of LGPS electrolyte degrading its surface during cycling, indicating the large interfacial resistance stems from the undesirable decomposition of the electrolyte at the interface.
Zhong, Hai; Wang, Chunhua; Xu, Zhibin; Ding, Fei; Liu, Xinjiang
2016-01-01
Polymer solid state electrolytes are actively sought for their potential application in energy storage devices, particularly lithium metal rechargeable batteries. Herein, we report a polymer with high concentration salts as a quasi-solid state electrolyte used for lithium-sulfur cells, which shows an ionic conductivity of 1.6 mS cm−1 at room temperature. The cycling performance of Li-S battery with this electrolyte shows a long cycle life (300 cycles) and high coulombic efficiency (>98%), without any consuming additives in the electrolyte. Moreover, it also shows a remarkably decreased self-discharge (only 0.2%) after storage for two weeks at room temperature. The reason can be attributed to that the electrolyte can suppress polysulfide anions diffusion, due to the high ratio oxygen atoms with negative charges which induce an electrical repulsion to the polysulfide anions, and their relatively long chains which can provide additional steric hindrance. Thus, the polysulfide anions can be located around carbon particles, which result in remarkably improved overall electrochemical performance, and also the electrolyte have a function of suppress the formation of lithium dendrites on the lithium anode surface. PMID:27146645
NASA Astrophysics Data System (ADS)
Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua
2016-11-01
N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.
Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte
Mason, David M.
1984-01-01
Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.
Designing solid-liquid interphases for sodium batteries.
Choudhury, Snehashis; Wei, Shuya; Ozhabes, Yalcin; Gunceler, Deniz; Zachman, Michael J; Tu, Zhengyuan; Shin, Jung Hwan; Nath, Pooja; Agrawal, Akanksha; Kourkoutis, Lena F; Arias, Tomas A; Archer, Lynden A
2017-10-12
Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid-electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.The chemistry at the interface between electrolyte and electrode plays a critical role in determining battery performance. Here, the authors show that a NaBr enriched solid-electrolyte interphase can lower the surface diffusion barrier for sodium ions, enabling stable electrodeposition.
Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; ...
2015-08-03
Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition bymore » X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.« less
Shim, Jimin; Lee, Jae Won; Bae, Ki Yoon; Kim, Hee Joong; Yoon, Woo Young; Lee, Jong-Chan
2017-05-22
Lithium-metal anode has fundamental problems concerning formation and growth of lithium dendrites, which prevents practical applications of next generation of high-capacity lithium-metal batteries. The synergistic combination of solid polymer electrolyte (SPE) crosslinked with naturally occurring terpenes and lithium-powder anode is promising solution to resolve the dendrite issues by substituting conventional liquid electrolyte/separator and lithium-foil anode system. A series of SPEs based on polysiloxane crosslinked with natural terpenes are prepared by facile thiol-ene click reaction under mild condition and the structural effect of terpene crosslinkers on electrochemical properties is studied. Lithium powder with large surface area is prepared by droplet emulsion technique (DET) and used as anode material. The effect of the physical state of electrolyte (solid/liquid) and morphology of lithium-metal anode (powder/foil) on dendrite growth behavior is systematically studied. The synergistic combination of SPE and lithium-powder anode suggests an effective solution to suppress the dendrite growth owing to the formation of a stable solid-electrolyte interface (SEI) layer and delocalized current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mohanty, Shyama Prasad; Bhargava, Parag
2012-11-01
Nanoparticle loaded quasi solid electrolytes are important from the view point of developing electrolytes for dye sensitized solar cells (DSSCs) having long term stability. The present work shows the influence of isoelectric point of nanopowders in electrolyte on the photoelectrochemical characteristics of DSSCs. Electrolytes with nanopowders of silica, alumina and magnesia which have widely differing isoelectric points are used in the study. Adsorption of ions from the electrolyte on the nanopowder surface, characterized by zeta potential measurement, show that cations get adsorbed on silica, alumina surface while anions get adsorbed on magnesia surface. The electrochemical characteristics of nanoparticulate loaded electrolytes are examined through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DSSCs fabricated using liquid, silica or alumina loaded electrolytes exhibit almost similar performance. But interestingly, the magnesia loaded electrolyte-based cell show lower short circuit current density (JSC) and much higher open circuit voltage (VOC), which is attributed to adsorption of anions. Such anionic adsorption prevents the dark reaction in magnesia loaded electrolyte-based cell and thus, enhances the VOC by almost 100 mV as compared to liquid electrolyte based cell. Also, higher electron life time at the titania/electrolyte interface is observed in magnesia loaded electrolyte-based cell as compared to others.
Chen, Bingbing; Ju, Jiangwei; Ma, Jun; Zhang, Jianjun; Xiao, Ruijuan; Cui, Guanglei; Chen, Liquan
2017-11-29
Density functional theory simulations and experimental studies were performed to investigate the interfacial properties, including lithium ion migration kinetics, between lithium metal anode and solid electrolyte Li 10 GeP 2 S 12 (LGPS). The LGPS[001] plane was chosen as the studied surface because the easiest Li + migration pathway is along this direction. The electronic structure of the surface states indicated that the electrochemical stability was reduced at both the PS 4 - and GeS 4 -teminated surfaces. For the interface cases, the equilibrium interfacial structures of lithium metal against the PS 4 -terminated LGPS[001] surface (Li/PS 4 -LGPS) and the GeS 4 -terminated LGPS[001] surface (Li/GeS 4 -LGPS) were revealed based on the structural relaxation and adhesion energy analysis. Solid electrolyte interphases were expected to be formed at both Li/PS 4 -LGPS and Li/GeS 4 -LGPS interfaces, resulting in an unstable state of interface and large interfacial resistance, which was verified by the EIS results of the Li/LGPS/Li cell. In addition, the simulations of the migration kinetics show that the energy barriers for Li + crossing the Li/GeS 4 -LGPS interface were relatively low compared with the Li/PS 4 -LGPS interface. This may contribute to the formation of Ge-rich phases at the Li/LGPS interface, which can tune the interfacial structures to improve the ionic conductivity for future all-solid-state batteries. This work will offer a thorough understanding of the Li/LGPS interface, including local structures, electronic states and Li + diffusion behaviors in all-solid-state batteries.
Composite Solid Electrolyte For Lithium Cells
NASA Technical Reports Server (NTRS)
Peled, Emmanuel; Nagasubramanian, Ganesan; Halpert, Gerald; Attia, Alan I.
1994-01-01
Composite solid electrolyte material consists of very small particles, each coated with thin layer of Lil, bonded together with polymer electrolyte or other organic binder. Material offers significant advantages over other solid electrolytes in lithium cells and batteries. Features include high ionic conductivity and strength. Composite solid electrolyte expected to exhibit flexibility of polymeric electrolytes. Polymer in composite solid electrolyte serves two purposes: used as binder alone, conduction taking place only in AI2O3 particles coated with solid Lil; or used as both binder and polymeric electrolyte, providing ionic conductivity between solid particles that it binds together.
NASA Astrophysics Data System (ADS)
Dash, John; Wang, Q.
2009-03-01
Recently, we have observed particles floating on the surfaces of electrolytes after electrolysis, in four cells, each of which contained a heavy water electrolyte and a Pd cathode. Solid particles were unexpected from electrolysis, so it seemed important to characterize these particles. Cu grids were used to collect particles from the electrolyte surface. Then, a scanning electron microscope ( SEM ) and an energy dispersive spectrometer ( EDS ) were used to study the surfaces of these particles and to record time-dependent changes which were occurring. The morphology and composition of the particles were determined . After storage at ambient for 11 days, there were large changes in the morphology and composition of the particles. For example, one portion of the particles contained a large number of microspheres. A typical microsphere contained mostly carbon and palladium, whereas the matrix near the microsphere contained mostly palladium with less carbon and a significant amount of silver. One day later the same microsphere had increased carbon and reduced palladium, but there was no significant change in the composition of the matrix. Results for other particles from other cells will also be presented.
NASA Astrophysics Data System (ADS)
Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai
2018-05-01
Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.
Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.
Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ionmore » storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.« less
Salvinia-Effect-Inspired "Sticky" Superhydrophobic Surfaces by Meniscus-Confined Electrodeposition.
Zheng, Deyin; Jiang, Youhua; Yu, Wentao; Jiang, Xiufen; Zhao, Xin; Choi, Chang-Hwan; Sun, Guangyi
2017-11-28
Inspired by the Salvinia effect, we report the fabrication and characterization of a novel "sticky" superhydrophobic surface sustaining a Cassie-Baxter wetting state for water droplets with high contact angles but strong solid-liquid retention. Unlike superhydrophobic surfaces mimicking the lotus or petal effect, whose hydrophobicity and droplet retention are typically regulated by hierarchical micro- and nanostructures made of a homogeneous material with the same surface energy, our superhydrophobic surface merely requires singular microstructures covered with a hydrophobic coating but creatively coupled with hydrophilic tips with different surface energy. Hydrophilic tips are selectively formed by meniscus-confined electrodeposition of a metal (e.g., nickel) layer on top of hydrophobic microstructures. During the electrodeposition process, the superhydrophobic surface retains its plastron so that the electrolyte cannot penetrate into the cavity of hydrophobic microstructures, consequently making the electrochemical reaction between solid and electrolyte occur only on the tip. In contrast to typical superhydrophobic surfaces where droplets are highly mobile, the "sticky" superhydrophobic surface allows a water droplet to have strong local pinning and solid-liquid retention on the hydrophilic tips, which is of great significance in many droplet behaviors such as evaporation.
Challenges and issues facing lithium metal for solid-state rechargeable batteries
NASA Astrophysics Data System (ADS)
Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K.
2017-06-01
The commercial use of lithium metal batteries was delayed because of dendrite formation on the surface of the lithium electrode, and the difficulty finding a suitable electrolyte that has both the mechanical strength and ionic conductivity required for solid electrolytes. Recently, strategies have developed to overcome these difficulties, so that these batteries are currently an option for different applications, including electric cars. In this work, we review these strategies, and discuss the different routes that are promising for progress in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan
2015-11-10
Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupledmore » with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.« less
Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
NASA Technical Reports Server (NTRS)
Olah, George A. (Inventor); Surampudi, Subbarao (Inventor); Vamos, Eugene (Inventor); Halpert, Gerald (Inventor); Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Prakash, G. K. Surya (Inventor)
1997-01-01
A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.
Electrochemical Stability of Li 10GeP 2S 12 and Li 7La 3Zr 2O 12 Solid Electrolytes
Han, Fudong; Zhu, Yizhou; He, Xingfeng; ...
2016-01-21
The electrochemical stability window of solid electrolyte is overestimated by the conventional experimental method using a Li/electrolyte/inert metal semiblocking electrode because of the limited contact area between solid electrolyte and inert metal. Since the battery is cycled in the overestimated stability window, the decomposition of the solid electrolyte at the interfaces occurs but has been ignored as a cause for high interfacial resistances in previous studies, limiting the performance improvement of the bulk-type solid-state battery despite the decades of research efforts. Thus, there is an urgent need to identify the intrinsic stability window of the solid electrolyte. The thermodynamic electrochemicalmore » stability window of solid electrolytes is calculated using first principles computation methods, and an experimental method is developed to measure the intrinsic electrochemical stability window of solid electrolytes using a Li/electrolyte/electrolyte-carbon cell. The most promising solid electrolytes, Li10GeP2S12 and cubic Li-garnet Li7La3Zr2O12, are chosen as the model materials for sulfide and oxide solid electrolytes, respectively. The results provide valuable insights to address the most challenging problems of the interfacial stability and resistance in high-performance solid-state batteries.« less
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan
The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants
NASA Technical Reports Server (NTRS)
Shumar, J. W.; Berger, T. A.
1978-01-01
A solid electrolyte cell with improved sealing characteristics was examined. A tube cell was designed, developed, fabricated, and tested. Design concepts incorporated in the tube cell to improve its sealing capability included minimizing the number of seals per cell and moving seals to lower temperature regions. The advanced tube cell design consists of one high temperature ceramic cement seal, one high temperature gasket seal, and three low temperature silicone elastomer seals. The two high temperature seals in the tube cell design represent a significant improvement over the ten high temperature precious metal seals required by the electrolyzer drum design. For the tube cell design the solid electrolyte was 8 mole percent yttria stabilized zirconium oxide slip cast into the shape of a tube with electrodes applied on the inside and outside surfaces.
Leung, Kevin
2012-04-13
Density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (100) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is necessary but far from sufficient. Key steps that facilitate Mn(II) ion migration include concerted liquid/solid-state motions, proton-induced weakening of Mn-O bonds forming mobile OH - surface groups; andmore » chemical reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI component facilitates electrochemical reduction and decomposition of LEDC. These findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less
Electrodes for solid state gas sensor
Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando [Santa Fe, NM
2007-05-08
A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.
Electrodes for solid state gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Rangachary; Brosha, Eric L; Garzon, Fernando
2007-05-08
A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within themore » die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.« less
Electrodes for solid state gas sensor
Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando
2003-08-12
A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.
Jumping liquid metal droplet in electrolyte triggered by solid metal particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jianbo; University of Chinese Academy of Sciences, Beijing 100049; Wang, Junjie
2016-05-30
We report the electron discharge effect due to point contact between liquid metal and solid metal particles in electrolyte. Adding nickel particles induces drastic hydrogen generating and intermittent jumping of a sub-millimeter EGaIn droplet in NaOH solution. Observations from different orientations disclose that such jumping behavior is triggered by pressurized bubbles under the assistance of interfacial interactions. Hydrogen evolution around particles provides clear evidence that such electric instability originates from the varied electric potential and morphology between the two metallic materials. The point-contact-induced charge concentration significantly enhances the near-surface electric field intensity at the particle tips and thus causes electricmore » breakdown of the electrolyte.« less
Cured composite materials for reactive metal battery electrolytes
Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.
2006-03-07
A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.; ...
2017-04-10
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
Durability of the Li 1+xTi 2–xAl x(PO 4) 3 Solid Electrolyte in Lithium–Sulfur Batteries
Wang, Shaofei; Ding, Yu; Zhou, Guangmin; ...
2016-10-31
Adoption of cells with a solid-state electrolyte is a promising solution for eliminating the polysulfide shuttle problem in Li-S batteries. Among the various known lithium-ion conducting solid electrolytes, the sodium superionic conductor (NASICON)-type Li 1+xTi 2-xAl x(PO 4) 3 offers the advantage of good stability under ambient conditions and in contact with air. Accordingly, we present here a comprehensive assessment of the durability of Li 1+xTi 2-xAl x(PO 4) 3 in contact with polysulfide solution and in Li-S cells. Because of its high reduction potential (2.5 V vs Li/Li +), Li 1+xTi 2-xAl x(PO 4) 3 gets lithiated in contactmore » with lithium polysulfide solution and Li 2CO 3 is formed on the particle surface, blocking the interfacial lithium-ion transport between the liquid and solid-state electrolytes. After the lithium insertion into the NASICON framework, the crystal expands in an anisotropic way, weakening the crystal bonds, causing fissures and resultant cracks in the ceramic, corroding the grain boundaries by polysulfide solution, and leaving unfavorable pores. The assembly of pores creates a gateway for polysulfide diffusion from the cathode side to the anode side, causing an abrupt decline in cell performance. Therefore, the solid-state electrolytes need to have good chemical compatibility with both the electrode and electrolyte, long-term stability under harsh chemical environment, and highly stable grain boundaries.« less
NASA Astrophysics Data System (ADS)
Main, Laura
Dye sensitized solar cells (DSSCs) are currently being explored as a cheaper alternative to the more common silicon (Si) solar cell technology. In addition to the cost advantages, DSSCs show good performance in low light conditions and are not sensitive to varying angles of incident light like traditional Si cells. One of the major challenges facing DSSCs is loss of the liquid electrolyte, through evaporation or leakage, which lowers stability and leads to increased degradation. Current research with solid-state and quasi-solid DSSCs has shown success regarding a reduction of electrolyte loss, but at a cost of lower conversion efficiency output. The research work presented in this paper focuses on the effects of using nanoclay material as a gelator in the electrolyte of the DSSC. The data showed that the quasi-solid cells are more stable than their liquid electrolyte counterparts, and achieved equal or better I-V characteristics. The quasi-solid cells were fabricated with a gel electrolyte that was prepared by adding 7 wt% of Nanoclay, Nanomer® (1.31PS, montmorillonite clay surface modified with 15-35% octadecylamine and 0.5-5 wt% aminopropyltriethoxysilane, Aldrich) to the iodide/triiodide liquid electrolyte, (Iodolyte AN-50, Solaronix). Various gel concentrations were tested in order to find the optimal ratio of nanoclay to liquid. The gel electrolyte made with 7 wt% nanoclay was more viscous, but still thin enough to allow injection with a standard syringe. Batches of cells were fabricated with both liquid and gel electrolyte and were evaluated at STC conditions (25°C, 100 mW/cm2) over time. The gel cells achieved efficiencies as high as 9.18% compared to the 9.65% achieved by the liquid cells. After 10 days, the liquid cell decreased to 1.75%, less than 20% of its maximum efficiency. By contrast, the gel cell's efficiency increased for two weeks, and did not decrease to 20% of maximum efficiency until 45 days. After several measurements, the liquid cells showed visible signs of leakage through the sealant, whereas the gel cells did not. This resistance to leakage likely contributed to the improved performance of the quasi-solid cells over time, and is a significant advantage over liquid electrolyte DSSCs.
High performance cermet electrodes
Isenberg, Arnold O.; Zymboly, Gregory E.
1986-01-01
Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.
One step shift towards flexible supercapacitors based on carbon nanotubes - A review
NASA Astrophysics Data System (ADS)
Yar, A.; Dennis, J. O.; Mohamed, N. M.; Mumtaz, A.; Irshad, M. I.; Ahmad, F.
2014-10-01
Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on research which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors.
Process to produce lithium-polymer batteries
MacFadden, Kenneth Orville
1998-01-01
A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.
Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert
2014-06-01
A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.
Cheng, Lei; Wu, Cheng Hao; Jarry, Angelique; Chen, Wei; Ye, Yifan; Zhu, Junfa; Kostecki, Robert; Persson, Kristin; Guo, Jinghua; Salmeron, Miquel; Chen, Guoying; Doeff, Marca
2015-08-19
The interfacial resistances of symmetrical lithium cells containing Al-substituted Li7La3Zr2O12 (LLZO) solid electrolytes are sensitive to their microstructures and histories of exposure to air. Air exposure of LLZO samples with large grain sizes (∼150 μm) results in dramatically increased interfacial impedances in cells containing them, compared to those with pristine large-grained samples. In contrast, a much smaller difference is seen between cells with small-grained (∼20 μm) pristine and air-exposed LLZO samples. A combination of soft X-ray absorption (sXAS) and Raman spectroscopy, with probing depths ranging from nanometer to micrometer scales, revealed that the small-grained LLZO pellets are more air-stable than large-grained ones, forming far less surface Li2CO3 under both short- and long-term exposure conditions. Surface sensitive X-ray photoelectron spectroscopy (XPS) indicates that the better chemical stability of the small-grained LLZO is related to differences in the distribution of Al and Li at sample surfaces. Density functional theory calculations show that LLZO can react via two different pathways to form Li2CO3. The first, more rapid, pathway involves a reaction with moisture in air to form LiOH, which subsequently absorbs CO2 to form Li2CO3. The second, slower, pathway involves direct reaction with CO2 and is favored when surface lithium contents are lower, as with the small-grained samples. These observations have important implications for the operation of solid-state lithium batteries containing LLZO because the results suggest that the interfacial impedances of these devices is critically dependent upon specific characteristics of the solid electrolyte and how it is prepared.
Process to produce lithium-polymer batteries
MacFadden, K.O.
1998-06-30
A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebler, A.R.
1980-02-26
A gaseous mixture of oxygen and fuel (Combustibles) is supplied to first and second electrodes disposed on opposite surfaces of an oxygen ion conductive solid electrolyte member wherein the electrodes are composed of different materials each exhibiting a different catalytic action on the gaseous mixture at a given temperature. The difference in oxygen potentials established at the respective electrodes as a result of the dissimilar catalytic action produces oxygen ion conductivity in the solid electrolyte cell which produces an electrical signal the magnitude of which is indicative of the combustible present in the mixture, I.E., methane, hydrogen, carbon monoxide, etc.
Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.
Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively.more » The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.« less
Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2006-03-01
The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.
Design and manufacture of solid ZrO2 electrolyte
NASA Technical Reports Server (NTRS)
1988-01-01
The following project assignment was given to the students: 'design and build a suitable YSZ solid electrolyte cell. Describe advantages of the design and fabrication method. Finally, to the limits of available resources, fabricate the design. Explain why it would be superior to other designs.' Clemson University students definitely benefitted from this experience with USRA/NASA. The challenge that this project gave the students was both exciting and attention-getting. Students spent far more time per credit hour on this project than on their other course. This project advanced the art of making efficient oxygen generators as well. Clemson students are now well on the way to designing a solid electrolyte with a large active surface area and comparatively small volume. Previous devices have had to endure the limitation of using only simple shapes such as tubes. The results of this project have demonstrated that better configurations are not only possible but practical.
A self-forming composite electrolyte for solid-state sodium battery with ultra-long cycle life
Zhang, Zhizhen; Yang, Xiao -Qing; Zhang, Qinghua; ...
2016-10-31
Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. Furthermore, all-solid-state batteries have been plagues by the relatively low ionic conductivity of solid electrolytes and large charge-transfer resistance resulted from solid-solid interfaces between electrode materials and solid electrolytes. Here we report a new design strategy for improving the ionic conductivity of solid electrolyte by self-forming a composite material. An optimized Na + ion conducting composite electrolyte derived from the NASICON structure was successfully synthesized, yielding ultra-high ionic conductivity of 3.4 mS cm –1 at 25°C and 14 ms cmmore » –1 at 80°C.« less
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-10-06
First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically intrinsic but is originated from kinetic stabilizations. The sluggish kinetics of the decomposition reactions cause a high overpotential leading to a nominally wide electrochemical window observed in many experiments. The decomposition products, similar to the solid-electrolyte-interphases, mitigate the extreme chemical potential from the electrodes and protect the solid electrolyte from further decompositions. With the aidmore » of the first-principles calculations, we revealed the passivation mechanism of these decomposition interphases and quantified the extensions of the electrochemical window from the interphases. We also found that the artificial coating layers applied at the solid electrolyte and electrode interfaces have a similar effect of passivating the solid electrolyte. Our newly gained understanding provided general principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries.« less
Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies
NASA Astrophysics Data System (ADS)
Lewandowski, Andrzej; Świderska-Mocek, Agnieszka
The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.
NASA Astrophysics Data System (ADS)
de la Torre-Gamarra, Carmen; Appetecchi, Giovanni Battista; Ulissi, Ulderico; Varzi, Alberto; Varez, Alejandro; Passerini, Stefano
2018-04-01
Ceramic electrolytes are prepared through sintering processes which are carried out at high temperatures and require prolonged operating times, resulting unwelcome in industrial applications. We report a physicochemical characterization on hybrid, sodium conducting, electrolyte systems obtained by coating NASICON ceramic powders with the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. The goal is to realize a ceramic-IL interface with improved sodium mobility, aiming to obtain a solid electrolyte with high ion transport properties but avoiding sintering thermal treatment. The purpose of the present work, however, is showing how simply combining NASICON powder and Py14TFSI does not lead to any synergic effect on the resulting hybrid electrolyte, evidencing that an average functionalization of the ceramic powder surface and/or ionic liquid is needed. Also, the processing conditions for preparing the hybrid samples are found to affect their ion transport properties.
3D-Printing Electrolytes for Solid-State Batteries.
McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D
2018-05-01
Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cebollero, J. A.; Lahoz, R.; Laguna-Bercero, M. A.; Larrea, A.
2017-08-01
Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface.
Studies of electrochemical interfaces by TOF neutron reflectometry at the IBR-2 reactor
NASA Astrophysics Data System (ADS)
Petrenko, V. I.; Gapon, I. V.; Rulev, A. A.; Ushakova, E. E.; Kataev, E. Yu; Yashina, L. V.; Itkis, D. M.; Avdeev, M. V.
2018-03-01
The operation performance of electrochemical energy conversion and storage systems such as supercapacitors and batteries depends on the processes occurring at the electrochemical interfaces, where charge separation and chemical reactions occur. Here, we report about the tests of the neutron reflectometry cells specially designed for operando studies of structural changes at the electrochemical interfaces between solid electrodes and liquid electrolytes. The cells are compatible with anhydrous electrolytes with organic solvents, which are employed today in all lithium ion batteries and most supercapacitors. The sensitivity of neutron reflectometry applied at the time-of-flight (TOF) reflectometer at the pulsed reactor IBR-2 is discussed regarding the effect of solid electrolyte interphase (SEI) formation on metal electrode surface.
Dinkelacker, Franz; Marzak, Philipp; Yun, Jeongsik; Liang, Yunchang; Bandarenka, Aliaksandr S
2018-04-25
A so-called solid electrolyte interface (SEI) in a lithium-ion battery largely determines the performance of the whole system. However, it is one of the least understood objects in these types of batteries. SEIs are formed during the initial charge-discharge cycles, prevent the organic electrolytes from further decomposition, and at the same time govern lithium intercalation into the graphite anodes. In this work, we use electrochemical impedance spectroscopy and atomic force microscopy to investigate the properties of a SEI film and an electrified "graphite/SEI/electrolyte interface". We reveal a multistage mechanism of lithium intercalation and de-intercalation in the case of graphite anodes covered by SEI. On the basis of this mechanism, we propose a relatively simple model, which perfectly explains the impedance response of the "graphite/SEI/electrolyte" interface at different temperatures and states of charge. From the whole data obtained in this work, it is suggested that not only Li + but also negatively charged species, such as anions from the electrolyte or functional groups of the SEI, likely interact with the surface of the graphite anode.
One step shift towards flexible supercapacitors based on carbon nanotubes - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yar, A., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Dennis, J. O., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: asfandyarhargan@gmail.com, E-mail: johndennis@petronas.com.my, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: asad-032@yahoo.com, E-mail: imrancssp@gmail.com
2014-10-24
Supercapacitors have emerged as prominent energy storage devices that offer high energy density compared to conventional capacitors and high power density which is not found in batteries. Carbon nanotubes (CNTs) because of their high surface area and tremendous electrical properties are used as electrode material for supercapacitors. In this review we focused on the factors like surface area, role of the electrolyte and techniques adopted to improve performance of CNTs based supercapacitors. The supercapacitors are widely tested in liquid electrolytes which are normally hazardous in nature, toxic, flammable and their leakage has safety concerns. This review also focuses on researchmore » which is replacing these unsafe electrolytes by solid electrolytes with the combination of low cost CNTs deposited flexible supports for supercapacitors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou
Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less
Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou; ...
2017-09-07
Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less
NASA Astrophysics Data System (ADS)
Kafle, Janak; Harris, Joshua; Chang, Jeremy; Koshina, Joe; Boone, David; Qu, Deyang
2018-07-01
In this report, we demonstrate that the low temperature power capability of a Li-ion battery can be substantially improved not by adding commercially unavailable additives into the electrolyte, but by rational design of the composition of the most commonly used solvents. Through the detail analysis with electrochemical impedance spectroscopy, the formation of a homogenous solid electrolyte interface (SEI) layer on the carbon anode surface is found to be critical to ensure the performance of a Li-ion battery in a wide temperature range. The post mortem analysis of the negative electrode by XPS revealed that all the electrolyte compositions form similar compounds in the solid electrolyte interphase. However, the electrolytes which give higher capacities at low temperature showed higher percentage of LiF and lower percentage of carbon containing species such as lithium carbonate and lithium ethylene di-carbonate. The electrolyte compositions where cyclic carbonates make up less than 25% of the total solvent showed increased low temperature performance. The solvent composition with higher percentage of linear short chain carbonates showed an improved low temperature performance. The high temperature performances were similar in almost all the combinations.
Zhang, Dechao; Zhang, Long; Yang, Kun; Wang, Hongqiang; Yu, Chuang; Xu, Di; Xu, Bo; Wang, Li-Min
2017-10-25
Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO 4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO 4 /Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.
Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes
NASA Technical Reports Server (NTRS)
West, William; Whitacre, Jay; Lim, James
2008-01-01
Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.
NASA Astrophysics Data System (ADS)
Son, Hui-Jeong; Song, Rak-Hyun; Lim, Tak-Hyoung; Lee, Seung-Bok; Kim, Sung-Hyun; Shin, Dong-Ryul
The process of vacuum slurry coating for the fabrication of a dense and thin electrolyte film on a porous anode tube is investigated for application in solid oxide fuel cells. 8 mol% yttria stabilized zirconia is coated on an anode tube by vacuum slurry-coating process as a function of pre-sintering temperature of the anode tube, vacuum pressure, slurry concentration, number of coats, and immersion time. A dense electrolyte layer is formed on the anode tube after final sintering at 1400 °C. With decrease in the pre-sintering temperature of the anode tube, the grain size of the coated electrolyte layer increases and the number of surface pores in the coating layer decreases. This is attributed to a reduced difference in the respective shrinkage of the anode tube and the electrolyte layer. The thickness of the coated electrolyte layer increases with the content of solid powder in the slurry, the number of dip-coats, and the immersion time. Although vacuum pressure has no great influence on the electrolyte thickness, higher vacuum produces a denser coating layer, as confirmed by low gas permeability and a reduced number of defects in the coating layer. A single cell with the vacuum slurry coated electrolyte shows a good performance of 620 mW cm -2 (0.7 V) at 750 °C. These experimental results indicate that the vacuum slurry-coating process is an effective method to fabricate a dense thin film on a porous anode support.
Rechargeable solid polymer electrolyte battery cell
Skotheim, Terji
1985-01-01
A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.
Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.
Jackson, Everett D; Prieto, Amy L
2016-11-09
Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-Cu x Sb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.
Surface protected lithium-metal-oxide electrodes
Thackeray, Michael M.; Kang, Sun-Ho
2016-04-05
A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.
Continuous process to produce lithium-polymer batteries
Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville
1998-01-01
Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.
Setter, Joseph R.; Maclay, G. Jordan
1989-09-12
A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.
Space charge induced surface stresses: implications in ceria and other ionic solids.
Sheldon, Brian W; Shenoy, Vivek B
2011-05-27
Volume changes associated with point defects in space charge layers can produce strains that substantially alter thermodynamic equilibrium near surfaces in ionic solids. For example, near-surface compressive stresses exceeding -10 GPa are predicted for ceria. The magnitude of this effect is consistent with anomalous lattice parameter increases that occur in ceria nanoparticles. These stresses should significantly alter defect concentrations and key transport properties in a wide range of materials (e.g., ceria electrolytes in fuel cells). © 2011 American Physical Society
The Li-ion rechargeable battery: a perspective.
Goodenough, John B; Park, Kyu-Sung
2013-01-30
Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.
Gradiently Polymerized Solid Electrolyte Meets with Micro/Nano-Structured Cathode Array.
