Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Mazurek, Andrzej; Kolodziejski, Waclaw
2015-01-01
Clopidogrel hydrogensulfate (HSCL) is an antiplatelet agent, one of top-selling drugs in the world. In this paper, we have described a rapid and convenient method of verification which polymorph of HSCL is present in its final solid dosage form. Our methodology based on solid-state NMR spectroscopy and ab initio gauge-including projector-augmented wave calculations of NMR shielding constants is appropriate for currently available commercial solid dosage forms of HSCL. Furthermore, such structural characterization can assist with the development of new pharmaceutical products containing HSCL and also be useful in the identification of counterfeit drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges.
Cerreia Vioglio, Paolo; Chierotti, Michele R; Gobetto, Roberto
2017-08-01
In recent years many efforts have been devoted to the screening and the study of new solid-state forms of old active pharmaceutical ingredients (APIs) with salification or co-crystallization processes, thus modulating final properties without changing the pharmacological nature. Salts, hydrates/solvates, and cocrystals are the common solid-state forms employed. They offer the intriguing possibility of exploring different pharmaceutical properties for a single API in the quest of enhancing the final drug product. New synthetic strategies and advanced characterization techniques have been recently proposed in this hot topic for pharmaceutical companies. This paper reviews the recent progresses in the field particularly focusing on the characterization challenges encountered when the nature of the solid-state form must be determined. The aim of this article is to offer the state-of-the-art on this subject in order to develop new insights and to promote cooperative efforts in the fascinating field of API salt and cocrystal forms. Copyright © 2017 Elsevier B.V. All rights reserved.
Ticehurst, Martyn David; Marziano, Ivan
2015-06-01
This review seeks to offer a broad perspective that encompasses an understanding of the drug product attributes affected by active pharmaceutical ingredient (API) physical properties, their link to solid form selection and the role of particle engineering. While the crucial role of active pharmaceutical ingredient (API) solid form selection is universally acknowledged in the pharmaceutical industry, the value of increasing effort to understanding the link between solid form, API physical properties and drug product formulation and manufacture is now also being recognised. A truly holistic strategy for drug product development should focus on connecting solid form selection, particle engineering and formulation design to both exploit opportunities to access simpler manufacturing operations and prevent failures. Modelling and predictive tools that assist in establishing these links early in product development are discussed. In addition, the potential for differences between the ingoing API physical properties and those in the final product caused by drug product processing is considered. The focus of this review is on oral solid dosage forms and dry powder inhaler products for lung delivery. © 2015 Royal Pharmaceutical Society.
Crystallization processes in pharmaceutical technology and drug delivery design
NASA Astrophysics Data System (ADS)
Shekunov, B. Yu; York, P.
2000-04-01
Crystallization is a major technological process for particle formation in pharmaceutical industry and, in addition, plays an important role in defining the stability and drug release properties of the final dosage forms. Industrial and regulatory aspects of crystallization are briefly reviewed with reference to solid-state properties of pharmaceuticals. Crystallization, incorporating wider definition to include precipitation and solid-state transitions, is considered in terms of preparation of materials for direct compression, formation of amorphous, solvated and polymorphic forms, chiral separation of drugs, production of materials for inhalation drug delivery and injections. Finally, recent developments in supercritical fluid particle technology is considered in relationship to the areas discussed.
Topical delivery of roxithromycin solid-state forms entrapped in vesicles.
Csongradi, Candice; du Plessis, Jeanetta; Aucamp, Marique Elizabeth; Gerber, Minja
2017-05-01
Recently, considerable interest developed in using newer/improved antibiotics for the treatment of Acne vulgaris. During this study, different roxithromycin solid-state forms (i.e. crystalline and amorphous) were encapsulated into vesicle systems (niosomes, proniosomes, ufosomes and pro-ufosomes) for dermis targeted delivery. Characterization of the vesicles was done with transmission electron microscopy, light microscopy, droplet size, droplet size distribution, pH, zeta-potential and entrapment efficiency percentage. Finally, comparative release and topical diffusion studies were performed, to evaluate if targeted topical delivery was obtained and if the roxithromycin solid-state amorphous forms resulted in improved topical delivery. Vesicle systems containing different roxithromycin (2%) solid-state forms were successfully prepared and characterized. The vesicles showed optimal properties for topical delivery. All carrier systems had topical delivery to the epidermis-dermis, whilst no roxithromycin was found in the receptor compartment or stratum corneum-epidermis. The niosomes were the leading formulation and the two amorphous forms had better topical delivery than the crystalline form. Successful targeted delivery of roxithromycin was obtained in the dermis, where the activity against Propionibacterium acnes is needed. The amorphous forms seemed to have held their solid-state form during formulation and in the vesicles, showing improved topical delivery in comparison to the crystalline form. Copyright © 2017 Elsevier B.V. All rights reserved.
Reductive capacity measurement of waste forms for secondary radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey
2015-12-01
The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper boundmore » for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.« less
Methods of deoxygenating metals having oxygen dissolved therein in a solid solution
Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Xia, Yang; Zhou, Chengshang
2017-06-06
A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.
Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.
A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less
NASA Astrophysics Data System (ADS)
Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Matthias, T.
2017-10-01
Solid-forming components are often used in areas where they are subjected to very high loads. For most solid components locally divergent and sometimes contradictory requirements exist. Despite these contradictory requirements, almost exclusively monomaterials are nowadays used for the production of solid components. These components often reach their material-specific limits because of increasing demands on the products. Thus a significant increase in product quality and profitability would result from combining different materials in order to create tailored properties. In the Collaborative Research Center (CRC) 1153 "Tailored Forming" at the Leibniz Universität Hannover, this topic is investigated. The primary objective of the CRC 1153 is to develop and investigate new tailored manufacturing processes to produce reliable hybrid solid semi-finished components. In contrast to existing production processes of hybrid solid components, semi-finished workpieces in the CRC 1153 are joined before the forming phase. Thus, it will be possible to produce complex and highly stressable solid components made of different metals, which cannot be produced yet with the current used technologies. In this work the material and friction characteristics are investigated and the forming tool for the production of hybrid bevel gears made of different steel alloys (C22 and 41Cr4) is designed by numerical simulations. For this purpose, flow curves of both materials are determined by means of upsetting tests at process-related forming temperatures and strain rates. The temperature range for the forming process of the semi-finished product is determined by comparing the respective flow curves regarding similar flow stresses. Furthermore, the friction between the tool and the joining materials is investigated by means of ring upsetting tests at a process-relevant temperature. Finally, a stress analysis of the forming tools is carried out.
Direct Reduction of Ferrous Oxides to form an Iron-Rich Alternative Charge Material
NASA Astrophysics Data System (ADS)
Ünal, H. İbrahim; Turgut, Enes; Atapek, Ş. H.; Alkan, Attila
2015-12-01
In this study, production of sponge iron by direct reduction of oxides and the effect of reductant on metallization were investigated. In the first stage of the study, scale formed during hot rolling of slabs was reduced in a rotating furnace using solid and gas reductants. Coal was used as solid reductant and hydrogen released from the combustion reaction of LNG was used as the gas one. The sponge iron produced by direct reduction was melted and solidified. In the second stage, Hematite ore in the form of pellets was reduced using solid carbon in a furnace heated up to 1,100°C for 60 and 120 minutes. Reduction degree of process was evaluated as a function of time and the ratio of Cfix/Fetotal. In the third stage, final products were examined using scanning electron microscope and microanalysis was carried out by energy dispersive x-ray spectrometer attached to the electron microscope. It is concluded that (i) direct reduction using both solid and gas reductants caused higher metallization compared to using only solid reductant, (ii) as the reduction time and ratio of Cfix/Fetotal increased %-reduction of ore increased.
Olson, J.M.; Carleton, K.L.
1982-06-10
A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.
Olson, Jerry M.; Carleton, Karen L.
1984-01-01
A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.
Vibrational characterisation of a crystallised oligoaniline: a model compound of polyaniline
NASA Astrophysics Data System (ADS)
Quillard, Sophie; Corraze, Benoı̂t; Boyer, Marie Isabelle; Fayad, Elias; Louarn, Guy; Froyer, Gérard
2001-09-01
We present a detailed study on the vibrational properties of N,N‧-diphenyl-1,4-phenylenediamine in different crystalline forms. A new triclinic form of the molecule has been obtained through appropriate recrystallization procedure. This polymorphism of the crystalline state was associated to different vibrational features. These results are discussed with regards to the possible conformations of the molecule. In order to complete the study, thin solid films of these materials were also elaborated by vacuum sublimation of the molecule, upon selected conditions of rate, deposition and thickness. Spectroscopic measurements of these layers are showed and compared to those obtained on the crystalline solid forms. We performed convenient oxidation processes of this neutral N,N‧-diphenyl-1,4-phenylenediamine (powder and thin solid film) leading to the formation of the correspondent radical cation species. A comparison with radical cation generated in solution by electrochemical oxidative method is done. Vibrational characterisations of this doped oligomer were achieved in each case and finally, the observed differences are discussed in terms of conformation.
Preparation of microcapsules with self-microemulsifying core by a vibrating nozzle method.
Homar, Miha; Suligoj, Dasa; Gasperlin, Mirjana
2007-02-01
Incorporation of drugs in self-microemulsifying systems (SMES) offers several advantages for their delivery, the main one being faster drug dissolution and absorption. Formulation of SMES in solid dosage forms can be difficult and, to date, most SMES are applied in liquid dosage form or soft gelatin capsules. This study has explored the incorporation of SMES in microcapsules, which could then be used for formulation of solid dosage forms. An Inotech IE-50 R encapsulator equipped with a concentric nozzle was used to produce alginate microcapsules with a self-microemulsifying core. Retention of the core phase was improved by optimization of encapsulator parameters and modification of the shell forming phase and hardening solution. The mean encapsulation efficiency of final batches was more than 87%, which resulted in 0.07% drug loading. It was demonstrated that production of microcapsules with a self-microemulsifying core is possible and that the process is stable and reproducible.
Study of the solid state of carbamazepine after processing with gas anti-solvent technique.
Moneghini, M; Kikic, I; Voinovich, D; Perissutti, B; Alessi, P; Cortesi, A; Princivalle, F; Solinas, D
2003-09-01
The purpose of this study was to investigate the influence of supercritical CO2 processing on the physico-chemical properties of carbamazepine, a poorly soluble drug. The gas anti-solvent (GAS) technique was used to precipitate the drug from three different solvents (acetone, ethylacetate and dichloromethane) to study how they would affect the final product. The samples were analysed before and after treatment by scanning electron microscopy analysis and laser granulometry for possible changes in the habitus of the crystals. In addition, the solid state of the samples was studied by means of X-ray powder diffraction, differential scanning calorimetry, diffuse reflectance Fourier-transform infrared spectroscopy and hot stage microscopy. Finally, the in vitro dissolution tests were carried out. The solid state analysis of both samples untreated and treated with CO2, showed that the applied method caused a transition from the starting form III to the form I as well as determined a dramatic change of crystal morphology, resulting in needle-shaped crystals, regardless of the chosen solvent. In order to identify which process was responsible for the above results, carbamazepine was further precipitated from the same three solvents by traditional evaporation method (RV-samples). On the basis of this cross-testing, the solvents were found to be responsible for the reorganisation into a different polymorphic form, and the potential of the GAS process to produce micronic needle shaped particles, with an enhanced dissolution rate compared to the RV-carbamazepine, was ascertained.
40 CFR 463.2 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... organic polymer (i.e., a thermoset polymer, a thermoplastic polymer, or a combination of a natural polymer and a thermoset or thermoplastic polymer) that is solid in its final form and that was shaped by flow. The material can be either a homogeneous polymer or a polymer combined with fillers, plasticizers...
Disposal of radioactive iodine in space
NASA Technical Reports Server (NTRS)
Burns, R. E.; Defield, J. G.
1978-01-01
The possibility of space disposal of iodine waste from nuclear power reactors is investigated. The space transportation system utilized relies upon the space shuttle, a liquid hydrogen/liquid oxygen orbit transfer vehicle, and a solid propellant final stage. The iodine is assumed to be in the form of either an iodide or an iodate, and calculations assume that the final destination is either solar orbit or solar system escape. It is concluded that space disposal of iodine is feasible.
Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi
2013-04-15
Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes. Copyright © 2013 Elsevier B.V. All rights reserved.
PAT: From Western solid dosage forms to Chinese materia medica preparations using NIR-CI.
Zhou, Luwei; Xu, Manfei; Wu, Zhisheng; Shi, Xinyuan; Qiao, Yanjiang
2016-01-01
Near-infrared chemical imaging (NIR-CI) is an emerging technology that combines traditional near-infrared spectroscopy with chemical imaging. Therefore, NIR-CI can extract spectral information from pharmaceutical products and simultaneously visualize the spatial distribution of chemical components. The rapid and non-destructive features of NIR-CI make it an attractive process analytical technology (PAT) for identifying and monitoring critical control parameters during the pharmaceutical manufacturing process. This review mainly focuses on the pharmaceutical applications of NIR-CI in each unit operation during the manufacturing processes, from the Western solid dosage forms to the Chinese materia medica preparations. Finally, future applications of chemical imaging in the pharmaceutical industry are discussed. Copyright © 2015 John Wiley & Sons, Ltd.
Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization
NASA Astrophysics Data System (ADS)
Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian
2016-09-01
The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darawsheh, M. D.; Barrios, L. A.; Roubeau, O.
Ligand 1,3-bis(3-(pyridin-2-yl)-1H-pyrazol-5-yl)benzene, L, forms mononuclear spin crossover complexes [FeL 3] 2+ with pendant arms that cause them to dimerize through numerous intermolecular interactions forming supramolecular (X@[FeL 3] 2) 3+ cations. Finally, hey have the flexibility to encapsulate Cl -, Br - or I -, which allow tuning the magnetic properties, in the solid state and in solution.
Darawsheh, M. D.; Barrios, L. A.; Roubeau, O.; ...
2016-12-05
Ligand 1,3-bis(3-(pyridin-2-yl)-1H-pyrazol-5-yl)benzene, L, forms mononuclear spin crossover complexes [FeL 3] 2+ with pendant arms that cause them to dimerize through numerous intermolecular interactions forming supramolecular (X@[FeL 3] 2) 3+ cations. Finally, hey have the flexibility to encapsulate Cl -, Br - or I -, which allow tuning the magnetic properties, in the solid state and in solution.
Supercritical antisolvent precipitation of nimesulide: preliminary experiments.
Moneghini, M; Perissutti, B; Vecchione, F; Kikic, I; Alessi, P; Cortesi, A; Princivalle, F
2007-07-01
The purpose of this preliminary study was to investigate the physico-chemical properties of nimesulide precipitated by continuous supercritical antisolvent (SAS) from different organic solvents like acetone, chloroform and dichloromethane at 40 degrees C and 80, 85 and 88 bar, respectively. Scanning electron microscopy, differential scanning calorimetry, X-Ray diffractometry and in vitro dissolution tests were employed to study how the technological process and the solvent nature would affect the final product. SAS-processed nimesulide particles showed dramatic morphological change in crystalline structure if compared to native nimesulide, resulting in needle and thin rods shaped crystals. The solid state analysis showed that using chloroform or dichloromethane as a solvent the drug solid state remained substantially unchanged, whilst if using acetone the applied method caused a transition from the starting form I to the meta-stable form II. So as to identify which process was responsible for this result, nimesulide was further precipitated from the same solvent by conventional evaporation method (RV-sample). On the basis of this comparison, the solvent was found to be responsible for the re-organization into the different polymorphic form and the potential of the SAS process to produce micronic needle shaped particles, with an enhanced dissolution rate if compared to the to the pure drug, was ascertained. Finally, the stability of the nimesulide form II, checked by DSC analysis, was ruled on over a period of 15 months.
NASA Astrophysics Data System (ADS)
Shan, Zhendong; Ling, Daosheng
2018-02-01
This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2015-02-01
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.
Birefringence of wood at terahertz frequencies
NASA Astrophysics Data System (ADS)
Todoruk, Tara M.; Schneider, Jon; Hartley, Ian D.; Reid, Matthew
2008-06-01
Fibre content of solid wood plays an important role in the wood products industry in terms of value. Additionally, fibre structure in composite wood products such as Oriented Strand Board (OSB) and paper products plays an important role in terms of strength properties. The effect of moisture content on wood properties is important in the manufacturing process and final product performance, and therefore its effect on the birefringence is of considerable interest. Since solid wood exhibits strong birefringence at terahertz frequencies, there may be potential applications of terahertz spectroscopy to fibre content and structure sensing. There are two potential sources for this strong birefringence: (i) form birefringence resulting from the porous structure of solid wood and (ii) intrinsic birefringence resulting from the dielectric properties of the material itself. In this report, the variability of birefringence within and between species, the dependence of the birefringence on moisture content and the relative contributions from form and intrinsic birefringence are examined. In order to clarify the role of these contributions to the measured birefringence, polarized terahertz reflection spectroscopy is examined and compared to the results obtained in a transmission geometry. Comparison of the birefringence measured in transmission and reflection geometries suggests that form birefringence may dominate.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, Sivanandan S.; Brumfield, Brian E.; LaHaye, Nicole L.
2018-04-20
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; ...
2018-06-01
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Bai, Jie; Liu, He; Yin, Bo; Ma, Huijun; Chen, Xinchun
2017-02-01
Anaerobic acidogenic fermentation with high-solid sludge is a promising method for volatile fatty acid (VFA) production to realize resource recovery. In this study, to model inhibition by free ammonia in high-solid sludge fermentation, the anaerobic digestion model No. 1 (ADM1) was modified to simulate the VFA generation in batch, semi-continuous and full scale sludge. The ADM1 was operated on the platform AQUASIM 2.0. Three kinds of inhibition forms, e.g., simple inhibition, Monod and non-inhibition forms, were integrated into the ADM1 and tested with the real experimental data for batch and semi-continuous fermentation, respectively. The improved particle swarm optimization technique was used for kinetic parameter estimation using the software MATLAB 7.0. In the modified ADM1, the K s of acetate is 0.025, the k m,ac is 12.51, and the K I_NH3 is 0.02, respectively. The results showed that the simple inhibition model could simulate the VFA generation accurately while the Monod model was the better inhibition kinetics form in semi-continuous fermentation at pH10.0. Finally, the modified ADM1 could successfully describe the VFA generation and ammonia accumulation in a 30m 3 full-scale sludge fermentation reactor, indicating that the developed model can be applicable in high-solid sludge anaerobic fermentation. Copyright © 2016. Published by Elsevier B.V.
Recent progress in continuous and semi-continuous processing of solid oral dosage forms: a review.
Teżyk, Michał; Milanowski, Bartłomiej; Ernst, Andrzej; Lulek, Janina
2016-08-01
Continuous processing is an innovative production concept well known and successfully used in other industries for many years. The modern pharmaceutical industry is facing the challenge of transition from a traditional manufacturing approach based on batch-wise production to a continuous manufacturing model. The aim of this article is to present technological progress in manufacturing based on continuous and semi-continuous processing of the solid oral dosage forms. Single unit processes possessing an alternative processing pathway to batch-wise technology or, with some modification, an altered approach that may run continuously, and are thus able to seamlessly switch to continuous manufacturing are briefly presented. Furthermore, the concept of semi-continuous processing is discussed. Subsequently, more sophisticated production systems created by coupling single unit processes and comprising all the steps of production, from powder to final dosage form, were reviewed. Finally, attempts of end-to-end production approach, meaning the linking of continuous synthesis of API from intermediates with the production of final dosage form, are described. There are a growing number of scientific articles showing an increasing interest in changing the approach to the production of pharmaceuticals in recent years. Numerous scientific publications are a source of information on the progress of knowledge and achievements of continuous processing. These works often deal with issues of how to modify or replace the unit processes in order to enable seamlessly switching them into continuous processing. A growing number of research papers concentrate on integrated continuous manufacturing lines in which the production concept of "from powder to tablet" is realized. Four main domains are under investigation: influence of process parameters on intermediates or final dosage forms properties, implementation of process analytical tools, control-managing system responsible for keeping continuous materials flow through the whole manufacturing process and the development of new computational methods to assess or simulate these new manufacturing techniques. The attempt to connect the primary and secondary production steps proves that development of continuously operating lines is possible. A mind-set change is needed to be able to face, and fully assess, the advantages and disadvantages of switching from batch to continuous mode production.
Simulation of Patterned Glass Film Formation in the Evaporating Colloidal Liquid under IR Heating
NASA Astrophysics Data System (ADS)
Kolegov, K. S.
2018-02-01
The paper theoretically studies the method of evaporative lithography in combination with external infrared heating. This method makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask. The heated particles are sintered easier, so there are no cracks in the obtained structure, unlike the structure obtained employing the standard method of evaporative lithography. The paper puts forward a modification of the mathematical model which allows to describe not only heat and mass transfer at the initial stage of the process, but also the phase transition of colloidal solution into glass. Aqueous latex is taken as an example. The resulting final form of solid film is in good agreement with the experimental data of other authors.
Tang, Wan Si; Yoshida, Koji; Soloninin, Alexei V.; ...
2016-09-01
Solid lithium and sodium closo-polyborate-based salts are capable of superionic conductivities surpassing even liquid electrolytes, but often only at above-ambient temperatures where their entropically driven disordered phases become stabilized. Here we show by X-ray diffraction, quasielastic neutron scattering, differential scanning calorimetry, NMR, and AC impedance measurements that by introducing 'geometric frustration' via the mixing of two different closo-polyborate anions, namely, 1-CB 9H 10- and CB 11H 12-, to form solid-solution anion-alloy salts of lithium or sodium, we can successfully suppress the formation of possible ordered phases in favor of disordered, fast-ion-conducting alloy phases over a broad temperature range from subambientmore » to high temperatures. Finally, this result exemplifies an important advancement for further improving on the remarkable conductive properties generally displayed by this class of materials and represents a practical strategy for creating tailored, ambient-temperature, solid, superionic conductors for a variety of upcoming all-solid-state energy devices of the future.« less
Cui, Jinli; Jing, Chuanyong; Che, Dongsheng; Zhang, Jianfeng; Duan, Shuxuan
2015-06-01
Elevated arsenic (As) in groundwater poses a great threat to human health. Coagulation using mono- and poly-Fe salts is becoming one of the most cost-effective processes for groundwater As removal. However, a limitation comes from insufficient understanding of the As removal mechanism from groundwater matrices in the coagulation process, which is critical for groundwater treatment and residual solid disposal. Here, we overcame this hurdle by utilizing microscopic techniques to explore molecular As surface complexes on the freshly formed Fe flocs and compared ferric(III) sulfate (FS) and polyferric sulfate (PFS) performance, and finally provided a practical solution in As-geogenic areas. FS and PFS exhibited a similar As removal efficiency in coagulation and coagulation/filtration in a two-bucket system using 5mg/L Ca(ClO)2. By using the two-bucket system combining coagulation and sand filtration, 500 L of As-safe water (<10 μg/L) was achieved during five treatment cycles by washing the sand layer after each cycle. Fe k-edge X-ray absorption near-edge structure (XANES) and As k-edge extended X-ray absorption fine structure (EXAFS) analysis of the solid residue indicated that As formed a bidentate binuclear complex on ferrihydrite, with no observation of scorodite or poorly-crystalline ferric arsenate. Such a stable surface complex is beneficial for As immobilization in the solid residue, as confirmed by the achievement of much lower leachate As (0.9 μg/L-0.487 mg/L) than the US EPA regulatory limit (5 mg/L). Finally, PFS is superior to FS because of its lower dose, much lower solid residue, and lower cost for As-safe drinking water. Copyright © 2015. Published by Elsevier B.V.
Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land
NASA Astrophysics Data System (ADS)
Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco
2017-12-01
We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.
Thermal energy storage for solar power generation - State of the art
NASA Astrophysics Data System (ADS)
Shukla, K. N.
1981-12-01
High temperature storage for applications in solar-thermal electric systems is considered. Noting that thermal storage is in either the form of latent, sensible or chemically stored heat, sensible heat storage is stressed as the most developed of the thermal storage technologies, spanning direct heating of a storage medium from 120-1250 C. Current methods involve solids, packed beds, fluidized beds, liquids, hot water, organic liquids, and inorganic liquids and molten salts. Latent heat storage comprises phase-change materials that move from solid to liquid with addition of heat and liquid to solid with the removal of heat. Metals or inorganic salts are candidates, and the energy balances are outlined. Finally, chemical heat storage is examined, showing possible high energy densities through catalytic, thermal dissociation reactions.
Feasibility study of solid surface subreflector production techniques
NASA Technical Reports Server (NTRS)
1982-01-01
The principal effort was to study technical feasibility and cost aspects of the production technique of spin forming a subreflector reflective surface to a desired surface of revolution, back the surface with fiberglass to stabilize it sufficiently so that it may be machined to the target surface tolerance of .008 inches Root Mean Square (RMS) with a goal of .003 inches RMS. To verify this production technique, analyses was performed to define the production procedure. A price estimate for a 150 inch diameter subreflector for a 34 meter cassegrain antenna. During this feasibility study, numerous production processes were evaluated theoretically as production approaches for single surface, non-welded subreflectors. The first successful was the principal process of spin forming the reflective surface, backing with fiberglass and machining to a final contour. The second successful process was spin forming or bump forming a thicker reflective surface, with an integral (welded in) structure as a backing and machining the mounting pads and reflector to a final configuration.
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-12-11
All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less
Stability of micro-Cassie states on rough substrates
NASA Astrophysics Data System (ADS)
Guo, Zhenjiang; Liu, Yawei; Lohse, Detlef; Zhang, Xuehua; Zhang, Xianren
2015-06-01
We numerically study different forms of nanoscale gaseous domains on a model for rough surfaces. Our calculations based on the constrained lattice density functional theory show that the inter-connectivity of pores surrounded by neighboring nanoposts, which model the surface roughness, leads to the formation of stable microscopic Cassie states. We investigate the dependence of the stability of the micro-Cassie states on substrate roughness, fluid-solid interaction, and chemical potential and then address the differences between the origin of the micro-Cassie states and that of surface nanobubbles within similar models. Finally, we show that the micro-Cassie states share some features with experimentally observed micropancakes at solid-water interfaces.
Charest, Ken; Mak-Jurkauskas, Melody L; Cinicola, Daniel; Clausen, Andrew M
2013-02-01
The release profile of active pharmaceutical ingredient (API) from its solid dosage form is an important aspect of drug development as it is often used to predict potential drug release characteristics of a product in vivo. In recent years, magnetic resonance imaging has emerged as a nondestructive technique that captures the physical changes of solid dosage forms during dissolution. An example that highlights this application is in the dissolution of modified-release tablet studies. As the tablet dissolves, API disperses in a hydrogel matrix within the tablet, and swelling of the hydrogel layer eventually leads to release of API over time. To achieve optimum signal-to-noise ratios, the tablet should be placed in the most homogeneous region of the magnet and remain there throughout the dissolution experiment. Moreover, the tablet holder must maintain the tablet position without interfering with the natural dissolution process, such as by crushing the softened tablet. This can be difficult because the size, shape, and rigidity of the tablet change during dissolution. This article describes the process, material, and manufacture of a novel device that meets these challenges, with emphasis on how additive manufacturing on a 3D printer enabled an efficient and inexpensive process of design improvements.
PREPARATION OF URANIUM HEXAFLUORIDE
Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.
1959-10-01
A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.
Estimating Residual Solids Volume In Underground Storage Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.
2014-01-08
The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less
Solid State Characterizations of Long-Term Leached Cast Stone Monoliths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asmussen, Robert M.; Pearce, Carolyn I.; Parker, Kent E.
This report describes the results from the solid phase characterization of six Cast Stone monoliths from the extended leach tests recently reported on (Serne et al. 2016),that were selected for characterization using multiple state-of-the-art approaches. The Cast Stone samples investigated were leached for > 590 d in the EPA Method 1315 test then archived for > 390 d in their final leachate. After reporting the long term leach behavior of the monoliths (containing radioactive 99Tc and stable 127I spikes and for original Westsik et al. 2013 fabricated monoliths, 238U), it was suggested that physical changes to the waste forms andmore » a depleting inventory of contaminants of potential concern may mean that effective diffusivity calculations past 63 d should not be used to accurately represent long-term waste form behavior. These novel investigations, in both length of leaching time and application of solid state techniques, provide an initial arsenal of techniques which can be utilized to perform such Cast Stone solid phase characterization work, which in turn can support upcoming performance assessment maintenance. The work was performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to characterize several properties of the long- term leached Cast Stone monolith samples.« less
Salt formation improved the properties of a candidate drug during early formulation development.
Sigfridsson, Kalle; Ahlqvist, Matti; Lindsjö, Martin; Paulsson, Stefan
2018-07-30
The purpose of this study was to investigate if AZD5329, a dual neurokinin NK1/2 receptor antagonist, is a suitable candidate for further development as an oral immediate release (IR) solid dosage form as a final product. The neutral form of AZD5329 has only been isolated as amorphous material. In order to search for a solid material with improved physical and chemical stability and more suitable solid-state properties, a salt screen was performed. Crystalline material of a maleic acid salt and a fumaric acid salt of AZD5329 were obtained. X-ray powder diffractiometry, thermogravimetric analysis, differential scanning calorimetry and dynamic vapor sorption were used to investigate the physicochemical characteristics of the two salts. The fumarate salt of AZD5329 is anhydrous, the crystallization is reproducible and the hygroscopicity is acceptable. Early polymorphism assessment work using slurry technique did not reveal any better crystal modification or crystallinity for the fumarate salt. For the maleate salt, the form isolated originally was found to be a solvate, but an anhydrous form was found in later experiments; by suspension in water or acetone, by drying of the solvate to 100-120 °C or by subjecting the solvate form to conditions of 40 °C/75%RH for 3 months. The dissolution behavior and the chemical stability (in aqueous solutions, formulations and solid-state) of both salts were also studied and found to be satisfactory. The compound displays sensitivity to low pH, and the salt of the maleic acid, which is the stronger acid, shows more degradation during stability studies, in line with this observation. The presented data indicate that the substance fulfils basic requirements for further development of an IR dosage form, based on the characterization on crystalline salts of AZD5329. Copyright © 2018 Elsevier B.V. All rights reserved.
Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man’s land
Handle, Philip H.; Sciortino, Francesco
2017-01-01
We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water–water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid–liquid transition that could take place in the no-man’s land, the temperature–pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form. PMID:29133419
Solid-state structure of a Li/F carbenoid: pentafluoroethyllithium.
Waerder, Benedikt; Steinhauer, Simon; Neumann, Beate; Stammler, Hans-Georg; Mix, Andreas; Vishnevskiy, Yury V; Hoge, Berthold; Mitzel, Norbert W
2014-10-20
Lithium carbenoids are versatile compounds for synthesis owing to their intriguing ambiphilic behavior. Although this class of compounds has been known for several years, few solid-state structures exist because of their high reactivity and often low thermal stability. Using cryo X-ray techniques, we were now able to elucidate the first solid-state structure of a Li/F alkyl carbenoid, pentafluoroethyllithium (LiC2F5), finally yielding a prototype for investigating structure-reactivity relationships for this class of molecules. The compound forms a diethyl ether-solvated dimer bridged by a rare C-F-Li link. Complementary NMR spectroscopy studies in solution show dynamic processes and indicate rapid exchange of starting material and product. Theoretical investigations help to understand the formation of the observed unusual structural motif. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A metastable liquid melted from a crystalline solid under decompression
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; ...
2017-01-23
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. Themore » decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Finally, akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.« less
Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.
Zhou, Yilong; Powers, Alexander S; Zhang, Xiaowei; Xu, Tao; Bustillo, Karen; Sun, Litao; Zheng, Haimei
2017-09-28
Using liquid cell TEM, we imaged the formation of CoO nanoparticle rings. Nanoparticles nucleated and grew tracing the perimeter of droplets sitting on the SiN x solid substrate, and finally formed necklace-like rings. By tracking single nanoparticle trajectories during the ring formation and an estimation of the forces between droplets and nanoparticles using a simplified model, we found the junction of liquid nanodroplets with a solid substrate is the attractive site for CoO nanoparticles. Coalescing droplets were capable of pushing nanoparticles to the perimeter of the new droplet and nanoparticles on top of the droplets rolled off toward the perimeter. We propose that the curved surface morphology of the droplets created a force gradient that contributed to the assembly of nanoparticles at the droplet perimeter. Revealing the dynamics of nanoparticle movements and the interactions of nanoparticles with the liquid nanodroplet provides insights on developing novel self-assembly strategies for building precisely defined nanostructures on solid substrates.
Synthesis and binding studies of Alzheimer ligands on solid support.
Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas
2007-05-11
Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.
Pyrrole-Imidazole Polyamides: Manual Solid-Phase Synthesis.
Pauff, Steven M; Fallows, Andrew J; Mackay, Simon P; Su, Wu; Cullis, Paul M; Burley, Glenn A
2015-12-01
Pyrrole-imidazole polyamides (PAs) are a family of DNA-binding peptides that bind in the minor groove of double-stranded DNA (dsDNA) in a sequence-selective, programmable fashion. This protocol describes a detailed manual procedure for the solid-phase synthesis of this family of compounds. The protocol entails solution-phase synthesis of the Boc-protected pyrrole (Py) and imidazole (Im) carboxylic acid building blocks. This unit also describes the importance of choosing the appropriate condensing agent to form the amide linkages between each building block. Finally, a monomeric coupling protocol and a fragment-based approach are described that delivers PAs in 13% to 30% yield in 8 days. Copyright © 2015 John Wiley & Sons, Inc.
Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors
NASA Astrophysics Data System (ADS)
Elliott, T. S.; Majdalani, J.
2014-11-01
Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.
Dissolution testing of orally disintegrating tablets.
Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif
2012-07-01
For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
ASYMPTOTIC STEADY-STATE SOLUTION TO A BOW SHOCK WITH AN INFINITE MACH NUMBER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalinewich, Almog; Sari, Re’em
2016-08-01
The problem of a cold gas flowing past a stationary obstacle is considered. We study the bow shock that forms around the obstacle and show that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The profiles of the hydrodynamic variables in the interior of the shock are obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force on the obstacle is also calculated. Finally, we use these results to model the bow shock around an isolated neutron star.
Consolidation modelling for thermoplastic composites forming simulation
NASA Astrophysics Data System (ADS)
Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.
2016-10-01
Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.
Szakonyi, Gergely; Zelkó, Romána
2012-01-01
In this paper we give an overview about the interaction of water molecules with pharmaceutical excipients. Most of these excipients are amorphous or partially amorphous polymers and their characteristics are very sensitive to the water content. In the course of the manufacturing processes water sorption is possible, therefore in some cases it is important to strictly control the residual moisture content of a dosage form. There are several mechanisms of water sorption, like water is able to bind to polar groups of hygroscopic excipients and could also exist in the capillary system of amorphous excipients. Several techniques are available to characterise the states of water inside the materials and the effects of residual water on polymers. For this purpose water sorption measurements, differential scanning calorimetry and the Fourier-transform infrared spectroscopy are reviewed. The importance of water content and storage conditions of pharmaceuticals on the properties of the final dosage forms are also demonstrated with practical examples. PMID:23071956
Ultra-Flexible Thermal Bus for Use in the Astro-H Adiabatic Demagnetization Refrigerator
NASA Technical Reports Server (NTRS)
Kimball, Mark O.; Shirron, Peter J.
2015-01-01
The adiabatic demagnetization refrigerator (ADR) developed for the Astro-H Soft-X-ray Spectrometer (SXS) is a multi-stage solid-state cooler. It is capable of holding the SXS detector array at 0.050 K for greater than 24 hours with a recycle time of less than one hour. This quick recycle time relies upon high-conductivity thermal straps to couple the individual stages to a pair of heat switches without imposing a lateral load on the paramagnetic salt pills. To accomplish this we construct thermal straps using a technique of diffusion bonding together the ends of high-purity copper straps leaving the length between as individual foils. A thermal bus created this way has a thermal conductivity comparable to a solid strap of the equivalent thickness but with much-increased flexibility. The technique for selecting the base material, machining, cleaning, forming into final shape, and finally bonding together individual foils will be discussed along with examples of complete straps in various geometries.
Self-assembling semiconducting polymers--rods and gels from electronic materials.
Clark, Andrew P-Z; Shi, Chenjun; Ng, Benny C; Wilking, James N; Ayzner, Alexander L; Stieg, Adam Z; Schwartz, Benjamin J; Mason, Thomas G; Rubin, Yves; Tolbert, Sarah H
2013-02-26
In an effort to favor the formation of straight polymer chains without crystalline grain boundaries, we have synthesized an amphiphilic conjugated polyelectrolyte, poly(fluorene-alt-thiophene) (PFT), which self-assembles in aqueous solutions to form cylindrical micelles. In contrast to many diblock copolymer assemblies, the semiconducting backbone runs parallel, not perpendicular, to the long axis of the cylindrical micelle. Solution-phase micelle formation is observed by X-ray and visible light scattering. The micelles can be cast as thin films, and the cylindrical morphology is preserved in the solid state. The effects of self-assembly are also observed through spectral shifts in optical absorption and photoluminescence. Solutions of higher-molecular-weight PFT micelles form gel networks at sufficiently high aqueous concentrations. Rheological characterization of the PFT gels reveals solid-like behavior and strain hardening below the yield point, properties similar to those found in entangled gels formed from surfactant-based micelles. Finally, electrical measurements on diode test structures indicate that, despite a complete lack of crystallinity in these self-assembled polymers, they effectively conduct electricity.
Modification of solid-state property of sulfasalazine by using the supercritical antisolvent process
NASA Astrophysics Data System (ADS)
Wu, Wei-Yi; Su, Chie-Shaan
2017-02-01
In this study, the supercritical antisolvent (SAS) process was used to recrystallize an active pharmaceutical ingredient, sulfasalazine, to modify the solid-state properties including particle size, crystal habit and polymorphic form. Supercritical CO2 and tetrahydrofuran were used as the antisolvent and solvent, respectively. SAS results obtained from different operating temperatures (35, 45, 55 and 65 °C) were compared and discussed. The results indicate that at 55 °C, spherical sulfasalazine crystals were produced and that their mean particle size was micronized to approximately 1 μm. In addition, according to the analytical results of powder X-ray diffractometry (PXRD), a novel polymorphic form of sulfasalazine was obtained after SAS. Furthermore, the spectroscopic and thermal behavior of produced sulfasalazine crystals were also studied by Fourier transform infrared spectrometry (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Finally, SAS results obtained from different operating temperature was discussed on the basis of the mixture critical point (MCP) of CO2 and tetrahydrofuran. Operation at slightly higher than the MCP is favorable for recrystallization of sulfasalazine through SAS. These results demonstrate that the SAS process is an efficient tool for controlling and modifying the solid-state property of sulfasalazine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandavarapu, Sodith; Sabolsky, Edward; Sabolsky, Katarzyna
2013-07-18
A binder system containing polyurethane precursors was used to in situ foam (direct foam) a (La{sub 0.6}Sr{sub 0.4}){sub 0.98} (Co{sub 0.2} Fe{sub 0.8}) O{sub 3-{ delta}} (LSCF) composition for solid oxide fuel cell (SOFC) cathode applications. The relation between in situ foaming parameters on the final microstructure and electrochemical properties was characterized by microscopy and electrochemical impedance spectroscopy (EIS), respectively. The optimal porous cathode architecture was formed with a 70 vol% solids loading within a polymer precursor composition with a volume ratio of 8:4:1 (isocyanate: PEG: surfactant) in a terpineol-based ink vehicle. The resultant microstructure displayed a broad pore sizemore » distribution with highly elongated pore structure.« less
Ye, Guangying; Zeng, Defu; Zhang, Shuaishuai; Fan, Meishan; Zhang, Hongdan; Xie, Jun
2018-06-01
Various mixing ratios of alkali pretreated sugarcane bagasse and starch-rich waste Dioscorea composita hemls extracted residue (DER) were evaluated via simultaneous saccharification and fermentation (SSF) with 12% (w/w) solid loading, and the mixture ratio of 1:1 achieved the highest ethanol concentration and yield. When the solid loading was increased from 12% to 32%, the ethanol concentration was increased to 72.04 g/L, whereas the ethanol yield was reduced from 84.40% to 73.71%. With batch feeding and the addition of 0.1% (w/v) Tween 80, the final ethanol concentration and yield of SSF at 34% loading were 82.83 g/L and 77.22%, respectively. Due to the integration with existing starch-based ethanol industry, the co-fermentation is expected to be a competitive alternative form for cellulosic ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei
2016-08-01
Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.
