Sample records for solid geometry representation

  1. System for conversion between the boundary representation model and a constructive solid geometry model of an object

    DOEpatents

    Christensen, Noel C.; Emery, James D.; Smith, Maurice L.

    1988-04-05

    A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object.

  2. System for conversion between the boundary representation model and a constructive solid geometry model of an object

    DOEpatents

    Christensen, N.C.; Emery, J.D.; Smith, M.L.

    1985-04-29

    A system converts from the boundary representation of an object to the constructive solid geometry representation thereof. The system converts the boundary representation of the object into elemental atomic geometrical units or I-bodies which are in the shape of stock primitives or regularized intersections of stock primitives. These elemental atomic geometrical units are then represented in symbolic form. The symbolic representations of the elemental atomic geometrical units are then assembled heuristically to form a constructive solid geometry representation of the object usable for manufacturing thereof. Artificial intelligence is used to determine the best constructive solid geometry representation from the boundary representation of the object. Heuristic criteria are adapted to the manufacturing environment for which the device is to be utilized. The surface finish, tolerance, and other information associated with each surface of the boundary representation of the object are mapped onto the constructive solid geometry representation of the object to produce an enhanced solid geometry representation, particularly useful for computer-aided manufacture of the object. 19 figs.

  3. An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry

    DTIC Science & Technology

    2015-12-01

    ARL-SR-0347 ● DEC 2015 US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary...US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to...from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  4. A geometric modeler based on a dual-geometry representation polyhedra and rational b-splines

    NASA Technical Reports Server (NTRS)

    Klosterman, A. L.

    1984-01-01

    For speed and data base reasons, solid geometric modeling of large complex practical systems is usually approximated by a polyhedra representation. Precise parametric surface and implicit algebraic modelers are available but it is not yet practical to model the same level of system complexity with these precise modelers. In response to this contrast the GEOMOD geometric modeling system was built so that a polyhedra abstraction of the geometry would be available for interactive modeling without losing the precise definition of the geometry. Part of the reason that polyhedra modelers are effective is that all bounded surfaces can be represented in a single canonical format (i.e., sets of planar polygons). This permits a very simple and compact data structure. Nonuniform rational B-splines are currently the best representation to describe a very large class of geometry precisely with one canonical format. The specific capabilities of the modeler are described.

  5. The Effects of 3D-Representation Instruction on Composite-Solid Surface-Area Learning for Elementary School Students

    ERIC Educational Resources Information Center

    Sung, Yao-Ting; Shih, Pao-Chen; Chang, Kuo-En

    2015-01-01

    Providing instruction on spatial geometry, specifically how to calculate the surface areas of composite solids, challenges many elementary school teachers. Determining the surface areas of composite solids involves complex calculations and advanced spatial concepts. The goals of this study were to build on students' learning processes for…

  6. Computational Geometry and Computer-Aided Design

    NASA Technical Reports Server (NTRS)

    Fay, T. H. (Compiler); Shoosmith, J. N. (Compiler)

    1985-01-01

    Extended abstracts of papers addressing the analysis, representation, and synthesis of shape information are presented. Curves and shape control, grid generation and contouring, solid modelling, surfaces, and curve intersection are specifically addressed.

  7. Solid T-spline Construction from Boundary Representations for Genus-Zero Geometry

    DTIC Science & Technology

    2011-11-14

    Engineering, accepted, 2011. [6] M. S. Floater . Parametrization and smooth approximation of surface triangulations. Com- puter Aided Geometric Design...14(3):231 – 250, 1997. [7] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. Advances in Multiresolution for Geometric

  8. CAD-based Automatic Modeling Method for Geant4 geometry model Through MCAM

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Nie, Fanzhi; Wang, Guozhong; Long, Pengcheng; LV, Zhongliang; LV, Zhongliang

    2014-06-01

    Geant4 is a widely used Monte Carlo transport simulation package. Before calculating using Geant4, the calculation model need be established which could be described by using Geometry Description Markup Language (GDML) or C++ language. However, it is time-consuming and error-prone to manually describe the models by GDML. Automatic modeling methods have been developed recently, but there are some problem existed in most of present modeling programs, specially some of them were not accurate or adapted to specifically CAD format. To convert the GDML format models to CAD format accurately, a Geant4 Computer Aided Design (CAD) based modeling method was developed for automatically converting complex CAD geometry model into GDML geometry model. The essence of this method was dealing with CAD model represented with boundary representation (B-REP) and GDML model represented with constructive solid geometry (CSG). At first, CAD model was decomposed to several simple solids which had only one close shell. And then the simple solid was decomposed to convex shell set. Then corresponding GDML convex basic solids were generated by the boundary surfaces getting from the topological characteristic of a convex shell. After the generation of these solids, GDML model was accomplished with series boolean operations. This method was adopted in CAD/Image-based Automatic Modeling Program for Neutronics & Radiation Transport (MCAM), and tested with several models including the examples in Geant4 install package. The results showed that this method could convert standard CAD model accurately, and can be used for Geant4 automatic modeling.

  9. Children's Schemes for Anticipating the Validity of Nets for Solids

    ERIC Educational Resources Information Center

    Wright, Vince; Smith, Ken

    2017-01-01

    There is growing acknowledgement of the importance of spatial abilities to student achievement across a broad range of domains and disciplines. Nets are one way to connect three-dimensional shapes and their two-dimensional representations and are a common focus of geometry curricula. Thirty-four students at year 6 (upper primary school) were…

  10. Finsler Geometry of Nonlinear Elastic Solids with Internal Structure

    DTIC Science & Technology

    2017-01-01

    should enable regularized numerical solutions with discretization -size independence for representation of materials demonstrating softening, e.g...additional possibility of a discrete larger void/cavity forming at the core of the sphere. In the second case, comparison with the classical...core of the domain. This hollow sphere physically represents a discrete cavity, while the constant field ξH physically represents a continuous

  11. Representational geometry: integrating cognition, computation, and the brain

    PubMed Central

    Kriegeskorte, Nikolaus; Kievit, Rogier A.

    2013-01-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. PMID:23876494

  12. Representational geometry: integrating cognition, computation, and the brain.

    PubMed

    Kriegeskorte, Nikolaus; Kievit, Rogier A

    2013-08-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Unit cell geometry of multiaxial preforms for structural composites

    NASA Technical Reports Server (NTRS)

    Ko, Frank; Lei, Charles; Rahman, Anisur; Du, G. W.; Cai, Yun-Jia

    1993-01-01

    The objective of this study is to investigate the yarn geometry of multiaxial preforms. The importance of multiaxial preforms for structural composites is well recognized by the industry but, to exploit their full potential, engineering design rules must be established. This study is a step in that direction. In this work the preform geometry for knitted and braided preforms was studied by making a range of well designed samples and studying them by photo microscopy. The structural geometry of the preforms is related to the processing parameters. Based on solid modeling and B-spline methodology a software package is developed. This computer code enables real time structural representations of complex fiber architecture based on the rule of preform manufacturing. The code has the capability of zooming and section plotting. These capabilities provide a powerful means to study the effect of processing variables on the preform geometry. the code also can be extended to an auto mesh generator for downstream structural analysis using finite element method. This report is organized into six sections. In the first section the scope and background of this work is elaborated. In section two the unit cell geometries of braided and multi-axial warp knitted preforms is discussed. The theoretical frame work of yarn path modeling and solid modeling is presented in section three. The thin section microscopy carried out to observe the structural geometry of the preforms is the subject in section four. The structural geometry is related to the processing parameters in section five. Section six documents the implementation of the modeling techniques into the computer code MP-CAD. A user manual for the software is also presented here. The source codes and published papers are listed in the Appendices.

  14. National Combustion Code, a Multidisciplinary Combustor Design System, Will Be Transferred to the Commercial Sector

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    1999-01-01

    The NASA Lewis Research Center and Flow Parametrics will enter into an agreement to commercialize the National Combustion Code (NCC). This multidisciplinary combustor design system utilizes computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. This integrated system can facilitate and enhance various phases of the design and analysis process.

  15. Shape in Picture: Mathematical Description of Shape in Grey-Level Images

    DTIC Science & Technology

    1992-09-11

    representation is scale-space, derived frrr- the linear isotropic diffusion equation; recently other types of equations have been considered. Multiscale...recognition of dimensions in the general case of an arbitrary denominator is similar to that just explained. 3 Linear Inequalities in the Two-Dimensional...solid region containing all pixels of the space, whose coordinates satisfy a linear inequality. A Um C scspt fr Digital Geometry 41 s a a v--’ -0 7 O

  16. A boundary-representation method for designing whole-body radiation dosimetry models: pregnant females at the ends of three gestational periods—RPI-P3, -P6 and -P9

    NASA Astrophysics Data System (ADS)

    Xu, X. George; Taranenko, Valery; Zhang, Juying; Shi, Chengyu

    2007-12-01

    Fetuses are extremely radiosensitive and the protection of pregnant females against ionizing radiation is of particular interest in many health and medical physics applications. Existing models of pregnant females relied on simplified anatomical shapes or partial-body images of low resolutions. This paper reviews two general types of solid geometry modeling: constructive solid geometry (CSG) and boundary representation (BREP). It presents in detail a project to adopt the BREP modeling approach to systematically design whole-body radiation dosimetry models: a pregnant female and her fetus at the ends of three gestational periods of 3, 6 and 9 months. Based on previously published CT images of a 7-month pregnant female, the VIP-Man model and mesh organ models, this new set of pregnant female models was constructed using 3D surface modeling technologies instead of voxels. The organ masses were adjusted to agree with the reference data provided by the International Commission on Radiological Protection (ICRP) and previously published papers within 0.5%. The models were then voxelized for the purpose of performing dose calculations in identically implemented EGS4 and MCNPX Monte Carlo codes. The agreements of the fetal doses obtained from these two codes for this set of models were found to be within 2% for the majority of the external photon irradiation geometries of AP, PA, LAT, ROT and ISO at various energies. It is concluded that the so-called RPI-P3, RPI-P6 and RPI-P9 models have been reliably defined for Monte Carlo calculations. The paper also discusses the needs for future research and the possibility for the BREP method to become a major tool in the anatomical modeling for radiation dosimetry.

  17. Strings in bubbling geometries and dual Wilson loop correlators

    NASA Astrophysics Data System (ADS)

    Aguilera-Damia, Jeremías; Correa, Diego H.; Fucito, Francesco; Giraldo-Rivera, Victor I.; Morales, Jose F.; Pando Zayas, Leopoldo A.

    2017-12-01

    We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU( N) gauge group in N=4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry, explicitly. We also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a "small" one in the fundamental, totally symmetric or totally antisymmetric representation.

  18. Statistical Representations of Track Geometry : Volume I, Text.

    DOT National Transportation Integrated Search

    1980-03-31

    Mathematical representations of railroad track geometry variations are derived from time series analyses of track measurements. Since the majority of track is free of anomalies (turnouts, crossings, bridges, etc.), representation of anomaly-free trac...

  19. Using Computer-Assisted Multiple Representations in Learning Geometry Proofs

    ERIC Educational Resources Information Center

    Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Hsi-Hsun; Cheng, Ying-Hao

    2011-01-01

    Geometry theorem proving involves skills that are difficult to learn. Instead of working with abstract and complicated representations, students might start with concrete, graphical representations. A proof tree is a graphical representation of a formal proof, with each node representing a proposition or given conditions. A computer-assisted…

  20. Strings in bubbling geometries and dual Wilson loop correlators

    DOE PAGES

    Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco; ...

    2017-12-20

    We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less

  1. Strings in bubbling geometries and dual Wilson loop correlators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco

    We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less

  2. Strain-based diffusion solver for realistic representation of diffusion front in physical reactions

    PubMed Central

    2017-01-01

    When simulating fluids, such as water or fire, interacting with solids, it is a challenging problem to represent details of diffusion front in physical reaction. Previous approaches commonly use isotropic or anisotropic diffusion to model the transport of a quantity through a medium or long interface. We have identified unrealistic monotonous patterns with previous approaches and therefore, propose to extend these approaches by integrating the deformation of the material with the diffusion process. Specifically, stretching deformation represented by strain is incorporated in a divergence-constrained diffusion model. A novel diffusion model is introduced to increase the global rate at which the solid acquires relevant quantities, such as heat or saturation. This ensures that the equations describing fluid flow are linked to the change of solid geometry, and also satisfy the divergence-free condition. Experiments show that our method produces convincing results. PMID:28448591

  3. A Floating Node Method for the Modelling of Discontinuities Within a Finite Element

    NASA Technical Reports Server (NTRS)

    Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.

    2013-01-01

    This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.

  4. Modeling concepts for communication of geometric shape data

    NASA Technical Reports Server (NTRS)

    Collins, M. F.; Emnett, R. F.; Magedson, R. L.; Shu, H. H.

    1984-01-01

    ANSI5, an abbreviation for Section 5 of the American National Standard under Engineering Drawing and Related Documentation Practices (Committee Y14) on Digital Representation for Communication of Product Definition Data (ANSI Y14.26M-1981), allows encoding of a broad range of geometric shapes to be communicated through digital channels. A brief review of its underlying concepts is presented. The intent of ANSI5 is to devise a unified set of concise language formats for transmission of data pertaining to five types of geometric entities in Euclidean 3 space (E(3)). These are regarded as point like, curve like, surface like, solid like, and a combination of these types. For the first four types, ANSI5 makes a distinction between the geometry and topology. Geometry is a description of the spatial occupancy of the entity, and topology discusses the interconnectedness of the entity's boundary components.

  5. Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.

  6. NASA geometry data exchange specification for computational fluid dynamics (NASA IGES)

    NASA Technical Reports Server (NTRS)

    Blake, Matthew W.; Kerr, Patricia A.; Thorp, Scott A.; Jou, Jin J.

    1994-01-01

    This document specifies a subset of an existing product data exchange specification that is widely used in industry and government. The existing document is called the Initial Graphics Exchange Specification. This document, a subset of IGES, is intended for engineers analyzing product performance using tools such as computational fluid dynamics (CFD) software. This document specifies how to define mathematically and exchange the geometric model of an object. The geometry is represented utilizing nonuniform rational B-splines (NURBS) curves and surfaces. Only surface models are represented; no solid model representation is included. This specification does not include most of the other types of product information available in IGES (e.g., no material properties or surface finish properties) and does not provide all the specific file format details of IGES. The data exchange protocol specified in this document is fully conforming to the American National Standard (ANSI) IGES 5.2.

  7. Children's schemes for anticipating the validity of nets for solids

    NASA Astrophysics Data System (ADS)

    Wright, Vince; Smith, Ken

    2017-09-01

    There is growing acknowledgement of the importance of spatial abilities to student achievement across a broad range of domains and disciplines. Nets are one way to connect three-dimensional shapes and their two-dimensional representations and are a common focus of geometry curricula. Thirty-four students at year 6 (upper primary school) were interviewed on two occasions about their anticipation of whether or not given nets for the cube- and square-based pyramid would fold to form the target solid. Vergnaud's ( Journal of Mathematical Behavior, 17(2), 167-181, 1998, Human Development, 52, 83-94, 2009) four characteristics of schemes were used as a theoretical lens to analyse the data. Successful schemes depended on the interaction of operational invariants, such as strategic choice of the base, rules for action, particularly rotation of shapes, and anticipations of composites of polygons in the net forming arrangements of faces in the solid. Inferences were rare. These data suggest that students need teacher support to make inferences, in order to create transferable schemes.

  8. Teacher spatial skills are linked to differences in geometry instruction.

    PubMed

    Otumfuor, Beryl Ann; Carr, Martha

    2017-12-01

    Spatial skills have been linked to better performance in mathematics. The purpose of this study was to examine the relationship between teacher spatial skills and their instruction, including teacher content and pedagogical knowledge, use of pictorial representations, and use of gestures during geometry instruction. Fifty-six middle school teachers participated in the study. The teachers were administered spatial measures of mental rotations and spatial visualization. Next, a single geometry class was videotaped. Correlational analyses revealed that spatial skills significantly correlate with teacher's use of representational gestures and content and pedagogical knowledge during instruction of geometry. Spatial skills did not independently correlate with the use of pointing gestures or the use of pictorial representations. However, an interaction term between spatial skills and content and pedagogical knowledge did correlate significantly with the use of pictorial representations. Teacher experience as measured by the number of years of teaching and highest degree did not appear to affect the relationships among the variables with the exception of the relationship between spatial skills and teacher content and pedagogical knowledge. Teachers with better spatial skills are also likely to use representational gestures and to show better content and pedagogical knowledge during instruction. Spatial skills predict pictorial representation use only as a function of content and pedagogical knowledge. © 2017 The British Psychological Society.

  9. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    PubMed

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  10. Simulation technique for slurries interacting with moving parts and deformable solids with applications

    NASA Astrophysics Data System (ADS)

    Mutabaruka, Patrick; Kamrin, Ken

    2018-04-01

    A numerical method for particle-laden fluids interacting with a deformable solid domain and mobile rigid parts is proposed and implemented in a full engineering system. The fluid domain is modeled with a lattice Boltzmann representation, the particles and rigid parts are modeled with a discrete element representation, and the deformable solid domain is modeled using a Lagrangian mesh. The main issue of this work, since separately each of these methods is a mature tool, is to develop coupling and model-reduction approaches in order to efficiently simulate coupled problems of this nature, as in various geological and engineering applications. The lattice Boltzmann method incorporates a large eddy simulation technique using the Smagorinsky turbulence model. The discrete element method incorporates spherical and polyhedral particles for stiff contact interactions. A neo-Hookean hyperelastic model is used for the deformable solid. We provide a detailed description of how to couple the three solvers within a unified algorithm. The technique we propose for rubber modeling/coupling exploits a simplification that prevents having to solve a finite-element problem at each time step. We also developed a technique to reduce the domain size of the full system by replacing certain zones with quasi-analytic solutions, which act as effective boundary conditions for the lattice Boltzmann method. The major ingredients of the routine are separately validated. To demonstrate the coupled method in full, we simulate slurry flows in two kinds of piston valve geometries. The dynamics of the valve and slurry are studied and reported over a large range of input parameters.

  11. Using Interactive Sketch Interpretation to Design Solid Objects

    DTIC Science & Technology

    1993-04-04

    chair ........ .............................. 20 2.2.2 An exercise in geometry ................................. 22 3 Generating topologies from line...design on a solid modeler fall into four broad categories: direct generation, conistructive solid geometry (CSG), profile manipulation and de- formable...Constructive Solid Geometry to find the intersection of three correctly oriented rectangular slabs [3] (it is also possible to use four CSG "cuts" to

  12. Analysis of Peer Learning Behaviors Using Multiple Representations in Virtual Reality and Their Impacts on Geometry Problem Solving

    ERIC Educational Resources Information Center

    Hwang, Wu-Yuin; Hu, Shih-Shin

    2013-01-01

    Learning geometry emphasizes the importance of exploring different representations such as virtual manipulatives, written math formulas, and verbal explanations, which help students build math concepts and develop critical thinking. Besides helping individuals construct math knowledge, peer interaction also plays a crucial role in promoting an…

  13. An ellipsoidal representation of human hand anthropometry

    NASA Technical Reports Server (NTRS)

    Buchholz, Bryan; Armstrong, Thomas J.

    1991-01-01

    Anthropometric data concerning the heometry of the hand's surface are presently modeled as a function of gross external hand measurements; an effort is made to evaluate the accuracy with which ellipsoids describe the geometry of the hand segments. Graphical comparisons indicate that differences between the ellipsoidal approximations and the breadth and depth measurements were greatest near the joints. On the bases of the present data, a set of overlapping ellipsoids could furnish a more accurate representation of hand geometry for adaptation to ellipsoid segment-geometry employing biomechanical models.

  14. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS

    NASA Astrophysics Data System (ADS)

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L.; Bolch, Wesley E.

    2017-06-01

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  15. Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS.

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko; Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Brown, Justin L; Bolch, Wesley E

    2017-06-21

    A new function to treat tetrahedral-mesh geometry was implemented in the particle and heavy ion transport code systems. To accelerate the computational speed in the transport process, an original algorithm was introduced to initially prepare decomposition maps for the container box of the tetrahedral-mesh geometry. The computational performance was tested by conducting radiation transport simulations of 100 MeV protons and 1 MeV photons in a water phantom represented by tetrahedral mesh. The simulation was repeated with varying number of meshes and the required computational times were then compared with those of the conventional voxel representation. Our results show that the computational costs for each boundary crossing of the region mesh are essentially equivalent for both representations. This study suggests that the tetrahedral-mesh representation offers not only a flexible description of the transport geometry but also improvement of computational efficiency for the radiation transport. Due to the adaptability of tetrahedrons in both size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with a much fewer number of meshes as compared its voxelized representation. Our study additionally included dosimetric calculations using a computational human phantom. A significant acceleration of the computational speed, about 4 times, was confirmed by the adoption of a tetrahedral mesh over the traditional voxel mesh geometry.

  16. Positivity, Grassmannian geometry and simplex-like structures of scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Rao, Junjie

    2017-12-01

    This article revisits and elaborates the significant role of positive geometry of momentum twistor Grassmannian for planar N=4 SYM scattering amplitudes. First we establish the fundamentals of positive Grassmannian geometry for tree amplitudes, including the ubiquitous Plücker coordinates and the representation of reduced Grassmannian geometry. Then we formulate this subject, without making reference to on-shell diagrams and decorated permutations, around these four major facets: 1. Deriving the tree and 1-loop BCFW recursion relations solely from positivity, after introducing the simple building blocks called positive components for a positive matrix. 2. Applying Grassmannian geometry and Plücker coordinates to determine the signs of N2MHV homological identities, which interconnect various Yangian invariants. It reveals that most of the signs are in fact the secret incarnation of the simple 6-term NMHV identity. 3. Deriving the stacking positivity relation, which is powerful for parameterizing matrix representatives in terms of positive variables in the d log form. It will be used with the reduced Grassmannian geometry representation to produce the positive matrix of a given geometric configuration, which is an independent approach besides the combinatoric way involving a sequence of BCFW bridges. 4. Introducing an elegant and highly refined formalism of BCFW recursion relation for tree amplitudes, which reveals its two-fold simplex-like structures. First, the BCFW contour in terms of (reduced) Grassmannian geometry representatives is delicately dissected into a triangle-shape sum, as only a small fraction of the sum needs to be explicitly identified. Second, this fraction can be further dissected, according to different growing modes with corresponding growing parameters. The growing modes possess the shapes of solid simplices of various dimensions, with which infinite number of BCFW cells can be entirely captured by the characteristic objects called fully-spanning cells. We find that for a given k, beyond n =4 k+1 there is no more new fully-spanning cell, which signifies the essential termination of the recursive growth of BCFW cells. As n increases beyond the termination point, the BCFW contour simply replicates itself according to the simplex-like patterns, which enables us to master all BCFW cells once for all without actually identifying most of them.

  17. Fully vectorial laser resonator modeling of continuous-wave solid-state lasers including rate equations, thermal lensing and stress-induced birefringence.

    PubMed

    Asoubar, Daniel; Wyrowski, Frank

    2015-07-27

    The computer-aided design of high quality mono-mode, continuous-wave solid-state lasers requires fast, flexible and accurate simulation algorithms. Therefore in this work a model for the calculation of the transversal dominant mode structure is introduced. It is based on the generalization of the scalar Fox and Li algorithm to a fully-vectorial light representation. To provide a flexible modeling concept of different resonator geometries containing various optical elements, rigorous and approximative solutions of Maxwell's equations are combined in different subdomains of the resonator. This approach allows the simulation of plenty of different passive intracavity components as well as active media. For the numerically efficient simulation of nonlinear gain, thermal lensing and stress-induced birefringence effects in solid-state active crystals a semi-analytical vectorial beam propagation method is discussed in detail. As a numerical example the beam quality and output power of a flash-lamp-pumped Nd:YAG laser are improved. To that end we compensate the influence of stress-induced birefringence and thermal lensing by an aspherical mirror and a 90° quartz polarization rotator.

  18. Mean-field scaling of the superfluid to Mott insulator transition in a 2D optical superlattice.

    NASA Astrophysics Data System (ADS)

    Okano, Masayuki; Thomas, Claire; Barter, Thomas; Leung, Tsz-Him; Jo, Gyu-Boong; Guzman, Jennie; Kimchi, Itamar; Vishwanath, Ashvin; Stamper-Kurn, Dan

    2017-04-01

    Quantum gases within optical lattices provide a nearly ideal experimental representation of the Bose-Hubbard model. The mean-field treatment of this model predicts properties of non-zero temperature lattice-trapped gasses to be insensitive to the specific lattice geometry once system energies are scaled by the lattice coordination number z. We examine an ultracold Bose gas of rubidium atoms prepared within a two-dimensional lattice whose geometry can be tuned between two configurations, triangular and kagome, for which z varies from six to four, respectively. Measurements of the coherent fraction of the gas thereby provide a quantitative test of the mean-field scaling prediction. We observe the suppression of superfluidity upon decreasing z, and find our results to be consistent with the predicted mean-field scaling. These optical lattice systems can offer a way to study paradigmatic solid-state phenomena in highly controlled crystal structures. This work was supported by the NSF and by the Army Research Office with funding from the DARPA OLE program.

  19. A Study of Multi-Representation of Geometry Problem Solving with Virtual Manipulatives and Whiteboard System

    ERIC Educational Resources Information Center

    Hwang, Wu-Yuin; Su, Jia-Han; Huang, Yueh-Min; Dong, Jian-Jie

    2009-01-01

    In this paper, the development of an innovative Virtual Manipulatives and Whiteboard (VMW) system is described. The VMW system allowed users to manipulate virtual objects in 3D space and find clues to solve geometry problems. To assist with multi-representation transformation, translucent multimedia whiteboards were used to provide a virtual 3D…

  20. Characterization of Relatively Large Track Geometry Variations

    DOT National Transportation Integrated Search

    1982-03-01

    An analysis of existing track geometry data is described from which the signatures of key track geometry variations related to severe track-train dynamic interaction are identified and quantified. Mathematical representations of these signatures are ...

  1. Aircraft geometry verification with enhanced computer generated displays

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1982-01-01

    A method for visual verification of aerodynamic geometries using computer generated, color shaded images is described. The mathematical models representing aircraft geometries are created for use in theoretical aerodynamic analyses and in computer aided manufacturing. The aerodynamic shapes are defined using parametric bi-cubic splined patches. This mathematical representation is then used as input to an algorithm that generates a color shaded image of the geometry. A discussion of the techniques used in the mathematical representation of the geometry and in the rendering of the color shaded display is presented. The results include examples of color shaded displays, which are contrasted with wire frame type displays. The examples also show the use of mapped surface pressures in terms of color shaded images of V/STOL fighter/attack aircraft and advanced turboprop aircraft.

  2. Finsler geometry of nonlinear elastic solids with internal structure

    NASA Astrophysics Data System (ADS)

    Clayton, J. D.

    2017-02-01

    Concepts from Finsler differential geometry are applied towards a theory of deformable continua with internal structure. The general theory accounts for finite deformation, nonlinear elasticity, and various kinds of structural features in a solid body. The general kinematic structure of the theory includes macroscopic and microscopic displacement fields-i.e., a multiscale representation-whereby the latter are represented mathematically by the director vector of pseudo-Finsler space, not necessarily of unit magnitude. A physically appropriate fundamental (metric) tensor is introduced, leading to affine and nonlinear connections. A deformation gradient tensor is defined via differentiation of the macroscopic motion field, and another metric indicative of strain in the body is a function of this gradient. A total energy functional of strain, referential microscopic coordinates, and horizontal covariant derivatives of the latter is introduced. Variational methods are applied to derive Euler-Lagrange equations and Neumann boundary conditions. The theory is shown to encompass existing continuum physics models such as micromorphic, micropolar, strain gradient, phase field, and conventional nonlinear elasticity models, and it can reduce to such models when certain assumptions on geometry, kinematics, and energy functionals are imposed. The theory is applied to analyze two physical problems in crystalline solids: shear localization/fracture in a two-dimensional body and cavitation in a spherical body. In these examples, a conformal or Weyl-type transformation of the fundamental tensor enables a description of dilatation associated, respectively, with cleavage surface roughness and nucleation of voids or vacancies. For the shear localization problem, the Finsler theory is able to accurately reproduce the surface energy of Griffith's fracture mechanics, and it predicts dilatation-induced toughening as observed in experiments on brittle crystals. For the cavitation problem, the Finsler theory is able to accurately reproduce the vacancy formation energy at a nanoscale resolution, and various solutions describe localized cavitation at the core of the body and/or distributed dilatation and softening associated with amorphization as observed in atomic simulations, with relative stability of solutions depending on the regularization length.