Dong, Wei; Zeng, Xian-Xiang; Zhang, Xu-Dong; Li, Jin-Yi; Shi, Ji-Lei; Xiao, Yao; Shi, Yang; Wen, Rui; Yin, Ya-Xia; Wang, Tai-Shan; Wang, Chun-Ru; Guo, Yu-Guo
2018-05-02
The poor contact between the solid-state electrolyte and cathode materials leads to high interfacial resistance, severely limiting the rate capability of solid Li metal batteries. Herein, an integrative battery design is introduced with a gradiently polymerized solid electrolyte (GPSE), a micro-channel current collector array and nano-sized cathode particles. In-situ formed GPSE encapsulates cathode nanoparticles in the micro-channel with ductile inclusions to lower interfacial impedance, and the stiff surface layer of GPSE toward anode suppresses Li dendrites growth. Li metal batteries based on GPSE and Li-free hydrogenated V2O5 (V2O5-H) cathode exhibit an outstanding high-rate response of up to 5 C (the capacity ratio of 5 C / 1 C is 90.3%) and an ultralow capacity fade rate of 0.07% per cycle over 300 cycles. Other Li-containing cathodes as LiFePO4 and LiNi0.5Mn0.3Co0.2O2 can also operate effectively at 5 C and 2 C rate, respectively. Such an ingenious design may provide new insights into other solid metal batteries through interfacial engineering manipulation at micro and nano level.
Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells
NASA Astrophysics Data System (ADS)
Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.
High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.
Low temperature sulfur and sodium metal battery for grid-scale energy storage application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gao; Wang, Dongdong
A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.
NASA Astrophysics Data System (ADS)
Nordh, Tim; Younesi, Reza; Brandell, Daniel; Edström, Kristina
2015-10-01
The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase. Li||LTO cells with electrolytes consisting of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate:diethyl carbonate (LiPF6 in EC:DEC) were cycled in two different voltage windows of 1.0-2.0 V and 1.4-2.0 V. LTO electrodes were characterized after 5 and 100 cycles. Also the pristine electrode as such, and an electrode soaked in the electrolyte were analyzed by varying the photon energies enabling depth profiling of the outermost surface layer. The main components of the surface layer were found to be ethers, P-O containing compounds, and lithium fluoride.
NASA Astrophysics Data System (ADS)
Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya
2016-03-01
Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.
Continuous process to produce lithium-polymer batteries
Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.
1998-05-12
Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.
MultiLayer solid electrolyte for lithium thin film batteries
Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping
2015-07-28
A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Isenberg, Arnold O.; Ruka, Roswell J.
1986-01-01
A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Isenberg, Arnold O.; Ruka, Roswell J.; Zymboly, Gregory E.
1985-01-01
A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.
Protective interlayer for high temperature solid electrolyte electrochemical cells
Isenberg, Arnold O.; Ruka, Roswell J.
1987-01-01
A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.
NASA Astrophysics Data System (ADS)
Choi, Sunho; Lee, Sewook; Park, Jongyeop; Nichols, William T.; Shin, Dongwook
2018-06-01
A lithium ion conductive 75Li2Sṡ25P2S5 glass-ceramics electrolyte is, for the first time, successfully synthesized via a new low-temperature solution technique (LTST) and compared to the conventional mechanical-milling technique. Both samples are composed of the highly lithium ion conductive thio-LISICON III analog phase. Due to the uniform dispersion of reactants in an organic liquid, the use of LTST produced significantly smaller and more uniform particle sizes (2.2 ± 1.68 μm) resulting in a 6.5 times higher specific surface area compared to the mechanically-milled sample. A pronounced enhancement of both the rate capability and cyclability is demonstrated for the LTST solid electrolyte sample due to the more intimate contact with the LiCoO2 active material. Furthermore, the LTST sample shows excellent electrochemical stability throughout the potential range of -1 to 5 V. These results suggest that the proposed technique using the optimized LTST process is promising for the preparation of 75Li2Sṡ25P2S5 solid electrolytes for use in advanced Li-ion batteries.
Sacci, Robert L; Black, Jennifer M; Balke, Nina; Dudney, Nancy J; More, Karren L; Unocic, Raymond R
2015-03-11
The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase (SEI) formation and to track Li nucleation and growth mechanisms from a standard organic battery electrolyte (LiPF6 in EC:DMC), we used in situ electrochemical scanning transmission electron microscopy (ec-S/TEM) to perform controlled electrochemical potential sweep measurements while simultaneously imaging site-specific structures resulting from electrochemical reactions. A combined quantitative electrochemical measurement and STEM imaging approach is used to demonstrate that chemically sensitive annular dark field STEM imaging can be used to estimate the density of the evolving SEI and to identify Li-containing phases formed in the liquid cell. We report that the SEI is approximately twice as dense as the electrolyte as determined from imaging and electron scattering theory. We also observe site-specific locations where Li nucleates and grows on the surface and edge of the glassy carbon electrode. Lastly, this report demonstrates the investigative power of quantitative nanoscale imaging combined with electrochemical measurements for studying fluid-solid interfaces and their evolving chemistries.
Huang, Yan; Liu, Jie; Wang, Jiaqi; Hu, Mengmeng; Mo, Funian; Liang, Guojin; Zhi, Chunyi
2018-06-15
Self-healing solid-state aqueous rechargeable NiCo//Zn batteries are an essential element of flexible/wearable electronics due to their inherent safety, high energy density and mechanical robustness etc. However, the self-healability of solid-state batteries is only realized by few studies, in which electron/ion-inactive self-healable substrates are utilized. This fundamentally arises from the lack of self-healable electrolytes for solid-state batteries, and therefore, results in low healing efficiency and volume/mass diseconomy. Here we develop an intrinsically self-healing battery by designing a new electrolyte that is intrinsically self-healable. Sodium polyacrylate hydrogel chains are crosslinked by ferric ions to promote dynamic reconstruction of an integral network. These non-covalent crosslinkers can form ionic bonds to reconnect damaged surfaces when the hydrogel is cut off, providing an ultimate solution to the intrinsic self-healability problem of batteries. As a result, our NiCo//Zn battery with this hydrogel electrolyte can be autonomically self-healed with over 87% of capacity retained after 4 cycles of breaking/healing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy
2013-01-01
A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976
NASA Astrophysics Data System (ADS)
Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.
2016-10-01
We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.
Lithium-ion batteries having conformal solid electrolyte layers
Kim, Gi-Heon; Jung, Yoon Seok
2014-05-27
Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.
Flow produced by a free-moving floating magnet driven electromagnetically
NASA Astrophysics Data System (ADS)
Piedra, Saúl; Román, Joel; Figueroa, Aldo; Cuevas, Sergio
2018-04-01
The flow generated by a free-moving magnet floating in a thin electrolyte layer is studied experimentally and numerically. The magnet is dragged by a traveling vortex dipole produced by a Lorentz force created when a uniform dc current injected in the electrolyte interacts with the magnetic field of the same magnet. The problem represents a typical case of fluid-solid interaction but with a localized electromagnetic force promoting the motion. Classical wake flow structures are observed when the applied current varies in the range of 0.2 to 10 A. Velocity fields at the surface of the electrolyte are obtained for different flow conditions through particle image velocimetry. Quasi-two-dimensional numerical simulations, based on the immersed boundary technique that incorporates the fluid-solid interaction, reproduce satisfactorily the dynamics observed in the experiments.
Self-Passivating Lithium/Solid Electrolyte/Iodine Cells
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar; Whitcare, Jay; Narayanan, Sekharipuram; West, William
2006-01-01
Robust lithium/solid electrolyte/iodine electrochemical cells that offer significant advantages over commercial lithium/ iodine cells have been developed. At room temperature, these cells can be discharged at current densities 10 to 30 times those of commercial lithium/iodine cells. Moreover, from room temperature up to 80 C, the maximum discharge-current densities of these cells exceed those of all other solid-electrolyte-based cells. A cell of this type includes a metallic lithium anode in contact with a commercial flexible solid electrolyte film that, in turn, is in contact with an iodine/ graphite cathode. The solid electrolyte (the chemical composition of which has not been reported) offers the high ionic conductivity needed for high cell performance. However, the solid electrolyte exhibits an undesirable chemical reactivity to lithium that, if not mitigated, would render the solid electrolyte unsuitable for use in a lithium cell. In this cell, such mitigation is affected by the formation of a thin passivating layer of lithium iodide at the anode/electrolyte interface. Test cells of this type were fabricated from iodine/graphite cathode pellets, free-standing solid-electrolyte films, and lithium-foil anodes. The cathode mixtures were made by grinding together blends of nominally 10 weight percent graphite and 90 weight percent iodine. The cathode mixtures were then pressed into pellets at 36 kpsi (248 MPa) and inserted into coin-shaped stainless-steel cell cases that were coated with graphite paste to minimize corrosion. The solid-electrolyte film material was stamped to form circular pieces to fit in the coin cell cases, inserted in the cases, and pressed against the cathode pellets with polyethylene gaskets. Lithium-foil anodes were placed directly onto the electrolyte films. The layers described thus far were pressed and held together by stainless- steel shims, wave springs, and coin cell caps. The assembled cells were then crimped to form hermetic seals. It was found that the solid electrolyte films became discolored within seconds after they were placed in contact with the cathodes - a result of facile diffusion of iodine through the solid electrolyte material (see figure).
Yim, Taeeun; Han, Young-Kyu
2017-09-27
Tris(trimethylsilyl) phosphite (TMSP) has received considerable attention as a functional additive for various cathode materials in lithium-ion batteries, but the effect of TMSP on the surface stability of a graphite anode has not been studied. Herein, we demonstrate that TMSP serves as an effective solid electrolyte interphase (SEI)-forming additive for graphite anodes in lithium-ion batteries (LIBs). TMSP forms SEI layers by chemical reactions between TMSP and a reductively decomposed ethylene carbonate (EC) anion, which is strikingly different from the widely known mechanism of the SEI-forming additives. TMSP is stable under cathodic polarization, but it reacts chemically with radical anion intermediates derived from the electrochemical reduction of the carbonate solvents to generate a stable SEI layer. These TMSP-derived SEI layers improve the interfacial stability of the graphite anode, resulting in a retention of 96.8% and a high Coulombic efficiency of 95.2%. We suggest the use of TMSP as a functional additive that effectively stabilizes solid electrolyte interfaces of both the anode and cathode in lithium-ion batteries.
Solid electrolyte-electrode system for an electrochemical cell
Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.
1995-01-01
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.
Method of bonding a conductive layer on an electrode of an electrochemical cell
Bowker, J.C.; Singh, P.
1989-08-29
A dense, electronically conductive interconnection layer is bonded onto a porous, tubular, electronically conductive air electrode structure, optionally supported by a ceramic support, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface, without the use of pressure, particles of LaCrO[sub 3] doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300 C to 1,550 C, without the application of pressure, to provide a dense, sintered, interconnection material bonded to the air electrode, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO[sub 3]. A solid electrolyte layer can be applied to the uncovered portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 4 figs.
Method of bonding a conductive layer on an electrode of an electrochemical cell
Bowker, Jeffrey C.; Singh, Prabhakar
1989-01-01
A dense, electronically conductive interconnection layer 26 is bonded onto a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface 24, without the use of pressure, particles of LaCrO.sub.3 doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300.degree. C. to 1,550.degree. C., without the application of pressure, to provide a dense, sintered, interconnection material 26 bonded to the air electrode 16, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO.sub.3. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.
Lin, Dingchang; Yuen, Pak Yan; Liu, Yayuan; Liu, Wei; Liu, Nian; Dauskardt, Reinhold H; Cui, Yi
2018-06-25
High-energy all-solid-state lithium (Li) batteries have great potential as next-generation energy-storage devices. Among all choices of electrolytes, polymer-based systems have attracted widespread attention due to their low density, low cost, and excellent processability. However, they are generally mechanically too weak to effectively suppress Li dendrites and have lower ionic conductivity for reasonable kinetics at ambient temperature. Herein, an ultrastrong reinforced composite polymer electrolyte (CPE) is successfully designed and fabricated by introducing a stiff mesoporous SiO 2 aerogel as the backbone for a polymer-based electrolyte. The interconnected SiO 2 aerogel not only performs as a strong backbone strengthening the whole composite, but also offers large and continuous surfaces for strong anion adsorption, which produces a highly conductive pathway across the composite. As a consequence, a high modulus of ≈0.43 GPa and high ionic conductivity of ≈0.6 mS cm -1 at 30 °C are simultaneously achieved. Furthermore, LiFePO 4 -Li full cells with good cyclability and rate capability at ambient temperature are obtained. Full cells with cathode capacity up to 2.1 mAh cm -2 are also demonstrated. The aerogel-reinforced CPE represents a new design principle for solid-state electrolytes and offers opportunities for future all-solid-state Li batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li 2OHCl crystalline electrolyte for stable metallic lithium anodes
Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; ...
2016-01-22
In a classic example of stability from instability, we show that Li 2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li 2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li 2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl systemmore » of crystalline solid electrolytes where Li 2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li 2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li 2OHCl solid electrolyte.« less
Boyer, Mathew J; Vilčiauskas, Linas; Hwang, Gyeong S
2016-10-12
Electrolyte and electrode materials used in lithium-ion batteries have been studied separately to a great extent, however the structural and dynamical properties of the electrolyte-electrode interface still remain largely unexplored despite its critical role in governing battery performance. Using molecular dynamics simulations, we examine the structural reorganization of solvent molecules (cyclic ethylene carbonate : linear dimethyl carbonate 1 : 1 molar ratio doped with 1 M LiPF 6 ) in the vicinity of graphite electrodes with varying surface charge densities (σ). The interfacial structure is found to be sensitive to the molecular geometry and polarity of each solvent molecule as well as the surface structure and charge distribution of the negative electrode. We also evaluated the potential difference across the electrolyte-electrode interface, which exhibits a nearly linear variation with respect to σ up until the onset of Li + ion accumulation onto the graphite edges from the electrolyte. In addition, well-tempered metadynamics simulations are employed to predict the free-energy barriers to Li + ion transport through the relatively dense interfacial layer, along with analysis of the Li + solvation sheath structure. Quantitative analysis of the molecular arrangements at the electrolyte-electrode interface will help better understand and describe electrolyte decomposition, especially in the early stages of solid-electrolyte-interphase (SEI) formation. Moreover, the computational framework presented in this work offers a means to explore the effects of solvent composition, electrode surface modification, and operating temperature on the interfacial structure and properties, which may further assist in efforts to engineer the electrolyte-electrode interface leading to a SEI layer that optimizes battery performance.
Gate-Induced Metal–Insulator Transition in MoS 2 by Solid Superionic Conductor LaF 3
Wu, Chun-Lan; Yuan, Hongtao; Li, Yanbin; ...
2018-03-23
Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 10 14 cm –2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, wemore » demonstrate an all solid-state EDL device based on a solid superionic conductor LaF 3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF 3 EDL transistors (EDLTs), we observe the metal–insulator transition in MoS 2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS 2 transistors. Finally, this result shows the powerful gating capability of LaF 3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.« less
NASA Astrophysics Data System (ADS)
Buchner, Florian; Uhl, Benedikt; Forster-Tonigold, Katrin; Bansmann, Joachim; Groß, Axel; Behm, R. Jürgen
2018-05-01
Ionic liquids (ILs) are considered as attractive electrolyte solvents in modern battery concepts such as Li-ion batteries. Here we present a comprehensive review of the results of previous model studies on the interaction of the battery relevant IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP]+[TFSI]-) with a series of structurally and chemically well-defined model electrode surfaces, which are increasingly complex and relevant for battery applications [Ag(111), Au(111), Cu(111), pristine and lithiated highly oriented pyrolytic graphite (HOPG), and rutile TiO2(110)]. Combining surface science techniques such as high resolution scanning tunneling microscopy and X-ray photoelectron spectroscopy for characterizing surface structure and chemical composition in deposited (sub-)monolayer adlayers with dispersion corrected density functional theory based calculations, this work aims at a molecular scale understanding of the fundamental processes at the electrode | electrolyte interface, which are crucial for the development of the so-called solid electrolyte interphase (SEI) layer in batteries. Performed under idealized conditions, in an ultrahigh vacuum environment, these model studies provide detailed insights on the structure formation in the adlayer, the substrate-adsorbate and adsorbate-adsorbate interactions responsible for this, and the tendency for chemically induced decomposition of the IL. To mimic the situation in an electrolyte, we also investigated the interaction of adsorbed IL (sub-)monolayers with coadsorbed lithium. Even at 80 K, postdeposited Li is found to react with the IL, leading to decomposition products such as LiF, Li3N, Li2S, LixSOy, and Li2O. In the absence of a [BMP]+[TFSI]- adlayer, it tends to adsorb, dissolve, or intercalate into the substrate (metals, HOPG) or to react with the substrate (TiO2) above a critical temperature, forming LiOx and Ti3+ species in the latter case. Finally, the formation of stable decomposition products was found to sensitively change the equilibrium between surface Li and Li+ intercalated in the bulk, leading to a deintercalation from lithiated HOPG in the presence of an adsorbed IL adlayer at >230 K. Overall, these results provide detailed insights into the surface chemistry at the solid | electrolyte interface and the initial stages of SEI formation at electrode surfaces in the absence of an applied potential, which is essential for the further improvement of future Li-ion batteries.
Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries.
Li, Yutao; Chen, Xi; Dolocan, Andrei; Cui, Zhiming; Xin, Sen; Xue, Leigang; Xu, Henghui; Park, Kyusung; Goodenough, John B
2018-05-23
Garnet-structured Li 7 La 3 Zr 2 O 12 is a promising solid Li-ion electrolyte for all-solid-state Li-metal batteries and Li-redox-flow batteries owing to its high Li-ion conductivity at room temperature and good electrochemical stability with Li metal. However, there are still three major challenges unsolved: (1) the controversial electrochemical window of garnet, (2) the impractically large resistance at a garnet/electrode interface and the fast lithium-dendrite growth along the grain boundaries of the garnet pellet, and (3) the fast degradation during storage. We have found that these challenges are closely related to a thick Li 2 CO 3 layer and the Li-Al-O glass phase on the surface of garnet materials. Here we introduce a simple method to remove Li 2 CO 3 and the protons in the garnet framework by reacting garnet with carbon at 700 °C; moreover, the amount of the Li-Al-O glass phase with a low Li-ion conductivity in the grain boundary on the garnet surface was also reduced. The surface of the carbon-treated garnet pellets is free of Li 2 CO 3 and is wet by a metallic lithium anode, an organic electrolyte, and a solid composite cathode. The carbon post-treatment has reduced significantly the interfacial resistances to 28, 92 (at 65 °C), and 45 Ω cm 2 at Li/garnet, garnet/LiFePO 4 , and garnet/organic-liquid interfaces, respectively. A symmetric Li/garnet/Li, an all-solid-state Li/garnet/LiFePO 4 , and a hybrid Li-S cell show small overpotentials, high Coulombic efficiencies, and stable cycling performance.
Ceramic and polymeric solid electrolytes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Fergus, Jeffrey W.
Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.
Method of synthesizing polymers from a solid electrolyte
Skotheim, Terje A.
1985-01-01
A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.
Method of synthesizing polymers from a solid electrolyte
Skotheim, T.A.
1984-10-19
A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.
Performance comparison: Aluminum electrolytic and solid tantalum capacitor
NASA Technical Reports Server (NTRS)
Hawthornthwaite, B. G.; Piper, J.; Holland, H. W.
1981-01-01
Several key electrical and environmental parameters of latest technology aluminum electrolytic and solid tantalum capacitors were evaluated in terms of price fluctuations of tantalum metal. Performance differences between solid tantalums and aluminum electrolytics are examined.
A zwitterionic gel electrolyte for efficient solid-state supercapacitors
Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi
2016-01-01
Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484
Oxygen partial pressure sensor
Dees, D.W.
1994-09-06
A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.
Oxygen partial pressure sensor
Dees, Dennis W.
1994-01-01
A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.
Solid electrolyte-electrode system for an electrochemical cell
Tuller, H.L.; Kramer, S.A.; Spears, M.A.
1995-04-04
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.
NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells
NASA Technical Reports Server (NTRS)
West, William; Whitacre, Jay; DelCastillo, Linda
2009-01-01
Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.
Li, Dan; Chen, Long; Wang, Tianshi; Fan, Li-Zhen
2018-02-28
Replacement of flammable organic liquid electrolytes with solid Li + conductors is a promising approach to realize excellent performance of Li metal batteries. However, ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites through their grain boundaries, and polymer electrolytes are also faced with instability on the electrode/electrolyte interface and weak mechanical property. Here, we report a three-dimensional fiber-network-reinforced bicontinuous solid composite electrolyte with flexible Li + -conductive network (lithium aluminum titanium phosphate (LATP)/polyacrylonitrile), which helps to enhance electrochemical stability on the electrode/electrolyte interface by isolating Li and LATP and suppress Li dendrites growth by mechanical reinforcement of fiber network for the composite solid electrolyte. The composite electrolyte shows an excellent electrochemical stability after 15 days of contact with Li metal and has an enlarged tensile strength (10.72 MPa) compared to the pure poly(ethylene oxide)-bistrifluoromethanesulfonimide lithium salt electrolyte, leading to a long-term stability and safety of the Li symmetric battery with a current density of 0.3 mA cm -2 for 400 h. In addition, the composite electrolyte also shows good electrochemical and thermal stability. These results provide such fiber-reinforced membranes that present stable electrode/electrolyte interface and suppress lithium dendrite growth for high-safety all-solid-state Li metal batteries.
Chen, Ru-Jun; Zhang, Yi-Bo; Liu, Ting; Xu, Bing-Qing; Lin, Yuan-Hua; Nan, Ce-Wen; Shen, Yang
2017-03-22
All-solid-state bulk-type lithium ion batteries (LIBs) are considered ultimate solutions to the safety issues associated with conventional LIBs using flammable liquid electrolyte. The development of bulk-type all-solid-state LIBs has been hindered by the low loading of active cathode materials, hence low specific surface capacity, and by the high interface resistance, which results in low rate and cyclic performance. In this contribution, we propose and demonstrate a synergistic all-composite approach to fabricating flexible all-solid-state LIBs. PEO-based composite cathode layers (filled with LiFePO 4 particles) of ∼300 μm in thickness and composite electrolyte layers (filled with Al-LLZTO particles) are stacked layer-by-layer with lithium foils as negative layer and hot-pressed into a monolithic all-solid-state LIB. The flexible LIB delivers a high specific discharge capacity of 155 mAh/g, which corresponds to an ultrahigh surface capacity of 10.8 mAh/cm 2 , exhibits excellent capacity retention up to at least 10 cycles and could work properly under harsh operating conditions such as bending or being sectioned into pieces. The all-composite approach is favorable for improving both mesoscopic and microscopic interfaces inside the all-solid-state LIB and may provide a new toolbox for design and fabrication of all-solid-state LIBs.
Reduction of Electrolyte Components on a Coated Si Anode of Lithium-Ion Batteries.
Gomez-Ballesteros, Jose L; Balbuena, Perla B
2017-07-20
Surface modification of Si anodes in Li-ion batteries by deposition of a thin alucone coating has demonstrated an effective way to help maintain a stable anode/electrolyte interface and good battery performance. In this work, we investigate the interactions and reactivity of the film with electrolyte components using ab initio molecular dynamics simulations. Adsorption of solvent molecules (ethylene carbonate, EC) and salt (LiPF 6 ) and reduction by two mechanisms depending on the Li content of the film (yielding open EC adsorbed on the film or C 2 H 4 + CO 3 2- ) take place near the film/electrolyte and film/anode interfaces. Reaction products incorporate into the structure of the film and create a new kind of solid-electrolyte interphase layer.
Reduction of Electrolyte Components on a Coated Si Anode of Lithium-Ion Batteries
Gomez-Ballesteros, Jose L.; Balbuena, Perla B.
2017-07-07
Surface modification of Si anodes in Li-ion batteries by deposition of a thin alucone coating has demonstrated an effective way to help maintain a stable anode/electrolyte interface and good battery performance. In this paper, we investigate the interactions and reactivity of the film with electrolyte components using ab initio molecular dynamics simulations. Adsorption of solvent molecules (ethylene carbonate, EC) and salt (LiPF 6), and reduction by two mechanisms depending on the Li content of the film (yielding open EC adsorbed on the film or C 2H 4 + CO 3 2-) take place near the film/electrolyte and film/anode interfaces. Finally,more » reactions products incorporate to the structure of the film and create a new kind of solid-electrolyte interphase layer.« less
Planar Solid-Oxide Fuel Cell Research and Development
2013-03-28
electrolyte membrane ( PEM ) fuel cells ", Applied Surface Sei., 227 (2004) 56-72. [10] Grujicic, M., and Chittajallu, K. M., "Optimization of the...cathode geometry in polymer electrolyte membrane ( PEM ) fuel cells ", Chem. Eng. Sei., 59 (2004) 5883-5895. 36 [11] Anderson, W.K., Newman, J.C., Whitfield...M., Djilali, N, Suleman, A., "Optimization of a planar self-breathing PEM fuel cell cathode", AIAA 2006-6917, 11th AIAA/ISSMO Multidisciplinary
Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell
Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.
1995-01-01
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.
Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell
Spengler, C.J.; Folser, G.R.; Vora, S.D.; Kuo, L.; Richards, V.L.
1995-06-20
A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO{sub 3} powder, preferably compensated with chromium as Cr{sub 2}O{sub 3} and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO{sub 3} layer to about 1100 C to 1300 C to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 6 figs.
Luo, Chao; Ji, Xiao; Chen, Ji; Gaskell, Karen J; He, Xinzi; Liang, Yujia; Jiang, Jianjun; Wang, Chunsheng
2018-05-23
Organic electrode materials are promising for green and sustainable lithium-ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all-solid-state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li 3 PS 4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4-(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Autogenous electrolyte, non-pyrolytically produced solid capacitor structure
Sharp, Donald J.; Armstrong, Pamela S.; Panitz, Janda Kirk G.
1998-01-01
A solid electrolytic capacitor having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.
Autogenous electrolyte, non-pyrolytically produced solid capacitor structure
Sharp, D.J.; Armstrong, P.S.; Panitz, J.K.G.
1998-03-17
A solid electrolytic capacitor is described having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects. 2 figs.
Moreau, P.; De Vito, E.; Quazuguel, L.; Boniface, M.; Bordes, A.; Rudisch, C.; Bayle-Guillemaud, P.; Guyomard, D.
2016-01-01
The failure mechanism of silicon-based electrodes has been studied only in a half-cell configuration so far. Here, a combination of 7Li, 19F MAS NMR, XPS, TOF-SIMS, and STEM-EELS, provides an in-depth characterization of the solid electrolyte interphase (SEI) formation on the surface of silicon and its evolution upon aging and cycling with LiNi1/3Mn1/3Co1/3O2 as the positive electrode in a full Li-ion cell configuration. This multiprobe approach indicates that the electrolyte degradation process observed in the case of full Li-ion cells exhibits many similarities to what has been observed in the case of half-cells in previous works, in particular during the early stages of the cycling. Like in the case of Si/Li half-cells, the development of the inorganic part of the SEI mostly occurs during the early stage of cycling while an incessant degradation of the organic solvents of the electrolyte occurs upon cycling. However, for extended cycling, all the lithium available for cycling is consumed because of parasitic reactions and is either trapped in an intermediate part of the SEI or in the electrolyte. This nevertheless does not prevent the further degradation of the organic electrolyte solvents, leading to the formation of lithium-free organic degradation products at the extreme surface of the SEI. At this point, without any available lithium left, the cell cannot function properly anymore. Cycled positive and negative electrodes do not show any sign of particles disconnection or clogging of their porosity by electrolyte degradation products and can still function in half-cell configuration. The failure mechanism for full Li-ion cells appears then very different from that known for half-cells and is clearly due to a lack of cyclable lithium because of parasitic reactions occurring before the accumulation of electrolyte degradation products clogs the porosity of the composite electrode or disconnects the active material particles. PMID:27212791
Fuel cells with solid polymer electrolyte and their application on vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fateev, V.
1996-04-01
In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.
Long-lasting solid-polymer electrolytic hygrometer
NASA Technical Reports Server (NTRS)
Lawson, D. D.
1978-01-01
Device consists of hollow tube node of oxidation-resistant sulfonated fluorocarbon polymer. Tube absorbs moisture from air passing across inner and outer surfaces, causing change in polymer conductance. Change is related to change in water content in gas sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sung-Yup; Ostadhossein, Alireza; van Duin, Adri C. T.
2016-01-01
Surface coatings as artificial solid electrolyte interphases have been actively pursued as an effective way to improve the cycle efficiency of nanostructured Si electrodes for high energy density lithium ion batteries, where the mechanical stability of the surface coatings on Si is as critical as Si itself.
Solid oxide fuel cell operable over wide temperature range
Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.
2001-01-01
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
Interfacial material for solid oxide fuel cell
Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.
1999-01-01
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
Surface-charge-governed electrolyte transport in carbon nanotubes
NASA Astrophysics Data System (ADS)
Xue, Jian-Ming; Guo, Peng; Sheng, Qian
2015-08-01
The transport behavior of pressure-driven aqueous electrolyte solution through charged carbon nanotubes (CNTs) is studied by using molecular dynamics simulations. The results reveal that the presence of charges around the nanotube can remarkably reduce the flow velocity as well as the slip length of the aqueous solution, and the decreasing of magnitude depends on the number of surface charges and distribution. With 1-M KCl solution inside the carbon nanotube, the slip length decreases from 110 nm to only 14 nm when the number of surface charges increases from 0 to 12 e. This phenomenon is attributed to the increase of the solid-liquid friction force due to the electrostatic interaction between the charges and the electrolyte particles, which can impede the transports of water molecules and electrolyte ions. With the simulation results, we estimate the energy conversion efficiency of nanofluidic battery based on CNTs, and find that the highest efficiency is only around 30% but not 60% as expected in previous work. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375031 and 11335003).
Sigalov, Sergey; Shpigel, Netanel; Levi, Mikhael D; Feldberg, Moshe; Daikhin, Leonid; Aurbach, Doron
2016-10-18
Using multiharmonic electrochemical quartz crystal microbalance with dissipation (EQCM-D) monitoring, a new method of characterization of porous solids in contact with liquids has been developed. The dynamic gravimetric information on the growing, dissolving, or stationary stored solid deposits is supplemented by their precise in-operando porous structure characterization on a mesoscopic scale. We present a very powerful method of quartz-crystal admittance modeling of hydrodynamic solid-liquid interactions in order to extract the porous structure parameters of solids during their formation in real time, using different deposition modes. The unique hydrodynamic spectroscopic characterization of electrolytic and rf-sputtered solid Cu coatings that we use for our "proof of concept" provides a new strategy for probing various electrochemically active thin and thick solid deposits, thereby offering inexpensive, noninvasive, and highly efficient quantitative control over their properties. A broad spectrum of applications of our method is proposed, from various metal electroplating and finishing technologies to deeper insight into dynamic build-up and subsequent development of solid-electrolyte interfaces in the operation of Li-battery electrodes, as well as monitoring hydrodynamic consequences of metal corrosion, and growth of biomass coatings (biofouling) on different solid surfaces in seawater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chun-Lan; Yuan, Hongtao; Li, Yanbin
Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 10 14 cm –2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, wemore » demonstrate an all solid-state EDL device based on a solid superionic conductor LaF 3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF 3 EDL transistors (EDLTs), we observe the metal–insulator transition in MoS 2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS 2 transistors. Finally, this result shows the powerful gating capability of LaF 3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.« less
Yu, Xingwen; Manthiram, Arumugam
2017-11-21
Electrode-electrolyte interfacial properties play a vital role in the cycling performance of lithium-sulfur (Li-S) batteries. The issues at an electrode-electrolyte interface include electrochemical and chemical reactions occurring at the interface, formation mechanism of interfacial layers, compositional/structural characteristics of the interfacial layers, ionic transport across the interface, and thermodynamic and kinetic behaviors at the interface. Understanding the above critical issues is paramount for the development of strategies to enhance the overall performance of Li-S batteries. Liquid electrolytes commonly used in Li-S batteries bear resemblance to those employed in traditional lithium-ion batteries, which are generally composed of a lithium salt dissolved in a solvent matrix. However, due to a series of unique features associated with sulfur or polysulfides, ether-based solvents are generally employed in Li-S batteries rather than simply adopting the carbonate-type solvents that are generally used in the traditional Li + -ion batteries. In addition, the electrolytes of Li-S batteries usually comprise an important additive, LiNO 3 . The unique electrolyte components of Li-S batteries do not allow us to directly take the interfacial theories of the traditional Li + -ion batteries and apply them to Li-S batteries. On the other hand, during charging/discharging a Li-S battery, the dissolved polysulfide species migrate through the battery separator and react with the Li anode, which magnifies the complexity of the interfacial problems of Li-S batteries. However, current Li-S battery development paths have primarily been energized by advances in sulfur cathodes. Insight into the electrode-electrolyte interfacial behaviors has relatively been overshadowed. In this Account, we first examine the state-of-the-art contributions in understanding the solid-electrolyte interphase (SEI) formed on the Li-metal anode and sulfur cathode in conventional liquid-electrolyte Li-S batteries and how the resulting chemical and physical properties of the SEI affect the overall battery performance. A few strategies recently proposed for improving the stability of SEI are briefly summarized. Solid Li + -ion conductive electrolytes have been attempted for the development of Li-S batteries to eliminate the polysulfide shuttle issues. One approach is based on a concept of "all-solid-state Li-S battery," in which all the cell components are in the solid state. Another approach is based on a "hybrid-electrolyte Li-S battery" concept, in which the solid electrolyte plays roles both as a Li + -ion conductor for the electrochemical reaction and as a separator to prevent polysulfide shuttle. However, these endeavors with the solid electrolyte are not able to provide an overall satisfactory cell performance. In addition to the low ionic conductivity of solid-state electrolytes, a critical issue lies in the poor interfacial properties between the electrode and the solid electrolyte. This Account provides a survey of the relevant research progress in understanding and manipulating the interfaces of electrode and solid electrolytes in both the "all-solid-state Li-S batteries" and the "hybrid-electrolyte Li-S batteries". A recently proposed "semi-solid-state Li-S battery" concept is also briefly discussed. Finally, future research and development directions in all the above areas are suggested.