Apparatus for consolidating a pre-impregnated, filament-reinforced polymeric prepreg material
NASA Technical Reports Server (NTRS)
Sandusky, Donald A. (Inventor)
1995-01-01
An apparatus and method were developed for providing a uniform, consolidated, unidirectional, continuous, fiber-reinforced polymeric material. The apparatus comprises a supply means, a forming means, a shaping means, and a take-up means. The forming means further comprises a pre-melting chamber and a stationary bar assembly. The shaping means is a loaded cooled nip-roller apparatus. Forming takes place by heating a polymeric prepreg material to a temperature where the polymer becomes viscous and applying pressure gradients at separate locations along the prepreg material. Upon exiting the forming means, the polymeric prepreg material is malleable, consolidated, and flattened. Shaping takes place by passing the malleable, consolidated, flattened prepreg material through a shaped, matched groove in a loaded, cooled nip-roller apparatus to provide the final solid product.
How to form planetesimals from mm-sized chondrules and chondrule aggregates
NASA Astrophysics Data System (ADS)
Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.
2015-07-01
The size distribution of asteroids and Kuiper belt objects in the solar system is difficult to reconcile with a bottom-up formation scenario due to the observed scarcity of objects smaller than ~100 km in size. Instead, planetesimals appear to form top-down, with large 100-1000 km bodies forming from the rapid gravitational collapse of dense clumps of small solid particles. In this paper we investigate the conditions under which solid particles can form dense clumps in a protoplanetary disk. We used a hydrodynamic code to model the interaction between solid particles and the gas inside a shearing box inside the disk, considering particle sizes from submillimeter-sized chondrules to meter-sized rocks. We found that particles down to millimeter sizes can form dense particle clouds through the run-away convergence of radial drift known as the streaming instability. We made a map of the range of conditions (strength of turbulence, particle mass-loading, disk mass, and distance to the star) that are prone to producing dense particle clumps. Finally, we estimate the distribution of collision speeds between mm-sized particles. We calculated the rate of sticking collisions and obtain a robust upper limit on the particle growth timescale of ~105 years. This means that mm-sized chondrule aggregates can grow on a timescale much smaller than the disk accretion timescale (~106-107 years). Our results suggest a pathway from the mm-sized grains found in primitive meteorites to fully formed asteroids. We speculate that asteroids may form from a positive feedback loop in which coagualation leads to particle clumping driven by the streaming instability. This clumping, in turn, reduces collision speeds and enhances coagulation. Future simulations should model coagulation and the streaming instability together to explore this feedback loop further. Appendices are available in electronic form at http://www.aanda.org
FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K; Bltyhe, G M; Steen, W A
2012-02-28
Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agentsmore » to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.« less
Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste
2011-01-01
Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885
NASA Astrophysics Data System (ADS)
Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra
2016-05-01
GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmit, P. F.; Velikovich, A. L.; McBride, R. D.
Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less
Schmit, P. F.; Velikovich, A. L.; McBride, R. D.; ...
2016-11-11
Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less
Formation and structure of Al-Zr metallic glasses studied by Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Li, J. H.; Zhao, S. Z.; Dai, Y.; Cui, Y. Y.; Liu, B. X.
2011-06-01
Based on the recently constructed n-body potential, both molecular dynamics and Monte Carlo simulations revealed that the Al-Zr amorphous alloy or metallic glass can be obtained within the composition range of 24-66 at. % Zr. The revealed composition range could be considered the intrinsic glass-forming range and it quantitatively indicates the glass-forming ability of the Al-Zr system. The underlying physics of the finding is that, within the composition range, the amorphous alloys are energetically favored to form. In addition, it is proposed that the energy difference between a solid solution and the amorphous phase could serve as the driving force of the crystalline to amorphous transition and the driving force should be sufficiently large for amorphization to take place. The minimum driving forces for fcc Al-based and hcp Zr-based Al-Zr solid solutions to amorphize are calculated to be about -0.05 and -0.03 eV/atom, respectively, whereas the maximum driving force is found to be -0.23 eV/atom at the alloy stoichiometry of Al60Zr40. A thermodynamics parameter γ¯, defined as the ratio of the driving force to the formation energy of the solid solution, is further proposed to indicate the glass-forming ability of an Al-Zr alloy. Thermodynamics calculations show that the glass-forming ability of the Al56Zr44 alloy is the largest, implying that the Al56Zr44 amorphous alloy is more ready to form than other alloys in the Al-Zr system. Besides, Voronoi analysis found that there exists a strong correlation between the coordinate number and structure. Amorphization could result in increase of coordinate numbers and about 1.5% volume-expansion. The volume-expansion induced by amorphization can be attributed to two factors, i.e., the total bond number of the Al-Zr amorphous phase is greater than that of the corresponding solid solution, and the averaged bond length of the Al-Zr amorphous phase is longer than that of the corresponding solid solution. For the Al-Zr alloys, especially for the Al-Zr amorphous phase, there exists a negative chemical micro-inhomogeneity in the alloys, suggesting that metallic bonds prefer to be formed between the atoms of dissimilar species. Finally, it is found that there is a weak correspondence between the bond-angle distributions of Al-Zr amorphous alloys and the solid solutions. It is further suggested that the configuration of Al-Zr amorphous alloys embodies some hybrid imprint of bcc, fcc, and hcp structures. More interestingly, the short-range order is also observed in the bond-angle distributions.
77 FR 69765 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
... Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... revised program application, subject to the limitations of the Hazardous and Solid Waste Amendments of... under the authority of sections 2002(a), 3006, and 7004(b) of the Solid Waste Disposal Act as amended 42...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... Ammonium Nitrate from Ukraine: Final Results of the Expedited Second Sunset Review of the Antidumping Duty... duty order on solid agricultural grade ammonium nitrate from Ukraine. The Department has conducted an... on solid agricultural grade ammonium nitrate from Ukraine, pursuant to section 751(c) of the Tariff...
21 CFR 330.3 - Imprinting of solid oral dosage form drug products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form drug...
21 CFR 330.3 - Imprinting of solid oral dosage form drug products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form drug...
Muguruma, Hitoshi; Hotta, Shu
2006-11-23
The titled compound exists as two polymorphic solid phases (denoted form-I and form-II). Form-I obtained by as-synthesized material is a more stable phase. Form-II is a less stable phase. Spontaneous solid-solid transformation from form-II to form-I is observed in the temperature range between room temperature and the melting point of form-I (Tm = 156.5 degrees C), and its activation energy is estimated to be 96 kJ mol-1 by Arrhenius plot. The solid-solute-solid transformation (recrystallization from solution) from form-II to form-I is also observed. In contrast, form-II is obtained only by a solid-melt-solid transformation from form-I. Therefore, the system of two polymorphs is monotropic. The solid-state NMR measurement shows that form-I has the molecular conformation of complete S-syn-anti-syn in the oligothiophene backbone, whereas form-II has that of S-all-anti. With the solution NMR data, the polymorphism could not be observed. Therefore, the polymorphs originate from the different molecular packing involving the conformational change of the molecule. This unique property is attributed to the extra bulky terminal groups of the compounds. However, despite the extra bulky terminal groups, the mentioned polymorphism is not observed in the titled compound analogue which has S-all-anti conformation (like form-II).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei
We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less
Yang, Ziyuan; Gong, Jiangfeng; Tang, Chunmei; ...
2017-08-28
We report that the arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH) 2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 Fmore » g -1 at 1.0 A g -1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. Finally, the solid devices exhibit high volumetric capacitance of 39.3 mF cm -3 at the current density 0.3 mA cm -3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.« less
Xia, Yan; Wang, Xiuli; Xia, Xinhui; Xu, Ruochen; Zhang, Shengzhao; Wu, Jianbo; Liang, Yanfei; Gu, Changdong; Tu, Jiangping
2017-10-26
Developing high-performance solid-state electrolytes is crucial for the innovation of next-generation lithium-sulfur batteries. Herein, a facile method for preparation of a novel gel polymer electrolyte (GPE) based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) is reported. Furthermore, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 (LATP) nanoparticles as the active fillers are uniformly embedded into the GPE to form the final PVDF-HFP/LATP composite gel polymer electrolyte (CPE). Impressively, the obtained CPE demonstrates a high lithium ion transference number of 0.51 and improved electrochemical stability as compared to commercial liquid electrolyte. In addition, the assembled solid-sate Li-S battery with the composite gel polymer electrolyte membrane presents a high initial capacity of 918 mAh g -1 at 0.05 C, and better cycle performance than the counterparts with liquid electrolyte. Our designed PVDF-HFP/LATP composite can be a promising electrolyte for next-generation solid-state batteries with high cycling stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy
Ferro, Monica; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco
2017-01-01
Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1H fast MAS NMR and 13C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles. PMID:28228859
Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy.
Ferro, Monica; Castiglione, Franca; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea
2017-01-01
Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1 H fast MAS NMR and 13 C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13 C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13 C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles.
NASA Astrophysics Data System (ADS)
Daisaka, Junko K.; Tanaka, Hidekazu; Ida, Shigeru
2006-12-01
This paper investigates the surface density evolution of a planetesimal disk due to the effect of type-I migration by carrying out N-body simulation and through analytical method, focusing on terrestrial planet formation. The coagulation and the growth of the planetesimals take place in the abundant gas disk except for a final stage. A protoplanet excites density waves in the gas disk, which causes the torque on the protoplanet. The torque imbalance makes the protoplanet suffer radial migration, which is known as type-I migration. Type-I migration time scale derived by the linear theory may be too short for the terrestrial planets to survive, which is one of the major problems in the planet formation scenario. Although the linear theory assumes a protoplanet being in a gas disk alone, Kominami et al. [Kominami, J., Tanaka, H., Ida, S., 2005. Icarus 167, 231-243] showed that the effect of the interaction with the planetesimal disk and the neighboring protoplanets on type-I migration is negligible. The migration becomes pronounced before the planet's mass reaches the isolation mass, and decreases the solid component in the disk. Runaway protoplanets form again in the planetesimal disk with decreased surface density. In this paper, we present the analytical formulas that describe the evolution of the solid surface density of the disk as a function of gas-to-dust ratio, gas depletion time scale and semimajor axis, which agree well with our results of N-body simulations. In general, significant depletion of solid material is likely to take place in inner regions of disks. This might be responsible for the fact that there is no planet inside Mercury's orbit in our Solar System. Our most important result is that the final surface density of solid components ( Σ) and mass of surviving planets depend on gas surface density ( Σ) and its depletion time scale ( τ) but not on initial Σ; they decrease with increase in Σ and τ. For a fixed gas-to-dust ratio and τ, larger initial Σ results in smaller final Σ and smaller surviving planets, because of larger Σ. To retain a specific amount of Σ, the efficient disk condition is not an initially large Σ but the initial Σ as small as the specified final one and a smaller gas-to-dust ratio. To retain Σ comparable to that of the minimum mass solar nebula (MMSN), a disk must have the same Σ and a gas-to-dust ratio that is smaller than that of MMSN by a factor of 1.3×(τ/1 Myr) at ˜1 AU. (Equivalently, type-I migration speed is slower than that predicted by the linear theory by the same factor.) The surviving planets are Mars-sized ones in this case; in order to form Earth-sized planets, their eccentricities must be pumped up to start orbit crossing and coagulation among them. At ˜5 AU, Σ of MMSN is retained under the same condition, but to form a core massive enough to start runaway gas accretion, a gas-to-dust ratio must be smaller than that of MMSN by a factor of 3×τ/1 Myr.
NASA Astrophysics Data System (ADS)
Alves, J. L.; Oliveira, M. C.; Menezes, L. F.
2004-06-01
Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-02-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-11-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming maching.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2007-05-15
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
Xu, Kailin; Xiong, Xinnuo; Zhai, Yuanming; Wang, Lili; Li, Shanshan; Yan, Jin; Wu, Di; Ma, Xiaoli; Li, Hui
2016-09-10
In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui
2015-12-01
Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Immobilization of 99-Technetium (VII) by Fe(II)-Goethite and Limited Reoxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Chang, Hyun-Shik; Icenhower, Jonathan P.
2011-05-04
Synthesized goethite was successfully used with addition of Fe(II) to sequester Tc present in both deionized water and simulated off-gas scrubber waste solutions. Pertechnetate concentration in solution decreased immediately when the pH was raised above 7 by addition of sodium hydroxide. Removal of Tc(VII) from solution occurred most likely as a result of heterogeneous surface-catalyzed reduction to Tc(IV) and subsequent co-precipitation onto the goethite. The final Tc-bearing solid was identified as goethite-dominated Fe(III)-(oxy)hydroxide based on XRD analysis, confirming the widespread observation of its characteristic acicular habit by TEM/SEM images. Analysis of the solid precipitate by XAFS showed that the dominantmore » oxidation state of Tc was Tc(IV) and was in octahedral coordination with Tc-O, Fe-O, and Tc-Fe bond distances that are consistent with direct substitution of Tc for Fe in the goethite structure. In some experiments the final Tc-goethite product was subsequently armored with additional layers of freshly precipitated goethite. Successful incorporation of Tc(IV) within the goethite mineral lattice and subsequent goethite armoring can limit re-oxidation of Tc(IV) and its subsequent release from Tc-goethite waste forms, even when the final product is placed in oxidizing environments that typify shallow waste burial facilities.« less
Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.
Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi
2017-06-28
The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.
Gillen, Greg; Najarro, Marcela; Wight, Scott; Walker, Marlon; Verkouteren, Jennifer; Windsor, Eric; Barr, Tim; Staymates, Matthew; Urbas, Aaron
2015-01-01
A method has been developed to fabricate patterned arrays of micrometer-sized monodisperse solid particles of ammonium nitrate on hydrophobic silicon surfaces using inkjet printing. The method relies on dispensing one or more microdrops of a concentrated aqueous ammonium nitrate solution from a drop-on-demand (DOD) inkjet printer at specific locations on a silicon substrate rendered hydrophobic by a perfluorodecytrichlorosilane monolayer coating. The deposited liquid droplets form into the shape of a spherical shaped cap; during the evaporation process, a deposited liquid droplet maintains this geometry until it forms a solid micrometer sized particle. Arrays of solid particles are obtained by sequential translation of the printer stage. The use of DOD inkjet printing for fabrication of discrete particle arrays allows for precise control of particle characteristics (mass, diameter and height), as well as the particle number and spatial distribution on the substrate. The final mass of an individual particle is precisely determined by using gravimetric measurement of the average mass of solution ejected per microdrop. The primary application of this method is fabrication of test materials for the evaluation of spatially-resolved optical and mass spectrometry based sensors used for detecting particle residues of contraband materials, such as explosives or narcotics. PMID:26610515
Gillen, Greg; Najarro, Marcela; Wight, Scott; Walker, Marlon; Verkouteren, Jennifer; Windsor, Eric; Barr, Tim; Staymates, Matthew; Urbas, Aaron
2015-11-24
A method has been developed to fabricate patterned arrays of micrometer-sized monodisperse solid particles of ammonium nitrate on hydrophobic silicon surfaces using inkjet printing. The method relies on dispensing one or more microdrops of a concentrated aqueous ammonium nitrate solution from a drop-on-demand (DOD) inkjet printer at specific locations on a silicon substrate rendered hydrophobic by a perfluorodecytrichlorosilane monolayer coating. The deposited liquid droplets form into the shape of a spherical shaped cap; during the evaporation process, a deposited liquid droplet maintains this geometry until it forms a solid micrometer sized particle. Arrays of solid particles are obtained by sequential translation of the printer stage. The use of DOD inkjet printing for fabrication of discrete particle arrays allows for precise control of particle characteristics (mass, diameter and height), as well as the particle number and spatial distribution on the substrate. The final mass of an individual particle is precisely determined by using gravimetric measurement of the average mass of solution ejected per microdrop. The primary application of this method is fabrication of test materials for the evaluation of spatially-resolved optical and mass spectrometry based sensors used for detecting particle residues of contraband materials, such as explosives or narcotics.
Cooling of the magma ocean due to accretional disruption of the surface insulating layer
NASA Technical Reports Server (NTRS)
Sasaki, Sho
1992-01-01
Planetary accretion has been considered as a process to heat planets. Some fraction of the kinetic energy of incoming planetesimals is trapped to heat the planetary interior (Kaula, 1979; Davies, 1984). Moreover, blanketing effect of a primary atmosphere (Hayashi et al., 1979; Sasaki, 1990) or a degassed atmosphere (Abe and Matsui, 1986; Zahnle et al., 1988) would raise the surface temperature of the Earth-size planets to be higher than the melting temperature. The primordial magma ocean was likely to be formed during accretion of terrestrial planets. In the magma ocean, if crystallized fractions were heavier than melt, they would sink. But if solidified materials were lighter than the melt (like anorthosite of the lunar early crust) they would float to form a solid shell surrounding the planet. (In an icy satellite, solidified water ice should easily float on liquid water because of its small density.) The surface solid lid would prevent efficient convective heat transfer and slow the interior cooling. Consider that the accretion of planetesimals still continues in this cooling stage. Shock disruption at planetesimal impact events may destroy the solid insulating layer. Even if the layer survives impacts, the surface layer is finally overturned by Rayleigh-Taylor instability, since accreting materials containing metals are heavier than the surface solidified lid of silicates.
NASA Astrophysics Data System (ADS)
Abe, T.; Takahashi, T.; Shirai, K.
2017-02-01
In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.
3D-micro-patterned fibrous dosage forms for immediate drug release.
Blaesi, Aron H; Saka, Nannaji
2018-03-01
At present, the most prevalent pharmaceutical dosage forms, the orally-delivered immediate-release tablets and capsules, are porous, granular solids. They disintegrate into their constituent particulates upon ingestion to release drug rapidly. The design, development, and manufacture of such granular solids, however, is inefficient due to difficulties associated with the unpredictable inter-particle interactions. Therefore, to achieve more predictable dosage form properties and processing, we have recently introduced melt-processed polymeric cellular dosage forms. The cellular forms disintegrated and released drug rapidly if the cells were predominantly interconnected. Preparation of interconnected cells, however, relies on the coalescence of gas bubbles in the melt, which is unpredictable. In the present work, therefore, new melt-processed fibrous dosage forms with contiguous void space are presented. The dosage forms are prepared by melt extrusion of the drug-excipient mixture followed by patterning the fibrous extrudate on a moving surface. It is demonstrated that the resulting fibrous structures are fully predictable by the extruder nozzle diameter and the motion of the surface. Furthermore, drug release experiments show that the disintegration time of the fibrous forms prepared in this work is of the order of that of the corresponding single fibers. The thin fibers of polyethylene glycol (excipient) and acetaminophen (drug) in turn disintegrate in a time proportional to the fiber radius and well within immediate-release specification. Finally, models of dosage form disintegration and drug release by single fibers and fibrous dosage forms are developed. It is found that drug release from fibrous forms is predictable by the physico-chemical properties of the excipient and such microstructural parameters as the fiber radius, the inter-fiber spacing, and the volume fraction of water-soluble excipient in the fibers. Copyright © 2017 Elsevier B.V. All rights reserved.
Solid oral forms availability in children: a cost saving investigation
Lajoinie, Audrey; Henin, Emilie; Kassai, Behrouz; Terry, David
2014-01-01
Aim To assess the suitability and potential cost savings, from both the hospital and community perspective, of prescribed oral liquid medicine substitution with acceptable solid forms for children over 2 years. Method Oral liquid medicines dispensed from a paediatric hospital (UK) in 1 week were assessed by screening for existence of the solid form alternative and evaluating the acceptability of the available solid form, firstly related to the prescribed dose and secondly to acceptable size depending on the child's age. Costs were calculated based on providing treatment for 28 days or prescribed duration for short term treatments. Results Over 90% (440/476) of liquid formulations were available as a marketed solid form. Considering dosage acceptability (maximum of 10% deviation from prescribed dosage or 0% for narrow therapeutic range drugs, maximum tablet divisions into quarters) 80% of liquids could be substituted with a solid form. The main limitation for liquid substitution would be solid form size. However, two-thirds of prescribed liquids could have been substituted with a suitable solid form for dosage and size, with estimated savings being of £5K and £8K in 1 week, respectively based on hospital and community costs, corresponding to a projected annual saving of £238K and £410K (single institution). Conclusion Whilst not all children over 2 years will be able to swallow tablets, drug cost savings if oral liquid formulations were substituted with suitable solid dosage forms would be considerable. Given the numerous advantages of solid forms compared with liquids, this study may provide a theoretical basis for investing in supporting children to swallow tablets/capsules. PMID:24965935
Genesis of femtosecond-induced nanostructures on solid surfaces.
Varlamova, Olga; Martens, Christian; Ratzke, Markus; Reif, Juergen
2014-11-01
The start and evolution of the formation of laser-induced periodic surface structures (LIPSS, ripples) are investigated. The important role of irradiation dose (fluence×number of pulses) for the properties of the generated structures is demonstrated. It is shown how, with an increasing dose, the structures evolve from random surface modification to regular sub-wavelength ripples, then coalesce to broader LIPSS and finally form more complex shapes when ablation produces deep craters. First experiments are presented following this evolution in one single irradiated spot.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... established standards in this final rule for the following four subcategories of CISWI units: Incinerators (i... incinerators; ERUs (i.e., units that would be boilers or process heaters if they did not combust solid waste); and waste burning kilns (i.e., units that would be cement kilns if they did not combust solid waste...
Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives.
Manaa, M Riad; Reed, Evan J; Fried, Laurence E; Goldman, Nir
2009-04-22
We report the first quantum-based multiscale simulations to study the reactivity of shocked perfect crystals of the insensitive energetic material triaminotrinitrobenzene (TATB). Tracking chemical transformations of TATB experiencing overdriven shock speeds of 9 km/s for up to 0.43 ns and 10 km/s for up to 0.2 ns reveal high concentrations of nitrogen-rich heterocyclic clusters. Further reactivity of TATB toward the final decomposition products of fluid N(2) and solid carbon is inhibited due to the formation of these heterocycles. Our results thus suggest a new mechanism for carbon-rich explosive materials that precedes the slow diffusion-limited process of forming the bulk solid from carbon clusters and provide fundamental insight at the atomistic level into the long reaction zone of shocked TATB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Huajun; Gao, Tao; Li, Xiaogang
Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.
A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. Themore » decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Finally, akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.« less
High power rechargeable magnesium/iodine battery chemistry
Tian, Huajun; Gao, Tao; Li, Xiaogang; ...
2017-01-10
Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less
Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.
Lee, Eunseong; Han, Yosep; Park, Jeonghyun; Hong, Jeongsik; Silva, Rene A; Kim, Seungkon; Kim, Hyunjung
2015-01-01
The behavior of arsenic (As) bioleaching from mine tailings containing high amount of As (ca. 34,000 mg/kg) was investigated using Acidithiobacillus thiooxidans to get an insight on the optimal conditions that would be applied to practical heap and/or tank bioleaching tests. Initial pH (1.8-2.2), temperature (25-40 °C), and solid concentration (0.5-4.0%) were employed as experimental parameters. Complementary characterization experiments (e.g., XRD, SEM-EDS, electrophoretic mobility, cell density, and sulfate production) were also carried out to better understand the mechanism of As bioleaching. The results showed that final As leaching efficiency was similar regardless of initial pH. However, greater initial As leaching rate was observed at initial pH 1.8 than other conditions, which could be attributed to greater initial cell attachment to mine tailings. Unlike the trend observed when varying the initial pH, the final As leaching efficiency varied with the changes in temperature and solid concentration. Specifically, As leaching efficiency tended to decrease with increasing temperature due to the decrease in the bacterial growth rate at higher temperature. Meanwhile, As leaching efficiency tended to increase with decreasing solid concentration. The results for jarosite contents in mine tailings residue after bioleaching revealed that much greater amount of the jarosite was formed during the bioleaching reaction at higher solid concentration, suggesting that the coverage of the surface of the mine tailings by jarosite and/or the co-precipitation of the leached As with jarosite could be a dominant factor reducing As leaching efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Haneef, Jamshed; Chadha, Renu
2017-08-01
The present study deals with the application of mechanochemical approach for the preparation of drug-drug multicomponent solid forms of three poorly soluble antihypertensive drugs (telmisartan, irbesartan and hydrochlorothiazide) using atenolol as a coformer. The resultant solid forms comprise of cocrystal (telmisartan-atenolol), coamorphous (irbesartan-atenolol) and eutectic (hydrochlorothiazide-atenolol). The study emphasizes that solid-state transformation of drug molecules into new forms is a result of the change in structural patterns, diminishing of dimers and creating new facile hydrogen bonding network based on structural resemblance. The propensity for heteromeric or homomeric interaction between two different drugs resulted into diverse solid forms (cocrystal/coamorphous/eutectics) and become one of the interesting aspects of this research work. Evaluation of these solid forms revealed an increase in solubility and dissolution leading to better antihypertensive activity in deoxycorticosterone acetate (DOCA) salt-induced animal model. Thus, development of these drug-drug multicomponent solid forms is a promising and viable approach to addressing the issue of poor solubility and could be of considerable interest in dual drug therapy for the treatment of hypertension.
Formation of co-crystals: Kinetic and thermodynamic aspects
NASA Astrophysics Data System (ADS)
Gagnière, E.; Mangin, D.; Puel, F.; Rivoire, A.; Monnier, O.; Garcia, E.; Klein, J. P.
2009-04-01
Co-crystallisation is a recent method of great interest for the pharmaceutical industry, since pharmaceutical co-crystals represent useful materials for drug products. In this study, an active pharmaceutical ingredient (carbamazepine (CBZ)) co-crystallized with a vitamin (nicotinamide (NCT)) was chosen as a model substance. This work was focused on the construction of a phase diagram for the system CBZ/NCT, split in six domains for kinetic reasons (the different solid phases which might appear during the crystallisation) and in four domains according to thermodynamic aspects (the stable final phase obtained). Although co-crystals are not ionic compounds, the supersaturation of co-crystals can be evaluated by considering the solubility product. Batch crystallisation operations were carried out in a stirred vessel equipped with an in situ video probe. This latter device was a powerful analysis tool to monitor the CBZ/NCT co-crystals and single CBZ crystals since these two crystalline phases grown in ethanol exhibited needle and platelet habits. As concerns kinetics, the different solid phases which might appear during the experiments were observed and competed against each others. In accordance with thermodynamics, the stable solid form was obtained at the end of the operation. Finally some preliminary results indicate that the nucleation of co-crystals may be favoured by the presence of CBZ crystals. Epitaxial relationships between CBZ/NCT co-crystals and CBZ crystals were suspected.
Houchins, Jenny A.; Tan, Sze-Yen; Campbell, Wayne W.; Mattes, Richard D.
2012-01-01
Background The effects of fruits and vegetables in solid vs. beverage forms on human appetite and food intake acutely and over eight weeks, are unclear. Methods This 21-week, randomised, crossover study assessed appetitive ratings following the inclusion of fruits and vegetables, in solid and beverage form, into the habitual diet of healthy lean (n=15) and overweight/obese (n=19) adults with low customary consumption. The primary acute outcomes were satiation (amount of challenge meal consumed), satiety (latency of subsequent eating event), and dietary compensation after a 400 kcal fruit preload. Ratings of appetite were also obtained before and after 8 weeks of required increased fruit and vegetable consumption (20% estimated energy requirement). Results Acutely, overweight/obese participants reported smaller reductions of hunger after consuming the fruit preload in beverage compared to solid form (preload × form × BMI effects, P=0.030). Participants also consumed significantly less of a challenge meal (in both gram and energy) after the ingestion of the solid fruit preload (P<0.005). However, the subsequent meal latency was not significantly different between the solid and the beverage fruit preloads. Total daily energy intake was significantly higher when the obese participants consumed the beverage fruit preload compared to the solid (P<0.001). Daily energy intake was markedly, but not significantly, higher among the lean with the beverage versus solid food-form. Hunger and fullness ratings remained stable when participants consumed fruits and vegetables in solid or beverage form for eight weeks each. Conclusion Acute post-ingestive appetitive responses were weaker following consumption of fruits in beverage versus solid food-forms. Consumption of beverage or solid fruit and vegetable food loads for 8 weeks did not chronically alter appetitive responses. PMID:23164702
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serre, Christian; Millange, Franck; Devic, Thomas
2006-08-10
Two new three-dimensional chromium(III) dicarboxylate, MIL-105 or Cr{sup III}(OH).{l_brace}O{sub 2}C-C{sub 6}(CH{sub 3}){sub 4}-CO{sub 2}{r_brace}.nH{sub 2}O, have been obtained under hydrothermal conditions, and their structures solved using X-ray powder diffraction data. Both solids are structural analogs of the known Cr benzenedicarboxylate compound (MIL-53). Both contain trans corner-sharing CrO{sub 4}(OH){sub 2} octahedral chains connected by tetramethylterephthalate di-anions. Each chain is linked by the ligands to four other chains to form a three-dimensional framework with an array of 1D pores channels. The pores of the high temperature form of the solid, MIL-105ht, are empty. However, MIL-105ht re-hydrates at room temperature to finally givemore » MIL-105lt with pores channels filled with free water molecules (lt: low temperature form; ht: high temperature form). The thermal behaviour of the two solids has been investigated using TGA. Crystal data for MIL-105ht: monoclinic space group C2/c with a = 19.653(1) A, b = 9.984(1) A, c = 6.970(1) A, {beta} = 110.67(1){sup o} and Z = 4. Crystal data for MIL-105lt: orthorhombic space group Pnam with a = 17.892(1) A, b = 11.165(1) A, c = 6.916(1) A and Z = 4.« less
[Formulation and special investigations of innovative intraoral solid dosage forms.
Kristo, K; kATONA, B; Piukovics, P; Olah, I; Sipos, B; Sipos, S E; Sovany, T; Hodi, K; Ifi Regdon, G
During our work, we summarized the types of solid dosage forms which were in the focus of attention in the last years because of their innovative pharmaceutical technology solution and simple use. The biopharmaceutics of solid dosage forms for intraoral use and the advantages of the use of these dosages forms were presented in general. However, these dosage forms cannot always be prepared with conventional pharmaceutical processes, therefore the special pharmaceutical solutions which can be applied for their preparation were presented. In addition to testing the European Pharmacopoeia dosage forms, the special tests which can be applied for the characterization of innovative solid dosage forms were highlighted.
Fabrication of low density ceramic material
Meek, T.T.; Blake, R.D.; Sheinberg, H.
1985-01-01
A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.
Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.
Qi, Jianping; Lu, Y I; Wu, Wei
2015-01-01
Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.
Gao, Yueshu; Xu, Jingliang; Yuan, Zhenhong; Zhang, Yu; Liu, Yunyun; Liang, Cuiyi
2014-09-01
Fed-batch enzymatic hydrolysis process from alkali-pretreated sugarcane bagasse was investigated to increase solids loading, produce high-concentration fermentable sugar and finally to reduce the cost of the production process. The optimal initial solids loading, feeding time and quantities were examined. The hydrolysis system was initiated with 12% (w/v) solids loading in flasks, where 7% fresh solids were fed consecutively at 6h, 12h, 24h to get a final solids loading of 33%. All the requested cellulase loading (10 FPU/g substrate) was added completely at the beginning of hydrolysis reaction. After 120 h of hydrolysis, the maximal concentrations of cellobiose, glucose and xylose obtained were 9.376 g/L, 129.50 g/L, 56.03 g/L, respectively. The final total glucan conversion rate attained to 60% from this fed-batch process. Copyright © 2014. Published by Elsevier Ltd.
Advanced solid-state NMR spectroscopy of natural organic matter.
Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus
2017-05-01
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Sumithra Sivadas; Anitha, R.; Baskar, K.
2016-05-23
GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 °more » C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.« less
Missaghi, Shahrzad; Young, Cara; Fegely, Kurt; Rajabi-Siahboomi, Ali R
2010-02-01
Formulation of proton pump inhibitors (PPIs) into oral solid dosage forms is challenging because the drug molecules are acid-labile. The aim of this study is to evaluate different formulation strategies (monolithic and multiparticulates) for three PPI drugs, that is, rabeprazole sodium, lansoprazole, and esomeprazole magnesium, using delayed release film coating applications. The core tablets of rabeprazole sodium were prepared using organic wet granulation method. Multiparticulates of lansoprazole and esomeprazole magnesium were prepared through drug layering of sugar spheres, using powder layering and suspension layering methods, respectively. Tablets and drug-layered multiparticulates were seal-coated, followed by delayed release film coating application, using Acryl-EZE(R), aqueous acrylic enteric system. Multiparticulates were then filled into capsules. The final dosage forms were evaluated for physical properties, as well as in vitro dissolution testing in both compendial acid phase, 0.1N HCl (pH 1.2), and intermediate pH, acetate buffer (pH 4.5), followed by phosphate buffer, pH 6.8. The stability of the delayed release dosage forms was evaluated upon storage in accelerated conditions [40 degrees C/75% relative humidity] for 3 months. All dosage forms demonstrated excellent enteric protection in the acid phase, followed by rapid release in their respective buffer media. Moreover, the delayed release dosage forms remained stable under accelerated stability conditions for 3 months. Results showed that Acryl-EZE enteric coating systems provide excellent performance in both media (0.1N HCl and acetate buffer pH 4.5) for monolithic and multiparticulate dosage forms.
The kinetics of polyurethane structural foam formation: Foaming and polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Rekha R.; Mondy, Lisa A.; Long, Kevin N.
We are developing kinetic models to understand the manufacturing of polymeric foams, which evolve from low viscosity Newtonian liquids, to bubbly liquids, finally producing solid foam. Closed-form kinetics are formulated and parameterized for PMDI-10, a fast curing polyurethane, including polymerization and foaming. PMDI- 10 is chemically blown, where water and isocyanate react to form carbon dioxide. The isocyanate reacts with polyol in a competing reaction, producing polymer. Our approach is unique, though it builds on our previous work and the polymerization literature. This kinetic model follows a simplified mathematical formalism that decouples foaming and curing, including an evolving glass transitionmore » temperature to represent vitrification. This approach is based on IR, DSC, and volume evolution data, where we observed that the isocyanate is always in excess and does not affect the kinetics. Finally, the kinetics are suitable for implementation into a computational fluid dynamics framework, which will be explored in subsequent papers.« less
The kinetics of polyurethane structural foam formation: Foaming and polymerization
Rao, Rekha R.; Mondy, Lisa A.; Long, Kevin N.; ...
2017-02-15
We are developing kinetic models to understand the manufacturing of polymeric foams, which evolve from low viscosity Newtonian liquids, to bubbly liquids, finally producing solid foam. Closed-form kinetics are formulated and parameterized for PMDI-10, a fast curing polyurethane, including polymerization and foaming. PMDI- 10 is chemically blown, where water and isocyanate react to form carbon dioxide. The isocyanate reacts with polyol in a competing reaction, producing polymer. Our approach is unique, though it builds on our previous work and the polymerization literature. This kinetic model follows a simplified mathematical formalism that decouples foaming and curing, including an evolving glass transitionmore » temperature to represent vitrification. This approach is based on IR, DSC, and volume evolution data, where we observed that the isocyanate is always in excess and does not affect the kinetics. Finally, the kinetics are suitable for implementation into a computational fluid dynamics framework, which will be explored in subsequent papers.« less
Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rottstegge, J.; Arnold, M.; Herschke, L.
Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulkmore » composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by {sup 27}Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite.« less
A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations
NASA Astrophysics Data System (ADS)
Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou
2016-01-01
Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.
NASA Astrophysics Data System (ADS)
Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan
2016-07-01
Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h
Rheo-NMR Measurements of Cocoa Butter Crystallized Under
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudge, E.; Mazzanti, G
2009-01-01
Modifications of a benchtop NMR instrument were made to apply temperature control to a shearing NMR cell. This has enabled the determination in situ of the solid fat content (SFC) of cocoa butter under shearing conditions. The cocoa butter was cooled at 3 C/min to three final temperatures of 17.5, 20.0, and 22.5 C with applied shear rates between 45 and 720 s-1. Polymorphic transitions of the cocoa butter were determined using synchrotron X-ray diffraction with an identical shearing system constructed of Lexan. Sheared samples were shown to have accelerated phase transitions compared to static experiments. In experiments where formmore » V was confirmed to be the dominant polymorph, the final SFC averaged around 50%. However, when other polymorphic forms were formed, a lower SFC was measured because the final temperature was within the melting range of that polymorph and only partial crystallization happened. A shear rate of 720 s-1 delayed phase transitions, likely due to viscous heating of the sample. Pulsed NMR is an invaluable tool for determining the crystalline fraction in hydrogen containing materials, yet its use for fundamental and industrial research on fat or alkanes crystallization under shear has only recently been developed.« less
Spent nuclear fuel recycling with plasma reduction and etching
Kim, Yong Ho
2012-06-05
A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.
New solid state forms of antineoplastic 5-fluorouracil with anthelmintic piperazine
NASA Astrophysics Data System (ADS)
Moisescu-Goia, C.; Muresan-Pop, M.; Simon, V.
2017-12-01
The aim of the present study was to asses the formation of solid forms between the 5-fluorouracil chemotherapy drug and the anthelmintic piperazine. Two new solid forms of antineoplastic agent 5-fluorouracil with anthelmintic piperazine were obtained by liquid assisted ball milling and slurry crystallization methods. The Nsbnd H hydrogen bonding donors and C = O hydrogen bonding acceptors of 5-fluorouracil allow to form co-crystals with other drugs delivering improved properties for medical applications, as proved for other compounds of pharmaceutical interest. Both new solid forms were investigated using X-ray powder diffraction (XRD), differential thermal analysis (DTA) and Fourier transform infrared (FTIR) spectroscopy. The XRD results show that by both methods were successfully synthesized new solid forms of 5-fluorouracil with piperazine. According to FTIR results the form prepared by lichid assisted grinding process was obtained as co-crystal and the other one, prepared by slurry method, resulted as a salt.
Metal Alloy Compositions And Process Background Of The Invention
Flemings, Merton C.; Martinez-Ayers, Raul A.; de Figueredo, Anacleto M.; Yurko, James A.
2003-11-11
A skinless metal alloy composition free of entrapped gas and comprising primary solid discrete degenerate dendrites homogeneously dispersed within a secondary phase is formed by a process wherein the metal alloy is heated in a vessel to render it a liquid. The liquid is then rapidly cooled while vigorously agitating it under conditions to avoid entrapment of gas while forming solid nuclei homogeneously distributed in the liquid. Agitation then is ceased when the liquid contains a small fraction solid or the liquid-solid alloy is removed from the source of agitation while cooling is continued to form the primary solid discrete degenerate dendrites in liquid secondary phase. The solid-liquid mixture then can be formed such as by casting.
Solid-State Thyratron Replacement. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Ian
2017-12-12
Under this SBIR, DTI developed a solid-state switch as an alternative to legacy thyratron equipment. Our Phase II objective was to make a solid-state thyratron replacement that would provide equivalent or better performance, much higher reliability (at least a 20 year lifetime, compared to a thyratron’s two-year lifetime) and would sell for ~3x the cost of a thyratron, or less than $40k. We were successful in building a solid-state switch which could reliably function as a thyratron replacement. The unit was designed to directly replace the thyratrons currently being used at SLAC’s Linac Coherent Light Source (LCLS), and was builtmore » in a tank that was small enough to fit into the existing thyratron cabinet, providing a true form-fit-function replacement path. We tested the switch at the full operating specifications: 48 kV, 6.3 kA, and 1 µs risetime. We also demonstrated a peak-to-peak pulse jitter of 1.5 ns, which is five times shorter than is typical for thyratrons. This lower jitter would improve the performance of the LCLS beam. The predicted reliability is more than 80 years, which is 40 times greater than a thyratron.« less
Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool
Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.