  3. Investigation of the interface in silica-encapsulated liposomes by combining solid state NMR and first principles calculations.

    PubMed

    Folliet, Nicolas; Roiland, Claire; Bégu, Sylvie; Aubert, Anne; Mineva, Tzonka; Goursot, Annick; Selvaraj, Kaliaperumal; Duma, Luminita; Tielens, Frederik; Mauri, Francesco; Laurent, Guillaume; Bonhomme, Christian; Gervais, Christel; Babonneau, Florence; Azaïs, Thierry

    2011-10-26

    In the context of nanomedicine, liposils (liposomes and silica) have a strong potential for drug storage and release schemes: such materials combine the intrinsic properties of liposome (encapsulation) and silica (increased rigidity, protective coating, pH degradability). In this work, an original approach combining solid state NMR, molecular dynamics, first principles geometry optimization, and NMR parameters calculation allows the building of a precise representation of the organic/inorganic interface in liposils. {(1)H-(29)Si}(1)H and {(1)H-(31)P}(1)H Double Cross-Polarization (CP) MAS NMR experiments were implemented in order to explore the proton chemical environments around the silica and the phospholipids, respectively. Using VASP (Vienna Ab Initio Simulation Package), DFT calculations including molecular dynamics, and geometry optimization lead to the determination of energetically favorable configurations of a DPPC (dipalmitoylphosphatidylcholine) headgroup adsorbed onto a hydroxylated silica surface that corresponds to a realistic model of an amorphous silica slab. These data combined with first principles NMR parameters calculations by GIPAW (Gauge Included Projected Augmented Wave) show that the phosphate moieties are not directly interacting with silanols. The stabilization of the interface is achieved through the presence of water molecules located in-between the head groups of the phospholipids and the silica surface forming an interfacial H-bonded water layer. A detailed study of the (31)P chemical shift anisotropy (CSA) parameters allows us to interpret the local dynamics of DPPC in liposils. Finally, the VASP/solid state NMR/GIPAW combined approach can be extended to a large variety of organic-inorganic hybrid interfaces.

  4. An Integral Spectral Representation of the Propagator for the Wave Equation in the Kerr Geometry

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2005-12-01

    We consider the scalar wave equation in the Kerr geometry for Cauchy data which is smooth and compactly supported outside the event horizon. We derive an integral representation which expresses the solution as a superposition of solutions of the radial and angular ODEs which arise in the separation of variables. In particular, we prove completeness of the solutions of the separated ODEs.

  5. Geometrical and topological issues in octree based automatic meshing

    NASA Technical Reports Server (NTRS)

    Saxena, Mukul; Perucchio, Renato

    1987-01-01

    Finite element meshes derived automatically from solid models through recursive spatial subdivision schemes (octrees) can be made to inherit the hierarchical structure and the spatial addressability intrinsic to the underlying grid. These two properties, together with the geometric regularity that can also be built into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing and reanalysis. The element decomposition of the octal cells that intersect the boundary of the domain is discussed. The problem, central to octree based meshing, is solved by combining template mapping and element extraction into a procedure that utilizes both constructive solid geometry and boundary representation techniques. Boundary cells that are not intersected by the edge of the domain boundary are easily mapped to predefined element topology. Cells containing edges (and vertices) are first transformed into a planar polyhedron and then triangulated via element extractor. The modeling environments required for the derivation of planar polyhedra and for element extraction are analyzed.

  6. Solid particle dynamic behavior through twisted blade rows

    NASA Technical Reports Server (NTRS)

    Hamed, A.

    1982-01-01

    The particle trajectory calculations provide the essential information which is required for predicting the pattern and intensity of turbomachinery erosion. Consequently, the evaluation of the machine performance deterioration due to erosion is extremely sensitive to the accuracy of the flow field and blade geometry representation in the trajectory computational model. A model is presented that is simple and efficient yet versatile and general to be applicable to axial, radial and mixed flow machines, and to inlets, nozzles, return passages and separators. The results of the computations are presented for the particle trajectories through a row of twisted vanes in the inlet flow field. The effect of the particle size on their trajectories, blade impacts, and on their redistribution and separation are discussed.

  7. Color representation and interpretation of special effect coatings.

    PubMed

    Ferrero, A; Perales, E; Rabal, A M; Campos, J; Martínez-Verdú, F M; Chorro, E; Pons, A

    2014-02-01

    A representation of the color gamut of special effect coatings is proposed and shown for six different samples, whose colors were calculated from spectral bidirectional reflectance distribution function (BRDF) measurements at different geometries. The most important characteristic of the proposed representation is that it allows a straightforward understanding of the color shift to be done both in terms of conventional irradiation and viewing angles and in terms of flake-based parameters. A different line was proposed to assess the color shift of special effect coatings on a*,b*-diagrams: the absorption line. Similar to interference and aspecular lines (constant aspecular and irradiation angles, respectively), an absorption line is the locus of calculated color coordinates from measurement geometries with a fixed bistatic angle. The advantages of using the absorption lines to characterize the contributions to the spectral BRDF of the scattering at the absorption pigments and the reflection at interference pigments for different geometries are shown.

  8. Geometry in the Early Years: A Commentary

    ERIC Educational Resources Information Center

    Dindyal, Jaguthsing

    2015-01-01

    The primary goal of this paper is to provide a commentary on the teaching and learning of geometry in the early years of schooling with the set of papers in this issue as a guiding factor. It is structured around issues about geometry education of young learners, such as: what should we teach in geometry and why; representation of geometrical…

  9. The effect of riser end geometry on gas-solid hydrodynamics in a CFB riser operating in the core annular and dilute homogeneous flow regimes

    DOE PAGES

    Breault, Ronald W.; Monazam, Esmail R.; Shadle, Lawrence J.; ...

    2017-02-12

    Riser hydrodynamics are a function of the flow rates of gas and solids as well as the exit geometry, particularly when operated above the upper transport velocity. This work compares the exit voidage for multiple geometries and two different solids: Geldart group A glass beads and Geldart group B coke. Geometries were changed by modifying the volume of an abrupt T-shaped exit above the lateral riser exit. This was accomplished by positioning a plunger at various heights above the exit from zero to 0.38 m. A dimensionless expression used to predict smooth exit voidage was modified to account for themore » effect of the depth of the blind-T. The new correlation contains the solids-gas load ratio, solids-to-gas density ratio, bed-to-particle diameter ratio, gas Reynolds Number, as well as a term for the exit geometry. This study also found that there was a minimum riser roof height above the blind-T exit beyond which the riser exit voidage was not affected by the exit geometry. A correlation for this minimum riser roof height has also been developed in this study. This study covered riser superficial gas velocities of 4.35 to 7.7 m/s and solids circulation rates of 1.3 to 11.5 kg/s.« less

  10. A CAD Approach to Developing Mass Distribution and Composition Models for Spaceflight Radiation Risk Analyses

    NASA Astrophysics Data System (ADS)

    Zapp, E.; Shelfer, T.; Semones, E.; Johnson, A.; Weyland, M.; Golightly, M.; Smith, G.; Dardano, C.

    For roughly the past three decades, combinatorial geometries have been the predominant mode for the development of mass distribution models associated with the estimation of radiological risk for manned space flight. Examples of these are the MEVDP (Modified Elemental Volume Dose Program) vehicle representation of Liley and Hamilton, and the quadratic functional representation of the CAM/CAF (Computerized Anatomical Male/Female) human body models as modified by Billings and Yucker. These geometries, have the advantageous characteristics of being simple for a familiarized user to maintain, and because of the relative lack of any operating system or run-time library dependence, they are also easy to transfer from one computing platform to another. Unfortunately they are also limited in the amount of modeling detail possible, owing to the abstract geometric representation. In addition, combinatorial representations are also known to be error-prone in practice, since there is no convenient method for error identification (i.e. overlap, etc.), and extensive calculation and/or manual comparison may is often necessary to demonstrate that the geometry is adequately represented. We present an alternate approach linking materials -specific, CAD-based mass models directly to geometric analysis tools requiring no approximation with respect to materials , nor any meshing (i.e. tessellation) of the representative geometry. A new approach to ray tracing is presented which makes use of the fundamentals of the CAD representation to perform geometric analysis directly on the NURBS (Non-Uniform Rational BSpline) surfaces themselves. In this way we achieve a framework for- the rapid, precise development and analysis of materials-specific mass distribution models.

  11. The Microcomputer and Instruction in Geometry.

    ERIC Educational Resources Information Center

    Kantowski, Mary Grace

    1981-01-01

    The microcomputer has great potential for making high school geometry more stimulating and more easily understood by the students. The microcomputer can facilitate instruction in both the logico-deductive and spatial-visual aspects of geometry through graphics representations, simulation of motion, and its capability of interacting with the…

  12. Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms.

    PubMed

    Mikhal, Julia; Geurts, Bernard J

    2013-12-01

    A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.

  13. Techniques to derive geometries for image-based Eulerian computations

    PubMed Central

    Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.

    2014-01-01

    Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID:25750470

  14. Stop Teaching and Let Students Learn Geometry

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Adu-Gyamfi, Kwaku

    2011-01-01

    For many high school students as well as preservice teachers, geometry can be difficult to learn without experiences that allow them to build their own understanding. The authors' approach to geometry instruction--with its integration of content, multiple representations, real-world examples, reading and writing, communication and collaboration as…

  15. Tips on Creating Complex Geometry Using Solid Modeling Software

    ERIC Educational Resources Information Center

    Gow, George

    2008-01-01

    Three-dimensional computer-aided drafting (CAD) software, sometimes referred to as "solid modeling" software, is easy to learn, fun to use, and becoming the standard in industry. However, many users have difficulty creating complex geometry with the solid modeling software. And the problem is not entirely a student problem. Even some teachers and…

  16. Computation of wind tunnel model deflections. [for transport type solid wing

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Gloss, B. B.

    1981-01-01

    The experimental deflections for a transport type solid wing model were measured for several single point load conditions. These deflections were compared with those obtained by structural modeling of the wing by using plate and solid elements of Structural Performance Analysis and Redesign (SPAR) program. The solid element representation of the wing showed better agreement with the experimental deflections than the plate representation. The difference between the measured and calculated deflections is about 5 percent.

  17. A high-order boundary integral method for surface diffusions on elastically stressed axisymmetric rods.

    PubMed

    Li, Xiaofan; Nie, Qing

    2009-07-01

    Many applications in materials involve surface diffusion of elastically stressed solids. Study of singularity formation and long-time behavior of such solid surfaces requires accurate simulations in both space and time. Here we present a high-order boundary integral method for an elastically stressed solid with axi-symmetry due to surface diffusions. In this method, the boundary integrals for isotropic elasticity in axi-symmetric geometry are approximated through modified alternating quadratures along with an extrapolation technique, leading to an arbitrarily high-order quadrature; in addition, a high-order (temporal) integration factor method, based on explicit representation of the mean curvature, is used to reduce the stability constraint on time-step. To apply this method to a periodic (in axial direction) and axi-symmetric elastically stressed cylinder, we also present a fast and accurate summation method for the periodic Green's functions of isotropic elasticity. Using the high-order boundary integral method, we demonstrate that in absence of elasticity the cylinder surface pinches in finite time at the axis of the symmetry and the universal cone angle of the pinching is found to be consistent with the previous studies based on a self-similar assumption. In the presence of elastic stress, we show that a finite time, geometrical singularity occurs well before the cylindrical solid collapses onto the axis of symmetry, and the angle of the corner singularity on the cylinder surface is also estimated.

  18. Representation of Vegetation and Other Nonerodible Elements in Aeolian Shear Stress Partitioning Models for Predicting Transport Threshold

    NASA Technical Reports Server (NTRS)

    King, James; Nickling, William G.; Gillies, John A.

    2005-01-01

    The presence of nonerodible elements is well understood to be a reducing factor for soil erosion by wind, but the limits of its protection of the surface and erosion threshold prediction are complicated by the varying geometry, spatial organization, and density of the elements. The predictive capabilities of the most recent models for estimating wind driven particle fluxes are reduced because of the poor representation of the effectiveness of vegetation to reduce wind erosion. Two approaches have been taken to account for roughness effects on sediment transport thresholds. Marticorena and Bergametti (1995) in their dust emission model parameterize the effect of roughness on threshold with the assumption that there is a relationship between roughness density and the aerodynamic roughness length of a surface. Raupach et al. (1993) offer a different approach based on physical modeling of wake development behind individual roughness elements and the partition of the surface stress and the total stress over a roughened surface. A comparison between the models shows the partitioning approach to be a good framework to explain the effect of roughness on entrainment of sediment by wind. Both models provided very good agreement for wind tunnel experiments using solid objects on a nonerodible surface. However, the Marticorena and Bergametti (1995) approach displays a scaling dependency when the difference between the roughness length of the surface and the overall roughness length is too great, while the Raupach et al. (1993) model's predictions perform better owing to the incorporation of the roughness geometry and the alterations to the flow they can cause.

  19. Using representations in geometry: a model of students' cognitive and affective performance

    NASA Astrophysics Data System (ADS)

    Panaoura, Areti

    2014-05-01

    Self-efficacy beliefs in mathematics, as a dimension of the affective domain, are related with students' performance on solving tasks and mainly on overcoming cognitive obstacles. The present study investigated the interrelations of cognitive performance on geometry and young students' self-efficacy beliefs about using representations for solving geometrical tasks. The emphasis was on confirming a theoretical model for the primary-school and secondary-school students and identifying the differences and similarities for the two ages. A quantitative study was developed and data were collected from 1086 students in Grades 5-8. Confirmatory factor analysis affirmed the existence of a coherent model of affective dimensions about the use of representations for understanding the geometrical concepts, which becomes more stable across the educational levels.

  20. Unique semantic space in the brain of each beholder predicts perceived similarity

    PubMed Central

    Charest, Ian; Kievit, Rogier A.; Schmitz, Taylor W.; Deca, Diana; Kriegeskorte, Nikolaus

    2014-01-01

    The unique way in which each of us perceives the world must arise from our brain representations. If brain imaging could reveal an individual’s unique mental representation, it could help us understand the biological substrate of our individual experiential worlds in mental health and disease. However, imaging studies of object vision have focused on commonalities between individuals rather than individual differences and on category averages rather than representations of particular objects. Here we investigate the individually unique component of brain representations of particular objects with functional MRI (fMRI). Subjects were presented with unfamiliar and personally meaningful object images while we measured their brain activity on two separate days. We characterized the representational geometry by the dissimilarity matrix of activity patterns elicited by particular object images. The representational geometry remained stable across scanning days and was unique in each individual in early visual cortex and human inferior temporal cortex (hIT). The hIT representation predicted perceived similarity as reflected in dissimilarity judgments. Importantly, hIT predicted the individually unique component of the judgments when the objects were personally meaningful. Our results suggest that hIT brain representational idiosyncrasies accessible to fMRI are expressed in an individual's perceptual judgments. The unique way each of us perceives the world thus might reflect the individually unique representation in high-level visual areas. PMID:25246586

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, Ronald W.; Monazam, Esmail R.; Shadle, Lawrence J.

    Riser hydrodynamics are a function of the flow rates of gas and solids as well as the exit geometry, particularly when operated above the upper transport velocity. This work compares the exit voidage for multiple geometries and two different solids: Geldart group A glass beads and Geldart group B coke. Geometries were changed by modifying the volume of an abrupt T-shaped exit above the lateral riser exit. This was accomplished by positioning a plunger at various heights above the exit from zero to 0.38 m. A dimensionless expression used to predict smooth exit voidage was modified to account for themore » effect of the depth of the blind-T. The new correlation contains the solids-gas load ratio, solids-to-gas density ratio, bed-to-particle diameter ratio, gas Reynolds Number, as well as a term for the exit geometry. This study also found that there was a minimum riser roof height above the blind-T exit beyond which the riser exit voidage was not affected by the exit geometry. A correlation for this minimum riser roof height has also been developed in this study. This study covered riser superficial gas velocities of 4.35 to 7.7 m/s and solids circulation rates of 1.3 to 11.5 kg/s.« less

  2. Decay of Solutions of the Wave Equation in the Kerr Geometry

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2006-06-01

    We consider the Cauchy problem for the massless scalar wave equation in the Kerr geometry for smooth initial data compactly supported outside the event horizon. We prove that the solutions decay in time in L ∞ loc. The proof is based on a representation of the solution as an infinite sum over the angular momentum modes, each of which is an integral of the energy variable ω on the real line. This integral representation involves solutions of the radial and angular ODEs which arise in the separation of variables.

  3. The Local Geometry of Multiattribute Tradeoff Preferences

    PubMed Central

    McGeachie, Michael; Doyle, Jon

    2011-01-01

    Existing representations for multiattribute ceteris paribus preference statements have provided useful treatments and clear semantics for qualitative comparisons, but have not provided similarly clear representations or semantics for comparisons involving quantitative tradeoffs. We use directional derivatives and other concepts from elementary differential geometry to interpret conditional multiattribute ceteris paribus preference comparisons that state bounds on quantitative tradeoff ratios. This semantics extends the familiar economic notion of marginal rate of substitution to multiple continuous or discrete attributes. The same geometric concepts also provide means for interpreting statements about the relative importance of different attributes. PMID:21528018

  4. Integral representations on supermanifolds: super Hodge duals, PCOs and Liouville forms

    NASA Astrophysics Data System (ADS)

    Castellani, Leonardo; Catenacci, Roberto; Grassi, Pietro Antonio

    2017-01-01

    We present a few types of integral transforms and integral representations that are very useful for extending to supergeometry many familiar concepts of differential geometry. Among them we discuss the construction of the super Hodge dual, the integral representation of picture changing operators of string theories and the construction of the super-Liouville form of a symplectic supermanifold.

  5. Iso-geometric analysis for neutron diffusion problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, S. K.; Eaton, M. D.; Williams, M. M. R.

    Iso-geometric analysis can be viewed as a generalisation of the finite element method. It permits the exact representation of a wider range of geometries including conic sections. This is possible due to the use of concepts employed in computer-aided design. The underlying mathematical representations from computer-aided design are used to capture both the geometry and approximate the solution. In this paper the neutron diffusion equation is solved using iso-geometric analysis. The practical advantages are highlighted by looking at the problem of a circular fuel pin in a square moderator. For this problem the finite element method requires the geometry tomore » be approximated. This leads to errors in the shape and size of the interface between the fuel and the moderator. In contrast to this iso-geometric analysis allows the interface to be represented exactly. It is found that, due to a cancellation of errors, the finite element method converges more quickly than iso-geometric analysis for this problem. A fuel pin in a vacuum was then considered as this problem is highly sensitive to the leakage across the interface. In this case iso-geometric analysis greatly outperforms the finite element method. Due to the improvement in the representation of the geometry iso-geometric analysis can outperform traditional finite element methods. It is proposed that the use of iso-geometric analysis on neutron transport problems will allow deterministic solutions to be obtained for exact geometries. Something that is only currently possible with Monte Carlo techniques. (authors)« less

  6. GPU-accelerated depth map generation for X-ray simulations of complex CAD geometries

    NASA Astrophysics Data System (ADS)

    Grandin, Robert J.; Young, Gavin; Holland, Stephen D.; Krishnamurthy, Adarsh

    2018-04-01

    Interactive x-ray simulations of complex computer-aided design (CAD) models can provide valuable insights for better interpretation of the defect signatures such as porosity from x-ray CT images. Generating the depth map along a particular direction for the given CAD geometry is the most compute-intensive step in x-ray simulations. We have developed a GPU-accelerated method for real-time generation of depth maps of complex CAD geometries. We preprocess complex components designed using commercial CAD systems using a custom CAD module and convert them into a fine user-defined surface tessellation. Our CAD module can be used by different simulators as well as handle complex geometries, including those that arise from complex castings and composite structures. We then make use of a parallel algorithm that runs on a graphics processing unit (GPU) to convert the finely-tessellated CAD model to a voxelized representation. The voxelized representation can enable heterogeneous modeling of the volume enclosed by the CAD model by assigning heterogeneous material properties in specific regions. The depth maps are generated from this voxelized representation with the help of a GPU-accelerated ray-casting algorithm. The GPU-accelerated ray-casting method enables interactive (> 60 frames-per-second) generation of the depth maps of complex CAD geometries. This enables arbitrarily rotation and slicing of the CAD model, leading to better interpretation of the x-ray images by the user. In addition, the depth maps can be used to aid directly in CT reconstruction algorithms.

  7. Detailed 3D representations for object recognition and modeling.

    PubMed

    Zia, M Zeeshan; Stark, Michael; Schiele, Bernt; Schindler, Konrad

    2013-11-01

    Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.

  8. The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture

    DOE PAGES

    Favorite, Jeffrey A.

    2016-01-13

    It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.

  9. National Combustion Code: A Multidisciplinary Combustor Design System

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Liu, Nan-Suey

    1997-01-01

    The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.

  10. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.

  11. Vertex Space Analysis for Model-Based Target Recognition.

    DTIC Science & Technology

    1996-08-01

    performed in our unique invariant representation, Vertex Space, that reduces both the dimensionality and size of the required search space. Vertex Space ... mapping results in a reduced representation that serves as a characteristic target signature which is invariant to four of the six viewing geometry

  12. First-Graders' Spatial-Mathematical Reasoning about Plane and Solid Shapes and Their Representations

    ERIC Educational Resources Information Center

    Hallowell, David A.; Okamoto, Yukari; Romo, Laura F.; La Joy, Jonna R.

    2015-01-01

    The primary goal of the study was to explore first-grade children's reasoning about plane and solid shapes across various kinds of geometric representations. Children were individually interviewed while completing a shape-matching task developed for this study. This task required children to compose and decompose geometric figures to identify…

  13. Some Remarks on Navajo Geometry and Piagetian Genetic Theory.

    ERIC Educational Resources Information Center

    Pinxten, Rik

    1991-01-01

    Examines aspects of Navajo cosmology relevant to understanding Navajo spatial representations. Compares Navajo children's spatial knowledge with Piaget's findings about the development of geometric concepts in Swiss children. Describes classroom activities whereby Navajo children explore the geometry inherent in their cultural and physical…

  14. Positive geometries and canonical forms

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Bai, Yuntao; Lam, Thomas

    2017-11-01

    Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects — the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra — which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of "positive geometries" and their associated "canonical forms" as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones — via "triangulation" on the one hand, and "push-forward" maps between geometries on the other. We present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest "simplex-like" geometries and the richer "polytope-like" ones. We also illustrate a number of strategies for computing canonical forms for large classes of positive geometries, ranging from a direct determination exploiting knowledge of zeros and poles, to the use of the general triangulation and push-forward methods, to the representation of the form as volume integrals over dual geometries and contour integrals over auxiliary spaces. These methods yield interesting representations for the canonical forms of wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes.

  15. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  16. Spinor Geometry and Signal Transmission in Three-Space

    NASA Astrophysics Data System (ADS)

    Binz, Ernst; Pods, Sonja; Schempp, Walter

    2002-09-01

    For a singularity free gradient field in an open set of an oriented Euclidean space of dimension three we define a natural principal bundle out of an immanent complex line bundle. The elements of both bundles are called internal variables. Several other natural bundles are associated with the principal bundle and, in turn, determine the vector field. Two examples are given and it is shown that for a constant vector field circular polarized waves travelling along a field line can be considered as waves of internal variables. Einstein's equation epsilon = m [middle dot] c2 is derived from the geometry of the principal bundle. On SU(2) a relation between spin representations and Schrodinger representations is established. The link between the spin 1/2-model and the Schrodinger representations yields a connection between a microscopic and a macroscopic viewpoint.

  17. Computer-Aided Geometry Modeling

    NASA Technical Reports Server (NTRS)

    Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)

    1984-01-01

    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.

  18. An integral equation-based numerical solver for Taylor states in toroidal geometries

    NASA Astrophysics Data System (ADS)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  19. Assessing the Effectiveness of Learning Solid Geometry by Using an Augmented Reality-Assisted Learning System

    ERIC Educational Resources Information Center

    Lin, Hao-Chiang Koong; Chen, Mei-Chi; Chang, Chih-Kai

    2015-01-01

    This study integrates augmented reality (AR) technology into teaching activities to design a learning system that assists junior high-school students in learning solid geometry. The following issues are addressed: (1) the relationship between achievements in mathematics and performance in spatial perception; (2) whether system-assisted learning…

  20. Representing Simple Geometry Types in NetCDF-CF

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Koziol, B. W.; Whiteaker, T. L.; Simons, R.

    2016-12-01

    The Climate and Forecast (CF) metadata convention is well-suited for representing gridded and point-based observational datasets. However, CF currently has no accepted mechanism for representing simple geometry types such as lines and polygons. Lack of support for simple geometries within CF has unintentionally excluded a broad set of geoscientific data types from NetCDF-CF data encodings. For example, hydrologic datasets often contain polygon watershed catchments and polyline stream reaches in addition to point sampling stations and water management infrastructure. The latter has an associated CF specification. In the interest of supporting all simple geometry types within CF, a working group was formed following an EarthCube workshop on Advancing NetCDF-CF [1] to draft a CF specification for simple geometries: points, lines, polygons, and their associated multi-geometry representations [2]. The draft also includes parametric geometry types such as circles and ellipses. This presentation will provide an overview of the scope and content of the proposed specification focusing on mechanisms for representing coordinate arrays using variable length or continuous ragged arrays, capturing multi-geometries, and accounting for type-specific geometry artifacts such as polygon holes/interiors, node ordering, etc. The concepts contained in the specification proposal will be described with a use case representing streamflow in rivers and evapotranspiration from HUC12 watersheds. We will also introduce Python and R reference implementations developed alongside the technical specification. These in-development, open source Python and R libraries convert between commonly used GIS software objects (i.e. GEOS-based primitives) and their associated simple geometry CF representation. [1] http://www.unidata.ucar.edu/events/2016CFWorkshop/[2] https://github.com/bekozi/netCDF-CF-simple-geometry

  1. U.S. Army Armament Research, Development and Engineering Center Grain Evaluation Software to Numerically Predict Linear Burn Regression for Solid Propellant Grain Geometries

    DTIC Science & Technology

    2017-10-01

    ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID PROPELLANT GRAIN GEOMETRIES Brian...author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation...U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID

  2. Deformable M-Reps for 3D Medical Image Segmentation.

    PubMed

    Pizer, Stephen M; Fletcher, P Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z; Fridman, Yonatan; Fritsch, Daniel S; Gash, Graham; Glotzer, John M; Jiroutek, Michael R; Lu, Conglin; Muller, Keith E; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L

    2003-11-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models , which define objects at coarse scale by a hierarchy of figures - each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps ), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported.

  3. Deformable M-Reps for 3D Medical Image Segmentation

    PubMed Central

    Pizer, Stephen M.; Fletcher, P. Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z.; Fridman, Yonatan; Fritsch, Daniel S.; Gash, Graham; Glotzer, John M.; Jiroutek, Michael R.; Lu, Conglin; Muller, Keith E.; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L.

    2013-01-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures – each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported. PMID:23825898

  4. Testing accommodation or modification? The effects of integrated object representation on enhancing geometry performance in children with and without geometry difficulties.

    PubMed

    Zhang, Dake; Wang, Qiu; Ding, Yi; Liu, Jeremy Jian

    2014-01-01

    According to the National Council of Teachers of Mathematics, geometry and spatial sense are fundamental components of mathematics learning. However, learning disabilities (LD) research has shown that many K-12 students encounter particular geometry difficulties (GD). This study examined the effect of an integrated object representation (IOR) accommodation on the test performance of students with GD compared to students without GD. Participants were 118 elementary students who took a researcher-developed geometry problem solving test under both a standard testing condition and an IOR accommodation condition. A total of 36 students who were classified with GD scored below 40% correct in the geometry problem solving test in the standard testing condition, and 82 students who were classified without GD scored equal to or above 40% correct in the same test and condition. All students were tested in both standard testing condition and IOR accommodation condition. The results from both ANOVA and regression discontinuity (RD) analyses suggested that students with GD benefited more than students without GD from the IOR accommodation. Implications of the study are discussed in terms of providing accommodations for students with mathematics learning difficulties and recommending RD design in LD research. © Hammill Institute on Disabilities 2013.