Zinc electrode and rechargeable zinc-air battery
Ross, Jr., Philip N.
1989-01-01
An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.
Review on solid electrolytes for all-solid-state lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zheng, Feng; Kotobuki, Masashi; Song, Shufeng; Lai, Man On; Lu, Li
2018-06-01
All-solid-state (ASS) lithium-ion battery has attracted great attention due to its high safety and increased energy density. One of key components in the ASS battery (ASSB) is solid electrolyte that determines performance of the ASSB. Many types of solid electrolytes have been investigated in great detail in the past years, including NASICON-type, garnet-type, perovskite-type, LISICON-type, LiPON-type, Li3N-type, sulfide-type, argyrodite-type, anti-perovskite-type and many more. This paper aims to provide comprehensive reviews on some typical types of key solid electrolytes and some ASSBs, and on gaps that should be resolved.
Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won
2017-12-13
Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.
High temperature solid state storage cell
Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen
1983-01-01
A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.
Lee, Dong Ha; Sun, Kyung Chul; Qadir, Muhammad Bilal; Jeong, Sung Hoon
2014-12-01
Dye-sensitized solar cell (DSSC) is an attractive renewable energy technology currently under intense investigation. Electrolyte plays an important role in the photovoltaic performance of the DSSCs and many efforts have been contributed to study different kinds of electrolytes with various characteristics such as liquid electrolytes, polymer electrolytes and so on. In this study, DSSC is developed by using quasi-solid electrolyte and a novel procedure is adopted for filling this electrolyte. The quasi-solid-state electrolyte was prepared by mixing Poly ethylene oxide (PEO) and bismaleimide together and constitution was taken as PEO (15 wt%) at various bismaleimide concentrations (1, 3, 5 wt%). The novel procedure of filling electrolyte consists of three major steps (first step: filling liquid electrolyte, second step: vaporization of liquid electrolyte, third step: refilling quasi-solid-state electrolyte). The electrochemical and photovoltaic performances of DSSCs with these electrolytes were also investigated. The electrochemical impedance spectroscopy (EIS) indicated that TiO2/Dye/electrolyte impedance is reduced and electron lifetime is increased, and consequently efficiency of cell has been improved after using this novel procedure. The photovoltaic power conversion efficiency of 6.39% has been achieved under AM 1.5 simulated sunlight (100 W/cm2) through this novel procedure and by using specified blend of polymers.
New Solid Polymer Electrolytes for Improved Lithium Batteries
NASA Technical Reports Server (NTRS)
Hehemann, David G.
2002-01-01
The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.
The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
See, Kimberly A.; Chapman, Karena W.; Zhu, Lingyang
2016-01-13
Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, 27Al and 35Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore themore » active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ–Cl)3·6THF]+ complex that is observed in the solid state structure. Additionally, conditioning creates free Cl– in the electrolyte solution, and we suggest the free Cl– adsorbs at the electrode surface to enhance Mg electrodeposition.« less
Curvature in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Li, Wenxia; Hasinska, Kathy; Seabaugh, Matt; Swartz, Scott; Lannutti, John
At this point in history, curvature is inherent to the laminated components that comprise solid oxide fuel cells (SOFCs). Surprisingly, however, this fact has never been previously quantified in the literature. In addition, potential curvature changes associated with NiO reduction and re-oxidation during operation have not been investigated. In this report, an optical profilometer was employed to non-destructively quantify the surface curvature or cracking behavior observed on a large scale in industrially manufactured cells. This provides insights into the challenges that the component materials face as well as additional appreciation for why, in spite of a concerted effort to commercialize SOFC power generation, all currently manufactured SOFC stacks fail. Our results demonstrate that cracked electrolyte areas (caused by differential sintering) are flatter than uncracked regions. The height of the electrolyte surface ranged from 86 to 289 μm above the baseline following sintering. Reduction typically results in increases in curvature of up to 214 μm. Initial crack density appears to affect curvature evolution during reduction; the higher the crack density, the smaller the curvature increase following reduction at 600 °C. In general, however, we observed that the electrolyte layer is remarkably resistant to further cracking during these typographic changes. Following oxidation at 750 °C, large changes in curvature (up to 280 μm) are noted that appear to be related to the strength of the bond between the electrolyte and the underlying anode.
Stability of the Solid Electrolyte Interface on the Li Electrode in Li–S Batteries
Zheng, Dong; Yang, Xiao-Qing; Qu, Deyang
2016-04-05
In this study, by means of high performance liquid chromatography–mass spectroscopy, the concentration of sulfur and polysulfides was determined in nonaqueous electrolytes. The stability of sulfur and Li in eight electrolytes was studied quantitatively. It was found that sulfur reacted with Li in most of the commonly used electrolytes for lithium–sulfur batteries. The reaction products between sulfur and Li were qualitatively identified. In some cases, the solid electrolyte interface on the Li can successfully prevent the interaction between S and Li; however, it was found that the solid electrolyte interface was damaged by polysulfide ions.
YSZ thin films with minimized grain boundary resistivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen
2016-03-31
In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e. g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity ofmore » yttria stabilized zirconia thin films with nano- columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500°C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film- substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less
YSZ thin films with minimized grain boundary resistivity
Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen; ...
2016-03-31
In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here in this paper, we report that the ionicmore » conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film–substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg 2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less
An advanced model framework for solid electrolyte intercalation batteries.
Landstorfer, Manuel; Funken, Stefan; Jacob, Timo
2011-07-28
Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011
Wang, Hui; Hood, Zachary D.; Xia, Younan; ...
2016-04-25
All-solid-state lithium batteries are attractive candidates for next-generation energy storage devices because of their anticipated high energy density and intrinsic safety. Owing to their excellent ionic conductivity and stability with metallic lithium anodes, nanostructured lithium thiophosphate solid electrolytes such as β-Li 3PS 4 have found use in the fabrication of all-solid lithium batteries for large-scale energy storage systems. However, current methods for preparing air-sensitive solid electrolyte membranes of lithium thiophosphates can only generate thick membranes that compromise the battery's gravimetric/volumetric energy density and thus its rate performance. To overcome this limitation, the solid electrolyte's thickness needs to be effectively decreasedmore » to achieve ideal energy density and enhanced rate performance. In this paper, we show that the evaporation-induced self-assembly (EISA) technique produces ultrathin membranes of a lithium thiophosphate solid electrolyte with controllable thicknesses between 8 and 50 μm while maintaining the high ionic conductivity of β-Li 3PS 4 and stability with metallic lithium anodes up to 5 V. Finally, it is clearly demonstrated that this facile EISA approach allows for the preparation of ultrathin lithium thiophosphate solid electrolyte membranes for all-solid-state batteries.« less
NASA Astrophysics Data System (ADS)
Han, Chu; Bongiorno, Angelo
2014-03-01
Yttrium-doped barium zirconate (BZY) is a proton conducting electrolyte forming a class of novel materials for new generation of solid oxide fuel cells, for hydrogen separation and purification, and for electrolysis of water. Here we use density functional theory calculations to compute the energy of protons and oxygen vacancies at the surface and in the bulk of lightly Y-doped BZY materials. We found that protons are energetically more stable at the surface termination than in the bulk of BZY by about 1 eV. In contrast, doubly-positively charged oxygen vacancies are found to form iso-energetic defects at both the terminal surface layer and in the bulk of BZY, while in the sub-surface region the defect energy raises by about 1 eV with respect to the value in the bulk. The energetic behavior of protons and oxygen vacancies in the near surface region of BZY is attributed to the competition of strain and electrostatic effects. Lattice model representations of BZY surfaces are then used in combination with Monte Carlo simulations to solve the Poisson-Boltzmann equation and investigate the implication of the results above on the structure of the space charge region at the surface of BZY materials.
Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.
Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei
2018-04-25
Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.
A Synopsis of Interfacial Phenomena in Lithium-Based Polymer Electrolyte Electrochemical Cells
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennett, William R.
2007-01-01
The interfacial regions between electrode materials, electrolytes and other cell components play key roles in the overall performance of lithium-based batteries. For cell chemistries employing lithium metal, lithium alloy or carbonaceous materials (i.e., lithium-ion cells) as anode materials, a "solid electrolyte interphase" (SEI) layer forms at the anode/electrolyte interface, and the properties of this "passivating" layer significantly affect the practical cell/battery quality and performance. A thin, ionically-conducting SEI on the electrode surface can beneficially reduce or eliminate undesirable side reactions between the electrode and the electrolyte, which can result in a degradation in cell performance. The properties and phenomena attributable to the interfacial regions existing at both anode and cathode surfaces can be characterized to a large extent by electrochemical impedance spectroscopy (EIS) and related techniques. The intention of the review herewith is to support the future development of lithium-based polymer electrolytes by providing a synopsis of interfacial phenomena that is associated with cell chemistries employing either lithium metal or carbonaceous "composite" electrode structures which are interfaced with polymer electrolytes (i.e., "solvent-free" as well as "plasticized" polymer-binary salt complexes and single ion-conducting polyelectrolytes). Potential approaches to overcoming poor cell performance attributable to interfacial effects are discussed.
La Rosa, Daniela; Monforte, Giuseppe; D'Urso, Claudia; Baglio, Vincenzo; Antonucci, Vincenzo; Aricò, Antonino S
2010-12-17
Solid Na-β"-Al₂O₃ electrolyte is prepared by a simple chemical route involving a pseudo-boehmite precursor and thermal treatment. Boehmite powder is used for manufacturing the planar electrolyte with appropriate bulk density after firing at 1500 °C. The structure, morphology, and surface properties of precursor powders and sintered electrolytes are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). As shown by XRD and TEM analyses, nanometer-sized particles are obtained for the boehmite precursor and a pure crystallographic phase is achieved for the sintered electrolyte. SEM analysis of the cross-section indicates good sintering characteristics. XPS shows a higher Na/Al atomic ratio on the surface for the planar electrolyte compared to a commercial tubular electrolyte (0.57 vs. 0.46). Energy-dispersive X-ray microanalysis (EDX) shows an Na/Al ratio in the bulk of 0.16, similar in the two samples. The ionic conductivity of the planar electrolyte is larger than that measured on a commercial tube of sodium-β"-alumina in a wide temperature range. At 350 °C, conductivity values of 0.5 S cm⁻¹ and 0.26 S cm⁻¹ are obtained for the planar electrolyte and the commercial tube, respectively. AC-impedance spectra show smaller grain boundary effects in the planar electrolyte than in the tubular electrolyte. These favorable properties may increase the perspectives for applying planar Na-β"-Al₂O₃ electrolytes in high-temperature batteries.
High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries
NASA Astrophysics Data System (ADS)
Dahbi, Mouad; Fukunishi, Mika; Horiba, Tatsuo; Yabuuchi, Naoaki; Yasuno, Satoshi; Komaba, Shinichi
2017-09-01
Electrochemical performance of the red phosphorus electrode was examined in ionic-liquid electrolyte, 0.25 mol dm-3 sodium bisfluorosulfonylamide (NaFSA) dissolved N-methyl-N-propylpyridinium-bisfluorosulfonylamide (MPPFSA), at room temperature. We compared its electrochemical performance to conventional EC/PC/DEC, EC/DEC, and PC solutions containing 1 mol dm-3 NaPF6. The electrode in NaFSA/MPPFSA demonstrated a reversible capacity of 1480 mAh g-1 and excellent capacity retention of 93% over 80 cycles, which is much better than those in the conventional electrolytes. The difference in capacity retention for the electrolytes correlates to the different solid electrolyte interphase (SEI) layer formed on the phosphorus electrode. To understand the SEI formation in NaFSA/MPPFSA and its evolution during cycling, we investigate the surface layer of the red phosphorus electrodes with hard X-ray photoelectron spectroscopy (HAXPES) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). A detailed analysis of HAXPES spectra demonstrates that SEI layer consists of major inorganic and minor organic species, originating from decomposition of MPP+ and FSA-. Homogenous surface layer is formed during the first cycle in NaFSA/MPPFSA while in alkyl carbonate ester electrolytes, continuous growth of surface film up to the 20th cycle is observed. Possibility of red phosphorous electrode for battery applications with pure ionic liquid is discussed.
High strength porous support tubes for high temperature solid electrolyte electrochemical cells
Rossing, Barry R.; Zymboly, Gregory E.
1986-01-01
A high temperature, solid electrolyte electrochemical cell is made, having an electrode and a solid electrolyte disposed on a porous, sintered support material containing thermally stabilized zirconia powder particles and from about 3 wt. % to about 45 wt. % of thermally stable oxide fibers.
Solid polymer electrolyte lithium batteries
Alamgir, M.; Abraham, K.M.
1993-10-12
This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.
Solid polymer electrolyte lithium batteries
Alamgir, Mohamed; Abraham, Kuzhikalail M.
1993-01-01
This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).
NASA Astrophysics Data System (ADS)
He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen
2018-07-01
Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.
Electrolytic decontamination of conductive materials
NASA Astrophysics Data System (ADS)
Campbell, George M.; Nelson, Timothy O.; Parker, John L.; Getty, Richard H.; Hergert, Tom R.; Lindahl, Kirk A.; Peppers, Larry G.
1994-10-01
Using the electrolytic method, we have demonstrated removal of Pu and Am from contaminated conductive material. At EG and G /Rocky Flats, we electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging from greater than 1 000 000 counts per minute (cpm) down to levels ranging from 1500 to 250 cpm using the electrolytic method. More recently, the electrolytic work has continued at Los Alamos National Laboratory as a joint project with EG and G/Rocky Flats. Impressively, electrolytic decontamination of Pu /Am from U surfaces (10 sq cm per side) shows decreases in swipable contamination from 500 000-1 500 000 disintegrations per minute (dpm) down to 0-2 dpm. Moreover, the solid waste product of the electrolytic method is reduced in volume by more than 50 times compared with the liquid waste produced by the previous U decontamination method -- a hot concentrated acid spray leach process.
Solid polymer electrolyte compositions
Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba
2001-01-01
An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.
NASA Astrophysics Data System (ADS)
Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun
2017-02-01
A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.
Yi, Jin; Zhou, Haoshen
2016-09-08
In the context of the development of electric vehicle to solve the contemporary energy and environmental issues, the possibility of pushing future application of Li-O2 batteries as a power source for electric vehicles is particularly attractive. However, safety concerns, mainly derived from the use of flammable organic liquid electrolytes, become a major bottleneck for the strategically crucial applications of Li-O2 batteries. To overcome this issue, rechargeable solid-state Li-O2 batteries with enhanced safety is regarded as an appealing candidate. In this study, a hybrid quasi-solid-state electrolyte combing a polymer electrolyte with a ceramic electrolyte is first designed and explored for Li-O2 batteries. The proposed rechargeable solid-state Li-O2 battery delivers improved cycle life (>100 cycles) and safety. The feasibility study demonstrates that the hybrid quasi-solid-state electrolytes could be employed as a promising alternative strategy for the development of rechargeable Li-O2 batteries, hence encouraging more efforts devoted to explore other hybrid solid-state electrolytes for Li-O2 batteries upon future application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mastering the interface for advanced all-solid-state lithium rechargeable batteries
Li, Yutao; Zhou, Weidong; Chen, Xi; Lü, Xujie; Cui, Zhiming; Xin, Sen; Xue, Leigang; Jia, Quanxi; Goodenough, John B.
2016-01-01
A solid electrolyte with a high Li-ion conductivity and a small interfacial resistance against a Li metal anode is a key component in all-solid-state Li metal batteries, but there is no ceramic oxide electrolyte available for this application except the thin-film Li-P oxynitride electrolyte; ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites in a short time. Here, we introduce a solid electrolyte LiZr2(PO4)3 with rhombohedral structure at room temperature that has a bulk Li-ion conductivity σLi = 2 × 10−4 S⋅cm−1 at 25 °C, a high electrochemical stability up to 5.5 V versus Li+/Li, and a small interfacial resistance for Li+ transfer. It reacts with a metallic lithium anode to form a Li+-conducting passivation layer (solid-electrolyte interphase) containing Li3P and Li8ZrO6 that is wet by the lithium anode and also wets the LiZr2(PO4)3 electrolyte. An all-solid-state Li/LiFePO4 cell with a polymer catholyte shows good cyclability and a long cycle life. PMID:27821751
Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix
2011-12-23
The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid-state rechargeable magnesium battery
Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng
2016-09-06
Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.
Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wang, Aiping; Kadam, Sanket; Li, Hong; Shi, Siqi; Qi, Yue
2018-03-01
A passivation layer called the solid electrolyte interphase (SEI) is formed on electrode surfaces from decomposition products of electrolytes. The SEI allows Li+ transport and blocks electrons in order to prevent further electrolyte decomposition and ensure continued electrochemical reactions. The formation and growth mechanism of the nanometer thick SEI films are yet to be completely understood owing to their complex structure and lack of reliable in situ experimental techniques. Significant advances in computational methods have made it possible to predictively model the fundamentals of SEI. This review aims to give an overview of state-of-the-art modeling progress in the investigation of SEI films on the anodes, ranging from electronic structure calculations to mesoscale modeling, covering the thermodynamics and kinetics of electrolyte reduction reactions, SEI formation, modification through electrolyte design, correlation of SEI properties with battery performance, and the artificial SEI design. Multi-scale simulations have been summarized and compared with each other as well as with experiments. Computational details of the fundamental properties of SEI, such as electron tunneling, Li-ion transport, chemical/mechanical stability of the bulk SEI and electrode/(SEI/) electrolyte interfaces have been discussed. This review shows the potential of computational approaches in the deconvolution of SEI properties and design of artificial SEI. We believe that computational modeling can be integrated with experiments to complement each other and lead to a better understanding of the complex SEI for the development of a highly efficient battery in the future.
Xu, Ruochen; Zhang, Shengzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Wu, Jianbo; Gu, Changdong; Tu, Jiangping
2018-04-20
Due to the increasing demand of security and energy density, all-solid-state lithium ion batteries have become the promising next-generation energy storage devices to replace the traditional liquid batteries with flammable organic electrolytes. In this Minireview, we focus on the recent developments of sulfide inorganic electrolytes for all-solid-state batteries. The challenges of assembling bulk-type all-solid-state batteries for industrialization are discussed, including low ionic conductivity of the present sulfide electrolytes, high interfacial resistance and poor compatibility between electrolytes and electrodes. Many efforts have been focused on the solutions for these issues. Although some progresses have been achieved, it is still far away from practical application. The perspectives for future research on all-solid-state lithium ion batteries are presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Complex hydrides as room-temperature solid electrolytes for rechargeable batteries
NASA Astrophysics Data System (ADS)
de Jongh, P. E.; Blanchard, D.; Matsuo, M.; Udovic, T. J.; Orimo, S.
2016-03-01
A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible with Li-metal anodes, prevent Li dendrite formation, and eliminate risks associated with flammable organic solvents. Less than 10 years ago, LiBH4 was proposed as a solid-state electrolyte. It showed a high ionic conductivity, but only at elevated temperatures. Since then a range of other complex metal hydrides has been reported to show similar characteristics. Strategies have been developed to extend the high ionic conductivity of LiBH4 down to room temperature by partial anion substitution or nanoconfinement. The present paper reviews the recent developments in complex metal hydrides as solid electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Hao; Xie, Yong; Xiang, Hongfa
Reformulation of electrolyte systems and improvement of separator wettability are vital to electrochemical performances of rechargeable lithium (Li) metal batteries, especially for suppressing Li dendrites. In this work we report a bifunctional electrolyte additive that improves separator wettability and suppresses Li dendrite growth in LMBs. A triblock polyether (Pluronic P123) was introduced as an additive into a commonly used carbonate-based electrolyte. It was found that addition of 0.2~1% (by weight) P123 into the electrolyte could effectively enhance the wettability of polyethylene separator. More importantly, the adsorption of P123 on Li metal surface can act as an artificial solid electrolyte interphasemore » layer and contribute to suppress the growth of Li dendrites. A smooth and dendritic-free morphology can be achieved in the electrolyte with 0.2% P123. The Li||Li symmetric cells with the 0.2% P123 containing electrolyte exhibit a relatively stable cycling stability at high current densities of 1.0 and 3.0 mA cm-2.« less
Younesi, Reza; Bardé, Fanny
2017-11-21
Successful usage of lithium metal as the negative electrode or anode in rechargeable batteries can be an important step to increase the energy density of lithium batteries. Performance of lithium metal in a relatively promising electrolyte solution composed of lithium bis(fluorosulfonyl)imide (LiN(SO 2 F) 2 ; LiFSI) salt dissolved in 1,2-dimethoxyethane (DME) is here studied. The influence of the concentration of the electrolyte salt -1 M or 4 M LiFSI- is investigated by varying important electrochemical parameters such as applied current density and plating capacity. X-ray photoelectron spectroscopy analysis as a surface sensitive technique is here used to analyze that how the composition of the solid electrolyte interphase varies with the salt concentration and with the number of cycles.
Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer
Singh, Prabhakar; Ruka, Roswell J.
1995-01-01
A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.
Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer
Singh, P.; Ruka, R.J.
1995-02-14
A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.
Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources
NASA Astrophysics Data System (ADS)
Liao, Kang-Shyang; Sutto, Thomas E.; Andreoli, Enrico; Ajayan, Pulickel; McGrady, Karen A.; Curran, Seamus A.
Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1- n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm -1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li xCoO 2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.
Horowitz, Yonatan; Han, Hui-Ling; Ralston, Walter T.; ...
2017-05-12
Fluorine-based additives have a tremendously beneficial effect on the performance of lithium-ion batteries, yet the origin of this phenomenon is unclear. This study shows that the formation of a solid-electrolyte interphase (SEI) on the anode surface in the first five charge/discharge cycles is affected by the stereochemistry of the electrolyte molecules on the anode surface starting at open-circuit potential (OCP). This study shows an anode-specific model system, the reduction of 1,2-diethoxy ethane with lithium bis(trifluoromethane)sulfonimide, as a salt on an amorphous silicon anode, and compares the electrochemical response and SEI formation to its fluorinated version, bis(2,2,2-trifluoroethoxy) ethane (BTFEOE), by summore » frequency generation (SFG) vibrational spectroscopy under reaction conditions. The SFG results suggest that the —CF 3 end-groups of the linear ether BTFEOE change their adsorption orientation on the a-Si surface at OCP, leading to a better protective layer. Finally, supporting evidence from ex situ scanning electron microscopy and X-ray photoelectron spectroscopy depth profiling measurements shows that the fluorinated ether, BTFEOE, yields a smooth SEI on the a-Si surface and enables lithium ions to intercalate deeper into the a-Si bulk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Yonatan; Han, Hui-Ling; Ralston, Walter T.
Fluorine-based additives have a tremendously beneficial effect on the performance of lithium-ion batteries, yet the origin of this phenomenon is unclear. This study shows that the formation of a solid-electrolyte interphase (SEI) on the anode surface in the first five charge/discharge cycles is affected by the stereochemistry of the electrolyte molecules on the anode surface starting at open-circuit potential (OCP). This study shows an anode-specific model system, the reduction of 1,2-diethoxy ethane with lithium bis(trifluoromethane)sulfonimide, as a salt on an amorphous silicon anode, and compares the electrochemical response and SEI formation to its fluorinated version, bis(2,2,2-trifluoroethoxy) ethane (BTFEOE), by summore » frequency generation (SFG) vibrational spectroscopy under reaction conditions. The SFG results suggest that the —CF 3 end-groups of the linear ether BTFEOE change their adsorption orientation on the a-Si surface at OCP, leading to a better protective layer. Finally, supporting evidence from ex situ scanning electron microscopy and X-ray photoelectron spectroscopy depth profiling measurements shows that the fluorinated ether, BTFEOE, yields a smooth SEI on the a-Si surface and enables lithium ions to intercalate deeper into the a-Si bulk.« less
Leenheer, Andrew Jay; Jungjohann, Katherine Leigh; Zavadil, Kevin Robert; ...
2015-03-18
Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm 2 leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. Themore » effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. As a result, we discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.« less
Organic fuel cell methods and apparatus
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Prakash, G. K. Surya (Inventor); Vamos, Eugene (Inventor); Olah, George A. (Inventor)
2001-01-01
A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.
Organic fuel cell methods and apparatus
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Frank, Harvey A. (Inventor); Prakash, G. K. Surya (Inventor)
2004-01-01
A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.
Organic fuel cell methods and apparatus
NASA Technical Reports Server (NTRS)
Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Olah, George A. (Inventor); Vamos, Eugene (Inventor); Narayanan, Sekharipuram R. (Inventor); Prakash, G. K. Surya (Inventor)
2008-01-01
A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veith, Gabriel M.; Doucet, Mathieu; Sacci, Robert L.
2017-07-24
In this work we explore how an electrolyte additive (fluorinated ethylene carbonate – FEC) mediates the thickness and composition of the solid electrolyte interphase formed over a silicon anode in situ as a function of state-of-charge and cycle. We show the FEC condenses on the surface at open circuit voltage then is reduced to C-O containing polymeric species around 0.9 V (vs. Li/Li +). The resulting film is about 50 Å thick. Upon lithiation the SEI thickens to 70 Å and becomes more organic-like. With delithiation the SEI thins by 13 Å and becomes more inorganic in nature, consistent withmore » the formation of LiF. This thickening/thinning is reversible with cycling and shows the SEI is a dynamic structure. We compare the SEI chemistry and thickness to 280 Å thick SEI layers produced without FEC and provide a mechanism for SEI formation using FEC additives.« less
An, Seong Jin; Li, Jianlin; Daniel, Claus; ...
2017-05-15
This study aims to explore the correlations between electrolyte volume, electrochemical performance, and properties of the solid electrolyte interphase in pouch cells with Si-graphite composite anodes. The electrolyte is 1.2 M LiPF 6 in ethylene carbonate:ethylmethyl carbonate with 10 wt.% fluoroethylene carbonate. Single layer pouch cells (100 mAh) were constructed with 15 wt.% Si-graphite/LiNi 0.5Mn 0.3CO 0.2O 2 electrodes. It is found that a minimum electrolyte volume factor of 3.1 times the total pore volume of cell components (cathode, anode, and separator) is needed for better cycling stability. Less electrolyte causes increases in ohmic and charge transfer resistances. Lithium dendritesmore » are observed when the electrolyte volume factor is low. The resistances from the anodes become significant as the cells are discharged. As a result, solid electrolyte interphase thickness grows as the electrolyte volume factor increases and is non-uniform after cycling.« less
Application of Organic Solid Electrolytes
NASA Technical Reports Server (NTRS)
Sekido, S.
1982-01-01
If ions are considered to be solid material which transport electric charges, polymer materials can then be considered as organic solid electrolytes. The role of these electrolytes is discussed for (1) ion concentration sensors; (2) batteries using lithium as the cathode and a charge complex of organic material and iodine in the anode; and (3) elements applying electrical double layer capability.
Li, Juchuan; Dudney, Nancy J; Nanda, Jagjit; Liang, Chengdu
2014-07-09
Electrochemical degradation on silicon (Si) anodes prevents them from being successfully used in lithium (Li)-ion battery full cells. Unlike the case of graphite anodes, the natural solid electrolyte interphase (SEI) films generated from carbonate electrolytes do not self-passivate on Si, causing continuous electrolyte decomposition and loss of Li ions. In this work, we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphorus oxynitride (Lipon), which conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, a significant effect is observed in suppressing electrolyte decomposition, while Lipon of thinner than 40 nm has a limited effect. Ionic and electronic conductivity measurements reveal that the artificial SEI is effective when it is a pure ionic conductor, but electrolyte decomposition is only partially suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40-50 nm. This work provides guidance for designing artificial SEI films for high-capacity Li-ion battery electrodes using solid electrolyte materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J; Nanda, Jagjit; Liang, Chengdu
2014-01-01
Electrochemical degradation on Si anodes prevents them from being successfully used in lithium-ion full cells. Unlike the case of graphite anodes, natural solid electrolyte interphase (SEI) films generated from carbonate electrolyte do not self-passivate on Si and causes continuous electrolyte decomposition. In this work we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphor oxynitride (Lipon), that conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, significant effect is observed in suppressing the electrolyte decomposition, while Lipon of thinner than 40more » nm has little effect. Ionic and electronic conductivity measurement reveals that the artificial SEI is effective when it is a pure ionic conductor, and the electrolyte decomposition is not suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40~50 nm. This work provides guidance for designing artificial SEI for high capacity lithium-ion battery electrodes using solid electrolyte materials.« less
Xia, Yan; Wang, Xiuli; Xia, Xinhui; Xu, Ruochen; Zhang, Shengzhao; Wu, Jianbo; Liang, Yanfei; Gu, Changdong; Tu, Jiangping
2017-10-26
Developing high-performance solid-state electrolytes is crucial for the innovation of next-generation lithium-sulfur batteries. Herein, a facile method for preparation of a novel gel polymer electrolyte (GPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) is reported. Furthermore, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 (LATP) nanoparticles as the active fillers are uniformly embedded into the GPE to form the final PVDF-HFP/LATP composite gel polymer electrolyte (CPE). Impressively, the obtained CPE demonstrates a high lithium ion transference number of 0.51 and improved electrochemical stability as compared to commercial liquid electrolyte. In addition, the assembled solid-sate Li-S battery with the composite gel polymer electrolyte membrane presents a high initial capacity of 918 mAh g -1 at 0.05 C, and better cycle performance than the counterparts with liquid electrolyte. Our designed PVDF-HFP/LATP composite can be a promising electrolyte for next-generation solid-state batteries with high cycling stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Marr, Michael; Kesler, Olivera
2012-12-01
Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.
Fast formation cycling for lithium ion batteries
An, Seong Jin; Li, Jianlin; Du, Zhijia; ...