2002-01-29
In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.
Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool
Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.
2002-01-29
In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.
Method of forming emitters for a back-contact solar cell
Li, Bo; Cousins, Peter J.; Smith, David D.
2015-09-29
Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.
Method of forming emitters for a back-contact solar cell
Li, Bo; Cousins, Peter J; Smith, David D
2014-12-16
Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.
Method or forming emitters for a back-contact solar cell
Li, Bo; Cousins, Peter J.; Smith, David D.
2014-08-12
Methods of forming emitters for back-contact solar cells are described. In one embodiment, a method includes forming a first solid-state dopant source above a substrate. The first solid-state dopant source includes a plurality of regions separated by gaps. Regions of a second solid-state dopant source are formed above the substrate by printing.
Song, Xiaojie; Cui, Hongzhi; Han, Ye; Ding, Lei; Song, Qiang
2018-05-16
In this work, Ti 2 Al(C, N) solid solution with lamellar structure-enhanced TiAl matrix composites was synthesized by vacuum arc melting, using bulk g-C 3 N 4 , Ti, and Al powders as raw materials. The phases, microstructures, interfaces, and mechanical properties were investigated. MAX phase of Ti 2 Al(C, N) solid solution with lamellar structure was formed. During the melting process, first, C 3 N 4 reacted with Ti to form Ti(C, N) by Ti + C 3 N 4 → Ti(C, N). Then Ti 2 Al(C, N) was formed by a peritectic reaction of TiAl(l) + Ti(C, N)(s) → Ti 2 Al(C, N). C 3 N 4 is the single reactant that provides C and N simultaneously to final product of Ti 2 Al(C, N). The interfaces of TiAl//Ti 2 Al(C, N) and Ti 2 Al(C, N)//Ti(C, N) display perfect orientation relationships with low misfit values. The microhardness, compressive strength, and strain of best-performing TiAl-10 mol % Ti 2 Al(C, N) composite were improved by 45%, 55.7%, and 50% compared with the TiAl alloy, respectively. Uniformly distributed Ti 2 Al(C, N) and unreacted Ti(C, N) particles contributed to the grain refinement and reinforcement of the TiAl matrix. Laminated tearing, particle pull-out, and the crack-arresting of Ti 2 Al(C, N) are crucial for the improvement in compressive strength and plasticity of the composites.
Solitary waves in a peridynamic elastic solid
Silling, Stewart A.
2016-06-23
The propagation of large amplitude nonlinear waves in a peridynamic solid is ana- lyzed. With an elastic material model that hardens in compression, sufficiently large wave pulses propagate as solitary waves whose velocity can far exceed the linear wave speed. In spite of their large velocity and amplitude, these waves leave the material they pass through with no net change in velocity and stress. They are nondissipative and nondispersive, and they travel unchanged over large distances. An approximate solution for solitary waves is derived that reproduces the main features of these waves observed in computational simulations. We demonstrate, by numericalmore » studies, that waves interact only weakly with each other when they collide. Finally, we found that wavetrains composed of many non-interacting solitary waves form and propagate under certain boundary and initial conditions.« less
Amorphization within the tablet: Using microwave irradiation to form a glass solution in situ.
Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A; Grohganz, Holger; Holm, René; Lopez de Diego, Heidi; Rades, Thomas; Löbmann, Korbinian
2017-03-15
In situ amorphization is a concept that allows to amorphize a given drug in its final dosage form right before administration. Hence, this approach can potentially be used to circumvent recrystallization issues that other amorphous formulation approaches are facing during storage. In this study, the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements revealed that with increasing microwaving power and time, the fractions of crystalline IND and amorphous PVP reduced, whereas the amount of in situ formed IND-PVP glass solution increased. Intrinsic dissolution showed that the dissolution rate of the microwaved solid dispersion was similar to that of a quench cooled, fully amorphous glass solution even though the microwaved samples contained residual crystalline IND. Copyright © 2017 Elsevier B.V. All rights reserved.
Formation of a freely suspended membrane via a combination of interfacial reaction and wetting.
McNamee, Cathy E; Jaumann, Manfred; Möller, Martin; Ding, Ailin; Hemeltjen, Steffen; Ebert, Susanne; Baumann, Wolfgang; Goedel, Werner A
2005-11-08
Applying poly(ethoxysiloxane) (a liquid non-water-soluble polymer that can be hydrolyzed and cross-linked by diluted acids) to an air/pH 1 water interface gave rise to thin homogeneous solid layers. These layers were strong enough to be transferable to electron microscopy grids with holes of dimensions up to 150 microm and covered the holes as freely suspended membranes. No homogeneous layers were formed at an air/pH 5 water interface. Brewster angle microscopy images show that the poly(ethoxysiloxane) is not spontaneously forming a wetting layer on water. It initially forms lenses, which slowly spread out within several hours. We conclude that the spreading occurs simultaneously with the hydrolysis and cross-linking of the poly(ethoxysiloxane) and that the reaction products finally assist the complete wetting of the water surface.
Experimental cocrystal screening and solution based scale-up cocrystallization methods.
Malamatari, Maria; Ross, Steven A; Douroumis, Dennis; Velaga, Sitaram P
2017-08-01
Cocrystals are crystalline single phase materials composed of two or more different molecular and/or ionic compounds generally in a stoichiometric ratio which are neither solvates nor simple salts. If one of the components is an active pharmaceutical ingredient (API), the term pharmaceutical cocrystal is often used. There is a growing interest among drug development scientists in exploring cocrystals, as means to address physicochemical, biopharmaceutical and mechanical properties and expand solid form diversity of the API. Conventionally, coformers are selected based on crystal engineering principles, and the equimolar mixtures of API and coformers are subjected to solution-based crystallization that are commonly employed in polymorph and salt screening. However, the availability of new knowledge on cocrystal phase behaviour in solid state and solutions has spurred the development and implementation of more rational experimental cocrystal screening as well as scale-up methods. This review aims to provide overview of commonly employed solid form screening techniques in drug development with an emphasis on cocrystal screening methodologies. The latest developments in understanding and the use of cocrystal phase diagrams in both screening and solution based scale-up methods are also presented. Final section is devoted to reviewing the state of the art research covering solution based scale-up cocrystallization process for different cocrystals besides more recent continuous crystallization methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Bigot, Renaud; Bertaux, Joanne; Frere, Jacques; Berjeaud, Jean-Marc
2013-01-01
Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent.
Intra-Amoeba Multiplication Induces Chemotaxis and Biofilm Colonization and Formation for Legionella
Bigot, Renaud; Bertaux, Joanne; Frere, Jacques; Berjeaud, Jean-Marc
2013-01-01
Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent. PMID:24205008
Development of immobilized ligands for actinide separations. Final report, June 1991--May 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paine, R.T.
1994-06-01
Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined.
Font, Helena; Font-Bardia, Mercè; Gómez, Kerman; González, Gabriel; Granell, Jaume; Macho, Israel; Martínez, Manuel
2014-09-28
The cyclometallation reactions of dinuclear μ-acetato complexes of the type [Pd(AcO)(μ-AcO)L]2 (L = 4-RC6H4CH2NH2, R = H, Cl, F, CF3), a process found to occur readily even in the solid state, have been studied from a kinetico-mechanistic perspective. Data indicate that the dinuclear acetato bridged derivatives are excellent starting materials to activate carbon-hydrogen bonds in a facile way. In all cases the established concerted ambiphilic proton abstraction by a coordinated acetato ligand has been proved. The metallation has also been found to occur in a cooperative manner, with the metallation of the first palladium unit of the dimeric complex being rate determining; no intermediate mono-metallated compounds are observed in any of the processes. The kinetically favoured bis-cyclopalladated compound obtained after complete C-H bond activation does not correspond to the final isolated XRD-characterized complexes. This species, bearing the classical open-book dimeric form, has a much more complex structure than the final isolated compound, with different types of acetato ligands.
Fuller, Timothy J.; Jiang, Ruichun
2017-01-24
A method for forming a modified solid polymer includes a step of contacting a solid fluorinated polymer with a sodium sodium-naphthalenide solution to form a treated fluorinated solid polymer. The treated fluorinated solid polymer is contacted with carbon dioxide, sulfur dioxide, or sulfur trioxide to form a solid grafted fluorinated polymer. Characteristically, the grafted fluorinated polymer includes appended CO.sub.2H or SO.sub.2H or SO.sub.3H groups. The solid grafted fluorinated polymer is advantageously incorporated into a fuel cell as part of the ion-conducting membrane or a water transport membrane in a humidifier.
Park, Aeri; Chyall, Leonard J; Dunlap, Jeanette; Schertz, Christine; Jonaitis, David; Stahly, Barbara C; Bates, Simon; Shipplett, Rex; Childs, Scott
2007-01-01
Modern drug development demands constant deployment of more effective technologies to mitigate the high cost of bringing new drugs to market. In addition to cost savings, new technologies can improve all aspects of pharmaceutical development. New technologies developed at SSCI, Inc. include solid form development of an active pharmaceutical ingredients. (APIs) are PatternMatch software and capillary-based crystallisation techniques that not only allow for fast and effective solid form screening, but also extract maximum property information from the routine screening data that is generally available. These new technologies offer knowledge-based decision making during solid form development of APIs and result in more developable API solid forms.
Ebeling, J.M.; Rishel, K.L.; Sibrell, P.L.
2005-01-01
As environmental regulations become more stringent, environmentally sound waste management and disposal are becoming increasingly more important in all aquaculture operations. One of the primary water quality parameters of concern is the suspended solids concentration in the discharged effluent. For example, EPA initially considered the establishment of numerical limitations for only one single pollutant: total suspended solids (TSS). For recirculation systems, the proposed TSS limitations would have applied to solids polishing or secondary solids removal technology. The new rules and regulations from EPA (August 23, 2004) require only qualitative TSS limits, in the form of solids control best management practices (BMP), allowing individual regional and site specific conditions to be addressed by existing state or regional programs through NPDES permits. In recirculation systems, microscreen filters are commonly used to remove the suspended solids from the process water. Further concentration of suspended solids from the backwash water of the microscreen filter could significantly reduce quantity of discharge water. And in some cases, the backwash water from microscreen filters needs to be further concentrated to minimize storage volume during over wintering for land disposal or other final disposal options. In addition, this may be required to meet local, state, and regional discharge water quality. The objective of this research was an initial screening of several commercially available polymers routinely used as coagulation-flocculation aids in the drinking and wastewater treatment industry and determination of their effectiveness for the treatment of aquaculture wastewater. Based on the results of the initial screening, a further evaluation of six polymers was conducted to estimate the optimum polymer dosage for flocculation of aquaculture microscreen effluent and overall solids removal efficiency. Results of these evaluations show TSS removal was close to 99% via settling, with final TSS values ranging from as low as 10-17 mg/L. Although not intended to be used for reactive phosphorus (RP) removal, RP was reduced by 92-95% by removing most of the TSS in the wastewater to approximately 1 mg/L-P. Dosage requirements were fairly uniform, requiring between 15 and 20 mg/L of polymer. Using these dosages, estimated costs range from $4.38 to $13.08 per metric tonne of feed. ?? 2005 Elsevier B.V. All rights reserved.
2015-02-01
In 2004, the Department of Defense (DOD) began introducing new solid waste disposal methods in Afghanistan, including landfills and incineration...base landfills and incinera- tion. Nonetheless, the overall approach to its solid waste disposal in Afghanistan was hap- hazard and reactive. DOD was...contract to have solid waste hauled to a local landfill —a solution that could have eliminat- SIGAR 15-33-AL: Final assessment: incinerators and Burn
Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R.
2014-01-01
Recently, “meltless” recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach. PMID:28788153
Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R
2014-08-06
Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.
26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... biological, engineering, industrial, or technological method. (1) Final disposal process. The term final... solid material derived from any agricultural, commercial, consumer, governmental, or industrial... industrial operation or activity, or a component of any such product or activity, and that has been used...
26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... biological, engineering, industrial, or technological method. (1) Final disposal process. The term final... solid material derived from any agricultural, commercial, consumer, governmental, or industrial... industrial operation or activity, or a component of any such product or activity, and that has been used...
78 FR 15299 - New York: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... Solid Waste Amendments of 1984 (HSWA). New Federal requirements and prohibitions imposed by Federal...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental...
Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun
2015-10-10
Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.
Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review.
Mura, Paola
2015-09-10
Cyclodextrins are cyclic oligosaccharides able to form inclusion complexes with a variety of hydrophobic guest molecules, positively modifying their physicochemical properties. A thorough analytical characterization of cyclodextrin complexes is of fundamental importance to provide an adequate support in selection of the most suitable cyclodextrin for each guest molecule, and also in view of possible future patenting and marketing of drug-cyclodextrin formulations. The demonstration of the actual formation of a drug-cyclodextrin inclusion complex in solution does not guarantee its existence also in the solid state. Moreover, the technique used to prepare the solid complex can strongly influence the properties of the final product. Therefore, an appropriate characterization of the drug-cyclodextrin solid systems obtained has also a key role in driving in the choice of the most effective preparation method, able to maximize host-guest interactions. The analytical characterization of drug-cyclodextrin solid systems and the assessment of the actual inclusion complex formation is not a simple task and involves the combined use of several analytical techniques, whose results have to be evaluated together. The objective of the present review is to present a general prospect of the principal analytical techniques which can be employed for a suitable characterization of drug-cyclodextrin systems in the solid state, evidencing their respective potential advantages and limits. The applications of each examined technique are described and discussed by pertinent examples from literature. Copyright © 2015 Elsevier B.V. All rights reserved.
In Situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries
Wang, Ziying; Santhanagopalan, Dhamodaran; Zhang, Wei; ...
2016-05-03
Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode–solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. In this paper, we present a new approach to conducting in situ scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) in order to uncover the unique interfacial phenomena related to lithium ion transport and its corresponding charge transfer. Our approach allowed quantitative spectroscopic characterization of a galvanostatically biased electrochemical system under in situmore » conditions. Using a LiCoO 2/LiPON/Si thin film battery, an unexpected structurally disordered interfacial layer between LiCoO 2 cathode and LiPON electrolyte was discovered to be inherent to this interface without cycling. During in situ charging, spectroscopic characterization revealed that this interfacial layer evolved to form highly oxidized Co ions species along with lithium oxide and lithium peroxide species. These findings suggest that the mechanism of interfacial impedance at the LiCoO 2/LiPON interface is caused by chemical changes rather than space charge effects. Finally, insights gained from this technique will shed light on important challenges of interfaces in all-solid-state energy storage and conversion systems and facilitate improved engineering of devices operated far from equilibrium.« less
Can computed crystal energy landscapes help understand pharmaceutical solids?
Price, Sarah L.; Braun, Doris E.; Reutzel-Edens, Susan M.
2017-01-01
Computational crystal structure prediction (CSP) methods can now be applied to the smaller pharmaceutical molecules currently in drug development. We review the recent uses of computed crystal energy landscapes for pharmaceuticals, concentrating on examples where they have been used in collaboration with industrial-style experimental solid form screening. There is a strong complementarity in aiding experiment to find and characterise practically important solid forms and understanding the nature of the solid form landscape. PMID:27067116
Vigh, Tamás; Drávavölgyi, Gábor; Sóti, Péter L; Pataki, Hajnalka; Igricz, Tamás; Wagner, István; Vajna, Balázs; Madarász, János; Marosi, György; Nagy, Zsombor K
2014-09-01
Raman spectrometry was utilized to estimate degraded drug percentage, residual drug crystallinity and glass-transition temperature in the case of melt-extruded pharmaceutical products. Tight correlation was shown between the results obtained by confocal Raman mapping and transmission Raman spectrometry, a PAT-compatible potential in-line analytical tool. Immediate-release spironolactone-Eudragit E solid dispersions were the model system, owing to the achievable amorphization and the heat-sensitivity of the drug compound. The deep investigation of the relationship between process parameters, residual drug crystallinity and degradation was performed using statistical tools and a factorial experimental design defining 54 different circumstances for the preparation of solid dispersions. From the examined factors, drug content (10, 20 and 30%), temperature (110, 130 and 150°C) and residence time (2.75, 11.00 and 24.75min) were found to have significant and considerable effect. By forming physically stable homogeneous dispersions, the originally very slow dissolution of the lipophilic and poorly water-soluble spironolactone was reasonably improved, making 3minute release possible in acidic medium. Copyright © 2014 Elsevier B.V. All rights reserved.
Tin recovery from tin slag using electrolysis method
NASA Astrophysics Data System (ADS)
Jumari, Arif; Purwanto, Agus; Nur, Adrian; Budiman, Annata Wahyu; Lerian, Metty; Paramita, Fransisca A.
2018-02-01
The process in industry, including in mining industry, would surely give negative effect such as waste polluting to the environment. Some of waste could be potentially reutilized to be a commodity with the higher economic value. Tin slag is one of them. The aim of this research was to recover the tin contained in tin slag. Before coming to the electrolysis, tin slag must be treated by dissolution. The grinded tin slag was dissolved into HCl solution to form a slurry. During dissolution, the slurry was agitated and heated, and finally filtered. The filtrate obtained was then electrolyzed. During the process of electrolysis, solid material precipitated on the used cathode. The precipitated solid was then separated and dried. The solid was then analyzed using XRD, XRF and SEM. The XRD analysis showed that the longest time of dissolution and electrolysis the highest the purity obtained in the product. The SEM analysis showed that the longest time of electrolysis the smallest tin particle obtained. Optimum time achieved in this research was 2 hours for the recovering time and 3 hours for the electrolysis time, with 9% tin recovered.
Kroschwald, Sonja; Maharana, Shovamayee; Mateju, Daniel; Malinovska, Liliana; Nüske, Elisabeth; Poser, Ina; Richter, Doris; Alberti, Simon
2015-01-01
RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI: http://dx.doi.org/10.7554/eLife.06807.001 PMID:26238190
Fire Performance Evaluation of Solid Aqueous Film-Forming Foam (AFFF).
1986-05-01
Aqueous Film - Forming Foam ( AFFF ) Concentrates as Firefighting Agents, USAF Report ESL-TR-81-18, Tyndall Air Force Base, Florida...Evaluation of Solid Aqueous Film - Forming Foam ( AFFF ) JOSEPH L. SCHEFFEY HUGHES ASSOCIATES, INC. , EDWIN J. JABLONSKI 2730 UNIVERSITY BLVD. W. JOSEPH T...performance evaluation of the solid agent is the 28-square-foot fire test described in ’L F-24385C, Military Specification for Aqueous Film - Forming
78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...
WastePlan model implementation for New York State. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visalli, J.R.; Blackman, D.A.
1995-07-01
WastePlan is a computer software tool that models solid waste quantities, costs, and other parameters on a regional basis. The software was developed by the Tellus Institute, a nonprofit research and consulting firm. The project`s objective was to provide local solid waste management planners in New York State responsible to develop and implement comprehensive solid waste management plans authorized by the Solid Waste Management Act of 1988, with a WastePlan model specifically tailored to fit the demographic and other characteristics of New York State and to provide training and technical support to the users. Two-day workshops were held in 1992more » to introduce planners to the existing versions; subsequently, extensive changes were made to the model and a second set of two-day workshops were held in 1993 to introduce planners to the enhanced version of WastePlan. Following user evaluations, WastePlan was further modified to allow users to model systems using a simplified version, and to incorporate report forms required by New York State. A post-project survey of trainees revealed limited regular use of software. Possible reasons include lack of synchronicity with NYSDEC planning process; lack of computer literacy and aptitude among trainees; hardware limitations; software user-friendliness; and the work environment of the trainees. A number of recommendations are made to encourage use of WastePlan by local solid waste management planners.« less
Maher, Chris; Neethling, J B; Murthy, Sudhir; Pagilla, Krishna
2015-11-15
The role of adsorption and/or complexation in removal of reactive or unreactive effluent phosphorus by already formed chemical precipitates or complexes has been investigated. Potential operational efficiency gains resulting from age of chemically precipitated tertiary alum sludge and the recycle of sludge to the process stream was undertaken at the Iowa Hill Water Reclamation Facility which employs the DensaDeg(®) process (IDI, Richmond, VA) for tertiary chemical P removal to achieve a filtered final effluent total phosphorus concentration of <30 μg/L. The effect of sludge solids age was found to be insignificant over the solids retention time (SRT) of 2-8 days, indicating that the solids were unaffected by the aging effects of decreasing porosity and surface acidity. The bulk of solids inventory was retained in the clarifier blanket, providing no advantage in P removal from increased solids inventory at higher SRTs. When solids recycle was redirected from the traditional location of the flocculation reactor to a point just prior to chemical addition in the chemical mixing reactor, lower effluent soluble P concentrations at lower molar doses of aluminum were achieved. At laboratory scale, the "spent" or "waste" chemical alum sludge from P removal showed high capacity and rapid kinetics for P sorption from real wastewater effluents. Saturation concentrations were in the range of 8-29 mg soluble reactive P/g solids. Higher saturation concentrations were found at higher temperatures. Alum sludge produced without a coagulant aid polymer had a much higher capacity for P sorption than polymer containing alum sludge. The adsorption reaction reached equilibrium in less than 10 min with 50% or greater removal within the first minute. Copyright © 2015 Elsevier Ltd. All rights reserved.
78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...
Christmann, V; Rosenberg, J; Seega, J; Lehr, C M
1997-08-01
Bioavailability of orally administered drugs is much influenced by the behavior, performance and fate of the dosage form within the gastrointestinal (GI) tract. Therefore, MRI in vivo methods that allow for the simultaneous visualization of solid oral dosage forms and anatomical structures of the GI tract have been investigated. Oral contrast agents containing Gd-DTPA were used to depict the lumen of the digestive organs. Solid oral dosage forms were visualized in a rat model by a 1H-MRI double contrast technique (magnetite-labelled microtablets) and a combination of 1H- and 19F-MRI (fluorine-labelled minicapsules). Simultaneous visualization of solid oral dosage forms and the GI environment in the rat was possible using MRI. Microtablets could reproducibly be monitored in the rat stomach and in the intestines using a 1H-MRI double contrast technique. Fluorine-labelled minicapsules were detectable in the rat stomach by a combination of 1H- and 19F-MRI in vivo. The in vivo 1H-MRI double contrast technique described allows solid oral dosage forms in the rat GI tract to be depicted. Solid dosage forms can easily be labelled by incorporating trace amounts of non-toxic iron oxide (magnetite) particles. 1H-MRI is a promising tool for observing such pharmaceutical dosage forms in humans. Combined 1H- and 19F-MRI offer a means of unambiguously localizing solid oral dosage forms in more distal parts of the GI tract. Studies correlating MRI examinations with drug plasma levels could provide valuable information for the development of pharmaceutical dosage forms.
Li, Dong Xun; Jang, Ki-Young; Kang, Wonku; Bae, Kyoungjin; Lee, Mann Hyung; Oh, Yu-Kyoung; Jee, Jun-Pil; Park, Young-Joon; Oh, Dong Hoon; Seo, Youn Gee; Kim, Young Ran; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon
2010-01-01
To develop a novel sibutramine base-loaded solid dispersion with improved solubility bioavailability, various solid dispersions were prepared with water, hydroxypropylmethyl cellulose (HPMC), poloxamer and citric acid using spray-drying technique. The effect of HPMC, poloxamer and citric acid on the aqueous solubility of sibutramine was investigated. The physicochemical properties of solid dispersion were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction. The dissolution and pharmacokinetics in rats of solid dispersion were evaluated compared to the sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The sibutramine base-loaded solid dispersion gave two type forms. Like conventional solid dispersion system, one type appeared as a spherical shape with smooth surface, as the carriers and drug with relatively low melting point were soluble in water and formed it. The other appeared as an irregular form with relatively rough surface. Unlike conventional solid dispersion system, this type changed no crystalline form of drug. Our results suggested that this type was formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting from changing the hydrophobic drug to hydrophilic form. The sibutramine-loaded solid dispersion at the weight ratio of sibutramine base/HPMC/poloxamer/citric acid of 5/3/3/0.2 gave the maximum drug solubility of about 3 mg/ml. Furthermore, it showed the similar plasma concentration, area under the curve (AUC) and C(max) of parent drug, metabolite I and II to the commercial product, indicating that it might give the similar drug efficacy compared to the sibutramine hydrochloride monohydrate-loaded commercial product in rats. Thus, this solid dispersion system would be useful to deliver poorly water-soluble sibutramine base with enhanced bioavailability.
Programming function into mechanical forms by directed assembly of silk bulk materials
Patel, Nereus; Duggan, Thomas; Perotto, Giovanni; Shirman, Elijah; Li, Chunmei; Kaplan, David L.; Omenetto, Fiorenzo G.
2017-01-01
We report simple, water-based fabrication methods based on protein self-assembly to generate 3D silk fibroin bulk materials that can be easily hybridized with water-soluble molecules to obtain multiple solid formats with predesigned functions. Controlling self-assembly leads to robust, machinable formats that exhibit thermoplastic behavior consenting material reshaping at the nanoscale, microscale, and macroscale. We illustrate the versatility of the approach by realizing demonstrator devices where large silk monoliths can be generated, polished, and reshaped into functional mechanical components that can be nanopatterned, embed optical function, heated on demand in response to infrared light, or can visualize mechanical failure through colorimetric chemistries embedded in the assembled (bulk) protein matrix. Finally, we show an enzyme-loaded solid mechanical part, illustrating the ability to incorporate biological function within the bulk material with possible utility for sustained release in robust, programmably shapeable mechanical formats. PMID:28028213
Acoustic-radiation stress in solids. I - Theory
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.
1984-01-01
The general case of acoustic-radiation stress associated with quasi-compressional and quasi-shear waves propagating in infinite and semiinfinite lossless solids of arbitrary crystalline symmetry is studied. The Boussinesq radiation stress is defined and found to depend directly on an acoustic nonlinearity parameter which characterizes the radiation-induced static strain, a stress-generalized nonlinearity parameter which characterizes the stress nonlinearity, and the energy density of the propagating wave. Application of the Boltzmann-Ehrenfest principle of adiabatic invariance to a self-constrained system described by the nonlinear equations of motion allows the acoustic-radiation-induced static strain to be identified with a self-constrained variation in the time-averaged product of the internal energy density and displacement gradient. The time-averaged product is scaled by the acoustic nonlinearity parameter and represents the first-order nonlinearity in the virial theorem. Finally, the relationship between the Boussinesq and the Cauchy radiation stress is obtained in a closed three-dimensional form.
Quantum phases of dipolar soft-core bosons
NASA Astrophysics Data System (ADS)
Grimmer, D.; Safavi-Naini, A.; Capogrosso-Sansone, B.; Söyler, Ş. G.
2014-10-01
We study the phase diagram of a system of soft-core dipolar bosons confined to a two-dimensional optical lattice layer. We assume that dipoles are aligned perpendicular to the layer such that the dipolar interactions are purely repulsive and isotropic. We consider the full dipolar interaction and perform path-integral quantum Monte Carlo simulations using the worm algorithm. Besides a superfluid phase, we find various solid and supersolid phases. We show that, unlike what was found previously for the case of nearest-neighbor interaction, supersolid phases are stabilized by doping the solids not only with particles but with holes as well. We further study the stability of these quantum phases against thermal fluctuations. Finally, we discuss pair formation and the stability of the pair checkerboard phase formed in a bilayer geometry, and we suggest experimental conditions under which the pair checkerboard phase can be observed.
Advances in solid dosage form manufacturing technology.
Andrews, Gavin P
2007-12-15
Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2017-10-01
Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.
Durai-Swamy, Kandaswamy
1982-01-01
In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.
Yan, Hong-Mei; Zhang, Zhen-Hai; Jiang, Yan-Rong; Ding, Dong-Mei; Sun, E; Jia, Xiao-Bin
2014-04-01
Tanshinone IIA (TSIIA) on solid dispersions (SDs) has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs) can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs) by the use of ternary systems with nano-CaCO3 and poloxamer 188. The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR) was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. The characterization of tSDs by differential scanning calorimetry analysis (DSC) and X-ray powder diffraction (XRPD) showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR) suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. SDs preparation with nano-CaCO3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA.
Hou, Guangjin; Gupta, Rupal; Polenova, Tatyana; Vega, Alexander J
2014-02-01
Proton chemical shifts are a rich probe of structure and hydrogen bonding environments in organic and biological molecules. Until recently, measurements of 1 H chemical shift tensors have been restricted to either solid systems with sparse proton sites or were based on the indirect determination of anisotropic tensor components from cross-relaxation and liquid-crystal experiments. We have introduced an MAS approach that permits site-resolved determination of CSA tensors of protons forming chemical bonds with labeled spin-1/2 nuclei in fully protonated solids with multiple sites, including organic molecules and proteins. This approach, originally introduced for the measurements of chemical shift tensors of amide protons, is based on three RN -symmetry based experiments, from which the principal components of the 1 H CS tensor can be reliably extracted by simultaneous triple fit of the data. In this article, we expand our approach to a much more challenging system involving aliphatic and aromatic protons. We start with a review of the prior work on experimental-NMR and computational-quantum-chemical approaches for the measurements of 1 H chemical shift tensors and for relating these to the electronic structures. We then present our experimental results on U- 13 C, 15 N-labeled histdine demonstrating that 1 H chemical shift tensors can be reliably determined for the 1 H 15 N and 1 H 13 C spin pairs in cationic and neutral forms of histidine. Finally, we demonstrate that the experimental 1 H(C) and 1 H(N) chemical shift tensors are in agreement with Density Functional Theory calculations, therefore establishing the usefulness of our method for characterization of structure and hydrogen bonding environment in organic and biological solids.
76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...
75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...
75 FR 49379 - Correction to Internal Citation of “Extremely Flammable Solid” and “Flammable Solid”
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
... Flammable Solid'' and ``Flammable Solid'' AGENCY: Consumer Product Safety Commission. ACTION: Final rule... to correct internal citations to the definitions of ``extremely flammable solid'' and ``flammable solid'' in our regulations. DATES: This rule is effective on August 13, 2010. FOR FURTHER INFORMATION...
77 FR 69769 - Solid Waste Rail Transfer Facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
.... SUMMARY: These final rules govern land-use-exemption permits for solid waste rail transfer facilities. The... ``land-use-exemption permits'' in certain circumstances. Under the CRA, a solid waste rail transfer... grants a land-use-exemption permit for a solid waste rail transfer facility, such permit would only...
Investigation on thixojoining to produce hybrid components with intermetallic phase
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2018-05-01
Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.
Electrochemical slurry compositions and methods for preparing the same
Doherty, Tristan; Limthongkul, Pimpa; Butros, Asli; Duduta, Mihai; Cross, III, James C.
2016-11-01
Embodiments described herein generally relate to semi-solid suspensions, and more particularly to systems and methods for preparing semi-solid suspensions for use as electrodes in electrochemical devices such as, for example batteries. In some embodiments, a method for preparing a semi-solid electrode includes combining a quantity of an active material with a quantity of an electrolyte to form an intermediate material. The intermediate material is then combined with a conductive additive to form an electrode material. The electrode material is mixed to form a suspension having a mixing index of at least about 0.80 and is then formed into a semi-solid electrode.
A novel accelerated oxidative stability screening method for pharmaceutical solids.
Zhu, Donghua Alan; Zhang, Geoff G Z; George, Karen L S T; Zhou, Deliang
2011-08-01
Despite the fact that oxidation is the second most frequent degradation pathway for pharmaceuticals, means of evaluating the oxidative stability of pharmaceutical solids, especially effective stress testing, are still lacking. This paper describes a novel experimental method for peroxide-mediated oxidative stress testing on pharmaceutical solids. The method utilizes urea-hydrogen peroxide, a molecular complex that undergoes solid-state decomposition and releases hydrogen peroxide vapor at elevated temperatures (e.g., 30°C), as a source of peroxide. The experimental setting for this method is simple, convenient, and can be operated routinely in most laboratories. The fundamental parameter of the system, that is, hydrogen peroxide vapor pressure, was determined using a modified spectrophotometric method. The feasibility and utility of the proposed method in solid form selection have been demonstrated using various solid forms of ephedrine. No degradation was detected for ephedrine hydrochloride after exposure to the hydrogen peroxide vapor for 2 weeks, whereas both anhydrate and hemihydrate free base forms degraded rapidly under the test conditions. In addition, both the anhydrate and the hemihydrate free base degraded faster when exposed to hydrogen peroxide vapor at 30°C under dry condition than at 30°C/75% relative humidity (RH). A new degradation product was also observed under the drier condition. The proposed method provides more relevant screening conditions for solid dosage forms, and is useful in selecting optimal solid form(s), determining potential degradation products, and formulation screening during development. Copyright © 2011 Wiley-Liss, Inc.
Reactive sintering of ceramic lithium ion electrolyte membranes
Badding, Michael Edward; Dutta, Indrajit; Iyer, Sriram Rangarajan; Kent, Brian Alan; Lonnroth, Nadja Teresia
2017-06-06
Disclosed herein are methods for making a solid lithium ion electrolyte membrane, the methods comprising combining a first reactant chosen from amorphous, glassy, or low melting temperature solid reactants with a second reactant chosen from refractory oxides to form a mixture; heating the mixture to a first temperature to form a homogenized composite, wherein the first temperature is between a glass transition temperature of the first reactant and a crystallization onset temperature of the mixture; milling the homogenized composite to form homogenized particles; casting the homogenized particles to form a green body; and sintering the green body at a second temperature to form a solid membrane. Solid lithium ion electrolyte membranes manufactured according to these methods are also disclosed herein.
Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.
Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin
2015-01-01
The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.
Hartman, Joshua D; Day, Graeme M; Beran, Gregory J O
2016-11-02
Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13 C and 15 N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study.
2016-01-01
Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13C and 15N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study. PMID:27829821
Içten, Elçin; Giridhar, Arun; Nagy, Zoltan K; Reklaitis, Gintaras V
2016-04-01
The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.
2017-01-01
The solid form landscape of 5-HT2a antagonist 3-(4-(benzo[d]isoxazole-3-yl)piperazin-1-yl)-2,2-dimethylpropanoic acid hydrochloride (B5HCl) proved difficult to establish. Many crystalline materials were produced by solid form screening, but few forms readily grew high quality crystals to afford a clear picture or understanding of the solid form landscape. Careful control of crystallization conditions, a range of experimental methods, computational modeling of solvate structures, and crystal structure prediction were required to see potential arrangements of the salt in its crystal forms. Structural diversity in the solid form landscape of B5HCl was apparent in the layer structures for the anhydrate polymorphs (Forms I and II), dihydrate and a family of solvates with alcohols. The alcohol solvates, which provided a distinct packing from the neat forms and the dihydrate, form layers with conserved hydrogen bonding between B5HCl and the solvent, as well as stacking of the aromatic rings. The ability of the alcohol hydrocarbon moieties to efficiently pack between the layers accounted for the difficulty in growing some solvate crystals and the inability of other solvates to crystallize altogether. Through a combination of experiment and computation, the crystallization problems, form stability, and desolvation pathways of B5HCl have been rationalized at a molecular level. PMID:29018305
Assessment of bioburden encapsulated in bulk materials
NASA Astrophysics Data System (ADS)
Schubert, Wayne W.; Newlin, Laura; Chung, Shirley Y.; Ellyin, Raymond
2016-05-01
The National Aeronautics and Space Administration (NASA) imposes bioburden limitations on all spacecraft destined for solar system bodies that might harbor evidence of extant or extinct life. The subset of microorganisms trapped within solid materials during manufacture and assembly is referred to as encapsulated bioburden. In the absence of spacecraft-specific data, NASA relies on specification values to estimate total spacecraft encapsulated bioburden, typically 30 endospores/cm3 or 300 viable cells/cm3 in non-electronic materials. Specification values for endospores have been established conservatively, and represent no less than an order of magnitude greater abundance than that derived from empirical assessments of actual spacecraft materials. The goal of this study was to generate data germane to determining whether revised bulk encapsulated material values (lower than those estimated by historical specifications) tailored specifically to the materials designated in modern-day spacecraft design could be used, on a case-by-case basis, to comply with planetary protection requirements. Organic materials having distinctly different chemical properties and configurations were selected. This required more than one experimental and analytical approach. Filtration was employed for liquid electrolytes, lubricants were suspended in an aqueous solution and solids (wire and epoxy sealant) were cryogenically milled. The final data characteristic for all bioburden estimates was microbial colony formation in rich agar growth medium. To assess survival potential, three non-spore-forming bacterial cell lines were systematically encapsulated in an epoxy matrix, liberated via cryogenic grinding, and cultured. Results suggest that bulk solid materials harbor significantly fewer encapsulated microorganisms than are estimated by specification values. Lithium-ion battery electrolyte reagents housed fewer than 1 CFU/cm3. Results also demonstrated that non-spore-forming microorganisms are capable of surviving encapsulation within, and liberation from, epoxy solids. It must be noted, however, that all purposely spiked experimental solids, resulted in very low recovery (1 × 10-3-1 × 10-5 CFU/cm3) of viable organisms.
Blaesi, Aron H; Saka, Nannaji
2016-07-25
At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. Copyright © 2016. Published by Elsevier B.V.
Israelsson, Niklas; Unocic, Kinga A.; Hellström, K.; ...
2015-03-18
In this paper, the corrosion behaviour of a FeCrAl alloy was investigated at 600 °C in O 2 + H 2O with solid KCl applied. A kinetics and microstructural investigation showed that KCl accelerates corrosion and that potassium chromate formation depletes the protective scale in Cr, thus triggering the formation of a fast-growing iron-rich scale. Iron oxide was found to grow both inward and outward, on either side of the initial oxide. A chromia layer is formed with time underneath the iron oxide. Finally, it was found that although the alloy does not form a continuous pure alumina scale atmore » the investigated temperature, aluminium is, however, always enriched at the oxide/alloy interface.« less
Continuation of Crosscutting Technology Development at Cast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Roe-Hoan
2012-03-31
This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.
Crystallization Pathways in Biomineralization
NASA Astrophysics Data System (ADS)
Weiner, Steve; Addadi, Lia
2011-08-01
A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.
Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.
2011-09-23
To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are stillmore » too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.« less
Plasma vitrification of waste materials
McLaughlin, David F.; Dighe, Shyam V.; Gass, William R.
1997-01-01
This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.
New Gel-Like Polymers as Selective Weak-Base Anion Exchangers
Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej
2015-01-01
A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220
Plasma vitrification of waste materials
McLaughlin, D.F.; Dighe, S.V.; Gass, W.R.
1997-06-10
This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles. 4 figs.
Formation of metallic and metal hydrous oxide dispersions
NASA Technical Reports Server (NTRS)
Matijevic, E.; Sapieszko, R. S.
1979-01-01
The formation, via hydrothermally induced precipitation from homogeneous solution, of a variety of well-defined dispersions of metallic and hydrous metal in the conditions under which the particles are produced (e.g., pH and composition of the growth medium, aging temperature, rate of heating, or degree of agitation) can be readily discerned by following changes in the mass, composition, and morphology of the final solid phase. The generation of colloidal dispersions in the absence of gravity convection or sedimentation effects may result in the appearance of morphological modifications not previously observed in terrestrially formed hydrosols.
The effect of temperature and moisture on the amorphous-to-crystalline transformation of stavudine.