  5. The Design of Lessons Using Mathematics Analysis Software to Support Multiple Representations in Secondary School Mathematics

    ERIC Educational Resources Information Center

    Pierce, Robyn; Stacey, Kaye; Wander, Roger; Ball, Lynda

    2011-01-01

    Current technologies incorporating sophisticated mathematical analysis software (calculation, graphing, dynamic geometry, tables, and more) provide easy access to multiple representations of mathematical problems. Realising the affordances of such technology for students' learning requires carefully designed lessons. This paper reports on design…

  6. Stereo Orthogonal Axonometric Perspective for the Teaching of Descriptive Geometry

    ERIC Educational Resources Information Center

    Méxas, José Geraldo Franco; Bastos Guedes, Karla; da Silva Tavares, Ronaldo

    2014-01-01

    The representation of figures in mongean projection (double system planned orthographic projection used in the studies of Descriptive Geometry), specially when placed in a particular situation in relation to the projection plans, possesses the quality that, through them, the actual dimensions of represented spatial objects can be found directly…

  7. Teacher Spatial Skills Are Linked to Differences in Geometry Instruction

    ERIC Educational Resources Information Center

    Otumfuor, Beryl Ann; Carr, Martha

    2017-01-01

    Background: Spatial skills have been linked to better performance in mathematics. Aim The purpose of this study was to examine the relationship between teacher spatial skills and their instruction, including teacher content and pedagogical knowledge, use of pictorial representations, and use of gestures during geometry instruction. Sample:…

  8. Perceptual geometry of space and form: visual perception of natural scenes and their virtual representation

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.

    2001-11-01

    Perceptual geometry is an emerging field of interdisciplinary research whose objectives focus on study of geometry from the perspective of visual perception, and in turn, apply such geometric findings to the ecological study of vision. Perceptual geometry attempts to answer fundamental questions in perception of form and representation of space through synthesis of cognitive and biological theories of visual perception with geometric theories of the physical world. Perception of form and space are among fundamental problems in vision science. In recent cognitive and computational models of human perception, natural scenes are used systematically as preferred visual stimuli. Among key problems in perception of form and space, we have examined perception of geometry of natural surfaces and curves, e.g. as in the observer's environment. Besides a systematic mathematical foundation for a remarkably general framework, the advantages of the Gestalt theory of natural surfaces include a concrete computational approach to simulate or recreate images whose geometric invariants and quantities might be perceived and estimated by an observer. The latter is at the very foundation of understanding the nature of perception of space and form, and the (computer graphics) problem of rendering scenes to visually invoke virtual presence.

  9. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    PubMed Central

    Evans, Alistair R.; McHenry, Colin R.

    2015-01-01

    The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620

  10. Parameterized reduced order models from a single mesh using hyper-dual numbers

    NASA Astrophysics Data System (ADS)

    Brake, M. R. W.; Fike, J. A.; Topping, S. D.

    2016-06-01

    In order to assess the predicted performance of a manufactured system, analysts must consider random variations (both geometric and material) in the development of a model, instead of a single deterministic model of an idealized geometry with idealized material properties. The incorporation of random geometric variations, however, potentially could necessitate the development of thousands of nearly identical solid geometries that must be meshed and separately analyzed, which would require an impractical number of man-hours to complete. This research advances a recent approach to uncertainty quantification by developing parameterized reduced order models. These parameterizations are based upon Taylor series expansions of the system's matrices about the ideal geometry, and a component mode synthesis representation for each linear substructure is used to form an efficient basis with which to study the system. The numerical derivatives required for the Taylor series expansions are obtained via hyper-dual numbers, and are compared to parameterized models constructed with finite difference formulations. The advantage of using hyper-dual numbers is two-fold: accuracy of the derivatives to machine precision, and the need to only generate a single mesh of the system of interest. The theory is applied to a stepped beam system in order to demonstrate proof of concept. The results demonstrate that the hyper-dual number multivariate parameterization of geometric variations, which largely are neglected in the literature, are accurate for both sensitivity and optimization studies. As model and mesh generation can constitute the greatest expense of time in analyzing a system, the foundation to create a parameterized reduced order model based off of a single mesh is expected to reduce dramatically the necessary time to analyze multiple realizations of a component's possible geometry.

  11. SABRINA: an interactive solid geometry modeling program for Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.

    SABRINA is a fully interactive three-dimensional geometry modeling program for MCNP. In SABRINA, a user interactively constructs either body geometry, or surface geometry models, and interactively debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces the effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo Analysis.

  12. Understanding and Mitigating Vortex-Dominated, Tip-Leakage and End-Wall Losses in a Transonic Splittered Rotor Stage

    DTIC Science & Technology

    2015-04-23

    blade geometry parameters the TPL design 9   tool was initiated by running the MATLAB script (*.m) Main_SpeedLine_Auto. Main_SpeedLine_Auto...SolidWorks for solid model generation of the blade shapes. Computational Analysis With solid models generated of the gas -path air wedge, automated...287 mm (11.3 in) Constrained by existing TCR geometry Number of Passages 12 None A blade tip-down design approach was used. The outputs of the

  13. Comparative Effects of Two Modes of Computer-Assisted Instructional Package on Solid Geometry Achievement

    ERIC Educational Resources Information Center

    Gambari, Isiaka Amosa; Ezenwa, Victoria Ifeoma; Anyanwu, Romanus Chogozie

    2014-01-01

    The study examined the effects of two modes of computer-assisted instructional package on solid geometry achievement amongst senior secondary school students in Minna, Niger State, Nigeria. Also, the influence of gender on the performance of students exposed to CAI(AT) and CAI(AN) packages were examined. This study adopted a pretest-posttest…

  14. TEACHERS' GUIDE. NINTH GRADE PLANE AND SOLID GEOMETRY FOR THE ACADEMICALLY TALENTED.

    ERIC Educational Resources Information Center

    HORN, R.A.

    MATERIALS ARE INTENDED FOR A UNIFIED AND ACCELERATED PLANE AND SOLID GEOMETRY COURSE AND FOR EASY MODIFICATION AND ADAPTATION BY EXPERIENCED OR INEXPERIENCED TEACHER. TEXTBOOKS TO WHICH THE GUIDE HAS BEEN KEYED ARE LISTED. UNITS ARE GIVEN FOR BOTH SEMESTERS WITH TIME ALLOTMENTS RECOMMENDED. EACH UNIT IS SUBDIVIDED INTO TOPICS AND OBJECTIVES,…

  15. Representational Momentum and Children's Sensori-Motor Representations of Objects

    ERIC Educational Resources Information Center

    Perry, Lynn K.; Smith, Linda B.; Hockema, Stephen A.

    2008-01-01

    Recent research has shown that 2-year-olds fail at a task that ostensibly only requires the ability to understand that solid objects cannot pass through other solid objects. Two experiments were conducted in which 2- and 3-year-olds judged the stopping point of an object as it moved at varying speeds along a path and behind an occluder, stopping…

  16. Geometry of the Mesopotamian "ecliptic"

    NASA Astrophysics Data System (ADS)

    Kurtik, G. E.

    2018-02-01

    The article deals with the history of ecliptic as an element of the mathematical astronomy in Ancient Mesopotamia. It contains data from the cuneiform sources of the 2nd - 1st millennia BC and from the modern studies shedding light on the following three questions: 1) the idea of the celestial sphere in Mesopotamian astronomy; 2) the geometric representations associated with the ecliptic; 3) the positions of the ecliptic relative to the fixed stars and to the Sun. It is shown that although we do not have solid evidences, however, there are serious reasons to believe that in the Seleucid period in the mathematical astronomy and astrology the ecliptic was conceived geometrically as a circle divided into 12 equal parts. It is also shown that in this period the ecliptic was not yet identified with the projection of annual path of the Sun to the celestial sphere.

  17. Rapid Geometry Creation for Computer-Aided Engineering Parametric Analyses: A Case Study Using ComGeom2 for Launch Abort System Design

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica; Gage, Peter; Manning, Ted

    2007-01-01

    ComGeom2, a tool developed to generate Common Geometry representation for multidisciplinary analysis, has been used to create a large set of geometries for use in a design study requiring analysis by two computational codes. This paper describes the process used to generate the large number of configurations and suggests ways to further automate the process and make it more efficient for future studies. The design geometry for this study is the launch abort system of the NASA Crew Launch Vehicle.

  18. Solid-loaded flows: applications in technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molerus, O.

    1983-01-01

    The evaluation of experiments and the representation of the resulting data by nondimensional groups defined ad hoc largely governs the treatment of problems arising with solid-loaded flows in practice. Without doubt, this is a result of the very complex nature of solid-loaded flows and, consequently, empiricism tends to prevail, more or less. To overcome this situation, two sets of nondimensional groups, which take into consideration the translatory, as well as the rotary, motion of particles suspended in a fluid, are derived from the equations of motion of a solid body. The intuitive meaning of these nondimensional groups arises from theirmore » derivation. With respect to applications in engineering, the influence of the rotary motion of a particle on the motion of its center of gravity can thus be taken into account. As such, a common basis for the representation of the different phenomena observed with solid-loaded flows is established. The application of the above concepts to fluidization and hydraulic and pneumatic conveying proves their usefulness. New insights into well-known facts as well as new results demonstrate that taking the real nature of solid particles (i.e., those of finite dimensions) into consideration will provide a common and profound basis for the representation of different phenomena observed with solid-loaded flows in practice.« less

  19. The Role of Visual Representations for Structuring Classroom Mathematical Activity

    ERIC Educational Resources Information Center

    David, Maria Manuela; Tomaz, Vanessa Sena

    2012-01-01

    It is our presupposition that there is still a need for more research about how classroom practices can exploit the use and power of visualization in mathematics education. The aim of this article is to contribute in this direction, investigating how visual representations can structure geometry activity in the classroom and discussing teaching…

  20. Power Block Geometry Applied to the Building of Power Electronics Converters

    ERIC Educational Resources Information Center

    dos Santos, E. C., Jr.; da Silva, E. R. C.

    2013-01-01

    This paper proposes a new methodology, Power Block Geometry (PBG), for the presentation of power electronics topologies that process ac voltage. PBG's strategy uses formal methods based on a geometrical representation with particular rules and defines a universe with axioms and conjectures to establish a formation law. It allows power…

  1. The Effect of Visual-Chunking-Representation Accommodation on Geometry Testing for Students with Math Disabilities

    ERIC Educational Resources Information Center

    Zhang, Dake; Ding, Yi; Stegall, Joanna; Mo, Lei

    2012-01-01

    Students who struggle with learning mathematics often have difficulties with geometry problem solving, which requires strong visual imagery skills. These difficulties have been correlated with deficiencies in visual working memory. Cognitive psychology has shown that chunking of visual items accommodates students' working memory deficits. This…

  2. Geometrical aspects of patient-specific modelling of the intervertebral disc: collagen fibre orientation and residual stress distribution.

    PubMed

    Marini, Giacomo; Studer, Harald; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2016-06-01

    Patient-specific modelling of the spine is a powerful tool to explore the prevention and the treatment of injuries and pathologies. Albeit several methods have been proposed for the discretization of the bony structures, the efficient representation of the intervertebral disc anisotropy remains a challenge, especially with complex geometries. Furthermore, the swelling of the disc's nucleus pulposus is normally added to the model after geometry definition, at the cost of changes of the material properties and an unrealistic description of the prestressed state. The aim of this study was to develop techniques, which preserve the patient-specific geometry of the disc and allow the representation of the system anisotropy and residual stresses, independent of the system discretization. Depending on the modelling features, the developed approaches resulted in a response of patient-specific models that was in good agreement with the physiological response observed in corresponding experiments. The proposed methods represent a first step towards the development of patient-specific models of the disc which respect both the geometry and the mechanical properties of the specific disc.

  3. The Koslowski-Sahlmann representation: quantum configuration space

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel; Varadarajan, Madhavan

    2014-09-01

    The Koslowski-Sahlmann (KS) representation is a generalization of the representation underlying the discrete spatial geometry of loop quantum gravity (LQG), to accommodate states labelled by smooth spatial geometries. As shown recently, the KS representation supports, in addition to the action of the holonomy and flux operators, the action of operators which are the quantum counterparts of certain connection dependent functions known as ‘background exponentials’. Here we show that the KS representation displays the following properties which are the exact counterparts of LQG ones: (i) the abelian * algebra of SU(2) holonomies and ‘U(1)’ background exponentials can be completed to a C* algebra, (ii) the space of semianalytic SU(2) connections is topologically dense in the spectrum of this algebra, (iii) there exists a measure on this spectrum for which the KS Hilbert space is realized as the space of square integrable functions on the spectrum, (iv) the spectrum admits a characterization as a projective limit of finite numbers of copies of SU(2) and U(1), (v) the algebra underlying the KS representation is constructed from cylindrical functions and their derivations in exactly the same way as the LQG (holonomy-flux) algebra except that the KS cylindrical functions depend on the holonomies and the background exponentials, this extra dependence being responsible for the differences between the KS and LQG algebras. While these results are obtained for compact spaces, they are expected to be of use for the construction of the KS representation in the asymptotically flat case.

  4. A Novel Face-on-Face Contact Method for Nonlinear Solid Mechanics

    NASA Astrophysics Data System (ADS)

    Wopschall, Steven Robert

    The implicit solution to contact problems in nonlinear solid mechanics poses many difficulties. Traditional node-to-segment methods may suffer from locking and experience contact force chatter in the presence of sliding. More recent developments include mortar based methods, which resolve local contact interactions over face-pairs and feature a kinematic constraint in integral form that smoothes contact behavior, especially in the presence of sliding. These methods have been shown to perform well in the presence of geometric nonlinearities and are demonstratively more robust than node-to-segment methods. These methods are typically biased, however, interpolating contact tractions and gap equations on a designated non-mortar face, which leads to an asymmetry in the formulation. Another challenge is constraint enforcement. The general selection of the active set of constraints is brought with difficulty, often leading to non-physical solutions and easily resulting in missed face-pair interactions. Details on reliable constraint enforcement methods are lacking in the greater contact literature. This work presents an unbiased contact formulation utilizing a median-plane methodology. Up to linear polynomials are used for the discrete pressure representation and integral gap constraints are enforced using a novel subcycling procedure. This procedure reliably determines the active set of contact constraints leading to physical and kinematically admissible solutions void of heuristics and user action. The contact method presented herein successfully solves difficult quasi-static contact problems in the implicit computational setting. These problems feature finite deformations, material nonlinearity, and complex interface geometries, all of which are challenging characteristics for contact implementations and constraint enforcement algorithms. The subcycling procedure is a key feature of this method, handling active constraint selection for complex interfaces and mesh geometries.

  5. Geometric and computer-aided spline hob modeling

    NASA Astrophysics Data System (ADS)

    Brailov, I. G.; Myasoedova, T. M.; Panchuk, K. L.; Krysova, I. V.; Rogoza, YU A.

    2018-03-01

    The paper considers acquiring the spline hob geometric model. The objective of the research is the development of a mathematical model of spline hob for spline shaft machining. The structure of the spline hob is described taking into consideration the motion in parameters of the machine tool system of cutting edge positioning and orientation. Computer-aided study is performed with the use of CAD and on the basis of 3D modeling methods. Vector representation of cutting edge geometry is accepted as the principal method of spline hob mathematical model development. The paper defines the correlations described by parametric vector functions representing helical cutting edges designed for spline shaft machining with consideration for helical movement in two dimensions. An application for acquiring the 3D model of spline hob is developed on the basis of AutoLISP for AutoCAD environment. The application presents the opportunity for the use of the acquired model for milling process imitation. An example of evaluation, analytical representation and computer modeling of the proposed geometrical model is reviewed. In the mentioned example, a calculation of key spline hob parameters assuring the capability of hobbing a spline shaft of standard design is performed. The polygonal and solid spline hob 3D models are acquired by the use of imitational computer modeling.

  6. Literature review relevant to particle erosion in complex geometries

    NASA Astrophysics Data System (ADS)

    Volent, Eirik; Dahlhaug, Ole Gunnar

    2018-06-01

    Erosion is a challenge in many industries where fluid is transferred through pipe and valve arrangements. Wear can occur in a variety of systems and is often related to the presents of droplets or solid particles in the fluid stream. Solid particles are in many cases present in hydropower systems, and can cause severe damage to system components. Flow conditions, particle size and concentration vary greatly and can thus cause a vast variety of damage, ranging from manageable wear to component failure. The following paper will present a summary of literature relevant to the prediction of erosion in complex geometries. The intention of the review is to investigate the current state of the art, directly relevant to the prediction of wear due to solid particle erosion in complex geometries.

  7. Lubrication of rigid ellipsida solids

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza' classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared by using the exact expression for the film in the analysis. Contour plots are known that indicate in detail the pressure developed between the solids.

  8. Grouper: A Compact, Streamable Triangle Mesh Data Structure.

    PubMed

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2013-05-08

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle, Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access.

  9. Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation

    PubMed Central

    Khaligh-Razavi, Seyed-Mahdi; Kriegeskorte, Nikolaus

    2014-01-01

    Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total), testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet) along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network). We compared the representational dissimilarity matrices (RDMs) of the model representations with the RDMs obtained from human IT (measured with fMRI) and monkey IT (measured with cell recording) for the same set of stimuli (not used in training the models). Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining IT requires computational features trained through supervised learning to emphasize the behaviorally important categorical divisions prominently reflected in IT. PMID:25375136

  10. Use of Existing CAD Models for Radiation Shielding Analysis

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.

    2015-01-01

    The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.

  11. Achievement of Joint Perception in a Computer Supported Collaborative Learning Environment: A Case Study

    ERIC Educational Resources Information Center

    Afacan Adanir, Gulgun

    2017-01-01

    The case study focuses on the interactional mechanisms through which online collaborative teams co-construct a shared understanding of an analytical geometry problem by using dynamic geometry representations. The collaborative study consisted of an assignment on which the learners worked together in groups to solve a ship navigation problem as…

  12. To See or Not to See: Analyzing Difficulties in Geometry from the Perspective of Visual Perception

    ERIC Educational Resources Information Center

    Gal, Hagar; Linchevski, Liora

    2010-01-01

    In this paper, we consider theories about processes of visual perception and perception-based knowledge representation (VPR) in order to explain difficulties encountered in figural processing in junior high school geometry tasks. In order to analyze such difficulties, we take advantage of the following perspectives of VPR: (1) Perceptual…

  13. Conceptualizing Vectors in College Geometry: A New Framework for Analysis of Student Approaches and Difficulties

    ERIC Educational Resources Information Center

    Kwon, Oh Hoon

    2012-01-01

    This dissertation documents a new way of conceptualizing vectors in college mathematics, especially in geometry. First, I will introduce three problems to show the complexity and subtlety of the construct of vectors with the classical vector representations. These highlight the need for a new framework that: (1) differentiates abstraction from a…

  14. Effect of geometry on hydrodynamic film thickness

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  15. Effect of geometry on hydrodynamic film thickness

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.

    1978-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.

  16. Three dimensional electrochemical simulation of solid oxide fuel cell cathode based on microstructure reconstructed by marching cubes method

    NASA Astrophysics Data System (ADS)

    He, An; Gong, Jiaming; Shikazono, Naoki

    2018-05-01

    In the present study, a model is introduced to correlate the electrochemical performance of solid oxide fuel cell (SOFC) with the 3D microstructure reconstructed by focused ion beam scanning electron microscopy (FIB-SEM) in which the solid surface is modeled by the marching cubes (MC) method. Lattice Boltzmann method (LBM) is used to solve the governing equations. In order to maintain the geometries reconstructed by the MC method, local effective diffusivities and conductivities computed based on the MC geometries are applied in each grid, and partial bounce-back scheme is applied according to the boundary predicted by the MC method. From the tortuosity factor and overpotential calculation results, it is concluded that the MC geometry drastically improves the computational accuracy by giving more precise topology information.

  17. Binary space partitioning trees and their uses

    NASA Technical Reports Server (NTRS)

    Bell, Bradley N.

    1989-01-01

    Binary Space Partitioning (BSP) trees have some qualities that make them useful in solving many graphics related problems. The purpose is to describe what a BSP tree is, and how it can be used to solve the problem of hidden surface removal, and constructive solid geometry. The BSP tree is based on the idea that a plane acting as a divider subdivides space into two parts with one being on the positive side and the other on the negative. A polygonal solid is then represented as the volume defined by the collective interior half spaces of the solid's bounding surfaces. The nature of how the tree is organized lends itself well for sorting polygons relative to an arbitrary point in 3 space. The speed at which the tree can be traversed for depth sorting is fast enough to provide hidden surface removal at interactive speeds. The fact that a BSP tree actually represents a polygonal solid as a bounded volume also makes it quite useful in performing the boolean operations used in constructive solid geometry. Due to the nature of the BSP tree, polygons can be classified as they are subdivided. The ability to classify polygons as they are subdivided can enhance the simplicity of implementing constructive solid geometry.

  18. Point clouds in BIM

    NASA Astrophysics Data System (ADS)

    Antova, Gergana; Kunchev, Ivan; Mickrenska-Cherneva, Christina

    2016-10-01

    The representation of physical buildings in Building Information Models (BIM) has been a subject of research since four decades in the fields of Construction Informatics and GeoInformatics. The early digital representations of buildings mainly appeared as 3D drawings constructed by CAD software, and the 3D representation of the buildings was only geometric, while semantics and topology were out of modelling focus. On the other hand, less detailed building representations, with often focus on ‘outside’ representations were also found in form of 2D /2,5D GeoInformation models. Point clouds from 3D laser scanning data give a full and exact representation of the building geometry. The article presents different aspects and the benefits of using point clouds in BIM in the different stages of a lifecycle of a building.

  19. Automatic detection of sweep-meshable volumes

    DOEpatents

    Tautges,; Timothy J. , White; David, R [Pittsburgh, PA

    2006-05-23

    A method of and software for automatically determining whether a mesh can be generated by sweeping for a representation of a geometric solid comprising: classifying surface mesh schemes for surfaces of the representation locally using surface vertex types; grouping mappable and submappable surfaces of the representation into chains; computing volume edge types for the representation; recursively traversing surfaces of the representation and grouping the surfaces into source, target, and linking surface lists; and checking traversal direction when traversing onto linking surfaces.

  20. Expression-invariant representations of faces.

    PubMed

    Bronstein, Alexander M; Bronstein, Michael M; Kimmel, Ron

    2007-01-01

    Addressed here is the problem of constructing and analyzing expression-invariant representations of human faces. We demonstrate and justify experimentally a simple geometric model that allows to describe facial expressions as isometric deformations of the facial surface. The main step in the construction of expression-invariant representation of a face involves embedding of the facial intrinsic geometric structure into some low-dimensional space. We study the influence of the embedding space geometry and dimensionality choice on the representation accuracy and argue that compared to its Euclidean counterpart, spherical embedding leads to notably smaller metric distortions. We experimentally support our claim showing that a smaller embedding error leads to better recognition.

  1. Differential geometry based solvation model II: Lagrangian formulation.

    PubMed

    Chen, Zhan; Baker, Nathan A; Wei, G W

    2011-12-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of computation, thanks to the equivalence of the Laplace-Beltrami operator in the two representations. The coupled partial differential equations (PDEs) are solved with an iterative procedure to reach a steady state, which delivers desired solvent-solute interface and electrostatic potential for problems of interest. These quantities are utilized to evaluate the solvation free energies and protein-protein binding affinities. A number of computational methods and algorithms are described for the interconversion of Lagrangian and Eulerian representations, and for the solution of the coupled PDE system. The proposed approaches have been extensively validated. We also verify that the mean curvature flow indeed gives rise to the minimal molecular surface and the proposed variational procedure indeed offers minimal total free energy. Solvation analysis and applications are considered for a set of 17 small compounds and a set of 23 proteins. The salt effect on protein-protein binding affinity is investigated with two protein complexes by using the present model. Numerical results are compared to the experimental measurements and to those obtained by using other theoretical methods in the literature. © Springer-Verlag 2011

  2. Differential geometry based solvation model II: Lagrangian formulation

    PubMed Central

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-01-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation model. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory (SPT) of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The minimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and Poisson-Boltzmann equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of computation, thanks to the equivalence of the Laplace-Beltrami operator in the two representations. The coupled partial differential equations (PDEs) are solved with an iterative procedure to reach a steady state, which delivers desired solvent-solute interface and electrostatic potential for problems of interest. These quantities are utilized to evaluate the solvation free energies and protein-protein binding affinities. A number of computational methods and algorithms are described for the interconversion of Lagrangian and Eulerian representations, and for the solution of the coupled PDE system. The proposed approaches have been extensively validated. We also verify that the mean curvature flow indeed gives rise to the minimal molecular surface (MMS) and the proposed variational procedure indeed offers minimal total free energy. Solvation analysis and applications are considered for a set of 17 small compounds and a set of 23 proteins. The salt effect on protein-protein binding affinity is investigated with two protein complexes by using the present model. Numerical results are compared to the experimental measurements and to those obtained by using other theoretical methods in the literature. PMID:21279359

  3. Model of lidar range-Doppler signatures of solid rocket fuel plumes

    NASA Astrophysics Data System (ADS)

    Bankman, Isaac N.; Giles, John W.; Chan, Stephen C.; Reed, Robert A.

    2004-09-01

    The analysis of particles produced by solid rocket motor fuels relates to two types of studies: the effect of these particles on the Earth's ozone layer, and the dynamic flight behavior of solid fuel boosters used by the NASA Space Shuttle. Since laser backscatter depends on the particle size and concentration, a lidar system can be used to analyze the particle distributions inside a solid rocket plume in flight. We present an analytical model that simulates the lidar returns from solid rocket plumes including effects of beam profile, spot size, polarization and sensing geometry. The backscatter and extinction coefficients of alumina particles are computed with the T-matrix method that can address non-spherical particles. The outputs of the model include time-resolved return pulses and range-Doppler signatures. Presented examples illustrate the effects of sensing geometry.

  4. Thermal analysis of combinatorial solid geometry models using SINDA

    NASA Technical Reports Server (NTRS)

    Gerencser, Diane; Radke, George; Introne, Rob; Klosterman, John; Miklosovic, Dave

    1993-01-01

    Algorithms have been developed using Monte Carlo techniques to determine the thermal network parameters necessary to perform a finite difference analysis on Combinatorial Solid Geometry (CSG) models. Orbital and laser fluxes as well as internal heat generation are modeled to facilitate satellite modeling. The results of the thermal calculations are used to model the infrared (IR) images of targets and assess target vulnerability. Sample analyses and validation are presented which demonstrate code products.

  5. Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry

    NASA Astrophysics Data System (ADS)

    Toque, Nathalie

    1996-12-01

    This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.

  6. Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Ming

    In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.

  7. Using Representations of Practice to Elicit Mathematics Teachers' Tacit Knowledge of Practice: A Comparison of Responses to Animations and Videos

    ERIC Educational Resources Information Center

    Herbst, Patricio; Kosko, Karl W.

    2014-01-01

    This study compared conversations among groups of teachers of high school geometry that had been elicited by a representation of instruction (either a video or an animation) and facilitated with an open-ended agenda. All artifacts used represented instruction scenarios that departed from what, according to prior work, had been hypothesized as…

  8. Effect of the Presence of External Representations on Accuracy and Reaction Time in Solving Mathematical Double-Choice Problems by Students of Different Levels of Instruction

    ERIC Educational Resources Information Center

    Leikin, Roza; Leikin, Mark; Waisman, Ilana; Shaul, Shelley

    2013-01-01

    This study explores the effects of the "presence of external representations of a mathematical object" (ERs) on problem solving performance associated with short double-choice problems. The problems were borrowed from secondary school algebra and geometry, and the ERs were either formulas, graphs of functions, or drawings of geometric…

  9. Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Rowe, T. Scott; Fuller, Alfred R.; Hamann, Bernd; Werner, John S.

    2010-02-01

    An accurate solid eye model (with volumetric retinal morphology) has many applications in the field of ophthalmology, including evaluation of ophthalmic instruments and optometry/ophthalmology training. We present a method that uses volumetric OCT retinal data sets to produce an anatomically correct representation of three-dimensional (3D) retinal layers. This information is exported to a laser scan system to re-create it within solid eye retinal morphology of the eye used in OCT testing. The solid optical model eye is constructed from PMMA acrylic, with equivalent optical power to that of the human eye (~58D). Additionally we tested a water bath eye model from Eyetech Ltd. with a customized retina consisting of five layers of ~60 μm thick biaxial polypropylene film and hot melt rubber adhesive.

  10. Final Report for "Design calculations for high-space-charge beam-to-RF conversion".

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N Smithe

    2008-10-17

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimummore » energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other defense applications.« less

  11. The slab geometry laser. I - Theory

    NASA Technical Reports Server (NTRS)

    Eggleston, J. M.; Kane, T. J.; Kuhn, K.; Byer, R. L.; Unternahrer, J.