2017-01-09
The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li +) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li +. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fastmore » and effective electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF 6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Finally, results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.« less
Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes.
Sun, Che-Nan; Zawodzinski, Thomas A; Tenhaeff, Wyatt E; Ren, Fei; Keum, Jong Kahk; Bi, Sheng; Li, Dawen; Ahn, Suk-Kyun; Hong, Kunlun; Rondinone, Adam J; Carrillo, Jan-Michael Y; Do, Changwoo; Sumpter, Bobby G; Chen, Jihua
2015-03-28
Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Chen, Yan; Hood, Zachary D.
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
Yu, Chuang; Ganapathy, Swapna; Eck, Ernst R H van; Wang, Heng; Basak, Shibabrata; Li, Zhaolong; Wagemaker, Marnix
2017-10-20
Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode-electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte-electrode interface design for future all-solid-state batteries.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen
2017-11-01
It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.
Basic investigation into the electrical performance of solid electrolyte membranes
NASA Technical Reports Server (NTRS)
Richter, R.
1982-01-01
The electrical performance of solid electrolyte membranes was investigated analytically and the results were compared with experimental data. It is concluded that in devices that are used for pumping oxygen the major power losses have to be attributed to the thin film electrodes. Relations were developed by which the effectiveness of tubular solid electrolyte membranes can be determined and the optimum length evaluated. The observed failure of solid electrolyte tube membranes in very localized areas is explained by the highly non-uniform current distribution in the membranes. The analysis points to a possible contact resistance between the electrodes and the solid electrolyte material. This possible contact resistance remains to be investigated experimentally. It is concluded that film electrodes are not appropriate for devices which operate with current flow, i.e., pumps though they can be employed without reservation in devices that measure oxygen pressures if a limited increase in the response time can be tolerated.
Hou, Peiyu; Zhang, Hongzhou; Deng, Xiaolong; Xu, Xijin; Zhang, Lianqi
2017-09-06
The unstable electrode/electrolyte interface of high-capacity LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) cathodes, especially at a highly delithiated state, usually leads to the transformation of layered to spinel and/or rock-salt phases, resulting in drastic capacity fade and poor thermal stability. Herein, the Al-increased and Ni-,Co-decreased electrode surface is fabricated through tailoring element distribution in micrometer-sized spherical NCA secondary particles via coprecipitation and solid-state reactions, aimed at stabilizing the electrode/electrolyte interface during continuous cycles. As expected, it shows much extended cycle life, 93.6% capacity retention within 100 cycles, compared with that of 78.5% for the normal NCA. It also delivers large reversible capacity of about 140 mAh g -1 even at 20 C, corresponding to energy density of around 480 Wh kg -1 , which is enhanced by 45% compared to that of the normal NCA (about 330 Wh kg -1 ). Besides, the delayed heat emission temperature and reduced heat generation mean remarkably improved thermal stability. These foregoing improvements are ascribed to the Al-increased spherical secondary particle surface that stabilizes the electrode/electrolyte interface by protecting inner components from directly contacting with electrolyte and suppressing the side reaction on electrode surface between high oxidizing Ni 4+ and electrolyte.
NASA Astrophysics Data System (ADS)
Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin
2014-03-01
Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.
Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same
NASA Technical Reports Server (NTRS)
Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)
2014-01-01
A gas sensor comprises a substrate layer; a pair of interdigitated metal electrodes, said electrodes include upper surfaces, the electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, Os, and their alloys. A first layer of solid electrolyte staying in between electrode fingers and partially on said upper surfaces of said electrodes, said first layer selected from NASICON, LISICON, KSICON and.beta.''-Alumina. A second layer of metal carbonate(s) as an auxiliary electrolyte engaging said upper surfaces of the electrodes and the first solid electrolyte. The metal carbonates selected from the group consisting of the following ions Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+, Ba.sup.2+, and any combination thereof. An extra layer of metal oxide selected from the group consisting of SnO.sub.2, In.sub.2O.sub.3, TiO.sub.2, WO.sub.3, ZnO, Fe.sub.2O.sub.3, ITO, CdO, U.sub.3O.sub.8, Ta.sub.2O.sub.5, BaO, MoO.sub.2, MoO.sub.3, V.sub.2O.sub.5, Nb.sub.2O.sub.5, CuO, Cr.sub.2O.sub.3, La.sub.2O.sub.3, RuO.sub.3, RuO.sub.2, ReO.sub.2, ReO.sub.3, Ag.sub.2O, CoO, Cu.sub.2O, SnO, NiO, Pr.sub.2O.sub.3, BaO, PdO.sub.2, HfO.sub.3, HfO.sub.3 or other metal oxide and their mixtures residing above and in engagement with the second electrolyte to improve sensor performance and/or to reduce sensor heating power consumption.
NASA Astrophysics Data System (ADS)
Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao
2014-11-01
Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho
2016-01-15
Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solidmore » oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.« less
NASA Astrophysics Data System (ADS)
Fleetwood, James D.
Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak power densities as high as 520 mW/cm2 at 800 °C for YSZ and 350 mW/cm 2 at 800 °C for YSZ/GDC bilayer electrolytes.
A review of lithium and non-lithium based solid state batteries
NASA Astrophysics Data System (ADS)
Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam
2015-05-01
Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.
Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan
2014-01-01
Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10−4 S cm−1) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety. PMID:25183416
Oxygen concentration sensor for an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, T.; Okada, Y.; Mieno, T.
1988-09-29
This patent describes an oxygen concentration sensor, comprising: an oxygen ion conductive solid electrolyte member forming a gas diffusion restricted region into which a measuring gas is introduced; a pair of electrodes sandwiching the solid electrolyte member; pump current supply means applying a pump voltage to the pair of electrodes through a current detection element to generate a pump current; and a heater element connected to the solid electrolyte member for heating the solid electrolyte member for heating the solid electrolyte member when a heater current is supplied from a heater current source; wherein the oxygen concentration sensor detects anmore » oxygen concentration in the measuring gas in terms of a current value of the pump current supplied through the current detection element and controls oxygen concentration in the gas diffusion restricted region by conducting oxygen ions through the solid electrolyte member in accordance to the flow of the pump current; and wherein the current detection element is connected to the electrode of the pair of electrodes facing the gas diffusion restricted region for insuring that the current value is representative of the pump current and possible leakage current from the heater current.« less
Li, Yunsong; Leung, Kevin; Qi, Yue
2016-09-30
A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li + ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li + and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li -metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yunsong; Leung, Kevin; Qi, Yue
A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have “selective” transport properties: blocking electrons from attacking the electrolytes, while allowing Li + ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li + + e → Li 0, occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. We consider the passivation layer, called “solid electrolyte interphasemore » (SEI)”, as “the most important but the least understood in rechargeable Li-ion batteries,” partly due to the lack of understanding of its structure–property relationship. In predictive modeling, starting from the ab initio level, we find that it is an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li + ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li + and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li + transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure–property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li 2CO 3, LiF, Li 2O, and their mixtures. After sorting out the Li+ ion diffusion carriers and their diffusion pathways, we design methods to accelerate the Li + ion conductivity by doping and by using heterogonous structure designs. We will predict the electron tunneling barriers and connect them with measurable first cycle irreversible capacity loss. We note that the SEI not only affects Li + and e – transport, but it can also impose a potential drop near the Li-metal|SEI interface. Our challenge is to fully describe the electrochemical reactions at the Li -metal|SEI|electrolyte interface. This will be the subject of ongoing efforts.« less
Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks.
Shen, Li; Wu, Hao Bin; Liu, Fang; Brosmer, Jonathan L; Shen, Gurong; Wang, Xiaofeng; Zink, Jeffrey I; Xiao, Qiangfeng; Cai, Mei; Wang, Ge; Lu, Yunfeng; Dunn, Bruce
2018-06-01
Solid-state electrolytes are the key to the development of lithium-based batteries with dramatically improved energy density and safety. Inspired by ionic channels in biological systems, a novel class of pseudo solid-state electrolytes with biomimetic ionic channels is reported herein. This is achieved by complexing the anions of an electrolyte to the open metal sites of metal-organic frameworks (MOFs), which transforms the MOF scaffolds into ionic-channel analogs with lithium-ion conduction and low activation energy. This work suggests the emergence of a new class of pseudo solid-state lithium-ion conducting electrolytes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid-Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages.
Petronico, Aaron; Moneypenny, Timothy P; Nicolau, Bruno G; Moore, Jeffrey S; Nuzzo, Ralph G; Gewirth, Andrew A
2018-06-20
We demonstrate that solid-liquid nanocomposites derived from porous organic cages are effective lithium ion electrolytes at room temperature. A solid-liquid electrolyte nanocomposite (SLEN) fabricated from a LiTFSI/DME electrolyte system and a porous organic cage exhibits ionic conductivity on the order of 1 × 10 -3 S cm -1 . With an experimentally measured activation barrier of 0.16 eV, this composite is characterized as a superionic conductor. Furthermore, the SLEN displays excellent oxidative stability up to 4.7 V vs Li/Li + . This simple three-component system enables the rational design of electrolytes from tunable discrete molecular architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guoxing; Gao, Yue; He, Xin
Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g -1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as “plasticizer” in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% overmore » 400 cycles at a current density of 2mAcm -2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.« less
Li, Guoxing; Gao, Yue; He, Xin; ...
2017-10-11
Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g -1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as “plasticizer” in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% overmore » 400 cycles at a current density of 2mAcm -2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.« less
Method of doping interconnections for electrochemical cells
Pal, Uday B.; Singhal, Subhash C.; Moon, David M.; Folser, George R.
1990-01-01
A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.
Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.
Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing
2017-08-09
High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V 2 O 5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V 2 O 5 cathode was significantly decreased from 2.5 × 10 4 to 71 Ω·cm 2 at room temperature and from 170 to 31 Ω·cm 2 at 100 °C. Additionally, the diffusion resistance in the V 2 O 5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm 2 and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V 2 O 5 cathode and garnet solid electrolyte without compromising battery safety or performance.
NASA Astrophysics Data System (ADS)
Pitawala, H. M. J. C.; Dissanayake, M. A. K. L.; Seneviratne, V. A.
2006-06-01
Poly (ethylene oxide)-(PEO)-based composite polymer electrolytes are of great interest for solid-state-electrochemical devices. This paper presents the results of a preliminary study on electrical conductivity and thermal behavior (DSC) of composite polymer electrolytes (CPEs) containing PEO: LiCF3SO3 complexed with plasticizer (EC) and incorporating nano-sized particles of the ceramic filler Al2O3. Ionic conductivity enhancement in these electrolytes has been obtained by optimizing the combined effect of the plasticizer and the ceramic filler. Nano-composite, plasticized polymer electrolyte films (400-600μm) were prepared by common solvent casting method. It was revealed that the presence of the Al2O3 filler in PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity in the temperature range of interest, giving the maximum conductivity for (PEO)9LiTf+15 wt.% Al2O3 CPE [σRT (max)=2×10-5 S cm-1]. It was also observed that the addition of plasticizer (EC) to this electrolyte up to a concentration of 50 wt. % EC, showed a further conductivity enhancement [σRT (max) = 1.5×10-4 S cm-1]. It is suggested that the conductivity is enhanced mainly by two mechanisms. The plasticizer (EC) would directly contribute by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolytes. The ceramic filler (Al2O3) would contribute to conductivity enhancement by creating additional sites to migrating ionic species through transient bonding with O/OH groups in the filler surface. The decrease of Tg values of plasticized CPE systems seen in the DSC thermograms points towards the improved segmental flexibility of polymer chains, increasing the mobility of conducting ions.
Electrical contact structures for solid oxide electrolyte fuel cell
Isenberg, Arnold O.
1984-01-01
An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.
Fan, Lidan; Wang, Mengyue; Zhang, Zhen; Qin, Gang; Hu, Xiaoyi; Chen, Qiang
2018-04-26
Natural bamboo charcoal (BC) powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA)-based alkaline solid polymer electrolyte (ASPE) by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm) distributed inside and on the surface of the membranes, indicating a three-dimension network formed in the polymer framework. The ionic conductivity was measured by the alternating-current (AC) impedance method, and the highest conductivity value of 6.63 × 10 −2 S·cm −1 was obtained with 16 wt % of BC content and m KOH : m PVA = 2:1.5 at 30 °C. The contents of BC and KOH could significantly influence the conductivity. The temperature dependence of the bulk electrical conductivity displayed a combination of Arrhenius nature, and the activation energy for the ion in polymer electrolyte has been calculated. The electrochemical stability window of the electrolyte membrane was over 1.6 V. The thermogravimetric analysis curves showed that the degradation temperatures of PVA-BC-KOH ASPE membranes shifted toward higher with adding BC. A simple nickel-hydrogen battery containing PVA-BC-KOH electrolyte membrane was assembled with a maximum discharge capacity of 193 mAh·g −1 .
Rupture and Spreading Dynamics of Lipid Membranes on a Solid Surface
NASA Astrophysics Data System (ADS)
Perazzo, Antonio; Shin, Sangwoo; Colosqui, Carlos; Young, Yuan-Nan; Stone, Howard A.
2017-11-01
The spreading of lipid membranes on solid surfaces is a dynamic phenomenon relevant to drug delivery, endocytosis, biofouling, and the synthesis of supported lipid bilayers. Current technological developments are limited by an incomplete understanding of the spreading and adhesion dynamics of a lipid bilayer under different physicochemical conditions. Here, we present recent experimental and theoretical results for the spreading of giant unilamellar vesicles (GUVs), where the vesicle shell consists of a lipid bilayer. In particular, we study the effect of different background ion concentrations, osmolarity mismatches between the interior and the exterior of the vesicles, and different surface chemistries of the glass substrate. In all of the studied cases, we observe a delay time before a GUV in contact with the solid surface eventually ruptures. The rupture kinetics and subsequent spreading dynamics is controlled by the ionic screening within the thin film of liquid between the vesicle and the surface. Different rupture mechanisms, mobilities of the spreading vesicle, and degrees of substrate coverage are observed by varying the electrolyte concentration, solid surface charge, and osmolarity mismatch.
2010-06-01
cell ( PEMFC ), and the phosphoric acid fuel cell (PAFC). 2.3.1 Solid Oxide Fuel Cells (SOFC) The first type of fuel cell considered is the SOFC. This...durability issues for use within a given application. 2.3.2 Polymer Electrolyte Membrane Fuel Cells ( PEMFC ) The PEMFC operates by passing hydrogen that has...cells. Some advantages of PEMFC operating at such low temperatures is that the fuel cell doesn’t require as meticulous of a support system infrastructure
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, John P.
1992-01-01
A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
Self‐Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery
Wu, Feng; Chen, Nan; Zhu, Qizhen; Tan, Guoqiang; Li, Li
2016-01-01
The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator‐based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable “nanogelator” that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid‐like apparent ionic conductivity of 2.93 × 10−3 S cm−1 at room temperature. The results show that the nanogelator, which possess self‐regulating ability, is able to immobilize imidazolium‐, pyrrolidinium‐, or piperidinium‐based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti‐nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes. PMID:27774385
Wu, Feng; Chen, Nan; Chen, Renjie; Zhu, Qizhen; Tan, Guoqiang; Li, Li
2016-01-01
The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator-based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable "nanogelator" that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid-like apparent ionic conductivity of 2.93 × 10 -3 S cm -1 at room temperature. The results show that the nanogelator, which possess self-regulating ability, is able to immobilize imidazolium-, pyrrolidinium-, or piperidinium-based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti-nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes.
An air-stable Na 3SbS 4 superionic conductor prepared by a rapid and economic synthetic procedure
Wang, Hui; Chen, Yan; Hood, Zachary D.; ...
2016-01-01
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
Wenzel, Sebastian; Leichtweiss, Thomas; Weber, Dominik A; Sann, Joachim; Zeier, Wolfgang G; Janek, Jürgen
2016-10-05
The interfacial stability of solid electrolytes at the electrodes is crucial for an application of all-solid-state batteries and protected electrodes. For instance, undesired reactions between sodium metal electrodes and the solid electrolyte form charge transfer hindering interphases. Due to the resulting large interfacial resistance, the charge transfer kinetics are altered and the overvoltage increases, making the interfacial stability of electrolytes the limiting factor in these systems. Driven by the promising ionic conductivities of Na 3 PS 4 , here we explore the stability and viability of Na 3 PS 4 as a solid electrolyte against metallic Na and compare it to that of Na-β″-Al 2 O 3 (sodium β-alumina). As expected, Na-β″-Al 2 O 3 is stable against sodium, whereas Na 3 PS 4 decomposes with an increasing overall resistance, making Na-β″-Al 2 O 3 the electrolyte of choice for protected sodium anodes and all-solid-state batteries.
Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.
Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B
2012-06-01
Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.
Electrolytes for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fergus, Jeffrey W.
The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.
Fabrication, testing and simulation of all solid state three dimensional Li-ion batteries
Talin, Albert Alec; Ruzmetov, Dmitry; Kolmakov, Andrei; ...
2016-11-10
Realization of safe, long cycle life and simple to package solid-state rechargeable batteries with high energy and power density has been a long-standing goal of the energy storage community. [1,2] Much of the research activity has been focused on developing new solid electrolytes with high Li ionic conductivity. In addition, LiPON, the only solid electrolyte currently used in commercial thin film solid state Li-ion batteris (SSLIBs), has a conductivity of ~10 -6 S/cm, compared to ~0.01 S/cm typically observed for liquid organic electrolytes [3].
Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.
Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi; Tatsumisago, Masahiro
2012-05-22
Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safety, long-cycle lives and versatile geometries. Rechargeable sodium batteries are more suitable than lithium-ion batteries, because they use abundant and ubiquitous sodium sources. Solid electrolytes are critical for realizing all-solid-state sodium batteries. Here we show that stabilization of a high-temperature phase by crystallization from the glassy state dramatically enhances the Na(+) ion conductivity. An ambient temperature conductivity of over 10(-4) S cm(-1) was obtained in a glass-ceramic electrolyte, in which a cubic Na(3)PS(4) crystal with superionic conductivity was first realized. All-solid-state sodium batteries, with a powder-compressed Na(3)PS(4) electrolyte, functioned as a rechargeable battery at room temperature.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Feng, Jiwen
2017-01-01
Abstract It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self‐catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte (C‐PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 8.9 × 10−5 S cm−1 at ambient temperature. Moreover, the LiFePO4/C‐PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self‐catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes. PMID:29201612
Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin
2018-04-07
A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br - in PIL-M-(Br) and TFSI - in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br - and TFSI - , respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g - ¹, 40 and 48 kW·kg - ¹, and 107 and 59.9 Wh·kg - ¹ were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively.
Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; ...
2015-08-06
Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition thatmore » is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.« less
Gorbacheva, E V; Ganchenko, G S; Demekhin, E A
2018-03-27
The stability of the electroosmotic flow of electrolyte-dielectric viscous liquids under the influence of the DC and AC electric fields along with the external pressure gradient is studied theoretically. Liquids are bounded by two infinite parallel plates. The lower wall bordering the electrolyte is assumed to be a charged surface, and the upper wall is electrically isolated. The charge at the lower boundary is assumed to be immobile, while the surface charge at the free surface is assumed to be mobile. In this paper, we study the micro- and nanosized liquid layers. The mathematical model is described by a nonlinear system of the Nernst-Planck-Poisson-Stokes partial differential equations with the appropriate boundary conditions on the solid surface, the electrolyte/dielectric interface, and on the upper wall. The pressure gradient is highly important for the stability of the flow. For the DC case, the external pressure could either stabilize and destabilize the flow depending on the relative directions of the electroosmotic flow and the pressure-driven flow. For the AC case, the dependence on the value of the external pressure is not monotonous for different wave numbers of perturbations, but, as a rule, the external pressure destabilizes the flow. As the frequency of the electric field increases, the one-dimensional solution of the problem becomes stable.
Method for making an electrochemical cell
Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.; Pal, Uday B.
1996-01-01
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.
Hydrodynamic boundary condition of water on hydrophobic surfaces.
Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian
2013-05-01
By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.
Electrolyte materials containing highly dissociated metal ion salts
Lee, H.S.; Geng, L.; Skotheim, T.A.
1996-07-23
The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.
Cavallo, Carmen; Salleo, Alberto; Gozzi, Daniele; Di Pascasio, Francesco; Quaranta, Simone; Panetta, Riccardo; Latini, Alessandro
2015-01-01
Solid solutions of the rare earth (RE) cations Pr3+, Nd3+, Sm3+, Gd3+, Er3+ and Yb3+ in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1–0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m2/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J–V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr3+, Nd3+) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm3+ onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er3+ at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms. PMID:26577287
NASA Astrophysics Data System (ADS)
Leung, Kevin
2015-03-01
Electrochemical reactions at electrode/electrolyte interfaces are critically dependent on the total electrochemical potential or voltage. In this presentation, we briefly review ab initio molecular dynamics (AIMD)-based estimate of voltages on graphite basal and edge planes, and then apply similar concepts to solid-solid interfaces relevant to lithium ion and Li-air batteries. Thin solid films on electrode surfaces, whether naturally occuring during power cycling (e.g., undesirable lithium carbonate on Li-air cathodes) or are artificially introduced, can undergo electrochemical reactions as the applied voltage varies. Here the onset of oxidation of lithium carbonate and other oxide thin films on model gold electrode surfaces is correlated with the electronic structure in the presence/absence of solvent molecules. Our predictions help determine whether oxidation first occurs at the electrode-thin film or electrolyte-thin film interface. Finally, we will critically compare the voltage estimate methodology used in the fuel cell community with the lithium cohesive energy calibration method broadly applied in the battery community, and discuss why they may yield different predictions. This work was supported by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Current status of solid-state lithium batteries employing solid redox polymerization cathodes
NASA Astrophysics Data System (ADS)
Visco, S. J.; Doeff, M. M.; Dejonghe, L. C.
1991-03-01
The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to nonaqueous liquid electrolytes implies low power densities for solid state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10(exp -4)/ohm cm at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid state batteries in the realm of practical devices, it is clear that solid state batteries using such polymeric separators will be thin film devices. Fortunately, thin film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost-competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin film solid state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep (Inventor); Fujita, Toshio (Inventor)
1991-01-01
A thermal power transfer system using a phase change liquid gas fluid in a closed loop configuration has a heat exchanger member connected to a gas conduit for inputting thermal energy into the fluid. The pressure in the gas conduit is higher than a liquid conduit that is connected to a heat exchanger member for outputting thermal energy. A solid electrolyte member acts as a barrier between the gas conduit and the liquid conduit adjacent to a solid electrolyte member. The solid electrolyte member has the capacity of transmitting ions of a fluid through the electrolyte member. The ions can be recombined with electrons with the assistance of a porous electrode. An electrical field is applied across the solid electrolyte member to force the ions of the fluid from a lower pressure liquid conduit to the higher pressure gas conduit.
Bitner-Michalska, Anna; Nolis, Gene M.; Żukowska, Grażyna; Zalewska, Aldona; Poterała, Marcin; Trzeciak, Tomasz; Dranka, Maciej; Kalita, Michał; Jankowski, Piotr; Niedzicki, Leszek; Zachara, Janusz; Marcinek, Marek; Wieczorek, Władysław
2017-01-01
A new family of fluorine-free solid-polymer electrolytes, for use in sodium-ion battery applications, is presented. Three novel sodium salts withdiffuse negative charges: sodium pentacyanopropenide (NaPCPI), sodium 2,3,4,5-tetracyanopirolate (NaTCP) and sodium 2,4,5-tricyanoimidazolate (NaTIM) were designed andtested in a poly(ethylene oxide) (PEO) matrix as polymer electrolytes for anall-solid sodium-ion battery. Due to unique, non-covalent structural configurations of anions, improved ionic conductivities were observed. As an example, “liquid-like” high conductivities (>1 mS cm−1) were obtained above 70 °C for solid-polymer electrolyte with a PEO to NaTCP molar ratio of 16:1. All presented salts showed high thermal stability and suitable windows of electrochemical stability between 3 and 5 V. These new anions open a new class of compounds with non-covalent structure for electrolytes system applications. PMID:28067301
NASA Astrophysics Data System (ADS)
Bitner-Michalska, Anna; Nolis, Gene M.; Żukowska, Grażyna; Zalewska, Aldona; Poterała, Marcin; Trzeciak, Tomasz; Dranka, Maciej; Kalita, Michał; Jankowski, Piotr; Niedzicki, Leszek; Zachara, Janusz; Marcinek, Marek; Wieczorek, Władysław
2017-01-01
A new family of fluorine-free solid-polymer electrolytes, for use in sodium-ion battery applications, is presented. Three novel sodium salts withdiffuse negative charges: sodium pentacyanopropenide (NaPCPI), sodium 2,3,4,5-tetracyanopirolate (NaTCP) and sodium 2,4,5-tricyanoimidazolate (NaTIM) were designed andtested in a poly(ethylene oxide) (PEO) matrix as polymer electrolytes for anall-solid sodium-ion battery. Due to unique, non-covalent structural configurations of anions, improved ionic conductivities were observed. As an example, “liquid-like” high conductivities (>1 mS cm-1) were obtained above 70 °C for solid-polymer electrolyte with a PEO to NaTCP molar ratio of 16:1. All presented salts showed high thermal stability and suitable windows of electrochemical stability between 3 and 5 V. These new anions open a new class of compounds with non-covalent structure for electrolytes system applications.
1988-12-01
coatings based on the Ca(Sr,Y)- Ge-S system can serve as an effective SSEI for Ca anodes in Ca-SOC12 primary cells using 1 M Ca(AlCl4 )2 as the electrolyte...I iy - LFI. CDY 4 EXPERIMENTAL EVALUATION OF THE SYNTHETIC SOLID ELECTROLYTE INTERFACE ( SSEI ) CONCEPT FOR THE PRIMARY Ca-SOC1 2 BA LERY SYSTEM...apply the concept of a synthetic solid electrolyte interface ( SSEI ) to overcome the problem of Ca corro- sion in Ca-SOC 2 primary cells. / To this end
High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature
NASA Astrophysics Data System (ADS)
Mindemark, Jonas; Sun, Bing; Törmä, Erik; Brandell, Daniel
2015-12-01
Incorporation of carbonate repeating units in a poly(ε-caprolactone) (PCL) backbone used as a host material in solid polymer electrolytes is found to not only suppress crystallinity in the polyester material, but also give higher ionic conductivity in a wide temperature range exceeding the melting point of PCL crystallites. Combined with high cation transference numbers, this electrolyte material has sufficient lithium transport properties to be used in battery cells that are operational at temperatures down to below 23 °C, thus clearly demonstrating the potential of using non-polyether electrolytes in high-performance all-solid lithium polymer batteries.
Li, Wenwen; Zhang, Sanpei; Wang, Bangrun; Gu, Sui; Xu, Dong; Wang, Jianing; Chen, Chunhua; Wen, Zhaoyin
2018-06-19
Solid polymer electrolytes (SPEs) have shown extraordinary promise for all-solid-state lithium metal batteries with high energy density and flexibility but are mainly limited by the low ionic conductivity and their poor stability with lithium metal anode. In this work, we propose a highly ordered porous electrolyte additive derived from SSZ-13 for high-rate all-solid-state lithium metal batteries. The nanoporous adsorption effect provided by the highly ordered porous nanoparticles in the poly (ethylene oxide) (PEO) electrolyte are found to significantly improve the Li + conductivity (1.91×10 -3 S cm -1 at 60°C, 4.43×10 -5 S cm -1 at 20°C) and widen the electrochemical stability window to 4.7 V vs Li + /Li. Meanwhile, the designed PEO-based electrolyte demonstrates enhanced stability with the lithium metal anode. Through systematically increasing Li + diffusion, widening the electrochemical stability window and enhancing the stability of the SSZ-CPE electrolyte, the LiFePO4/SSZ-CPE/Li cell is optimized to deliver high-rate capability and stable cycling performance, which demonstrates great potential for all-solid-state energy storage application.
Patil, Vaishali; Patil, Arun; Yoon, Seok-Jin; Choi, Ji-Won
2013-05-01
During last two decades, lithium-based glasses have been studied extensively as electrolytes for solid-state secondary batteries. For practical use, solid electrolyte must have high ionic conductivity as well as chemical, thermal and electrochemical stability. Recent progresses have focused on glass electrolytes due to advantages over crystalline solid. Glass electrolytes are generally classified into two types oxide glass and sulfide glass. Oxide glasses do not react with electrode materials and this chemical inertness is advantageous for cycle performances of battery. In this study, major effort has been focused on the improvement of the ion conductivity of nanosized LiAlTi(PO4)3 oxide electrolyte prepared by mechanical milling (MM) method. After heating at 1000 degrees C the material shows good crystallinity and ionic conductivity with low electronic conductivity. In LiTi2(PO4)3, Ti4+ ions are partially substituted by Al3+ ions by heat-treatment of Li20-Al2O3-TiO2-P2O5 glasses at 1000 degrees C for 10 h. The conductivity of this material is 1.09 x 10(-3) S/cm at room temp. The glass-ceramics show fast ion conduction and low E(a) value. It is suggested that high conductivity, easy fabrication and low cost make this glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li rechargeable batteries.
Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassal, N.; Salmon, E.; Fauvarque, J.F.
1999-01-01
Sealed alkaline solid polymer electrolyte nickel/metal hydride laboratory cells have been constructed and tested to evaluate their properties. Studies of the cycle life, self-discharge, and behavior of cells at different temperatures were carried out. The first results on the electrochemical behavior of an alkaline solid polymer electrolyte [based on poly(ethylene oxide), potassium hydroxide, and water] medium are presented here and show good reversibility of this all-solid-state system for more than 500 cycles, without significant loss of capacity and with a reasonable average discharge efficiency (close to 80%). The temperature-dependence study allowed the determination of optimum operating conditions between 0 andmore » 40 C. Characteristics of the solid polymer electrolyte based Ni/MH cells are compared to those of several other rechargeable battery systems.« less
Liu, Jie; Qian, Tao; Wang, Mengfan; Zhou, Jinqiu; Xu, Na; Yan, Chenglin
2018-06-07
Lithium metal batteries have attracted increasing attention recently due to their particular advantages in energy density. However, as for their practical application, the development of solid-state lithium metal batteries is restricted because of the poor Li/electrolyte interface, low Li-ion conductivity, and irregular growth of Li dendrites. To address the above issues, we herein report a high Li-ion conductivity and compatible polymeric interfacial layer by grafting tween-20 on active lithium metal. Sequential oxyethylene groups in tween-grafted Li (TG-Li) improve the ion conductivity and the compatibility of the Li/electrolyte interface, which enables low overpotentials and stable performance over 1000 cycles. Consequently, the poly(ethylene oxide)-based solid-state lithium-sulfur battery with TG-Li exhibits a high reversible capacity of 1051.2 mA h g -1 at 0.2 C (1 C = 1675 mA h g -1 ) and excellent stability for 500 cycles at 2 C. The decreasing concentration of the sulfur atom with increasing Ar + sputtering depth indicates that the polymer interfacial layer works well in suppressing polysulfide reduction to Li 2 S/Li 2 S 2 on the metallic Li surface even after long-term cycling.