Strydom, Schalk; Liebenberg, Wilna; Yu, Lian; de Villiers, Melgardt
2009-09-08
Stavudine is a nucleoside reverse transcriptase inhibitor active against HIV, and is known to exist in two polymorphic forms designated as forms I and II, and a hydrate form III. An amorphous solid of stavudine was successfully prepared and characterized during this investigation. A comprehensive evaluation of the stability of this amorphous solid showed that the amorphous solid transforms to either form II (anhydrous) or form III (hydrate) when exposed to temperature, in the absence or presence of moisture, respectively. The amorphous-to-hydrate transformation occurred at relatively low RH (>32%) and led to the formation of crystal aggregates of the hydrated form. Steady state growth rate analyses also showed that the amorphous-to-crystalline transformation occurs at a greater rate in the presence of moisture, compared to the transformation at the same temperature in a dry environment. Crystal growth studies showed that it is possible to stabilize the amorphous solid of stavudine against crystal transformations in the absence of moisture by coating it with poly(methyl methacrylate). However, this polymer coating could not prevent crystal growth from the amorphous solid during exposure to moisture.
Ruggiero, Michael T; Krynski, Marcin; Kissi, Eric Ofosu; Sibik, Juraj; Markl, Daniel; Tan, Nicholas Y; Arslanov, Denis; van der Zande, Wim; Redlich, Britta; Korter, Timothy M; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Elliott, Stephen R; Zeitler, J Axel
2017-11-15
The fundamental origins surrounding the dynamics of disordered solids near their characteristic glass transitions continue to be fiercely debated, even though a vast number of materials can form amorphous solids, including small-molecule organic, inorganic, covalent, metallic, and even large biological systems. The glass-transition temperature, T g , can be readily detected by a diverse set of techniques, but given that these measurement modalities probe vastly different processes, there has been significant debate regarding the question of why T g can be detected across all of them. Here we show clear experimental and computational evidence in support of a theory that proposes that the shape and structure of the potential-energy surface (PES) is the fundamental factor underlying the glass-transition processes, regardless of the frequency that experimental methods probe. Whilst this has been proposed previously, we demonstrate, using ab initio molecular-dynamics (AIMD) simulations, that it is of critical importance to carefully consider the complete PES - both the intra-molecular and inter-molecular features - in order to fully understand the entire range of atomic-dynamical processes in disordered solids. Finally, we show that it is possible to utilise this dependence to directly manipulate and harness amorphous dynamics in order to control the behaviour of such solids by using high-powered terahertz pulses to induce crystallisation and preferential crystal-polymorph growth in glasses. Combined, these findings provide compelling evidence that the PES landscape, and the corresponding energy barriers, are the ultimate controlling feature behind the atomic and molecular dynamics of disordered solids, regardless of the frequency at which they occur.
NASA Astrophysics Data System (ADS)
Nakamura, N.; Aoki, A.
Effects of ambient pressure and oxygen yield on irradiated ignition characteristics over solid combustibles have been studied experimentally Aim of the present study is to elucidate the flammability and chance of fire in depressurized enclosure system and give ideas for the fire safety and fire fighting strategies in such environment Thin cellulosic paper is considered as the solid combustible since cellulose is one of major organic compounds and flammables in the nature Applied atmosphere consists of inert gas either CO2 or N2 and oxygen and various mixture ratios are of concerned Total ambient pressure level is varied from 0 1MPa standard atmospheric pressure to 0 02MPa Ignition is initiated by external thermal flux exposed into the solid surface as a model of unexpected thermal input to initiate the localized fire Thermal degradation of the solid induces combustible gaseous products e g CO H2 or other low class of HCs and the gas mixes with ambient oxygen to form the combustible mixture over the solid Heat transfer from the hot irradiated surface into the mixture accelerates the local exothermic reaction in the gas phase and finally thermal runaway ignition is achieved Ignition event is recorded by high-speed digital video camera to analyze the ignition characteristics Flammable map in partial pressure of oxygen Pox and total ambient pressure Pt plane is made to reveal the fire hazard in depressurized environment Results show that wider flammable range is obtained depending on the imposed ambient
Applications of Natural Polymeric Materials in Solid Oral Modified-Release Dosage Forms.
Li, Liang; Zhang, Xin; Gu, Xiangqin; Mao, Shirui
2015-01-01
Solid oral modified-release dosage forms provide numerous advantages for drug delivery compared to dosage forms where the drugs are released and absorbed rapidly following ingestion. Natural polymers are of particular interest as drug carriers due to their good safety profile, biocompatibility, biodegradability, and rich sources. This review described the current applications of important natural polymers, such as chitosan, alginate, pectin, guar gum, and xanthan gum, in solid oral modified-release dosage forms. It was shown that natural polymers have been widely used to fabricate solid oral modified-release dosage forms such as matrix tablets, pellets and beads, and especially oral drug delivery systems such as gastroretentive and colon drug delivery systems. Moreover, chemical modifications could overcome the shortcomings associated with the use of natural polymers, and the combination of two or more polymers presented further advantages compared with that of single polymer. In conclusion, natural polymers and modified natural polymers have promising applications in solid oral modified-release dosage forms. However, commercial products based on them are still limited. To accelerate the application of natural polymers in commercial products, in vivo behavior of natural polymers-based solid oral modified-release dosage forms should be deeply investigated, and meanwhile quality of the natural polymers should be controlled strictly, and the influence of formulation and process parameters need to be understood intensively.
Alkali metal nitrate purification
Fiorucci, Louis C.; Morgan, Michael J.
1986-02-04
A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.
Extrinsic allergic alveolitis as an uncommon diagnostic pitfall in lung cytology.
Midi, Ahmet; Yener, Neşe Arzu; Orki, Alpay; Cubuk, Rahmi; Ersev, Ayse
2012-08-01
House paints, the industrial products of toxic chemicals are known to be linked with severe respiratory disturbances especially in inadequately ventilated places. In this study, we aimed to report a biopsy-proven case of extrinsic allergic alveolitis (EAA) who presented with nonspecific respiratory symptoms 1 month after having her whole house interior painted. At CT scanning, we observed the ground glass opacities and the micronodular pattern typical for EAA and also a solid, consolidative lung area, highly suggestive of malignancy. The case initially was misinterpreted as a malignant tumor both radiologically and cytologically at CT-guided transthoracic fine needle aspiration biopsy. The final pathologic diagnosis was given as EAA on frozen section performed during thoracotomy operation. The patient received short-term steroid treatment and has been doing well for the last 7 months after her operation. As a conclusion, when assessing a cytologic material from a patient who has got a solid lung mass and also a history of chemical dye exposure, consolidative mass formation which is a rare form of EAA should always be kept in mind. Another final point is that the appropriate ventilation should be achieved if the exposure with the house paint chemicals is inevitable. Copyright © 2011 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... (Russia). For the final results, we continue to find that MCC EuroChem has not sold subject merchandise at... of the antidumping duty order on solid urea from Russia.\\1\\ We invited interested parties to comment... conducted a verification of the sales information reported by MCC EuroChem in Russia.\\2\\ \\2\\ See Memorandum...
NASA Technical Reports Server (NTRS)
Grugel, Richard N. (Inventor)
2004-01-01
A method is provided for the fabrication of a protective coating for a crucible with channels being formed in the coating. A material is adhered to the outer wall of the crucible to form a pattern thereon. The outer wall of the crucible along with the pattern of material adhered thereto is next coated with another material. The material used to form the pattern should extend through the outer material coating to define at least one port therein. Next, the crucible with its pattern of material and outer coating material is heated to a temperature of transformation at which the pattern of material is transformed to a fluidic state while the crucible and outer coating material maintain their solid integrity. Such transformation could also be accomplished by using a solvent that causes the pattern of material to dissolve. Finally, the material in its fluidic state is removed via the at least one port formed in the outer material coating thereby leaving channels defined in the coating adjacent the outer wall of the crucible.
Nie, Haichen; Mo, Huaping; Zhang, Mingtao; Song, Yang; Fang, Ke; Taylor, Lynne S; Li, Tonglei; Byrn, Stephen R
2015-07-06
Strong associations between drug and polymeric carriers are expected to contribute to higher drug loading capacities and better physical stability of amorphous solid dispersions. However, molecular details of the interaction patterns and underlying mechanisms are still unclear. In the present study, a series of amorphous solid dispersions of clofazimine (CLF), an antileprosy drug, were prepared with different polymers by applying the solvent evaporation method. When using hypromellose phthalate (HPMCP) as the carrier, the amorphous solid dispersion system exhibits not only superior drug loading capacity (63% w/w) but also color change due to strong drug-polymer association. In order to further explain these experimental observations, the interaction between CLF and HPMCP was investigated in a nonpolar volatile solvent system (chloroform) prior to forming the solid dispersion. We observed significant UV/vis and (1)H NMR spectral changes suggesting the protonation of CLF and formation of ion pairs between CLF and HPMCP in chloroform. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) and diffusion order spectroscopy (DOSY) were employed to evaluate the strength of associations between drug and polymers, as well as the molecular mobility of CLF. Finally, by correlating the experimental values with quantum chemistry calculations, we demonstrate that the protonated CLF is binding to the carboxylate group of HPMCP as an ion pair and propose a possible structural model of the drug-polymer complex. Understanding the drug and carrier interaction patterns from a molecular perspective is critical for the rational design of new amorphous solid dispersions.
100% Solids Polyurethane Sequestration Coating
2014-04-11
Distribution Unlimited 100% Solids Polyurethane Sequestration Coating The views, opinions and/or findings contained in this report are those of the...Papers published in non peer-reviewed journals: 100% Solids Polyurethane Sequestration Coating Report Title Report developed under Topic #CBD13-101...Final Technical Report Contract #: W911NF-13-P-0010 Proposal #: 63958CHSB1 Project: 100% Solids Polyurethane Sequestration Coating
In-vitro Drug Dissolution Studies in Medicinal Compounds.
Bozal-Palabiyik, Burcin; Uslu, Bengi; Ozkan, Yalcin; Ozkan, Sibel A
2018-03-22
After oral administration, drug absorption from solid dosage forms depend on the release of the drug active compounds from the dosage form, the dissolution or solubilization of the drug under physiological conditions, and the permeability across the gastrointestinal tract. Dissolution testing is an essential part of designing more effective solid dosage forms in pharmaceutical industry. Moreover dissolution testing contributes to the selection of appropriate formulation excipients for improving the dosage form efficiency. This study aims to analyze in-vitro drug dissolution testing in solid dosage forms since 2010 in order to present a comprehensive outlook of recent trends. In doing that the previous studies in the literature are summarized in the form of a table to demonstrate the apparatuses used for dissolution testing, the media in which the solid dosage form is dissolved, the method preferred for analysis from dissolution media, the conditions of analyses and the results obtained. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
...] Guidance for Industry on Incorporation of Physical-Chemical Identifiers Into Solid Oral Dosage Form Drug... entitled ``Incorporation of Physical-Chemical Identifiers Into Solid Oral Dosage Form Drug Products for Anticounterfeiting.'' This guidance provides recommendations on design considerations for incorporating physical...
Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latkowski, J F; Meier, W R; Reyes, S
1999-08-09
Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less
Precipitation in Al–Mg solid solution prepared by solidification under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie, J.C., E-mail: jiejc@dlut.edu.cn; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001; Wang, H.W.
2014-01-15
The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solutionmore » appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.« less
NASA Astrophysics Data System (ADS)
Kiliclar, Yalin; Laurischkat, Roman; Vladimirov, Ivaylo N.; Reese, Stefanie
2011-08-01
The presented project deals with a robot based incremental sheet metal forming process, which is called roboforming and has been developed at the Chair of Production Systems. It is characterized by flexible shaping using a freely programmable path-synchronous movement of two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the part contour in lateral direction. However, the resulting geometries formed in roboforming deviate several millimeters from the reference geometry. This results from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robots's compliance and the springback effects of the sheet metal. The forming process is simulated by means of a finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM). It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity and combines nonlinear kinematic and isotropic hardening. Low-order finite elements used to simulate thin sheet structures, such as used for the experiments, have the major problem of locking, a nonphysical stiffening effect. For an efficient finite element analysis a special solid-shell finite element formulation based on reduced integration with hourglass stabilization has been developed. To circumvent different locking effects, the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concepts are included in this formulation. Having such powerful tools available we obtain more accurate geometries.
Balvantín, A J; Diosdado-De-la-Peña, J A; Limon-Leyva, P A; Hernández-Rodríguez, E
2018-02-01
In this work, fundamental symmetric Lamb wave S0 mode is characterized in terms of its velocity variation as function of the interfacial conditions between solid bodies in contact. Imperfect contact conditions are numerically and experimentally determined by using ultrasonic Lamb wave propagation parameters. For the study, an experimental system was used, formed by two solid aluminum rods (25.4mm in diameter) axially loading a thin aluminum plate to control contact interfacial stiffness. The axially applied load on the aluminum plate was varied from 0MPa to 10MPa. Experimental Lamb wave signals were excited on the plate through two longitudinal contact transducers (1MHz of central frequency) using a pitch-catch configuration. Numerical simulations of contact conditions and Lamb wave propagation were performed through Finite Element Analysis (FEA) in commercial software, ANSYS 15®. Simulated Lamb wave signals were generated by means of a 5 cycles tone burst signals with different frequency values. Results indicate a velocity change in both, experimental and simulated Lamb wave signals as function of the applied load. Finally, a comparison between numerical results and experimental measurements was performed obtaining a good agreement. Copyright © 2017 Elsevier B.V. All rights reserved.
Blaesi, Aron H; Saka, Nannaji
2017-11-01
In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.
Akhavan, T; Luhovyy, B L; Anderson, G H
2011-04-01
It is hypothesized that a solid form of food or food components suppresses subjective appetite and short-term food intake (FI) more than a liquid form. To compare the effect of eating solid vs drinking liquid forms of gelatin, sucrose and its component mixtures, and whey protein, on subjective appetite and FI in young men. A randomized crossover design was used in three experiments in which the subjects were healthy males of normal weight. Solid and liquid forms of gelatin (6 g) (experiment 1, n=14), sucrose (75 g) and a mixture of 50% glucose/50% fructose (G50:F50) (experiment 2, n=15), and acid and sweet whey protein (50 g) (experiment 3, n=14) were compared. The controls were water (experiments 1 and 3) and calorie-free sweetened water with gelatin (sweet gelatin, experiment 1) or calorie-free sweetened water (sweet control, experiment 2). Subjective average appetite was measured by visual analog scales over 1 h and ad libitum FI was measured 1 h after treatment consumption. Average appetite area under the curve was not different between solid and liquid forms of sugars, but was larger, indicating greater satiety for solid compared with liquid forms of gelatin and sweet, but not acid whey protein. The FI was not different from that of control because of solid or liquid sugars or gelatin treatments. However, both solid and liquid forms of whey protein, with no difference among them, suppressed FI compared with control (P<0.05). Macronutrient composition is more important than physical state of foods in determining subjective appetite and FI.
The objective of this work is to compare the properties of lead solids formed during bench-scale precipitation experiments to solids found on lead pipe removed from real drinking water distribution systems and metal coupons used in pilot scale corrosion testing. Specifically, so...
Investigation of solid phase composition on tablet surfaces by grazing incidence X-ray diffraction.
Koradia, Vishal; Tenho, Mikko; Lopez de Diego, Heidi; Ringkjøbing-Elema, Michiel; Møller-Sonnergaard, Jørn; Salonen, Jarno; Lehto, Vesa-Pekka; Rantanen, Jukka
2012-01-01
To investigate solid state transformations of drug substances during compaction using grazing incidence X-ray diffraction (GIXD). The solid forms of three model drugs-theophylline (TP), nitrofurantoin (NF) and amlodipine besylate (AMB)-were compacted at different pressures (from 100 to 1000 MPa); prepared tablets were measured using GIXD. After the initial measurements of freshly compacted tablets, tablets were subjected to suitable recrystallization treatment, and analogous measurements were performed. Solid forms of TP, NF and AMB showed partial amorphization as well as crystal disordering during compaction; the extent of these effects generally increased as a function of pressure. The changes were most pronounced at the outer surface region. The different solid forms showed difference in the formation of amorphicity/crystal disordering. Dehydration due to compaction was observed for the TP monohydrate, whereas hydrates of NF and AMB were stable towards dehydration. With GIXD measurements, it was possible to probe the solid form composition at the different depths of the tablet surfaces and to obtain depth-dependent information on the compaction-induced amorphization, crystal disordering and dehydration.
Low temperature sulfur and sodium metal battery for grid-scale energy storage application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Gao; Wang, Dongdong
A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
... reviews of the antidumping duty orders on solid urea from the Russian Federation (Russia) and Ukraine... initiation of the sunset reviews of the antidumping duty orders \\1\\ on solid urea from Russia and Ukraine... reviews of the antidumping duty orders on solid urea from Russia and Ukraine. Scope of the Orders The...
Modeling solid-state transformations occurring in dissolution testing.
Laaksonen, Timo; Aaltonen, Jaakko
2013-04-15
Changes in the solid-state form can occur during dissolution testing of drugs. This can often complicate interpretation of results. Additionally, there can be several mechanisms through which such a change proceeds, e.g. solvent-mediated transformation or crystal growth within the drug material itself. Here, a mathematical model was constructed to study the dissolution testing of a material, which undergoes such changes. The model consisted of two processes: the recrystallization of the drug from a supersaturated liquid state caused by the dissolution of the more soluble solid form and the crystal growth of the stable solid form at the surface of the drug formulation. Comparison to experimental data on theophylline dissolution showed that the results obtained with the model matched real solid-state changes and that it was able to distinguish between cases where the transformation was controlled either by solvent-mediated crystallization or solid-state crystal growth. Copyright © 2013 Elsevier B.V. All rights reserved.
Novel delivery device for monolithical solid oral dosage forms for personalized medicine.
Wening, Klaus; Breitkreutz, Jörg
2010-08-16
There is an evident need for solid oral dosage forms allowing patients' tailor-made dosing due to variations in metabolization or small therapeutic indexes of drug substances. The objective of this work is the development of a device equipped with a novel solid dosage form, containing carvedilol as model drug, for the delivery of monolithical drug carriers in individual doses. The device was developed and constructed enabling an exact feed rate and dose adjustment by a cutting mechanism. A twin-screw extruder was used for producing cylindrical solid dosage forms. Divided doses were characterized by mass variation, cutting behavior and drug dissolution in order to investigate their applicability for practical use. Different formulations could be extruded obtaining straight cylindrical rods, which are divisible in exact slices by using the novel device. Forces below 20 N were needed to divide doses which comply with pharmacopoeial specification "conformity of mass". The developed formulations exhibit a sustained release of carvedilol within a range from 7 up to 16 h. A novel system consisting of a device and a cylindrical dosage form was developed. Patients' individual doses can be applied as monolithical solid dosage forms for oral use.
Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms.
Hirshfield, Laura; Giridhar, Arun; Taylor, Lynne S; Harris, Michael T; Reklaitis, Gintaras V
2014-02-01
In recent years, the US Food and Drug Administration has encouraged pharmaceutical companies to develop more innovative and efficient manufacturing methods with improved online monitoring and control. Mini-manufacturing of medicine is one such method enabling the creation of individualized product forms for each patient. This work presents dropwise additive manufacturing of pharmaceutical products (DAMPP), an automated, controlled mini-manufacturing method that deposits active pharmaceutical ingredients (APIs) directly onto edible substrates using drop-on-demand (DoD) inkjet printing technology. The use of DoD technology allows for precise control over the material properties, drug solid state form, drop size, and drop dynamics and can be beneficial in the creation of high-potency drug forms, combination drugs with multiple APIs or individualized medicine products tailored to a specific patient. In this work, DAMPP was used to create dosage forms from solvent-based formulations consisting of API, polymer, and solvent carrier. The forms were then analyzed to determine the reproducibility of creating an on-target dosage form, the morphology of the API of the final form and the dissolution behavior of the drug over time. DAMPP is found to be a viable alternative to traditional mass-manufacturing methods for solvent-based oral dosage forms. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Channelization in porous media driven by erosion and deposition.
Jäger, R; Mendoza, M; Herrmann, H J
2017-01-01
We develop and validate a new model to study simultaneous erosion and deposition in three-dimensional porous media. We study the changes of the porous structure induced by the deposition and erosion of matter on the solid surface and find that when both processes are active, channelization in the porous structure always occurs. The channels can be stable or only temporary depending mainly on the driving mechanism. Whereas a fluid driven by a constant pressure drop in general does not form steady channels, imposing a constant flux always produces stable channels within the porous structure. Furthermore we investigate how changes of the local deposition and erosion properties affect the final state of the porous structure, finding that the larger the range of wall shear stress for which there is neither erosion nor deposition, the more steady channels are formed in the structure.
The solid-state characterization of fusidic acid.
Gilchrist, Samuel E; Letchford, Kevin; Burt, Helen M
2012-01-17
The aim of this work was to characterize the solid-state properties of fusidic acid (FA). Solid forms of FA were prepared by solvent-mediated polymorphic transformation of commercial FA (Form III) in acetonitrile (ACN), and methanol:H(2)O (50:50), or generated by solvent recrystallization from dichloromethane (DCM). Polymorphs were characterized using, X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), polarizing hot stage microscopy (HSM), and intrinsic dissolution rate (IDR). Slurrying commercial FA (Form III) in methanol:H(2)O (50:50), yielded a metastable form (Form IV). This metastable form converts to Form I or back to Form III in ACN and H(2)O, respectively, and Form II upon recrystallization from DCM. IDR of Form IV was 0.092 mg/min/cm(2), and was statistically different (p<0.05) from the IDR of Forms I, II, and III, with IDR of 0.053, 0.043, and 0.045mg/min/cm(2), respectively. The amorphous FA had an IDR of 0.125 mg/min/cm(2), and was significantly higher (p<0.05) than any other solid form. There were no statistical differences in the IDR of Form I, II, or III. This work provides evidence for the existence of two previously unreported polymorphic forms of FA (Forms II and IV) and an amorphate. Copyright © 2011 Elsevier B.V. All rights reserved.
Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte
Devaux, Didier; Wang, Xiaoya; Thelen, Jacob L.; ...
2016-09-08
Lithium (Li) batteries comprising multivalent positive active materials such as copper vanadium oxide have high theoretical capacity. These batteries with a conventional liquid electrolyte exhibit limited cycle life because of copper dissolution into the electrolyte. In this paper, we report here on the characterization of solid-state Li metal batteries with a positive electrode based on α-Cu 6.9V 6O 18.9 (α-CuVO 3). We replaced the liquid electrolyte by a nanostructured solid block copolymer electrolyte comprising of a mixture of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. In situ X-ray diffraction was used to follow the Li insertion/de-insertion mechanism into themore » α-CuVO 3 host material and its reversibility. In situ X-ray scattering revealed that the multistep electrochemical reactions involved are similar in the presence of liquid or solid electrolyte. The capacity fade of the solid-state batteries is less rapid than that of α-CuVO 3–Li metal batteries with a conventional liquid electrolyte. Hard X-ray microtomography revealed that upon cycling, voids and Cu-rich agglomerates were formed at the interface between the Li metal and the SEO electrolyte. Finally, the void volume and the volume occupied by the Cu-rich agglomerates were independent of C-rate and cycle number.« less
Novakovic, Dunja; Saarinen, Jukka; Rojalin, Tatu; Antikainen, Osmo; Fraser-Miller, Sara J; Laaksonen, Timo; Peltonen, Leena; Isomäki, Antti; Strachan, Clare J
2017-11-07
Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches. Simultaneous narrowband CARS and SFG imaging was faster, but hyperspectral CARS and SFG imaging has the potential to be applied to a wider variety of more complex samples. These methodologies were further used to follow crystallization of indomethacin on tablet surfaces under two storage conditions: 30 °C/23% RH and 30 °C/75% RH. Imaging with (sub)micron resolution showed that the approach allowed detection of very early stage surface crystallization. The surfaces progressively crystallized to predominantly (but not exclusively) the gamma form at lower humidity and the alpha form at higher humidity. Overall, this study suggests that multimodal nonlinear imaging is a highly sensitive, solid-state (and chemically) specific, rapid, and versatile imaging technique for understanding and hence controlling (surface) solid-state forms and their complex changes in pharmaceuticals.
Recrystallization of puerarin using the supercritical fluid antisolvent process
NASA Astrophysics Data System (ADS)
Li, Y.; Yang, D. J.; Zhou, W.; Chen, S. B.; Chen, S. L.
2012-02-01
The purpose of this study was to investigate the influence of supercritical fluid (SCF) processing on the polymorphism of puerarin (Pur), a poorly soluble drug. The gas anti-solvent (GAS) technique was used to crystalize the drug in different conditions. The samples were analyzed by scanning electron microscopy and laser granulometry for changes in the habitus and particle size. The solid state was studied by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and melting point determination. Finally, the dissolution and solubility tests were carried out. It was attested that compared with the commercial Pur in Crystal form I, at the optimum and most of conditions, Pur changed into crystal form II with more orderly and pure appearances. At the concentration of 60 mg/ml and at the solvent of methanol, two other new crystal forms (named form III and form IV) were produced. It was demonstrated that the particles mean diameter, size distribution and morphology can be strongly controlled through the manipulation of the process parameters and more importantly, Pur in the new crystal forms, which were not reported before with better physico-chemical properties could be produced by recrystalization by GAS.
A self-forming composite electrolyte for solid-state sodium battery with ultra-long cycle life
Zhang, Zhizhen; Yang, Xiao -Qing; Zhang, Qinghua; ...
2016-10-31
Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. Furthermore, all-solid-state batteries have been plagues by the relatively low ionic conductivity of solid electrolytes and large charge-transfer resistance resulted from solid-solid interfaces between electrode materials and solid electrolytes. Here we report a new design strategy for improving the ionic conductivity of solid electrolyte by self-forming a composite material. An optimized Na + ion conducting composite electrolyte derived from the NASICON structure was successfully synthesized, yielding ultra-high ionic conductivity of 3.4 mS cm –1 at 25°C and 14 ms cmmore » –1 at 80°C.« less
Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M
2009-05-01
The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (<150 nm) and the presence of PEG 3350 did not interfere with the process of self-microemulsification.
NASA Astrophysics Data System (ADS)
Nguyen, An; Gonzalez, Christina M.; Sinelnikov, Regina; Newman, W.; Sun, Sarah; Lockwood, Ross; Veinot, Jonathan G. C.; Meldrum, Al
2016-03-01
Silicon quantum dots (Si-QDs) represent a well-known QD fluorophore that can emit throughout the visible spectrum depending on the interface structure and surface functional group. Detection of nitroaromatic compounds by monitoring the luminescence response of the sensor material (typically fluorescent polymers) currently forms the basis of new explosives sensing technologies. Freestanding silicon QDs may represent a benign alternative with a high degree of chemical and physical versatility. Here, we investigate dodecyl and amine-terminated Si-QD luminescence response to the presence of nitrobenzene and dinitrotoluene (DNT) in various solid, solution, and vapor forms. For dinitrotoluene vapor the 3σ detection limit was 6 ppb for monomer-terminated QDs. For nitroaromatics dissolved in toluene the detection limit was on the order of 400 nM, corresponding to ∼100 pg of material distributed over ∼1 cm2 on the sensor surface. Solid traces of nitroaromatics were also easily detectable via a simple ‘touch test’. The samples showed minimal interference effects from common contaminants such as water, ethanol, and acetonitrile. The sensor can be as simple and inexpensive as a small circle of filter paper dipped into a QD solution, with a single vial of QDs able to make hundreds of these sensors. Additionally, a trial fiber-optic sensor device was tested by applying the QDs to one end of a 2 × 2 fiber coupler and exposing them to controlled DNT vapor. Finally, the quenching mechanism was explored via luminescence dynamics measurements and is different for blue (amine) and red (dodecyl) fluorescent silicon QDs.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
... Activities; Proposed Collection; Comment Request; Recordkeeping and Reporting--Solid Waste Disposal...-- Solid Waste Disposal Facilities and Practices; ``(EPA ICR No. 1381.10, OMB Control No. 2050-0122) to the... on a State level, owners/operators of municipal solid waste landfills have to comply with the final...
Dynamic mechanical thermal analysis of hypromellose 2910 free films.
Cespi, Marco; Bonacucina, Giulia; Mencarelli, Giovanna; Casettari, Luca; Palmieri, Giovanni Filippo
2011-10-01
It is common practice to coat oral solid dosage forms with polymeric materials for controlled release purposes or for practical and aesthetic reasons. Good knowledge of thermo-mechanical film properties or their variation as a function of polymer grade, type and amount of additives or preparation method is of prime importance in developing solid dosage forms. This work focused on the dynamic mechanical thermal characteristics of free films of hypromellose 2910 (also known as HPMC), prepared using three grades of this polymer from two different manufacturers, in order to assess whether polymer chain length or origin affects the mechanical or thermo-mechanical properties of the final films. Hypromellose free films were obtained by casting their aqueous solutions prepared at a specific concentrations in order to obtain the same viscosity for each. The films were stored at room temperature until dried and then examined using a dynamic mechanical analyser. The results of the frequency scans showed no significant differences in the mechanical moduli E' and E″ of the different samples when analysed at room temperature; however, the grade of the polymer affected material transitions during the heating process. Glass transition temperature, apparent activation energy and fragility parameters depended on polymer chain length, while the material brand showed little impact on film performance. Copyright © 2011 Elsevier B.V. All rights reserved.
Kim, MinSung; Jung, Won-Kyo; Kim, GeunHyung
2013-11-01
Biomedical scaffolds should be designed with highly porous three-dimensional (3D) structures that have mechanical properties similar to the replaced tissue, biocompatible properties, and biodegradability. Here, we propose a new composite composed of solid free-form fabricated polycaprolactone (PCL), bone morphogenic protein (BMP-2) or bone formation peptide (BFP-1), and alginate for bone tissue regeneration. In this study, PCL was used as a mechanical supporting component to enhance the mechanical properties of the final biocomposite and alginate was used as the deterring material to control the release of BMP-2 and BFP-1. A release test revealed that alginate can act as a good release control material. The in vitro biocompatibilities of the composites were examined using osteoblast-like cells (MG63) and the alkaline phosphatase (ALP) activity and calcium deposition were assessed. The in vitro test results revealed that PCL/BFP-1/Alginate had significantly higher ALP activity and calcium deposition than the PCL/BMP-2/Alginate composite. Based on these findings, release-controlled BFP-1 could be a good growth factor for enhancement of bone tissue growth and the simple-alginate coating method will be a useful tool for fabrication of highly functional biomaterials through release-control supplementation.
Phase behavior and dynamics of a micelle-forming triblock copolymer system
NASA Astrophysics Data System (ADS)
Mohan, P. Harsha; Bandyopadhyay, Ranjini
2008-04-01
Synperonic F-108 (generic name, “pluronic”) is a micelle forming triblock copolymer of type ABA , where A is polyethylene oxide (PEO) and B is polypropylene oxide (PPO). At high temperatures, the hydrophobicity of the PPO chains increase, and the pluronic molecules, when dissolved in an aqueous medium, self-associate into spherical micelles with dense PPO cores and hydrated PEO coronas. At appropriately high concentrations, these micelles arrange in a face centered cubic lattice to show inverse crystallization, with the samples exhibiting high-temperature crystalline and low-temperature fluidlike phases. By studying the evolution of the elastic and viscous moduli as temperature is increased at a fixed rate, we construct the concentration-temperature phase diagram of Synperonic F-108. For a certain range of temperatures and at appropriate sample concentrations, we observe a predominantly elastic response. Oscillatory strain amplitude sweep measurements on these samples show pronounced peaks in the loss moduli, a typical feature of soft solids. The soft solidlike nature of these materials is further demonstrated by measuring their frequency-dependent mechanical moduli. The storage moduli are significantly larger than the loss moduli and are almost independent of the applied angular frequency. Finally, we perform strain rate frequency superposition experiments to measure the slow relaxation dynamics of this soft solid.
Solid Freeform Fabrication of Composite-Material Objects
NASA Technical Reports Server (NTRS)
Wang, C. Jeff; Yang, Jason; Jang, Bor Z.
2005-01-01
Composite solid freeform fabrication (C-SFF) or composite layer manufacturing (CLM) is an automated process in which an advanced composite material (a matrix reinforced with continuous fibers) is formed into a freestanding, possibly complex, three-dimensional object. In CLM, there is no need for molds, dies, or other expensive tooling, and there is usually no need for machining to ensure that the object is formed to the desired net size and shape. CLM is a variant of extrusion-type rapid prototyping, in which a model or prototype of a solid object is built up by controlled extrusion of a polymeric or other material through an orifice that is translated to form patterned layers. The second layer is deposited on top of the first layer, the third layer is deposited on top of the second layer, and so forth, until the stack of layers reaches the desired final thickness and shape. The elements of CLM include (1) preparing a matrix resin in a form in which it will solidify subsequently, (2) mixing the fibers and matrix material to form a continuous pre-impregnated tow (also called "towpreg"), and (3) dispensing the pre-impregnated tow from a nozzle onto a base while moving the nozzle to form the dispensed material into a patterned layer of controlled thickness. When the material deposited into a given layer has solidified, the material for the next layer is deposited and patterned similarly, and so forth, until the desired overall object has been built up as a stack of patterned layers. Preferably, the deposition apparatus is controlled by a computer-aided design (CAD) system. The basic CLM concept can be adapted to the fabrication of parts from a variety of matrix materials. It is conceivable that a CLM apparatus could be placed at a remote location on Earth or in outer space where (1) spare parts are expected to be needed but (2) it would be uneconomical or impractical to store a full inventory of spare parts. A wide variety of towpregs could be prepared and stored on spools until needed. Long-shelf-life towpreg materials suitable for such use could include thermoplastic-coated carbon fibers and metal-coated SiC fibers. When a spare part was needed, the part could be fabricated by CLM under control by a CAD data file; thus, the part could be built automatically, at the scene, within hours or minutes.
Mechanistic insights for block copolymer morphologies: how do worms form vesicles?
Blanazs, Adam; Madsen, Jeppe; Battaglia, Giuseppe; Ryan, Anthony J; Armes, Steven P
2011-10-19
Amphiphilic diblock copolymers composed of two covalently linked, chemically distinct chains can be considered to be biological mimics of cell membrane-forming lipid molecules, but with typically more than an order of magnitude increase in molecular weight. These macromolecular amphiphiles are known to form a wide range of nanostructures (spheres, worms, vesicles, etc.) in solvents that are selective for one of the blocks. However, such self-assembly is usually limited to dilute copolymer solutions (<1%), which is a significant disadvantage for potential commercial applications such as drug delivery and coatings. In principle, this problem can be circumvented by polymerization-induced block copolymer self-assembly. Here we detail the synthesis and subsequent in situ self-assembly of amphiphilic AB diblock copolymers in a one pot concentrated aqueous dispersion polymerization formulation. We show that spherical micelles, wormlike micelles, and vesicles can be predictably and efficiently obtained (within 2 h of polymerization, >99% monomer conversion) at relatively high solids in purely aqueous solution. Furthermore, careful monitoring of the in situ polymerization by transmission electron microscopy reveals various novel intermediate structures (including branched worms, partially coalesced worms, nascent bilayers, "octopi", "jellyfish", and finally pure vesicles) that provide important mechanistic insights regarding the evolution of the particle morphology during the sphere-to-worm and worm-to-vesicle transitions. This environmentally benign approach (which involves no toxic solvents, is conducted at relatively high solids, and requires no additional processing) is readily amenable to industrial scale-up, since it is based on commercially available starting materials.
Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A
2012-12-01
The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.
Anomalous piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene)/ionic liquid gels
NASA Astrophysics Data System (ADS)
Fukagawa, Miki; Koshiba, Yasuko; Fukushima, Tatsuya; Morimoto, Masahiro; Ishida, Kenji
2018-04-01
Piezoelectric gels were prepared from low-volatile ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) gels, and their structural, ferroelectric, and piezoelectric properties were investigated. Poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)/IL gels were formed using thermally reversible physical gels. The structural characterization indicated that the P(VDF-TrFE) molecules in the gels predominantly formed a ferroelectric phase (Form I) of P(VDF-TrFE). Polarization switching peaks were clearly observed using a three-layer stacked device structure. The coercive field of the P(VDF-TrFE)/IL gels substantially decreased to 4-9 MV/m, and their remnant polarizations were maintained at 63-71 mC/m2, which is similar to that for typical solid-state P(VDF-TrFE). Finally, the P(VDF-TrFE)/IL gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was ˜300 pm/V at an applied voltage frequency of 4 kHz.
Why Isn't the Earth Completely Covered in Water?
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Rietmeijer, Frans J. M.; Marnocha, Cassandra L.
2012-01-01
If protoplanets formed from 10 to 20 kilometer diameter planetesimals in a runaway accretion process prior to their oligarchic growth into the terrestrial planets, it is only logical to ask where these planetesimals may have formed in order to assess the initial composition of the Earth. We have used Weidenschilling's model for the formation of comets (1997) to calculate an efficiency factor for the formation of planetesimals from the solar nebula, then used this factor to calculate the feeding zones that contribute to material contained within 10, 15 and 20 kilometer diameter planetesimals at 1 A.U. as a function of nebular mass. We find that for all reasonable nebular masses, these planetesimals contain a minimum of 3% water as ice by mass. The fraction of ice increases as the planetesimals increase in size and as the nebular mass decreases, since both factors increase the feeding zones from which solids in the final planetesimals are drawn. Is there really a problem with the current accretion scenario that makes the Earth too dry, or is it possible that the nascent Earth lost significant quantities of water in the final stages of accretion?
Analysis of Antarctic Ice-Sheet Mass Balance from ICESat Measurements
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui
2011-01-01
If protoplanets formed from 10 to 20 kilometer diameter planetesimals in a runaway accretion process prior to their oligarchic growth into the terrestrial planets, it is only logical to ask where these planetesimals may have formed in order to assess the initial composition of the Earth. We have used Weidenschilling's model for the formation of comets (1997) to calculate an efficiency factor for the formation of planetesimals from the solar nebula, then used this factor to calculate the feeding zones that contribute to material contained within 10, 15 and 20 kilometer diameter planetesimals at 1 A.V. as a function of nebular mass. We find that for all reasonable nebular masses, these planetesimals contain a minimum of 3% water as ice by mass. The fraction of ice increases as the planetesimals increase in size and as the nebular mass decreases, since both factors increase the feeding zones from which solids in the final planetesimals are drawn. Is there really a problem with the current accretion scenario that makes the Earth too dry, or is it possible that the nascent Earth lost significant quantities of water in the final stages of accretion?
On the phase behavior of hard aspherical particles
NASA Astrophysics Data System (ADS)
Miller, William L.; Cacciuto, Angelo
2010-12-01
We use numerical simulations to understand how random deviations from the ideal spherical shape affect the ability of hard particles to form fcc crystalline structures. Using a system of hard spheres as a reference, we determine the fluid-solid coexistence pressures of both shape-polydisperse and monodisperse systems of aspherical hard particles. We find that when particles are sufficiently isotropic, the coexistence pressure can be predicted from a linear relation involving the product of two simple geometric parameters characterizing the asphericity of the particles. Finally, our results allow us to gain direct insight into the crystallizability limits of these systems by rationalizing empirical data obtained for analogous monodisperse systems.
Stability of Materials in High Temperature Water Vapor: SOFC Applications
NASA Technical Reports Server (NTRS)
Opila, E. J.; Jacobson, N. S.
2010-01-01
Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.
NASA Astrophysics Data System (ADS)
Shan, Yanguang; Coyle, Thomas W.; Mostaghimi, Javad
2007-12-01
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.
Maestro, Armando; Llamas, Sara; Álvarez-Rodríguez, Jesús; Ortega, Francisco; Maroto-Valiente, Ángel
2016-01-01
Summary This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers. PMID:26977377
Guzmán, Eduardo; Maestro, Armando; Llamas, Sara; Álvarez-Rodríguez, Jesús; Ortega, Francisco; Maroto-Valiente, Ángel; Rubio, Ramón G
2016-01-01
This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers.
How to harvest efficient laser from solar light
NASA Astrophysics Data System (ADS)
Zhao, Changming; Guan, Zhe; Zhang, Haiyang
2018-02-01
Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.