    1984-01-01

    Slab geometry solid-state lasers offer significant performance improvements over conventional rod-geometry lasers. A detailed theoretical description of the thermal, stress, and beam-propagation characteristics of a slab laser is presented. The analysis includes consideration of the effects of the zig-zag optical path, which eliminates thermal and stress focusing and reduces residual birefringence.

  12. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms.

    PubMed

    Gobin, Oliver C; Schüth, Ferdi

    2008-01-01

    Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.

  13. Geometry of the perceptual space

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Palmer, Stephen; Eghbalnia, Hamid; Carew, John

    1999-09-01

    The concept of space and geometry varies across the subjects. Following Poincare, we consider the construction of the perceptual space as a continuum equipped with a notion of magnitude. The study of the relationships of objects in the perceptual space gives rise to what we may call perceptual geometry. Computational modeling of objects and investigation of their deeper perceptual geometrical properties (beyond qualitative arguments) require a mathematical representation of the perceptual space. Within the realm of such a mathematical/computational representation, visual perception can be studied as in the well-understood logic-based geometry. This, however, does not mean that one could reduce all problems of visual perception to their geometric counterparts. Rather, visual perception as reported by a human observer, has a subjective factor that could be analytically quantified only through statistical reasoning and in the course of repetitive experiments. Thus, the desire to experimentally verify the statements in perceptual geometry leads to an additional probabilistic structure imposed on the perceptual space, whose amplitudes are measured through intervention by human observers. We propose a model for the perceptual space and the case of perception of textured surfaces as a starting point for object recognition. To rigorously present these ideas and propose computational simulations for testing the theory, we present the model of the perceptual geometry of surfaces through an amplification of theory of Riemannian foliation in differential topology, augmented by statistical learning theory. When we refer to the perceptual geometry of a human observer, the theory takes into account the Bayesian formulation of the prior state of the knowledge of the observer and Hebbian learning. We use a Parallel Distributed Connectionist paradigm for computational modeling and experimental verification of our theory.

  14. Decoherence and Noise in Spin-based Solid State Quantum Computers. Approximation-Free Numerical Simulations

    DTIC Science & Technology

    2007-07-21

    the spin coherent states P-representation", Conference on Quantum Computations and Many- Body Systems, February 2006, Key West, FL 9. B. N. Harmon...solid-state spin-based qubit systems was the focus of our project. Since decoherence is a complex many- body non-equilibrium process, and its...representation of the density matrix, see Sec. 3 below). This work prompted J. Taylor from the experimental group of C. Marcus and M. Lukin (funded by

  15. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    PubMed

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given study.

  16. A Vector Approach to Euclidean Geometry: Inner Product Spaces, Euclidean Geometry and Trigonometry, Volume 2. Teacher's Edition.

    ERIC Educational Resources Information Center

    Vaughan, Herbert E.; Szabo, Steven

    This is the teacher's edition of a text for the second year of a two-year high school geometry course. The course bases plane and solid geometry and trigonometry on the fact that the translations of a Euclidean space constitute a vector space which has an inner product. Congruence is a geometric topic reserved for Volume 2. Volume 2 opens with an…

  17. Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Theis, C.; Buchegger, K. H.; Brugger, M.; Forkel-Wirth, D.; Roesler, S.; Vincke, H.

    2006-06-01

    The implementation of three-dimensional geometries for the simulation of radiation transport problems is a very time-consuming task. Each particle transport code supplies its own scripting language and syntax for creating the geometries. All of them are based on the Constructive Solid Geometry scheme requiring textual description. This makes the creation a tedious and error-prone task, which is especially hard to master for novice users. The Monte Carlo code FLUKA comes with built-in support for creating two-dimensional cross-sections through the geometry and FLUKACAD, a custom-built converter to the commercial Computer Aided Design package AutoCAD, exists for 3D visualization. For other codes, like MCNPX, a couple of different tools are available, but they are often specifically tailored to the particle transport code and its approach used for implementing geometries. Complex constructive solid modeling usually requires very fast and expensive special purpose hardware, which is not widely available. In this paper SimpleGeo is presented, which is an implementation of a generic versatile interactive geometry modeler using off-the-shelf hardware. It is running on Windows, with a Linux version currently under preparation. This paper describes its functionality, which allows for rapid interactive visualization as well as generation of three-dimensional geometries, and also discusses critical issues regarding common CAD systems.

  18. Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.

    PubMed

    Zachariah, S G; Sanders, J E; Turkiyyah, G M

    1996-06-01

    A general method to generate hexahedral meshes for finite element analysis of residual limbs and similar biomedical geometries is presented. The method utilizes skeleton-based subdivision of cross-sectional domains to produce simple subdomains in which structured meshes are easily generated. Application to a below-knee residual limb and external prosthetic socket is described. The residual limb was modeled as consisting of bones, soft tissue, and skin. The prosthetic socket model comprised a socket wall with an inner liner. The geometries of these structures were defined using axial cross-sectional contour data from X-ray computed tomography, optical scanning, and mechanical surface digitization. A tubular surface representation, using B-splines to define the directrix and generator, is shown to be convenient for definition of the structure geometries. Conversion of cross-sectional data to the compact tubular surface representation is direct, and the analytical representation simplifies geometric querying and numerical optimization within the mesh generation algorithms. The element meshes remain geometrically accurate since boundary nodes are constrained to lie on the tubular surfaces. Several element meshes of increasing mesh density were generated for two residual limbs and prosthetic sockets. Convergence testing demonstrated that approximately 19 elements are required along a circumference of the residual limb surface for a simple linear elastic model. A model with the fibula absent compared with the same geometry with the fibula present showed differences suggesting higher distal stresses in the absence of the fibula. Automated hexahedral mesh generation algorithms for sliced data represent an advancement in prosthetic stress analysis since they allow rapid modeling of any given residual limb and optimization of mesh parameters.

  19. Optical frequency selective surface design using a GPU accelerated finite element boundary integral method

    NASA Astrophysics Data System (ADS)

    Ashbach, Jason A.

    Periodic metallodielectric frequency selective surface (FSS) designs have historically seen widespread use in the microwave and radio frequency spectra. By scaling the dimensions of an FSS unit cell for use in a nano-fabrication process, these concepts have recently been adapted for use in optical applications as well. While early optical designs have been limited to wellunderstood geometries or optimized pixelated screens, nano-fabrication, lithographic and interconnect technology has progressed to a point where it is possible to fabricate metallic screens of arbitrary geometries featuring curvilinear or even three-dimensional characteristics that are only tens of nanometers wide. In order to design an FSS featuring such characteristics, it is important to have a robust numerical solver that features triangular elements in purely two-dimensional geometries and prismatic or tetrahedral elements in three-dimensional geometries. In this dissertation, a periodic finite element method code has been developed which features prismatic elements whose top and bottom boundaries are truncated by numerical integration of the boundary integral as opposed to an approximate representation found in a perfectly matched layer. However, since no exact solution exists for the calculation of triangular elements in a boundary integral, this process can be time consuming. To address this, these calculations were optimized for parallelization such that they may be done on a graphics processor, which provides a large increase in computational speed. Additionally, a simple geometrical representation using a Bezier surface is presented which provides generality with few variables. With a fast numerical solver coupled with a lowvariable geometric representation, a heuristic optimization algorithm has been used to develop several optical designs such as an absorber, a circular polarization filter, a transparent conductive surface and an enhanced, optical modulator.

  20. Designing shear-thinning

    NASA Astrophysics Data System (ADS)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  1. Progressive 3D shape abstraction via hierarchical CSG tree

    NASA Astrophysics Data System (ADS)

    Chen, Xingyou; Tang, Jin; Li, Chenglong

    2017-06-01

    A constructive solid geometry(CSG) tree model is proposed to progressively abstract 3D geometric shape of general object from 2D image. Unlike conventional ones, our method applies to general object without the need for massive CAD models, and represents the object shapes in a coarse-to-fine manner that allows users to view temporal shape representations at any time. It stands in a transitional position between 2D image feature and CAD model, benefits from state-of-the-art object detection approaches and better initializes CAD model for finer fitting, estimates 3D shape and pose parameters of object at different levels according to visual perception objective, in a coarse-to-fine manner. Two main contributions are the application of CSG building up procedure into visual perception, and the ability of extending object estimation result into a more flexible and expressive model than 2D/3D primitive shapes. Experimental results demonstrate the feasibility and effectiveness of the proposed approach.

  2. Special Issue on "Instanton Counting: Moduli Spaces, Representation Theory, and Integrable Systems"

    NASA Astrophysics Data System (ADS)

    Bruzzo, Ugo; Sala, Francesco

    2016-11-01

    This special issue of the Journal of Geometry and Physics collects some papers that were presented during the workshop ;Instanton Counting: Moduli Spaces, Representation Theory, and Integrable Systems; that took place at the Lorentz Center in Leiden, The Netherlands, from 16 to 20 June 2014. The workshop was supported by the Lorentz Center, the ;Geometry and Quantum Theory; Cluster, Centre Européen pour les Mathématiques, la Physique et leurs Interactions (Lille, France), Laboratoire Angevin de Recherche en Mathématiques (Angers, France), SISSA (Trieste, Italy), and Foundation Compositio (Amsterdam, the Netherlands). We deeply thank all these institutions for making the workshop possible. We also thank the other organizers of the workshop, Professors Dimitri Markushevich, Vladimir Rubtsov and Sergey Shadrin, for their efforts and great collaboration.

  3. Multilayered nonuniform sampling for three-dimensional scene representation

    NASA Astrophysics Data System (ADS)

    Lin, Huei-Yung; Xiao, Yu-Hua; Chen, Bo-Ren

    2015-09-01

    The representation of a three-dimensional (3-D) scene is essential in multiview imaging technologies. We present a unified geometry and texture representation based on global resampling of the scene. A layered data map representation with a distance-dependent nonuniform sampling strategy is proposed. It is capable of increasing the details of the 3-D structure locally and is compact in size. The 3-D point cloud obtained from the multilayered data map is used for view rendering. For any given viewpoint, image synthesis with different levels of detail is carried out using the quadtree-based nonuniformly sampled 3-D data points. Experimental results are presented using the 3-D models of reconstructed real objects.

  4. Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials

    NASA Astrophysics Data System (ADS)

    Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.

    2016-09-01

    The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.

  5. Numerical and experimental investigation of the effect of geometry on combustion characteristics of solid-fuel ramjet

    NASA Astrophysics Data System (ADS)

    Gong, Lunkun; Chen, Xiong; Musa, Omer; Yang, Haitao; Zhou, Changsheng

    2017-12-01

    Numerical and experimental investigation on the solid-fuel ramjet was carried out to study the effect of geometry on combustion characteristics. The two-dimensional axisymmetric program developed in the present study adopted finite rate chemistry and second-order moment turbulence-chemistry models, together with k-ω shear stress transport (SST) turbulence model. Experimental data were obtained by burning cylindrical polyethylene using a connected pipe facility. The simulation results show that a fuel-rich zone near the solid fuel surface and an air-rich zone in the core exist in the chamber, and the chemical reactions occur mainly in the interface of this two regions; The physical reasons for the effect of geometry on regression rate is the variation of turbulent viscosity due to the geometry change. Port-to-inlet diameter ratio is the main parameter influencing the turbulent viscosity, and a linear relationship between port-to-inlet diameter and regression rate were obtained. The air mass flow rate and air-fuel ratio are the main influencing factors on ramjet performances. Based on the simulation results, the correlations between geometry and air-fuel ratio were obtained, and the effect of geometry on ramjet performances was analyzed according to the correlation. Three-dimensional regression rate contour obtained experimentally indicates that the regression rate which shows axisymmetric distribution due to the symmetry structure increases sharply, followed by slow decrease in axial direction. The radiation heat transfer in recirculation zone cannot be ignored. Compared with the experimental results, the deviations of calculated average regression rate and characteristic velocity are about 5%. Concerning the effect of geometry on air-fuel ratio, the deviations between experimental and theoretical results are less than 10%.

  6. Dynamics of the Rydberg state population of slow highly charged ions impinging a solid surface at arbitrary collision geometry

    NASA Astrophysics Data System (ADS)

    Nedeljković, N. N.; Majkić, M. D.; Božanić, D. K.; Dojčilović, R. J.

    2016-06-01

    We consider the population dynamics of the intermediate Rydberg states of highly charged ions (core charge Z\\gg 1, principal quantum number {n}{{A}}\\gg 1) interacting with solid surfaces at arbitrary collision geometry. The recently developed resonant two-state vector model for the grazing incidence (2012 J. Phys. B: At. Mol. Opt. Phys. 45 215202) is extended to the quasi-resonant case and arbitrary angle of incidence. According to the model, the population probabilities depend both on the projectile parallel and perpendicular velocity components, in a complementary way. A cascade neutralization process for {{{Xe}}}Z+ ions, for Z=15{--}45, interacting with a conductive-surface is considered by taking into account the population dynamics. For an arbitrary collision geometry and given range of ionic velocities, a micro-staircase model for the simultaneous calculation of the kinetic energy gain and the charge state of the ion in front of the surface is proposed. The relevance of the obtained results for the explanation of the formation of nanostructures on solid surfaces by slow highly charged ions for normal incidence geometry is briefly discussed.

  7. Geometry and Simulation Results for a Gas Turbine Representative of the Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.

    2015-01-01

    This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.

  8. Defeaturing CAD models using a geometry-based size field and facet-based reduction operators.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadros, William Roshan; Owen, Steven James

    2010-04-01

    We propose a method to automatically defeature a CAD model by detecting irrelevant features using a geometry-based size field and a method to remove the irrelevant features via facet-based operations on a discrete representation. A discrete B-Rep model is first created by obtaining a faceted representation of the CAD entities. The candidate facet entities are then marked for reduction by using a geometry-based size field. This is accomplished by estimating local mesh sizes based on geometric criteria. If the field value at a facet entity goes below a user specified threshold value then it is identified as an irrelevant featuremore » and is marked for reduction. The reduction of marked facet entities is primarily performed using an edge collapse operator. Care is taken to retain a valid geometry and topology of the discrete model throughout the procedure. The original model is not altered as the defeaturing is performed on a separate discrete model. Associativity between the entities of the discrete model and that of original CAD model is maintained in order to decode the attributes and boundary conditions applied on the original CAD entities onto the mesh via the entities of the discrete model. Example models are presented to illustrate the effectiveness of the proposed approach.« less

  9. Core geometry in perspective

    PubMed Central

    Dillon, Moira R.; Spelke, Elizabeth S.

    2015-01-01

    Research on animals, infants, children, and adults provides evidence that distinct cognitive systems underlie navigation and object recognition. Here we examine whether and how these systems interact when children interpret 2D edge-based perspectival line drawings of scenes and objects. Such drawings serve as symbols early in development, and they preserve scene and object geometry from canonical points of view. Young children show limits when using geometry both in non-symbolic tasks and in symbolic map tasks that present 3D contexts from unusual, unfamiliar points of view. When presented with the familiar viewpoints in perspectival line drawings, however, do children engage more integrated geometric representations? In three experiments, children successfully interpreted line drawings with respect to their depicted scene or object. Nevertheless, children recruited distinct processes when navigating based on the information in these drawings, and these processes depended on the context in which the drawings were presented. These results suggest that children are flexible but limited in using geometric information to form integrated representations of scenes and objects, even when interpreting spatial symbols that are highly familiar and faithful renditions of the visual world. PMID:25441089

  10. Resistive-force theory for mesh-like superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2018-03-01

    A common realization of superhydrophobic surfaces makes use of a mesh-like geometry, where pockets of air are trapped in a periodic array of holes in a no-slip solid substrate. We consider the small-solid-fraction limit where the ribs of the mesh are narrow. In this limit, we obtain a simple leading-order approximation for the slip-length tensor of an arbitrary mesh geometry. This approximation scales as the solid-fraction logarithm, as anticipated by Ybert et al. [Phys. Fluids 19, 123601 (2007), 10.1063/1.2815730]; in the special case of a square mesh it agrees with the analytical results obtained by Davis and Lauga [Phys. Fluids 21, 113101 (2009), 10.1063/1.3250947].

  11. The construction of tridimensional representation of body and external reality in man. The greatest achievement of evolution to date implications for virtual reality.

    PubMed

    Woodbury, M A; Woodbury, M F

    1998-01-01

    Our 3-D Body Representation constructed during development by our Central Nervous System under the direction of our DNA, consists of a holographic representation arising from sensory input in the cerebellum and projected extraneurally in the brain ventricular fluid which has the chemical structure of liquid crystal. The structure of 3-D holographic Body Representation is then extrapolated by such cognitive instruments as boundarization, geometrization and gestalt organization upon the external environment which is perceived consequently as three dimensional. When the Body Representation collapses as in psychotic panic states. patients become terrified as they suddenly lose the perception of themselves and the world around them as three dimensional, solid in a reliably solid environment but feel suddenly that they are no longer a person but a disorganized blob. In our clinical practice we found serendipitously that the structure of three dimensionality can be restored even without medication by techniques involving stimulation of the body sensory system in the presence of a benevolent psychotherapist. Implications for Virtual Reality will be discussed.

  12. Solid Propellant Grain Structural Integrity Analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  13. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry

    NASA Astrophysics Data System (ADS)

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-01

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  14. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry.

    PubMed

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-28

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  15. Conformal Solid T-spline Construction from Boundary T-spline Representations

    DTIC Science & Technology

    2012-07-01

    TITLE AND SUBTITLE Conformal Solid T-spline Construction from Boundary T-spline Representations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Zhang’s ONR-YIP award N00014-10-1-0698 and an ONR Grant N00014-08-1-0653. The work of T. J.R. Hughes was supported by ONR Grant N00014-08-1-0992, NSF...GOALI CMI-0700807/0700204, NSF CMMI-1101007 and a SINTEF grant UTA10-000374. References 1. M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B

  16. Definition and verification of a complex aircraft for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1986-01-01

    Techniques are reviewed which are of value in CAD/CAM CFD studies of the geometries of new fighter aircraft. In order to refine the computations of the flows to take advantage of the computing power available from supercomputers, it is often necessary to interpolate the geometry of the mesh selected for the numerical analysis of the aircraft shape. Interpolating the geometry permits a higher level of detail in calculations of the flow past specific regions of a design. A microprocessor-based mathematics engine is described for fast image manipulation and rotation to verify that the interpolated geometry will correspond to the design geometry in order to ensure that the flow calculations will remain valid through the interpolation. Applications of the image manipulation system to verify geometrical representations with wire-frame and shaded-surface images are described.

  17. Unfitted Two-Phase Flow Simulations in Pore-Geometries with Accurate

    NASA Astrophysics Data System (ADS)

    Heimann, Felix; Engwer, Christian; Ippisch, Olaf; Bastian, Peter

    2013-04-01

    The development of better macro scale models for multi-phase flow in porous media is still impeded by the lack of suitable methods for the simulation of such flow regimes on the pore scale. The highly complicated geometry of natural porous media imposes requirements with regard to stability and computational efficiency which current numerical methods fail to meet. Therefore, current simulation environments are still unable to provide a thorough understanding of porous media in multi-phase regimes and still fail to reproduce well known effects like hysteresis or the more peculiar dynamics of the capillary fringe with satisfying accuracy. Although flow simulations in pore geometries were initially the domain of Lattice-Boltzmann and other particle methods, the development of Galerkin methods for such applications is important as they complement the range of feasible flow and parameter regimes. In the recent past, it has been shown that unfitted Galerkin methods can be applied efficiently to topologically demanding geometries. However, in the context of two-phase flows, the interface of the two immiscible fluids effectively separates the domain in two sub-domains. The exact representation of such setups with multiple independent and time depending geometries exceeds the functionality of common unfitted methods. We present a new approach to pore scale simulations with an unfitted discontinuous Galerkin (UDG) method. Utilizing a recursive sub-triangulation algorithm, we extent the UDG method to setups with multiple independent geometries. This approach allows an accurate representation of the moving contact line and the interface conditions, i.e. the pressure jump across the interface. Example simulations in two and three dimensions illustrate and verify the stability and accuracy of this approach.

  18. Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries.

    PubMed

    Hsiao, Erik; Marino, Matthew J; Kim, Seong H

    2010-12-15

    This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Solid Freeform Fabrication Proceedings -1999

    DTIC Science & Technology

    1999-08-11

    geometry of the stylus. Some geometries cannot be used to acquire data if the part geometry interferes 48 with a feature on the part. Thus, the data...fabrication processing systems such as surface micro- machining and lithography . 63 Conclusion The LCVD system (figure 6) has the versatility and...part, creating STL (STereo Lithography ) or VRML (Virtual Reality Modeling Language) files, slicing them, converting into laser path files, and

  20. Building a viable decollement geometry for the Central Nepal Himalaya through integrating surface geology, thermochronology and data from the 2015 Gorkha Earthquake

    NASA Astrophysics Data System (ADS)

    Ghoshal, S.; McQuarrie, N.; Robinson, D. M.; Olree, E.; Valentino, C.; Olsen, J.

    2017-12-01

    Recent field mapping in the Central Himalaya revealed a marked change in the location and orientation of exposed Greater Himalayan rocks around the epicenter of the April 2015 Gorkha earthquake, arguing for a lateral structure in the Main Himalayan Thrust (MHT). The earthquake provided new insight into the geometry of the MHT, but left the position and depth of the mid-crustal ramp in dispute. Combining new field data with existing thermochronometric data from the region emphasizes that both the mapped geology and young cooling ages step abruptly southward from east to west, immediately adjacent to the earthquake epicenter. The distribution of cooling ages is strongly influenced by the location of ramps in the decollement surface, as the vertical component of uplift concentrates exhumation over the ramp, producing the youngest ages there. We propose that the existence and location of frontal and lateral ramps can be evaluated using the regional distribution of thermochronometric ages. Sequentially deformed cross-sections present a model of how structurally induced uplift varies in time and space, as well as a predicted geometry of the active, modern fault. We created new balanced cross-sections, constrained by surface geology and the proposed decollement geometries. For an accurate representation of the subsurface, the geometries must reproduce cooling ages measured at the surface. Each cross section was sequentially deformed, allowing for flexure and erosion. The resulting displacement field was used to predict cooling ages for muscovite 40Ar/39Ar, zircon (U-Th)/He, and apatite fission-track, using the thermokinematic model Pecube. The different closure temperatures for these systems allow them to represent different times and locations of exhumation driven by evolving fault geometries. The modeled cooling ages are the cumulative effect of the entire deformational sequence. However, the ages are particularly sensitive to the modern active decollement fault geometry, allowing us to evaluate the different proposed cross-section geometries, and identify the best match to the regional distribution of cooling ages. We argue that this final geometry is the most accurate representation of the subsurface, being constrained by surface geology, thermochronological ages, and data from the earthquake.

  1. Comparison of solid shapes geometry derived by a laser scanner and a total station

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Andreas; Lakakis, Konstantinos

    2016-08-01

    The laser scanning technology has become a common method for the daily applications of a large variety of scientists and professionals. Even for more sophisticated projects, laser scanners have been proved a very useful tool at researchers' and engineers' disposal. In this paper, we investigated the ability of a laser scanner compared to the ability of a total station to provide the geometry of solids. The tests were made in the laboratory facilities of the Aristotle University of Thessaloniki, in a variety of distances between the measuring instrument and the object. The solids that were used differ in shape, material and color. The objects are a wooden cube, a metal cube and a wooden pyramid. The absolute dimensions of the solid shapes were provided by the use of a caliper and were compared to the dimensions that were calculated by the coordinates produced by the total station and laser scanner measurements.

  2. Grouper: a compact, streamable triangle mesh data structure.

    PubMed

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2014-01-01

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As a part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle--i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format--Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  3. Grouper: A Compact, Streamable Triangle Mesh Data Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter

    2014-01-01

    Here, we present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We also present a linear-time construction algorithm that allows streaming out Grouper meshesmore » using a small memory footprint while preserving the initial ordering of vertices. In this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle-i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format-Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.« less

  4. Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo

    DOE PAGES

    Shriwise, Patrick C.; Davis, Andrew; Jacobson, Lucas J.; ...

    2017-08-26

    Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.

  5. Modeling of ultrasonic wave propagation in composite laminates with realistic discontinuity representation.

    PubMed

    Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R

    2018-02-01

    This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Euclidean sections of protein conformation space and their implications in dimensionality reduction

    PubMed Central

    Duan, Mojie; Li, Minghai; Han, Li; Huo, Shuanghong

    2014-01-01

    Dimensionality reduction is widely used in searching for the intrinsic reaction coordinates for protein conformational changes. We find the dimensionality–reduction methods using the pairwise root–mean–square deviation as the local distance metric face a challenge. We use Isomap as an example to illustrate the problem. We believe that there is an implied assumption for the dimensionality–reduction approaches that aim to preserve the geometric relations between the objects: both the original space and the reduced space have the same kind of geometry, such as Euclidean geometry vs. Euclidean geometry or spherical geometry vs. spherical geometry. When the protein free energy landscape is mapped onto a 2D plane or 3D space, the reduced space is Euclidean, thus the original space should also be Euclidean. For a protein with N atoms, its conformation space is a subset of the 3N-dimensional Euclidean space R3N. We formally define the protein conformation space as the quotient space of R3N by the equivalence relation of rigid motions. Whether the quotient space is Euclidean or not depends on how it is parameterized. When the pairwise root–mean–square deviation is employed as the local distance metric, implicit representations are used for the protein conformation space, leading to no direct correspondence to a Euclidean set. We have demonstrated that an explicit Euclidean-based representation of protein conformation space and the local distance metric associated to it improve the quality of dimensionality reduction in the tetra-peptide and β–hairpin systems. PMID:24913095

  7. A Non-Cut Cell Immersed Boundary Method for Use in Icing Simulations

    NASA Technical Reports Server (NTRS)

    Sarofeen, Christian M.; Noack, Ralph W.; Kreeger, Richard E.

    2013-01-01

    This paper describes a computational fluid dynamic method used for modelling changes in aircraft geometry due to icing. While an aircraft undergoes icing, the accumulated ice results in a geometric alteration of the aerodynamic surfaces. In computational simulations for icing, it is necessary that the corresponding geometric change is taken into consideration. The method used, herein, for the representation of the geometric change due to icing is a non-cut cell Immersed Boundary Method (IBM). Computational cells that are in a body fitted grid of a clean aerodynamic geometry that are inside a predicted ice formation are identified. An IBM is then used to change these cells from being active computational cells to having properties of viscous solid bodies. This method has been implemented in the NASA developed node centered, finite volume computational fluid dynamics code, FUN3D. The presented capability is tested for two-dimensional airfoils including a clean airfoil, an iced airfoil, and an airfoil in harmonic pitching motion about its quarter chord. For these simulations velocity contours, pressure distributions, coefficients of lift, coefficients of drag, and coefficients of pitching moment about the airfoil's quarter chord are computed and used for comparison against experimental results, a higher order panel method code with viscous effects, XFOIL, and the results from FUN3D's original solution process. The results of the IBM simulations show that the accuracy of the IBM compares satisfactorily with the experimental results, XFOIL results, and the results from FUN3D's original solution process.

  8. Airplane Mesh Development with Grid Density Studies

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Baker, Timothy J.; Thomas, Scott D.; Lawrence, Scott L.; Rimlinger, Mark J.

    1999-01-01

    Automatic Grid Generation Wish List Geometry handling, including CAD clean up and mesh generation, remains a major bottleneck in the application of CFD methods. There is a pressing need for greater automation in several aspects of the geometry preparation in order to reduce set up time and eliminate user intervention as much as possible. Starting from the CAD representation of a configuration, there may be holes or overlapping surfaces which require an intensive effort to establish cleanly abutting surface patches, and collections of many patches may need to be combined for more efficient use of the geometrical representation. Obtaining an accurate and suitable body conforming grid with an adequate distribution of points throughout the flow-field, for the flow conditions of interest, is often the most time consuming task for complex CFD applications. There is a need for a clean unambiguous definition of the CAD geometry. Ideally this would be carried out automatically by smart CAD clean up software. One could also define a standard piece-wise smooth surface representation suitable for use by computational methods and then create software to translate between the various CAD descriptions and the standard representation. Surface meshing remains a time consuming, user intensive procedure. There is a need for automated surface meshing, requiring only minimal user intervention to define the overall density of mesh points. The surface mesher should produce well shaped elements (triangles or quadrilaterals) whose size is determined initially according to the surface curvature with a minimum size for flat pieces, and later refined by the user in other regions if necessary. Present techniques for volume meshing all require some degree of user intervention. There is a need for fully automated and reliable volume mesh generation. In addition, it should be possible to create both surface and volume meshes that meet guaranteed measures of mesh quality (e.g. minimum and maximum angle, stretching ratios, etc.).