A novel method for preparation of high dense tetragonal Li7La3Zr2O12
NASA Astrophysics Data System (ADS)
Zhao, Pengcheng; Wen, Yuehua; Cheng, Jie; Cao, Gaoping; Jin, Zhaoqing; Ming, Hai; Xu, Yan; Zhu, Xiayu
2017-03-01
For conventional preparation methods of Li7La3Zr2O12 (LLZO) solid state electrolytes, there is a stereotype that higher density always comes from higher pressure enforced upon the LLZO pellets. In this paper, a different way with an auto-consolidation mechanism is provided and discussed. No pressing operations are employed during the whole preparation process. Due to the surface tension of liquid melted Li2O at sintering temperature, LLZO particles could aggregate together freely and automatically. The preparation process for dense LLZO is greatly simplified. A dense tetragonal LLZO with high relative density about 93% has been prepared successfully by this auto-consolidation method. And there are no voids observed in the SEM images. At 30 °C, the total conductivity is about 5.67 × 10-5 S cm-1, which is the highest one for tetragonal LLZO in the reported issues, even two times higher than that prepared by hot-pressing method. The activation energy for total conductivity is ∼0.35 eV atom-1 at 30-120 °C, slightly lower than the previous reported values. This work sheds light on the understanding of the consolidation mechanism for solid electrolytes and suggests a reliable route to syhthesize cemanic solid electrolytes.
Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries
NASA Astrophysics Data System (ADS)
Piwko, Markus; Thieme, Sören; Weller, Christine; Althues, Holger; Kaskel, Stefan
2017-09-01
Columnar silicon structures are proven as high performance anodes for high energy batteries paired with low (sulfur) or high (nickel-cobalt-aluminum oxide, NCA) voltage cathodes. The introduction of a fluorinated ether/sulfolane solvent mixture drastically improves the capacity retention for both battery types due to an improved solid electrolyte interface (SEI) on the surface of the silicon electrode which reduces irreversible reactions normally causing lithium loss and rapid capacity fading. For the lithium silicide/sulfur battery cycling stability is significantly improved as compared to a frequently used reference electrolyte (DME/DOL) reaching a constant coulombic efficiency (CE) as high as 98%. For the silicon/NCA battery with higher voltage, the addition of only small amounts of fluoroethylene carbonate (FEC) to the novel electrolyte leads to a stable capacity over at least 50 cycles and a CE as high as 99.9%. A high volumetric energy density close to 1000 Wh l-1 was achieved with the new electrolyte taking all inactive components of the stack into account for the estimation.
Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond
NASA Astrophysics Data System (ADS)
Zhu, Hongzheng; Liu, Jian
2018-07-01
Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.
NASA Astrophysics Data System (ADS)
Isaacs, H. S.
Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.
NASA Astrophysics Data System (ADS)
Venkatesan, Shanmugam; Obadja, Nesia; Chang, Ting-Wei; Chen, Li-Tung; Lee, Yuh-Lang
2014-12-01
Poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) and poly (acrylonitrile-co-vinyl acetate) (PAN-VA) are used as gelator to prepare gel- and solid-state polymer electrolytes for dye sensitized solar cells (DSSCs) applications. The electrolytes prepared using PVDF-HFP have higher conductivities than those prepared using PAN-VA. In blended polymers, the conductivities of the electrolytes increase with increasing composition of PVDF-HFP; at 75% PVDF-HFP, conductivity of the blended polymer surpassed that of pure polymers. It is also found that the viscosity of the electrolyte prepared by PAN-VA (1.2 kPaS) is much lower than that by PVDF-HFP (11 kPaS). Therefore, increasing PAN-VA composition can decrease the viscosity of the electrolyte, improving the penetration of electrolytes in the TiO2 matrix. By controlling the ratio of PVDF-HFP/PAN-VA, the conductivity and viscosity of the electrolyte can be regulated and an optimal ratio based on the conversion efficiency of the gel- and solid state DSSCs is obtained at the ratio of 3/1. The highest efficiency achieved by the gel- and solid-state cells using the blending polymers are 6.3% and 4.88%, respectively, which are higher than those prepared using pure polymers (5.53% and 4.56%, respectively). The introduction of TiO2 fillers to the solid electrolyte can further increase the cell efficiency to 5.34%.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, J.P.
1992-03-17
A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B
2015-08-01
Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Electrocatalytic transformation of HF impurity to H 2 and LiF in lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strmcnik, Dusan; Castelli, Ivano E.; Connell, Justin G.
The formation of solid electrolyte interphase on graphite anodes plays a key role in the efficiency of Li-ion batteries. However, to date, fundamental understanding of the formation of LiF as one of the main solid electrolyte interphase components in hexafluorophosphate-based electrolytes remains elusive. In this paper, we present experimental and theoretical evidence that LiF formation is an electrocatalytic process that is controlled by the electrochemical transformation of HF impurity to LiF and H 2. Although the kinetics of HF dissociation and the concomitant production of LiF and H 2 is dependent on the structure and nature of surface atoms, themore » underlying electrochemistry is the same. The morphology, and thus the role, of the LiF formed is strongly dependent on the nature of the substrate and HF inventory, leading to either complete or partial passivation of the interface. Finally, our finding is of general importance and may lead to new opportunities for the improvement of existing, and design of new, Li-ion technologies.« less
Electrocatalytic transformation of HF impurity to H 2 and LiF in lithium-ion batteries
Strmcnik, Dusan; Castelli, Ivano E.; Connell, Justin G.; ...
2018-04-09
The formation of solid electrolyte interphase on graphite anodes plays a key role in the efficiency of Li-ion batteries. However, to date, fundamental understanding of the formation of LiF as one of the main solid electrolyte interphase components in hexafluorophosphate-based electrolytes remains elusive. In this paper, we present experimental and theoretical evidence that LiF formation is an electrocatalytic process that is controlled by the electrochemical transformation of HF impurity to LiF and H 2. Although the kinetics of HF dissociation and the concomitant production of LiF and H 2 is dependent on the structure and nature of surface atoms, themore » underlying electrochemistry is the same. The morphology, and thus the role, of the LiF formed is strongly dependent on the nature of the substrate and HF inventory, leading to either complete or partial passivation of the interface. Finally, our finding is of general importance and may lead to new opportunities for the improvement of existing, and design of new, Li-ion technologies.« less
Interfacial reactions in lithium batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng
The lithium-ion battery was first commercially introduced by Sony Corporation on 1991 using LiCoO 2 as the cathode material and mesocarbon microbeads as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage devices for modern portable electronics, as well as for the emerging application for electric vehicles and smart grids. It has been a common sense that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses the parasitic reactions between the lithiated 2 graphitic anodes and the carbonate-based non-aqueous electrolytes.more » Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for rational design of high-energy-density lithiumion batteries with extended cycle/calendar life. In this article, the physical model of the solid electrolyte interphase, as well as the recent research effort to under the nature and role SEI are summarized, and future perspectives on this important research field will also be presented.« less
Interfacial reactions in lithium batteries
Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; ...
2017-06-29
The lithium-ion battery was first commercially introduced by Sony Corporation on 1991 using LiCoO 2 as the cathode material and mesocarbon microbeads as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage devices for modern portable electronics, as well as for the emerging application for electric vehicles and smart grids. It has been a common sense that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses the parasitic reactions between the lithiated 2 graphitic anodes and the carbonate-based non-aqueous electrolytes.more » Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for rational design of high-energy-density lithiumion batteries with extended cycle/calendar life. In this article, the physical model of the solid electrolyte interphase, as well as the recent research effort to under the nature and role SEI are summarized, and future perspectives on this important research field will also be presented.« less
Active Colloids in Isotropic and Anisotropic Electrolytes
NASA Astrophysics Data System (ADS)
Peng, Chenhui
Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be designed by surface-patterned modulated molecular orientation. The surface patterning is produced by photo-alignment. In the presence of an electric field, the spatially varying orientation induces space charges that trigger flows of the LC. The active patterned LC electrolyte converts the electric energy into the LC flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned LC electrolyte also induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications. The thesis also describes transport and placement of colloids by elasticity of a nematic LC with spatially varying molecular orientation. Colloidal particles in nematic environment are subject to the long-range elastic forces originating in the orientational order of the nematic. Gradients of the orientational order create an elastic energy landscape that drives the colloids into locations with preferred type of deformations. As an example, we demonstrate that colloidal spheres with perpendicular surface anchoring are driven into the regions of maximum splay, while spheres with tangential surface anchoring settle into the regions of bend. Elastic forces responsible for preferential placement are measured by exploring overdamped dynamics of the colloids. The results obtained in this thesis open new opportunities for design of materials and devices for micropumping, mixing, lab-on-a-chip and biosensing applications.
NASA Astrophysics Data System (ADS)
Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang
2017-12-01
We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.
An, Seong Jin; Li, Jianlin; Daniel, Claus; ...
2016-04-09
An in-depth review is presented on the science of lithium-ion battery (LIB) solid electrolyte interphase (SEI) formation on the graphite anode, including structure, morphology, chemical composition, electrochemistry, formation mechanism, and LIB formation cycling. During initial operation of LIBs, the SEI layer forms on the graphite surfaces, the most commonly used anode material, due to side reactions with the electrolyte solvent/salt at low electro-reduction potentials. It is accepted that the SEI layer is essential to the long-term performance of LIBs, and it also has an impact on its initial capacity loss, self-discharge characteristics, cycle life, rate capability, and safety. While themore » presence of the anode SEI layer is vital, it is difficult to control its formation and growth, as the chemical composition, morphology, and stability depend on several factors. These factors include the type of graphite, electrolyte composition, electrochemical conditions, and cell temperature. Thus, SEI layer formation and electrochemical stability over long-term operation should be a primary topic of future investigation in the development of LIB technology. We review the progression of knowledge gained about the anode SEI, from its discovery in 1979 to the current state of understanding, and covers its formation process, differences in the chemical and structural makeup when cell materials and components are varied, methods of characterization, and associated reactions with the liquid electrolyte phase. It also discusses the relationship of the SEI layer to the LIB formation step, which involves both electrolyte wetting and subsequent slow charge-discharge cycles to grow the SEI.« less
NASA Astrophysics Data System (ADS)
Kartini, Evvy; Manawan, Maykel
2016-02-01
With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li3PO4 has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li3PO4 has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H3PO4. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li3PO4, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li3PO4 was around 10-8 S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li3PO4 for lithium ion battery will give more added values to the researches and national industry.
Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.; ...
2015-04-13
A viable Li/O 2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li 2O 2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), onmore » surfaces of Li 2O 2. Comparisons are made between the two predominant Li 2O 2 surface charge states by calculating decomposition pathways on peroxide-terminated (O 2 2–) and superoxide-terminated (O 2 1–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O 2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH –). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li 2O 2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O 2.« less
Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.
Yang, Chunpeng; Fu, Kun; Zhang, Ying; Hitz, Emily; Hu, Liangbing
2017-09-01
High-energy lithium-metal batteries are among the most promising candidates for next-generation energy storage systems. With a high specific capacity and a low reduction potential, the Li-metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li-metal anodes. Recent studies have shown that the performance and safety of Li-metal anodes can be significantly improved via organic electrolyte modification, Li-metal interface protection, Li-electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid-state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li-metal batteries. Inspired by the bright prospects of solid Li-metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li-metal batteries, such as low ionic conductivity of the electrolyte and Li-electrolyte interfacial problems. Here, the approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li-metal anodes are discussed to facilitate the practical application of Li-metal batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Static charge outside chamber induces dielectric breakdown of solid-state nanopore membranes
NASA Astrophysics Data System (ADS)
Matsui, Kazuma; Goto, Yusuke; Yanagi, Itaru; Yanagawa, Yoshimitsu; Ishige, Yu; Takeda, Ken-ichi
2018-04-01
Reducing device capacitance is effective for decreasing current noise observed in a solid-state nanopore-based DNA sequencer. On the other hand, we have recently found that voltage stress causes pinhole-like defects in such low-capacitance devices. The origin of voltage stress, however, has not been determined. In this research, we identified that a dominant origin is static charge on the outer surface of a flow cell. Even though the outer surface was not in direct contact with electrolytes in the flow cell, the charge induces high voltage stress on a membrane according to the capacitance coupling ratio of the flow cell to the membrane.
Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics
NASA Astrophysics Data System (ADS)
Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha
2015-11-01
Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.
Skotheim, Terje
1984-04-10
A photoelectric device is disclosed which comprises first and second layers of semiconductive material, each of a different bandgap, with a layer of dry solid polymer electrolyte disposed between the two semiconductor layers. A layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte is further interposed between the dry solid polymer electrolyte and the first semiconductor layer. A method of manufacturing such devices is also disclosed.
Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)
Yu, Seungho; Schmidt, Robert D.; Garcia-mendez, Regina; ...
2015-12-16
The oxide known as LLZO, with nominal composition Li 7La 3Zr 2O 12, is a promising solid electrolyte for Li-based batteries due to its high Li-ion conductivity and chemical stability with respect to lithium. Solid electrolytes may also enable the use of metallic Li anodes by serving as a physical barrier that suppresses dendrite initiation and propagation during cycling. Prior linear elasticity models of the Li electrode/solid electrolyte interface suggest that the stability of this interface is highly dependent on the elastic properties of the solid separator. For example, dendritic suppression is predicted to be enhanced as the electrolyte smore » shear modulus increases. In the present study a combination of first-principles calculations, acoustic impulse excitation measurements, and nanoindentation experiments are used to determine the elastic constants and moduli for highconductivity LLZO compositions based on Al and Ta doping. The calculated and measured isotropic shear moduli are in good agreement and fall within the range of 56-61 GPa. These values are an order of magnitude larger than that for Li metal and far exceed the minimum value ( 8.5 GPa) believed to be necessary to suppress dendrite initiation. These data suggest that LLZO exhibits sufficient stiffness to warrant additional development as a solid electrolyte for Li batteries.« less
Zhao, Jie; Lu, Zhenda; Wang, Haotian; Liu, Wei; Lee, Hyun-Wook; Yan, Kai; Zhuo, Denys; Lin, Dingchang; Liu, Nian; Cui, Yi
2015-07-08
Prelithiation is an important strategy to compensate for lithium loss in lithium-ion batteries, particularly during the formation of the solid electrolyte interphase (SEI) from reduced electrolytes in the first charging cycle. We recently demonstrated that LixSi nanoparticles (NPs) synthesized by thermal alloying can serve as a high-capacity prelithiation reagent, although their chemical stability in the battery processing environment remained to be improved. Here we successfully developed a surface modification method to enhance the stability of LixSi NPs by exploiting the reduction of 1-fluorodecane on the LixSi surface to form a continuous and dense coating through a reaction process similar to SEI formation. The coating, consisting of LiF and lithium alkyl carbonate with long hydrophobic carbon chains, serves as an effective passivation layer in the ambient environment. Remarkably, artificial-SEI-protected LixSi NPs show a high prelithiation capacity of 2100 mA h g(-1) with negligible capacity decay in dry air after 5 days and maintain a high capacity of 1600 mA h g(-1) in humid air (∼10% relative humidity). Silicon, tin, and graphite were successfully prelithiated with these NPs to eliminate the irreversible first-cycle capacity loss. The use of prelithiation reagents offers a new approach to realize next-generation high-energy-density lithium-ion batteries.
Solid oxide fuel cells with bi-layered electrolyte structure
NASA Astrophysics Data System (ADS)
Zhang, Xinge; Robertson, Mark; Decès-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave
In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 μm SSZ and 4 μm SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm -2 at 650 °C and 0.85 W cm -2 at 700 °C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R el) and electrode polarization resistance (R p,a+c) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O 2- x during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R el value (0.32 Ω cm 2) at 650 °C, which is almost one order of magnitude higher than the calculated value.
Lee, Sangyool; Lee, Youngkwan; Cho, Mi-Suk; Nam, Jae-Do
2008-09-01
Solid state redox supercapacitors were fabricated using a solid polymer electrolyte, nitrile butadiene rubber (NBR)-KCI and chemically deposited polypyrrole (PPy) as the conducting polymer electrodes on both surfaces of a NBR film. The optimal conditions for the preparation of the PPy/NBR electrode were confirmed as functions of the uptake of pyrrole monomer into the NBR matrix as well as the immersion time in an oxidant solution. The morphology of the PPy-NBR-KCI capacitor was observed using scanning electron microscopy. The performance of the capacitors was characterized using a galvanostatic charge-discharge technique.
Preparation of immobilized coating Fenton-like catalyst for high efficient degradation of phenol.
Wang, Jiankang; Yao, Zhongping; Wang, Yajing; Xia, Qixing; Chu, Huiya; Jiang, Zhaohua
2017-05-01
In this study, solid acid amorphous Fe 3 O 4 /SiO 2 ceramic coating decorated with sulfur on Q235 carbon steel as Fenton-like catalyst for phenol degradation was successfully prepared by plasma electrolytic oxidation (PEO) in silicate electrolyte containing Na 2 S 2 O 8 as sulfur source. The surface morphology and phase composition were characterized by SEM, EDS, XRD and XPS analyses. NH 3 -TPD was used to evaluate surface acidity of PEO coating. The results indicated that sulfur decorated amorphous Fe 3 O 4 /SiO 2 ceramic coatings with porous structure and higher acid strength had the similar pore size and the surface became more and more uneven with the increase of Na 2 S 2 O 8 in the silicate electrolyte. The Fenton-like catalytic activity of sulfur decorated PEO coatings was also evaluated. In contrast to negligible catalytic activity of sulfur undecorated PEO coating, catalytic activity of sulfur decorated PEO coating was excellent and PEO coating prepared with 3.0 g Na 2 S 2 O 8 had the highest catalytic activity which could degrade 99% of phenol within 8 min under circumneutral pH. The outstanding performance of sulfur decorated PEO coating was attributed to strong acidic microenvironment and more Fe 2+ on the surface. The strong acid sites played a key factor in determining catalytic activity of catalyst. In conclusion, rapid phenol removal under circumneutral pH and easier separation endowed it potential application in wastewater treatment. In addition, this strategy of preparing immobilized solid acid coating could provide guidance for designing Fenton-like catalyst with excellent catalytic activity and easier separation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Wei; Wang, Zhong-Sheng
2014-07-09
Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.
NASA Astrophysics Data System (ADS)
Zhang, Zhizhen; Xu, Kaiqi; Rong, Xiaohui; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan
2017-12-01
Solid electrolytes with high ionic conductivity and excellent electrochemical stability are of prime significance to enable the application of solid-state batteries in energy storage and conversion. In this study, solid composite polymer electrolytes (CPEs) based on sodium bis(trifluorosulfonyl) imide (NaTFSI) and poly (ethylene oxide) (PEO) incorporated with active ceramic filler (NASICON) are reported for the first time. With the addition of NASICON fillers, the thermal stability and electrochemical stability of the CPEs are improved. A high conductivity of 2.8 mS/cm (at 80 °C) is readily achieved when the content of the NASICON filler in the composite polymer reaches 50 wt%. Furthermore, Na3V2(PO4)3/CPE/Na solid-state batteries using this composite electrolyte display good rate and excellent cycle performance.
Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe
2018-05-09
The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.
NASA Astrophysics Data System (ADS)
Hilder, Matthias; Howlett, Patrick C.; Saurel, Damien; Gonzalo, Elena; Armand, Michel; Rojo, Teófilo; Macfarlane, Douglas R.; Forsyth, Maria
2017-05-01
A saturated solution of 2.3 M sodium bis(fluorosulfonyl)imide in trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide ionic liquid shows a high conductivity (0.94 mScm-1 at 50 °C), low ion association, and a wide operational temperature window (-71 °C-305 °C) making it a promising electrolyte for sodium battery applications. Cycling with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode display excellent performance at 50 °C outperforming conventional organic solvent based electrolytes in terms of capacities (at C/10) and long term cycle stability (at C/2). Post analysis of the electrolyte shows no measurable changes while the sodium metal anode and the cathode surface shows the presence of electrolyte specific elements after cycling, suggesting the formation of a stabilizing solid electrolyte interface. Additionally, cycling changes the topography and particle morphology of the cathode. Thus, the electrolyte properties and cell performance match or outperform previously reported results with the additional benefit of replacing the hazardous and flammable organic solvent solutions commonly employed.
Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin
2018-01-01
A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br) and TFSI− in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively. PMID:29642456
Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy.
Ma, Cheng; Cheng, Yongqiang; Yin, Kuibo; Luo, Jian; Sharafi, Asma; Sakamoto, Jeff; Li, Juchuan; More, Karren L; Dudney, Nancy J; Chi, Miaofang
2016-11-09
Despite their different chemistries, novel energy-storage systems, e.g., Li-air, Li-S, all-solid-state Li batteries, etc., face one critical challenge of forming a conductive and stable interface between Li metal and a solid electrolyte. An accurate understanding of the formation mechanism and the exact structure and chemistry of the rarely existing benign interfaces, such as the Li-cubic-Li 7-3x Al x La 3 Zr 2 O 12 (c-LLZO) interface, is crucial for enabling the use of Li metal anodes. Due to spatial confinement and structural and chemical complications, current investigations are largely limited to theoretical calculations. Here, through an in situ formation of Li-c-LLZO interfaces inside an aberration-corrected scanning transmission electron microscope, we successfully reveal the interfacial chemical and structural progression. Upon contact with Li metal, the LLZO surface is reduced, which is accompanied by the simultaneous implantation of Li + , resulting in a tetragonal-like LLZO interphase that stabilizes at an extremely small thickness of around five unit cells. This interphase effectively prevented further interfacial reactions without compromising the ionic conductivity. Although the cubic-to-tetragonal transition is typically undesired during LLZO synthesis, the similar structural change was found to be the likely key to the observed benign interface. These insights provide a new perspective for designing Li-solid electrolyte interfaces that can enable the use of Li metal anodes in next-generation batteries.
Electrocrystallization and Properties of Supersaturated Solid Solutions of Copper
NASA Astrophysics Data System (ADS)
Povetkin, V. V.; Ivanova, T. E.; Ismagilova, A. V.
2018-03-01
The role of the alloying element in the formation of the structure and properties of electrolytic copper alloys has been determined. The X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) have shown that electrochemical alloying of copper with low-melting metals leads to the formation of supersaturated solid solutions (SSS) on the cathode, crushing of the crystal structure, smoothing of the surface relief, hardening of the deposits obtained, increasing their solderability and corrosive resistance to acidic media.
Gao, Yunming; Yang, Chuanghuang; Zhang, Canlei; Qin, Qingwei; Chen, George Z
2017-06-21
Production of metallic iron through molten oxide electrolysis using inert electrodes is an alternative route for fast ironmaking without CO 2 emissions. The fact that many inorganic oxides melt at ultrahigh temperatures (>1500 K) challenges conventional electro-analytical techniques used in aqueous, organic and molten salt electrolytes. However, in order to design a feasible and effective electrolytic process, it is necessary to best understand the electrochemical properties of iron ions in molten oxide electrolytes. In this work, a magnesia-stabilised zirconia (MSZ) tube with a closed end was used to construct an integrated three-electrode cell with a "MSZ|Pt|O 2 (air)" assembly functioning as the solid electrolyte, the reference electrode and also the counter electrode. Electrochemical reduction of iron ions was systematically investigated on an iridium (Ir) wire working electrode in a SiO 2 -CaO-MgO-Al 2 O 3 molten slag at 1723 K by cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis (PE). The results show that the electroreduction of the Fe 2+ ion to Fe on the Ir electrode in the molten slag follows a single two-electron transfer step, and the rate of the process is diffusion controlled. The peak current on the obtained CVs is proportional to the concentration of the Fe 2+ ion in the molten slag and the square root of scan rate. The diffusion coefficient of Fe 2+ ions in the molten slag containing 5 wt% FeO at 1723 K was derived to be (3.43 ± 0.06) × 10 -6 cm 2 s -1 from CP analysis. However, a couple of subsequent processes, i.e. alloy formation on the Ir electrode surface and interdiffusion, were found to affect the kinetics of iron deposition. An ECC mechanism is proposed to account for the CV observations. The findings from this work confirm that zirconia-based solid electrolytes can play an important role in electrochemical fundamental research in high temperature molten slag electrolytes.
NASA Technical Reports Server (NTRS)
DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.
2012-01-01
Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.
Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage
2015-10-05
ion batteries . Solid-state Li- ion batteries could significantly improve safety and eliminate the need for complex...advancing ceramic electrolyte technology for use in solid-state Li- ion batteries . Solid-state Li- ion batteries could significantly improve safety and...technology for use in solid-state Li- ion batteries and high specific energy Li-S and Li- air batteries . Solid-state Li- ion batteries could
Ion implantation of highly corrosive electrolyte battery components
Muller, R.H.; Zhang, S.
1997-01-14
A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, and sodium sulfur. 6 figs.
Ion implantation of highly corrosive electrolyte battery components
Muller, Rolf H.; Zhang, Shengtao
1997-01-01
A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.
Hydrogen generation by electrolysis of aqueous organic solutions
NASA Technical Reports Server (NTRS)
Jeffries-Nakamura, Barbara (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Valdez, Thomas I. (Inventor)
2006-01-01
A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.
Hydrogen generation by electrolysis of aqueous organic solutions
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor)
2002-01-01
A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.
Air-cooled, hydrogen-air fuel cell
NASA Technical Reports Server (NTRS)
Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)
1999-01-01
An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.
Polyphosphazene Solid Electrolytes.
1984-10-01
soL..I’IIN ’ . LAV A - .:.u.s 009 ’-" 4. T .. T. edSutoe .TVCO EO T EI O Polyphosphazene Solid Electrolytes Interim Technical Repor 6. PEAFORMING RG ...Y. T.; Whitmore , D. H. Solid State Ionics 1982, 7, 129. (10) Bauerle, J. E. J. Phys. Chem. Solids 1969, 30, 2657. (11) MacDonald, J. R. J. Chem. Phys
NASA Astrophysics Data System (ADS)
Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin
2017-12-01
Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.
Abraham, Kuzhikalail M.; Alamgir, Mohamed
1993-06-15
This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).
Evolution of the lithium morphology from cycling of thin film solid state batteries
Dudney, Nancy J.
2017-03-11
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
Evolution of the lithium morphology from cycling of thin film solid state batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J.
Thin film batteries with a Lipon electrolyte and Li metal anode can be cycled thousands of times. During this time there is a gradual redistribution of the lithium at the top surface; the morphology that develops depends on a number of factors but is largely driven by dewetting. In this work, this redistribution is characterized as functions of the cycle number, duty cycle, cathode composition, and protective coating over the lithium. Observations of wrinkled and pitted surfaces are discussed considering the effects of defects and diffusion in the lithium and influences of film stresses and surface energy. In conclusion, similarmore » processes may impact solid state lithium batteries with higher energy per active area.« less
NASA Astrophysics Data System (ADS)
Kim, Jun Young; Kim, Tae Ho; Kim, Dong Young; Park, Nam-Gyu; Ahn, Kwang-Duk
Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4- tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm -2).
Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinshui; Bai, Ying; Sun, Xiao-Guang
2015-01-01
The growth and proliferation of lithium (Li) dendrites during cell recharge is unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (> 1 mS cm-1) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space tomore » afford high conductivities. In a symmetric lithium/lithium cell, such kind of solid-like electrolytes demonstrates a robust performance against Li dendrite problems, well stabilizing the cell system from short circuiting in a long-time operation at current densities ranging from 0.16 to 0.32 mA cm-2. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na+, Mg2+ or Al3+ as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.« less
An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.
Liu, Caihong; Shamie, Jack S; Shaw, Leon L; Sprenkle, Vincent L
2016-01-20
In this study, we have investigated the key factors dictating the cyclic performance of a new type of hybrid sodium-based flow batteries (HNFBs) that can operate at room temperature with high cell voltages (>3 V), multiple electron transfer redox reactions per active ion, and decoupled design of power and energy. HNFBs are composed of a molten Na-Cs alloy anode, flowing aqueous catholyte, and a Na-β″-Al2O3 solid electrolyte as the separator. The surface functionalization of graphite felt electrodes for the flowing aqueous catholyte has been studied for its effectiveness in enhancing V(2+)/V(3+), V(3+)/V(4+), and V(4+)/V(5+) redox couples. The V(4+)/V(5+) redox reaction has been further investigated at different cell operation temperatures for its cyclic stability and how the properties of the solid electrolyte membrane play a role in cycling. These fundamental understandings provide guidelines for improving the cyclic performance and stability of HNFBs with aqueous catholytes. We show that the HNFB with aqueous V-ion catholyte can reach high storage capacity (∼70% of the theoretical capacity) with good Coulombic efficiency (90% ± 1% in 2-30 cycles) and cyclic performance (>99% capacity retention for 30 cycles). It demonstrates, for the first time, the potential of high capacity HNFBs with aqueous catholytes, good capacity retention and long cycling life. This is also the first demonstration that Na-β″-Al2O3 solid electrolyte can be used with aqueous electrolyte at near room temperature for more than 30 cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimon, E.S.; Shirokov, A.V.; Kovynev, N.P.
1995-04-01
Transport properties of solid-electrolyte layers (SEL) formed in lithium-iodine batteries were studied by the galvanostatic pulse technique. It was found that the rate of the anodic process at the lithium electrode is determined by the formation of an ionic space charge of lithium cations injected into solid-electrolyte layers. The mobility and concentration of mobile lithium cations in SELs at various depths of discharge of the power source were determined.
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1979-01-01
The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.
Zhang, Shiguo; Ikoma, Ai; Li, Zhe; Ueno, Kazuhide; Ma, Xiaofeng; Dokko, Kaoru; Watanabe, Masayoshi
2016-10-04
Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.
Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries
Li, Yutao; Zhou, Weidong; Xin, Sen; ...
2016-06-30
A fluorine-doped antiperovskite Li-ion conducto Li 2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li 2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li +/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li 2OHCl. As a result, an all-solid-state Li/LiFePO 4 with F-dope Li 2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles
Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte
Devaux, Didier; Wang, Xiaoya; Thelen, Jacob L.; ...
2016-09-08
Lithium (Li) batteries comprising multivalent positive active materials such as copper vanadium oxide have high theoretical capacity. These batteries with a conventional liquid electrolyte exhibit limited cycle life because of copper dissolution into the electrolyte. In this paper, we report here on the characterization of solid-state Li metal batteries with a positive electrode based on α-Cu 6.9V 6O 18.9 (α-CuVO 3). We replaced the liquid electrolyte by a nanostructured solid block copolymer electrolyte comprising of a mixture of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. In situ X-ray diffraction was used to follow the Li insertion/de-insertion mechanism into themore » α-CuVO 3 host material and its reversibility. In situ X-ray scattering revealed that the multistep electrochemical reactions involved are similar in the presence of liquid or solid electrolyte. The capacity fade of the solid-state batteries is less rapid than that of α-CuVO 3–Li metal batteries with a conventional liquid electrolyte. Hard X-ray microtomography revealed that upon cycling, voids and Cu-rich agglomerates were formed at the interface between the Li metal and the SEO electrolyte. Finally, the void volume and the volume occupied by the Cu-rich agglomerates were independent of C-rate and cycle number.« less
An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor
NASA Astrophysics Data System (ADS)
Yijing, Yin
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
Solid composite electrolytes for lithium batteries
Kumar, Binod; Scanlon, Jr., Lawrence G.
2000-01-01
Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.
NASA Technical Reports Server (NTRS)
Titterington, W. A.
1973-01-01
The solid polymer electrolyte (SPE) water electrolysis technology is presented as a potential energy conversion method for wind driven generator systems. Electrolysis life and performance data are presented from laboratory sized single cells (7.2 sq in active area) with high cell current density selected (1000 ASF) for normal operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, R.J.; Benson, L.V.; Yee, A.W.