Effect of Grinding on the Solid-State Stability and Particle Dissolution of Acyclovir Polymorphs.
Magnoni, Federico; Gigliobianco, Maria Rosa; Vargas Peregrina, Dolores; Censi, Roberta; Di Martino, Piera
2017-10-01
The present work investigated the solid state change of 4 acyclovir polymorphs when ground at room temperature (Method A) and under cryo-grinding in the presence of liquid nitrogen (Method B). Modifications in particle size and shape (evaluated by scanning electron microscopy) and in the water content (evaluated by thermal analysis) were related to transitions at the solid state, as confirmed by X-ray powder diffractometry. Anhydrous Form I was stable under grinding by both Methods A and B. The anhydrous Form II was stable during grinding under Method A, whereas it was progressively converted to the hydrate Form V during grinding under Method B. The hydrate Form V was stable under Method A, whereas it was converted to the anhydrous Form I after 15 min and then to the hydrate Form VI after 45 min of grinding. The hydrate Form VI proved to be stable under grinding by both Methods A and B. Thus, Form I and VI were the only forms that yielded a sizeable decrease in particle size under grinding, with a consequent increase in particle dissolution rate, while maintaining solid state physicochemical stability. Form I treated under Method B grinding gave the best dissolution rate. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Toscani, Siro; Céolin, René; Minassian, Léon Ter; Barrio, Maria; Veglio, Nestor; Tamarit, Josep-Lluis; Louër, Daniel; Rietveld, Ivo B
2016-01-30
The trimorphism of the active pharmaceutical ingredient piracetam is a famous case of polymorphism that has been frequently revisited by many researchers. The phase relationships between forms I, II, and III were ambiguous because they seemed to depend on the heating rate of the DSC and on the history of the samples or they have not been observed at all (equilibrium II-III). In the present paper, piezo-thermal analysis and high-pressure differential thermal analysis have been used to elucidate the positions of the different solid-solid and solid-liquid equilibria. The phase diagram, involving the three solid phases, the liquid phase and the vapor phase, has been constructed. It has been shown that form III is the high-pressure, low-temperature form and the stable form at room temperature. Form II is stable under intermediary conditions and form I is the low pressure, high temperature form, which possesses a stable melting point. The present paper demonstrates the strength of the topological approach based on the Clapeyron equation and the alternation rule when combined with high-pressure measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
Continuous process to produce lithium-polymer batteries
Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville
1998-01-01
Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.
Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.
1978-07-25
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.
Pyrolysis with staged recovery
Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.
1979-03-20
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.
Solid-state NMR studies of form I of atorvastatin calcium.
Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil
2012-03-22
Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).
Semi-Solid and Solid Dosage Forms for the Delivery of Phage Therapy to Epithelia.
Brown, Teagan L; Petrovski, Steve; Chan, Hiu Tat; Angove, Michael J; Tucci, Joseph
2018-02-26
The delivery of phages to epithelial surfaces for therapeutic outcomes is a realistic proposal, and indeed one which is being currently tested in clinical trials. This paper reviews some of the known research on formulation of phages into semi-solid dosage forms such as creams, ointments and pastes, as well as solid dosage forms such as troches (or lozenges and pastilles) and suppositories/pessaries, for delivery to the epithelia. The efficacy and stability of these phage formulations is discussed, with a focus on selection of optimal semi-solid bases for phage delivery. Issues such as the need for standardisation of techniques for formulation as well as for assessment of efficacy are highlighted. These are important when trying to compare results from a range of experiments and across different delivery bases.
Semi-Solid and Solid Dosage Forms for the Delivery of Phage Therapy to Epithelia
Petrovski, Steve; Chan, Hiu Tat; Angove, Michael J.; Tucci, Joseph
2018-01-01
The delivery of phages to epithelial surfaces for therapeutic outcomes is a realistic proposal, and indeed one which is being currently tested in clinical trials. This paper reviews some of the known research on formulation of phages into semi-solid dosage forms such as creams, ointments and pastes, as well as solid dosage forms such as troches (or lozenges and pastilles) and suppositories/pessaries, for delivery to the epithelia. The efficacy and stability of these phage formulations is discussed, with a focus on selection of optimal semi-solid bases for phage delivery. Issues such as the need for standardisation of techniques for formulation as well as for assessment of efficacy are highlighted. These are important when trying to compare results from a range of experiments and across different delivery bases. PMID:29495355
Robert, Benoît; Perrin, Marc-Antoine; Barrio, Maria; Tamarit, Josep-Lluis; Coquerel, Gérard; Ceolin, René; Rietveld, Ivo B
2016-01-01
Two polymorphs of the 1:1 fumarate salt of 1,4-diazabicyclo[3.2.2]nonane-4-carboxylic acid 4-bromophenyl ester, developed for the treatment of cognitive symptoms of schizophrenia and Alzheimer disease, have been characterized. The 2 crystal structures have been solved, and their phase relationships have been established. The space group of form I is P2₁/c with a unit-cell volume of 1811.6 (5) Å(3) with Z = 4. The crystals of form I were 2-component nonmerohedral twins. The space group of form II is P2₁/n with a unit-cell volume of 1818.6 (3) Å(3) with Z = 4. Relative stabilities have been inferred from experimental and topological P-T diagrams exhibiting an overall enantiotropic relationship between forms I and II although the solid-solid transition has never been observed. The slope of the I-II equilibrium in the P-T diagram is negative, form II is the stable phase below the solid-solid transition temperature of 371 K, and form I exhibits a stable melting equilibrium. The I-II transition temperature has been obtained from the intersection of the sublimation curves of the 2 solid forms. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Liu, Xu; Lu, Ming; Guo, Zhefei; Huang, Lin; Feng, Xin; Wu, Chuanbin
2012-03-01
To explore in-situ forming cocrystal as a single-step, efficient method to significantly depress the processing temperature and thus minimize the thermal degradation of heat-sensitive drug in preparation of solid dispersions by melting method (MM) and hot melt extrusion (HME). Carbamazepine (CBZ)-nicotinamide (NIC) cocrystal solid dispersions were prepared with polymer carriers PVP/VA, SOLUPLUS and HPMC by MM and/or HME. The formation of cocrystal was investigated by differential scanning calorimetry and hot stage polarized optical microscopy. State of CBZ in solid dispersion was characterized by X-ray powder diffraction and optical microscopy. Interactions between CBZ, NIC and polymers were investigated by FTIR. Dissolution behaviors of solid dispersions were compared with that of pure CBZ. CBZ-NIC cocrystal with melting point of 160°C was formed in polymer carriers during heating process, and the preparation temperature of amorphous CBZ solid dispersion was therefore depressed to 160°C. The dissolution rate of CBZ-NIC cocrystal solid dispersion was significantly increased. By in-situ forming cocrystal, chemically stable amorphous solid dispersions were prepared by MM and HME at a depressed processing temperature. This method provides an attractive opportunity for HME of heat-sensitive drugs.
77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
... Solid Waste Amendments of 1984 (HSWA). New federal requirements and prohibitions imposed by federal...; Definition of Solid Waste; Toxicity Characteristic, Checklist 199, March 13, 2002 (67 FR 11251); [[Page 15968... Solid Waste Disposal Act as amended, 42 U.S.C. 6912(a), 6926, 6974(b). Dated: February 29, 2012. Susan...
Studies of Young, Star-forming Circumstellar Disks
NASA Astrophysics Data System (ADS)
Bae, Jaehan
2017-08-01
Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks. When a planet forms in a disk, the gravitational interaction between the planet and disk can create structures, such as spiral arms and gaps. In Chapter 5, I compared the disk structures formed by planetary companions in numerical simulations with the observed structures in the disk surrounding an 8 Myr-old Herbig Ae star SAO 206462. Based on the experiments, I made predictions for the mass and position of a currently unrevealed planet, which can help guide future observations to search for more conclusive evidence for the existence of a planetary companion in the system. In Chapter 6, I showed for the first time in global simulation domains that spiral waves, driven for instance by planets or gravitational instability, can be unstable due to resonant interactions with inertial modes, breaking into turbulence. In Chapter 7, I showed that the spiral wave instability operates on the waves launched by planets and that the resulting turbulence can significantly stir up solid particles from the disk midplane. The stirring of solid particles can have influences on the observation appearance of the parent disk and on the subsequent assembly of planetary bodies in the disk. Finally, in Chapter 8, I investigated the dispersal of circumstellar disks via photoevaporative winds, finding that the photoevaporative loss alone, coupled with a range of initial angular momenta of protostellar clouds, can explain the observed decline of the disk frequency with increasing age. The findings and future possibilities are summarized in Chapter 9.
Energy changes in transforming solids. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, G.
Research is reported on energy changes in transforming solids. Topics include: damage mechanics, functionally gradient materials with defects, problems in heterogenization, and conservation laws with application to fracture mechanics and defect mechanics.
Thermodynamic and kinetic anisotropies in octane thin films.
Haji-Akbari, Amir; Debenedetti, Pablo G
2015-12-07
Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent structure calculations, and observe no noticeable difference between the free surface and the bulk in efficiently exploring the potential energy landscape. This is unlike the films of model atomic glass formers that tend to sample their respective landscape more efficiently at free surfaces. We discuss the implications of this finding to the ability of octane-and other n-alkanes-to form ultrastable glasses.
Purification of trona ores by conditioning with an oil-in-water emulsion
Miller, J. D.; Wang, Xuming; Li, Minhua
2009-04-14
The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.
Rudrangi, Shashi Ravi Suman; Bhomia, Ruchir; Trivedi, Vivek; Vine, George J; Mitchell, John C; Alexander, Bruce David; Wicks, Stephen Richard
2015-02-20
The main objective of this study was to investigate different manufacturing processes claimed to promote inclusion complexation between indomethacin and cyclodextrins in order to enhance the apparent solubility and dissolution properties of indomethacin. Especially, the effectiveness of supercritical carbon dioxide processing for preparing solid drug-cyclodextrin inclusion complexes was investigated and compared to other preparation methods. The complexes were prepared by physical mixing, co-evaporation, freeze drying from aqueous solution, spray drying and supercritical carbon dioxide processing methods. The prepared complexes were then evaluated by scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, solubility and dissolution studies. The method of preparation of the inclusion complexes was shown to influence the physicochemical properties of the formed complexes. Indomethacin exists in a highly crystalline solid form. Physical mixing of indomethacin and methyl-β-cyclodextrin appeared not to reduce the degree of crystallinity of the drug. The co-evaporated and freeze dried complexes had a lower degree of crystallinity than the physical mix; however the lowest degree of crystallinity was achieved in complexes prepared by spray drying and supercritical carbon dioxide processing methods. All systems based on methyl-β-cyclodextrin exhibited better dissolution properties than the drug alone. The greatest improvement in drug dissolution properties was obtained from complexes prepared using supercritical carbon dioxide processing, thereafter by spray drying, freeze drying, co-evaporation and finally by physical mixing. Supercritical carbon dioxide processing is well known as an energy efficient alternative to other pharmaceutical processes and may have application for the preparation of solid-state drug-cyclodextrin inclusion complexes. It is an effective and economic method that allows the formation of solid complexes with a high yield, without the use of organic solvents and problems associated with their residues. Copyright © 2015 Elsevier B.V. All rights reserved.
Method for net-shaping using aerogels
Brinker, C. Jeffrey; Ashey, Carol S.; Reed, Scott T.; Sriram, Chunangad S.; Harris, Thomas M.
2001-01-01
A method of net-shaping using aerogel materials is provided by first forming a sol, aging the sol to form a gel, with the gel having a fluid component and having been formed into a medium selected from the group consisting of a powder, bulk material, or granular aerobeads, derivatizing the surface of the gel to render the surface unreactive toward further condensation, removing a portion of the fluid component of the final shaped gel to form a partially dried medium, placing the medium into a cavity, wherein the volume of said medium is less that the volume of the cavity, and removing a portion of the fluid component of the medium. The removal, such as by heating at a temperature of approximately less than 50.degree. C., applying a vacuum, or both, causes the volume of the medium to increase and to form a solid aerogel. The material can be easily removed by exposing the material to a solvent, thereby reducing the volume of the material. In another embodiment, the gel is derivatized and then formed into a shaped medium, where subsequent drying reduces the volume of the shaped medium, forming a net-shaping material. Upon further drying, the material increases in volume to fill a cavity. The present invention is both a method of net-shaping and the material produced by the method.
ERIC Educational Resources Information Center
2000
In All About Solids, Liquids and Gases, young students will be introduced to the three common forms of matter. They'll learn that all things are made up of tiny particles called atoms and that the movement of these particles determines the form that matter takes. In solids, the particles are packed tightly together and move very little. The…
Veedu, Rakesh Naduvile; Kokas, Okanya J; Couturier-Tamburelli, Isabelle; Koch, Rainer; Aycard, Jean-Pierre; Borget, Fabien; Wentrup, Curt
2008-10-09
Five aryliminopropadienones 4a- d have been synthesized by flash vacuum thermolysis (FVT) by using two different precursors in each case. These compounds were deposited at 50 K at a pressure of ca. 10(-6) mbar together with three different nucleophiles, namely, trimethylamine (TMA), dimethylamine (DMA), and diethylamine (DEA), in order to study their reactions as neat solids during warm-up by FTIR spectroscopy. The reaction with TMA showed that a zwitterionic species (5 and/or 6) was formed in all the cases. With DMA and DEA, an alpha-oxoketenimine and/or an imidoylketene (7 and 8 or 9 and 10) was formed as the final product. In addition, several bands were observed, which can be assigned to zwitterionic intermediates (11 or 12). Optimized structures and vibrational spectra for all products were calculated at the B3LYP/6-31G(d) level of theory by using the polarizable continuum model (epsilon = 5).
2003-01-22
On Earth when scientists melt metals, bubbles that form in the molten material can rise to the surface, pop and disappear. In microgravity -- the near-weightless environment created as the International Space Station orbits Earth -- the lighter bubbles do not rise and disappear. Prior space experiments have shown that bubbles often become trapped in the final metal or crystal sample -similar to the bubbles trapped in this sample. In the solid, these bubbles, or porosity, are defects that diminish both the material's strength and usefulness. The Pore Formation and Mobility Investigation will melt samples of a transparent modeling material, succinonitrile and succinonitrile water mixtures, shown here in an ampoule being examined by Dr. Richard Grugel, the principal investigator for the experiment at NASA's Marshall Space Flight Center in Huntsville, Ala. As the samples are processed in space, Grugel will be able to observe how bubbles form in the samples and study their movements and interactions.
A kidney stone is a solid piece of material that forms in a kidney. Kidney stones may be the size of sand or ... A kidney stone is a solid piece of material that forms in a kidney. Kidney stones may be the ...
Electrical conductivity and phase diagram of binary alloys. 21: The system palladium-chromium
NASA Technical Reports Server (NTRS)
Grube, G.; Knabe, R.
1985-01-01
Pd-Cr alloys were investigated by thermal analysis, hardness measurements, X-ray analysis, microscopic examination of etched pieces, and temperature-resistance curves of the solid alloys. Only one compound, Pd2Cr3, m, 1389 deg, is formed. It possesses a cubic face centered lattice and forms with excess Pd a series of solid solutions with a minimum m.p. at 45 atoms% Pd. Hardness maximum appears at the Pd2Cr3 point. Pd2Cr3 forms no solid solutions with Cr but eutectic point appears at 25 atoms% Pd, m. 1320 deg. The sp. resistance of pure Cr in an atom of H, indicates no allotropic forms. Cr2O3 is solid in molten Cr. Pure Cr melts at 1890 plus or minus 10 deg but Cr contg. Cr2O3 starts to melt at 1770 to 1790 deg.
Molecular Dynamics and Morphology of High Performance Elastomers and Fibers by Solid State NMR
2016-06-30
Distribution Unlimited UU UU UU UU 30-06-2016 1-Sep-2015 31-May-2016 Final Report: Molecular Dynamics and Morphology of High - Performance Elastomers and...non peer-reviewed journals: Final Report: Molecular Dynamics and Morphology of High -Performance Elastomers and Fibers by Solid-State NMR Report Title...Kanbargi 0.50 0.50 1 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of Faculty Supported Names of Under Graduate
Yang, Maohua; Li, Wangliang; Liu, Binbin; Li, Qiang; Xing, Jianmin
2010-07-01
In this paper, high-concentration sugars were produced from pretreated corn stover. The raw corn stover was pretreated in a process combining steam explosion and alkaline hydrogen-peroxide. The hemicellulose and lignin were removed greatly. The cellulose content increased to 73.2%. Fed-batch enzymatic hydrolysis was initiated with 12% (w/v) solids loading and 20 FPU/g solids. Then, 6% solids were fed consecutively at 12, 36 and 60 h. After 144 h, the final concentrations of reducing sugar, glucose, cellobiose and xylose reached 220, 175, 22 and 20 g/L, respectively. The final total biomass conversion was 60% in fed-batch process. Copyright 2009 Elsevier Ltd. All rights reserved.
Liu, L. H.; Yang, C.; Kang, L. M.; Qu, S. G.; Li, X. Q.; Zhang, W. W.; Chen, W. P.; Li, Y. Y.; Li, P. J.; Zhang, L. C.
2016-01-01
It is well known that semi-solid forming could only obtain coarse-grained microstructure in a few alloy systems with a low melting point, such as aluminum and magnesium alloys. This work presents that semi-solid forming could also produce novel bimodal microstructure composed of nanostructured matrix and micro-sized (CoFe)Ti2 twins in a titanium alloy, Ti62Nb12.2Fe13.6Co6.4Al5.8. The semi-solid sintering induced by eutectic transformation to form a bimodal microstructure in Ti62Nb12.2Fe13.6Co6.4Al5.8 alloy is a fundamentally different approach from other known methods. The fabricated alloy exhibits high yield strength of 1790 MPa and plastic strain of 15.5%. The novel idea provides a new insight into obtaining nano-grain or bimodal microstructure in alloy systems with high melting point by semi-solid forming and into fabricating high-performance metallic alloys in structural applications. PMID:27029858
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-30
... solid waste (MSW). DATES: This direct final rule is effective February 28, 2011 without further notice... requires EPA to conduct a 5-year review of the solid waste incinerator new source performance standards........... Okahumpka. Pasco County Solid Waste Hudson. Hillsborough County Resource Recovery Tampa. McKay Bay Refuse-to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... Research, Development and Demonstration (RD&D) Permit Provisions for Municipal Solid Waste Landfills AGENCY... solid waste landfills by approved states. On March 3, 2011, Ohio submitted an application to the U.S... INFORMATION: A. Background On March 22, 2004, EPA issued a final rule amending the municipal solid waste...
Continuous process to produce lithium-polymer batteries
Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.
1998-05-12
Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.
Pyrolysis of carbonaceous materials with solvent quench recovery
Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Knell, Everett W.; Mirza, Zia I.; Winter, Bruce L.
1978-04-18
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue. Apparatus useful for practicing this process are disclosed.
Pulse Jet Mixing Tests With Noncohesive Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.
2012-02-17
This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure allmore » solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Curtis; Patterson, Brad; Perdue, Jayson
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through themore » solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.« less
Identification of solid-state forms of cucurbit[6]uril for carbon dioxide capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jian; Liu, Jian; Liu, Jun
2013-02-28
Three novel crystalline forms of cucurbit[6]uril (CB[6], 1) have been identified by fine control over the mixing process of the hydrochloride solution of CB[6] with ethanol. The form that exists in nanoplate particles shows permanent porosity upon desolvation and the highest CO2 uptake (15 wt%) at 298 K and 1 bar among any known solid-state forms of CB[6].
40 CFR 98.166 - Data reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and transferred off site in either gas, liquid, or solid forms (kg), following the requirements of... in either gas, liquid, or solid forms (kg carbon). ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.166 Data reporting requirements. In...
Semi-solid dosage form of clonazepam for rapid oral mucosal absorption.
Sakata, Osamu; Machida, Yoshiharu; Onishi, Hiraku
2011-07-01
In order to obtain an alternative to the intravenous (i.v.) dosage form of clonazepam (CZ), an oral droplet formulation of CZ was developed previously; however, the droplet was physically unstable. Therefore, in the present study, it was attempted to develop an easily-handled dosage form, which was more physically stable and allowed rapid drug absorption from oral mucosa. A semi-solid dosage form, composed of polyethylene glycol 1500 (PEG), CZ, and oleic acid (OA) at 37/1/2 (w/w) and named PEG/CZ/OA, and a semi-solid dosage form containing PEG and CZ at 39/1 (w/w), called PEG/CZ, were prepared. Their physical stability in air at room temperature and oral mucosal absorption in rats were investigated. The semi-solid dosage forms were much more stable physically than the droplet, that is, no recrystallization of CZ was observed for at least 8 days. The effective concentration for humans and rats (20 ng/mL or more) was achieved within 30 min after buccal administration for both PEG/CZ/OA and PEG/CZ. The plasma concentration increased gradually and less varied at each time point for PEG/CZ/OA. PEG/CZ/OA was found to show more rapid and higher absorption of CZ in buccal administration than in sublingual administration. Buccal administration with the semi-solid dosage PEG/CZ with or without OA was suggested to be a possibly useful novel dosage form as an alternative to i.v. injection.
Cadirci, Bilge Hilal; Yasa, Ihsan; Kocyigit, Ali
2016-01-01
Solid-state fermentation (SSF) is a bioprocess that doesn't need an excess of free water, and it offers potential benefits for microbial cultivation for bioprocesses and product development. In comparing the antibiotic production, few detailed reports could be found with lipolytic enzyme production by Streptomycetes in SSF. Taking this knowledge into consideration, we prefer to purify Actinomycetes species as a new source for lipase production. The lipase-producing strain Streptomyces sp. TEM 33 was isolated from soil and lipase production was managed by solid-state fermentation (SSF) in comparison with submerged fermentation (SmF). Bioprocess-affecting factors like initial moisture content, incubation time, and various carbon and nitrogen additives and the other enzymes secreted into the media were optimized. Lipase activity was measured as 1.74 ± 0.0005 U/g dry substrate (gds) by the p-nitrophenylpalmitate (pNPP) method on day 6 of fermentation with 71.43% final substrate moisture content. In order to understand the metabolic priority in SSF, cellulase and xylanase activity of Streptomyces sp. TEM33 was also measured. The microorganism degrades the wheat bran to its usable form by excreting cellulases and xylanases; then it secretes the lipase that is necessary for degrading the oil in the medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, J.; Larson, E.M.; Holt, J.B.
Real-time synchrotron diffraction has been used to monitor the phase transformations of highly exothermic, fast self-propagating solid combustion reactions on a subsecond time scale down to 100 milliseconds and in some instances to 10 milliseconds. Three systems were investigated: Ti + C {yields} TiC; Ti + C + xNi {yields} TiC + Ni-Ti alloy; and Al + Ni {yields} AlNi. In all three reactions, the first step was the melting of the metal reactants. Formation of TiC in the first two reactions was completed within 400 milliseconds of the melting of the Ti metal, indicating that the formation of TiCmore » took place during the passage of the combustion wave front. In the Al + Ni reaction, however, passage of the wave front was followed by the appearance and disappearance of at least one intermediate in the afterburn region. The final AlNi was formed some 5 seconds later and exhibited a delayed appearance of the (210) reflection, which tends to support a phase transformation from a disordered AlNi phase at high temperature to an ordered CsCl structure some 20 seconds later. This new experimental approach can be used to study the chemical dynamics of high-temperature solid-state phenomena and to provide the needed database to test various models for solid combustion. 28 refs., 4 figs.« less
NASA Astrophysics Data System (ADS)
Parshin, D. A.; Manzhirov, A. V.
2018-04-01
Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.
Kristó, Katalin; Pintye-Hódi, Klára
2013-02-01
The main aim of this study was to investigate the effects of pharmaceutical technological methods on pepsin activity during the formulation of solid dosage forms. The circumstances of direct compression and wet granulation were modeled. During direct compression, the heat and the compression force must be taken into consideration. The effects of these parameters were investigated in three materials (pure pepsin, and 1:1 (w/w) pepsin-tartaric acid and 1:1 (w/w) pepsin-citric acid powder mixtures). It was concluded that direct compression is appropriate for the formulation of solid dosage forms containing pepsin through application without acids or with acids at low compression force. The effects of wet granulation were investigated with a factorial design for the same three materials. The factors were time, temperature and moisture content. There was no significant effect of the factors when acids were not applied. Temperature was a significant factor when acids were applied. The negative effect was significantly higher for citric acid than for tartaric acid. It was found that wet granulation can be utilized for the processing of pepsin into solid dosage forms under well-controlled circumstances. The application of citric acid is not recommended during the formulation of solid dosage forms through wet granulation. A mathematically based optimization may be necessary for preformulation studies of the preparation of dosage forms containing sensitive enzymes.
Kerdsakundee, Nattha; Mahattanadul, Sirima; Wiwattanapatapee, Ruedeekorn
2015-08-01
Novel raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions were developed to prolong the gastric residence time and provide for a controlled release therapy of curcumin to treat gastric ulcers. The solid dispersions of curcumin with Eudragit® EPO were prepared by the solvent evaporation method at various ratios to improve the solubility and the dissolution of curcumin. The optimum weight ratio of 1:5 for curcumin to Eudragit® EPO was used to incorporate into the raft forming systems. The raft forming formulations were composed of curcumin-Eudragit® EPO solid dispersions, sodium alginate as a gelling polymer and calcium carbonate for generating divalent Ca(2+) ions and carbon dioxide to form a floating raft. All formulations formed a gelled raft in 1min and sustained buoyancy on the 0.1N hydrochloric acid (pH 1.2) surface with a 60-85% release of curcumin within 8h. The curative effect on the acetic acid-induced chronic gastric ulcer in rats was determined. The curcumin raft forming formulations at 40mg/kg once daily showed a superior curative effect on the gastric ulcer in terms of the ulcer index and healing index than the standard antisecretory agent: lansoprazole (1mg/kg, twice daily) and a curcumin suspension (40mg/kg, twice daily). These studies demonstrated that the new raft forming systems containing curcumin solid dispersions are promising carriers for a stomach-specific delivery of poorly soluble lipophilic compounds. Copyright © 2015 Elsevier B.V. All rights reserved.
A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Leonov, Arkady I.
2002-01-01
The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.
Topologically protected edge states for out-of-plane and in-plane bulk elastic waves.
Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo
2018-04-11
Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.
Topologically protected edge states for out-of-plane and in-plane bulk elastic waves
NASA Astrophysics Data System (ADS)
Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo
2018-04-01
Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.
Process for removing copper in a recoverable form from solid scrap metal
Hartman, Alan D.; Oden, Laurance L.; White, Jack C.
1995-01-01
A process for removing copper in a recoverable form from a copper/solid ferrous scrap metal mix is disclosed. The process begins by placing a copper/solid ferrous scrap metal mix into a reactor vessel. The atmosphere within the reactor vessel is purged with an inert gas or oxidizing while the reactor vessel is heated in the area of the copper/solid ferrous scrap metal mix to raise the temperature within the reactor vessel to a selected elevated temperature. Air is introduced into the reactor vessel and thereafter hydrogen chloride is introduced into the reactor vessel to obtain a desired air-hydrogen chloride mix. The air-hydrogen chloride mix is operable to form an oxidizing and chloridizing atmosphere which provides a protective oxide coating on the surface of the solid ferrous scrap metal in the mix and simultaneously oxidizes/chloridizes the copper in the mix to convert the copper to a copper monochloride gas for transport away from the solid ferrous scrap metal. After the copper is completely removed from the copper/solid ferrous scrap metal mix, the flows of air and hydrogen chloride are stopped and the copper monochloride gas is collected for conversion to a recoverable copper species.
Development of solid dispersion systems of dapivirine to enhance its solubility.
Gorajana, Adinarayana; Ying, Chan Chiew; Shuang, Yeen; Fong, Pooi; Tan, Zhi; Gupta, Jyoti; Talekar, Meghna; Sharma, Manisha; Garg, Sanjay
2013-06-01
Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.
Phospholipid-based solid drug formulations for oral bioavailability enhancement: A meta-analysis.
Fong, Sophia Yui Kau; Brandl, Martin; Bauer-Brandl, Annette
2015-12-01
Low bioavailability nowadays often represents a challenge in oral dosage form development. Solid formulations composed of drug and phospholipid (PL), which, upon contact with water, eventually form multilamellar liposomes (i.e. 'proliposomes'), are an emerging approach to solve such issue. Regarded as an 'improved' version of liposomes concerning storage stability, the potential and versatility of a range of such formulations for oral drug delivery have been extensively discussed. However, a systematic and quantitative analysis of the studies that applied solid PL for oral bioavailability enhancement is currently lacking. Such analysis is necessary for providing an overview of the research progress and addressing the question on how promising this approach can be on bioavailability enhancement. The current review performed a systematic search of references in three evidence-based English databases, Medline, Embase, and SciFinder, from the year of 1985 up till March 2015. A total of 112 research articles and 82 patents that involved solid PL-based formulations were identified. The majority of such formulations was intended for oral drug delivery (55%) and was developed to address low bioavailability issues (49%). A final of 54 studies that applied such formulations for bioavailability enhancement of 43 different drugs with poor water solubility and/or permeability were identified. These proof-of-concept studies with in vitro (n=31) and/or animal (n=23) evidences have been systematically summarized. Meta-analyses were conducted to measure the overall enhancement power (percent increase compared to control group) of solid PL formulations on drugs' solubility, permeability and oral bioavailability, which were found to be 127.4% (95% CI [86.1, 168.7]), 59.6% (95% CI [30.1, 89.0]), and 18.5% (95% CI [10.1, 26.9]) respectively. Correlations between the enhancement factors and in silico physiochemical properties of drugs were also performed to check if such approach can be used to identify the best candidates for oral solid PL formulation. In addition to scientific literature, 13 solid PL formulation-related patents that addressed the issue of low oral bioavailability have been identified and summarized; whereas no clinical study was identified from the current search. By providing systematic information and meta-analysis on studies that applied the principle of 'proliposomes' for oral bioavailability enhancement, the current review should be insightful for formulation scientists who wish to adopt the PL based approach to overcome the solubility, permeability and bioavailability issues of orally delivered drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Fluidized-Solid-Fuel Injection Process
NASA Technical Reports Server (NTRS)
Taylor, William
1992-01-01
Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.
Fundamental Studies of the Durability of Materials for Interconnects in Solid Oxide Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick S. Pettit; Gerald H. Meier
2006-06-30
Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, but have the problem of forming volatile chromia species that lead to cathode poisoning. This project has focused both on optimization of ferritic alloys for SOFC applications and evaluating the possibility of using alternative materials. The initial efforts involved studying the oxidation behavior of a variety of chromia-forming ferritic stainless steels in the temperature range 700-900 C in atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide variety of oxidation behavior based on composition. A method for reducing the vaporization is tomore » add alloying elements that lead to the formation of a thermally grown oxide layer over the protective chromia. Several commercial steels form manganese chromate on the surface. This same approach, combined with observations of TiO{sub 2} overlayer formation on the chromia forming, Ni-based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti alloys (X=0-4 wt%). Oxidation testing has indicated that this approach results in significant reduction in chromia evaporation. Unfortunately, the Ti also results in accelerated chromia scale growth. Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) interconnect alloys have also been investigated. A key failure mechanism for interconnects is the spallation of the chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing methods to measure the critical energy release rate (Gc) associated with the spallation of chromia scale/alloy systems have been evaluated. This approach has been used to evaluate the thermomechanical stability of chromia films as a function of oxidation exposure. The oxidation of pure nickel in SOFC environments was evaluated using thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point probe was used to measure the area-specific resistance (ASR) to estimate the electrical degradation of the interconnect. In addition to the baseline study of pure nickel, steps were taken to decrease the ASR through alloying and surface modifications. Finally, high conductivity composite systems, consisting of nickel and silver, were studied. These systems utilize high conductivity silver pathways through nickel while maintaining the mechanical stability that a nickel matrix provides.« less
System for forming janus particles
Hong, Liang [Midland, MI; Jiang, Shan [Champaign, IL; Granick, Steve [Champaign, IL
2011-01-25
The invention is a method of forming Janus particles, that includes forming an emulsion that contains initial particles, a first liquid, and a second liquid; solidifying the first liquid to form a solid that contains at least a portion of the initial particles on a surface of the solid; and treating the exposed particle sides with a first surface modifying agent, to form the Janus particles. Each of the initial particles on the surface has an exposed particle side and a blocked particle side.
Mechanism of Hg(II) Immobilization in Sediments by Sulfate-Cement Amendment.
Serrano, Susana; Vlassopoulos, Dimitri; O'Day, Peggy A
2016-04-01
Reactive amendments such as Portland and super-sulfate cements offer a promising technology for immobilizing metalloid contaminants such as mercury (Hg) in soils and sediments through sequestration in less bioavailable solid forms. Tidal marsh sediments were reacted with dissolved Hg(II) in synthetic seawater and fresh water solutions, treated with Portland cement and FeSO 4 amendment, and aged for up to 90 days. Reacted solids were analyzed with bulk sequential extraction methods and characterized by powder X-ray diffraction (XRD), electron microscopy, and synchrotron X-ray absorption spectroscopy at the Hg L III - and S K-edge. In amended sediments, XRD, SEM and sulfur K-edge XANES indicated formation of gypsum in seawater experiments or ettringite-type (Ca 6 Al 2 (SO 4 ) 3 (OH) 12 . 26H 2 O) phases in fresh water experiments, depending on the final solution pH (seawater ∼8.5; freshwater ∼10.5). Analysis of Hg EXAFS spectra showed Cl and Hg ligands in the first- and second-coordination shells at distances characteristic of a polynuclear chloromercury(II) salt, perhaps as a nanoparticulate phase, in both seawater and fresh water experiments. In addition to the chloromercury species, a smaller fraction (∼20-25%) of Hg was bonded to O atoms in fresh water sample spectra, suggesting the presence of a minor sorbed Hg fraction. In the absence of amendment treatment, Hg sorption and resistance to extraction can be accounted for by relatively strong binding by reduced S species present in the marsh sediment detected by S XANES. Thermodynamic calculations predict stable aqueous Hg-Cl species at seawater final pH, but higher final pH in fresh water favors aqueous Hg-hydroxide species. The difference in Hg coordination between aqueous and solid phases suggests that the initial Hg-Cl coordination was stabilized in the cement hydration products and did not re-equilibrate with the bulk solution with aging. Collectively, results suggest physical encapsulation of Hg as a polynuclear chloromercury(II) salt as the primary immobilization mechanism.
Thongnopkoon, Thanu; Puttipipatkhachorn, Satit
2016-01-01
Modification of polymorphic forms of poorly water-soluble drugs is one way to achieve the desirable properties. In this study, glibenclamide (GBM) particles with different polymorphic forms, including a new metastable form, were obtained from redispersion of ternary solid dispersion systems. The ternary solid dispersion systems, consisting of GBM, polyvinylpyrrolidone-K30 (PVP-K30) and sodium lauryl sulfate (SLS), were prepared by solvent evaporation method and subsequently redispersed in deionized water. The precipitated drug particles were then collected at a given time period. The drug particles with different polymorphic forms could be achieved depending on the polymer/surfactant ratio. Amorphous drug nanoparticles could be obtained by using a high polymer/surfactant ratio, whereas two different crystalline forms were obtained from the systems containing low polymer/surfactant ratios. Interestingly, a new metastable form IV of GBM with improved dissolution behavior could be obtained from the system of GBM:PVP-K30:SLS with the weight ratio of 2:2:4. This new polymorphic form IV of GBM was confirmed by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffractometry (PXRD) and solid state 13 C nuclear magnetic resonance (NMR) spectroscopy. The molecular arrangement of the new polymorphic form IV of GBM was proposed. The GBM particles with polymorphic form IV also showed an improved dissolution behavior. In addition, it was found that the formation of the new polymorphic form IV of GBM by this process was reproducible.
Building a Buckyball Particle in Space Artist Concept
2012-02-22
NASA Spitzer Space Telescope has detected the solid form of buckyballs in space for the first time. To form a solid particle, the buckyballs must stack together, as illustrated in this artist concept showing the very beginnings of the process.
Weitschies, Werner; Blume, Henning; Mönnikes, Hubert
2010-01-01
Knowledge about the performance of dosage forms in the gastrointestinal tract is essential for the development of new oral delivery systems, as well as for the choice of the optimal formulation technology. Magnetic Marker Monitoring (MMM) is an imaging technology for the investigation of the behaviour of solid oral dosage forms within the gastrointestinal tract, which is based on the labelling of solid dosage forms as a magnetic dipole and determination of the location, orientation and strength of the dipole after oral administration using measurement equipment and localization methods that are established in biomagnetism. MMM enables the investigation of the performance of solid dosage forms in the gastrointestinal tract with a temporal resolution in the range of a few milliseconds and a spatial resolution in 3D in the range of some millimetres. Thereby, MMM provides real-time tracking of dosage forms in the gastrointestinal tract. MMM is also suitable for the determination of dosage form disintegration and for quantitative measurement of in vivo drug release in case of appropriate extended release dosage forms like hydrogel-forming matrix tablets. The combination of MMM with pharmacokinetic measurements (pharmacomagnetography) enables the determination of in vitro-in vivo correlations (IVIC) and the delineation of absorption sites in the gastrointestinal tract. Copyright 2009 Elsevier B.V. All rights reserved.
Wan, William; Bian, Wen; McDonald, Michele; ...
2013-08-28
The fungal prion-forming domain HET-s(218–289) forms infectious amyloid fibrils at physiological pH that were shown by solid-state NMR to be assemblies of a two-rung β-solenoid structure. Under acidic conditions, HET-s(218–289) has been shown to form amyloid fibrils that have very low infectivity in vivo, but structural information about these fibrils has been very limited. In this paper, we show by x-ray fiber diffraction that the HET-s(218–289) fibrils formed under acidic conditions have a stacked β-sheet architecture commonly found in short amyloidogenic peptides and denatured protein aggregates. At physiological pH, stacked β-sheet fibrils nucleate the formation of the infectious β-solenoid prionsmore » in a process of heterogeneous seeding, but do so with kinetic profiles distinct from those of spontaneous or homogeneous (seeded with infectious β-solenoid fibrils) fibrillization. Several serial passages of stacked β-sheet-seeded solutions lead to fibrillization kinetics similar to homogeneously seeded solutions. Finally, our results directly show that structural mutation can occur between substantially different amyloid architectures, lending credence to the suggestion that the processes of strain adaptation and crossing species barriers are facilitated by structural mutation.« less
Closeup view of the Solid Rocket Booster (SRB) Forward Skirt, ...
Close-up view of the Solid Rocket Booster (SRB) Forward Skirt, Frustum and Nose Cap mated assembly undergoing final preparations in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. In this view the access panel on the Forward Skirt is removed and you can see a small portion of the interior of the Forward Skirt. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels
Nagarkar, Radhika P.; Schneider, Joel P.
2009-01-01
Summary Hydrogels based on peptide self-assembly form an important class of biomaterials that find application in tissue engineering and drug delivery. It is essential to prepare peptides with high purity to achieve batch-to-batch consistency affording hydrogels with reproducible properties. Automated solid-phase peptide synthesis coupled with optimized Fmoc (9-fluorenylmethoxycarbonyl) chemistry to obtain peptides in high yield and purity is discussed. Details of isolating a desired peptide from crude synthetic mixtures and assessment of the peptide’s final purity by high-performance liquid chromatography and mass spectrometry are provided. Beyond the practical importance of synthesis and primary characterization, techniques used to investigate the properties of hydrogels are briefly discussed. PMID:19031061
Parallel computation using boundary elements in solid mechanics
NASA Technical Reports Server (NTRS)
Chien, L. S.; Sun, C. T.
1990-01-01
The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.