  9. A Monte Carlo method using octree structure in photon and electron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, K.; Maeda, S.

    Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that withmore » electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting.« less

  10. The load separation technique in the elastic-plastic fracture analysis of two- and three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Sharobeam, Monir H.

    1994-01-01

    Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.

  11. Soapy Science. Teaching Science.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a science and math activity that involves bubbles, shapes, colors, and solid geometry. Students build geometric shapes with soda straws and submerge the shapes in soapy water, allowing them to review basic geometry concepts, test hypotheses, and learn about other concepts such as diffraction, interference colors, and evaporation. (TJQ)

  12. A topological hierarchy for functions on triangulated surfaces.

    PubMed

    Bremer, Peer-Timo; Edelsbrunner, Herbert; Hamann, Bernd; Pascucci, Valerio

    2004-01-01

    We combine topological and geometric methods to construct a multiresolution representation for a function over a two-dimensional domain. In a preprocessing stage, we create the Morse-Smale complex of the function and progressively simplify its topology by cancelling pairs of critical points. Based on a simple notion of dependency among these cancellations, we construct a hierarchical data structure supporting traversal and reconstruction operations similarly to traditional geometry-based representations. We use this data structure to extract topologically valid approximations that satisfy error bounds provided at runtime.

  13. Computational Vision in Uv-Mapping of Textured Meshes Coming from Photogrammetric Recovery: Unwrapping Frescoed Vaults

    NASA Astrophysics Data System (ADS)

    Robleda, P. G.; Caroti, G.; Martínez-Espejo Zaragoza, I.; Piemonte, A.

    2016-06-01

    Sometimes it is difficult to represent "on paper" the existing reality of architectonic elements, depending on the complexity of his geometry, but not only in cases with complex geometries: non-relief surfaces, can need a "special planar format" for its graphical representation. Nowadays, there are a lot of methods to obtain tridimensional recovery of our Cultural Heritage with different ranges of the relationship accuracy / costs, even getting high accuracy using "low-cost" recovery methods as digital photogrammetry, which allow us easily to obtain a graphical representation "on paper": ortho-images of different points of view. This can be useful for many purposes but, for others, an orthographic projection is not really very interesting. In non-site restoration tasks of frescoed vaults, a "planar format" representation in needed to see in true magnitude the paintings represented on the intrados vault, because of the general methodology used: gluing the fresco on a fabric, removing the fresco-fabric from the support, moving to laboratory, removing the fresco from the fabric, restoring the fresco, gluing back the restored fresco on another fabric, laying the restored fresco on the original location and removing the fabric. Because of this, many times, an unfolded model is needed, in a similar way a cylinder or cone can be unfolded, but in this case with a texture included: UV unwrapping. Unfold and fold-back processes, can be especially interesting in restoration field of frescoed vaults and domes at: chromatic recovery of paintings, reconstruction of partially missed geometries, transference of paintings on surfaces, etc.

  14. Pulsar Emission Geometry and Accelerating Field Strength

    DTIC Science & Technology

    2011-11-01

    ar X iv :1 11 1. 03 25 v1 [ as tr o- ph .H E ] 1 N ov 2 01 1 2011 Fermi Symposium, Roma., May. 9-12 1 Pulsar Emission Geometry and Accelerating...observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems. The high...the Vela and CTA 1 pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission

  15. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    NASA Astrophysics Data System (ADS)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  16. GEOMETRY, TENTATIVE GUIDES.

    ERIC Educational Resources Information Center

    KLIER, KATHERINE M.

    PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…

  17. Constructing Spatial Understanding

    ERIC Educational Resources Information Center

    Obara, Samuel

    2010-01-01

    Activities that enable students to move between two and three dimensions will help them understand solid geometry. This knowledge is critical for teachers, and they need to learn this skill so that they can give their students the opportunity to experience hands-on geometry and benefit from the challenge of creating nets, building models, and…

  18. Tunable solid state lasers for remote sensing; Proceedings of the Conference, Stanford University, CA, October 1-3, 1984

    NASA Technical Reports Server (NTRS)

    Byer, R. L. (Editor); Trebino, R. (Editor); Gustafson, E. K. (Editor)

    1985-01-01

    Papers are presented on solid-state lasers for remote sensing, diode-pumped Nd:YAG lasers, and tunable solid-state-laser systems. Topics discussed include titanium-sapphire tunable laser systems, the performance of slab geometry, and the development of slab lasers. Consideration is given to garnet host solid-state lasers, the growth of lasers and nonlinear materials, and nonlinear frequency conversion and tunable sources.

  19. Quantum dressing orbits on compact groups

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Šťovíček, Pavel

    1993-02-01

    The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient “coherent states” are introduced and a correspondence between classical and quantum observables is given.

  20. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousculp, Christopher L.; Oro, David Michael; Margolin, Len G.

    2015-08-06

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less

  1. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  2. The spectrum of static subtracted geometries

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Castro, Alejandra; Cohen-Maldonado, Diego

    2017-05-01

    Subtracted geometries are black hole solutions of the four dimensional STU model with rather interesting ties to asymptotically flat black holes. A peculiar feature is that the solutions to the Klein-Gordon equation on this subtracted background can be organized according to representations of the conformal group SO(2, 2). We test if this behavior persists for the linearized fluctuations of gravitational and matter fields on static, electrically charged backgrounds of this kind. We find that there is a subsector of the modes that do display conformal symmetry, while some modes do not. We also discuss two different effective actions that describe these subtracted geometries and how the spectrum of quasinormal modes is dramatically different depending upon the action used.

  3. The Coupling of Finite Element and Integral Equation Representations for Efficient Three-Dimensional Modeling of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz

    1996-01-01

    Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.

  4. A Report of Undergraduates' Bonding Misconceptions.

    ERIC Educational Resources Information Center

    Nicoll, Gayle

    2001-01-01

    Describes misconceptions related to electronegativity, bonding, geometry, and microscopic representations that undergraduate students hold. Investigates the stability of misconceptions as a function of educational level, indicating that some students' misconceptions relating to bonding are resistant to change despite increased chemistry education.…

  5. Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence

    PubMed Central

    Lourenco, Stella F.; Bonny, Justin W.; Fernandez, Edmund P.; Rao, Sonia

    2012-01-01

    Humans and nonhuman animals share the capacity to estimate, without counting, the number of objects in a set by relying on an approximate number system (ANS). Only humans, however, learn the concepts and operations of symbolic mathematics. Despite vast differences between these two systems of quantification, neural and behavioral findings suggest functional connections. Another line of research suggests that the ANS is part of a larger, more general system of magnitude representation. Reports of cognitive interactions and common neural coding for number and other magnitudes such as spatial extent led us to ask whether, and how, nonnumerical magnitude interfaces with mathematical competence. On two magnitude comparison tasks, college students estimated (without counting or explicit calculation) which of two arrays was greater in number or cumulative area. They also completed a battery of standardized math tests. Individual differences in both number and cumulative area precision (measured by accuracy on the magnitude comparison tasks) correlated with interindividual variability in math competence, particularly advanced arithmetic and geometry, even after accounting for general aspects of intelligence. Moreover, analyses revealed that whereas number precision contributed unique variance to advanced arithmetic, cumulative area precision contributed unique variance to geometry. Taken together, these results provide evidence for shared and unique contributions of nonsymbolic number and cumulative area representations to formally taught mathematics. More broadly, they suggest that uniquely human branches of mathematics interface with an evolutionarily primitive general magnitude system, which includes partially overlapping representations of numerical and nonnumerical magnitude. PMID:23091023

  6. Tensor networks from kinematic space

    DOE PAGES

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...

    2016-07-20

    We point out that the MERA network for the ground state of a 1+1-dimensional conformal field theory has the same structural features as kinematic space — the geometry of CFT intervals. In holographic theories kinematic space becomes identified with the space of bulk geodesics studied in integral geometry. We argue that in these settings MERA is best viewed as a discretization of the space of bulk geodesics rather than of the bulk geometry itself. As a test of this kinematic proposal, we compare the MERA representation of the thermofield-double state with the space of geodesics in the two-sided BTZ geometry,more » obtaining a detailed agreement which includes the entwinement sector. In conclusion, we discuss how the kinematic proposal can be extended to excited states by generalizing MERA to a broader class of compression networks.« less

  7. ART-ML: a new markup language for modelling and representation of biological processes in cardiovascular diseases.

    PubMed

    Karvounis, E C; Exarchos, T P; Fotiou, E; Sakellarios, A I; Iliopoulou, D; Koutsouris, D; Fotiadis, D I

    2013-01-01

    With an ever increasing number of biological models available on the internet, a standardized modelling framework is required to allow information to be accessed and visualized. In this paper we propose a novel Extensible Markup Language (XML) based format called ART-ML that aims at supporting the interoperability and the reuse of models of geometry, blood flow, plaque progression and stent modelling, exported by any cardiovascular disease modelling software. ART-ML has been developed and tested using ARTool. ARTool is a platform for the automatic processing of various image modalities of coronary and carotid arteries. The images and their content are fused to develop morphological models of the arteries in 3D representations. All the above described procedures integrate disparate data formats, protocols and tools. ART-ML proposes a representation way, expanding ARTool, for interpretability of the individual resources, creating a standard unified model for the description of data and, consequently, a format for their exchange and representation that is machine independent. More specifically, ARTool platform incorporates efficient algorithms which are able to perform blood flow simulations and atherosclerotic plaque evolution modelling. Integration of data layers between different modules within ARTool are based upon the interchange of information included in the ART-ML model repository. ART-ML provides a markup representation that enables the representation and management of embedded models within the cardiovascular disease modelling platform, the storage and interchange of well-defined information. The corresponding ART-ML model incorporates all relevant information regarding geometry, blood flow, plaque progression and stent modelling procedures. All created models are stored in a model repository database which is accessible to the research community using efficient web interfaces, enabling the interoperability of any cardiovascular disease modelling software models. ART-ML can be used as a reference ML model in multiscale simulations of plaque formation and progression, incorporating all scales of the biological processes.

  8. Stereo Orthogonal Axonometric Perspective for the Teaching of Descriptive Geometry

    ERIC Educational Resources Information Center

    Méxas, José Geraldo Franco; Guedes, Karla Bastos; Tavares, Ronaldo da Silva

    2015-01-01

    Purpose: The purpose of this paper is to present the development of a software for stereo visualization of geometric solids, applied to the teaching/learning of Descriptive Geometry. Design/methodology/approach: The paper presents the traditional method commonly used in computer graphic stereoscopic vision (implemented in C language) and the…

  9. Statistical Representations of Track Geometry : Volume II, Appendices.

    DOT National Transportation Integrated Search

    1980-03-31

    This volume contains some of the more detailed data and analyses to support the results and conclusions reached in Volume I of this report. It is divided into appendixes lettered A through J. Appendix A defines a procedure for evaluating the statisti...

  10. Synthesis of hollow silica spheres with hierarchical shell structure by the dual action of liquid indium microbeads in vapor-liquid-solid growth.

    PubMed

    Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-07-05

    Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society

  11. Chin Prompt Plus Re-Presentation as Treatment for Expulsion in Children with Feeding Disorders

    ERIC Educational Resources Information Center

    Wilkins, Jonathan W.; Piazza, Cathleen C.; Groff, Rebecca A.; Vaz, Petula C. M.

    2011-01-01

    Expulsion (spitting out food) is a problem behavior observed in many children with feeding disorders. In the current investigation, we identified 4 children diagnosed with a feeding disorder who exhibited high rates of expulsion. Treatment with re-presentation (placing expelled liquids or solids back into the child's mouth) was not effective in…

  12. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    PubMed

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in <1h compared to >3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Information Geometry for Landmark Shape Analysis: Unifying Shape Representation and Deformation

    PubMed Central

    Peter, Adrian M.; Rangarajan, Anand

    2010-01-01

    Shape matching plays a prominent role in the comparison of similar structures. We present a unifying framework for shape matching that uses mixture models to couple both the shape representation and deformation. The theoretical foundation is drawn from information geometry wherein information matrices are used to establish intrinsic distances between parametric densities. When a parameterized probability density function is used to represent a landmark-based shape, the modes of deformation are automatically established through the information matrix of the density. We first show that given two shapes parameterized by Gaussian mixture models (GMMs), the well-known Fisher information matrix of the mixture model is also a Riemannian metric (actually, the Fisher-Rao Riemannian metric) and can therefore be used for computing shape geodesics. The Fisher-Rao metric has the advantage of being an intrinsic metric and invariant to reparameterization. The geodesic—computed using this metric—establishes an intrinsic deformation between the shapes, thus unifying both shape representation and deformation. A fundamental drawback of the Fisher-Rao metric is that it is not available in closed form for the GMM. Consequently, shape comparisons are computationally very expensive. To address this, we develop a new Riemannian metric based on generalized ϕ-entropy measures. In sharp contrast to the Fisher-Rao metric, the new metric is available in closed form. Geodesic computations using the new metric are considerably more efficient. We validate the performance and discriminative capabilities of these new information geometry-based metrics by pairwise matching of corpus callosum shapes. We also study the deformations of fish shapes that have various topological properties. A comprehensive comparative analysis is also provided using other landmark-based distances, including the Hausdorff distance, the Procrustes metric, landmark-based diffeomorphisms, and the bending energies of the thin-plate (TPS) and Wendland splines. PMID:19110497

  14. A Geometry Based Infra-Structure for Computational Analysis and Design

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1998-01-01

    The computational steps traditionally taken for most engineering analysis suites (computational fluid dynamics (CFD), structural analysis, heat transfer and etc.) are: (1) Surface Generation -- usually by employing a Computer Assisted Design (CAD) system; (2) Grid Generation -- preparing the volume for the simulation; (3) Flow Solver -- producing the results at the specified operational point; (4) Post-processing Visualization -- interactively attempting to understand the results. For structural analysis, integrated systems can be obtained from a number of commercial vendors. These vendors couple directly to a number of CAD systems and are executed from within the CAD Graphical User Interface (GUI). It should be noted that the structural analysis problem is more tractable than CFD; there are fewer mesh topologies used and the grids are not as fine (this problem space does not have the length scaling issues of fluids). For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. In most cases, the output from a CAD system could go to Initial Graphics Exchange Specification (IGES) or Standard Exchange Program (STEP) files. The output from Grid Generators and Solvers do not really have standards though there are a couple of file formats that can be used for a subset of the gridding (i.e. PLOT3D data formats). The user would have to patch up the data or translate from one format to another to move to the next step. Sometimes this could take days. Specifically the problems with this procedure are:(1) File based -- Information flows from one step to the next via data files with formats specified for that procedure. File standards, when they exist, are wholly inadequate. For example, geometry from CAD systems (transmitted via IGES files) is defined as disjoint surfaces and curves (as well as masses of other information of no interest for the Grid Generator). This is particularly onerous for modern CAD systems based on solid modeling. The part was a proper solid and in the translation to IGES has lost this important characteristic. STEP is another standard for CAD data that exists and supports the concept of a solid. The problem with STEP is that a solid modeling geometry kernel is required to query and manipulate the data within this type of file. (2) 'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in tens of minutes (even with a complex configuration) using unstructured techniques. Adroit multi-block methods are not far behind. This means that a million node steady-state solution can be computed on the order of hours (using current high performance computers) starting from this 'good' geometry. Unfortunately, the geometry usually transmitted from the CAD system is not 'good' in the grid generator sense. The grid generator needs smooth closed solid geometry. It can take a week (or more) of interaction with the CAD output (sometimes by hand) before the process can begin. One way Communication. (3) One-way Communication -- All information travels on from one phase to the next. This makes procedures like node adaptation difficult when attempting to add or move nodes that sit on bounding surfaces (when the actual surface data has been lost after the grid generation phase). Until this process can be automated, more complex problems such as multi-disciplinary analysis or using the above procedure for design becomes prohibitive. There is also no way to easily deal with this system in a modular manner. One can only replace the grid generator, for example, if the software reads and writes the same files. Instead of the serial approach to analysis as described above, CAPRI takes a geometry centric approach. This makes the actual geometry (not a discretized version) accessible to all phases of the analysis. The connection to the geometry is made through an Application Programming Interface (API) and NOT a file system. This API isolates the top-level applications (grid generators, solvers and visualization components) from the geometry engine. Also this allows the replacement of one geometry kernel with another, without effecting these top-level applications. For example, if UniGraphics is used as the CAD package then Parasolid (UG's own geometry engine) can be used for all geometric queries so that no solid geometry information is lost in a translation. This is much better than STEP because when the data is queried, the same software is executed as used in the CAD system. Therefore, one analyzes the exact part that is in the CAD system. CAPRI uses the same idea as the commercial structural analysis codes but does not specify control. Software components of the CAD system are used, but the analysis suite, not the CAD operator, specifies the control of the software session. This also means that the license issues (may be) minimized and individuals need not have to know how to operate a CAD system in order to run the suite.

  15. Using SpaceClaimTD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    NASA Technical Reports Server (NTRS)

    Fabanich, William A., Jr.

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractor's thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces/solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing/repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the "mark-up" of that geometry. These so-called "mark-ups" control how finite element (FE) meshes are to be generated through the "tagging" of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. "Domain-tags" were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine the objects each time as one would if using TDMesher. The use of SpaceClaim/TD Direct helps simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It also saves time and effort in the subsequent analysis.

  16. Using SpaceClaim/TD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    NASA Technical Reports Server (NTRS)

    Fabanich, William

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractors thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the mark-up of that geometry. These so-called mark-ups control how finite element (FE) meshes were generated and allowed the tagging of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. Domain-tags were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine these objects each time as one would if using TD Mesher.The use of SpaceClaim/TD Direct has helped simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It has also saved time and effort in the subsequent analysis.

  17. Manifestation of a strong quadrupole interaction and peculiarities in the SERS and SEHRS spectra of 4,4'-bipyridine

    NASA Astrophysics Data System (ADS)

    Golovin, A. V.; Polubotko, A. M.

    2017-07-01

    The paper analyzes Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Hyper Raman Scattering (SEHRS) spectra of 4,4'-bypiridine molecule for two possible geometries, which are described by D 2 and D 2 h symmetry groups. It is pointed out on appearance of sufficiently strong lines, caused by vibrations with the unit irreducible representation for both possible configurations. Appearance of these lines in the SEHRS spectrum points out the existence of a strong quadrupole light-molecule interaction. In addition one observes the lines, caused by vibrations both with the unit irreducible representations A or A g and the irreducible representation B 1 or B 1 u . The last ones describe transformational properties of the d z component of the dipole moment, which is perpendicular to the surface. This property of the spectrum is caused by peculiarity of the geometry of the molecule, which consists of two benzene rings, which are weakly connected with each other. The linear combinations of the vibrations of the rings create two nearly degenerated symmetric and anti symmetrical states, which cannot be identified in the experimental spectra. The result is in a full agreement with the dipole-quadrupole theory of SERS and SEHRS.

  18. Exploring the Structure of Spatial Representations

    PubMed Central

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  19. Modelling of industrial robot in LabView Robotics

    NASA Astrophysics Data System (ADS)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  20. Hybrid Modeling Based on Scsg-Br and Orthophoto

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, Y.; Yue, T.; Li, X.; Huang, W.; He, C.; Wu, Z.

    2018-05-01

    With the development of digital city, digital applications are more and more widespread, while the urban buildings are more complex. Therefore, establishing an effective data model is the key to express urban building models accurately. In addition, the combination of 3D building model and remote sensing data become a trend to build digital city there are a large amount of data resulting in data redundancy. In order to solve the limitation of single modelling of constructive solid geometry (CSG), this paper presents a mixed modelling method based on SCSG-BR for urban buildings representation. On one hand, the improved CSG method, which is called as "Spatial CSG (SCSG)" representation method, is used to represent the exterior shape of urban buildings. On the other hand, the boundary representation (BR) method represents the topological relationship between geometric elements of urban building, in which the textures is considered as the attribute data of the wall and the roof of urban building. What's more, the method combined file database and relational database is used to manage the data of three-dimensional building model, which can decrease the complex processes in texture mapping. During the data processing, the least-squares algorithm with constraints is used to orthogonalize the building polygons and adjust the polygons topology to ensure the accuracy of the modelling data. Finally, this paper matches the urban building model with the corresponding orthophoto. This paper selects data of Denver, Colorado, USA to establish urban building realistic model. The results show that the SCSG-BR method can represent the topological relations of building more precisely. The organization and management of urban building model data reduce the redundancy of data and improve modelling speed. The combination of orthophoto and urban building model further strengthens the application in view analysis and spatial query, which enhance the scope of digital city applications.

  1. Geometry definition and grid generation for a complete fighter aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1986-01-01

    Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.

  2. Geometry definition and grid generation for a complete fighter aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas A.

    1986-01-01

    Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. A procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system is presented. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.

  3. Micro-structurally detailed model of a therapeutic hydrogel injectate in a rat biventricular cardiac geometry for computational simulations

    PubMed Central

    Sirry, Mazin S.; Davies, Neil H.; Kadner, Karen; Dubuis, Laura; Saleh, Muhammad G.; Meintjes, Ernesta M.; Spottiswoode, Bruce S.; Zilla, Peter; Franz, Thomas

    2013-01-01

    Biomaterial injection based therapies have showed cautious success in restoration of cardiac function and prevention of adverse remodelling into heart failure after myocardial infarction (MI). However, the underlying mechanisms are not well understood. Computational studies utilised simplified representations of the therapeutic myocardial injectates. Wistar rats underwent experimental infarction followed by immediate injection of polyethylene glycol hydrogel in the infarct region. Hearts were explanted, cryo-sectioned and the region with the injectate histologically analysed. Histological micrographs were used to reconstruct the dispersed hydrogel injectate. Cardiac magnetic resonance imaging (CMRI) data from a healthy rat were used to obtain an end-diastolic biventricular geometry which was subsequently adjusted and combined with the injectate model. The computational geometry of the injectate exhibited microscopic structural details found the in situ. The combination of injectate and cardiac geometry provides realistic geometries for multiscale computational studies of intra-myocardial injectate therapies for the rat model that has been widely used for MI research. PMID:23682845

  4. 3DHZETRN: Inhomogeneous Geometry Issues

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.

    2017-01-01

    Historical methods for assessing radiation exposure inside complicated geometries for space applications were limited by computational constraints and lack of knowledge associated with nuclear processes occurring over a broad range of particles and energies. Various methods were developed and utilized to simplify geometric representations and enable coupling with simplified but efficient particle transport codes. Recent transport code development efforts, leading to 3DHZETRN, now enable such approximate methods to be carefully assessed to determine if past exposure analyses and validation efforts based on those approximate methods need to be revisited. In this work, historical methods of representing inhomogeneous spacecraft geometry for radiation protection analysis are first reviewed. Two inhomogeneous geometry cases, previously studied with 3DHZETRN and Monte Carlo codes, are considered with various levels of geometric approximation. Fluence, dose, and dose equivalent values are computed in all cases and compared. It is found that although these historical geometry approximations can induce large errors in neutron fluences up to 100 MeV, errors on dose and dose equivalent are modest (<10%) for the cases studied here.

  5. Models in the Design and Validation of Eddy Current Inspection for Cracking in the Shuttle Reaction Control System Thruster

    NASA Technical Reports Server (NTRS)

    Aldrin, John C.; Williams, Phillip A.; Wincheski, Russell (Buzz) A.

    2008-01-01

    A case study is presented for using models in eddy current NDE design for crack detection in Shuttle Reaction Control System thruster components. Numerical methods were used to address the complex geometry of the part and perform parametric studies of potential transducer designs. Simulations were found to show agreement with experimental results. Accurate representation of the coherent noise associated with the measurement and part geometry was found to be critical to properly evaluate the best probe designs.

  6. Effect of Environment on the Fidelity of Control and Measurements of Solid-State Quantum Devices

    DTIC Science & Technology

    2013-07-22

    space vs. thickness of the film a for a DQD charge qubit in one dimension with dot geometry d = 30 nm and l = 60 nm at 0 K...constitute a conducting half- space , rather than the more sparse gate geometry used in [134]. It is also instructive to compare our results with the ...40 ms [134]. However, it must be kept in mind that we have so far considered the simpler top gate geometry of a conducting half-

  7. Geometry, Representation Theory, and the Langlands Program

    DTIC Science & Technology

    2013-04-01

    or the middle range of dimensions (in the non-Shimura variety case), the systems of Hecke eigenvalues that appear are all Eisenstein ...characteristic p coecients of GLn(Q) is Eisenstein . (The characteristic zero analogue follows directly from Borel’s proof of stability of cohomology with

  8. Review of analytical models to stream depletion induced by pumping: Guide to model selection

    NASA Astrophysics Data System (ADS)

    Huang, Ching-Sheng; Yang, Tao; Yeh, Hund-Der

    2018-06-01

    Stream depletion due to groundwater extraction by wells may cause impact on aquatic ecosystem in streams, conflict over water rights, and contamination of water from irrigation wells near polluted streams. A variety of studies have been devoted to addressing the issue of stream depletion, but a fundamental framework for analytical modeling developed from aquifer viewpoint has not yet been found. This review shows key differences in existing models regarding the stream depletion problem and provides some guidelines for choosing a proper analytical model in solving the problem of concern. We introduce commonly used models composed of flow equations, boundary conditions, well representations and stream treatments for confined, unconfined, and leaky aquifers. They are briefly evaluated and classified according to six categories of aquifer type, flow dimension, aquifer domain, stream representation, stream channel geometry, and well type. Finally, we recommend promising analytical approaches that can solve stream depletion problem in reality with aquifer heterogeneity and irregular geometry of stream channel. Several unsolved stream depletion problems are also recommended.

  9. Geometry of the generalized Bloch sphere for qutrits

    NASA Astrophysics Data System (ADS)

    Goyal, Sandeep K.; Neethi Simon, B.; Singh, Rajeev; Simon, Sudhavathani

    2016-04-01

    The geometry of the generalized Bloch sphere Ω3, the state space of a qutrit, is studied. Closed form expressions for Ω3, its boundary ∂Ω3, and the set of extremals {{{Ω }}}3{{ext}} are obtained by use of an elementary observation. These expressions and analytic methods are used to classify the 28 two-sections and the 56 three-sections of Ω3 into unitary equivalence classes, completing the works of earlier authors. It is shown, in particular, that there are families of two-sections and of three-sections which are equivalent geometrically but not unitarily, a feature that does not appear to have been appreciated earlier. A family of three-sections of obese-tetrahedral shape whose symmetry corresponds to the 24-element tetrahedral point group T d is examined in detail. This symmetry is traced to the natural reduction of the adjoint representation of SU(3), the symmetry underlying Ω3, into direct sum of the two-dimensional and the two (inequivalent) three-dimensional irreducible representations of T d .

  10. Fundamental studies of structure borne noise for advanced turboprop applications

    NASA Technical Reports Server (NTRS)

    Eversman, W.; Koval, L. R.

    1985-01-01

    The transmission of sound generated by wing-mounted, advanced turboprop engines into the cabin interior via structural paths is considered. The structural model employed is a beam representation of the wing box carried into the fuselage via a representative frame type of carry through structure. The structure for the cabin cavity is a stiffened shell of rectangular or cylindrical geometry. The structure is modelled using a finite element formulation and the acoustic cavity is modelled using an analytical representation appropriate for the geometry. The structural and acoustic models are coupled by the use of hard wall cavity modes for the interior and vacuum structural modes for the shell. The coupling is accomplished using a combination of analytical and finite element models. The advantage is the substantial reduction in dimensionality achieved by modelling the interior analytically. The mathematical model for the interior noise problem is demonstrated with a simple plate/cavity system which has all of the features of the fuselage interior noise problem.

  11. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall

    2016-03-21

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface ismore » adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.« less

  12. SRB-3D Solid Rocket Booster performance prediction program. Volume 2: Sample case

    NASA Technical Reports Server (NTRS)

    Winkler, J. C.

    1976-01-01

    The sample case presented in this volume is an asymmetrical eight sector thermal gradient performance prediction for the solid rocket motor. This motor is the TC-227A-75 grain design and the initial grain geometry is assumed to be symmetrical about the motors longitudinal axis.

  13. Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians.