1979-09-30
The objective of the program is to establish a basis for the prediction of radionuclide sorption in geologic environments. In FY 79, experimental and theoretical efforts were concentrated on a study of the sorption of cesium on the solid substrates Min-u-sil (quartz) and Belle Fourche clay (montmorillonite). Cesium sorption isotherms were obtained for the two substrates at 26/sup 0/C as a function of initial Cs concentration in solution (10/sup -3/M to 10/sup -9/M), pH (5 to 10) and supporting electrolyte concentration (0.002M, 0.01M, 0.1M, and 1M) NaCl and a simulated basalt groundwater in batch-type experiments using crushed material. Characterization ofmore » the solid phases included measurements of chemical compositions, particle sizes, surface areas, and cation-exchange capacities. In addition, potentiometric acid/base titrations of the solid phases were conducted in order to determine the acid dissociation and electrolyte exchange constants of the surfaces. Preliminary analysis of the sorption data indicate that while the clay data could be explained by simple mass-action expressions, the quartz data could not. Theoretical efforts were aimed at developing and testing an electrolyte binding electrical double-layer model to predict sorption isotherms. A computerized version of the model, MINEQL, which simultaneously considers surface and solution chemical equilibria, was brought to operational status. Input parameters required by MINEQL were determined and sorption isotherms for Cs on the Belle Fourche clay were calculated over the same range of parameters as the experimental measurements. Comparisons showed that the model was able to simulate the isotherms quite well except at the lowest pH values for the 0.002M and 0.01M NaCl solutions.« less
Development of Lithium Dimethyl Phosphate as an Electrolyte Additive for Lithium Ion Batteries
Milien, Mickdy S.; Tottempudi, Usha; Son, Miyoung; ...
2016-04-27
The novel electrolyte additive lithium dimethyl phosphate (LiDMP) has been synthesized and characterized. Incorporation of LiDMP (0.1% wt) into LiPF 6 in ethylene carbonate (EC) / ethyl methyl carbonate (EMC) (3:7 wt) results in improved rate performance and reduced impedance for graphite / LiNi 1/3Mn 1/3Co 1/3O 2 cells. Ex-situ surface analysis of the electrodes suggests that incorporation of LiDMP results in a modification of the solid electrolyte interphase (SEI) on the anode. A decrease in the concentration of lithium alkyl carbonates and an increase in the concentration of lithium fluoro phosphates are observed. The change in the anode SEImore » structure is responsible for the increased rate performance and decreased cell impedance.« less
NASA Astrophysics Data System (ADS)
Jewulski, J. R.; Osif, T. L.; Remick, R. J.
1990-12-01
The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.
NASA Astrophysics Data System (ADS)
Yang, Ting
Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.
Miniaturized Amperometric Solid Electrolyte Carbon Dioxide Sensors
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Liu, C. C.; Hammond, J. W.; Ward, B.; Lukco, D.; Lampard, P.; Artale, M.; Androjna, D.
2006-01-01
A miniaturized electrochemical carbon dioxide (CO2) sensor using Na3Z r2Si2PO12 (NASICON) as a solid electrolyte has been fabricated and de monstrated. Microfabrication techniques were used for sensor fabricat ion to yield a sensing area around 1.0 mm x 1.1 mm. The NASICON solid electrolyte and the Na2CO3/BaCO3 (1:1.7 molar ratio) auxiliary elect rolyte were deposited by sputtering in between and on top of the inte rdigitated finger-shaped platinum electrodes. This structure maximize s the length of the three-phase boundary (electrode, solid electrolyt e, and auxiliary electrolyte), which is critical for gas sensing. The robust CO2 sensor operated up to 600 C in an amperometric mode and a ttempts were made to optimize sensor operating parameters. Concentrat ions of CO2 between 0.02% and 4% were detected and the overall sensor performance was evaluated. Linear response of sensor current output to ln[CO2 concentration] ranging from 0.02% to 1% was achieved.
Chang, Hee Jung; Ilott, Andrew J; Trease, Nicole M; Mohammadi, Mohaddese; Jerschow, Alexej; Grey, Clare P
2015-12-09
Lithium dendrite growth in lithium ion and lithium rechargeable batteries is associated with severe safety concerns. To overcome these problems, a fundamental understanding of the growth mechanism of dendrites under working conditions is needed. In this work, in situ (7)Li magnetic resonance (MRI) is performed on both the electrolyte and lithium metal electrodes in symmetric lithium cells, allowing the behavior of the electrolyte concentration gradient to be studied and correlated with the type and rate of microstructure growth on the Li metal electrode. For this purpose, chemical shift (CS) imaging of the metal electrodes is a particularly sensitive diagnostic method, enabling a clear distinction to be made between different types of microstructural growth occurring at the electrode surface and the eventual dendrite growth between the electrodes. The CS imaging shows that mossy types of microstructure grow close to the surface of the anode from the beginning of charge in every cell studied, while dendritic growth is triggered much later. Simple metrics have been developed to interpret the MRI data sets and to compare results from a series of cells charged at different current densities. The results show that at high charge rates, there is a strong correlation between the onset time of dendrite growth and the local depletion of the electrolyte at the surface of the electrode observed both experimentally and predicted theoretical (via the Sand's time model). A separate mechanism of dendrite growth is observed at low currents, which is not governed by salt depletion in the bulk liquid electrolyte. The MRI approach presented here allows the rate and nature of a process that occurs in the solid electrode to be correlated with the concentrations of components in the electrolyte.
NASA Astrophysics Data System (ADS)
Suyati, L.; Widyayanti, O. A.; Qushoyyi, M.; Darmawan, A.; Nuryanto, R.
2018-04-01
Battery is a device that converts chemical energy into electrical energy through electrochemical process. Further research on the synthesis of cathode of Na-ion battery that has good conductivity to maximize the battery performance needs to be conducted. One of the production steps of the NaCo(1-x)NaCo cathode synthesis in the Na-Ion battery was a ball-milling process, in which by the ball-milling process, the crystal size of NaCo(1-x)MnxO2 cathode can be minimized. The purpose of this study was to determine the effect of variation of ball-milling speed to the characteristics of resulting product including the oxide types composing NaCo(1-x)MnxO2 cathode, surface morphology, and conductivity. The main ingredients used were sodium acetate, manganese acetate, cobalt acetate with molar ratio of 0.7: 0.66: 0.22, respectively and citric acid as chelating agent with the M/CA ratio of 1: 1. The variations of milling speed were 0, 300, 400, 500, 600 and 700 rpm. Characterization of the product was conducted using XRD, SEM-EDS, and conductivity meter (LCR-meter). The result showed that a solid electrolyte of NaCo(1-x)MnxO2 consisting of NaMnO2, NaO2, CoO, Co2O3, MnO2 components was successfully synthesized. The observation on the milling speed at 400 rpm showed that the solid electrolyte produced had the highest conductivity i.e. 4.08 x 10-6 Scm-1 with a homogeneous surface morphology and had a spinel formula NaCo0,65Mn0,35O2.
Zhang, Wenbo; Richter, Felix H; Culver, Sean P; Leichtweiss, Thomas; Lozano, Juan G; Dietrich, Christian; Bruce, Peter G; Zeier, Wolfgang G; Janek, Jürgen
2018-06-20
All-solid-state batteries (ASSBs) show great potential for providing high power and energy densities with enhanced battery safety. While new solid electrolytes (SEs) have been developed with high enough ionic conductivities, SSBs with long operational life are still rarely reported. Therefore, on the way to high-performance and long-life ASSBs, a better understanding of the complex degradation mechanisms, occurring at the electrode/electrolyte interfaces is pivotal. While the lithium metal/solid electrolyte interface is receiving considerable attention due to the quest for high energy density, the interface between the active material and solid electrolyte particles within the composite cathode is arguably the most difficult to solve and study. In this work, multiple characterization methods are combined to better understand the processes that occur at the LiCoO 2 cathode and the Li 10 GeP 2 S 12 solid electrolyte interface. Indium and Li 4 Ti 5 O 12 are used as anode materials to avoid the instability problems associated with Li-metal anodes. Capacity fading and increased impedances are observed during long-term cycling. Postmortem analysis with scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy show that electrochemically driven mechanical failure and degradation at the cathode/solid electrolyte interface contribute to the increase in internal resistance and the resulting capacity fading. These results suggest that the development of electrochemically more stable SEs and the engineering of cathode/SE interfaces are crucial for achieving reliable SSB performance.
Progress and prospect on failure mechanisms of solid-state lithium batteries
NASA Astrophysics Data System (ADS)
Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei
2018-07-01
By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.
Solid electrolyte: The key for high-voltage lithium batteries
Li, Juchuan; Ma, Cheng; Chi, Miaofang; ...
2014-10-14
A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.
Schiff Base as Additive for Preventing Gas Evolution in Li4Ti5O12-Based Lithium-Ion Battery.
Daigle, Jean-Christophe; Asakawa, Yuichiro; Hovington, Pierre; Zaghib, Karim
2017-11-29
Lithium titanium oxide (Li 4 Ti 5 O 12 )-based electrodes are very promising for long-life cycle batteries. However, the surface reactivity of Li 4 Ti 5 O 12 in organic electrolytes leading to gas evolution is still a problem that may cause expansion of pouch cells. In this study, we report the use of Schiff base (1,8-diazabicyclo[5.4.0]undec-7-ene) as an additive that prevents gas evolution during cell aging by a new mechanism involving the solid electrolyte interface on the anode surface. The in situ ring opening polymerization of cyclic carbonates occurs during the first cycles to decrease gas evolution by 9.7 vol % without increasing the internal resistance of the battery.
Foaming in simulated radioactive waste.
Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C
2001-10-01
Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella generation in the sludge system.
Horowitz, Yonatan; Han, Hui-Ling; Soto, Fernando A; Ralston, Walter T; Balbuena, Perla B; Somorjai, Gabor A
2018-02-14
Fluorinated compounds are added to carbonate-based electrolyte solutions in an effort to create a stable solid electrolyte interphase (SEI). The SEI mitigates detrimental electrolyte redox reactions taking place on the anode's surface upon applying a potential in order to charge (discharge) the lithium (Li) ion battery. The need for a stable SEI is dire when the anode material is silicon as silicon cracks due to its expansion and contraction upon lithiation and delithiation (charge-discharge) cycles, consequently limiting the cyclability of a silicon-based battery. Here we show the molecular structures for ethylene carbonate (EC): fluoroethylene carbonate (FEC) solutions on silicon surfaces by sum frequency generation (SFG) vibrational spectroscopy, which yields vibrational spectra of molecules at interfaces and by ab initio molecular dynamics (AIMD) simulations at open circuit potential. Our AIMD simulations and SFG spectra indicate that both EC and FEC adsorb to the amorphous silicon (a-Si) through their carbonyl group (C═O) oxygen atom with no further desorption. We show that FEC additives induce the reorientation of EC molecules to create an ordered, up-right orientation of the electrolytes on the Si surface. We suggest that this might be helpful for Li diffusion under applied potential. Furthermore, FEC becomes the dominant species at the a-Si surface as the FEC concentration increases above 20 wt %. Our finding at open circuit potential can now initiate additive design to not only act as a sacrificial compound but also to produce a better suited SEI for the use of silicon anodes in the Li-ion vehicular industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartini, Evvy; Manawan, Maykel
With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is stillmore » the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes, promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li{sub 3}PO{sub 4} has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li{sub 3}PO{sub 4} has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H{sub 3}PO{sub 4}. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li{sub 3}PO{sub 4}, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li{sub 3}PO{sub 4} was around 10{sup −8} S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li{sub 3}PO{sub 4} for lithium ion battery will give more added values to the researches and national industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Li; He, YaLing; Tao, Wen -Quan
The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less
Anothumakkool, Bihag; Torris A T, Arun; Veeliyath, Sajna; Vijayakumar, Vidyanand; Badiger, Manohar V; Kurungot, Sreekumar
2016-01-20
Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc.
Nguyen, Chien A; Xiong, Shanxin; Ma, Jan; Lu, Xuehong; Lee, Pooi See
2011-08-07
Solid polymer electrolytes with excellent ionic conductivity (above 10(-4) S cm(-1)), which result in high optical modulation for solid electrochromic (EC) devices are presented. The combination of a polar host matrix poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and a solid plasticized of a low molecular weight poly(ethylene oxide) (PEO) (M(w)≤ 20,000) blended polymer electrolyte serves to enhance both the dissolution of lithium salt and the ionic transport. Calorimetric measurement shows a reduced crystallization due to a better intermixing of the polymers with small molecular weight PEO. Vibrational spectroscopy identifies the presence of free ions and ion pairs in the electrolytes with PEO of M(w)≤ 8000. The ionic dissolution is improved using PEO as a plasticizer when compared to liquid propylene carbonate, evidently shown in the transference number analysis. Ionic transport follows the Arrhenius equation with a low activation energy (0.16-0.2 eV), leading to high ionic conductivities. Solid electrochromic devices fabricated with the blended P(VDF-TrFE)/PEO electrolytes and polyaniline show good spectroelectrochemical performance in the visible (300-800 nm) and near-infrared (0.9-2.4 μm) regions with a modulation up to 60% and fast switching speed of below 20 seconds. The successful introduction of the solid polymer electrolytes with its best harnessed qualities helps to expedite the application of various electrochemical devices. This journal is © the Owner Societies 2011
Fabrication of advanced electrochemical energy materials using sol-gel processing techniques
NASA Technical Reports Server (NTRS)
Chu, C. T.; Chu, Jay; Zheng, Haixing
1995-01-01
Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.
An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2007-04-01
This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.
Gao, Hongcai; Xiao, Fei; Ching, Chi Bun; Duan, Hongwei
2012-12-01
We report the design of all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene (CNTG) and Mn(3)O(4) nanoparticles/graphene (MG) paper electrodes with a polymer gel electrolyte of potassium polyacrylate/KCl. The composite paper electrodes with carbon nanotubes or Mn(3)O(4) nanoparticles uniformly intercalated between the graphene nanosheets exhibited excellent mechanical stability, greatly improved active surface areas, and enhanced ion transportation, in comparison with the pristine graphene paper. The combination of the two paper electrodes with the polymer gel electrolyte endowed our asymmetric supercapacitor of CNTG//MG an increased cell voltage of 1.8 V, a stable cycling performance (capacitance retention of 86.0% after 10,000 continuous charge/discharge cycles), more than 2-fold increase of energy density (32.7 Wh/kg) compared with the symmetric supercapacitors, and importantly a distinguished mechanical flexibility.
A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes.
Li, Nian-Wu; Shi, Yang; Yin, Ya-Xia; Zeng, Xian-Xiang; Li, Jin-Yi; Li, Cong-Ju; Wan, Li-Jun; Wen, Rui; Guo, Yu-Guo
2018-02-05
Lithium (Li) metal is a promising anode material for high-energy density batteries. However, the unstable and static solid electrolyte interphase (SEI) can be destroyed by the dynamic Li plating/stripping behavior on the Li anode surface, leading to side reactions and Li dendrites growth. Herein, we design a smart Li polyacrylic acid (LiPAA) SEI layer high elasticity to address the dynamic Li plating/stripping processes by self-adapting interface regulation, which is demonstrated by in situ AFM. With the high binding ability and excellent stability of the LiPAA polymer, the smart SEI can significantly reduce the side reactions and improve battery safety markedly. Stable cycling of 700 h is achieved in the LiPAA-Li/LiPAA-Li symmetrical cell. The innovative strategy of self-adapting SEI design is broadly applicable, providing opportunities for use in Li metal anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, D.J.; Hubaud, A.A.; Vaughey, J.T., E-mail: vaughey@anl.gov
2014-01-01
Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stabilitymore » of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.« less
NASA Astrophysics Data System (ADS)
Kim, Dong Woo; Jo, Hyun-Jun; Thogiti, Suresh; Yang, Weon Ki; Cheruku, Rajesh; Kim, Jae Hong
2017-05-01
Förster resonance energy transfer (FRET) is critical for wide spectral absorption, an increased dye loading, and photocurrent generation of dye-sensitized solar cells (DSSCs). This process consists of organic fluorescent materials (as an energy donor), and an organic dye (as an energy acceptor on TiO2 surfaces) with quasi-solid electrolyte. The judicious choice of the energy donor and acceptor facilitates a strong spectral overlap between the emission and absorption regions of the fluorescent materials and dye. This FRET process enhances the light-harvesting characteristics of quasi-solid state DSSCs. In this study, DSSCs containing different concentrations (0, 1, and 1.5 wt%) of a fluorescent material (FM) as the energy donor are investigated using FRET. The power conversion efficiency of DSSCs containing FMs in a quasi-solid electrolyte increased by 33% over a pristine cell. The optimized cell fabricated with the quasi-solid state DSSC containing 1.0 wt% FM shows a maximum efficiency of 3.38%, with a short-circuit current density ( J SC ) of 4.32 mA/cm-2, and an open-circuit voltage ( V OC ) of 0.68 V under illumination of simulated solar light (AM 1.5G, 100 mW/cm-2). [Figure not available: see fulltext.
Solid lithium ion conducting electrolytes and methods of preparation
Narula, Chaitanya K; Daniel, Claus
2013-05-28
A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
Solid lithium ion conducting electrolytes and methods of preparation
Narula, Chaitanya K.; Daniel, Claus
2015-11-19
A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
Portable Apparatus for Electrochemical Sensing of Ethylene
NASA Technical Reports Server (NTRS)
Manoukian, Mourad; Tempelman, Linda A.; Forchione, John; Krebs, W. Michael; Schmitt, Edwin W.
2007-01-01
A small, lightweight, portable apparatus based on an electrochemical sensing principle has been developed for monitoring low concentrations of ethylene in air. Ethylene has long been known to be produced by plants and to stimulate the growth and other aspects of the development of plants (including, notably, ripening of fruits and vegetables), even at concentrations as low as tens of parts per billion (ppb). The effects are magnified in plant-growth and -storage chambers wherein ethylene can accumulate. There is increasing recognition in agriculture and related industries that it is desirable to monitor and control ethylene concentrations in order to optimize the growth, storage, and ripening of plant products. Hence, there are numerous potential uses for the present apparatus in conjunction with equipment for controlling ethylene concentrations. The ethylene sensor is of a thick-film type with a design optimized for a low detection limit. The sensor includes a noble metal sensing electrode on a chip and a hydrated solid-electrolyte membrane that is held in contact with the chip. Also located on the sensor chip are a counter electrode and a reference electrode. The sensing electrode is held at a fixed potential versus the reference electrode. Detection takes place at active-triple-point areas where the sensing electrode, electrolyte, and sample gas meet. These areas are formed by cutting openings in the electrolyte membrane. The electrode current generated from electrochemical oxidation of ethylene at the active triple points is proportional to the concentration of ethylene. An additional film of the solid-electrolyte membrane material is deposited on the sensing electrode to increase the effective triple-point areas and thereby enhance the detection signal. The sensor chip is placed in a holder that is part of a polycarbonate housing. When fully assembled, the housing holds the solid-electrolyte membrane in contact with the chip (see figure). The housing includes a water reservoir for keeping the solid-electrolyte membrane hydrated. The housing also includes flow channels for circulating a sample stream of air over the chip: ethylene is brought to the sensing surface predominately by convection in this sample stream. The sample stream is generated by a built-in sampling pump. The forced circulation of sample air contributes to the attainment of a low detection limit.
A complete carbon counter electrode for high performance quasi solid state dye sensitized solar cell
NASA Astrophysics Data System (ADS)
Arbab, Alvira Ayoub; Peerzada, Mazhar Hussain; Sahito, Iftikhar Ali; Jeong, Sung Hoon
2017-03-01
The proposed research describes the design and fabrication of a quasi-solid state dye sensitized solar cells (Q-DSSCs) with a complete carbon based counter electrode (CC-CE) and gel infused membrane electrolyte. For CE, the platinized fluorinated tin oxide glass (Pt/FTO) was replaced by the soft cationic functioned multiwall carbon nanotubes (SCF-MWCNT) catalytic layer coated on woven carbon fiber fabric (CFF) prepared on handloom by interlacing of carbon filament tapes. SCF-MWCNT were synthesized by functionalization of cationised lipase from Candida Ragusa. Cationised enzyme solution was prepared at pH ∼3 by using acetic acid. The cationic enzyme functionalization of MWCNT causes the minimum damage to the tubular morphology and assist in fast anchoring of negative iodide ions present in membrane electrolyte. The high electrocatalytic activity and low charge transfer resistance (RCT = 2.12 Ω) of our proposed system of CC-CE shows that the woven CFF coated with cationised lipase treated carbon nanotubes enriched with positive surface ions. The Q-DSSCs fabricated with CC-CE and 5 wt% PEO gel infused PVDF-HFP membrane electrolyte exhibit power conversion efficiency of 8.90% under masking. Our suggested low cost and highly efficient system of CC-CE helps the proposed quasi-solid state DSSCs structure to stand out as sustainable next generation solar cells.
Chien, Po-Hsiu; Feng, Xuyong; Tang, Mingxue; Rosenberg, Jens T; O'Neill, Sean; Zheng, Jin; Grant, Samuel C; Hu, Yan-Yan
2018-04-19
All-solid-state rechargeable batteries embody the promise for high energy density, increased stability, and improved safety. However, their success is impeded by high resistance for mass and charge transfer at electrode-electrolyte interfaces. Li deficiency has been proposed as a major culprit for interfacial resistance, yet experimental evidence is elusive due to the challenges associated with noninvasively probing the Li distribution in solid electrolytes. In this Letter, three-dimensional 7 Li magnetic resonance imaging (MRI) is employed to examine Li distribution homogeneity in solid electrolyte Li 10 GeP 2 S 12 within symmetric Li/Li 10 GeP 2 S 12 /Li batteries. 7 Li MRI and the derived histograms reveal Li depletion from the electrode-electrolyte interfaces and increased heterogeneity of Li distribution upon electrochemical cycling. Significant Li loss at interfaces is mitigated via facile modification with a poly(ethylene oxide)/bis(trifluoromethane)sulfonimide Li salt thin film. This study demonstrates a powerful tool for noninvasively monitoring the Li distribution at the interfaces and in the bulk of all-solid-state batteries as well as a convenient strategy for improving interfacial stability.
Striped Electrodes for Solid-Electrolyte Cells
NASA Technical Reports Server (NTRS)
Richter, R.
1983-01-01
Striped thick-film platinum electrodes help insure lower overall cell resistance by permitting free flow of gases in gaps between stripes. Thickfilm stripes are also easier to fabricate than porous thin-film electrodes that cover entire surface. Possible applications for improved cells include oxygen production from carbon dioxide, extraction of oxygen from air, small fluidic pumping, sewage treatment, and fuel cells.
Composite solid polymer electrolyte membranes
Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.
2001-06-19
The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.
Composite solid polymer electrolyte membranes
Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.
2006-05-30
The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.
Metals Electroprocessing in Molten Salts
NASA Technical Reports Server (NTRS)
Sadoway, D. R.
1985-01-01
The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.
NASA Astrophysics Data System (ADS)
Pandey, G. P.; Hashmi, S. A.
2013-12-01
Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.
Probing the Surface of Platinum during the Hydrogen Evolution Reaction in Alkaline Electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoerzinger, Kelsey A.; Favaro, Marco; Ross, Philip N.
Understanding the surface chemistry of electrocatalysts in operando can bring insight into the reaction mechanism, and ultimately the design of more efficient materials for sustainable energy storage and conversion. Recent progress in synchrotron based X-ray spectroscopies for in operando characterization allows us to probe the solid/liquid interface directly while applying an external potential, applied here to the model system of Pt in alkaline electrolyte for the hydrogen evolution reaction (HER). We employ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify the oxidation and reduction of Pt-oxides and hydroxides on the surface as a function of applied potential, and further assessmore » the potential for hydrogen adsorption and absorption (hydride formation) during and after the HER. This new window into the surface chemistry of Pt in alkaline brings insight into the nature of the rate limiting step, the extent of H ad/absorption and it’s persistence at more anodic potentials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Wu, Feng; Zhan, Chun
The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO 2, LiNi 1/3Co 1/3Mn 1/3O 2, or LiFePO 4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparentmore » glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.« less
Elucidating the alkaline oxygen evolution reaction mechanism on platinum
Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; ...
2017-03-07
Understanding the interplay between surface chemistry, electronic structure, and reaction mechanism of the catalyst at the electrified solid/liquid interface will enable the design of more efficient materials systems for sustainable energy production. The substantial progress in operando characterization, particularly using synchrotron based X-ray spectroscopies, provides the unprecedented opportunity to uncover surface chemical and structural transformations under various (electro)chemical reaction environments. In this work, we study a polycrystalline platinum surface under oxygen evolution conditions in an alkaline electrolyte by means of ambient pressure X-ray photoelectron spectroscopy performed at the electrified solid/liquid interface. We elucidate previously inaccessible aspects of the surface chemistrymore » and structure as a function of the applied potential, allowing us to propose a reaction mechanism for oxygen evolution on a platinum electrode in alkaline solutions.« less
Luo, Long; Holden, Deric A; White, Henry S
2014-03-25
A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (<2 mV) that depends on the nanopore geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.
Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis
2017-01-06
Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even atmore » a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.« less
NASA Astrophysics Data System (ADS)
Saikia, Diganta; Wu, Cheng-Gang; Fang, Jason; Tsai, Li-Duan; Kao, Hsien-Ming
2014-12-01
A new type of highly conductive organic-inorganic hybrid polymer electrolytes has been synthesized by the reaction of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), 2,4,6-trichloro-1,3,5-triazine and alkoxysilane precursor 3-(glycidyloxypropyl)trimethoxysilane, followed by doping of LiClO4. The 13C and 29Si solid-sate NMR results confirm the successful synthesis of the organic-inorganic hybrid structure. The solid hybrid electrolyte thus obtained exhibits a maximum ionic conductivity of 1.6 × 10-4 S cm-1 at 30 °C, which is the highest among the organic-inorganic hybrid electrolytes. The hybrid electrolytes are electrochemically stable up to 4.2 V. The prototype electrochromic device with such a solid hybrid electrolyte demonstrates a good coloration efficiency value of 183 cm2 C-1 with a cycle life over 200 cycles. For the lithium-ion battery test, the salt free solid hybrid membrane is swelled with a LiPF6-containing electrolyte solution to reach an acceptable ionic conductivity value of 6.5 × 10-3 S cm-1 at 30 °C. The battery cell carries an initial discharge capacity of 100 mAh g-1 at 0.2C-rate and a coulombic efficiency of about 95% up to 30 cycles without the sign of cell failure. The present organic-inorganic hybrid electrolytes hold promise for applications in electrochromic devices and lithium ion batteries.
NASA Astrophysics Data System (ADS)
Xie, Dongjiu; Chen, Shaojie; Zhang, Zhihua; Ren, Jie; Yao, Lili; Wu, Linbin; Yao, Xiayin; Xu, Xiaoxiong
2018-06-01
The combination of high conductivity and good stability against Li is not easy to achieve for solid electrolytes, hindering the development of high energy solid-state batteries. In this study, doped electrolytes of Li3P1-xSbxS4-2.5xO2.5x are successfully prepared via the high energy ball milling and subsequent heat treatment. Plenty of techniques like XRD, Raman, SEM, EDS and TEM are utilized to characterize the crystal structures, particle sizes, and morphologies of the glass-ceramic electrolytes. Among them, the Li3P0.98Sb0.02S3.95O0.05 (x = 0.02) exhibits the highest ionic conductivity (∼1.08 mS cm-1) at room temperature with an excellent stability against lithium. In addition, all-solid-state lithium batteries are assembled with LiCoO2 as cathode, Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 as the bi-layer electrolyte, and lithium as anode. The constructed solid-state batteries delivers a high initial discharge capacity of 133 mAh g-1 at 0.1C in the range of 3.0-4.3 V vs. Li/Li+ at room temperature, and shows a capacity retention of 78.6% after 50 cycles. Most importantly, the all-solid-state lithium batteries with the Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 electrolyte can be workable even at -10 °C. This study provides a promising electrolyte with the improved conductivity and stability against Li for the application of all-solid-state lithium batteries.
Method for improving the durability of ion insertion materials
Lee, Se-Hee; Tracy, C. Edwin; Cheong, Hyeonsik M.
2002-01-01
The invention provides a method of protecting an ion insertion material from the degradative effects of a liquid or gel-type electrolyte material by disposing a protective, solid ion conducting, electrically insulating, layer between the ion insertion layer and the liquid or gel-type electrolyte material. The invention further provides liquid or gel-type electrochemical cells having improved durability having a pair of electrodes, a pair of ion insertion layers sandwiched between the pair of electrodes, a pair of solid ion conducting layers sandwiched between the ion insertion layers, and a liquid or gel-type electrolyte material disposed between the solid ion conducting layers, where the solid ion conducting layer minimizes or prevents degradation of the faces of the ion insertion materials facing the liquid or gel-type electrolyte material. Electrochemical cells of this invention having increased durability include secondary lithium batteries and electrochromic devices.
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Manko, David J.; Koch, Hermann; Enayetullah, Mohammad A.; Appleby, A. John
1989-01-01
Of all the fuel cell systems only alkaline and solid polymer electrolyte fuel cells are capable of achieving high power densities (greater than 1 W/sq cm) required for terrestrial and extraterrestrial applications. Electrode kinetic criteria for attaining such high power densities are discussed. Attainment of high power densities in solid polymer electrolyte fuel cells has been demonstrated earlier by different groups using high platinum loading electrodes (4 mg/sq cm). Recent works at Los Alamos National Laboratory and at Texas A and M University (TAMU) demonstrated similar performance for solid polymer electrolyte fuel cells with ten times lower platinum loading (0.45 mg/sq cm) in the electrodes. Some of the results obtained are discussed in terms of the effects of type and thickness of membrane and of the methods platinum localization in the electrodes on the performance of a single cell.
NASA Astrophysics Data System (ADS)
Kjelstrup, S.; Bedeaux, D.
1997-02-01
The electric potential profile and the temperature profile across a formation cell have been derived for the first time, using irreversible thermodynamics for bulk and surface systems. The method was demonstrated with the solid oxide fuel cell. The expression for the cell potential reduces to the classical formula when we assume equilibrium for polarized oxygen atoms across the electrolyte. Using data from the literature, we show for some likely assumptions, how the cell potential is generated at the anode, and how the energy is dissipated throughout the cell. The thermal gradient amounts to 5 × 10 8 Km -1 when the current density is 10 4 Am -2 and the thermal resistance of the surface scales like the electrical resistance.
Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity
Skotheim, Terje
1986-01-01
There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.
Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity
Skotheim, T.
1984-09-28
There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.
Solid electroytes for CNT-based actuators
NASA Astrophysics Data System (ADS)
Riemenschneider, Johannes; Geier, Sebastian; Mahrholz, Thorsten; Mosch, Jürgen; Monner, Hans Peter; Sinapius, Michael
2009-03-01
Actuators based on carbon nanotubes (CNT) have the potential to generate high forces at very low voltages. The density of the raw material is just 1330 kg/m3, which makes them well applicable for lightweight applications. Moreover, active strains of up to 1% can be achieved - due to the CNTs dimensional changes on charge injection. Therefore the nanotubes have to be arranged and electrically wired like electrodes of a capacitor. In previous works the system's response of the Nanotubes comprising a liquid electrolyte was studied in detail. The major challenge is to repeat such experiments with solid electrolytes, which is a prerequisite for structural integration. In this paper a method is proposed which makes sure the expansion is not based on thermal expansion. This is done by analysing the electrical system response. As thermal expansion is dominated by ohmic resistance the CNT based actuators show a strong capacitive behavior. This behavior is referable to the constitution of the electrochemical double layer around the nanotubes, which causes the tubes to expand. Also a novel test setup is described, which guarantees that the displacement which is measured will not be caused by bending of a bimorph but due to expansion of a single layer of nanotubes. This paper also presents experimental results demonstrating both, the method of electrical characterization of CNT based actuators with implemented solid electrolytes and the novel test setup which is used to measure the needed data. The actuators which were characterized are hybrids of CNT and the solid electrolyte NAFION which is supplying the ions needed to constitute the electrochemical double layer. The manufacturing, processing of these actuators and also some first experimental results are shown. Unfortunately, the results are not as clear as those for liquid electrolytes, which depend on the hybrid character of the analyzed devices. In the liquid electrolyte based case the CNTs are the only source of stiffness, whereas in the solid electrolyte case electrodes and electrolyte contribute to the overall stiffness and damping as well. Since the introduction of solid electrolytes is a major stumbling block in the development of such actuators, this work is of particular importance.
Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte
NASA Astrophysics Data System (ADS)
Li, Qin; Ardebili, Haleh
2016-01-01
The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.
Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yupei; Zou, Minda; Lv, Weiqiang
2016-05-07
Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes formore » high-performance flexible device applications.« less
Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing
2017-09-04
Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong
2012-02-17
All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.
NASA Astrophysics Data System (ADS)
Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong
2012-02-01
All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g-1 at a current density of 2 A g-1, when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg-1 and 41 Wh kg-1, respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.
All-solid state lithium carbon monofluoride batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Chengdu; Rangasamy, Ezhiylmurugan
A solid state lithium carbon monofluoride battery includes an anode comprising Li, a solid electrolyte, and a cathode including CF.sub.x and LPS. The cathode can also include a carbon compound. The solid electrolyte can include LPS. The LPS can include .beta.-Li.sub.3PS.sub.4. The cathode LPS can include .beta.-Li.sub.3PS.sub.4. A method of making a battery is also disclosed.
Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.
1995-01-01
This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.
Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
Isenberg, Arnold O.
1989-01-01
An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.
Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
Isenberg, Arnold O.
1987-01-01
An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.
Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F
2012-04-07
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.
Luo, Fei; Chu, Geng; Xia, Xiaoxiang; Liu, Bonan; Zheng, Jieyun; Li, Junjie; Li, Hong; Gu, Changzhi; Chen, Liquan
2015-05-07
Thickness, homogeneity and coverage of the surface passivation layer on Si anodes for Li-ion batteries have decisive influences on their cyclic performance and coulombic efficiency, but related information is difficult to obtain, especially during cycling. In this work, a well-defined silicon nanocone (SNC) on silicon wafer sample has been fabricated as a model electrode in lithium ion batteries to investigate the growth of surface species on the SNC electrode during cycling using ex situ scanning electronic microscopy. It is observed that an extra 5 μm thick layer covers the top of the SNCs after 25 cycles at 0.1 C. This top layer has been proven to be a solid electrolyte interphase (SEI) layer by designing a solid lithium battery. It is noticed that the SEI layer is much thinner at a high rate of 1 C. The cyclic performance of the SNCs at 1 C looks much better than that of the same electrode at 0.1 C in the half cell. Our findings clearly demonstrate that the formation of the thick SEI on the naked nanostructured Si anode during low rate cycling is a serious problem for practical applications. An in depth understanding of this problem may provide valuable guidance in designing Si-based anode materials.
van Hengel, Ingmar A J; Riool, Martijn; Fratila-Apachitei, Lidy E; Witte-Bouma, Janneke; Farrell, Eric; Zadpoor, Amir A; Zaat, Sebastian A J; Apachitei, Iulian
2017-09-01
Implant-associated infection and limited longevity are two major challenges that orthopedic devices need to simultaneously address. Additively manufactured porous implants have recently shown tremendous promise in improving bone regeneration and osseointegration, but, as any conventional implant, are threatened by infection. In this study, we therefore used rational design and additive manufacturing in the form of selective laser melting (SLM) to fabricate porous titanium implants with interconnected pores, resulting in a 3.75 times larger surface area than corresponding solid implants. The SLM implants were biofunctionalized by embedding silver nanoparticles in an oxide surface layer grown using plasma electrolytic oxidation (PEO) in Ca/P-based electrolytes. The PEO layer of the SLM implants released silver ions for at least 28 days. X-ray diffraction analysis detected hydroxyapatite on the SLM PEO implants but not on the corresponding solid implants. In vitro and ex vivo assays showed strong antimicrobial activity of these novel SLM PEO silver-releasing implants, without any signs of cytotoxicity. The rationally designed SLM porous implants outperformed solid implants with similar dimensions undergoing the same biofunctionalization treatment. This included four times larger amount of released silver ions, two times larger zone of inhibition, and one additional order of magnitude of reduction in numbers of CFU in an ex vivo mouse infection model. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron
2018-01-16
Quartz crystal microbalance with dissipation monitoring (QCM-D) generates surface-acoustic waves in quartz crystal plates that can effectively probe the structure of films, particulate composite electrodes of complex geometry rigidly attached to quartz crystal surface on one side and contacting a gas or liquid phase on the other side. The output QCM-D characteristics consist of the resonance frequency (MHz frequency range) and resonance bandwidth measured with extra-ordinary precision of a few tenths of Hz. Depending on the electrodes stiffness/softness, QCM-D operates either as a gravimetric or complex mechanical probe of their intrinsic structure. For at least 20 years, QCM-D has been successfully used in biochemical and environmental science and technology for its ability to probe the structure of soft solvated interfaces. Practical battery and supercapacitor electrodes appear frequently as porous solids with their stiffness changing due to interactions with electrolyte solutions or as a result of ion intercalation/adsorption and long-term electrode cycling. Unfortunately, most QCM measurements with electrochemical systems are carried out based on a single (fundamental) frequency and, as such, provided that the resonance bandwidth remains constant, are suitable for only gravimetric sensing. The multiharmonic measurements have been carried out mainly on conducting/redox polymer films rather than on typical composite battery/supercapacitor electrodes. Here, we summarize the most recent publications devoted to the development of electrochemical QCM-D (EQCM-D)-based methodology for systematic characterization of mechanical properties of operating battery/supercapacitor electrodes. By varying the electrodes' composition and structure (thin/thick layers, small/large particles, binders with different mechanical properties, etc.), nature of the electrolyte solutions and charging/cycling conditions, the method is shown to be operated in different application modes. A variety of useful electrode-material properties are assessed noninvasively, in situ, and in real time frames of ion intercalation into the electrodes of interest. A detailed algorithm for the mechanical characterization of battery electrodes kept in the gas phase and immersed into the electrolyte solutions has been developed for fast recognition of stiff and viscoelastic materials in terms of EQCM-D signatures treated by the hydrodynamic and viscoelastic models. Working examples of the use of in situ hydrodynamic spectroscopy to characterize stiff rough/porous solids of complex geometry and viscoelastic characterization of soft electrodes are presented. The most demonstrative example relates to the formation of solid electrolyte interphase on Li 4 Ti 5 O 12 electrodes in the presence of different electrolyte solutions and additives: only a few cycles (an experiment during ∼30 min) were required for screening the electrolyte systems for their ability to form high-quality surface films in experimental EQCM-D cells as compared to 100 cycles (200 h cycling) in conventional coin cells. Thin/small-mass electrodes required for the EQCM-D analysis enable accelerated cycling tests for ultrafast mechanical characterization of these electrodes in different electrolyte solutions. Hence, this methodology can be easily implemented as a highly effective in situ analytical tool in the field of energy storage and conversion.
Coupled Electro-Hydrodynamic Effects of Electro-Osmosis from Pore Scale to Darcy Scale
NASA Astrophysics Data System (ADS)
Schotting, R.; Joekar-Niasar, V.; Leijnse, A.
2011-12-01
Electro-osmosis is "movement of a fluid under the effect of an electric field in a porous medium". This phenomenon has many applications in civil engineering (slope stabilization, dewatering), environmental engineering (soil remediation, sludge dewatering), chemical engineering (micro- or nano- mixers), medical engineering (drug delivery), etc. The key factor in electro-osmosis is the competition between the electrochemical and hydrodynamic forces as well as the coupling between the solid surface and the electrolyte properties. The objective of this research is to understand the influence of pore-scale heterogeneities of surface properties on the Darcy-scale behavior. We develop novel analytical solutions for the flow and transport of electrolyte including electro-hydrodynamic forces in a single micro-channel. We propose the complete analytical solution for monovalent electrolyte at full range overlapping double layers, and nonlinear electric field, including the Donan effect in transport of ions. These pore-scale formulations are numerically upscaled to obtain the Darcy-scale behavior. Our results show the contribution of electro-osmotic, chemical-osmotic and hydrodynamic components of the flow equation on pressure field evolution and multi-directional flow field at Darcy scale.
Solid State Ionics: from Michael Faraday to green energy-the European dimension.
Funke, Klaus
2013-08-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.
Solid State Ionics: from Michael Faraday to green energy—the European dimension
Funke, Klaus
2013-01-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585
Skotheim, T.
A polymer blend is disclosed of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.
Secondary Li battery incorporating 12-Crown-4 ether
NASA Technical Reports Server (NTRS)
Nagasubramanian, Ganesan (Inventor); Distefano, Salvador (Inventor)
1992-01-01
A rechargeable lithium battery which utilizes a polyethylene oxide (PEO) solid polymeric electrolyte complexed with a lithium salt is disclosed. The conductivity is increased an order of magnitude and interfacial charge transfer resistance is substantially decreased by incorporating a minor amount of 12-Crown-4 ether in the PEO-lithium salt solid electrolyte film. Batteries containing the improved electrolyte permit operation at a lower temperature with improved efficiency.
A review of electrolyte materials and compositions for electrochemical supercapacitors.
Zhong, Cheng; Deng, Yida; Hu, Wenbin; Qiao, Jinli; Zhang, Lei; Zhang, Jiujun
2015-11-07
Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).
Thin Film Electrodes with an Integral Current Collection Grid for Use with Solid Electrolytes
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Kisor, A.; Williams, R. M.; Jeffries-Nakamura, B.; O'Connor, D.
1994-01-01
Thin film, high performance electrodes which can operate in high temperature environments are necessary for many devices which use a solid electrolyte. Electrodes of rhodium-tungsten alloy have been deposited on solid electrolyte using photolytic chemical vapor deposition (PCVD). A technique for depositing electrodes and current collection grids simultaneously has been developed using the prenucleation characteristics of PCVD. This technique makes it possible to fabricate electrodes which allow vapor transport through the thin (<1 (micro)m) portions of the electrode while integral thick grid lines improve the electronic conductivity of the electrode, thus improving overall performance.
Cell for making secondary batteries
Visco, Steven J.; Liu, Meilin; DeJonghe, Lutgard C.
1992-01-01
The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.
Cell for making secondary batteries
Visco, S.J.; Liu, M.; DeJonghe, L.C.
1992-11-10
The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.
Method and system for the removal of oxides of nitrogen and sulfur from combustion processes
Walsh, John V.
1987-12-15
A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.
Extrusion of electrode material by liquid injection into extruder barrel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, David Gerard; Giovannoni, Richard Thomas; MacFadden, Kenneth Orville
An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.
Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length
NASA Astrophysics Data System (ADS)
Liu, Libin; Wu, Xiwen; Li, Tianduo
2014-03-01
A series of comb-like cationic polyurethanes (PUs) were synthesized by quaternizing different bromoalkane (C2H5Br, C8H17Br, and C14H29Br) with polyurethane. Solid polymer electrolytes were prepared by complexes cationic PUs with different content of LiClO4. All the solid polymer electrolytes had sufficient thermal stability as confirmed by TGA and exhibited a single-phase behavior evidenced by DSC results. For these electrolytes, FT-IR spectra indicated the formation of polymer-ion complexes. The ac impedance spectra show that the conductivity of the electrolytes follow the Arrhenius behavior, and ionic conductivity is associated with both the charge migration of ions between coordination sites and transmission between aggregates, as confirmed by FT-IR and SEM. Alkyl quaternary ammonium salts in the polymer backbone are recognized as inherent plasticizers, which make the electrolytes exhibit liquid-like behavior. The plasticizing effect of PU-C8 and PU-C14 electrolytes are more effective than that of PU-C2 electrolyte. Maximum ionic conductivity at room temperature for PU-C8 electrolytes containing 50 wt% LiClO4 reached 1.1 × 10-4 S cm-1. This work provides a new research clue that alkyl quaternary ammonium salts could be used as inherent plasticizers and hence make the system behave like a liquid with high ionic conductivity, while preserving the dimensional stability of the solids.
NASA Astrophysics Data System (ADS)
Bi, Shi-Qing; Meng, Fan-Li; Zheng, Yan-Zhen; Han, Xue; Tao, Xia; Chen, Jian-Feng
2014-12-01
We report on the preparation of highly effective composite electrolytes by combining the two-dimensional graphene (Gra) and soluble polystyrene (PS) nanobeads on Pt counter electrode for the quasi-solid-state electrolytes of ZnO based dye-sensitized solar cells (DSCs). Under an optimized Gra/electrolyte ratio of 12 mg mL-1, the ionic conductivity (σ) of Gra-PS electrolyte was significantly improved from 32.8 mS cm-1 to 39.8 mS cm-1. And the electrochemical impedance spectroscopy (EIS) analysis proved that the ZnO-DSC with the optimized composite electrolyte possessed the lowest impedance value. As a result, the overall power conversion efficiencies (PCEs) of quasi-solid-state ZnO-DSCs significantly enhanced to 5.08% from initial 4.09%. Moreover, the results of long-term stability assays showed that the gel-state Gra-PS ZnO-DSC could retain over 90% of its initial PCE after radiation of 1000 h under full sunlight outdoors. It is anticipated that this work may provide an effective way to increase the cell efficiency by the introduction of Gra into gel electrolyte as well as a great potential for practical application.
NASA Astrophysics Data System (ADS)
Yavorsky, D. P.
1981-08-01
The structure of an adsorbed macromolecular layer at the solid/liquid interface under both stationary and flow conditions is examined. The conformation of adsorbed bovine serum albumin (BSA) is deduced from the thickness of surface layers formed on the pore walls of track etched (mica) membranes. Changes in membrane permeability due to protein adsorption are related directly to a net reduction in pore size or an equivalent adsorbed layer thickness. Complementary permeability measurements using electrolyte conduction, tracer diffusion, and pressure driven flow have verified the unique structural qualities of the track etched membrane and collectively demonstrate an ability to determine bare pore size with an accuracy of + or - 2A. The average static thickness of an adsorbed BSA layer, as derived from electrolyte conduction and tracer diffusion, was 43 + or - 3A independent of pore size. In comparison with the known BSA solution dimensions, this measured thickness is consistent with a monolayer of structurally unperturbed protein molecules each oriented in a "side-on" position. Pronounced conformational changes in adsorbed BSA layers were observed under conditions of shear flow. Electrostatic interactions were also shown to significantly affect adsorbed protein conformation through changes in solution ionic strength and surface charge.
NASA Astrophysics Data System (ADS)
Gao, Jian; Chu, Geng; He, Meng; Zhang, Shu; Xiao, RuiJuan; Li, Hong; Chen, LiQuan
2014-08-01
Inorganic solid electrolytes have distinguished advantages in terms of safety and stability, and are promising to substitute for conventional organic liquid electrolytes. However, low ionic conductivity of typical candidates is the key problem. As connective diffusion path is the prerequisite for high performance, we screen for possible solid electrolytes from the 2004 International Centre for Diffraction Data (ICDD) database by calculating conduction pathways using Bond Valence (BV) method. There are 109846 inorganic crystals in the 2004 ICDD database, and 5295 of them contain lithium. Except for those with toxic, radioactive, rare, or variable valence elements, 1380 materials are candidates for solid electrolytes. The rationality of the BV method is approved by comparing the existing solid electrolytes' conduction pathways we had calculated with those from experiments or first principle calculations. The implication for doping and substitution, two important ways to improve the conductivity, is also discussed. Among them Li2CO3 is selected for a detailed comparison, and the pathway is reproduced well with that based on the density functional studies. To reveal the correlation between connectivity of pathways and conductivity, α/ γ-LiAlO2 and Li2CO3 are investigated by the impedance spectrum as an example, and many experimental and theoretical studies are in process to indicate the relationship between property and structure. The BV method can calculate one material within a few minutes, providing an efficient way to lock onto targets from abundant data, and to investigate the structure-property relationship systematically.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.
2002-01-01
Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.
Abraham, K.M.; Alamgir, M.; Choe, H.S.
1995-12-12
This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.
Cho, Sung Man; Shim, Jimin; Cho, Sung Ho; Kim, Jiwoong; Son, Byung Dae; Lee, Jong-Chan; Yoon, Woo Young
2018-05-09
As interest in electric vehicles and mass energy storage systems continues to grow, Li-O 2 batteries are attracting much attention as a candidate for next-generation energy storage systems owing to their high energy density. However, safety problems related to the use of lithium metal anodes have hampered the commercialization of Li-O 2 batteries. Herein, we introduced a quasi-solid polymer electrolyte with excellent electrochemical, chemical, and thermal stabilities into Li-O 2 batteries. The ion-conducting QSPE was prepared by gelling a polymer network matrix consisting of poly(ethylene glycol) methyl ether methacrylate, methacrylated tannic acid, lithium trifluoromethanesulfonate, and nanofumed silica with a small amount of liquid electrolyte. The quasi-solid-state Li-O 2 cell consisted of a lithium powder anode, a quasi-solid polymer electrolyte, and a Pd 3 Co/multiwalled carbon nanotube cathode, which enhanced the electrochemical performance of the cell. This cell, which exhibited improved safety owing to the suppression of lithium dendrite growth, achieved a lifetime of 125 cycles at room temperature. These results show that the introduction of a quasi-solid electrolyte is a potentially new alternative for the commercialization of solid-state Li-O 2 batteries.
'All-solid-state' electrochemistry of a protein-confined polymer electrolyte film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parthasarathy, Meera; Pillai, Vijayamohanan K.; Mulla, Imtiaz S.
2007-12-07
Interfacial redox behavior of a heme protein (hemoglobin) confined in a solid polymer electrolyte membrane, Nafion (a perfluoro sulfonic acid ionomer) is investigated using a unique 'all-solid-state' electrochemical methodology. The supple phase-separated structure of the polymer electrolyte membrane, with hydrophilic pools containing solvated protons and water molecules, is found to preserve the incorporated protein in its active form even in the solid-state, using UV-visible, Fluorescence (of Tryptophan and Tyrosine residues) and DRIFT (diffuse reflectance infrared Fourier transform) spectroscopy. More specifically, solid-state cyclic voltammetry and electrochemical impedance of the protein-incorporated polymer films reveal that the Fe{sup 2+}-form of the entrapped proteinmore » is found to bind molecular oxygen more strongly than the native protein. In the 'all-solid-state' methodology, as there is no need to dip the protein-modified electrode in a liquid electrolyte (like the conventional electrochemical methods), it offers an easier means to study a number of proteins in a variety of polymer matrices (even biomimetic assemblies). In addition, the results of the present investigation could find interesting application in a variety of research disciplines, in addition to its fundamental scientific interest, including protein biotechnology, pharmaceutical and biomimetic chemistry.« less
Higher Efficiency for Quasi-Solid State Dye Sensitized Solar Cells Under Low Light Irradiance
NASA Astrophysics Data System (ADS)
Desilva, Ajith; Bandara, T. M. W. J.; Fernado, H. D. N. S.; Fernando, P. S. L.; Dissanayake, M. A. K. L.; Jayasundara, W. J. M. J. S. R.; Furlani, M.; Mellander, B.-E.
2014-03-01
Dye-sensitized solar cells (DSSCs), lower cost solar energy conversion devices are alternative green energy source. The liquid based electrolyte DSSCs have higher efficiencies with many practical issues while the quasi-solid-state DSSCs resolve the key problems but efficiencies are relatively low. Polyacrylonitrile (PAN) based gel polymer electrolytes were fabricated as DSSCs by incorporating ethylene carbonate and propylene carbonate plasticizers and tetrapropylammonium iodide salt. A thin layer of electrolyte was sandwiched between the TiO2 anode (sensitized with N719 dye) and the Pt counter electrode. The electrolyte had an ionic conductivity of 2.6 mS/cm at 25 degrees of Celsius. DSSCs incorporating this gel electrolyte revealed Vsc circuit, Jsc, fill factor (FF) and efficiency values of 0.71 V, 11.8 mA, 51 percent and 4.2 percent respectively under 1 sun irradiation. The efficiency of the cell increased with decreasing solar irradiance achieving up to 10 percent efficiency and 80 percent FF at low irradiance values. This work uncovers that quasi-solid state DSSCs can reach efficiencies close to that of liquid electrolytes based cells.
A lithium superionic conductor.
Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio
2011-07-31
Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).
Role of Dynamically Frustrated Bond Disorder in a Li + Superionic Solid Electrolyte
Adelstein, Nicole; Wood, Brandon C.
2016-09-16
Inorganic lithium solid electrolytes are critical components in next-generation solid-state batteries, yet the fundamental nature of the cation-anion interactions and their relevance for ionic conductivity in these materials remains enigmatic. Here, we employ first-principles molecular dynamics simulations to explore the interplay between chemistry, structure, and functionality of a highly conductive Li + solid electrolyte, Li3InBr6. Using local-orbital projections to dynamically track the evolution of the electronic charge density, the simulations reveal rapid, correlated fluctuations between cation-anion interactions with different degrees of directional covalent character. These chemical bond dynamics are shown to correlate with Li + mobility, and are enabled thermallymore » by intrinsic frustration between the preferred geometries of chemical bonding and lattice symmetry. We suggest that the fluctuating chemical environment from the polarizable anions functions similar to a solvent, contributing to the superionic behavior of Li 3InBr 6 by temporarily stabilizing configurations favorable for migrating Li +. The generality of these conclusions for understanding solid electrolytes and key factors governing the superionic phase transition is discussed.« less
Solid oxide MEMS-based fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2007-03-13
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Solid polymer MEMS-based fuel cells
Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA
2008-04-22
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Chen, Li; He, YaLing; Tao, Wen -Quan; ...
2017-07-21
The electrode of a vanadium redox flow battery generally is a carbon fibre-based porous medium, in which important physicochemical processes occur. In this work, pore-scale simulations are performed to study complex multiphase flow and reactive transport in the electrode by using the lattice Boltzmann method (LBM). Four hundred fibrous electrodes with different fibre diameters and porosities are reconstructed. Both the permeability and diffusivity of the reconstructed electrodes are predicted and compared with empirical relationships in the literature. Reactive surface area of the electrodes is also evaluated and it is found that existing empirical relationship overestimates the reactive surface under lowermore » porosities. Further, a pore-scale electrochemical reaction model is developed to study the effects of fibre diameter and porosity on electrolyte flow, V II/V III transport, and electrochemical reaction at the electrolyte-fibre surface. Finally, evolution of bubble cluster generated by the side reaction is studied by adopting a LB multiphase flow model. Effects of porosity, fibre diameter, gas saturation and solid surface wettability on average bubble diameter and reduction of reactive surface area due to coverage of bubbles on solid surface are investigated in detail. It is found that gas coverage ratio is always lower than that adopted in the continuum model in the literature. Furthermore, the current pore-scale studies successfully reveal the complex multiphase flow and reactive transport processes in the electrode, and the simulation results can be further upscaled to improve the accuracy of the current continuum-scale models.« less
Non-aqueous electrolytes for electrochemical cells
Zhang, Zhengcheng; Dong, Jian; Amine, Khalil
2016-06-14
An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.
Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes
NASA Astrophysics Data System (ADS)
Waldbillig, D.; Kesler, O.
Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.
Apparatus and process for the electrolytic reduction of uranium and plutonium oxides
Poa, David S.; Burris, Leslie; Steunenberg, Robert K.; Tomczuk, Zygmunt
1991-01-01
An apparatus and process for reducing uranium and/or plutonium oxides to produce a solid, high-purity metal. The apparatus is an electrolyte cell consisting of a first container, and a smaller second container within the first container. An electrolyte fills both containers, the level of the electrolyte in the first container being above the top of the second container so that the electrolyte can be circulated between the containers. The anode is positioned in the first container while the cathode is located in the second container. Means are provided for passing an inert gas into the electrolyte near the lower end of the anode to sparge the electrolyte and to remove gases which form on the anode during the reduction operation. Means are also provided for mixing and stirring the electrolyte in the first container to solubilize the metal oxide in the electrolyte and to transport the electrolyte containing dissolved oxide into contact with the cathode in the second container. The cell is operated at a temperature below the melting temperature of the metal product so that the metal forms as a solid on the cathode.
Reactive sintering of ceramic lithium ion electrolyte membranes
Badding, Michael Edward; Dutta, Indrajit; Iyer, Sriram Rangarajan; Kent, Brian Alan; Lonnroth, Nadja Teresia
2017-06-06
Disclosed herein are methods for making a solid lithium ion electrolyte membrane, the methods comprising combining a first reactant chosen from amorphous, glassy, or low melting temperature solid reactants with a second reactant chosen from refractory oxides to form a mixture; heating the mixture to a first temperature to form a homogenized composite, wherein the first temperature is between a glass transition temperature of the first reactant and a crystallization onset temperature of the mixture; milling the homogenized composite to form homogenized particles; casting the homogenized particles to form a green body; and sintering the green body at a second temperature to form a solid membrane. Solid lithium ion electrolyte membranes manufactured according to these methods are also disclosed herein.
Skotheim, Terje
1984-01-01
There is disclosed a polymer blend of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.
Nowak, Sascha; Winter, Martin
2017-03-06
Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.
Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Xu, Xiaoxiong; Li, Hong; Zhang, Qiang; Cai, Liangting; Hu, Yong-Sheng; Yao, Xiayin
2018-04-18
Nanosized Na 3 PS 4 solid electrolyte with an ionic conductivity of 8.44 × 10 -5 S cm -1 at room temperature is synthesized by a liquid-phase reaction. The resultant all-solid-state FeS 2 /Na 3 PS 4 /Na batteries show an extraordinary high initial Coulombic efficiency of 95% and demonstrate high energy density of 611 Wh kg -1 at current density of 20 mA g -1 at room temperature. The outstanding performances of the battery can be ascribed to good interface compatibility and intimate solid-solid contact at FeS 2 electrode/nanosized Na 3 PS 4 solid electrolytes interface. Meanwhile, excellent cycling stability is achieved for the battery after cycling at 60 mA g -1 for 100 cycles, showing a high capacity of 287 mAh g -1 with the capacity retention of 80%.
NASA Astrophysics Data System (ADS)
Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.
2018-01-01
Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.
Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells
Chen, Fanglin; Zhao, Fei; Liu, Qiang
2015-10-06
In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.
Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells
NASA Technical Reports Server (NTRS)
Liu, Qiang (Inventor); Chen, Fanglin (Inventor); Zhao, Fei (Inventor)
2015-01-01
In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.
Method for forming a potential hydrocarbon sensor with low sensitivity to methane and CO
Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando
2003-12-02
A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.
Microscale Alloy Type Lithium Ion Battery Anodes
2015-09-01
hexamethyldisilazane Li lithium Ni nickel NMP n-methyl-2-pyrolidone RMS root mean square SEI solid electrolyte interphase SEM scanning electron microscopy...process also leads to an unstable solid electrolyte interphase (SEI) and further capacity loss. An extraordinary amount of work has been done in an...
Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin
1998-01-01
The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.
Li, Lingzhi; Gong, Jiangfeng; Liu, Chunyan; ...
2017-03-22
As a p-type multifunctional semiconductor, CuSe nanostructures show great promise in optoelectronic, sensing, and photocatalytic fields. Although great progress has been achieved, controllable synthesis of CuSe nanosheets (NSs) with a desirable spacial orientation and open frameworks remains a challenge, and their use in supercapacitors (SCs) has not been explored. Herein, a highly vertically oriented and interpenetrating CuSe NS film with open channels is deposited on an Au-coated polyethylene terephthalate substrate. Such CuSe NS films exhibit high specific capacitance (209 F g–1) and can be used as a carbon black- and binder-free electrode to construct flexible, symmetric all-solid-state SCs, using polyvinylmore » alcohol–LiCl gel as the solid electrolyte. A device fabricated with such CuSe NS films exhibits high volumetric specific capacitance (30.17 mF cm–3), good cycling stability, excellent flexibility, and desirable mechanical stability. The excellent performance of such devices results from the vertically oriented and interpenetrating configuration of CuSe NS building blocks, which can increase the available surface and facilitate the diffusion of electrolyte ions. Moreover, as a prototype for application, three such solid devices in series can be used to light up a red light-emitting diode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lingzhi; Gong, Jiangfeng; Liu, Chunyan
As a p-type multifunctional semiconductor, CuSe nanostructures show great promise in optoelectronic, sensing, and photocatalytic fields. Although great progress has been achieved, controllable synthesis of CuSe nanosheets (NSs) with a desirable spacial orientation and open frameworks remains a challenge, and their use in supercapacitors (SCs) has not been explored. Herein, a highly vertically oriented and interpenetrating CuSe NS film with open channels is deposited on an Au-coated polyethylene terephthalate substrate. Such CuSe NS films exhibit high specific capacitance (209 F g–1) and can be used as a carbon black- and binder-free electrode to construct flexible, symmetric all-solid-state SCs, using polyvinylmore » alcohol–LiCl gel as the solid electrolyte. A device fabricated with such CuSe NS films exhibits high volumetric specific capacitance (30.17 mF cm–3), good cycling stability, excellent flexibility, and desirable mechanical stability. The excellent performance of such devices results from the vertically oriented and interpenetrating configuration of CuSe NS building blocks, which can increase the available surface and facilitate the diffusion of electrolyte ions. Moreover, as a prototype for application, three such solid devices in series can be used to light up a red light-emitting diode.« less
Li, Huili; Lv, Tian; Li, Ning; Yao, Yao; Liu, Kai; Chen, Tao
2017-11-30
Hydrogels with high ionic conductivity consisting of a cross-linked polymer network swollen in water are very promising to be used as an electrolyte for all-solid-state supercapacitors. However, there are rather few flexible supercapacitors using ionic conducting hydrogel electrolytes reported to date. In this work, highly flexible and ionic conducting polyacrylamide hydrogels were synthesized through a simple approach. On using the ionic hydrogels as the electrolyte, the resulting supercapacitors not only exhibited a high specific capacitance but also showed a long self-discharge time (over 10 hours to the half of original open-circuit voltage) and a low leakage current. These newly-developed all-solid-state supercapacitors can be bent, knot, and kneaded for 5000 cycles without performance decay, suggesting excellent flexibility and mechanical stability. These all-solid-state supercapacitors can also be easily tailored into strip-like supercapacitors without a short circuit, which provides an efficient approach to fabricate wearable energy storage devices.
Vacancy-Controlled Na+ Superion Conduction in Na11 Sn2 PS12.
Duchardt, Marc; Ruschewitz, Uwe; Adams, Stefan; Dehnen, Stefanie; Roling, Bernhard
2018-01-26
Highly conductive solid electrolytes are crucial to the development of efficient all-solid-state batteries. Meanwhile, the ion conductivities of lithium solid electrolytes match those of liquid electrolytes used in commercial Li + ion batteries. However, concerns about the future availability and the price of lithium made Na + ion conductors come into the spotlight in recent years. Here we present the superionic conductor Na 11 Sn 2 PS 12 , which possesses a room temperature Na + conductivity close to 4 mS cm -1 , thus the highest value known to date for sulfide-based solids. Structure determination based on synchrotron X-ray powder diffraction data proves the existence of Na + vacancies. As confirmed by bond valence site energy calculations, the vacancies interconnect ion migration pathways in a 3D manner, hence enabling high Na + conductivity. The results indicate that sodium electrolytes are about to equal the performance of their lithium counterparts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels.