Fluorous Parallel Synthesis of A Hydantoin/Thiohydantoin Library
Lu, Yimin; Zhang, Wei
2007-01-01
Fluorous tagging strategy is applied to solution-phase parallel synthesis of a library containing hydantoin and thiohydantoin analogs. Two perfluoroalkyl (Rf)-tagged α-amino esters each react with 6 aromatic aldehydes under reductive amination conditions. Twelve amino esters then each react with 10 isocyanates and isothiocyanates in parallel. The resulting 120 ureas and thioureas undergo spontaneous cyclization to form the corresponding hydantoins and thiohydantoins. The intermediate and final product purifications are performed with solid-phase extraction (SPE) over FluoroFlash™ cartridges, no chromatography is required. Using standard instruments and straightforward SPE technique, one chemist accomplished the 120-member library synthesis in less than 5 working days, including starting material synthesis and product analysis. PMID:15789556
75 FR 45489 - New York: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... (EPA). ACTION: Direct final rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly referred... Hazardous and Solid Waste Amendments of 1984 (HSWA) for which the State has not yet been authorized and... 7004(b) of the Solid Waste Disposal Act as amended, 42 U.S.C. 6912(a), 6926, 6974(b). Dated: April 27...
NASA Astrophysics Data System (ADS)
Heider, Elizabeth M.
Solid-State Nuclear Magnetic Resonance (SSNMR) spectroscopy and quantum mechanical calculations are powerful analysis tools. Leveraged independently, each method yields important nuclear and molecular information. Used in concert, SSNMR and computational techniques provide complementary data about the structure of solids. These methods are particularly useful in characterizing the structures of microcrystalline organic compounds and revealing mechanisms of biological activity. Such applications may possess special relevance in analysis of pharmaceutical products; 90% of all pharmaceuticals are marketed as solids and bioactivity is strongly linked with molecular conformation. Accordingly, this dissertation employs both SSNMR and quantum mechanical computation to study three bioactive molecules: citrinin, two forms of Atrasentan (Abt-627), and paclitaxel (Taxol RTM). First, a computational study is utilized to determine the mechanism for unusual antioxidant activity in citrinin. Here, molecular geometries and bond dissociation enthalpies (BDE) of the citrinin O--H groups are calculated from first principles (ab initio). The total molecular Hamiltonian is determined by approximating the individual contributors to energy including electronic energy and contributions from modes of molecular vibration. This study of citrinin clearly identifies specific reaction sites in the active form, establishing the central role of intramolecular hydrogen bonding in this activity. Notably, it is discovered that citrinin itself is not the active species. Instead, a pair of hydrated Michael addition products of citrinin act as radical scavengers via O--H bond dissociation. Next, two separate compounds of the anticancer drug Abt-627 (form I and form II) are examined via SSNMR. The three principal values of the 13C diagonalized chemical shift tensor are acquired through the high resolution 2D experiment, FIREMAT. Isotropic chemical shift assignments are made utilizing both dipolar dephasing experiments and 1H-- 13C heteronuclear correlation (HETCOR) experiments. A comparison of spectral data confirms the presence of two molecules in the asymmetric unit for form II (Z'=2) and regions of conformational variation between the two forms are posited. Structural rigidity is found throughout both forms and extends into the alkyl groups at the amine with similarties between form I and form II in this moiety. Likely regions of motion are found around the bond axes formed by C1--C5 in form I. This motion is also observed in one of the two molecules of form II. Tensor differences between the two forms at the tetrahydro-pyrrole center indicate that conformational variation between form I and form II exists in the dihedral angles formed by the atoms C14--C13--C3--C2, O--C12--C2--C1, C10--C5--C1--N1 and C21--C20--N1--C4. Finally, SSNMR is applied in conjunction with quantum mechanical calculations in the analysis of a novel polymorph of the anticancer drug paclitaxel. The three dimensional structure of paclitaxel is established through a combination of SSNMR tensor (13C & 15N) and 1H--13C HETCOR data. With two molecules in the asymmetric unit (Z'=2), this represents the first conformational characterization with Z'>1 established solely by SSNMR. Semi-empirical models are constructed and fitted to experimental data by adjusting the conformation of the paclitaxel models and selecting those conformers which minimize the difference between predicted and measured tensors. This computational grid search exhausively samples the conformation of paclitaxel, utilizing more than 600 independent models. HETCOR data at thirteen key positions provide shift assignment to the asymmetric unit for each comparison. The two distinct molecules of the asymmetric unit possess nearly identical baccatin III moieties with matching conformations of the C10 acetyl moiety. Additionally, both are found to exhibit an extended conformation of the phenylisoserine sidechain at the C13 position. Notable differences between the two forms are centered around the rotation axes of O--C13, C2'--C1 ', and C3'--C2'.
Damage Caused to Polyurethane Foams by Aging, Simulated Sunlight Exposure, Heat and Fire
1984-07-01
vented configuration ............ .................. 11 4 Sample of the tan-colored solid formed upon pyrolysis of blue foam ..... .............. .. 21...54 26 Infrared absorption spectrum of the solid, tan-colored pyrolysis product formed from blue polyurethane foam ..... .............. .. 55 27...Infrared absorption spectrum of the liquid, brown-colored pyrolysis product formed from blue polyurethane foam ..... .............. .. 56 28 Fuel vent
Fundamental Studies of Solidification in Microgravity Using Real-Time X-Ray Microscopy
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Kaukler, William; Sen, Subhayu; Bhat, Biliyar N.
1999-01-01
This research applies a state of the art X-ray Transmission Microscope, XTM, to image (with resolutions up to 3 micrometers) the solidification of metallic or semiconductor alloys in real-time. We have successfully imaged in real-time: interfacial morphologies, phase growth, coalescence, incorporation of phases into the growing interface, and the solute boundary layer in the liquid at the solid-liquid interface. We have also measured true local growth rates and can evaluate segregation structures in the solid; a form of in-situ metallography. During this study, the growth of secondary phase fibers and lamellae from eutectic and monotectic alloys have been imaged during solidification, in real-time, for the first time in bulk metal alloys. Current high resolution X-ray sources and high contrast X-ray detectors have advanced to allow systematic study of solidification dynamics and the resulting microstructure. We have employed a state-of-the-art sub-micron source with acceleration voltages of 10-100 kV to image solidification of metals. One useful strength of the XTM stems from the manner an image is formed. The radiographic image is a shadow formed by x-ray photons that are not absorbed as they pass through the specimen. Composition gradients within the specimen cause variations in absorption of the flux such that the final image represents a spatial integral of composition (or thickness). The ability to image these features in real-time enables more fundamental and detailed understanding of solidification dynamics than has previously been possible. Hence, application of this technique towards microgravity experiments will allow rigorous testing of critical solidification models.
Porous solid ion exchange wafer for immobilizing biomolecules
Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.
2007-12-11
A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2012-10-09
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2008-04-01
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Els-Heindl, Sylvia; Chollet, Constance; Scheidt, Holger A.; Beck-Sickinger, Annette G.; Meiler, Jens; Huster, Daniel
2015-01-01
The peptide hormone ghrelin activates the growth hormone secretagogue receptor 1a, also known as the ghrelin receptor. This 28-residue peptide is acylated at Ser3 and is the only peptide hormone in the human body that is lipid-modified by an octanoyl group. Little is known about the structure and dynamics of membrane-associated ghrelin. We carried out solid-state NMR studies of ghrelin in lipid vesicles, followed by computational modeling of the peptide using Rosetta. Isotropic chemical shift data of isotopically labeled ghrelin provide information about the peptide’s secondary structure. Spin diffusion experiments indicate that ghrelin binds to membranes via its lipidated Ser3. Further, Phe4, as well as electrostatics involving the peptide’s positively charged residues and lipid polar headgroups, contribute to the binding energy. Other than the lipid anchor, ghrelin is highly flexible and mobile at the membrane surface. This observation is supported by our predicted model ensemble, which is in good agreement with experimentally determined chemical shifts. In the final ensemble of models, residues 8–17 form an α-helix, while residues 21–23 and 26–27 often adopt a polyproline II helical conformation. These helices appear to assist the peptide in forming an amphipathic conformation so that it can bind to the membrane. PMID:25803439
The effect of mixing ratio variation of sludge and organic solid waste on biodrying process
NASA Astrophysics Data System (ADS)
Nasution, A. C.; Kristanto, G. A.
2018-01-01
In this study, organic waste was co-biodried with sludge cake to determine which mixing ratio gave the best result. The organic waste was consisted of dried leaves and green leaves, while the sludge cake was obtained from a waste water treatment plant in Bekasi. The experiment was performed on 3 lab-scale reactors with same specifications. After 21 days of experiment, it was found that the reactor with the lowest mixing fraction of sludge (5:1) has the best temperature profile and highest moisture content depletion compared with others. Initial moisture content and initial volatile solid content of this reactor’s feedstock was 52.25% and 82.4% respectively. The airflow rate was 10 lpm. After biodrying was done, the final moisture content of the feedstock from Reactor C was 22.0% and the final volatile solid content was 75.9%.The final calorific value after biodrying process was 3179,28kcal/kg.
Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho
2017-10-04
We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, K.
2011-06-08
H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS)more » high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected densities of typical neutralized waste. Based on particle size and scanning electron microscopy analyses, the neutralized solids were found to be homogeneous and less than 20 microns in size. The majority of solids were less than 4 microns in size. Compared to previous studies, a larger percentage of the Gd was found to precipitate in the partially neutralized solutions (at pH 3.5-4). In addition the Gd:U mass ratio was found to be at least 1.0 in all of the solids obtained after partial or full neutralization. The hydrogen to U (H:U) molar ratios for two accident scenarios were also determined. The first was for transient neutralization and agitator failure. Experimentally this scenario was determined by measuring the H:U ratio of the settled solids. The minimum H:U molar ratio for solids from fully neutralized solutions was 388:1. The second accident scenario is for the solids drying out in an unagitiated pump box. Experimentally, this scenario was determined by measuring the H:U molar ratio in centrifuged solids. The minimum H:U atom ratios for centrifuged precipitated solids was 250:1. It was determined previously that a 30:1 H:Pu atom ratio was sufficient for a 1:1 Gd:Pu mass ratio. Assuming a 1:1 equivalence with {sup 239}Pu, the results of these experiments show Gd is a viable poison for neutralizing U/Gd solutions with the tested compositions.« less
Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals.
Healy, Anne Marie; Worku, Zelalem Ayenew; Kumar, Dinesh; Madi, Atif M
2017-08-01
Active pharmaceutical ingredients (APIs) may exist in various solid forms, which can lead to differences in the intermolecular interactions, affecting the internal energy and enthalpy, and the degree of disorder, affecting the entropy. Differences in solid forms often lead to differences in thermodynamic parameters and physicochemical properties for example solubility, dissolution rate, stability and mechanical properties of APIs and excipients. Hence, solid forms of APIs play a vital role in drug discovery and development in the context of optimization of bioavailability, filing intellectual property rights and developing suitable manufacturing methods. In this review, the fundamental characteristics and trends observed for pharmaceutical hydrates, solvates and amorphous forms are presented, with special emphasis, due to their relative abundance, on pharmaceutical hydrates with single and two-component (i.e. cocrystal) host molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
O'Brien, Laura E; Timmins, Peter; Williams, Adrian C; York, Peter
2004-10-29
The solid-state transformation of carbamazepine from form III to form I was examined by Fourier Transform Raman spectroscopy. Using a novel environmental chamber, the isothermal conversion was monitored in situ at 130 degrees C, 138 degrees C, 140 degrees C and 150 degrees C. The rate of transformation was monitored by taking the relative intensities of peaks arising from two CH bending modes; this approach minimised errors due to thermal artefacts and variations in power intensities or scattering efficiencies from the samples in which crystal habit changed from a characteristic prism morphology (form III) to whiskers (form I). The solid-state transformation at the different temperatures was fitted to various solid-state kinetic models of which four gave good fits, thus indicating the complexity of the process which is known to occur via a solid-gas-solid mechanism. Arrhenius plots from the kinetic models yielded activation energies from 344 kJ mol(-1) to 368 kJ mol(-1) for the transformation. The study demonstrates the value of a rapid in situ analysis of drug polymorphic type which can be of value for at-line in-process control.
Code of Federal Regulations, 2013 CFR
2013-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.3 Definitions. The following... 600.3(t) of this chapter. Solid oral dosage form means capsules, tablets, or similar drug products...
Code of Federal Regulations, 2011 CFR
2011-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.3 Definitions. The following... 600.3(t) of this chapter. Solid oral dosage form means capsules, tablets, or similar drug products...
Code of Federal Regulations, 2012 CFR
2012-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.3 Definitions. The following... 600.3(t) of this chapter. Solid oral dosage form means capsules, tablets, or similar drug products...
Stability of pharmaceutical salts in solid oral dosage forms.
Nie, Haichen; Byrn, Stephen R; Zhou, Qi Tony
2017-08-01
Using pharmaceutical salts in solid dosage forms can raise stability concerns, especially salt dissociation which can adversely affect the product performance. Therefore, a thorough understanding of the salt instability encountered in solid-state formulations is imperative to ensure the product quality. The present article uses the fundamental theory of acid base, ionic equilibrium, relationship of pH and solubility as a starting point to illustrate and interpret the salt formation and salt disproportionation in pharmaceutical systems. The criteria of selecting the optimal salt form and the underlying theory of salt formation and disproportionation are reviewed in detail. Factors influencing salt stability in solid dosage forms are scrutinized and discussed with the case studies. In addition, both commonly used and innovative strategies for preventing salt dissociations in formulation, on storage and during manufacturing will be suggested herein. This article will provide formulation scientists and manufacturing engineers an insight into the mechanisms of salt disproportionation and salt formation, which can help them to avoid and solve the instability issues of pharmaceutical salts in the product design.
NASA Astrophysics Data System (ADS)
Jing, Zhenzi; Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian; Jin, Fangming
2017-05-01
Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6-5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite.
Shah, Ankita V; Serajuddin, Abu T M
2012-10-01
To develop solid self-emulsifying drug delivery systems (SEDDS) for lipids using poloxamer 188 as both solidifying and emulsifying agents. Mixtures of various lipids with poloxamer 188 and PEG 8000 were prepared at ~75°C. The molten mixtures, with and without dissolved drugs (fenofibrate and probucol), were then cooled to room temperature. When solids formed, they were characterized by powder XRD, DSC, microscopy using cross-polarization and confocal fluorescence techniques, dispersion test in water and particle size analysis of dispersions. When mixed with poloxamer 188 or PEG 8000, lipids consisting of monoesters of fatty acids with glycerol or propylene glycol formed solid systems, but not di- and tri-esters, which showed phase separation. Added to water, the solid systems containing poloxamer 188 started to disperse in water forming oil globules of 200-600 nm. No emulsification of lipids was observed from solids containing PEG 8000, indicating that the surfactant property of poloxamer 188 was responsible for emulsification. Powder XRD, DSC and microscopic examination revealed that poloxamer 188 and PEG 8000 maintained their crystallinity in solid systems, while the lipids were interspersed in between crystalline regions. The drug remained solubilized in the lipid phase. A novel solid SEDDS is developed where the drug can be solubilized in liquid lipids and then the lipidic solution can be converted to solid mass by dispersing into the microstructure of poloxamer 188.
Real-Time Investigation of Solidification of Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Kaukler, William; Sen, Subhayu
1999-01-01
Casting of metal matrix composites can develop imperfections either as non- uniform distributions of the reinforcement phases or as outright defects such as porosity. The solidification process itself initiates these problems. To identify or rectify the problems, one must be able to detect and to study how they form. Until, recently this was only possible by experiments that employed transparent metal model organic materials with glass beads to simulate the reinforcing phases. Recent results obtained from a Space Shuttle experiment (using transparent materials) will be used to illustrate the fundamental physics that dictates the final distribution of agglomerates in a casting. We have further extended this real time investigation to aluminum alloys using X-ray microscopy. A variety of interface-particle interactions will be discussed and how they alter the final properties of the composite. A demonstration of how a solid-liquid interface is distorted by nearby voids or particles, particle pushing or engulfment by the interface, formations of wormholes, Aggregation of particles, and particle-induced segregation of alloying elements will be presented.
Four new polymorphic forms of suplatast tosilate.
Nagai, Keiko; Ushio, Takanori; Miura, Hidenori; Nakamura, Takashi; Moribe, Kunikazu; Yamamoto, Keiji
2014-01-02
We found four new polymorphic forms (γ-, ε-, ζ-, and η-forms) of suplatast tosilate (ST) by recrystallization and seeding with ST-analogous compounds; three polymorphic forms (α-, β-, and δ-forms) of ST have been previously reported. The physicochemical properties of these new forms were investigated using infrared (IR) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and powder X-ray diffractometry. The presence of hydrogen bonds in the new forms was assessed from the IR and solid-state NMR spectra. The crystal structures of the ε- and η-forms were determined from their powder X-ray diffraction data using the direct space approach and the Monte Carlo method, followed by Rietveld refinement. The structures determined for the ε- and η-forms supported the presence of hydrogen bonds between the ST molecules, as the IR and solid-state NMR spectra indicated. The thermodynamic characteristics of the seven polymorphic forms were evaluated by determining the solubility of each form. The α-form was the most insoluble in 2-propanol at 35°C, and was thus concluded to be the most stable form. The ε-form was the most soluble, and a polymorphic transition from the ε- to the α-form was observed during solubility testing. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Duncan, Flavia Cunha
The extraordinary expansion during the reaction sintering of the magnesium aluminate spinel (MgAl2O4) from its basic oxide (MgO and Al2O3) powders was studied. Experimental series of different size fractions of the reacting materials were formulated to produce the Mg-Al spinel. After batches were prepared, specimens were compacted and fired in air from 1200° to 1700°C for a fixed firing time. A separate set of specimens was fired as a function of time to determine the reaction kinetic parameters. Dimensional changes confirmed that extraordinary expansions of three to four times greater than the prediction from the reaction of solids occur. The solid-state reactions were monitored by X-ray diffraction. The activation energy of the spinel reaction formation was determined to be 280 +/- 20 kJ/mol. It is believed to be associated with the diffusivity of Mg 2+ in either magnesia or spinel during the development of the final spinel structure. New porosity developed in the compacts during the reaction formation of spinel. Scanning electron microscopy confirmed that the magnesia evaporated leaving behind porous magnesia grains, condensed on the alumina particles and reacted to form a shell of spinel. Hollow spinel particles resulted from the original particles of alumina. These porosities generated within the reacting materials influenced the expansions. Final volumetric expansion could potentially reach 56% as a result of the reaction of solids and the porosity generation within MgO and Al2O3. Models of a single alumina particle with and without development of internal porosity were developed. 3-D arrangements of particles showed additional porosity, influencing on the expansions. The decrease in porosity of some specimens fired at higher temperatures indicated that sintering and densification occur simultaneously with the reaction formation of spinel. The decrease in the interparticle porosity limits the full expansion of the particulates to levels lower than the predictions of the model. A term that accounts for this shrinkage should be a significant addition to the model of expansion. Although the spinel forming reaction for most of the particle systems reached near completion, the resulting porous specimens could be viewed as powder compacts in the early stages of sintering and densification.
Hatamie, Amir; Nassiri, Mahmoud; Alivand, Meghdad Doust; Bhatnagar, Amit
2018-01-01
For the first time, a novel green method using Zein biopolymeric nanoparticles as a green dispersive solid-phase extractor is reported for the separation and preconcentration of trace amount of nitrite (NO 2 - ) ions in ppb levels. The Zein protein is a biodegradable hydrophobic plant protein that is obtained from corn and is composed of a number of hydrophobic amino acids. Zein bionanoparticles were synthesized in an anti-solvent process and used as a new biosorbent in the extraction technique. In the proposed technique, by using a standard method at first, a mixture of 1-naphthylamine and sulphanilic acid as selective regents was added to the samples, and in the presence of the nitrite ion, a red azo product was formed. After that, the ethanolic Zein solution (equal to 15mg) was injected rapidly into the sample, based on the anti-solvent process. Zein bionanoparticles (BNPs) were produced, the adsorbed colour product was separated by centrifugation, and finally samples were analysed with the spectrophotometric method. The influence of different variables such as pH, buffer and amount of buffer, amount of adsorbent and effect of time on extraction were investigated and Zein BNPs were characterized by TEM, SEM, and FT-IR techniques. The main advantages of Zein as a new solid-phase extractor are that this biopolymer is non-toxic, stable, widely available, biodegradable, very hydrophobic, and can be fabricated easily. Under optimal experimental conditions, the linear correlation coefficient (r 2 ) was found to be 0.9972 at the concentration range of 5.0-1000ngmL -1 . The limit of detection was 2.3ngmL -1 (0.05μM). This method was applied successfully for the analysis of sea and river waters as well as industrial wastewater samples. Finally, this method follows the US EPA (US Environmental Protection Agency) and WHO (World Health Organization) international standards for nitrite analysis. In addition, it has several advantages to warrant its applicability in the near future in separation science as a green biosorbent in both dispersive and normal solid-phase extraction. Copyright © 2017. Published by Elsevier B.V.
Dhillon, Jaapna; Lee, Janice Y; Mattes, Richard D
2017-11-01
The purpose of the study was to examine the role of the cephalic phase insulin response (CPIR) following exposure to nutritive and low-calorie sweeteners in solid and beverage form in overweight and obese adults. In addition, the role of learning on the CPIR to nutritive and low-calorie sweetener exposure was tested. Sixty-four overweight and obese adults (age: 18-50years, BMI: 24-37kg/m 2 , body fat percentage>25% for men and >32% for women) were sham-fed (at 2-minute intervals for 14min) a randomly assigned test load comprised of a nutritive (sucrose) or low-calorie sweetener (sucralose) in beverage or solid form in phase 1 of the study. A 2-3ml blood sample was collected before and 2, 6, 10, 14, 61, 91 and 121min after oral exposure for serum insulin and glucose analysis. During phase 2, participants underwent a 2-week training period to facilitate associative learning between the sensory properties of test loads and their post-ingestive effects. In phase 3, participants were retested for their cephalic phase responses as in phase 1. Participants were classified as responders if they demonstrated a positive insulin response (rise of serum insulin above baseline i.e. Δ insulin) 2min post-stimulus in phase 1. Among responders exposed to the same sweetener in Phases 1 and 3, the proportion of participants that displayed a rise of insulin with oral exposure to sucralose was significantly greater when the stimulus was in the solid form compared to the beverage form. Sucralose and sucrose exposure elicited similarly significant increases in serum insulin 2min after exposure and significant decreases after 2min in responders in both food forms. The solid food form elicited greater CPIR over 2, 6 and 10min than the beverage form. There was no effect of learning on insulin responses after training. The results indicate the presence of a significant CPIR in a subset of individuals with overweight or obesity after oral exposure to sucralose, especially when present in solid food form. Future studies must confirm the reliability of this response. Copyright © 2017 Elsevier Inc. All rights reserved.
Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana
2015-01-01
Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement. The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen. Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained. The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol™, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen. This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.
Park, Young-Joon; Ryu, Dong-Sung; Li, Dong Xun; Quan, Qi Zhe; Oh, Dong Hoon; Kim, Jong Oh; Seo, Youn Gee; Lee, Young-Im; Yong, Chul Soon; Woo, Jong Soo; Choi, Han-Gon
2009-06-01
To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.
New Melting Data of the Two Polymorphs of Prednisolone.
Corvis, Yohann; Négrier, Philippe; Soulestin, Jérémie; Espeau, Philippe
2016-10-04
Prednisolone is known to exist in two anhydrous solid polymorphic forms. The substance is known to degrade upon melting, resulting in erroneous melting data, as shown by the widely scattered results reported in the literature. In this article, thermal analyses carried out at different scan rates show that the onset temperature and the enthalpy value of the signal increase with the scan rate and reach plateau values for high scan rates. Owing to flash scanning calorimetry, the plateau value for the temperature has been identified as the "true" temperature of melting of both polymorphs. This consistent set of new thermodynamic data on the two solid forms leads to the conclusion that both forms are unambiguously enantiotropes of each other. The solid-solid transition has been observed experimentally for the first time and has been confirmed by calculation.
Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.
Qu, Li; Morton, David A V; Zhou, Qi Tony
2015-01-01
Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.
Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling
2018-06-14
Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.
NASA Astrophysics Data System (ADS)
Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.
2015-02-01
Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.
Method and means for producing solid evacuated microspheres of hydrogen
Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.
1976-01-01
A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.
Solid evacuated microspheres of hydrogen
Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.
1982-01-01
A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.
Method of forming contacts for a back-contact solar cell
Manning, Jane
2015-10-20
Methods of forming contacts for solar cells are described. In one embodiment, a method includes forming a silicon layer above a substrate, forming and patterning a solid-state p-type dopant source on the silicon layer, forming an n-type dopant source layer over exposed regions of the silicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped silicon regions among a plurality of p-type doped silicon regions.
Method of forming contacts for a back-contact solar cell
Manning, Jane
2014-07-15
Methods of forming contacts for solar cells are described. In one embodiment, a method includes forming a silicon layer above a substrate, forming and patterning a solid-state p-type dopant source on the silicon layer, forming an n-type dopant source layer over exposed regions of the silicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped silicon regions among a plurality of p-type doped silicon regions.
Method of forming contacts for a back-contact solar cell
Manning, Jane
2013-07-23
Methods of forming contacts for back-contact solar cells are described. In one embodiment, a method includes forming a thin dielectric layer on a substrate, forming a polysilicon layer on the thin dielectric layer, forming and patterning a solid-state p-type dopant source on the polysilicon layer, forming an n-type dopant source layer over exposed regions of the polysilicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped polysilicon regions among a plurality of p-type doped polysilicon regions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...
Electrocatalytic transformation of HF impurity to H 2 and LiF in lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strmcnik, Dusan; Castelli, Ivano E.; Connell, Justin G.
The formation of solid electrolyte interphase on graphite anodes plays a key role in the efficiency of Li-ion batteries. However, to date, fundamental understanding of the formation of LiF as one of the main solid electrolyte interphase components in hexafluorophosphate-based electrolytes remains elusive. In this paper, we present experimental and theoretical evidence that LiF formation is an electrocatalytic process that is controlled by the electrochemical transformation of HF impurity to LiF and H 2. Although the kinetics of HF dissociation and the concomitant production of LiF and H 2 is dependent on the structure and nature of surface atoms, themore » underlying electrochemistry is the same. The morphology, and thus the role, of the LiF formed is strongly dependent on the nature of the substrate and HF inventory, leading to either complete or partial passivation of the interface. Finally, our finding is of general importance and may lead to new opportunities for the improvement of existing, and design of new, Li-ion technologies.« less
Integrated rheology model: Explosive Composition B-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.
Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less
A Linear Viscoelastic Model Calibration of Sylgard 184.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Kevin Nicholas; Brown, Judith Alice
2017-04-01
We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANLmore » data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.« less
Impact of Metal Droplets: A Numerical Approach to Solidification
NASA Astrophysics Data System (ADS)
Koldeweij, Robin; Mandamparambil, Rajesh; Lohse, Detlef
2016-11-01
Layer-wise deposition of material to produce complex products is a subject of increasing technological relevance. Subsequent deposition of droplets is one of the possible 3d printing technologies to accomplish this. The shape of the solidified droplet is crucial for product quality. We employ the volume-of-fluid method (in the form of the open-source code Gerris) to study liquid metal (in particular tin) droplet impact. Heat transfer has been implemented based on the enthalpy approach for the liquid-solid phase. Solidification is modeled by adding a sink term to the momentum equations, reducing Navier-Stokes to Darcy's law for high solid fraction. Good agreement is found when validating the results against experimental data. We then map out a phase diagram in which we distinguish between solidification behavior based on Weber and Stefan number. In an intermediate impact regime impact, solidification due to a retracting phase occurs. In this regime the maximum spreading diameter almost exclusively depends on Weber number. Droplet shape oscillations lead to a broad variation of the morphology of the solidified droplet and determine the final droplet height. TNO.
ICT media design for higher grade of elementary school mathematics learning using CS6 program
NASA Astrophysics Data System (ADS)
Zainil, M.; Prahmana, R. C. I.; Helsa, Y.; Hendri, S.
2017-12-01
Technological innovation contributes to the emerging of new possibilities to change the learning process. The development of technology could bring the higher quality of education through the integration of technology in the learning. The purpose of this research is to create an interactive multimedia using CS6 program for mathematics learning in higher grade of elementary school. It was a development research using ADDIE model which consists of analysis, design, and evaluation stages. It has successfully developed interactive multimedia in a form of learning CD used in the material of plane figures and solid figures. The prototype has been validated and then tested for the 4th grade of elementary schools. Two schools were involved and the students taught by utilizing the prototype, and then, in the end of learning, they are examined to determine the learning result. There were 72% of the students passed the examination as they classified at good and excellent categories. Finally, the use of CS6 program is promising to help the students learning plane and solid figure in mathematics learning.
Modelling municipal solid waste generation: a review.
Beigl, Peter; Lebersorger, Sandra; Salhofer, Stefan
2008-01-01
The objective of this paper is to review previously published models of municipal solid waste generation and to propose an implementation guideline which will provide a compromise between information gain and cost-efficient model development. The 45 modelling approaches identified in a systematic literature review aim at explaining or estimating the present or future waste generation using economic, socio-demographic or management-orientated data. A classification was developed in order to categorise these highly heterogeneous models according to the following criteria--the regional scale, the modelled waste streams, the hypothesised independent variables and the modelling method. A procedural practice guideline was derived from a discussion of the underlying models in order to propose beneficial design options concerning regional sampling (i.e., number and size of observed areas), waste stream definition and investigation, selection of independent variables and model validation procedures. The practical application of the findings was demonstrated with two case studies performed on different regional scales, i.e., on a household and on a city level. The findings of this review are finally summarised in the form of a relevance tree for methodology selection.
Electrocatalytic transformation of HF impurity to H 2 and LiF in lithium-ion batteries
Strmcnik, Dusan; Castelli, Ivano E.; Connell, Justin G.; ...
2018-04-09
The formation of solid electrolyte interphase on graphite anodes plays a key role in the efficiency of Li-ion batteries. However, to date, fundamental understanding of the formation of LiF as one of the main solid electrolyte interphase components in hexafluorophosphate-based electrolytes remains elusive. In this paper, we present experimental and theoretical evidence that LiF formation is an electrocatalytic process that is controlled by the electrochemical transformation of HF impurity to LiF and H 2. Although the kinetics of HF dissociation and the concomitant production of LiF and H 2 is dependent on the structure and nature of surface atoms, themore » underlying electrochemistry is the same. The morphology, and thus the role, of the LiF formed is strongly dependent on the nature of the substrate and HF inventory, leading to either complete or partial passivation of the interface. Finally, our finding is of general importance and may lead to new opportunities for the improvement of existing, and design of new, Li-ion technologies.« less
Integrated rheology model: Explosive Composition B-3
Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.; ...
2018-03-20
Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less
NASA Astrophysics Data System (ADS)
Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.
2014-09-01
We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.
NASA Astrophysics Data System (ADS)
Midor, Katarzyna; Jąderko, Karolina
2017-11-01
The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.
Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, Franz
2015-03-27
This is the Final Technical Report for "Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics", by Franz M. Geiger, PI, from Northwestern University, IL, USA, Grant Number SC0004101 and/or DE-PS02-ER09-07.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... from the Russian Federation (Russia). The period of review (POR) is July 1, 2011, through June 30, 2012... notice of final results of administrative review for all shipments of solid urea from Russia entered, or...
Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A
2007-01-01
The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.
Physicochemical interactions in solid dosage forms.
Narang, Ajit S; Desai, Divyakant; Badawy, Sherif
2012-10-01
Complete characterization and mechanistic understanding of physicochemical interactions in solid dosage forms are not only important for consistent manufacturability, stability, and bioavailability of the drug product, but are also expected under the quality-by-design paradigm of drug development. Lack of this understanding can impact successful and timely development, scale-up, and commercial manufacture of dosage forms. This article highlights the stability and bioavailability implications of physicochemical interactions in dosage forms citing a couple of examples where such interactions necessitated the recall of commercial drug products.
Reisenwitz, T H; Wimbish, G J
1996-01-01
The capsule dosage form in nonprescription pharmaceuticals persists as being one of the most vulnerable to product tampering. This study examines consumer preference toward three solid oral dosage forms (capsules, caplets, and tablets) in nonprescription products. Thirteen independent variables representing dosage form attributes are measured on semantic differential scales. The data are analyzed using analysis of variance (ANOVA) and factor analysis. Implications for the pharmaceutical marketer are noted. Future directions for research are also outlined.
NASA Technical Reports Server (NTRS)
Okubo, Tsutomo; Yonemochi, Osamu; Nakamura, Kazuo; Maeda, Minoru
1988-01-01
Chemical compounds SrZrO3, CaZrO3, and BaZrO3 were synthesized by solid reaction and arc fusion, and their properties examined. Results were as follows: (1) in the synthesis of CaZrO3 by solid reaction, ZrO2 solid solution with cubic form was produced, which then changed into CaZrO3; (2) the BaZrO3 was a cubic form and did not show any transformation, while SrZrO3 and CaZrO3 with an orthorhombic form transformed to a cubic form at high temperature; and (3) the solubility of BaZrO3 in acid and its vaporization rate at a high temperature were greater than those of zirconates.
Dry coating, a novel coating technology for solid pharmaceutical dosage forms.
Luo, Yanfeng; Zhu, Jesse; Ma, Yingliang; Zhang, Hui
2008-06-24
Dry coating is a coating technology for solid pharmaceutical dosage forms derived from powder coating of metals. In this technology, powdered coating materials are directly coated onto solid dosage forms without using any solvent, and then heated and cured to form a coat. As a result, this technology can overcome such disadvantages caused by solvents in conventional liquid coating as serious air pollution, high time- and energy-consumption and expensive operation cost encountered by liquid coating. Several dry coating technologies, including plasticizer-dry-coating, electrostatic-dry-coating, heat-dry-coating and plasticizer-electrostatic-heat-dry-coating have been developed and extensively reported. This mini-review summarized the fundamental principles and coating processes of various dry coating technologies, and thoroughly analyzed their advantages and disadvantages as well as commercialization potentials.
1989-03-31
present several numerical studies designed to reveal the effect that some of the governing parameters have on the behavior of the system and, whenever...Friction and in the Control of Dynamical Systems with Frictional Forces FINAL TECHNICAL REPORT March 31, 1989 _ -- I -.7: .-.- - : AFOSR Contract F49620...SOLID AND STRUCTURAL MECHANICS: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces I I * FINAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasil’ev, V. I.; Gagis, G. S., E-mail: galina.gagis@gmail.com; Kuchinskii, V. I.
2015-07-15
Processes are considered in which ultrathin layers of III–V ternary solid solutions are formed via the delivery of Group-V element vapors to GaAs and GaSb semiconductor plates, with solid-phase substitution reactions occurring in the surface layers of these plates. This method can form defect-free GaAs{sup 1–x}P{sup x}, GaAs{sup x}Sb{sup 1–x}, and GaP{sup x}Sb{sup 1–x} layers with thicknesses of 10–20 nm and a content x of the embedded components of up to 0.04.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
... produced and exported by MCC EuroChem (EuroChem). The period of review (POR) is July 1, 2008, through June... for EuroChem. Therefore, the final results are different from the preliminary results. The final weighted-average dumping margin for EuroChem is listed below in the section entitled ``Final Results of the...
21 CFR 206.10 - Code imprint required.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required. (a) Unless exempted under § 206.7, no drug product in solid oral dosage form may be introduced or...
21 CFR 206.10 - Code imprint required.
Code of Federal Regulations, 2013 CFR
2013-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required. (a) Unless exempted under § 206.7, no drug product in solid oral dosage form may be introduced or...
21 CFR 206.10 - Code imprint required.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required. (a) Unless exempted under § 206.7, no drug product in solid oral dosage form may be introduced or...
Method of producing purified carotenoid compounds
NASA Technical Reports Server (NTRS)
Eggink, Laura (Inventor)
2007-01-01
A method of producing a carotenoid in solid form includes culturing a strain of Chlorophyta algae cells in a minimal inorganic medium and separating the algae comprising a solid form of carotenoid. In one embodiment f the invention, the strain of Chlorophyta algae cells includes a strain f Chlamydomonas algae cells.
Method of fabricating a monolithic solid oxide fuel cell
Minh, N.Q.; Horne, C.R.
1994-03-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.
Method of fabricating a monolithic solid oxide fuel cell
Minh, Nguyen Q.; Horne, Craig R.
1994-01-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.
40 CFR 98.166 - Data reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CO2 collected and transferred off site in either gas, liquid, or solid forms, following the... off site in either gas, liquid, or solid forms (kg carbon). [74 FR 56374, Oct. 30, 2009, as amended at... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.166 Data reporting requirements. In...
40 CFR 98.166 - Data reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CO2 collected and transferred off site in either gas, liquid, or solid forms, following the... off site in either gas, liquid, or solid forms (kg carbon). [74 FR 56374, Oct. 30, 2009, as amended at... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.166 Data reporting requirements. In...
40 CFR 98.166 - Data reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... CO2 collected and transferred off site in either gas, liquid, or solid forms, following the... off site in either gas, liquid, or solid forms (kg carbon). [74 FR 56374, Oct. 30, 2009, as amended at... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.166 Data reporting requirements. In...
NASA Technical Reports Server (NTRS)
Levri, Julie A.; Boulanger, Richard; Hogan, John A.; Rodriguez, Luis
2003-01-01
Contents include the following: What is OTIS? OTIS use. Proposed implementation method. Development history of the Solid Waste Management (SWM) Technology Information Form (TIF) and OTIS. Current development state of the SWM TIF and OTIS. Data collection approach. Information categories. Critiques/questions/feedback.
Simulation studies of glassy nanoclusters
NASA Astrophysics Data System (ADS)
Bowles, Richard
2015-03-01
Glassy materials are amorphous solids usually formed by rapidly cooling a liquid below its equilibrium freezing temperature, trapping the particles in a liquid-like structure at the glass transition temperature. While appearing throughout nature and industry, these systems continue to challenge the way we think about the dynamics and thermodynamics of condensed matter and a fundamental understanding of the glass state remains elusive. This talk describes molecular simulation studies of glassy behaviour in binary Lennard-Jones nanoclusters. We show that the relaxation dynamics of the clusters is nonuniform and the core of the cluster goes through a glass transition at higher temperatures than at the surface. As the nanoclusters are cooled, they also exhibit a fragile-strong crossover in their dynamics and we explore how this phenomena is linked to the potential energy landscape of the clusters. Finally, we compare the properties of nanoclusters formed through vapour condensation, directly to the glassy state, with those of glassy clusters formed through traditional supercooling. The condensation clusters are shown to form ultra-stable glassy states analogous to the ultra-stable glasses formed by thin film vapour deposition onto a cold substrate. In all, our work suggests that nanoscale clusters exhibit some unique glassy features, while also offering potential insights into the fundamental nature of the glass transition.
NASA Technical Reports Server (NTRS)
Peng, S. T. J.; Valanis, K. C.
1977-01-01
Solid propellants, sand-asphalt concrete and hard plastics showed rate sensitive mechanical behavior which, in addition, indicated that these materials have a permanent memory of the strain (or loading) path by which their present state was attained. A constitutive equation was formulated in general three dimensional tensorial form by means of irreversible thermodynamics. By using a very simple analytical form, it was shown that the mechanical behavior of solid propellants and sand-asphalt concrete can be readily described.
NASA Astrophysics Data System (ADS)
Alcolea Palafox, M.; Kattan, D.; Afseth, N. K.
2018-04-01
A theoretical and experimental vibrational study of the anti-HIV d4T (stavudine or Zerit) nucleoside analogue was carried out. The predicted spectra in the three most stable conformers in the biological active anti-form of the isolated state were compared. Comparison of the conformers with those of the natural nucleoside thymidine was carried out. The calculated spectra were scaled by using different scaling procedures and three DFT methods. The TLSE procedure leads to the lowest error and is thus recommended for scaling. With the population of these conformers the IR gas-phase spectra were predicted. The crystal unit cell of the different polymorphism forms of d4T were simulated through dimer forms by using DFT methods. The scaled spectra of these dimer forms were compared. The FT-IR spectrum was recorded in the solid state in the 400-4000 cm-1 range. The respective vibrational bands were analyzed and assigned to different normal modes of vibration by comparison with the scaled vibrational values of the different dimer forms. Through this comparison, the polymorphous form of the solid state sample was identified. The study indicates that d4T exist only in the ketonic form in the solid state. The results obtained were in agreement with those determined in related anti-HIV nucleoside analogues.