    PubMed

    Zheng, Jingjing; Frisch, Michael J

    2017-12-12

    An efficient geometry optimization algorithm based on interpolated potential energy surfaces with iteratively updated Hessians is presented in this work. At each step of geometry optimization (including both minimization and transition structure search), an interpolated potential energy surface is properly constructed by using the previously calculated information (energies, gradients, and Hessians/updated Hessians), and Hessians of the two latest geometries are updated in an iterative manner. The optimized minimum or transition structure on the interpolated surface is used for the starting geometry of the next geometry optimization step. The cost of searching the minimum or transition structure on the interpolated surface and iteratively updating Hessians is usually negligible compared with most electronic structure single gradient calculations. These interpolated potential energy surfaces are often better representations of the true potential energy surface in a broader range than a local quadratic approximation that is usually used in most geometry optimization algorithms. Tests on a series of large and floppy molecules and transition structures both in gas phase and in solutions show that the new algorithm can significantly improve the optimization efficiency by using the iteratively updated Hessians and optimizations on interpolated surfaces.

  14. EXACT RELATIVISTIC NEWTONIAN REPRESENTATION OF GRAVITATIONAL STATIC SPACETIME GEOMETRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Shubhrangshu; Sarkar, Tamal; Bhadra, Arunava, E-mail: sghosh@jcbose.ac.in, E-mail: ta.sa.nbu@hotmail.com, E-mail: aru_bhadra@yahoo.com

    2016-09-01

    We construct a self-consistent relativistic Newtonian analogue corresponding to gravitational static spherical symmetric spacetime geometries, starting directly from a generalized scalar relativistic gravitational action in a Newtonian framework, which gives geodesic equations of motion identical to those of the parent metric. Consequently, the derived velocity-dependent relativistic scalar potential, which is a relativistic generalization of the Newtonian gravitational potential, exactly reproduces the relativistic gravitational features corresponding to any static spherical symmetric spacetime geometry in its entirety, including all the experimentally tested gravitational effects in the weak field up to the present. This relativistic analogous potential is expected to be quite usefulmore » in studying a wide range of astrophysical phenomena, especially in strong field gravity.« less

  15. Vector representation as a tool for detecting characteristic uranium peaks

    NASA Astrophysics Data System (ADS)

    Forney, Anne Marie

    Vector representation is found as a viable tool for identifying the presence of and determining the difference between enriched and naturally occurring uranium. This was accomplished through the isolation of two regions of interest around the uranium-235 (235U) gamma emission at 186 keV and the uranium-238 (238U) gamma emission at 1001 keV. The uranium 186 keV peak is used as a meter for uranium enrichment, and events from this emission occurred more frequently with the increase of the 235U composition. Spectra were taken with the use of a high purity germanium detector in series with a multi-channel analyzer (MCA) and Maestro 32, a MCA emulator and spectral software. The vector representation method was used to compare two spectra by taking their dot product. The output from this method is an angle, which represents the similarity and contrast between the two spectra. When the angle is close to zero the spectra are similar, and as the angle approaches 90 degrees the spectral agreement decreases. The angles were calculated and compared in Microsoft Excel. A 49 % enriched uranyl acetate source containing both gamma emissions from 235U and 238U was used as a reference source to which all spectra were compared. Two other uranium sources were used within this project: a 100.2 nCi highly-enriched uranium source with 97.7 % 235U by weight, and a piece of uranium ore with an approximate exposure rate of 0.2 mR/h (51.5 nC/kg/h) at 1 cm. These two uranium sources provided different ratios of 235U to 238U, leading to different ratios of the 186 keV and 1001 keV peaks. To test the limits of the vector representation method, various source configurations were used. These included placing the source directly on top of the detector, using two distances for the source from the detector, using the source in addition to cobalt-60, and finally two distances for the source from the detector with a one centimeter lead shield. The two distances from the detector without the shielding were 1.3 inches (3.30 cm) and 1 foot (30.48 cm). In the cases using lead shielding, in the first geometry, the source was placed directly on the lead shielding and in the second geometry, the source was placed a foot above the lead shielding and detector. Vector representation output angles higher than a value of 40.3 degrees indicated that uranium was not present in the source. All of the sources tested with an angle below this 40.3 degree cutoff contained some type of uranium. To determine whether the uranium was processed or naturally occurring, 18.0 degrees was chosen as the upper limit for processed uranium sources. Sources that produced an angle above 18.0 degrees and below 40.3 degrees were categorized as naturally occurring uranium. The vector representation technique was able to classify the uranium sources in all of the geometries except for the geometries that included the centimeter of lead.

  16. Comparison of Microinstability Properties for Stellarator Magnetic Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Rewoldt; L.-P. Ku; W.M. Tang

    2005-06-16

    The microinstability properties of seven distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presencemore » of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter n identical to d ln T/d ln n, whereas for large values of n, the mode is strongly unstable for all of the different magnetic geometries.« less

  17. Representation of Ice Geometry by Parametric Functions: Construction of Approximating NURBS Curves and Quantification of Ice Roughness--Year 1: Approximating NURBS Curves

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Choo, Yung K. (Technical Monitor)

    2004-01-01

    Software was developed to construct approximating NURBS curves for iced airfoil geometries. Users specify a tolerance that determines the extent to which the approximating curve follows the rough ice. The user can therefore smooth the ice geometry in a controlled manner, thereby enabling the generation of grids suitable for numerical aerodynamic simulations. Ultimately, this ability to smooth the ice geometry will permit studies of the effects of smoothing upon the aerodynamics of iced airfoils. The software was applied to several different types of iced airfoil data collected in the Icing Research Tunnel at NASA Glenn Research Center, and in all cases was found to efficiently generate suitable approximating NURBS curves. This method is an improvement over the current "control point formulation" of Smaggice (v.1.2). In this report, we present the relevant theory of approximating NURBS curves and discuss typical results of the software.

  18. Tearing Plastic: A Laboratory Exercise on Fractals and Hyperbolic Geometry

    ERIC Educational Resources Information Center

    Taylor, Ron; Timberlake, Todd

    2007-01-01

    In this article we describe a hands-on activity for a liberal arts mathematics course that focuses on the beauty and unity of mathematics. The purpose of the activity is to tie together several topics in the context of a "real-world" situation. These topics include: fractals, non-Euclidean geometry, symmetry, and Platonic solids. This activity…

  19. The Prints: A Picture Book for Pre-Formal Geometry

    ERIC Educational Resources Information Center

    Skoumpourdi, Chrysanthi; Mpakopoulou, Ifigenia

    2011-01-01

    A pre-test questionnaire was conducted in a kindergarten and it showed that, although the children were able to give various examples of objects, from their everyday lives, that are similar to solid shapes, the examples they gave for plane figures were also tangible objects. Since it is suggested that geometry instruction has to begin early,…

  20. Computation Techniques for the Volume of a Tetrahedron

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2010-01-01

    The purpose of this article is to discuss specific techniques for the computation of the volume of a tetrahedron. A few of them are taught in the undergraduate multivariable calculus courses. Few of them are found in text books on coordinate geometry and synthetic solid geometry. This article gathers many of these techniques so as to constitute a…

  1. Representation of solid and nutrient concentrations in irrigation water from tailwater recovery systems by surface water grab samples

    USDA-ARS?s Scientific Manuscript database

    Tailwater recovery (TWR) systems are being implemented on agricultural landscapes to create an additional source of irrigation water. Existing studies have sampled TWR systems using grab samples; however, the applicability of solids and nutrient concentrations in these samples to water being irrigat...

  2. An Approach to Quad Meshing Based On Cross Valued Maps and the Ginzburg-Landau Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viertel, Ryan; Osting, Braxton

    2017-08-01

    A generalization of vector fields, referred to as N-direction fields or cross fields when N=4, has been recently introduced and studied for geometry processing, with applications in quadrilateral (quad) meshing, texture mapping, and parameterization. We make the observation that cross field design for two-dimensional quad meshing is related to the well-known Ginzburg-Landau problem from mathematical physics. This identification yields a variety of theoretical tools for efficiently computing boundary-aligned quad meshes, with provable guarantees on the resulting mesh, for example, the number of mesh defects and bounds on the defect locations. The procedure for generating the quad mesh is to (i)more » find a complex-valued "representation" field that minimizes the Dirichlet energy subject to a boundary constraint, (ii) convert the representation field into a boundary-aligned, smooth cross field, (iii) use separatrices of the cross field to partition the domain into four sided regions, and (iv) mesh each of these four-sided regions using standard techniques. Under certain assumptions on the geometry of the domain, we prove that this procedure can be used to produce a cross field whose separatrices partition the domain into four sided regions. To solve the energy minimization problem for the representation field, we use an extension of the Merriman-Bence-Osher (MBO) threshold dynamics method, originally conceived as an algorithm to simulate motion by mean curvature, to minimize the Ginzburg-Landau energy for the optimal representation field. Lastly, we demonstrate the method on a variety of test domains.« less

  3. Learning Inverse Rig Mappings by Nonlinear Regression.

    PubMed

    Holden, Daniel; Saito, Jun; Komura, Taku

    2017-03-01

    We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.

  4. The Modern Origin of Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  5. The Transition to Formal Thinking in Mathematics

    ERIC Educational Resources Information Center

    Tall, David

    2008-01-01

    This paper focuses on the changes in thinking involved in the transition from school mathematics to formal proof in pure mathematics at university. School mathematics is seen as a combination of visual representations, including geometry and graphs, together with symbolic calculations and manipulations. Pure mathematics in university shifts…

  6. A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations

    DOE PAGES

    Teichert, Gregory H.; Gunda, N. S. Harsha; Rudraraju, Shiva; ...

    2016-12-18

    Free energies play a central role in many descriptions of equilibrium and non-equilibrium properties of solids. Continuum partial differential equations (PDEs) of atomic transport, phase transformations and mechanics often rely on first and second derivatives of a free energy function. The stability, accuracy and robustness of numerical methods to solve these PDEs are sensitive to the particular functional representations of the free energy. In this communication we investigate the influence of different representations of thermodynamic data on phase field computations of diffusion and two-phase reactions in the solid state. First-principles statistical mechanics methods were used to generate realistic free energymore » data for HCP titanium with interstitially dissolved oxygen. While Redlich-Kister polynomials have formed the mainstay of thermodynamic descriptions of multi-component solids, they require high order terms to fit oscillations in chemical potentials around phase transitions. Here, we demonstrate that high fidelity fits to rapidly fluctuating free energy functions are obtained with spline functions. As a result, spline functions that are many degrees lower than Redlich-Kister polynomials provide equal or superior fits to chemical potential data and, when used in phase field computations, result in solution times approaching an order of magnitude speed up relative to the use of Redlich-Kister polynomials.« less

  7. Unstructured Cartesian/prismatic grid generation for complex geometries

    NASA Technical Reports Server (NTRS)

    Karman, Steve L., Jr.

    1995-01-01

    The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.

  8. Advancements in Binder Systems for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul (Technical Monitor)

    2002-01-01

    Paper will present recent developments in advanced material binder systems for solid freeform fabrication (SFF) technologies. The advantage of SFF is the capability to custom fabricate complex geometries directly from computer aided design data in layer- by-layer fashion, eliminated the need for traditional fixturing and tooling. Binders allow for the low temperature processing of 'green' structural materials, either metal, ceramic or composite, in traditional rapid prototyping machines. The greatest obstacle comes when green parts must then go through a sintering or burnout process to remove the binders and fully densify the parent material, without damaging or distorting the original part geometry. Critical issues and up-to-date assessments will be delivered on various material systems.

  9. Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Lazzara, David; Haimes, Robert

    2010-01-01

    The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.

  10. Creation of Woven Structures Impacting Self-cleaning Superoleophobicity

    NASA Astrophysics Data System (ADS)

    Lim, Jihye

    For protection of human life from harmful or toxic liquids in working areas, solid surface resistance to liquid with low surface tension (e.g. oil) should be achieved in the outermost layer of protective clothing. Based on the literature review, multiscale structures were emphasized because they can increase roughness on a solid surface and create more void spaces of different sizes. The roughness and void spaces contribute to creating a liquid-vapor interface and reducing the liquid contact area to the solid surface. Woven fabric inherently consists of multiscale structures by its construction: microscale in a yarn structure and macroscale in a fabric structure. When the solid surface tension is low relative to oil, creating an appropriate structural geometry will become a critical way to obtain a superoleophobic surface for oil-resistance. Theoretical modeling and experiments with actual fabric samples were utilized to predict and prove the highest performing structural geometry in woven fabric, respectively. The theoretical geometric modeling accounted for the different weave structures, the yarn compression by the yarn flattening factor, e, and the void space by the void space ratio to the fiber or yarn diameter, T, impacting the liquid apparent contact angle on a fabric surface. The Cassie-Baxter equations were developed using Young's contact angle, thetae, thetae and e, or thetae, e, and T, to predict the liquid apparent contact angle for different geometries. In addition, to prevent a liquid's penetration into a solid structure, the ranges of the protuberance height (>> h2) and distance (< 4ℓ 2 cap) were predicted by the definition of the Laplace pressure, the capillary pressure, and the sagging phenomenon. Those predictions were in strong agreement with the results from the empirical experiment using the actual woven fabric samples. This study identified the impact of the geometries in yarn and woven fabric structures on the fabric resistance against oil through theoretical modeling and experiments. The results suggest particular weave structures, the range of the void space (or the protuberance distance) and the protuberance height in the yarn and fabric structures for the highest performing self-cleaning superoleophobic woven fabric surface.

  11. Solar-pumped solid state Nd lasers

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  12. The Kinetics of Dissolution Revisited

    NASA Astrophysics Data System (ADS)

    Antonel, Paula S.; Hoijemberg, Pablo A.; Maiante, Leandro M.; Lagorio, M. Gabriela

    2003-09-01

    An experiment analyzing the kinetics of dissolution of a solid with cylindrical geometry in water is presented. The dissolution process is followed by measuring the solid mass and its size parameters (thickness and diameter) as a function of time. It is verified that the dissolution rate follows the Nernst model. Data treatment is compared with the dissolution of a spherical solid previously described. Kinetics, diffusion concepts, and polynomial fitting of experimental data are combined in this simple experiment.

  13. Towards a 3d Based Platform for Cultural Heritage Site Survey and Virtual Exploration

    NASA Astrophysics Data System (ADS)

    Seinturier, J.; Riedinger, C.; Mahiddine, A.; Peloso, D.; Boï, J.-M.; Merad, D.; Drap, P.

    2013-07-01

    This paper present a 3D platform that enables to make both cultural heritage site survey and its virtual exploration. It provides a single and easy way to use framework for merging multi scaled 3D measurements based on photogrammetry, documentation produced by experts and the knowledge of involved domains leaving the experts able to extract and choose the relevant information to produce the final survey. Taking into account the interpretation of the real world during the process of archaeological surveys is in fact the main goal of a survey. New advances in photogrammetry and the capability to produce dense 3D point clouds do not solve the problem of surveys. New opportunities for 3D representation are now available and we must to use them and find new ways to link geometry and knowledge. The new platform is able to efficiently manage and process large 3D data (points set, meshes) thanks to the implementation of space partition methods coming from the state of the art such as octrees and kd-trees and thus can interact with dense point clouds (thousands to millions of points) in real time. The semantisation of raw 3D data relies on geometric algorithms such as geodetic path computation, surface extraction from dense points cloud and geometrical primitive optimization. The platform provide an interface that enables expert to describe geometric representations of interesting objects like ashlar blocs, stratigraphic units or generic items (contour, lines, … ) directly onto the 3D representation of the site and without explicit links to underlying algorithms. The platform provide two ways for describing geometric representation. If oriented photographs are available, the expert can draw geometry on a photograph and the system computes its 3D representation by projection on the underlying mesh or the points cloud. If photographs are not available or if the expert wants to only use the 3D representation then he can simply draw objects shape on it. When 3D representations of objects of a surveyed site are extracted from the mesh, the link with domain related documentation is done by means of a set of forms designed by experts. Information from these forms are linked with geometry such that documentation can be attached to the viewed objects. Additional semantisation methods related to specific domains have been added to the platform. Beyond realistic rendering of surveyed site, the platform embeds non photorealistic rendering (NPR) algorithms. These algorithms enable to dynamically illustrate objects of interest that are related to knowledge with specific styles. The whole platform is implemented with a Java framework and relies on an actual and effective 3D engine that make available latest rendering methods. We illustrate this work on various photogrammetric survey, in medieval archaeology with the Shawbak castle in Jordan and in underwater archaeology on different marine sites.

  14. Biofilm formation in geometries with different surface curvature and oxygen availability

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Fragkopoulos, Alexandros A.; Marquez, Samantha M.; Kim, Harold D.; Angelini, Thomas E.; Fernández-Nieves, Alberto

    2015-03-01

    Bacteria in the natural environment exist as interface-associated colonies known as biofilms . Complex mechanisms are often involved in biofilm formation and development. Despite the understanding of the molecular mechanisms involved in biofilm formation, it remains unclear how physical effects in standing cultures influence biofilm development. The topology of the solid interface has been suggested as one of the physical cues influencing bacteria-surface interactions and biofilm development. Using the model organism Bacillus subtilis, we study the transformation of swimming bacteria in liquid culture into robust biofilms in a range of confinement geometries (planar, spherical and toroidal) and interfaces (air/water, silicone/water, and silicone elastomer/water). We find that B. subtilis form submerged biofilms at both solid and liquid interfaces in addition to air-water pellicles. When confined, bacteria grow on curved surfaces of both positive and negative Gaussian curvature. However, the confinement geometry does affect the resulting biofilm roughness and relative coverage. We also find that the biofilm location is governed by oxygen availability as well as by gravitational effects; these compete with each other in some situations. Overall, our results demonstrate that confinement geometry is an effective way to control oxygen availability and subsequently biofilm growth.

  15. Students' Use of Three Different Visual Representations to Interpret Whether Molecules Are Polar or Nonpolar

    ERIC Educational Resources Information Center

    Host, Gunnar E.; Schonborn, Konrad J.; Palmerius, Karljohan E. Lundin

    2012-01-01

    Visualizing molecular properties is often crucial for constructing conceptual understanding in chemistry. However, research has revealed numerous challenges surrounding students' meaningful interpretation of the relationship between the geometry and electrostatic properties of molecules. This study explored students' (n = 18) use of three visual…

  16. Spectral methods in edge-diffraction theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, J.M.

    Spectral methods for the construction of uniform asymptotic representations of the field diffracted by an aperture in a plane screen are reviewed. These are separated into contrasting approaches, roughly described as physical and geometrical. It is concluded that the geometrical methods provide a direct route to the construction of uniform representations that are formally identical to the equivalent-edge-current concept. Some interpretive and analytical difficulties that complicate the physical methods of obtaining uniform representations are analyzed. Spectral synthesis proceeds directly from the ray geometry and diffraction coefficients, without any intervening current representation, and the representation is uniform at shadow boundaries andmore » caustics of the diffracted field. The physical theory of diffraction postulates currents on the diffracting screen that give rise to the diffracted field. The difficulties encountered in evaluating the current integrals are throughly examined, and it is concluded that the additional data provided by the physical theory of diffraction (diffraction coefficients off the Keller diffraction cone) are not actually required for obtaining uniform asymptotics at the leading order. A new diffraction representation that generalizes to arbitrary plane-convex apertures a formula given by Knott and Senior [Proc. IEEE 62, 1468 (1974)] for circular apertures is deduced. 34 refs., 1 fig.« less

  17. Geometrical interpretation for the outer SU(3) outer multiplicity label

    NASA Technical Reports Server (NTRS)

    Draayer, Jerry P.; Troltenier, D.

    1995-01-01

    A geometrical interpretation for the outer multiplicity rho that occurs in a reduction of the product of two SU(3) representations, (lambda(sub pi), mu(sub pi)) x (lambda(sub nu), mu(sub nu)) approaches sigma(sub rho)(lambda, mu)(sub rho), is introduced. This coupling of proton (pi) and neutron (nu) representations arises, for example, in both boson and fermion descriptions of heavy deformed nuclei. Attributing a geometry to the coupling raises the possibility of introducing a simple interaction that provides a physically meaningful way for distinguishing multiple occurrences of (lambda, mu) values that can arise in such products.

  18. Navigation based on a sensorimotor representation: a virtual reality study

    NASA Astrophysics Data System (ADS)

    Zetzsche, Christoph; Galbraith, Christopher; Wolter, Johannes; Schill, Kerstin

    2007-02-01

    We investigate the hypothesis that the basic representation of space which underlies human navigation does not resemble an image-like map and is not restricted by the laws of Euclidean geometry. For this we developed a new experimental technique in which we use the properties of a virtual environment (VE) to directly influence the development of the representation. We compared the navigation performance of human observers under two conditions. Either the VE is consistent with the geometrical properties of physical space and could hence be represented in a map-like fashion, or it contains severe violations of Euclidean metric and planar topology, and would thus pose difficulties for the correct development of such a representation. Performance is not influenced by this difference, suggesting that a map-like representation is not the major basis of human navigation. Rather, the results are consistent with a representation which is similar to a non-planar graph augmented with path length information, or with a sensorimotor representation which combines sensory properties and motor actions. The latter may be seen as part of a revised view of perceptual processes due to recent results in psychology and neurobiology, which indicate that the traditional strict separation of sensory and motor systems is no longer tenable.

  19. The Use of Interactive Raster Graphics in the Display and Manipulation of Multidimensional Data

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.

    1981-01-01

    Techniques for the review, display, and manipulation of multidimensional data are developed and described. Multidimensional data is meant in this context to describe scalar data associated with a three dimensional geometry or otherwise too complex to be well represented by traditional graphs. Raster graphics techniques are used to display a shaded image of a three dimensional geometry. The use of color to represent scalar data associated with the geometries in shaded images is explored. Distinct hues are associated with discrete data ranges, thus emulating the traditional representation of data with isarithms, or lines of constant numerical value. Data ranges are alternatively associated with a continuous spectrum of hues to show subtler data trends. The application of raster graphics techniques to the display of bivariate functions is explored.

  20. Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry

    NASA Astrophysics Data System (ADS)

    Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram

    2011-04-01

    Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.

  1. Vortex Shedding Inside a Baffled Air Duct

    NASA Technical Reports Server (NTRS)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  2. An Integrated Product Environment

    NASA Technical Reports Server (NTRS)

    Higgins, Chuck

    1997-01-01

    Mechanical Advantage is a mechanical design decision support system. Unlike our CAD/CAM cousins, Mechanical Advantage addresses true engineering processes, not just the form and fit of geometry. If we look at a traditional engineering environment, we see that an engineer starts with two things - performance goals and design rules. The intent is to have a product perform specific functions and accomplish that within a designated environment. Geometry should be a simple byproduct of that engineering process - not the controller of it. Mechanical Advantage is a performance modeler allowing engineers to consider all these criteria in making their decisions by providing such capabilities as critical parameter analysis, tolerance and sensitivity analysis, math driven Geometry, and automated design optimizations. If you should desire an industry standard solid model, we would produce an ACIS-based solid model. If you should desire an ANSI/ISO standard drawing, we would produce this as well with a virtual push of the button. For more information on this and other Advantage Series products, please contact the author.

  3. Network representations of angular regions for electromagnetic scattering

    PubMed Central

    2017-01-01

    Network modeling in electromagnetics is an effective technique in treating scattering problems by canonical and complex structures. Geometries constituted of angular regions (wedges) together with planar layers can now be approached with the Generalized Wiener-Hopf Technique supported by network representation in spectral domain. Even if the network representations in spectral planes are of great importance by themselves, the aim of this paper is to present a theoretical base and a general procedure for the formulation of complex scattering problems using network representation for the Generalized Wiener Hopf Technique starting basically from the wave equation. In particular while the spectral network representations are relatively well known for planar layers, the network modelling for an angular region requires a new theory that will be developed in this paper. With this theory we complete the formulation of a network methodology whose effectiveness is demonstrated by the application to a complex scattering problem with practical solutions given in terms of GTD/UTD diffraction coefficients and total far fields for engineering applications. The methodology can be applied to other physics fields. PMID:28817573

  4. Face-to-Face Packing of 2,3,9,10-Tetrasubstituted Pentacene Derivatives Revealed through a Solid State [4 + 4] Thermal Cycloaddition and Molecular Dynamic Simulation.

    PubMed

    Pal, Bikash; Lin, Bo-Chao; Dela Cerna, Mark Vincent Carreon; Hsu, Chao-Ping; Lin, Chih-Hsiu

    2016-08-05

    2,3,9,10-Substituted pentacene tetraesters and pentacene diester-dinitriles were synthesized. These pentacene derivatives underwent an unusual solid state [4 + 4] thermal dimerization with good efficiency and complete stereoselectivity. This observation indicates this series of pentacene derivatives adopt π-π stacking geometry with large mutual overlap in solid state. This notion was confirmed by molecualr dynamic simulation.

  5. Geometric Model for a Parametric Study of the Blended-Wing-Body Airplane

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne; Smith, Robert E.; Sadrehaghighi, Ideen; Wiese, Micharl R.

    1996-01-01

    A parametric model is presented for the blended-wing-body airplane, one concept being proposed for the next generation of large subsonic transports. The model is defined in terms of a small set of parameters which facilitates analysis and optimization during the conceptual design process. The model is generated from a preliminary CAD geometry. From this geometry, airfoil cross sections are cut at selected locations and fitted with analytic curves. The airfoils are then used as boundaries for surfaces defined as the solution of partial differential equations. Both the airfoil curves and the surfaces are generated with free parameters selected to give a good representation of the original geometry. The original surface is compared with the parametric model, and solutions of the Euler equations for compressible flow are computed for both geometries. The parametric model is a good approximation of the CAD model and the computed solutions are qualitatively similar. An optimal NURBS approximation is constructed and can be used by a CAD model for further refinement or modification of the original geometry.

  6. Concept of Quantum Geometry in Optoelectronic Processes in Solids: Application to Solar Cells.

    PubMed

    Nagaosa, Naoto; Morimoto, Takahiro

    2017-07-01

    The concept of topology is becoming more and more relevant to the properties and functions of electronic materials including various transport phenomena and optical responses. A pedagogical introduction is given here to the basic ideas and their applications to optoelectronic processes in solids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu

    2011-03-15

    Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, singlemore » Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since they are both based on the well-validated standard EGSnrc radiation transport physics model.« less

  8. Sensor-Based Electromagnetic Navigation (Mediguide®): How Accurate Is It? A Phantom Model Study.

    PubMed

    Bourier, Felix; Reents, Tilko; Ammar-Busch, Sonia; Buiatti, Alessandra; Grebmer, Christian; Telishevska, Marta; Brkic, Amir; Semmler, Verena; Lennerz, Carsten; Kaess, Bernhard; Kottmaier, Marc; Kolb, Christof; Deisenhofer, Isabel; Hessling, Gabriele

    2015-10-01

    Data about localization reproducibility as well as spatial and visual accuracy of the new MediGuide® sensor-based electroanatomic navigation technology are scarce. We therefore sought to quantify these parameters based on phantom experiments. A realistic heart phantom was generated in a 3D-Printer. A CT scan was performed on the phantom. The phantom itself served as ground-truth reference to ensure exact and reproducible catheter placement. A MediGuide® catheter was repeatedly tagged at selected positions to assess accuracy of point localization. The catheter was also used to acquire a MediGuide®-scaled geometry in the EnSite Velocity® electroanatomic mapping system. The acquired geometries (MediGuide®-scaled and EnSite Velocity®-scaled) were compared to a CT segmentation of the phantom to quantify concordance. Distances between landmarks were measured in the EnSite Velocity®- and MediGuide®-scaled geometry and the CT dataset for Bland-Altman comparison. The visualization of virtual MediGuide® catheter tips was compared to their corresponding representation on fluoroscopic cine-loops. Point localization accuracy was 0.5 ± 0.3 mm for MediGuide® and 1.4 ± 0.7 mm for EnSite Velocity®. The 3D accuracy of the geometries was 1.1 ± 1.4 mm (MediGuide®-scaled) and 3.2 ± 1.6 mm (not MediGuide®-scaled). The offset between virtual MediGuide® catheter visualization and catheter representation on corresponding fluoroscopic cine-loops was 0.4 ± 0.1 mm. The MediGuide® system shows a very high level of accuracy regarding localization reproducibility as well as spatial and visual accuracy, which can be ascribed to the magnetic field localization technology. The observed offsets between the geometry visualization and the real phantom are below a clinically relevant threshold. © 2015 Wiley Periodicals, Inc.

  9. Do gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus) fail to represent objects in the context of cohesion violations?