He, Guangwei; Xu, Mingzhao; Zhao, Jing; Jiang, Shengtao; Wang, Shaofei; Li, Zhen; He, Xueyi; Huang, Tong; Cao, Moyuan; Wu, Hong; Guiver, Michael D; Jiang, Zhongyi
2017-07-01
Solid electrolytes have attracted much attention due to their great prospects in a number of energy- and environment-related applications including fuel cells. Fast ion transport and superior mechanical properties of solid electrolytes are both of critical significance for these devices to operate with high efficiency and long-term stability. To address a common tradeoff relationship between ionic conductivity and mechanical properties, electrolyte membranes with proton-conducting 2D channels and nacre-inspired architecture are reported. An unprecedented combination of high proton conductivity (326 mS cm -1 at 80 °C) and superior mechanical properties (tensile strength of 250 MPa) are achieved due to the integration of exceptionally continuous 2D channels and nacre-inspired brick-and-mortar architecture into one materials system. Moreover, the membrane exhibits higher power density than Nafion 212 membrane, but with a comparative weight of only ≈0.1, indicating potential savings in system weight and cost. Considering the extraordinary properties and independent tunability of ion conduction and mechanical properties, this bioinspired approach may pave the way for the design of next-generation high-performance solid electrolytes with nacre-like architecture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries
Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi
2016-01-01
Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm−1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions. PMID:26791572
Solid electrolyte material manufacturable by polymer processing methods
Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez
2012-09-18
The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.
Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries
NASA Astrophysics Data System (ADS)
Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi
2016-01-01
Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm-1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.
Lithium ion conducting electrolytes
Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.
1999-01-01
The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.
Nam, SeongSik; Mai, Cuc Thi Kim; Oh, Ilwhan
2018-05-02
Herein, we report an integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. As generic OMH perovskite material and device architecture are highly susceptible to degradation by aqueous electrolytes, we have developed a versatile mold-cast and lift-off process to fabricate and assemble multipurpose metal encapsulation onto perovskite devices. With the metal encapsulation effectively protecting the perovskite cell and also functioning as electrocatalyst, the high-performance perovskite photoelectrodes exhibit high photovoltage and photocurrent that are effectively inherited from the original solid-state solar cell. More importantly, thus-fabricated perovskite photoelectrode demonstrates record-long unprecedented stability even at highly oxidizing potential in strong alkaline electrolyte. We expect that this versatile lift-off process can be adapted in a wide variety of photoelectrochemical devices to protect the material surfaces from corroding electrolyte and facilitate various electrochemical reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id
Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensilemore » resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.« less
Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs
NASA Astrophysics Data System (ADS)
He, Xiaodong; Meng, Bin; Sun, Yue; Liu, Bochao; Li, Mingwei
2008-09-01
YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10 -5 cm 4 N -1 s -1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.
Electromotive force measurements on cells involving beta-alumina solid electrolyte
NASA Technical Reports Server (NTRS)
Choudhury, N. S.
1973-01-01
Open-circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta-alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two-phase solid electrolyte may be used to monitor oxygen chemical potentials as low as that corresponding to Al and Al2O3 coexistence (potentials of about 10 to the minus 47th power atm at 1000 K). The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.
Extrusion of electrode material by liquid injection into extruder barrel
Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.
1998-03-10
An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells. 1 fig.
Liu, Fang -Chao; Shadike, Zulipiya; Wang, Xiao -Fang; ...
2016-06-16
A novel small-molecule compound of lithium iodine and 3-hydroxypropionitrile (HPN) has been successfully synthesized. Our combined experimental and theoretical studies indicated that LiIHPN is a Li-ion conductor, which is utterly different from the I–-anion conductor of LiI(HPN) 2 reported previously. Solid-state lithium–air batteries based on LiIHPN as the electrolyte exhibit a reversible discharge capacity of more than 2100 mAh g –1 with a cyclic performance over 10 cycles. Lastly, our findings provide a new way to design solid-state electrolytes toward high-performance lithium–air batteries.
Extrusion of electrode material by liquid injection into extruder barrel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.
An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.more » 1 fig.« less
Graphene quantum dots as the electrolyte for solid state supercapacitors
Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu
2016-01-01
We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275
Starr, David E.; Favaro, Marco; Abdi, Fatwa F.; ...
2017-05-18
The development of solar fuel generating materials would greatly benefit from a molecular level understanding of the semiconductor/electrolyte interface and changes in the interface induced by an applied potential and illumination by solar light. Ambient pressure photoelectron spectroscopy techniques with both soft and hard X-rays, AP-XPS and AP-HAXPES respectively, have the potential to markedly contribute to this understanding. In this paper we initially provide two examples of current challenges in solar fuels material development that AP-XPS and AP-HAXPES can directly a ddress. This will be followed by a brief description of the distinguishing and complementary characteristics of soft and hardmore » X-ray AP-XPS and AP-HAXPES and best approaches to achieving monolayer sensitivity in solid/aqueous electrolyte studies. In particular we focus on the detection of surface adsorbed hydroxyl groups in the presence of aqueous hydroxide anions in the electrolyte, a common situation when investigating photoanodes for solar fuel generating applications. Finally, the article concludes by providing an example of a combined AP-XPS and AP-HAXPES study of a semiconductor/aqueous electrolyte interface currently used in water splitting devices specifically the BiVO 4/aqueous potassium phosphate electrolyte interface.« less
Rechargeable Al/Cl2 battery with molten AlCl4/-/ electrolyte.
NASA Technical Reports Server (NTRS)
Holleck, G. L.; Giner, J.; Burrows, B.
1972-01-01
A molten salt system based on Al- and Cl2 carbon electrodes, with an AlCl3 alkali chloride eutectic as electrolyte, offers promise as a rechargeable, high energy density battery which can operate at a relatively low temperature. Electrode kinetic studies showed that the electrode reactions at the Al anode were rapid and that the observed passivation phenomena were due to the formation at the electrode surface of a solid salt layer resulting from concentration changes on anodic or cathodic current flow. It was established that carbon electrodes were intrinsically active for chlorine reduction in AlCl3-alkali chloride melts. By means of a rotating vitreous carbon disk electrode, the kinetic parameters were determined.
Cell and current collector felt arrangement for solid oxide electrochemical cell combinations
Reichner, Philip
1988-01-01
A solid electrolyte electrochemical cell combination 1 is made, comprising an annular, axially elongated, inner electrode 2 containing at least one interior gas feed conduit 3; annular solid electrolyte segments 4 around and covering portions of the inner electrode; annular outer electrode segments 6 around and covering portions of the electrolyte segments; electronically conducting, non-porous, interconnection material 5 disposed between electrolyte segments and in contact with the inner electrode, and electronically conducting, porous, metal fiber current collector felts 7 disposed on top of the non-porous interconnect material and outer electrode segments, where both the non-porous interconnect material and the porous metal felts are disposed circumferentially about the cell, transversely to the axial length of the cell and the inner electrode is continuous for the entire axial length of the cell combination.
Composite Solid Electrolyte Containing Li+- Conducting Fibers
NASA Technical Reports Server (NTRS)
Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu
2006-01-01
Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2006-10-10
Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.
Solid electrolytes strengthened by metal dispersions
Lauf, Robert J.; Morgan, Chester S.
1983-01-01
An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.
Solid electrolytes strengthened by metal dispersions
Lauf, R.J.; Morgan, C.S.
1981-10-05
An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.
NASA Astrophysics Data System (ADS)
Patil, Ravikumar V.; Praveen, D.; Damle, R.
2018-05-01
Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuefeng; Zhang, Minghao; Alvarado, Judith
Lithium metal has been considered as the “holy grail” anode material for rechargeable batteries though the dendritic growth and low Coulombic efficiency (CE) have crippled its practical use for decades. Its high chemical reactivity and low stability make it difficult to explore the intrinsic chemical and physical properties of the electrochemically deposited lithium (EDLi) and its accompanied solid electrolyte interphase (SEI). To prevent the dendritic growth and enhance the electrochemical reversibility, it is crucial to understand the nano- and meso- structures of EDLi. However, Li metal is very sensitive to beam damage and has low contrast for commonly used characterizationmore » techniques such as electron microscopy. Inspired by biological imaging techniques, this work demonstrates the power of cryogenic (cryo)- electron microscopy to reveal the detailed structure of EDLi and the SEI composition at the nano scale while minimizing beam damage during imaging. Surprisingly, the results show that the nucleation dominated EDLi (five minutes at 0.5 mA cm-2) is amorphous while there is some crystalline LiF present in the SEI. The EDLi grown from various electrolytes with different additives exhibits distinctive surface properties. Consequently, these results highlight the importance of the SEI and its relationship with the CE. Our findings not only illustrate the capabilities of cryogenic microscopy for beam (thermal)-sensitive materials, but it yields crucial structural information of the EDLi evolution with and without electrolyte additives.« less
Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri
2014-01-01
In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic dischargemore » mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.« less
Study of storage capacity in various carbon/graphene-based solid-state supercapacitors
NASA Astrophysics Data System (ADS)
Subramaniam, C. K.; Boopalan, G.
2014-09-01
Solid-state electrochemical double-layer capacitor (SEDLC) forms excellent energy storage device for high-power applications. They are highly reliable, with no electrolyte leaks, and can be packaged to suit various applications. The electrode material can be activated carbon to graphene. These can have a range of particle size, surface area, pore size and pore distribution for charge storage. The emphasis will be to optimize the graphene to carbon blend in the electrodes which would provide appreciable storage density of the SEDLC. We can use perfluorosulfonic acid polymer as the solid electrolyte in the SEDLC assembly. They have high ionic conductivity, good thermal stability, and mechanical strength. They also have excellent long-term chemical stability. Carbon is widely used for many practical applications, especially for the adsorption of ions and molecules, as it is possible to synthesize one-, two- or three-dimensional (1-, 2-, or 3-D) carbons. Some of the problems in activated carbon like varying micro or mesopores, poor ion mobility due to varying pore distribution, low electrical conductivity, can be overcome using graphene and blends of graphene with carbon of the right pore dimension and distribution. Graphene in various structural nomenclatures have been used by various groups for charge storage. Graphene nanoplates (GNP), with narrow mesopore distributions have been effectively used for SEDLCs. SEDLCs assembled with GNP and blends of GNP with Vulcan XC and solid polymer electrolyte like Nafion show exceptional performance. The cyclic voltammetric studies show that they support high scan rates with substantial smaller capacitance drop as we increase scan rates. Optimization of the electrode structure in terms of blend percentage, binder content and interface character in the frequency and time domain provides excellent insight into the double-layer interface.
Zhang, J.G.; Benson, D.K.; Tracy, C.E.
1998-02-10
The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.
Hayamizu, Kikuko; Seki, Shiro; Haishi, Tomoyuki
2018-06-21
The migration behaviours of Li+ in three garnet- and one NASICON-type solid oxide electrolytes were studied on the micrometre scale by pulsed-gradient spin-echo (PGSE) 7Li NMR diffusion spectroscopy to clarify common and specific characteristics of each electrolyte. In these solid electrolytes, clear evidences of grain boundary effects in the diffusion of Li+ were not observed. The Li+ diffusion constants were dependent on parameters such as observation time (Δ) and pulsed field gradient (PFG) strength (g) for all the studied inorganic solid electrolytes. For low Δ values, Li+ ions underwent collisions and diffractions with diffraction distance Rdiffraction [μm]. The apparent Li+ diffusion constants (Dapparent [m2 s-1]) exhibited distributions in a wide range. In this paper, we introduced the apparent diffusion radius, rradius [μm], and compared it with Rdiffraction and mean square displacement (MSD) [μm]; the lengths of these distances were of the micrometre order (10-6 m). The relations between the values of rradius, Rdiffraction and MSD suggested that the migration behaviours of Li+ on the micrometre scale were complicated. Using high Δ and high g values, we obtained an equilibrated value of DLi. The temperature dependences of the number of carrier ions were estimated from the DLi values and ionic conductivities in the four solid oxide electrolytes. For simple comparison and reference, the data of DLi and ionic conductivity of LiPF6 in 1 M solution of propylene carbonate were added.
A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shuru; Yu, Zhaoxin; Gordin, Mikhail L.
Lithium/sulfur (Li/S) batteries have attracted great attention as a promising energy storage technology, but so far their practical applications are greatly hindered by issues of polysulfide shuttling and unstable lithium/electrolyte interface. To address these issues, a feasible strategy is to construct a rechargeable prelithiated graphite/sulfur batteries. In this study, a fluorinated ether of bis(2,2,2-trifluoroethyl) ether (BTFE) was reported to blend with 1,3-dioxolane (DOL) for making a multifunctional electrolyte of 1.0 M LiTFSI DOL/BTFE (1:1, v/v) to enable high performance prelithiated graphite/S batteries. First, the electrolyte significantly reduces polysulfide solubility to suppress the deleterious polysulfide shuttling and thus improves capacity retentionmore » of sulfur cathodes. Second, thanks to the low viscosity and good wettability, the fluorinated electrolyte dramatically enhances the reaction kinetics and sulfur utilization of high-areal-loading sulfur cathodes. More importantly, this electrolyte forms a stable solid-electrolyte interphase (SEI) layer on graphite surface and thus enables remarkable cyclability of graphite anodes. Lastly, by coupling prelithiated graphite anodes with sulfur cathodes with high areal capacity of ~3 mAh cm -2, we demonstrate prelithiated graphite/sulfur batteries that show high sulfur-specific capacity of ~1000 mAh g -1 and an excellent capacity retention of >65% after 450 cycles at C/10.« less
Water at silica/liquid water interfaces investigated by DFT-MD simulations
NASA Astrophysics Data System (ADS)
Gaigeot, Marie-Pierre
This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.
A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries
Chen, Shuru; Yu, Zhaoxin; Gordin, Mikhail L.; ...
2017-02-03
Lithium/sulfur (Li/S) batteries have attracted great attention as a promising energy storage technology, but so far their practical applications are greatly hindered by issues of polysulfide shuttling and unstable lithium/electrolyte interface. To address these issues, a feasible strategy is to construct a rechargeable prelithiated graphite/sulfur batteries. In this study, a fluorinated ether of bis(2,2,2-trifluoroethyl) ether (BTFE) was reported to blend with 1,3-dioxolane (DOL) for making a multifunctional electrolyte of 1.0 M LiTFSI DOL/BTFE (1:1, v/v) to enable high performance prelithiated graphite/S batteries. First, the electrolyte significantly reduces polysulfide solubility to suppress the deleterious polysulfide shuttling and thus improves capacity retentionmore » of sulfur cathodes. Second, thanks to the low viscosity and good wettability, the fluorinated electrolyte dramatically enhances the reaction kinetics and sulfur utilization of high-areal-loading sulfur cathodes. More importantly, this electrolyte forms a stable solid-electrolyte interphase (SEI) layer on graphite surface and thus enables remarkable cyclability of graphite anodes. Lastly, by coupling prelithiated graphite anodes with sulfur cathodes with high areal capacity of ~3 mAh cm -2, we demonstrate prelithiated graphite/sulfur batteries that show high sulfur-specific capacity of ~1000 mAh g -1 and an excellent capacity retention of >65% after 450 cycles at C/10.« less
NASA Astrophysics Data System (ADS)
Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar
2011-06-01
Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.
NASA Astrophysics Data System (ADS)
Aldalur, Itziar; Martinez-Ibañez, Maria; Piszcz, Michal; Rodriguez-Martinez, Lide M.; Zhang, Heng; Armand, Michel
2018-04-01
Novel solid polymer electrolytes (SPEs), comprising of comb polymer matrix grafted with soft and disordered polyether moieties (Jeffamine®) and lithium bis(fluorosulfonyl)imide (LiFSI) are investigated in all-solid-state lithium metal (Li°) polymer cells. The LiFSI/Jeffamine-based SPEs are fully amorphous at room temperature with glass transitions as low as ca. -55 °C. They show higher ionic conductivities than conventional poly(ethylene oxide) (PEO)-based SPEs at ambient temperature region, and good electrochemical compatibility with Li° electrode. These exceptional properties enable the operational temperature of Li° | LiFePO4 cells to be decreased from an elevated temperature (70 °C) to room temperature. Those results suggest that LiFSI/Jeffamine-based SPEs can be promising electrolyte candidates for developing safe and high performance all-solid-state Li° batteries.
NASA Astrophysics Data System (ADS)
Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping
2018-02-01
La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.
Zhao, Wengao; Zou, Lianfeng; Zheng, Jianming; Jia, Haiping; Song, Junhua; Engelhard, Mark H; Wang, Chongmin; Xu, Wu; Yang, Yong; Zhang, Ji-Guang
2018-05-01
The long-term cycling performance, rate capability, and voltage stability of lithium (Li) metal batteries with LiNi0.76Mn0.14Co0.10O2 (NMC76) cathodes is greatly enhanced by lithium bis(oxalato)borate (LiBOB) additive in the LiPF6-based electrolyte. With 2% LiBOB in the electrolyte, a Li||NMC76 cell is able to achieve a high capacity retention of 96.8% after 200 cycles at C/3 rate (1C = 200 mA g-1), which is the best result reported for a Ni-rich NMC cathode coupled with Li metal anode. The significantly enhanced electrochemical performance can be ascribed to the stabilization of both the NMC76-cathode/electrolyte and Li-metal-anode/electrolyte interfaces. LiBOB-containing electrolyte not only facilitates the formation of a more compact solid electrolyte interphase on the Li metal surface, it also forms a enhanced cathode electrolyte interface layer, which efficiently prevents the corrosion of the cathode interface and mitigates the formation of disordered rock-salt phase after cycling. The fundamental findings of this work highlight the importance of recognizing the dual effects of electrolyte additives in simultaneously stabilizing both cathode and anode interfaces, so as to enhance the long-term cycle life of high-energy-density battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molten salt electrolyte separator
Kaun, Thomas D.
1996-01-01
A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.
Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin
2015-01-13
Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.
Quasi-Solid-State Single-Atom Transistors.
Xie, Fangqing; Peukert, Andreas; Bender, Thorsten; Obermair, Christian; Wertz, Florian; Schmieder, Philipp; Schimmel, Thomas
2018-06-21
The single-atom transistor represents a quantum electronic device at room temperature, allowing the switching of an electric current by the controlled and reversible relocation of one single atom within a metallic quantum point contact. So far, the device operates by applying a small voltage to a control electrode or "gate" within the aqueous electrolyte. Here, the operation of the atomic device in the quasi-solid state is demonstrated. Gelation of pyrogenic silica transforms the electrolyte into the quasi-solid state, exhibiting the cohesive properties of a solid and the diffusive properties of a liquid, preventing the leakage problem and avoiding the handling of a liquid system. The electrolyte is characterized by cyclic voltammetry, conductivity measurements, and rotation viscometry. Thus, a first demonstration of the single-atom transistor operating in the quasi-solid-state is given. The silver single-atom and atomic-scale transistors in the quasi-solid-state allow bistable switching between zero and quantized conductance levels, which are integer multiples of the conductance quantum G 0 = 2e 2 /h. Source-drain currents ranging from 1 to 8 µA are applied in these experiments. Any obvious influence of the gelation of the aqueous electrolyte on the electron transport within the quantum point contact is not observed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.
Younis, Adnan; Chu, Dewei; Shah, Abdul Hadi; Du, Haiwei; Li, Sean
2017-01-18
As an alternative to transistor-based flash memories, redox reactions mediated resistive switches are considered as the most promising next-generation nonvolatile memories that combine the advantages of a simple metal/solid electrolyte (insulator)/metal structure, high scalability, low power consumption, and fast processing. For cation-based memories, the unavailability of in-built mobile cations in many solid electrolytes/insulators (e.g., Ta 2 O 5 , SiO 2 , etc.) instigates the essential role of absorbed water in films to keep electroneutrality for redox reactions at counter electrodes. Herein, we demonstrate electrochemical characteristics (oxidation/reduction reactions) of active electrodes (Ag and Cu) at the electrode/electrolyte interface and their subsequent ions transportation in Fe 3 O 4 film by means of cyclic voltammetry measurements. By posing positive potentials on Ag/Cu active electrodes, Ag preferentially oxidized to Ag + , while Cu prefers to oxidize into Cu 2+ first, followed by Cu/Cu + oxidation. By sweeping the reverse potential, the oxidized ions can be subsequently reduced at the counter electrode. The results presented here provide a detailed understanding of the resistive switching phenomenon in Fe 3 O 4 -based memory cells. The results were further discussed on the basis of electrochemically assisted cations diffusions in the presence of absorbed surface water molecules in the film.
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong
2016-02-01
The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.
High temperature solid electrolyte fuel cell with ceramic electrodes
Marchant, David D.; Bates, J. Lambert
1984-01-01
A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.
High temperature solid electrolyte fuel cell with ceramic electrodes
Bates, J.L.; Marchant, D.D.
A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO/sub 2/ or ZrO/sub 2/ ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In/sub 2/O/sub 3/. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.
Joh, Dong Woo; Park, Jeong Hwa; Kim, Doyeub; Wachsman, Eric D; Lee, Kang Taek
2017-03-15
A functionally graded Bi 1.6 Er 0.4 O 3 (ESB)/Y 0.16 Zr 0.84 O 1.92 (YSZ) bilayer electrolyte is successfully developed via a cost-effective screen printing process using nanoscale ESB powders on the tape-cast NiO-YSZ anode support. Because of the highly enhanced oxygen incorporation process at the cathode/electrolyte interface, a novel bilayer solid oxide fuel cell (SOFC) yields extremely high power density of ∼2.1 W cm -2 at 700 °C, which is a 2.4 times increase compared to that of the YSZ single electrolyte SOFC.
Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.
1996-01-01
Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.
Solid composite electrolytes for lithium batteries
Kumar, Binod; Scanlon, Jr., Lawrence G.
2001-01-01
Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.
Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.
Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A
2018-06-22
High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.
A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte
NASA Astrophysics Data System (ADS)
Kobayashi, Yo; Shono, Kumi; Kobayashi, Takeshi; Ohno, Yasutaka; Tabuchi, Masato; Oka, Yoshihiro; Nakamura, Tatsuya; Miyashiro, Hajime
2017-02-01
Ether-based solid polymer electrolyte (SPE) is one of the most well-known lithium ion conductors. Unlike the other inorganic electrolytes, SPE exhibits advantages of flexibility and large-area production, enabling low cost production of large size batteries. However, because the ether group is oxidized at 4 V versus Li/Li+ cathode, and due to its high irreversibility with the carbon anode, ether-based SPE was believed to be inapplicable to 4 V class lithium-ion batteries with carbon anode. Here we report a remarkably stable SPE in combination with a 4 V class cathode and carbon anode achieved by the proper design at the interface. The introduced boron-based lithium salt prohibits further oxidation of SPE at the cathode interface. The surface modification of graphite by the annealing of polyvinyl chloride mostly prohibits the continuous consumption of lithium at the graphite anode. Using above interface design, we achieved 60% capacity retention after 5400 cycles. The proposed battery provides a possible approach for realizing flammable electrolyte-free lithium-ion batteries, which achieve innovative safety improvements of large format battery systems for stationary use.
Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.
Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano
2016-01-11
The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei; Devaux, Didier; Wong, Dominica H. C.; DeSimone, Joseph M.; Balsara, Nitash P.
2016-01-01
Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10−4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li+/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries. PMID:26699512
Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei
2015-12-22
Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. Here, we have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10 -4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Limore » +/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.« less
Design and synthesis of the superionic conductor Na10SnP2S12
NASA Astrophysics Data System (ADS)
Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-03-01
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm-1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.
Role of salt concentration in blend polymer for energy storage conversion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arya, Anil; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com; Sadiq, M.
2016-05-06
Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO,more » PAN and LiPF{sub 6} are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.« less
Design principles for solid-state lithium superionic conductors.
Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand
2015-10-01
Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.
Design and synthesis of the superionic conductor Na10SnP2S12.
Richards, William D; Tsujimura, Tomoyuki; Miara, Lincoln J; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-03-17
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.
Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Cheng; Chi, Miaofang
2016-06-08
Solid electrolytes can simultaneously overcome two of the most formidable challenges of Li-ion batteries: the severe safety issues and insufficient energy densities. However, before they can be implemented in actual batteries, the ionic conductivity needs to be improved and the interface with electrodes must be optimized. The prerequisite for addressing these issues is a thorough understanding of the material’s behavior at the microscopic and/or the atomic level. (Scanning) transmission electron microscopy is a powerful tool for this purpose, as it can reach an ultrahigh spatial resolution. Here, we review recent electron microscopy investigations on the ion transport behavior in solidmore » electrolytes and their interfaces. Specifically, three aspects will be highlighted: the influence of grain interior atomic configuration on ionic conductivity, the contribution of grain boundaries, and the behavior of solid electrolyte/electrode interfaces. In conclusion, based on this, the perspectives for future research will be discussed.« less
Structures And Fabrication Techniques For Solid State Electrochemical Devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2005-12-27
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2003-08-12
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.
1994-07-01
The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes * The Sputtered La0.5Sr0.5MnO3-Yttria Stabilized Zirconia Composite Electrode in Solid Oxide Fuel Cells * A Solid Electrochemical Ferro Sensor for Molten Matte * SnO2-based Sensor for H2S Monitoring-Electrical Conductivity Measurements and Device Testing * Humidity Sensor using Potassium Tungsten Bronze Synthesized from Peroxo-Polytungstic Acid * Study on Li/LiClO4/V6O13 Test Cells * Fabrication and Characterisation of Some Solid Electrolyte Cells Containing CuI and Silver Oxysalts * Solid State Battery of Proton Conducting Sodium Thiosulphate Pentahydrate * Low Temperature Synthesis of LiMn2O4 for Secondary Lithium Batteries * Effect of Different Cathode Active Materials on Battery Performance with Silver Molybdate Electrolyte Partially Substituted with Zinc Oxide * Fabrication and Characterization of Electrochemical Cells based on Silver Molybdoarsenate and Silver Tungstoarsenate Glass Electrolytes * Lorentz Force Dependence of Dissipation in a Granular Superconductor * Late Entry (Invited paper) * Simultaneous Voltammetry and Spectroscopy of Polyaniline in Propylene Carbonate * Author Index * Tentative List of Participants
Lithium sulfide compositions for battery electrolyte and battery electrode coatings
Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J
2014-10-28
Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.
Automated brush plating process for solid oxide fuel cells
Long, Jeffrey William
2003-01-01
A method of depositing a metal coating (28) on the interconnect (26) of a tubular, hollow fuel cell (10) contains the steps of providing the fuel cell (10) having an exposed interconnect surface (26); contacting the inside of the fuel cell (10) with a cathode (45) without use of any liquid materials; passing electrical current through a contacting applicator (46) which contains a metal electrolyte solution; passing the current from the applicator (46) to the cathode (45) and contacting the interconnect (26) with the applicator (46) and coating all of the exposed interconnect surface.
Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode.
Xu, Shaomao; McOwen, Dennis W; Wang, Chengwei; Zhang, Lei; Luo, Wei; Chen, Chaoji; Li, Yiju; Gong, Yunhui; Dai, Jiaqi; Kuang, Yudi; Yang, Chunpeng; Hamann, Tanner R; Wachsman, Eric D; Hu, Liangbing
2018-06-13
Solid-state electrolytes (SSEs) have been widely considered as enabling materials for the practical application of lithium metal anodes. However, many problems inhibit the widespread application of solid state batteries, including the growth of lithium dendrites, high interfacial resistance, and the inability to operate at high current density. In this study, we report a three-dimensional (3D) mixed electron/ion conducting framework (3D-MCF) based on a porous-dense-porous trilayer garnet electrolyte structure created via tape casting to facilitate the use of a 3D solid state lithium metal anode. The 3D-MCF was achieved by a conformal coating of carbon nanotubes (CNTs) on the porous garnet structure, creating a composite mixed electron/ion conductor that acts as a 3D host for the lithium metal. The lithium metal was introduced into the 3D-MCF via slow electrochemical deposition, forming a 3D lithium metal anode. The slow lithiation leads to improved contact between the lithium metal anode and garnet electrolyte, resulting in a low resistance of 25 Ω cm 2 . Additionally, due to the continuous CNT coating and its seamless contact with the garnet we observed highly uniform lithium deposition behavior in the porous garnet structure. With the same local current density, the high surface area of the porous garnet framework leads to a higher overall areal current density for stable lithium deposition. An elevated current density of 1 mA/cm 2 based on the geometric area of the cell was demonstrated for continuous lithium cycling in symmetric lithium cells. For battery operation of the trilayer structure, the lithium can be cycled between the 3D-MCF on one side and the cathode infused into the porous structure on the opposite side. The 3D-MCF created by the porous garnet structure and conformal CNT coating provides a promising direction toward new designs in solid-state lithium metal batteries.
Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.
Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M
2016-12-28
Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.
Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
Ma, Cheng; Cheng, Yongqiang; Chen, Kai; ...
2016-03-29
In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlookedmore » mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li 0.33La 0.56)TiO 3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li 0.33La 0.56)TiO 3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.« less
20th International Conference on Solid State Ionics (SSI 20)
2016-05-20
Candidate as a Solid Electrolyte for Lithium - Ion Batteries Miriam Botros1, Ruzica Djenadic1, 2, 3 and Horst Hahn1, 2, 3; 1Joint Research Laboratory...Earth and Algae Based Aqueous Binders Make Environmentally Friendly High-Performance Anodes for Lithium - Ion Batteries Muhammad Hasanuzzaman and...Alberta, Canada. C2.22 Electrochemical Properties of All-Solid-State Lithium - Ion Batteries Using Li2CO3-Li3BO3 Electrolyte Toyoki Okumura, Tomonari
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo
2015-06-24
Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmissionmore » electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.« less
Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho
2017-10-04
We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1993-11-09
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1995-03-07
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1993-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers apparatus
Affinito, John D.
1996-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1995-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Zinc composite anode for batteries with solid electrolyte
NASA Astrophysics Data System (ADS)
Tedjar, F.; Melki, T.; Zerroual, L.
A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn 2+ electrode ( e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased.
Design of Hybrid Solid Polymer Electrolytes: Structure and Properties
NASA Technical Reports Server (NTRS)
Bronstein, Lyudmila M.; Karlinsey, Robert L.; Ritter, Kyle; Joo, Chan Gyu; Stein, Barry; Zwanziger, Josef W.
2003-01-01
This paper reports synthesis, structure, and properties of novel hybrid solid polymer electrolytes (SPE's) consisting of organically modified aluminosilica (OM-ALSi), formed within a poly(ethylene oxide)-in-salt (Li triflate) phase. To alter the structure and properties we fused functionalized silanes containing poly(ethylene oxide) (PEO) tails or CN groups.
Hou, Guangmei; Ma, Xiaoxin; Sun, Qidi; Ai, Qing; Xu, Xiaoyan; Chen, Lina; Li, Deping; Chen, Jinghua; Zhong, Hai; Li, Yang; Xu, Zhibin; Si, Pengchao; Feng, Jinkui; Zhang, Lin; Ding, Fei; Ci, Lijie
2018-06-06
The electrode-electrolyte interface stability is a critical factor influencing cycle performance of All-solid-state lithium batteries (ASSLBs). Here, we propose a LiF- and Li 3 N-enriched artificial solid state electrolyte interphase (SEI) protective layer on metallic lithium (Li). The SEI layer can stabilize metallic Li anode and improve the interface compatibility at the Li anode side in ASSLBs. We also developed a Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 -poly(ethylene oxide) (LAGP-PEO) concrete structured composite solid electrolyte. The symmetric Li/LAGP-PEO/Li cells with SEI-protected Li anodes have been stably cycled with small polarization at a current density of 0.05 mA cm -2 at 50 °C for nearly 400 h. ASSLB-based on SEI-protected Li anode, LAGP-PEO electrolyte, and LiFePO 4 (LFP) cathode exhibits excellent cyclic stability with an initial discharge capacity of 147.2 mA h g -1 and a retention of 96% after 200 cycles.