Near-net-shape manufacturing: Spray-formed metal matrix composites and tooling
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.
1994-01-01
Spray forming is a materials processing technology in which a bulk liquid metal is converted to a spray of fine droplets and deposited onto a substrate or pattern to form a near-net-shape solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. The Idaho National Engineering Laboratory is developing a unique spray-forming method, the Controlled Aspiration Process (CAP), to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Results from two spray-accompanying technical and economic benefits. These programs involved spray forming aluminum strip reinforced with SiC particulate, and the production of tooling, such as injection molds and dies, using low-melting-point metals.
Calvo, Natalia L; Arias, Juan M; Altabef, Aída Ben; Maggio, Rubén M; Kaufman, Teodoro S
2016-09-10
Albendazole (ALB) is a broad-spectrum anthelmintic, which exhibits two solid-state forms (Forms I and II). The Form I is the metastable crystal at room temperature, while Form II is the stable one. Because the drug has poor aqueous solubility and Form II is less soluble than Form I, it is desirable to have a method to assess the solid-state form of the drug employed for manufacturing purposes. Therefore, a Partial Least Squares (PLS) model was developed for the determination of Form I of ALB in its mixtures with Form II. For model development, both solid-state forms of ALB were prepared and characterized by microscopic (optical and with normal and polarized light), thermal (DSC) and spectroscopic (ATR-FTIR, Raman) techniques. Mixtures of solids in different ratios were prepared by weighing and mechanical mixing of the components. Their Raman spectra were acquired, and subjected to peak smoothing, normalization, standard normal variate correction and de-trending, before performing the PLS calculations. The optimal spectral region (1396-1280cm(-1)) and number of latent variables (LV=3) were obtained employing a moving window of variable size strategy. The method was internally validated by means of the leave one out procedure, providing satisfactory statistics (r(2)=0.9729 and RMSD=5.6%) and figures of merit (LOD=9.4% and MDDC=1.4). Furthermore, the method's performance was also evaluated by analysis of two validation sets. Validation set I was used for assessment of linearity and range and Validation set II, to demonstrate accuracy and precision (Recovery=101.4% and RSD=2.8%). Additionally, a third set of spiked commercial samples was evaluated, exhibiting excellent recoveries (94.2±6.4%). The results suggest that the combination of Raman spectroscopy with multivariate analysis could be applied to the assessment of the main crystal form and its quantitation in samples of ALB bulk drug, in the routine quality control laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.
Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia
2018-01-01
We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas/solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99% for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume “filamentous” structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain–grain sticking during low-velocity collisions. PMID:29563766
Ease of opening of blistered solid dosage forms in a senior citizens target group.
Braun-Münker, Myriam; Ecker, Felix
2016-10-30
Blisters differing in design and handling are established as packaging material for solid dosage forms. The ease of opening of blisters influences application and patient's compliance. In this study the influence of visibility and movability of solid dosage forms in blister packaging on both, easy opening and patient's satisfaction, were investigated by target group testing according to ONR CEN/TS 15945. For each testing 20 participants in the age of 65-80 years were recruited randomly. They opened the blisters on realistic terms without any auxiliary devices. Video documentation of the hands' movements was recorded to analyze the opening procedure. To show the influence of visibility of the dosage form in the blister, capsules size 1 were packed in transparent and opaque blisters. A moderate influence of the visibility on both, the ease of opening and patient satisfaction, was observed. A second study dealt with the movability of solid dosage forms in blisters. Therefore, three different sizes of tablets with similar shapes were packed in identical cavities. Limited movability was found as major criterion on effectiveness and effectivity of opening as well as on satisfaction with the opening procedure. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Johnson, Natasha M.; Ferguson, Frank T.; Carayon, Alicia
2016-01-01
We report the ratio of the initial carbon available as CO that forms gas-phase compounds compared to the fraction that deposits as a carbonaceous solid (the gas solid branching ratio) as a function of time and temperature for iron, magnetite, and amorphous iron silicate smoke catalysts during surface-mediated reactions in an excess of hydrogen and in the presence of N2. This fraction varies from more than 99 for an amorphous iron silicate smoke at 673 K to less than 40% for a magnetite catalyst at 873 K. The CO not converted into solids primarily forms methane, ethane, water, and CO2, as well as a very wide range of organic molecules at very low concentration. Carbon deposits do not form continuous coatings on the catalytic surfaces, but instead form extremely high surface area per unit volume filamentous structures. While these structures will likely form more slowly but over much longer times in protostellar nebulae than in our experiments due to the much lower partial pressure of CO, such fluffy coatings on the surfaces of chondrules or calcium aluminum inclusions could promote grain-grain sticking during low-velocity collisions.
Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system
Wood, Brandon C.; Stavila, Vitalie; Poonyayant, Natchapol; ...
2017-01-20
Internal interfaces in the Li 3N/[LiNH 2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.
System and process for dissolution of solids
Liezers, Martin; Farmer, III, Orville T.
2017-10-10
A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.
Solids mass flow determination
Macko, Joseph E.
1981-01-01
Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.
Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz
2016-11-20
Solid-state nuclear magnetic resonance (ssNMR) is a powerful and unique method for analyzing solid forms of the active pharmaceutical ingredients (APIs) directly in their original formulations. Unfortunately, despite their wide range of application, the ssNMR experiments often suffer from low sensitivity and peaks overlapping between API and excipients. To overcome these limitations, the crosspolarization inversion recovery method was successfully used. The differences in the spin-lattice relaxation time constants for hydrogen atoms T1(H) between API and excipients were employed in order to separate and discriminate their peaks in ssNMR spectra as well as to increase the intensity of API signals in low-dose formulations. The versatility of this method was demonstrated by different examples, including the excipients mixture and commercial solid dosage forms (e.g. granules and tablets). Copyright © 2016 Elsevier B.V. All rights reserved.
On the formation of molecules and solid-state compounds from the AGB to the PN phases
NASA Astrophysics Data System (ADS)
García-Hernández, D. A.; Manchado, A.
2016-07-01
During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.
Tirado-Soto, Magda Martina; Zamberlan, Fabio Luiz
2013-04-01
The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city's main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers' cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ji-Guang; Ikegami, Takayasu; Wang, Yarong; Mori, Toshiyuki
2002-10-01
A novel carbonate (co)precipitation method, employing nitrates as the starting salts and ammonium carbonate as the precipitant, has been used to synthesize nanocrystalline CeO 2 and Ce 1- xY xO 2- x/2 ( x≤0.35) solid-solutions. The resultant powders are characterized by elemental analysis, differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) analysis, and high-resolution scanning electron microscopy (HRSEM). Due to the direct formation of carbonate solid-solutions during precipitation, Ce 1- xY xO 2- x/2 solid-solution oxides are formed directly during calcination at a very low temperature of ˜300°C for 2 h. The thus-produced oxide nanopowders are essentially non-agglomerated, as revealed by BET in conjunction with XRD analysis. The solubility of YO 1.5 in CeO 2 is determined via XRD to be somewhere in the range from 27 to 35 mol%, from which a Y 2O 3-related type-C phase appears in the final product. Y 3+-doping promotes the formation of spherical nanoparticles, retards thermal decomposition of the precursors, and suppresses significantly crystallite coarsening of the oxides during calcination. The activation energy for crystallite coarsening increases gradually from 68.7 kJ mol -1 for pure CeO 2 to 138.6 kJ mol -1 for CeO 2 doped with 35 mol% YO 1.5. The dopant effects on crystallite coarsening is elaborated from the view point of solid-state chemistry.
Vibrational spectroscopic investigation of polymorphs and cocrystals of indomethacin.
Ali, Hassan Refat H; Alhalaweh, Amjad; Velaga, Sitaram P
2013-05-01
Identification of optimal solid form of an active pharmaceutical ingredient and form control are very important in drug development. Thus, the structural information of these forms and in-depth insight on the modes of molecular interactions are necessary, and vibrational spectroscopic methods are well suited for this purpose. In-depth structural analysis of different solid forms of indomethacin (IND) using Raman and infrared (IR) spectroscopy is the objective. We have investigated the modes of molecular interactions in polymorphs (α and γ), amorphous and discovered cocrystals of IND with nicotinamide (NIC) and trans-cinnamic acid (CIN) coformers. The solid forms of IND have been prepared; their purity has been verified by differential scanning calorimetry and powder X-ray diffractometry and then studied in the solid-state by Raman and IR spectroscopy. The modes of the interactions were closely investigated from the vibrational data. The key vibrational features of IND solid forms have been specified. The IR (C=O) band at 1713 cm(-1) attributed to cyclic acid dimer of γ IND has disappeared in IND-NIC/CIN whilst retained in IND-SAC cocrystal. IND cocrystallizes in different conformations and crystal lattices with different coformers. The cyclic acid dimer of IND has been kept on its cocrystallization with saccharin and it could have been broken with NIC and CIN. The complementary nature of Raman and IR spectroscopy allowed unambiguous investigation of the chemical composition of pharmaceutical materials which is of particular importance in the absence of detailed structural information, as in the case of IND-NIC and IND-CIN.
Davis, Hyman R.; Long, R. H.; Simone, A. A.
1979-01-01
Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.
Aluminum phosphate ceramics for waste storage
Wagh, Arun; Maloney, Martin D
2014-06-03
The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.
The competition between the liquid-liquid dewetting and the liquid-solid dewetting.
Xu, Lin; Shi, Tongfei; An, Lijia
2009-05-14
We investigate the dewetting behavior of the bilayer of air/PS/PMMA/silanized Si wafer and find the two competing dewetting pathways in the dewetting process. The upper layer dewets on the lower layer (dewetting pathway 1, the liquid-liquid dewetting) and the two layers rupture on the solid substrate (dewetting pathway 2, the liquid-solid dewetting). To the two competing dewetting pathways, the process of forming holes and the process of hole growth, influence their competing relation. In the process of forming holes, the time of forming holes is a main factor that influences their competing relation. During the process of hole growth, the dewetting velocity is a main factor that influences their competing relation. The liquid-liquid interfacial tension, the film thickness of the polymer, and the viscosity of the polymer are important factors that influence the time of forming holes and the dewetting velocity. When the liquid-liquid dewetting pathway and the liquid-solid dewetting pathway compete in the dewetting process, the competing relation can be controlled by changing the molecular weight of the polymer, the film thickness, and the annealing temperature. In addition, it is also found that the rim growth on the solid substrate is by a rolling mechanism in the process of hole growth.
"Immortal" liquid film formed by colliding bubble at oscillating solid substrates
NASA Astrophysics Data System (ADS)
Zawala, Jan
2016-05-01
This paper presents an experimental study of the behavior of an ascending air bubble (equivalent radius 0.74 mm) colliding with a solid substrate. The substrate is either motionless or oscillating with a precisely adjusted acceleration, slightly higher than gravity. It is shown that the stability of the liquid film formed between the striking bubble and the solid surface depends not only on the hydrophobic/hydrophilic properties of the solid but also on the energetic interrelations in the system. The results indicate that the rupture of the bubble and its attachment at a smooth hydrophobic solid surface are related to the viscous dissipation of energy, leading to a gradual decrease in the bubble deformation, and in consequence in the radius of the formed separating liquid film. When the film radius is small enough, the bubble ruptures and attaches to the hydrophobic solid surface. Moreover, it is shown that when the bubble deformations are forced to be constant, by applying properly adjusted oscillations of the solid substrate (energy supply conditions), bubble rupture can be prevented and a constant bubble bouncing is observed, irrespective of the hydrophobic/hydrophilic properties of the solid substrate. Under such energy supply conditions, the liquid film can be considered "immortal." The numerical calculations performed for the respective system, in which constant kinetic energy is induced, confirm that the liquid film can persist indefinitely owing to its constant radius, which is too large to reach the critical thickness for rupture during the collision time.
Closeup view of the Solid Rocket Booster (SRB) Forward Skirt, ...
Close-up view of the Solid Rocket Booster (SRB) Forward Skirt, Frustum and Nose Cap mated assembly undergoing final preparations in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The prominent feature in this view is the Forward Thrust Attach Fitting which mates up with the Forward Thrust Attach Fitting of the External Tank (ET) at the ends of the SRB Beam that runs through the ET's Inter Tank Assembly. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
40 CFR 62.14795 - How do I achieve final compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14795 How do I achieve final compliance? For the final compliance, you must...
40 CFR 62.14795 - How do I achieve final compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14795 How do I achieve final compliance? For the final compliance, you must...
40 CFR 62.14795 - How do I achieve final compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14795 How do I achieve final compliance? For the final compliance, you must...
40 CFR 62.14795 - How do I achieve final compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14795 How do I achieve final compliance? For the final compliance, you must...
40 CFR 62.14795 - How do I achieve final compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or Yard Waste § 62.14795 How do I achieve final compliance? For the final compliance, you must...
Zhang, Qiang; Cheng, Long; Liu, Wei; Zheng, Yun; Su, Xianli; Chi, Hang; Liu, Huijun; Yan, Yonggao; Tang, Xinfeng; Uher, Ctirad
2014-11-21
Mg2Si1-xSnx solid solutions are promising thermoelectric materials for power generation applications in the 500-800 K range. Outstanding n-type forms of these solid solutions have been developed in the past few years with the thermoelectric figure of merit ZT as high as 1.4. Unfortunately, no comparable performance has been achieved so far with p-type forms of the structure. In this work, we use Li doping on Mg sites in an attempt to enhance and control the concentration of hole carriers. We show that Li as well as Ga is a far more effective p-type dopant in comparison to Na or K. With the increasing content of Li, the electrical conductivity rises rapidly on account of a significantly enhanced density of holes. While the Seebeck coefficient decreases concomitantly, the power factor retains robust values supported by a rather high mobility of holes. Theoretical calculations indicate that Mg2Si0.3Sn0.7 intrinsically possesses the almost convergent double valence band structure (the light and heavy band), and Li doping retains a low density of states (DOS) on the top of the valence band, contrary to the Ga doping at the sites of Si/Sn. Low temperature specific heat capacity studies attest to a low DOS effective mass in Li-doped samples and consequently their larger hole mobility. The overall effect is a large power factor of Li-doped solid solutions. Although the thermal conductivity increases as more Li is incorporated in the structure, the enhanced carrier density effectively shifts the onset of intrinsic excitations (bipolar effect) to higher temperatures, and the beneficial role of phonon Umklapp processes as the primary limiting factor to the lattice thermal conductivity is thus extended. The final outcome is the figure of merit ZT ∼ 0.5 at 750 K for x = 0.07. This represents a 30% improvement in the figure of merit of p-type Mg2Si1-xSnx solid solutions over the literature values. Hence, designing low DOS near Fermi level EF for given carrier pockets can serve as an effective approach to optimize the PF and thus ZT value.
Reyes, J F García; Barrales, P Ortega; Díaz, A Molina
2005-03-15
A novel, single and robust solid surface fluorescence-based sensing device assembled in a continuous flow system has been developed for the determination of trace amounts of aluminium in water samples. The proposed method is based on the transient immobilization of the target species on an appropriate active solid sensing zone (C(18) silica gel). The target species was the fluorogenic chelate, formed as a result of the on-line complexation of Al(III) with chromotropic acid (CA) at pH 4.1. The fluorescence of the complex is continuously monitored at an emission wavelength of 390nm upon excitation at 361nm. The instrumental, chemical and flow-injection variables affecting the fluorescence signal were carefully investigated and optimized. After selecting the most suitable conditions, the sensing system was calibrated in the range 10-500mugl(-1), obtaining a detection limit of 2.6mugl(-1), and a R.S.D. of 2.2%, with a sampling frequency of 24h(-1). In addition, the selectivity of the proposed methodology was evaluated by performing interference studies with different cations and anions which could affect the analytical response. Finally, the proposed method, which meets the EU regulations regarding the aluminium content in drinking waters, was satisfactorily applied to different water samples, with recoveries between 97 and 105%. The simplicity, low cost and easy operation are the main advantages of the present procedure.
Ionic liquids in drug delivery.
Shamshina, Julia L; Barber, Patrick S; Rogers, Robin D
2013-10-01
To overcome potential problems with solid-state APIs, such as polymorphism, solubility and bioavailability, pure liquid salt (ionic liquid) forms of active pharmaceutical ingredients (API-ILs) are considered here as a design strategy. After a critical review of the current literature, the recent development of the API-ILs strategy is presented, with a particular focus on the liquefaction of drugs. A variety of IL tools for control over the liquid salt state of matter are discussed including choice of counterion to produce an IL from a given API; the concept of oligomeric ions that enables liquefaction of solid ILs by changing the stoichiometry or complexity of the ions; formation of 'liquid co-crystals' where hydrogen bonding is the driving force in the liquefaction of a neutral acid-base complex; combining an IL strategy with the prodrug strategy to improve the delivery of solid APIs; using ILs as delivery agents via trapping a drug in a micelle and finally ILs designed with tunable hydrophilic-lipophilic balance that matches the structural requirements needed to solubilize poorly water-soluble APIs. The authors believe that API-IL approaches may save failed lead candidates, extend the patent life of current APIs, lead to new delivery options or even new pharmaceutical action. They encourage the pharmaceutical industry to invest more research into the API-IL platform as it could lead to fast-tracked approval based on similarities to the APIs already approved.
3D Printed Surgical Instruments: The Design and Fabrication Process.
George, Mitchell; Aroom, Kevin R; Hawes, Harvey G; Gill, Brijesh S; Love, Joseph
2017-01-01
3D printing is an additive manufacturing process allowing the creation of solid objects directly from a digital file. We believe recent advances in additive manufacturing may be applicable to surgical instrument design. This study investigates the feasibility, design and fabrication process of usable 3D printed surgical instruments. The computer-aided design package SolidWorks (Dassault Systemes SolidWorks Corp., Waltham MA) was used to design a surgical set including hemostats, needle driver, scalpel handle, retractors and forceps. These designs were then printed on a selective laser sintering (SLS) Sinterstation HiQ (3D Systems, Rock Hill SC) using DuraForm EX plastic. The final printed products were evaluated by practicing general surgeons for ergonomic functionality and performance, this included simulated surgery and inguinal hernia repairs on human cadavers. Improvements were identified and addressed by adjusting design and build metrics. Repeated manufacturing processes and redesigns led to the creation of multiple functional and fully reproducible surgical sets utilizing the user feedback of surgeons. Iterative cycles including design, production and testing took an average of 3 days. Each surgical set was built using the SLS Sinterstation HiQ with an average build time of 6 h per set. Functional 3D printed surgical instruments are feasible. Advantages compared to traditional manufacturing methods include no increase in cost for increased complexity, accelerated design to production times and surgeon specific modifications.
Filizzola, Andressa-Incerte; Bartholomeu-dos-Santos, Teresa-Cristina-Ribeiro
2014-01-01
Ameloblastomas are odontogenic tumors that can present some distinct clinicopathological profiles when comparing different populations and studies. Objectives: The aim of the present study was to analyze the clinicopathological features from a series of ameloblastomas diagnosed in a single Oral Pathology service in Brazil in an 8-year period. Study Design: The files were revised and all cases diagnosed as ameloblastomas in the period were retrieved. All hematoxylin and eosin stained histological slides were reviewed and all clinical and radiological information were obtained through a review of the laboratory forms. Data were descriptively analyzed and a comparison was performed with the different ameloblastomas subtypes. Results: Seventy ameloblastomas composed the final sample, including 57 (81%) solid/multicystic, 9 (13%) unicystic, 2 (3%) desmoplastic and 2 (3%) peripheral ameloblastomas. Mean age of the affected patients was in the forth decade of life and there was a slight male predominance. Most tumors presented as multilocular radiolucencies, were located in the posterior mandible and showed the follicular and plexiform histological patterns. There was no difference on the mean age of the patients affected by solid and unicystic ameloblastomas. Conclusions: The present results showed that the clinicopathological features of the ameloblastomas included in this Brazilian sample were similar to the features described in most other worldwide populations. Key words:Ameloblastoma, solid, unicystic, review, epidemiology, histology. PMID:25129244
Rail damage in a solid-armature rail gun. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brassard, T.; Homan, C.G.
1987-12-01
Plasma-arc-drive rail guns operate by forming a high-temperature plasma behind the projectile using a thin metal fuze. These systems achieve the highest projectile velocities (about 12 km /sec), since the driving force includes a substantial plasma pressure as well as the electromagnetic or Lorentz force. Unfortunately, severe rail damage occurs primarily from the intense temperatures generated by the plasma arc and the wiping motion of the armature itself. The solid-armature gun replaces the plasma armature with a conducting metal armature. Since the plasma arcing is reduced or eliminated, the projectiles are accelerated mainly by the Lorentz force. Thus, solid armaturemore » rail guns operate at lower projectile velocities. The important tradeoff is that there is a substantial reduction in rail damage for metal armature projectiles. The elimination of the plasma force limits projectile velocities in the metal-armature rail guns. A more-subtle limit is the speed at which the commutation process can take place. Although the latter limit is still not well understood, experimental evidence indicates a commutation limit may occur near 6 to 7 km/sec. This velocity limit is still attractive for Army tactical missions for rail guns. The actual rail damage occurring with two types of metal armatures, wire brush contactors and monolithic metal contactors, and new developments in barrel technology, such as superconducting augmentation, are presented in this report.« less
Crystal Chemistry and Electrochemistry of Li xMn 1.5Ni 0.5O 4 Solid Solution Cathode Materials
Kan, Wang Hay; Kuppan, Saravanan; Cheng, Lei; ...
2017-07-19
For ordered high-voltage spinel LiMn 1.5Ni 0.5O 4 (LMNO) with the P4 32 1 symmetry, the two consecutive two-phase transformations at ~4.7 V (vs Li +/Li), involving three cubic phases of LMNO, Li 0.5Mn 1.5Ni 0.5O 4 (L 0.5MNO), and Mn 1.5Ni 0.5O 4 (MNO), have been well-established. Such a mechanism is traditionally associated with poor kinetics due to the slow movement of the phase boundaries and the large mechanical strain resulting from the volume changes among the phases, yet ordered LMNO has been shown to have excellent rate capability. In this paper, we show the ability of the phasesmore » to dissolve into each other and determine their solubility limit. We characterized the properties of the formed solid solutions and investigated the role of non-equilibrium single-phase redox processes during the charge and discharge of LMNO. Finally, by using an array of advanced analytical techniques, such as soft and hard X-ray spectroscopy, transmission X-ray microscopy, and neutron/X-ray diffraction, as well as bond valence sum analysis, the present study examines the metastable nature of solid-solution phases and provides new insights in enabling cathode materials that are thermodynamically unstable.« less
Self-spreading of the wetting ridge during stick-slip on a viscoelastic surface
Park, S. J.; Bostwick, J. B.; De Andrade, V.; ...
2017-10-23
Dynamic wetting behaviors on soft solids are important to interpret complex biological processes from cell–substrate interactions. Despite intensive research studies over the past half-century, the underlying mechanisms of spreading behaviors are not clearly understood. The most interesting feature of wetting on soft matter is the formation of a “wetting ridge”, a surface deformation by a competition between elasticity and capillarity. Dynamics of the wetting ridge formed at the three-phase contact line underlies the dynamic wetting behaviors, but remains largely unexplored mostly due to limitations in indirect observation. Here, we directly visualize wetting ridge dynamics during continuous- and stick-slip motions onmore » a viscoelastic surface using X-ray microscopy. Strikingly, we discover that the ridge spreads spontaneously during stick and triggers contact line depinning (stick-to-slip transition) by changing the ridge geometry which weakens the contact line pinning. Finally, we clarify ‘viscoelastic-braking’, ‘stick-slipping’, and ‘stick-breaking’ spreading behaviors through the ridge dynamics. In stick-breaking, no ridge-spreading occurs and contact line pinning (hysteresis) is enhanced by cusp-bending while preserving a microscopic equilibrium at the ridge tip. We have furthered the understanding of spreading behaviors on soft solids and demonstrated the value of X-ray microscopy in elucidating various dynamic wetting behaviors on soft solids as well as puzzling biological issues.« less
Jin, K.; Gao, Y. F.; Bei, H.
2017-04-07
Ternary single-phase concentrated solid solution alloys (SP-CSAs), so-called "medium entropy alloys", not only possess notable mechanical and physical properties but also form a model system linking the relatively simple binary alloys to the complex high entropy alloys. Our knowledge of their intrinsic properties is vital to understand the material behavior and to prompt future applications. To this end, three model alloys NiCoFe, NiCoCr, and NiFe-20Cr have been selected and grown as single crystals. We measured their elastic constants using an ultrasonic method, and several key materials properties, such as shear modulus, bulk modulus, elastic anisotropy, and Debye temperatures have beenmore » derived. Furthermore, nanoindentation tests have been performed on these three alloys together with Ni, NiCo and NiFe on their (100) surface, to investigate the strengthening mechanisms. NiCoCr has the highest hardness, NiFe, NiCoFe and NiFe-20Cr share a similar hardness that is apparently lower than NiCoCr; NiCo has the lowest hardness in the alloys, which is similar to elemental Ni. The Labusch-type solid solution model has been applied to interpret the nanoindentation data, with two approaches used to calculate the lattice mismatch. Finally, by adopting an interatomic spacing matrix method, the Labusch model can reasonably predict the hardening effects for the whole set of materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomaszewski, Elizabeth J.; Lee, Seungyeol; Rudolph, Jared
Chromium (Cr) is a toxic metal that causes a myriad of health problems and enters the environment as a result of anthropogenic activities and/or natural processes. The toxicity and solubility of chromium is linked to its oxidation state; Cr(III) is poorly soluble and relatively nontoxic, while Cr(VI) is soluble and a known carcinogen. Solid Fe(II) in iron-bearing minerals, such as pyrite, magnetite, and green rusts, reduce the oxidation state of chromium, reducing its toxicity and mobility. However, these minerals are not the only potential sources of solid-associated Fe(II) available for Cr(VI) reduction. For example, ferric (Fe(III)) (hydr)oxides, such as goethitemore » or hematite, can have Fe(II) in the solid without phase transformation; however, the reactivity of Fe(II) within Fe(III) (hydr)oxides with contaminants, has not been previously investigated. Here, we cyclically react goethite with dissolved Fe(II) followed by dissolved O2, leading to the formation of reactive Fe(II) associated with goethite. In separate reactors, the reactivity of this Fe(II) is probed under oxic conditions, by exposure to chromate (CrO42 -) after either one, two, three or four redox cycles. Cr is not present during redox cycling; rather, it is introduced to a subset of the solid after each oxidation half-cycle. Analysis of X-ray absorption near edge structure (XANES) spectra reveals that the extent of Cr(VI) reduction to Cr(III) depends not only on solid Fe(II) content but also surface area and mean size of ordered crystalline domains, determined by BET surface area analysis and X-ray diffraction (XRD), respectively. Shell-by-shell fitting of the extended X-ray absorption fine structure (EXAFS) spectra demonstrates chromium forms both single and double corner sharing complexes on the surface of goethite, in addition to sorbed Cr(III) species. Finally, transmission electron microscope (TEM) imaging and X-ray energy-dispersive spectroscopy (EDS) illustrate that Cr preferentially localizes on the (100) face of goethite, independent of the number of redox cycles goethite undergoes. This work demonstrates that under oxic conditions, solid Fe(II) associated with goethite resulting from rapid redox cycling is reactive and available for electron transfer to Cr(VI), suggesting Fe(III) (hydr)oxides may act as reservoirs of reactive electron density, even in oxygen saturated environments.« less
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.; Key, James F.
1993-01-01
Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.
Quantifying Methane Abatement Efficiency at Three Municipal Solid Waste Landfills; Final Report
Measurements were conducted at three municipal solid waste landfills to compare fugitive methane emissions from the landfill cells to the quantity of collected gas (i.e., gas collection efficiency). The measurements were conducted over a multi-week sampling campaign using EPA Oth...
The Definition of Solid Waste 2018 rule is in response to the court vacating portions of the 2015 final rule. This is a per-publication version, the official version will be published in the Federal Register.
Dynamic Response of Acrylonitrile Butadiene Styrene Under Impact Loading (Open Access)
2016-03-16
of contraction and expansion was observed as the impact load was applied. Thismultistage deformation behavior may be attributable to the ring formed ...ABS fabricated by FDM. Results of the experimental characterization show that rasters formed parallel to the loading direction fabricated in the... formed using a solid ABS block to determine the mechanical property at various strain rates (Fig. 1). Through the analysis of the solid ABS, a linear
Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan
2016-08-07
Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.
Preparation and storage of isotopically labeled reduced nicotinamide adenine dinucleotide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Northrop, D.B.; Duggleby, R.G.
1987-09-01
A method for obtaining highly purified NADH in a dry, solid, and stable form is described. The method involves improvements of the ion-exchange and reversed-phase chromatographic procedures of C. J. Newton and S. M. Faynor, and D. B. Northrop. The necessary time to prepare pure NADH has been reduced to a few hours. The final product, obtained by drying the nucleotide from absolute ethanol, shows no detectable decomposition either during the drying procedure or during storage under nitrogen gas at -20 degrees C for several months. Using dry product prepared from fixed volumes of ethanolic solution, standardized solutions of knownmore » amounts of the highly purified and stored NADH can be obtained in a few seconds.« less
Continuous process for forming sheet metal from an alloy containing non-dendritic primary solid
Flemings, Merton C.; Matsuniya, Tooru
1983-01-01
A homogeneous mixture of liquid-solid metal is shaped by passing the composition from an agitation zone onto a surface moving relative to the exit of the agitation zone. A portion of the composition contacting the moving surface is solidified and the entire composition then is formed.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2006-10-10
Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.
Modeling of urban solid waste management system: The case of Dhaka city
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sufian, M.A.; Bala, B.K.
2007-07-01
This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collectionmore » and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis.« less
In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion
NASA Astrophysics Data System (ADS)
McIntyre, Melissa Dawn
Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region and increase electrochemical activity in cermet electrodes. The final study of lanthanum strontium manganite cathodes infiltrated with BaO revealed the reversible decomposition/formation of a Ba3Mn2O8 secondary phase under applied potentials and proposed mechanisms for the enhanced electrocatalytic oxygen reduction associated with this compound under polarizing conditions. Collectively, these studies demonstrate that mechanistic information obtained from molecular/material specific techniques coupled with electrochemical measurements can be used to help optimize materials and operating conditions in solid-state electrochemical cells.
Colombo, P.; Kalb, P.D.
1984-06-05
In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.
Presti, Davide; Pedone, Alfonso; Menziani, Maria Cristina
2014-08-04
The structural and (13)C/(1)H NMR parameters of the four crystal forms (1α, 1·H2O, 1β, and 1γ) of the solid wheel-and-axle (WAA) metal-organic compound [(p-cymene)Ru(κN-INA)Cl2] have been studied by means of periodic DFT calculations. The quality of the results obtained strongly depends on a correct description of long-range interactions; thus, in the geometry refinement protocol used, the pure DFT functionals need to be coupled with a dispersion-correction term (B3LYP-D2, B3LYP-D*). The solid-state (13)C/(1)H NMR δ(iso) parameters and (13)C MAS NMR spectra, calculated by means of the PBE-GIPAW method, agree well with the experimental data for the four crystal forms (mean absolute deviations of the (13)C and (1)H δ(iso) data values lie in the ranges 1.3-2.9 and 0.3-1.0 ppm, respectively). In this context, some revisions in the experimental assignment of the (13)C/(1)H NMR δ(iso) parameters of the 1·H2O, 1β, and 1γ crystal forms can be suggested. The mismatch in the assignment seems to be due to the rotation of the -COOH moiety, which occurs at the 1α-1·H2O transition and was not considered in the experiments. Finally, the results obtained suggest the presence of two COOH···Cl hydrogen bonds of comparable strength established by the two molecules in the asymmetric unit of the 1γ polymorph, in partial disagreement with previous findings.
Veal, Boyd W.; Paulikas, Arvydas; Balachandran, Uthamalingam; Zhong, Wei
1997-01-01
A method of fabricating bulk superconducting material including RBa.sub.2 Cu.sub.3 O.sub.7-.delta. comprising heating compressed powder oxides and/or carbonates of R and Ba and Cu present in mole ratios to form RBa.sub.2 Cu.sub.3 O.sub.7-.delta. in physical contact with an oxide single crystal seed to a temperature sufficient to form a liquid phase in the RBa.sub.2 Cu.sub.3 O.sub.7-.delta. while maintaining the single crystal seed solid to grow the superconducting material and thereafter cooling to provide a material including RBa.sub.2 Cu.sub.3 O.sub.7-.delta.. R is a rare earth or Y or La and the single crystal seed has a lattice mismatch with RBa.sub.2 Cu.sub.3 O.sub.7-.delta. of less than about 2% at the growth temperature. The starting material may be such that the final product contains a minor amount of R.sub.2 BaCuO.sub.5.
Ferroelectric and piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene) gels
NASA Astrophysics Data System (ADS)
Fukagawa, Miki; Koshiba, Yausko; Morimoto, Masahiro; Ishida, Kenji
2017-04-01
The structural, ferroelectric, and piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gels fabricated using poly(pyridinium-1,4-diyliminocarbonyl-1,4-phenylenemethylene thiocyanate) (PICPM-SCN) as a gelator are investigated in this study. The P(VDF-TrFE)/PICPM-SCN composites formed thermally reversible physical gels and their analysis by Fourier transform infrared spectroscopy revealed that the P(VDF-TrFE) molecules in these gels exhibit predominantly the ferroelectric phase I (Form β). Furthermore, the polarization switching peaks of the P(VDF-TrFE)/PICPM-SCN gel films were clearly observed. The coercive electric field for these gel films was estimated to be 2 MV/m, which is dramatically lower than the values typically observed for P(VDF-TrFE) solid films (50 MV/m). Finally, the P(VDF-TrFE)/PICPM-SCN gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was determined to be ˜53 pm/V at an applied voltage frequency of 4 kHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, M.; Rykovanov, S.; Bierbach, J.
2016-12-05
Energy coupling during relativistically intense laser–matter interactions is encoded in the attosecond motion of strongly driven electrons at the pre-formed plasma–vacuum boundary. Studying and controlling this motion can reveal details about the microscopic processes that govern a vast array of light–matter interaction phenomena, including those at the forefront of extreme laser–plasma science such as laser-driven ion acceleration, bright attosecond pulse generation and efficient energy coupling for the generation and study of warm dense matter. Here in this paper, we experimentally demonstrate that by precisely adjusting the relative phase of an additional laser beam operating at the second harmonic of themore » driving laser it is possible to control the trajectories of relativistic electron bunches formed during the interaction with a solid target at the attosecond scale. Finally, we observe significant enhancements in the resulting high-harmonic yield, suggesting potential applications for sources of ultra-bright, extreme ultraviolet attosecond radiation to be used in atomic and molecular pump–probe experiments« less
NASA Technical Reports Server (NTRS)
Lin, K. M.; Moore, F. K.
1976-01-01
A new form of self-confined flow was investigated in which a recirculation zone forms away from any solid boundary. An inviscid flow analysis indicated that in a purely meridional axisymmetric flow a stationary, spherical, self-confined region should occur in the center of a streamlined divergent-convergent enlargement zone. The spherical confinement region would be at rest and at constant pressure. Experimental investigations were carried out in a specially built test apparatus to establish the desired confined flow. The streamlined divergent-convergent interior shape of the test section was fabricated according to the theoretical calculation for a particular streamline. The required inlet vorticity distribution was generated by producing a velocity profile with a shaped gauze screen in the straight pipe upstream of the test section. Fluid speed and turbulence intensity were measured with a constant-temperature hot-wire anemometer system. The measured results indicated a very orderly and stable flow field.
Computation of multi-dimensional viscous supersonic jet flow
NASA Technical Reports Server (NTRS)
Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.
1986-01-01
A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.
Preferential nucleation during polymorphic transformations
Sharma, H.; Sietsma, J.; Offerman, S. E.
2016-08-03
Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and thereforemore » nucleation more probable - with increasing number of special OR’s. As a result, these insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.4... hazardous waste programs which have received final authorization under this part. (a) Any aspect of the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.4... hazardous waste programs which have received final authorization under this part. (a) Any aspect of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.4... hazardous waste programs which have received final authorization under this part. (a) Any aspect of the...
Research was conducted to evaluate landfill gas emissions at five municipal solid waste landfills which have modern control technology for landfill gas emissions. Comprehensive testing was conducted on the raw landfill gas and the combustion outlet exhaust. The project had two ...
Hybrid atomistic simulation of fluid uptake in a deformable solid
NASA Astrophysics Data System (ADS)
Moghadam, Mahyar M.; Rickman, J. M.
2014-01-01
Fluid imbibition via diffusion in a deformable solid results in solid stresses that may, in turn, alter subsequent fluid uptake. To examine this interplay between diffusional and elastic fields, we employed a hybrid Monte Carlo-molecular dynamics scheme to model the coupling of a fluid reservoir to a deformable solid, and then simulated the resulting fluid permeation into the solid. By monitoring the instantaneous structure factor and solid dimensions, we were able to determine the compositional strain associated with imbibition, and the diffusion coefficient in the Fickian regime was obtained from the time dependence of the fluid uptake. Finally, for large, mobile fluid atoms, a non-Fickian regime was highlighted and possible mechanisms for this behavior were identified.
NMR imaging and hydrodynamic analysis of neutrally buoyant non-Newtonian slurry flows
NASA Astrophysics Data System (ADS)
Bouillard, J. X.; Sinton, S. W.
The flow of solids loaded suspension in cylindrical pipes has been the object of intense experimental and theoretical investigations in recent years. These types of flows are of great interest in chemical engineering because of their important use in many industrial manufacturing processes. Such flows are for example encountered in the manufacture of solid-rocket propellants, advanced ceramics, reinforced polymer composites, in heterogeneous catalytic reactors, and in the pipeline transport of liquid-solids suspensions. In most cases, the suspension microstructure and the degree of solids dispersion greatly affect the final performance of the manufactured product. For example, solid propellant pellets need to be extremely-well dispersed in gel matrices for use as rocket engine solid fuels. The homogeneity of pellet dispersion is critical to allow good uniformity of the burn rate, which in turn affects the final mechanical performance of the engine. Today's manufacturing of such fuels uses continuous flow processes rather than batch processes. Unfortunately, the hydrodynamics of such flow processes is poorly understood and is difficult to assess because it requires the simultaneous measurements of liquid/solids phase velocities and volume fractions. Due to the recent development in pulsed Fourier Transform NMR imaging, NMR imaging is now becoming a powerful technique for the non intrusive investigation of multi-phase flows. This paper reports and exposes a state-of-the-art experimental and theoretical methodology that can be used to study such flows. The hydrodynamic model developed for this study is a two-phase flow shear thinning model with standard constitutive fluid/solids interphase drag and solids compaction stresses. this model shows good agreement with experimental data and the limitations of this model are discussed.
Extractability of 137Cs in Response to its Input Forms into Fukushima Forest Soils.
NASA Astrophysics Data System (ADS)
Mengistu, T. T.; Carasco, L.; Orjollet, D.; Coppin, F.