    PubMed

    Cacchione, Trix; Call, Josep

    2010-08-01

    Recent research suggests that witnessing events of fission (e.g., the splitting of a solid object) impairs human infants', human adults', and non-human primates' object representations. The present studies investigated the reactions of gorillas and orangutans to cohesion violation across different types of fission events implementing a behavioral paradigm previously used with human infants. Results suggest that fission events vary in their impact on representational abilities but do not destroy apes' representations of continuously existing objects. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Non-Coalescence Effects in Microgravity

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul

    1997-01-01

    Non-coalescence of two bodies of the same liquid and the suppression of contact between liquid drops and solid surfaces is being studied through a pair of parallel investigations being conducted at the Georgia Institute of Technology and the Microgravity Research and Support (MARS) Center in Naples, Italy. Both non-coalescence and contact suppression are achieved by exploiting the mechanism of thermocapillary convection to drive a lubricating film of surrounding gas (air) into the space between the two liquid free surfaces (non-coalescence) or between the drop free surface and the solid (contact suppression). Experiments performed to date include flow visualization experiments in both axisymmetric and (nearly) two-dimensional geometries and quantitative measurements of film thickness in the contact-suppression case in both geometries.

  11. Favoured local structures in liquids and solids: a 3D lattice model.

    PubMed

    Ronceray, Pierre; Harrowell, Peter

    2015-05-07

    We investigate the connection between the geometry of Favoured Local Structures (FLS) in liquids and the associated liquid and solid properties. We introduce a lattice spin model - the FLS model on a face-centered cubic lattice - where this geometry can be arbitrarily chosen among a discrete set of 115 possible FLS. We find crystalline groundstates for all choices of a single FLS. Sampling all possible FLS's, we identify the following trends: (i) low symmetry FLS's produce larger crystal unit cells but not necessarily higher energy groundstates, (ii) chiral FLS's exhibit peculiarly poor packing properties, (iii) accumulation of FLS's in supercooled liquids is linked to large crystal unit cells, and (iv) low symmetry FLS's tend to find metastable structures on cooling.

  12. Determination of burning area and port volume in complex burning regions of a solid rocket motor

    NASA Technical Reports Server (NTRS)

    Kingsbury, J. A.

    1977-01-01

    An analysis of the geometry of the burning in both star-cylindrical port interface regions and regions of partially inhibited slots is presented. Some characteristics parameters are defined and illustrated. Methods are proposed for calculating burning areas which functionally depend only on the total distance burned. According to this method, several points are defined where abrupt changes in geometry occur, and these are tracked throughout the burn. Equations are developed for computing port perimeter and port area at pre-established longitudinal positions. Some common formulas and some newly developed formulas are then used to compute burning surface area and port volume. Some specific results are presented for the solid rocket motor committed to the space shuttle project.

  13. Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex

    PubMed Central

    Watanabe, Kei; Funahashi, Shintaro; Stokes, Mark G.

    2017-01-01

    Working memory (WM) provides the stability necessary for high-level cognition. Influential theories typically assume that WM depends on the persistence of stable neural representations, yet increasing evidence suggests that neural states are highly dynamic. Here we apply multivariate pattern analysis to explore the population dynamics in primate lateral prefrontal cortex (PFC) during three variants of the classic memory-guided saccade task (recorded in four animals). We observed the hallmark of dynamic population coding across key phases of a working memory task: sensory processing, memory encoding, and response execution. Throughout both these dynamic epochs and the memory delay period, however, the neural representational geometry remained stable. We identified two characteristics that jointly explain these dynamics: (1) time-varying changes in the subpopulation of neurons coding for task variables (i.e., dynamic subpopulations); and (2) time-varying selectivity within neurons (i.e., dynamic selectivity). These results indicate that even in a very simple memory-guided saccade task, PFC neurons display complex dynamics to support stable representations for WM. SIGNIFICANCE STATEMENT Flexible, intelligent behavior requires the maintenance and manipulation of incoming information over various time spans. For short time spans, this faculty is labeled “working memory” (WM). Dominant models propose that WM is maintained by stable, persistent patterns of neural activity in prefrontal cortex (PFC). However, recent evidence suggests that neural activity in PFC is dynamic, even while the contents of WM remain stably represented. Here, we explored the neural dynamics in PFC during a memory-guided saccade task. We found evidence for dynamic population coding in various task epochs, despite striking stability in the neural representational geometry of WM. Furthermore, we identified two distinct cellular mechanisms that contribute to dynamic population coding. PMID:28559375

  14. A Monte Carlo modeling on charging effect for structures with arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.

    2018-04-01

    Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution underneath the nanoparticle surface and the mechanism by which it is produced.

  15. Flexible margin kinematics and vortex formation of Aurelia aurita and Robojelly.

    PubMed

    Villanueva, Alex; Vlachos, Pavlos; Priya, Shashank

    2014-01-01

    The development of a rowing jellyfish biomimetic robot termed as "Robojelly", has led to the discovery of a passive flexible flap located between the flexion point and bell margin on the Aurelia aurita. A comparative analysis of biomimetic robots showed that the presence of a passive flexible flap results in a significant increase in the swimming performance. In this work we further investigate this concept by developing varying flap geometries and comparing their kinematics with A. aurita. It was shown that the animal flap kinematics can be replicated with high fidelity using a passive structure and a flap with curved and tapered geometry gave the most biomimetic performance. A method for identifying the flap location was established by utilizing the bell curvature and the variation of curvature as a function of time. Flaps of constant cross-section and varying lengths were incorporated on the Robojelly to conduct a systematic study of the starting vortex circulation. Circulation was quantified using velocity field measurements obtained from planar Time Resolved Digital Particle Image Velocimetry (TRDPIV). The starting vortex circulation was scaled using a varying orifice model and a pitching panel model. The varying orifice model which has been traditionally considered as the better representation of jellyfish propulsion did not appear to capture the scaling of the starting vortex. In contrast, the pitching panel representation appeared to better scale the governing flow physics and revealed a strong dependence on the flap kinematics and geometry. The results suggest that an alternative description should be considered for rowing jellyfish propulsion, using a pitching panel method instead of the traditional varying orifice model. Finally, the results show the importance of incorporating the entire bell geometry as a function of time in modeling rowing jellyfish propulsion.

  16. The Geometry of Snell's Law

    ERIC Educational Resources Information Center

    Metz, James

    2014-01-01

    Light refracts as it travels from one medium to another. The angle of incidence "i" and the angle of refraction "r" are related by Snell's law, sin"i" ÷ sin"r"="k," where "k" is a constant. The diagram in Fig. 1 shows a geometric representation of the formula for light passing from…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calva-tildeo, M.O.; Reboucas, M.J.; Teixeira, A.F.F.

    The breakdown of causality in homogeneous Goedel-type space-time manifolds is examined. An extension of Reboucas--Tiomno (RT) and Accioly--Goncalves studies is made. The existence of noncausal curves is also investigated under two different conditions on the energy-momentum tensor. An integral representation of the infinitesimal generators of isometries is obtained, extending previous works on the RT geometry.

  18. Gravitational and Magnetic Anomaly Inversion Using a Tree-Based Geometry Representation

    DTIC Science & Technology

    2009-06-01

    find successive mini- ized vectors. Throughout this paper, the term iteration refers to a ingle loop through a stage of the global scheme, not...BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211 5 NAVAL RESEARCH LAB E R FRANCHI CODE 7100 M H ORR CODE 7120 J A BUCARO CODE 7130

  19. Flow visualization studies of transverse fuel injection patterns in a nonreacting Mach 2 combustor

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C.

    1987-01-01

    Planar visualization images are recorded of transverse jet mixing in a supersonic combustor flowfield, without chemical reaction, using laser-induced fluorescence from iodine molecules. Digital image processing and three-dimensional display enable complete representations of fuel penetration boundary and shock surfaces corresponding to several injection geometries and pressures.

  20. Mechanics of Brittle Materials. Part 1. Preliminary Mechanical Properties and Statistical Representations

    DTIC Science & Technology

    1973-10-01

    intensity computation are shown in Figure 17. Using the same formal procedure outlined by Winne & Wundt . a notch geometry can be chosen to induce...Nitride at Elevated Temperatures . Winne, D.H. and Wundt , B.M., "Application of the Gnffith-Irwm Theory of Crack Propagation to the Bursting Behavior

  1. CAGI: Computer Aided Grid Interface. A work in progress

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Yu, Tzu-Yi; Vaughn, David

    1992-01-01

    Progress realized in the development of a Computer Aided Grid Interface (CAGI) software system in integrating CAD/CAM geometric system output and/or Interactive Graphics Exchange Standard (IGES) files, geometry manipulations associated with grid generation, and robust grid generation methodologies is presented. CAGI is being developed in a modular fashion and will offer fast, efficient and economical response to geometry/grid preparation, allowing the ability to upgrade basic geometry in a step-by-step fashion interactively and under permanent visual control along with minimizing the differences between the actual hardware surface descriptions and corresponding numerical analog. The computer code GENIE is used as a basis. The Non-Uniform Rational B-Splines (NURBS) representation of sculptured surfaces is utilized for surface grid redistribution. The computer aided analysis system, PATRAN, is adapted as a CAD/CAM system. The progress realized in NURBS surface grid generation, the development of IGES transformer, and geometry adaption using PATRAN will be presented along with their applicability to grid generation associated with rocket propulsion applications.

  2. NASA-IGES Translator and Viewer

    NASA Technical Reports Server (NTRS)

    Chou, Jin J.; Logan, Michael A.

    1995-01-01

    NASA-IGES Translator (NIGEStranslator) is a batch program that translates a general IGES (Initial Graphics Exchange Specification) file to a NASA-IGES-Nurbs-Only (NINO) file. IGES is the most popular geometry exchange standard among Computer Aided Geometric Design (CAD) systems. NINO format is a subset of IGES, implementing the simple and yet the most popular NURBS (Non-Uniform Rational B-Splines) representation. NIGEStranslator converts a complex IGES file to the simpler NINO file to simplify the tasks of CFD grid generation for models in CAD format. The NASA-IGES Viewer (NIGESview) is an Open-Inventor-based, highly interactive viewer/ editor for NINO files. Geometry in the IGES files can be viewed, copied, transformed, deleted, and inquired. Users can use NIGEStranslator to translate IGES files from CAD systems to NINO files. The geometry then can be examined with NIGESview. Extraneous geometries can be interactively removed, and the cleaned model can be written to an IGES file, ready to be used in grid generation.

  3. Solar Power Satellite (SPS) solid-state antenna power combiner

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A low loss power-combining microstrip antenna suitable for solid state solar power satellite (SPS) application was developed. A unique approach for performing both the combining and radiating function in a single cavity-type circuit was verified, representing substantial refinements over previous demonstration models in terms of detailed geometry to obtain good matching and adequate bandwidth at the design frequency. The combiner circuit was designed, built, and tested and the overall results support the view that the solid state power-combining antenna approach is a viable candidate for a solid state SPS antenna building block.

  4. Update on "What" and "Where" in Spatial Language: A New Division of Labor for Spatial Terms.

    PubMed

    Landau, Barbara

    2017-03-01

    In this article, I revisit Landau and Jackendoff's () paper, "What and where in spatial language and spatial cognition," proposing a friendly amendment and reformulation. The original paper emphasized the distinct geometries that are engaged when objects are represented as members of object kinds (named by count nouns), versus when they are represented as figure and ground in spatial expressions (i.e., play the role of arguments of spatial prepositions). We provided empirical and theoretical arguments for the link between these distinct representations in spatial language and their accompanying nonlinguistic neural representations, emphasizing the "what" and "where" systems of the visual system. In the present paper, I propose a second division of labor between two classes of spatial prepositions in English that appear to be quite distinct. One class includes prepositions such as in and on, whose core meanings engage force-dynamic, functional relationships between objects, with geometry only a marginal player. The second class includes prepositions such as above/below and right/left, whose core meanings engage geometry, with force-dynamic relationships a passing or irrelevant variable. The insight that objects' force-dynamic relationships matter to spatial terms' uses is not new; but thinking of these terms as a distinct set within spatial language has theoretical and empirical consequences that are new. I propose three such consequences, rooted in the fact that geometric knowledge is highly constrained and early-emerging in life, while force-dynamic knowledge of objects and their interactions is relatively unconstrained and needs to be learned piecemeal over a lengthy timeline. First, the two classes will engage different learning problems, with different developmental trajectories for both first and second language learners; second, the classes will naturally lead to different degrees of cross-linguistic variation; and third, they may be rooted in different neural representations. Copyright © 2016 Cognitive Science Society, Inc.

  5. SABRINA - an interactive geometry modeler for MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.; Murphy, J.

    One of the most difficult tasks when analyzing a complex three-dimensional system with Monte Carlo is geometry model development. SABRINA attempts to make the modeling process more user-friendly and less of an obstacle. It accepts both combinatorial solid bodies and MCNP surfaces and produces MCNP cells. The model development process in SABRINA is highly interactive and gives the user immediate feedback on errors. Users can view their geometry from arbitrary perspectives while the model is under development and interactively find and correct modeling errors. An example of a SABRINA display is shown. It represents a complex three-dimensional shape.

  6. Differential Geometry and Lie Groups for Physicists

    NASA Astrophysics Data System (ADS)

    Fecko, Marián.

    2006-10-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  7. Differential Geometry and Lie Groups for Physicists

    NASA Astrophysics Data System (ADS)

    Fecko, Marián.

    2011-03-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  8. Finsler-Geometric Continuum Dynamics and Shock Compression

    DTIC Science & Technology

    2018-01-01

    An important mathe - matical device used in the current derivations centers on the divergence theorem of Finsler geometry first presented by Rund...carbide ceramic. Philos Mag 92:2860–2893 Clayton JD (2012b)On anholonomic deformation, geometry, and differentiation. Math Mech Solids 17:702–735 Clayton... Math Phys 2015:828475 Clayton JD (2015b) Penetration resistance of armor ceramics: dimensional analysis and property correlations. Int J Impact Eng

  9. Coaxial Virtual Cathode Enhancement

    DTIC Science & Technology

    2004-10-20

    need more solid evidence to clarify them. Table 2. Frequency list for geometries without reflectors, showing the microwave frequencies based on their...frequency. V. The Functions of the Reflectors Table 3 is a frequency list with the donut reflector at different positions. From Table 3, we can see that...both cases. We do observe that the microwave power generally is decreased by the donut reflector. Table 3. Frequency list for geometries with a donut

  10. Establishing Base Elements of Perspective in Order to Reconstruct Architectural Buildings from Photographs

    NASA Astrophysics Data System (ADS)

    Dzwierzynska, Jolanta

    2017-12-01

    The use of perspective images, especially historical photographs for retrieving information about presented architectural environment is a fast developing field recently. The photography image is a perspective image with secure geometrical connection with reality, therefore it is possible to reverse this process. The aim of the herby study is establishing requirements which a photographic perspective representation should meet for a reconstruction purpose, as well as determination of base elements of perspective such as a horizon line and a circle of depth, which is a key issue in any reconstruction. The starting point in the reconstruction process is geometrical analysis of the photograph, especially determination of the kind of perspective projection applied, which is defined by the building location towards a projection plane. Next, proper constructions can be used. The paper addresses the problem of establishing base elements of perspective on the basis of the photograph image in the case when camera calibration is impossible to establish. It presents different geometric construction methods selected dependently on the starting assumptions. Therefore, the methods described in the paper seem to be universal. Moreover, they can be used even in the case of poor quality photographs with poor perspective geometry. Such constructions can be realized with computer aid when the photographs are in digital form as it is presented in the paper. The accuracy of the applied methods depends on the photography image accuracy, as well as drawing accuracy, however, it is sufficient for further reconstruction. Establishing base elements of perspective presented in the paper is especially useful in difficult cases of reconstruction, when one lacks information about reconstructed architectural form and it is necessary to lean on solid geometry.

  11. Combinatorial quantisation of the Euclidean torus universe

    NASA Astrophysics Data System (ADS)

    Meusburger, C.; Noui, K.

    2010-12-01

    We quantise the Euclidean torus universe via a combinatorial quantisation formalism based on its formulation as a Chern-Simons gauge theory and on the representation theory of the Drinfel'd double DSU(2). The resulting quantum algebra of observables is given by two commuting copies of the Heisenberg algebra, and the associated Hilbert space can be identified with the space of square integrable functions on the torus. We show that this Hilbert space carries a unitary representation of the modular group and discuss the role of modular invariance in the theory. We derive the classical limit of the theory and relate the quantum observables to the geometry of the torus universe.

  12. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  13. Cren(ulation)-­1,2 Preshot Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall

    2015-12-21

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the RichtmyerMeshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less

  14. Vessel classification in overhead satellite imagery using weighted "bag of visual words"

    NASA Astrophysics Data System (ADS)

    Parameswaran, Shibin; Rainey, Katie

    2015-05-01

    Vessel type classification in maritime imagery is a challenging problem and has applications to many military and surveillance applications. The ability to classify a vessel correctly varies significantly depending on its appearance which in turn is affected by external factors such as lighting or weather conditions, viewing geometry and sea state. The difficulty in classifying vessels also varies among different ship types as some types of vessels show more within-class variation than others. In our previous work, we showed that the bag of visual words" (V-BoW) was an effective feature representation for this classification task in the maritime domain. The V-BoW feature representation is analogous to the bag of words" (BoW) representation used in information retrieval (IR) application in text or natural language processing (NLP) domain. It has been shown in the textual IR applications that the performance of the BoW feature representation can be improved significantly by applying appropriate term-weighting such as log term frequency, inverse document frequency etc. Given the close correspondence between textual BoW (T-BoW) and V-BoW feature representations, we propose to apply several well-known term weighting schemes from the text IR domain on V-BoW feature representation to increase its ability to discriminate between ship types.

  15. Matter in transition

    DOE PAGES

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; ...

    2016-04-13

    In this study, we explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, wheremore » a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU(N) require Weierstrass models that cannot be realized from the standard SU(N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.« less

  16. Optimization of Casting Design Parameters on Fabrication of Reliable Semi-Solid Aluminum Suspension Control Arm

    NASA Astrophysics Data System (ADS)

    Ragab, Kh. A.; Bouaicha, A.; Bouazara, M.

    2017-09-01

    The semi-solid casting process has the advantage of providing reliable mechanical aluminum parts that work continuously in dynamic as control arm of the suspension system in automotive vehicles. The quality performance of dynamic control arm is related to casting mold and gating system designs that affect the fluidity of semi-solid metal during filling the mold. Therefore, this study focuses on improvement in mechanical performance, depending on material characterization, and casting design optimization, of suspension control arms made of A357 aluminum semi-solid alloys. Mechanical and design analyses, applied on the suspension arm, showed the occurrence of mechanical failures at unexpected weak points. Metallurgical analysis showed that the main reason lies in the difficult flow of semi-solid paste through the thin thicknesses of a complex geometry. A design modification procedure is applied to the geometry of the suspension arm to avoid this problem and to improve its quality performance. The design modification of parts was carried out by using SolidWorks design software, evaluation of constraints with ABAQUS, and simulation of flow with ProCast software. The proposed designs showed that the modified suspension arm, without ribs and with a central canvas designed as Z, is considered as a perfect casting design showing an increase in the structural strength of the component. In this case, maximum von Mises stress is 199 MPa that is below the yield strength of the material. The modified casting mold design shows a high uniformity and minim turbulence of molten metal flow during semi-solid casting process.

  17. Sputtering from a Porous Material by Penetrating Ions

    NASA Technical Reports Server (NTRS)

    Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Johnson, R. E.; Caro, A.; Fama, M.; Loeffler, M.; Baragiola, R. A.; Farkas, D.

    2012-01-01

    Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space, Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.

  18. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  19. Solid-state laser sources for remote sensing

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Kane, T.; Eggleston, J.; Long, S. Y.

    1983-01-01

    Recent progress in slab-geometry and conventional rod Nd:YAG solid-state lasers for applications in remote sensing is presented. Developments in slab geometry lasers, which were aimed at improving pulse energy and tuning range, have been based on the use of a Nd:glass substrate with a zig-zag optical path, with selective Raman shifting in gases and harmonic generation in LiNbO3 and KDP to extend the tuning range into the UV and visible regions. The theoretically predicted advantages of the elimination of birefringence and thermal and stress-induced focusing in the slab-geometry laser have been confirmed in measurements on a test-bed Nd:glass system, and a CW lamp pumped Nd:YAG oscillator, which have also demonstrated an order of magnitude improvement in laser performance. A single axial mode Nd:YAG oscillator has also been designed which, operating in a 3-msec quasi-CW mode, has a chirp rate of 30 kHz/microsec and a free-running stability of + or - 20 MHz. With chirp compensation, this stability is adequate for wind velocity measurements by coherent lidar.

  20. The physics of solid-state neutron detector materials and geometries.

    PubMed

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  1. Emerging High School Students' Problem Solving Trajectories Based on the Use of Dynamic Software

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel; Cristobal-Escalante, Cesar

    2008-01-01

    This study documents problem solving approaches that high school students develop as a result of using systematically Cabri-Geometry software. Results show that the use of the software becomes an important tool for students to construct dynamic representations of the problems that were used to identify and examine different mathematical relations.…

  2. Conceptual Understanding of Shape and Space by Braille-Reading Norwegian Students in Elementary School

    ERIC Educational Resources Information Center

    Klingenberg, Oliv G.

    2012-01-01

    Introduction: The study presented here investigated the ways in which students who read braille were able to complete geometric tasks and how they constructed mental representations of the shapes of objects. Methods: Data were collected in an educational experiment conducted as a geometry course for students who read braille. A case study approach…

  3. Adhesive in the buckling failure of corrugated fiberboard : a finite element investigation

    Treesearch

    Adeeb A. Rahman; Said M. Abubakr

    1998-01-01

    This research study proposed to include the glue material in a finite element model that represents the actual geometry and material properties of a corrugated fiberboard. The model is a detailed representation of the different components of the structure (adhesive, linerboard, medium) to perform buckling analysis of corrugated structures under compressive loads. The...

  4. Evaluation of Mathematics Teacher Candidates' the Ellipse Knowledge According to the Revised Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Kurtulus, Aytaç; Ada, Aytaç

    2017-01-01

    In this study, the teacher candidates who learnt to find the algebraic equation corresponding to geometric structure of the ellipse in analytic geometry classes were requested to find the algebraic representations corresponding to the structures that contained ellipses in different positions. Thus, it would be possible to determine higher order…

  5. DEM simulation of dendritic grain random packing: application to metal alloy solidification

    NASA Astrophysics Data System (ADS)

    Olmedilla, Antonio; Založnik, Miha; Combeau, Hervé

    2017-06-01

    The random packing of equiaxed dendritic grains in metal-alloy solidification is numerically simulated and validated via an experimental model. This phenomenon is characterized by a driving force which is induced by the solid-liquid density difference. Thereby, the solid dendritic grains, nucleated in the melt, sediment and pack with a relatively low inertia-to-dissipation ratio, which is the so-called Stokes number. The characteristics of the particle packed porous structure such as solid packing fraction affect the final solidified product. A multi-sphere clumping Discrete Element Method (DEM) approach is employed to predict the solid packing fraction as function of the grain geometry under the solidification conditions. Five different monodisperse noncohesive frictionless particle collections are numerically packed by means of a vertical acceleration: a) three dendritic morphologies; b) spheres and c) one ellipsoidal geometry. In order to validate our numerical results with solidification conditions, the sedimentation and packing of two monodisperse collections (spherical and dendritic) is experimentally carried out in a viscous quiescent medium. The hydrodynamic similarity is respected between the actual phenomenon and the experimental model, that is a low Stokes number, o(10-3). In this way, the experimental average solid packing fraction is employed to validate the numerical model. Eventually, the average packing fraction is found to highly depend on the equiaxed dendritic grain sphericity, with looser packings for lower sphericity.

  6. Solid-phase microextraction of hydrocarbons from water in a centrifuge

    NASA Astrophysics Data System (ADS)

    Ryabov, A. Yu.; Chuikin, A. V.; Velikov, A. A.

    2016-06-01

    The results of our study of solid-phase microextraction of substances using a centrifuge for determining the microquantities of hydrocarbon impurities in water are presented. The cartridge diameter, sorbent mass, and solvent volume were shown to affect the percent extraction of substances and the analytical signal intensity. The relationship between the cartridge geometry, the sorbent mass, and the solvent volume was considered.

  7. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  8. Coherent states for quantum compact groups

    NASA Astrophysics Data System (ADS)

    Jurĉo, B.; Ŝťovíĉek, P.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l, Bl, Cl and D l. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested.

  9. A Combinatorial Geometry Computer Description of the M578 Light Recovery Vehicle

    DTIC Science & Technology

    1984-05-01

    cannot overlap. 10 TABLE 1. GEOMETRIC SOLIDS USED IN COM-GEOM DESCRIPTIONS Symbol Solid Name RPP Rectangular Parallelepiped BOX Box RAW Right Angle...20R «OX 209 PCC 210 RCC 211 TRC 212 RHX "»13 RCC 214 RCC 2T5 TRC 216 BOX ?17 PrC ?"»R R^C SOLID PARAMETERS REMARKS 74.0303 3694.444...821720 «OX 221 RCC 22’ PC* 223 TPC 224 30V 225 "CC 2?6 PCC 227 TRC 22* BOX 220 RCC 230 »CC 231 TRC ?3’ TPC 233 TRC 234 RCC SOLID

  10. Application of interface waves for near surface damage detection in hybrid structures

    NASA Astrophysics Data System (ADS)

    Jahanbin, M.; Santhanam, S.; Ihn, J.-B.; Cox, A.

    2017-04-01

    Guided waves are acoustic waves that are guided by boundaries. Depending on the structural geometry, guided waves can either propagate between boundaries, known as plate waves, or propagate on the surface of the objects. Many different types of surface waves exist based on the material property of the boundary. For example Rayleigh wave in solid - air, Scholte wave in solid - liquid, Stoneley in solid - solid interface and many other different forms like Love wave on inhomogeneous surfaces, creeping waves, etc. This research work is demonstrating the application of surface and interface waves for detection of interfacial damages in hybrid bonded structures.

  11. The Use of Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.

    2003-01-01

    This viewgraph representation provides an overview of the use of ion vapor deposited aluminum (IVD) for use in the Space Shuttle Solid Rocket Booster (SRB). Topics considered include: schematics of ion vapor deposition system, production of ion vapor deposition system, IVD vs. cadmium coated drogue ratchets, corrosion exposure facilities and tests, seawater immersion facilities and tests and continued research and development issues.

  12. Spinorial Geometry and Supergravity

    NASA Astrophysics Data System (ADS)

    Gillard, Joe

    2006-08-01

    In the main part of this thesis, we present the foundations and initial results of the Spinorial Geometry formalism for solving Killing spinor equations. This method can be used for any supergravity theory, although we largely focus on D=11 supergravity. The D=5 case is investigated in an appendix. The exposition provides a comprehensive introduction to the formalism, and contains background material on the complex spin representations which, it is hoped, will provide a useful bridge between the mathematical literature and our methods. Many solutions to the D=11 Killing spinor equations are presented, and the consequences for the spacetime geometry are explored in each case. Also in this thesis, we consider another class of supergravity solutions, namely heterotic string backgrounds with (2,0) world-sheet supersymmetry. We investigate the consequences of taking alpha-prime corrections into account in the field equations, in order to remain consistent with anomaly cancellation, while requiring that spacetime supersymmetry is preserved.

  13. Analytic evaluation of the weighting functions for remote sensing of blackbody planetary atmospheres : the case of limb viewing geometry

    NASA Technical Reports Server (NTRS)

    Ustinov, Eugene A.

    2006-01-01

    In a recent publication (Ustinov, 2002), we proposed an analytic approach to evaluation of radiative and geophysical weighting functions for remote sensing of a blackbody planetary atmosphere, based on general linearization approach applied to the case of nadir viewing geometry. In this presentation, the general linearization approach is applied to the limb viewing geometry. The expressions, similar to those obtained in (Ustinov, 2002), are obtained for weighting functions with respect to the distance along the line of sight. Further on, these expressions are converted to the expressions for weighting functions with respect to the vertical coordinate in the atmosphere. Finally, the numerical representation of weighting functions in the form of matrices of partial derivatives of grid limb radiances with respect to the grid values of atmospheric parameters is used for a convolution with the finite field of view of the instrument.