2017-12-01
In case of nuclear accidents like Fukushima disaster, the influence of 137Cs depositional forms (soluble and/or solid forms) on mineral soil of forest environment on its availability have not reported yet. Soluble (137Cs tagged ultra-pure water) and solid (137Cs contaminated litter-OL and fragmented litter-OF) input forms were mixed with the mineral soils collected under Fukushima coniferous and broadleaf forests. The mixtures then incubated under controlled laboratory condition to evaluate the extractability of 137Cs in soil over time in the presence of decomposition process through two extracting reagents- water and ammonium acetate. Results show that extracted 137Cs fraction with water was less than 1% for soluble input form and below detection limit for solid input form. On the same way with acetate reagent, the extracted 137Cs fraction ranged from 46 to 56% for soluble input and 2 to 15% for solid input, implying the nature of 137Cs contamination strongly influences the extractability and hence the mobility of 137Cs in soil. Although the degradation rate of the organic materials has been calculated in the range of 0.18 ± 0.1 to 0.24 ± 0.1 y-1, its impact on 137Cs extractability appeared very weak at least within the observation period, probably due to shorter time scale. Concerning the treatments of solid 137Cs input forms through acetate extraction, relatively more 137Cs has been extracted from broadleaf organic materials mixes (BL-OL & BL-OF) than the coniferous counterparts. This probably is due to the fact that the lignified coniferous organic materials (CED-OL & CED-OF) components tend to retain more 137Cs than that of the broadleaf. Generally, by extrapolating these observations in to a field context, one can expect more available 137Cs fraction in forest soil from wet depositional pathways such as throughfall and stemflow than those attached with organic materials like litter (OL) and its eco-processed forms (OF).
Astronomical observations of solid phase carbon
NASA Technical Reports Server (NTRS)
Jura, M.
1990-01-01
In the outer envelopes of red giants, when the gas cools sufficiently, molecules and solids form. Thermodynamically, the most stable molecule is CO, and it is usually assumed that all the available carbon and oxygen are consumed in the formation of this molecule (Salpeter 1977). If the carbon abundance is greater than the oxygen abundance, then the carbon left over after the formation of CO is available for solid grains. Because carbon is by far the most abundant species available for making solids in these environments, researchers anticipate that the grains are composed of nearly pure carbon in some form. The observations which can be used to infer the nature of this solid phase carbon are discussed. The observations of the dust around carbon-rich red giants are discussed. These results are then placed into their broader astrophysical context.
High temperature lubricating process
Taylor, R.W.; Shell, T.E.
1979-10-04
It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.
High temperature lubricating process
Taylor, Robert W.; Shell, Thomas E.
1982-01-01
It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.
Method for excluding salt and other soluble materials from produced water
Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN
2009-08-04
A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.
Development of forming and joining technology for TD-NiCr sheet
NASA Technical Reports Server (NTRS)
Torgerson, R. T.
1973-01-01
Forming joining techniques and properties data were developed for thin-gage TD-NiCr sheet in the recrystallized and unrecrystallized conditions. Theoretical and actual forming limit data are presented for several gages of each type of material for five forming processes: brake forming, corrugation forming, joggling, dimpling and beading. Recrystallized sheet can be best formed at room temperature, but unrecrystallized sheet requires forming at elevated temperature. Formability is satisfactory with most processes for the longitudinal orientation but poor for the transverse orientation. Dimpling techniques require further development for both material conditions. Data on joining techniques and joint properties are presented for four joining processes: resistance seam welding (solid-state), resistance spot welding (solid-state), resistance spot welding (fusion) and brazing. Resistance seam welded (solid-state) joints with 5t overlap were stronger than parent material for both material conditions when tested in tensile-shear and stress-rupture. Brazing studies resulted in development of NASA 18 braze alloy (Ni-16Cr-15Mo-8Al-4Si) with several properties superior to baseline TD-6 braze alloy, including lower brazing temperture, reduced reaction with Td-Ni-Cr, and higher stress-rupture properties.
Solid materials for removing arsenic and method thereof
Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.
2010-09-28
Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.
Solid materials for removing arsenic and method thereof
Coronado, Paul R [Livermore, CA; Coleman, Sabre J [Oakland, CA; Sanner, Robert D [Livermore, CA; Dias, Victoria L [Livermore, CA; Reynolds, John G [San Ramon, CA
2008-07-01
Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.
Nanocrystal/sol-gel nanocomposites
Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM
2007-06-05
The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.
Nanocrystal/sol-gel nanocomposites
Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM
2012-06-12
The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites
Transitiometric analysis of solid II/solid I transition in anhydrous theophylline.
Legendre, Bernard; Randzio, Stanislaw L
2007-10-01
For the first time, with the use of a high sensitivity, low heating rate, scanning transitiometry, it was possible to distinguish and characterise the polymorphic equilibrium transition between forms II and I in anhydrous theophylline. In this manner it was univocally proved, that forms II and I in theophylline are enantiotropically related. The temperature and enthalpy for that transition are as follows: T(trs)(II/I)=536.8+/-2.2K; Delta(trs)H(II/I)=1.99+/-0.09 kJ/mol. Making use of advantages of very slow heating rate and of a high energetic sensitivity of the transitiometer it was possible to observe in detail the polymorphic transition followed by melting of high temperature form I and to stop the solid I-liquid transition at a desired point of equilibrium. Such a solid I-liquid equilibrium could be stabilised and then displaced back to the crystallisation of form I with an adequate use of a precise temperature programming. In such a way a pure single phase of form I of theophylline was prepared. This fact was confirmed by X-ray powder diffraction patterns and calorimetric traces of fusion of the crystallised product. The temperature and enthalpy of the form I-liquid transition are as follows: T(fus)(I)=546.5+/-0.2K and Delta(fus)H(I)=29.37+/-0.29 kJ/mol.
Censi, Roberta; Rascioni, Riccardo; Di Martino, Piera
2015-05-01
The aim of the present work was to investigate the solid state change of the anhydrous and hydrate solid forms of sodium naproxen under different grinding and environmental conditions. Grinding was carried out manually in a mortar under the following conditions: at room temperature under air atmosphere (Method A), in the presence of liquid nitrogen under air atmosphere (Method B), at room temperature under nitrogen atmosphere (Method C), and in the presence of liquid nitrogen under nitrogen atmosphere (Method D). Among the hydrates, the following forms were used: a dihydrate form (DSN) obtained by exposing the anhydrous form at 55% RH; a dihydrate form (CSN) obtained by crystallizing sodium naproxen from water; the tetrahydrate form (TSN) obtained by exposing the anhydrous form at 75% RH. The metastable monohydrate form (MSN), previously described in the literature, was not used because of its high physical instability. The chemical stability during grinding was firstly assessed and proven by HPLC. Modification of the particle size and shape, and changes in the solid state under different grinding methods were evaluated by scanning electron microscopy, and X-ray powder diffractometry and thermogravimetry, respectively. The study demonstrated the strong influence of starting form, grinding and environmental conditions on particle size, shape and solid state of recovered sodium naproxen forms. In particular, it was demonstrated that in the absence of liquid nitrogen (Methods A and C), either at air or at nitrogen atmosphere, the monohydrate form (MSN) was obtained from any hydrates, meaning that these grinding conditions favored the dehydration of superior hydrates. The grinding process carried out in the presence of liquid nitrogen (Method B) led to further hydration of the starting materials: new hydrate forms were identified as one pentahydrate form and one hexahydrate form. The hydration was caused by the condensation of the atmospheric water on sodium naproxen particles by liquid nitrogen and by the grinding forces that created a close contact between water and drug. The simultaneous disruption of the crystals, occurring during grinding, and their close contact with water molecules promoted the conversion in higher hydrates. Under the Method D, it was possible to highlight a certain tendency to hydration probably due to a rearrangement of water already present into the hydrates, but results were substantially different from Method B. Thus, summarizing, the different SN forms behave differently under different grinding and environmental conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Núñez, L; Turiel, E; Tadeo, J L
2007-04-06
A simple and rapid analytical method for the determination of nonylphenol (NP) and nonylphenol ethoxylates (NPEOx) in solid environmental samples has been developed. This method combines an ultrasonic-assisted extraction procedure in small columns and an enrichment step onto C(18) solid-phase extraction cartridges prior to separation using HPLC with fluorescence detection. Method optimization was carried out using soil samples fortified at different concentration levels (from 0.1 to 100 microg/g). Under optimum conditions, 2g of soil was placed in small glass columns and extraction was performed assisted by sonication (SAESC) at 45 degrees C in two consecutive steps of 15 min using a mixture of H(2)O/MeOH (30/70). The obtained extracts were collected, loaded onto 500 mg C(18) cartridges, and analytes were eluted with 3 x 1 ml of methanol and 1 ml of acetonitrile. Finally, sample extracts were evaporated under a nitrogen stream, redissolved in 500 microl H(2)O/AcN (50/50), and passed though a 0.45 microm nylon filter before final determination by HPLC-FL. The developed procedure allowed to achieve quantitative recoveries for NP and NPEOx, and was properly validated. Finally, the method was applied to the determination of these compounds in soils and other environmental solid samples such as sediments, compost and sludge.
Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Afeworki, M.; Sansone, M.; Freund, H.; Pottorf, R.J.; Machel, H.G.; Zhang, T.; Ellis, G.S.; Tang, Y.; Peters, K.E.
2008-01-01
Insoluble solid bitumens are organic residues that can form by the thermal chemical alteration (TCA) or thermochemical sulfate reduction (TSR) of migrated petroleum. TCA may actually encompass several low temperature processes, such as biodegradation and asphaltene precipitation, followed by thermal alteration. TSR is an abiotic redox reaction where petroleum is oxidized by sulfate. It is difficult to distinguish solid bitumens associated with TCA of petroleum from those associated with TSR when both processes occur at relatively high temperature. The focus of the present work was to characterize solid bitumen samples associated with TCA or TSR using X-ray photoelectron spectroscopy (XPS). XPS is a surface analysis conducted on either isolated or in situ (>25 ??m diameter) solid bitumen that can provide the relative abundance and chemical speciation of carbon, organic and inorganic heteroatoms (NSO). In this study, naturally occurring solid bitumens from three locations, Nisku Fm. Brazeau River area (TSR-related), LaBarge Field Madison Fm. (TSR-related), and the Alaskan Brooks range (TCA-related), are compared to organic solids generated during laboratory simulation of the TSR and TCA processes. The abundance and chemical nature of organic nitrogen and sulfur in solid bitumens can be understood in terms of the nature of (1) petroleum precursor molecules, (2) the concentration of nitrogen by way of thermal stress and (3) the mode of sulfur incorporation. TCA solid bitumens originate from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. Organic sulfur in TCA organic solids remains fairly constant with increasing maturation (3.5 to ???17 sulfur per 100 carbons) into aromatic structures and to the low levels of nitrogen in their hydrocarbon precursors. Hence, XPS results provide organic chemical composition information that helps to distinguish whether solid bitumen, either in situ or removed and concentrated from the rock matrix, was formed via the TCA or TRS process. ?? 2008 Elsevier Ltd.
40 CFR 63.3941 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR... organic HAP. For reactive adhesives in which some of the HAP react to form solids and are not emitted to... reactive adhesives in which some of the HAP react to form solids and are not emitted to the atmosphere, you...
METHOD OF PURIFYING URANIUM METAL
Blanco, R.E.; Morrison, B.H.
1958-12-23
The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.
An Experiment in Physical Chemistry: Polymorphism and Phase Stability in Acetaminophen (Paracetamol)
ERIC Educational Resources Information Center
Myrick, Michael L.; Baranowski, Megan; Profeta, Luisa T. M.
2010-01-01
Differential scanning calorimetry analyses of two easily prepared polymorphs of acetaminophen (also known as paracetamol) are recorded. The density of the forms can be found in the literature. Rules for heats of transition, heats of fusion, and density, as well as methods for determining the solid-solid transition temperature between the forms,…
An all solid-state, rolled strip pulse forming line with low impedance and compact structure
NASA Astrophysics Data System (ADS)
Yang, Shi; Zhong, Hui-Huang; Qian, Bao-Liang; Yang, Han-Wu
2010-04-01
An all solid-state and compact pulsed strip pulse forming line (PFL) is investigated both theoretically and experimentally. The electromagnetic field distribution and the pulse formation in the strip PFL are analyzed numerically. Based on the theoretical analysis and numerical results, a rolled strip PFL with output voltage of 20 kV, pulse duration of 230 ns, and characteristic impedance of 0.5 Ω was designed and manufactured. We use the Mylar film and copper as the dielectric and conductor of the strip PFL. The dimension of the strip line is 23 000×400×1.6 mm3 in the case in which the strip line is unrolled, and the strip line is finally rolled into a cylinder of diameter of 311 mm for the experiment. The dimension and weight are about ten times smaller than those of traditional dielectric (oil or pure water) PFL with the same electrical parameters. Two experiments were performed using the strip line. One was for a transmission line experiment, and the other was for a PFL experiment. In the experiment of transmission line, the transmission time of the voltage signal was 115 ns, and the signal had almost no distortion, which verified the design. In the PFL experiment, results gave a 17.8 kV, 270 ns (full width at half maximum) voltage pulse which was a quasisquare wave on the water load of 0.5 Ω. The current going through the load is about 35.6 kA.
Popova, N A; Kaledin, V I; Nikolin, V P; Bogdanova, L A; Morozkova, T S; Tornuev, Yu V
2016-10-01
Experiments were performed on the model of transplanted mouse tumor with high incidence of liver metastases. Hydrophilic drug cycloplatam (injected intravenously in liposomes) was more potent than "free cycloplatam" (injected intravenously or intraperitoneally in physiological saline) in inhibiting the growth of natural and experimental metastases in the liver. By contrast, liposomal cycloplatam had lower efficiency than free cycloplatam in suppressing the growth of solid tumor. Liposomal and free cortifen (hydrophobic hormonal cytostatic) produced nearly the same effects on solid tumor growth. Our results suggest that liposomal forms of hydrophobic compounds producing nonselective effect on tumor cells (e.g., actinomycin D or Cosmegen), should not have advantages over free forms.
[Three dimensional mathematical model of tooth for finite element analysis].
Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka
2010-01-01
The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
NASA Astrophysics Data System (ADS)
McHugh, K. M.; Key, J. F.
1994-06-01
Spray forming is a near- net- shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or pattern to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing, often while substantially improving product quality. Spray forming is applicable to a wide range of metals and nonmetals and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities, and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray forming technology for producing near- net- shape solids and coatings of a variety of metals, polymers, and composite materials using de Laval nozzles. This article briefly describes the atomization behavior of liquid metals in linear de Laval nozzles and illustrates the versatility of the process by summarizing results from two spray forming programs. In one program, low-carbon steel strip >0.75 mm thick was produced; in the other, polymer membranes ˜5 μm thick were spray formed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, N. I., E-mail: nsorokin1@yandex.ru; Sobolev, B. P.
We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (M = Ca, Sr, Ba; R are rare earth elements) with an LaF{sub 3} structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R{sub 1–y}M{sub y}F{sub 3–y} tysonite phases, which providesmore » (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.« less
Method of forming components for a high-temperature secondary electrochemical cell
Mrazek, Franklin C.; Battles, James E.
1983-01-01
A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.
This is a regulation page for the final rule EPA issued on July 31, 2013 that modifies the hazardous waste management regulations for solvent-contaminated wipes under the Resource Conservation and Recovery Act (RCRA).
Federal Register notice: Office of Solid Waste Chemicals; Final Test Rule
EPA is issuing a final test rule, under section 4 of the Toxic Substances Control Act(TSCA) requiring and/or recommending that manufacturers and processors of 33 chemicals perform testing for human health effects and/or chemical fate.
Kushida, Ikuo; Gotoda, Masaharu
2013-10-01
ER-34122, a poorly water-soluble dual 5-lipoxygenase/cyclooxygenase inhibitor, exists as a crystalline form. According to an Oak Ridge thermal ellipsoid plot drawing, carbonyl oxygen O (5) makes an intermolecular hydrogen bond with the hydrogen bonded to N (3) in the crystal structure. The FTIR and the solid-state ¹³C NMR spectra suggest that the network is spread out in the amorphous state and the hydrogen bonding gets weaker than that in the crystalline phase, because the carbonyl signals significantly shift in both spectra. When amorphous ER-34122 was heated, crystallization occurred at around 140°C. Similar crystallization happened in the solid dispersion; however, the degree of crystallization was much lower than that observed in the pure amorphous material. Also, the DSC thermogram of the solid dispersion did not show any exothermic peaks implying crystallization. The heat of fusion (ΔHf) determined in the pure amorphous material was nearly equal to that for the crystalline form, whereas the ΔHf value obtained in the solid dispersion was less than a third of them. These data prove that crystallization of the amorphous form is dramatically restrained in the solid dispersion system. The carbonyl wavenumber shifts in the FTIR spectra indicate that the average hydrogen bond in the solid dispersion is lower than that in the pure amorphous material. Therefore, HPMC will suppress formation of the intermolecular network observed in ER-34122 crystal and preserve the amorphous state, which is thermodynamically less stable, in the solid dispersed system.
Structures And Fabrication Techniques For Solid State Electrochemical Devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2005-12-27
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2003-08-12
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
Release profiles of phenytoin from new oral dosage form for the elderly.
Watanabe, A; Hanawa, T; Sugihara, M; Yamamoto, K
1994-08-01
Utilization of the solid mass containing phenytoin, sodium caseinate and microcrystalline cellulose (MCC) as a new dosage form for the elderly was studied. The solid mass was prepared by treatment of the powder mixture with high pressure steam at 115 degrees C for 10 min. The stability of phenytoin in the solid mass was confirmed by infrared spectroscopy and high performance liquid chromatography. The extent of swelling of the solid mass containing phenytoin was investigated by water absorption test and gel strength test, and the swelling property was almost independent of the presence of phenytoin. The release profile of phenytoin from the solid mass was determined under various conditions, and was found to be influenced by the extent of swelling and the swollen state. It was observed that the protein adsorption to the phenytoin crystal surface and the addition of digestive enzyme also affected the release profile. In water, the solid mass prepared from a ground mixture of phenytoin and MCC showed remarkable improvement of release profile of phenytoin.
Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira
2016-01-01
High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3–99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144
Christensen, Noel C.; Emery, James D.; Smith, Maurice L.
1988-04-05
A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object.
NASA Astrophysics Data System (ADS)
Daitoku, Tadafumi; Utaka, Yoshio
In air-conditioning systems, it is desirable that the liquid-solid phase change temperature of a cool energy storage material is approximately 10 °C from the perspective of improving coefficient of performance (COP). Moreover, a thermal storage material that forms slurry can realize large heat capacity of working fluids. Since the solid that adheres to the heat transfer surface forms a thermal resistance layer and remarkably reduces the rate of cold storage, it is important to avoid the adhesion of a thick solid layer on the surface so as to realize efficient energy storage. Considering a harvest type cooling unit, the force required for removing the solid phase from the heat transfer surface was studied. Tetra-n-butylammonium Bromide (TBAB) clathrate hydrate was used as a cold storage material. The effect of the heat transfer surface properties on the scraping force for detachment of adhered solid of TBAB hydrate to the heat transfer surface was examined experimentally.
Allan, Phoebe K.; Griffin, John M.; Darwiche, Ali; ...
2016-01-29
We use operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline Na xSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na 3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na 3Sb (c-Na 3Sb) but with significant numbers of sodium vacancies and a limited correlation length,more » and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na 3–xSb and, finally, crystalline Na 3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na 1.7Sb, then a-Na 3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na 3–xSb without the formation of a-Na 1.7Sb. a-Na 3–xSb is converted to crystalline Na 3Sb at the end of the second discharge. In the end, we find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na 3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.« less
2016-01-01
Operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation of a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. PMID:26824406
Sasada, M.; Roedder, E.; Belkin, H.E.
1986-01-01
Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.
Stevanovic-Carapina, Hristina; Milic, Jelena; Curcic, Marijana; Randjelovic, Jasminka; Krinulovic, Katarina; Jovovic, Aleksandar; Brnjas, Zvonko
2016-07-01
Sustainable solid waste management needs more dedicated attention in respect of environmental and human health protection. Solid waste containing persistent organic pollutants is of special concern, since persistent organic pollutants are persistent, toxic and of high risk to human health and the environment. The objective of this investigation was to identify critical points in the Serbian system of solid waste and persistent organic pollutants management, to assure the life cycle management of persistent organic pollutants and products containing these chemicals, including prevention and final destruction. Data were collected from the Serbian competent authorities, and led us to identify preventive actions for solid waste management that should reduce or minimise release of persistent organic pollutants into the environment, and to propose actions necessary for persistent organic pollutants solid waste. The adverse impact of persistent organic pollutants is multidimensional. Owing to the lack of treatment or disposal plants for hazardous waste in Serbia, the only option at the moment to manage persistent organic pollutants waste is to keep it in temporary storage and when conditions are created (primarily financial), such waste should be exported for destruction in hazardous waste incinerators. Meanwhile, it needs to be assured that any persistent organic pollutants management activity does not negatively impact recycling flows or disturb progress towards a more circular economy in Serbia. © The Author(s) 2016.
Solid polymer electrolyte lithium batteries
Alamgir, M.; Abraham, K.M.
1993-10-12
This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.
Solid polymer electrolyte lithium batteries
Alamgir, Mohamed; Abraham, Kuzhikalail M.
1993-01-01
This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).
NASA Technical Reports Server (NTRS)
Benet, James
1993-01-01
The final report describes the work performed from 9 Jun. 1992 to 31 Jul. 1993 on the NASA Satellite Communications Application Research (SCAR) Phase 2 program, Efficient High Power, Solid State Amplifier for EHF Communications. The purpose of the program was to demonstrate the feasibility of high-efficiency, high-power, EHF solid state amplifiers that are smaller, lighter, more efficient, and less costly than existing traveling wave tube (TWT) amplifiers by combining the output power from up to several hundred solid state amplifiers using a unique orthomode spatial power combiner (OSPC).
Planet Formation by Coagulation: A Focus on Uranus and Neptune
NASA Astrophysics Data System (ADS)
Goldreich, Peter; Lithwick, Yoram; Sari, Re'em
2004-09-01
Planets form in the circumstellar disks of young stars. We review the basic physical processes by which solid bodies accrete each other and alter each others' random velocities, and we provide order-of-magnitude derivations for the rates of these processes. We discuss and exercise the two-groups approximation, a simple yet powerful technique for solving the evolution equations for protoplanet growth. We describe orderly, runaway, neutral, and oligarchic growth. We also delineate the conditions under which each occurs. We refute a popular misconception by showing that the outer planets formed quickly by accreting small bodies. Then we address the final stages of planet formation. Oligarchy ends when the surface density of the oligarchs becomes comparable to that of the small bodies. Dynamical friction is no longer able to balance viscous stirring and the oligarchs' random velocities increase. In the inner-planet system, oligarchs collide and coalesce. In the outer-planet system, some of the oligarchs are ejected. In both the inner- and outer-planet systems, this stage ends once the number of big bodies has been reduced to the point that their mutual interactions no longer produce large-scale chaos. Subsequently, dynamical friction by the residual small bodies circularizes and flattens their orbits. The final stage of planet formation involves the clean up of the residual small bodies. Clean up has been poorly explored.
Novel nano bearings constructed by physical adsorption
Zhang, Yongbin
2015-01-01
The paper proposes a novel nano bearing formed by the physical adsorption of the confined fluid to the solid wall. The bearing is formed between two parallel smooth solid plane walls sliding against one another, where conventional hydrodynamic lubrication theory predicted no lubricating effect. In this bearing, the stationary solid wall is divided into two subzones which respectively have different interaction strengths with the lubricating fluid. It leads to different physical adsorption and slip properties of the lubricating fluid at the stationary solid wall respectively in these two subzones. It was found that a significant load-carrying capacity of the bearing can be generated for low lubricating film thicknesses, because of the strong physical adsorption and non-continuum effects of the lubricating film. PMID:26412488
Method to fabricate high performance tubular solid oxide fuel cells
Chen, Fanglin; Yang, Chenghao; Jin, Chao
2013-06-18
In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.
Garnero, Claudia; Chattah, Ana Karina; Aloisio, Carolina; Fabietti, Luis; Longhi, Marcela
2018-05-10
Norfloxacin, an antibiotic that exists in different solid forms, has very unfavorable properties in terms of solubility and stability. Binary complexes of norfloxacin, in the solid form C, and β-cyclodextrin were procured by the kneading method and physical mixture. Their effect on the solubility, the dissolution rate, and the chemical and physical stability of norfloxacin was evaluated. To perform stability studies, the solid samples were stored under accelerated storage conditions, for a period of 6 months. Physical stability was monitored through powder X-ray diffraction, high-resolution 13 C solid-state nuclear magnetic resonance, and scanning electron microscopy. The results showed evidence that the kneaded complex increased and modulated the dissolution rate of norfloxacin C. Furthermore, it was demonstrated that the photochemical stability was increased in the complex, without affecting its physical stability. The results point to the conclusion that the new kneading complex of norfloxacin constitutes an alternative tool to formulate a potential oral drug delivery system with improve oral bioavailability.
Incorporating technetium in minerals and other solids: A review
NASA Astrophysics Data System (ADS)
Luksic, Steven A.; Riley, Brian J.; Schweiger, Michael; Hrma, Pavel
2015-11-01
Technetium (Tc) can be incorporated into a number of different solids including spinel, sodalite, rutile, tin dioxide, pyrochlore, perovskite, goethite, layered double hydroxides, cements, and alloys. Synthetic routes are possible for each of these phases, ranging from high-temperature ceramic sintering to ball-milling of constituent oxides. However, in practice, Tc has only been incorporated into solid materials by a limited number of the possible syntheses. A review of the diverse ways in which Tc-immobilizing materials can be made shows the wide range of options available. Special consideration is given to hypothetical application to the Hanford Tank Waste and Vitrification Plant, such as adding a Tc-bearing mineral to waste glass melter feed. A full survey of solid Tc waste forms, the common synthesis routes to those waste forms, and their potential for application to vitrification processes are presented. The use of tin dioxide or ferrite spinel precursors to reduce Tc(VII) out of solution and into a durable form are shown to be of especially high potential.
Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR
2015-01-01
We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368
Delaney, Sean P; Witko, Ewelina M; Smith, Tiffany M; Korter, Timothy M
2012-08-02
Terahertz spectroscopy is sensitive to the interactions between molecules in the solid-state and recently has emerged as a new analytical tool for investigating polymorphism. Here, this technique is applied for the first time to the phenomenon of tautomeric polymorphism where the crystal structures of anthranilic acid (2-aminobenzoic acid) have been investigated. Three polymorphs of anthranilic acid (denoted Forms I, II and III) were studied using terahertz spectroscopy and the vibrational modes and relative polymorph stabilities analyzed using solid-state density functional theory calculations augmented with London dispersion force corrections. Form I consists of both neutral and zwitterionic molecules and was found to be the most stable polymorph as compared to Forms II and III (both containing only neutral molecules). The simulations suggest that a balance between steric interactions and electrostatic forces is responsible for the favoring of the mixed neutral/zwitterion solid over the all neutral or all zwitterion crystalline arrangements.
Federal Register Notice for the Mining Waste Exclusion Final Rule, September 1, 1989
Final rule responding to a federal Appeals Court directive to narrow the exclusion of solid waste from the extraction, beneficiation, and processing of ores and minerals from regulation as hazardous waste as it applies to mineral processing wastes.
40 CFR 271.3 - Availability of final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... authority of the Hazardous Waste Electronic Manifest Establishment Act: (i) Shall take effect in each State.... 271.3 Section 271.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final...
2015-12-01
groundwater), infrastructure/utilities (i.e., sanitary sewer, potable water, solid waste management, drainage, transportation systems, electricity and...on water resources (i.e., surface water and groundwater), infrastructure/utilities (i.e., sanitary sewer, potable water, solid waste management...3-8 3.3.6.4 Sanitary Sewer
NASA Astrophysics Data System (ADS)
Givan, A.; Loewenschuss, A.
1990-12-01
Raman spectra of zero-pressure-formed N2O4 solid layers are reported. Sample composition is extremely dependent upon deposition conditions. For ordered and pure solid N2O4(D2h), produced by slow NO2 deposition, temperature cycling over the range in which the solid is stable shows no significant spectral changes and does not result in autoionization, as argued in a previous Raman study. Fast and low temperature deposited layers are amorphous and multicomponent, showing bands of disordered and isomeric molecular N2O4 and of ionic NO + NO3, nitrosonium nitrate. For nitrosonium nitrate, three solid modifications can be characterized spectroscopically. In the amorphous phase, a light induced, temperature dependent, reversible transition between molecular and ionic nitrogen tetroxide is observed below 150 K. The paths leading to nitrosonium nitrate formation are examined.
Production of Energy Efficient Preform Structures (PEEPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. John A. Baumann
2012-06-08
Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has beenmore » to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible manufacturing pathways, to identify the best balance of energy consumption and environmental impact. This model has been created and populated with energy consumption data for individual SSJ processes and process platforms. Technology feasibility cases studies were executed, to validate the model, and confirm the ability to create lower buy-to-fly ratio performs and machine these to final configuration aircraft components. This model can now be used as a tool to select manufacturing pathways that offer significant energy savings and, when coupled with a cost model, drive implementation of the SSJ processes.« less
Kim, Jo-Il; Park, Jong-Min; Hwang, Seung-Ju; Kang, Min-Jung; Pyun, Jae-Chul
2014-07-11
Top-down synthesized TiO2 nanowires are presented as an ideal solid matrix to analyze small biomolecules at a m/z of less than 500. The TiO2 nanowires were synthesized as arrays using a modified hydrothermal process directly on the surface of a Ti plate. Finally, the feasibility of the TiO2 nanowires in the anatase phase as a solid matrix. The crystal and electronic structures of the top-down TiO2 nanowires were analyzed at each step of the hydrothermal process, and the optimal TiO2 nanowires were identified by checking their performance toward the ionization of analytes in surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Finally, the feasibility of the TiO2 nanowires in the anatase phase as a solid matrix for SALDI-TOF mass spectrometry was demonstrated using eight types of amino acids and peptides as model analytes. Copyright © 2014 Elsevier B.V. All rights reserved.
Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei
2015-01-06
Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electrocoagulation efficiency of the tannery effluent treatment using aluminium electrodes.
Espinoza-Quiñones, Fernando R; Fornari, Marilda M T; Módenes, Aparecido N; Palácio, Soraya M; Trigueros, Daniela E G; Borba, Fernando H; Kroumov, Alexander D
2009-01-01
An electro-coagulation laboratory scale system using aluminium plates electrodes was studied for the removal of organic and inorganic pollutants as a by-product from leather finishing industrial process. A fractional factorial 2(3) experimental design was applied in order to obtain optimal values of the system state variables. The electro-coagulation (EC) process efficiency was based on the chemical oxygen demand (COD), turbidity, total suspended solid, total fixed solid, total volatile solid, and chemical element concentration values. Analysis of variance (ANOVA) for final pH, total fixed solid (TFS), turbidity and Ca concentration have confirmed the predicted models by the experimental design within a 95% confidence level. The reactor working conditions close to real effluent pH (7.6) and electrolysis time in the range 30-45 min were enough to achieve the cost effective reduction factors of organic and inorganic pollutants' concentrations. An appreciable improvement in COD removal efficiency was obtained for electro-coagulation treatment. Finally, the technical-economical analysis results have clearly shown that the electro-coagulation method is very promising for industrial application.
Process for forming a homogeneous oxide solid phase of catalytically active material
Perry, Dale L.; Russo, Richard E.; Mao, Xianglei
1995-01-01
A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.
Origins of hydration differences in homochiral and racemic crystals of aspartic acid.
Juliano, Thomas R; Korter, Timothy M
2015-02-26
The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.
Proposal of an environmental performance index to assess solid waste treatment technologies.
Coelho, Hosmanny Mauro Goulart; Lange, Liséte Celina; Coelho, Lineker Max Goulart
2012-07-01
Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond waste energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of different treatment plants being an excellent quantitative tool to support Cleaner Treatment implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Bentley, Anne K.; Weaver, Gabriela C.; Russell, Cianan B.; Fornes, William L.; Choi, Kyoung-Shin; Shih, Susan M.
2007-01-01
A simple and cost-effective experiment for the development and characterization of semiconductors using Uv-vis spectroscopy is described. The study shows that the optical properties of ZnO films can be easily modified by forming Zn[subscript 1-x] Co[subscript x]O solid solutions via spray pyrolysis.
Leane, Michael M; Sinclair, Wayne; Qian, Feng; Haddadin, Raja; Brown, Alan; Tobyn, Mike; Dennis, Andrew B
2013-01-01
Amorphous forms of poorly soluble drugs are more frequently being incorporated into solid dispersions for administration and extensive research has led to a reasonable understanding of how these dispersions, although still kinetically unstable, improve stability relative to the pure amorphous form. There remains however a paucity of literature describing the effects on such solid dispersions of subsequent processing into solid dosage forms such as tablets. This paper addresses this area by looking at the effects of the addition of common excipients and different manufacturing routes on the stability of a spray-dried dispersion (SDD) of the cannabinoid CB-1 antagonist, ibipinabant. A marked difference in physical stability of tablets was seen with the different fillers with microcrystalline cellulose (MCC) giving the best stability profile. It was found that minimising the number of compression steps led to improved formulation stability with a direct compression process giving the best results. Increased levels of crystallinity were seen in coated tablets most likely due to the exposure of the amorphous matrix to moisture and heat during the coating process. DSIMS analysis of the SDD particles indicated increased levels of polymer on the surface.
Evaluation of final waste forms and recommendations for baseline alternatives to group and glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleier, A.
1997-09-01
An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidatemore » alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining candidates, those of glass-ceramics (devitrified matrices) represent the best compromise for meeting the probable stricter disposal requirements in the future.« less
Solid materials for removing metals and fabrication method
Coronado, Paul R.; Reynolds, John G.; Coleman, Sabre J.
2004-10-19
Solid materials have been developed to remove contaminating metals and organic compounds from aqueous media. The contaminants are removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the metals and the organics leaving a purified aqueous stream. The materials are sol-gel and or sol-gel and granulated activated carbon (GAC) mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards the contaminant(s). The contaminated solid materials can then be disposed of or the contaminant can be removed and the solids recycled.
Tritium containing polymers having a polymer backbone substantially void of tritium
Jensen, G.A.; Nelson, D.A.; Molton, P.M.
1992-03-31
A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.
Tritium containing polymers having a polymer backbone substantially void of tritium
Jensen, George A.; Nelson, David A.; Molton, Peter M.
1992-01-01
A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.
Method of altering the effective bulk density of solid material and the resulting product
Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.
1983-01-01
A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.
Evaluation of lattice sums by the Poisson sum formula
NASA Technical Reports Server (NTRS)
Ray, R. D.
1975-01-01
The Poisson sum formula was applied to the problem of summing pairwise interactions between an observer molecule and a semi-infinite regular array of solid state molecules. The transformed sum is often much more rapidly convergent than the original sum, and forms a Fourier series in the solid surface coordinates. The method is applicable to a variety of solid state structures and functional forms of the pairwise potential. As an illustration of the method, the electric field above the (100) face of the CsCl structure is calculated and compared to earlier results obtained by direct summation.
Extrusion of electrode material by liquid injection into extruder barrel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, David Gerard; Giovannoni, Richard Thomas; MacFadden, Kenneth Orville
An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.
The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3PS 4 and Li 10GeP 2S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice,more » maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3PS 4. In addition, for β-Li 3PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant in the Li-ion sub-lattice, it becomes energetically as well as entropically favorable for it to remain molten well below the bulk decomposition temperature of the solid. Finally, this principle may already apply to several known superionic conducting solids.« less
Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.; ...
2016-12-09
The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3PS 4 and Li 10GeP 2S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice,more » maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3PS 4. In addition, for β-Li 3PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant in the Li-ion sub-lattice, it becomes energetically as well as entropically favorable for it to remain molten well below the bulk decomposition temperature of the solid. Finally, this principle may already apply to several known superionic conducting solids.« less
NASA Astrophysics Data System (ADS)
Yeranossian, Vahagn Frounzig
Nanoemulsions as an emerging technology have found many applications in consumer products, drug delivery, and even particle formation. However, knowledge gaps exist in how some of these emulsions are formed, specifically what pathways are traversed to reach the final state. Moreover, how these pathways affect the final properties of the nanoemulsions would affect the applications that these droplets possess. Some nanoemulsions possess unique properties, including the assembly of droplets. While the assembly of droplets is being studied in the Helgeson lab, work must be done to understand how the assembly itself could be used to control the growth of porous materials, such a hydrogels. Thus, this thesis aims to address two factors of nanoemulsions: the formation of water-in-oil nanoemulsions and the use of assemblying droplets in oil-in-water nanoemulsions to form macroporous hydrogels. To elucidate the formation mechanism of water-in-oil nanoemulsions, a combination of dynamic light scattering and small angle neutron scattering were used to study the intermediate and final states of the nanoemulsion during its formation. These nanoemulsions were prepared by slowly adding water to an oil and surfactant mixture and were diluted to effectively measure using scattering techniques without multiple scattering events. To develop a procedure to use assembled nanoemulsions for the growth of porous materials, a combination of optical microscopy and diffusional studies were employed. Optical microscopy images taken at various stages of the procedure help elucidate how the pore sizes of the final porous material is related to the droplet-rich domains of the assembled nanoemulsion. Meanwhile, diffusional measurements help confirm the size and interconnectedness of the macropores. From the work done in the completion of my thesis, the formation mechanism of the water-in-oil nanoemulsion studied has been elucidated. The neutron scattering measurements show that during the formation of the nanoemulsion, a combination of droplets and vesicles form. The presence of vesicles provides insight into how chemical additives in the water would affect the final droplet properties. This insight can be used to design water-in-oil nanoemulsions to be used for the controlled synthesis of solid nanoparticles. Additionally, this work demonstrates a potential procedure for developing macroporous hydrogels using nanoemulsions that are assembled into droplet-rich and droplet-poor domains. Through mild UV cross-linking conditions and mild solvent extraction techniques, the pore sizes could be equivalent to the droplet-rich domain sizes. The final hydrogels can control diffusivity of molecules, giving them potential applications in drug delivery.
Anaerobic digestion of organic solid poultry slaughterhouse waste--a review.
Salminen, E; Rintala, J
2002-05-01
This work reviews the potential of anaerobic digestion for material recovery and energy production from poultry slaughtering by-products and wastes. First, we describe and quantify organic solid by-products and wastes produced in poultry farming and poultry slaughterhouses and discuss their recovery and disposal options. Then we review certain fundamental aspects of anaerobic digestion considered important for the digestion of solid slaughterhouse wastes. Finally, we present an overview of the future potential and current experience of the anaerobic digestion treatment of these materials.
Densities of Pb-Sn alloys during solidification
NASA Technical Reports Server (NTRS)
Poirier, D. R.
1988-01-01
Data for the densities and expansion coefficients of solid and liquid alloys of the Pb-Sn system are consolidated in this paper. More importantly, the data are analyzed with the purpose of expressing either the density of the solid or of the liquid as a function of its composition and temperature. In particular, the densities of the solid and of the liquid during dendritic solidification are derived. Finally, the solutal and thermal coefficients of volume expansion for the liquid are given as functions of temperature and composition.
Solid State Sciences Committee Forum
1992-05-01
3. REPOT TYPE AND CATES COVERED I Final Report 01 Mar 91-29 Feb 92 4. MrlLE AND SUBTITLE S. FUNOG4 NUMBERS SOLID STATE SCIENCES COMMITTEE FORUM AFOSR...lON IU2EM , Appeved kv pub~e We=% I3. ABSTRACT (MaOimum 200 wovij The 1991 SSSC Forum was conductted under the auspices of the Board on Physics and...Astronomy’s Solid State Sciences Committe (SSSC) and cosponsored with the National Materials Advisory Board (NMAB). The Forum was the culmination of a
Method of preparing a high solids content, low viscosity ceramic slurry
Tiegs, Terry N.; Wittmer, Dale E.
1995-01-01
A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.
Method of preparing a high solids content, low viscosity ceramic slurry
Tiegs, T.N.; Wittmer, D.E.
1995-10-10
A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.