  14. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  15. Perceptualization of geometry using intelligent haptic and visual sensing

    NASA Astrophysics Data System (ADS)

    Weng, Jianguang; Zhang, Hui

    2013-01-01

    We present a set of paradigms for investigating geometric structures using haptic and visual sensing. Our principal test cases include smoothly embedded geometry shapes such as knotted curves embedded in 3D and knotted surfaces in 4D, that contain massive intersections when projected to one lower dimension. One can exploit a touch-responsive 3D interactive probe to haptically override this conflicting evidence in the rendered images, by forcing continuity in the haptic representation to emphasize the true topology. In our work, we exploited a predictive haptic guidance, a "computer-simulated hand" with supplementary force suggestion, to support intelligent exploration of geometry shapes that will smooth and maximize the probability of recognition. The cognitive load can be reduced further when enabling an attention-driven visual sensing during the haptic exploration. Our methods combine to reveal the full richness of the haptic exploration of geometric structures, and to overcome the limitations of traditional 4D visualization.

  16. CAD Services: an Industry Standard Interface for Mechanical CAD Interoperability

    NASA Technical Reports Server (NTRS)

    Claus, Russell; Weitzer, Ilan

    2002-01-01

    Most organizations seek to design and develop new products in increasingly shorter time periods. At the same time, increased performance demands require a team-based multidisciplinary design process that may span several organizations. One approach to meet these demands is to use 'Geometry Centric' design. In this approach, design engineers team their efforts through one united representation of the design that is usually captured in a CAD system. Standards-based interfaces are critical to provide uniform, simple, distributed services that enable the 'Geometry Centric' design approach. This paper describes an industry-wide effort, under the Object Management Group's (OMG) Manufacturing Domain Task Force, to define interfaces that enable the interoperability of CAD, Computer Aided Manufacturing (CAM), and Computer Aided Engineering (CAE) tools. This critical link to enable 'Geometry Centric' design is called: Cad Services V1.0. This paper discusses the features of this standard and proposed application.

  17. Stages as models of scene geometry.

    PubMed

    Nedović, Vladimir; Smeulders, Arnold W M; Redert, André; Geusebroek, Jan-Mark

    2010-09-01

    Reconstruction of 3D scene geometry is an important element for scene understanding, autonomous vehicle and robot navigation, image retrieval, and 3D television. We propose accounting for the inherent structure of the visual world when trying to solve the scene reconstruction problem. Consequently, we identify geometric scene categorization as the first step toward robust and efficient depth estimation from single images. We introduce 15 typical 3D scene geometries called stages, each with a unique depth profile, which roughly correspond to a large majority of broadcast video frames. Stage information serves as a first approximation of global depth, narrowing down the search space in depth estimation and object localization. We propose different sets of low-level features for depth estimation, and perform stage classification on two diverse data sets of television broadcasts. Classification results demonstrate that stages can often be efficiently learned from low-dimensional image representations.

  18. CAPRI: A Geometric Foundation for Computational Analysis and Design

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    2006-01-01

    CAPRI is a software building tool-kit that refers to two ideas; (1) A simplified, object-oriented, hierarchical view of a solid part integrating both geometry and topology definitions, and (2) programming access to this part or assembly and any attached data. A complete definition of the geometry and application programming interface can be found in the document CAPRI: Computational Analysis PRogramming Interface appended to this report. In summary the interface is subdivided into the following functional components: 1. Utility routines -- These routines include the initialization of CAPRI, loading CAD parts and querying the operational status as well as closing the system down. 2. Geometry data-base queries -- This group of functions allow all top level applications to figure out and get detailed information on any geometric component in the Volume definition. 3. Point queries -- These calls allow grid generators, or solvers doing node adaptation, to snap points directly onto geometric entities. 4. Calculated or geometrically derived queries -- These entry points calculate data from the geometry to aid in grid generation. 5. Boundary data routines -- This part of CAPRI allows general data to be attached to Boundaries so that the boundary conditions can be specified and stored within CAPRI s data-base. 6. Tag based routines -- This part of the API allows the specification of properties associated with either the Volume (material properties) or Boundary (surface properties) entities. 7. Geometry based interpolation routines -- This part of the API facilitates Multi-disciplinary coupling and allows zooming through Boundary Attachments. 8. Geometric creation and manipulation -- These calls facilitate constructing simple solid entities and perform the Boolean solid operations. Geometry constructed in this manner has the advantage that if the data is kept consistent with the CAD package, therefore a new design can be incorporated directly and is manufacturable. 9. Master Model access This addition to the API allows for the querying of the parameters and dimensions of the model. The feature tree is also exposed so it is easy to see where the parameters are applied. Calls exist to allow for the modification of the parameters and the suppression/unsuppression of nodes in the tree. Part regeneration is performed by a single API call and a new part becomes available within CAPRI (if the regeneration was successful). This is described in a separate document. Components 1-7 are considered the CAPRI base level reader.

  19. A new experiment-independent mechanism to persistify and serve the detector geometry of ATLAS

    NASA Astrophysics Data System (ADS)

    Bianchi, Riccardo Maria; Boudreau, Joseph; Vukotic, Ilija

    2017-10-01

    The complex geometry of the whole detector of the ATLAS experiment at LHC is currently stored only in custom online databases, from which it is built on-the-fly on request. Accessing the online geometry guarantees accessing the latest version of the detector description, but requires the setup of the full ATLAS software framework “Athena”, which provides the online services and the tools to retrieve the data from the database. This operation is cumbersome and slows down the applications that need to access the geometry. Moreover, all applications that need to access the detector geometry need to be built and run on the same platform as the ATLAS framework, preventing the usage of the actual detector geometry in stand-alone applications. Here we propose a new mechanism to persistify (in software development in general, and in HEP computing in particular, persistifying means taking an object which lives in memory only - for example because it was built on-the-fly while processing the experimental data, - serializing it and storing it on disk as a persistent object) and serve the geometry of HEP experiments. The new mechanism is composed by a new file format and the modules to make use of it. The new file format allows to store the whole detector description locally in a file, and it is especially optimized to describe large complex detectors with the minimum file size, making use of shared instances and storing compressed representations of geometry transformations. Then, the detector description can be read back in, to fully restore the in-memory geometry tree. Moreover, a dedicated REST API is being designed and developed to serve the geometry in standard exchange formats like JSON, to let users and applications download specific partial geometry information. With this new geometry persistification a new generation of applications could be developed, which can use the actual detector geometry while being platform-independent and experiment-independent.

  20. A Robust Concurrent Approach for Road Extraction and Urbanization Monitoring Based on Superpixels Acquired from Spectral Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Seppke, Benjamin; Dreschler-Fischer, Leonie; Wilms, Christian

    2016-08-01

    The extraction of road signatures from remote sensing images as a promising indicator for urbanization is a classical segmentation problem. However, some segmentation algorithms often lead to non-sufficient results. One way to overcome this problem is the usage of superpixels, that represent a locally coherent cluster of connected pixels. Superpixels allow flexible, highly adaptive segmentation approaches due to the possibility of merging as well as splitting and form new basic image entities. On the other hand, superpixels require an appropriate representation containing all relevant information about topology and geometry to maximize their advantages.In this work, we present a combined geometric and topological representation based on a special graph representation, the so-called RS-graph. Moreover, we present the use of the RS-graph by means of a case study: the extraction of partially occluded road networks in rural areas from open source (spectral) remote sensing images by tracking. In addition, multiprocessing and GPU-based parallelization is used to speed up the construction of the representation and the application.

  1. Foam structure :from soap froth to solid foams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraynik, Andrew Michael

    2003-01-01

    The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less

  2. On Fock-space representations of quantized enveloping algebras related to noncommutative differential geometry

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schlieker, M.

    1995-07-01

    In this paper explicitly natural (from the geometrical point of view) Fock-space representations (contragradient Verma modules) of the quantized enveloping algebras are constructed. In order to do so, one starts from the Gauss decomposition of the quantum group and introduces the differential operators on the corresponding q-deformed flag manifold (assumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group are expressed as first-order differential operators on the q-deformed flag manifold.

  3. Computation techniques for the volume of a tetrahedron

    NASA Astrophysics Data System (ADS)

    Srinivasan, V. K.

    2010-10-01

    The purpose of this article is to discuss specific techniques for the computation of the volume of a tetrahedron. A few of them are taught in the undergraduate multivariable calculus courses. Few of them are found in text books on coordinate geometry and synthetic solid geometry. This article gathers many of these techniques so as to constitute a minor survey of a teaching-oriented article, useful to both students and teachers according to their needs in the classrooms.

  4. Truncated Dual-Cap Nucleation Site Development

    NASA Technical Reports Server (NTRS)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  5. Image Reconstruction from Sparse Irregular Intensity Interferometry Measurements of Fourier Magnitude

    DTIC Science & Technology

    2013-09-01

    of baselines than would a pattern with equal spacing . Nevertheless, many of the telescope pairs have equivalent baselines resulting in...magnitude to a spatial domain representation of the object, sparse and irregular spacing of the measurements in the Fourier plane, and low SNR...any particular geometry of the telescope array configuration. Its inputs are a list of measurements, each

  6. The Effects of Using Touch-Screen Devices on Students' Molecular Visualization and Representational Competence Skills

    ERIC Educational Resources Information Center

    McCollum, Brett M.; Regier, Lisa; Leong, Jaque; Simpson, Sarah; Sterner, Shayne

    2014-01-01

    The impact of touch-screen technology on spatial cognitive skills as related to molecular geometries was assessed through 102 one-on-one interviews with undergraduate students. Participants were provided with either printed 2D ball-and-stick images of molecules or manipulable projections of 3D molecular structures on an iPad. Following a brief…

  7. Geometry modeling and grid generation using 3D NURBS control volume

    NASA Technical Reports Server (NTRS)

    Yu, Tzu-Yi; Soni, Bharat K.; Shih, Ming-Hsin

    1995-01-01

    The algorithms for volume grid generation using NURBS geometric representation are presented. The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and volume. This approach bridges the gap between CAD surface/volume definition and surface/volume grid generation. Computational examples associated with practical configurations have shown the utilization of these algorithms.

  8. Computer Aided Multi-Data Fusion Dismount Modeling

    DTIC Science & Technology

    2012-03-22

    The ability of geometric morphometric methods to estimate a known covariance matrix., volume 49. Systematic Biology, 2000. [39] Wang C., Yuen M...the use of human shape descriptors like landmarks, body composition, body segmentation, skeletonisation, body representation using geometrical shapes...Springer. [10] Bookstein, F. L. “ Morphometric Tools for Landmark Data: Geometry and Biology.” Cambridge University Press, 1991. [11] Borengasser, M

  9. Iterated Hamiltonian type systems and applications

    NASA Astrophysics Data System (ADS)

    Tiba, Dan

    2018-04-01

    We discuss, in arbitrary dimension, certain Hamiltonian type systems and prove existence, uniqueness and regularity properties, under the independence condition. We also investigate the critical case, define a class of generalized solutions and prove existence and basic properties. Relevant examples and counterexamples are also indicated. The applications concern representations of implicitly defined manifolds and their perturbations, motivated by differential systems involving unknown geometries.

  10. Candidate Coatings and Dry Traction Drives for Planetary Vehicles

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert; Oswald, Fred B.

    2002-01-01

    Robert Fusaro and Fred Oswald of the Mechanical Components Branch discussed 'Candidate Coatings and Dry Traction Drives for Planetary Vehicles'. Vehicles to be designed for exploration of planets and moons of the solar system will require reliable mechanical drives to operate efficiently. Long-term operation of these drives will be challenging because of extreme operating conditions. These extreme conditions include: very high and/or very cold temperatures, wide temperature ranges, dust, vacuum or low-pressure atmospheres, and corrosive environments. Most drives used on Earth involve oil-lubricated gears. However, due to the extreme conditions on planetary surfaces, it may not be advisable or even possible to use oil lubrication. Unfortunately, solid lubricants do not work well when applied to gears because of the high contact stress conditions and large sliding motion between the teeth, which cause wear and limit life. We believe traction drives will provide an attractive alternative to gear drives. Traction drives are composed of rollers that provide geometry more conducive to solid lubrication. Minimal slip occurs in this contact geometry and thus there is very low wear to the solid lubricant. The challenge for these solid-lubricated drives is finding materials or coatings that provide the required long-life while also providing high traction. We seek materials that provide low wear with high friction.

  11. Combustion of metal agglomerates in a solid rocket core flow

    NASA Astrophysics Data System (ADS)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  12. Modeling shape and topology of low-resolution density maps of biological macromolecules.

    PubMed Central

    De-Alarcón, Pedro A; Pascual-Montano, Alberto; Gupta, Amarnath; Carazo, Jose M

    2002-01-01

    In the present work we develop an efficient way of representing the geometry and topology of volumetric datasets of biological structures from medium to low resolution, aiming at storing and querying them in a database framework. We make use of a new vector quantization algorithm to select the points within the macromolecule that best approximate the probability density function of the original volume data. Connectivity among points is obtained with the use of the alpha shapes theory. This novel data representation has a number of interesting characteristics, such as 1) it allows us to automatically segment and quantify a number of important structural features from low-resolution maps, such as cavities and channels, opening the possibility of querying large collections of maps on the basis of these quantitative structural features; 2) it provides a compact representation in terms of size; 3) it contains a subset of three-dimensional points that optimally quantify the densities of medium resolution data; and 4) a general model of the geometry and topology of the macromolecule (as opposite to a spatially unrelated bunch of voxels) is easily obtained by the use of the alpha shapes theory. PMID:12124252

  13. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    DOE PAGES

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; ...

    2015-06-04

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstratemore » prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.« less

  14. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

    PubMed Central

    2015-01-01

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies. PMID:26113956

  15. Chirality of weakly bound complexes: The potential energy surfaces for the hydrogen-peroxide−noble-gas interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de

    2014-10-07

    We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry ofmore » the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.« less

  16. Preprocessing: Geocoding of AVIRIS data using navigation, engineering, DEM, and radar tracking system data

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Larson, Steven A.; Hansen, Earl G.; Itten, Klaus I.

    1993-01-01

    Remotely sensed data have geometric characteristics and representation which depend on the type of the acquisition system used. To correlate such data over large regions with other real world representation tools like conventional maps or Geographic Information System (GIS) for verification purposes, or for further treatment within different data sets, a coregistration has to be performed. In addition to the geometric characteristics of the sensor there are two other dominating factors which affect the geometry: the stability of the platform and the topography. There are two basic approaches for a geometric correction on a pixel-by-pixel basis: (1) A parametric approach using the location of the airplane and inertial navigation system data to simulate the observation geometry; and (2) a non-parametric approach using tie points or ground control points. It is well known that the non-parametric approach is not reliable enough for the unstable flight conditions of airborne systems, and is not satisfying in areas with significant topography, e.g. mountains and hills. The present work describes a parametric preprocessing procedure which corrects effects of flight line and attitude variation as well as topographic influences and is described in more detail by Meyer.

  17. Experimental investigation and numerical simulation of 3He gas diffusion in simple geometries: implications for analytical models of 3He MR lung morphometry.

    PubMed

    Parra-Robles, J; Ajraoui, S; Deppe, M H; Parnell, S R; Wild, J M

    2010-06-01

    Models of lung acinar geometry have been proposed to analytically describe the diffusion of (3)He in the lung (as measured with pulsed gradient spin echo (PGSE) methods) as a possible means of characterizing lung microstructure from measurement of the (3)He ADC. In this work, major limitations in these analytical models are highlighted in simple diffusion weighted experiments with (3)He in cylindrical models of known geometry. The findings are substantiated with numerical simulations based on the same geometry using finite difference representation of the Bloch-Torrey equation. The validity of the existing "cylinder model" is discussed in terms of the physical diffusion regimes experienced and the basic reliance of the cylinder model and other ADC-based approaches on a Gaussian diffusion behaviour is highlighted. The results presented here demonstrate that physical assumptions of the cylinder model are not valid for large diffusion gradient strengths (above approximately 15 mT/m), which are commonly used for (3)He ADC measurements in human lungs. (c) 2010 Elsevier Inc. All rights reserved.

  18. A review of lithium and non-lithium based solid state batteries

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam

    2015-05-01

    Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.

  19. A Nonlinear Gyrokinetic Vlasov-Maxwell System for High-frequency Simulation in Toroidal Geometry

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Zhang, Wenlu; Lin, Jingbo; Li, Ding; Dong, Chao

    2016-10-01

    A nonlinear gyrokinetic Vlasov equation is derived through the Lie-perturbation method to the Lagrangian and Hamiltonian systems in extanded phase space. The gyrokinetic Maxwell equations are derived in terms of the moments of gyrocenter phase-space distribution through the push-forward and pull-back representations, where the polarization and magnetization effects of gyrocenter are retained. The goal of this work is to construct a global nonlinear gyrokinetic vlasov-maxwell system for high-frequency simulation in toroidal geometry relevent for ion cyclotron range of frequencies (ICRF) waves heating and lower hybrid wave current driven (LHCD). Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.

  20. Noncommutative-geometry model for closed bosonic strings

    NASA Technical Reports Server (NTRS)

    Sen, Siddhartha; Holman, R.

    1987-01-01

    It is shown how Witten's (1986) noncommutative geometry may be extended to describe the closed bosonic string. For closed strings, an explicit representation is provided of the integral operator needed to construct an action and of an associative product on string fields. The proper choice of the action of the integral operator and the associative product in order to give rise to a reasonable theory is explained, and the consequences of such a choice are discussed. It is shown that the ghost numbers of the operator and associative product can be chosen arbitrarily for both open and closed strings, and that this construct can be used as an action for interacting closed bosonic strings.

  1. Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates.

    PubMed

    Kahnert, Michael; Nousiainen, Timo; Lindqvist, Hannakaisa

    2013-04-08

    Optical properties of light absorbing carbon (LAC) aggregates encapsulated in a shell of sulfate are computed for realistic model geometries based on field measurements. Computations are performed for wavelengths from the UV-C to the mid-IR. Both climate- and remote sensing-relevant optical properties are considered. The results are compared to commonly used simplified model geometries, none of which gives a realistic representation of the distribution of the LAC mass within the host material and, as a consequence, fail to predict the optical properties accurately. A new core-gray shell model is introduced, which accurately reproduces the size- and wavelength dependence of the integrated and differential optical properties.

  2. Population Coding of Visual Space: Comparison of Spatial Representations in Dorsal and Ventral Pathways

    PubMed Central

    Sereno, Anne B.; Lehky, Sidney R.

    2011-01-01

    Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT) and lateral intraparietal cortex (LIP) of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling), we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically) correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., “next to” or “above”). PMID:21344010

  3. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    PubMed Central

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2014-01-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise. PMID:23588373

  4. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    NASA Astrophysics Data System (ADS)

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2013-05-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio projection datasets. The results demonstrate that the reconstructed images represented as tetrahedral meshes based on point clouds offer image quality comparable to that achievable using a standard voxel grid while allowing substantial reduction in the number of unknown intensities to be reconstructed and reducing the noise.

  5. An expert system for municipal solid waste management simulation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, M.C.; Chang, N.B.

    1996-12-31

    Optimization techniques were usually used to model the complicated metropolitan solid waste management system to search for the best dynamic combination of waste recycling, facility siting, and system operation, where sophisticated and well-defined interrelationship are required in the modeling process. But this paper applied the Concurrent Object-Oriented Simulation (COOS), a new simulation software construction method, to bridge the gap between the physical system and its computer representation. The case study of Kaohsiung solid waste management system in Taiwan is prepared for the illustration of the analytical methodology of COOS and its implementation in the creation of an expert system.

  6. Automatic Reconstruction of Spacecraft 3D Shape from Imagery

    NASA Astrophysics Data System (ADS)

    Poelman, C.; Radtke, R.; Voorhees, H.

    We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.

  7. Age-related changes in thoracic skeletal geometry of elderly females.

    PubMed

    Holcombe, Sven A; Wang, Stewart C; Grotberg, James B

    2017-05-29

    Both females and the elderly have been identified as vulnerable populations with increased injury and mortality risk in multiple crash scenarios. Particularly in frontal impacts, older females show higher risk to the chest and thorax than their younger or male counterparts. Thoracic geometry plays a role in this increase, and this study aims to quantify key parts of that geometry in a way that can directly inform human body models that incorporate the concept of person age. Computed tomography scans from 2 female subject groups aged 20-35 and 65-99 were selected from the International Center for Automotive Medicine scan database representing young and old female populations. A model of thoracic skeletal anatomy was built for each subject from independent parametric models of the spine, ribs, and sternum, along with further parametric models of those components' spatial relationships. Parameter values between the 2 groups are directly compared, and average parameter values within each group are used to generate statistically average skeletal geometry for young and old females. In addition to the anatomic measures explicitly used in the parameterization scheme, key measures of rib cage depth and spine curvature are taken from both the underlying subject pool and from the resultant representative geometries. Statistically significant differences were seen between the young and old groups' spine and rib anatomic components, with no significant differences in local sternal geometry found. Vertebral segments in older females had higher angles relative to their inferior neighbors, providing a quantification of the kyphotic curvature known to be associated with age. Ribs in older females had greater end-to-end span, greater aspect ratio, and reduced out-of-plane deviation, producing an elongated and overall flatter curvature that leads to distal rib ends extending further anteriorly in older individuals. Combined differences in spine curvature and rib geometry led to an 18-mm difference in anterior placement of the sternum between young and old subjects. This study provides new geometric data regarding the variability in anthropometry of adult females with age and has utility in advancing the veracity of current human body models. A simplified scaffold representation of underlying 3-dimensional bones within the thorax is presented, and the reported young and old female parameter sets can be used to characterize the anatomic differences expected with age and to both validate and drive morphing algorithms for aged human body models. The modular approach taken allows model parameters to hold inherent and intuitive meaning, offering advantages over more generalized methods such as principal component analysis. Geometry can be assessed on a component level or a whole thorax level, and the parametric representation of thorax shape allows direct comparisons between the current study and other individuals or human body models.

  8. Collection-efficient, axisymmetric vacuum sublimation module for the purification of solid materials.

    PubMed

    May, Michael; Paul, Elizabeth; Katovic, Vladimir

    2015-11-01

    A vacuum sublimation module of axisymmetric geometry was developed and employed to purify solid-phase materials. The module provides certain practical advantages and it comprises: a metering valve, glass collector, glass lower body, main seal, threaded bushing, and glass internal cartridge (the latter to contain starting material). A complementary process was developed to de-solvate, sublime, weigh, and collect solid chemical materials exemplified by oxalic acid, ferrocene, pentachlorobenzene, chrysene, and urea. The oxalic acid sublimate was analyzed by titration, melting range, Fourier Transform Infrared (FT-IR) Spectroscopy, cyclic voltammetry, and its (aqueous phase) electrolytically generated gas. The analytical data were consistent with a high-purity, anhydrous oxalic acid sublimate. Cyclic voltammograms of 0.11 mol. % oxalic acid in water displayed a 2.1 V window on glassy carbon electrode beyond which electrolytic decomposition occurs. During module testing, fifteen relatively pure materials were sublimed with (energy efficient) passive cooling and the solid-phase recovery averaged 95 mass %. Key module design features include: compact vertical geometry, low-angle conical collector, uniformly compressed main seal, modest power consumption, transparency, glovebox compatibility, cooling options, and preferential conductive heat transfer. To help evaluate the structural (module) heat transfer, vertical temperature profiles along the dynamically evacuated lower body were measured versus electric heater power: for example, an input of 18.6 W generated a temperature 443-K at the bottom. Experimental results and engineering calculations indicate that during sublimation, solid conduction is the primary mode of heat transfer to the starting material.

  9. Constant size descriptors for accurate machine learning models of molecular properties

    NASA Astrophysics Data System (ADS)

    Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole; Yaron, David J.

    2018-06-01

    Two different classes of molecular representations for use in machine learning of thermodynamic and electronic properties are studied. The representations are evaluated by monitoring the performance of linear and kernel ridge regression models on well-studied data sets of small organic molecules. One class of representations studied here counts the occurrence of bonding patterns in the molecule. These require only the connectivity of atoms in the molecule as may be obtained from a line diagram or a SMILES string. The second class utilizes the three-dimensional structure of the molecule. These include the Coulomb matrix and Bag of Bonds, which list the inter-atomic distances present in the molecule, and Encoded Bonds, which encode such lists into a feature vector whose length is independent of molecular size. Encoded Bonds' features introduced here have the advantage of leading to models that may be trained on smaller molecules and then used successfully on larger molecules. A wide range of feature sets are constructed by selecting, at each rank, either a graph or geometry-based feature. Here, rank refers to the number of atoms involved in the feature, e.g., atom counts are rank 1, while Encoded Bonds are rank 2. For atomization energies in the QM7 data set, the best graph-based feature set gives a mean absolute error of 3.4 kcal/mol. Inclusion of 3D geometry substantially enhances the performance, with Encoded Bonds giving 2.4 kcal/mol, when used alone, and 1.19 kcal/mol, when combined with graph features.

  10. Efficient discretization in finite difference method

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.

  11. Aeroelastic Flutter Behavior of Cantilever within a Nozzle-Diffuser Geometry

    NASA Astrophysics Data System (ADS)

    Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae

    2015-11-01

    Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments. Results suggest that for a linear expansion diffuser geometry, a non-dimensional stiffness, non-dimensional mass, and non-dimensional throat size are the critical parameters in mapping the instability. This map can serve as a guide to future work concerning possible electrical output and failure prediction in energy harvesters.

  12. Three-dimensional elastic stress and displacement analysis of finite circular geometry solids containing cracks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Mendelson, A.; Kring, J.

    1973-01-01

    A seminumerical method is presented for solving a set of coupled partial differential equations subject to mixed and coupled boundary conditions. The use of this method is illustrated by obtaining solutions for two circular geometry and mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are calculated in an axisymmetric, circular bar of finite dimensions containing a penny-shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.

  13. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  14. Using CAD/CAM to improve productivity - The IPAD approach

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1981-01-01

    Progress in designing and implementing CAD/CAM systems as a result of the NASA Integrated Programs for Aerospace-Vehicle Design is discussed. Essential software packages have been identified as executive, data management, general user, and geometry and graphics software. Data communication, as a means to integrate data over a network of computers of different vendors, provides data management with the capability of meeting design and manufacturing requirements of the vendors. Geometry software is dependent on developmental success with solid geometry software, which is necessary for continual measurements of, for example, a block of metal while it is being machined. Applications in the aerospace industry, such as for design, analysis, tooling, testing, quality control, etc., are outlined.

  15. “Agility” - Complexity Description in a New Dimension applied for Laser Cutting

    NASA Astrophysics Data System (ADS)

    Bartels, F.; Suess, B.; Wagner, A.; Hauptmann, J.; Wetzig, A.; Beyer, E.

    How to describe or to compare the complexity of industrial upcoming part geometries in laser-cutting? This question is essential for defining machine dynamics or kinematic structures for efficient use of the technological cutting-potential which is given by modern beam sources. Solid-state lasers as well as CO2 lasers offer, especially in thin materials, the opportunity of high cutting velocities. Considering the mean velocity on cutting geometries, it is significantly below the technological limitations. The characterization of cutting geometries by means of the agility as well as the application for laser-cutting will be introduced. The identification of efficient dynamic constellations will be shown as basic principle for designing future machine structures.

  16. A parametric shell analysis of the shuttle 51-L SRB AFT field joint

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Bowman, Lynn M.; Hughes, Robert M., IV; Jackson, Brian J.

    1990-01-01

    Following the Shuttle 51-L accident, an investigation was conducted to determine the cause of the failure. Investigators at the Langley Research Center focused attention on the structural behavior of the field joints with O-ring seals in the steel solid rocket booster (SRB) cases. The shell-of-revolution computer program BOSOR4 was used to model the aft field joint of the solid rocket booster case. The shell model consisted of the SRB wall and joint geometry present during the Shuttle 51-L flight. A parametric study of the joint was performed on the geometry, including joint clearances, contact between the joint components, and on the loads, induced and applied. In addition combinations of geometry and loads were evaluated. The analytical results from the parametric study showed that contact between the joint components was a primary contributor to allowing hot gases to blow by the O-rings. Based upon understanding the original joint behavior, various proposed joint modifications are shown and analyzed in order to provide additional insight and information. Finally, experimental results from a hydro-static pressurization of a test rocket booster case to study joint motion are presented and verified analytically.

  17. Solid-dielectric compound parabolic concentrators: on their use with photovoltaic devices.

    PubMed

    Goodman, N B; Ignatius, R; Wharton, L; Winston, R

    1976-10-01

    Prototype solid dielectric compound parabolic concentrators have been made and tested. By means of the geometry and refractive properties of a transparent solid they provide a technique for increasing the power output of silicon solar cells exposed to the sun by an amount nearly equal to the increase in effective collecting area. The response is uniform over a large angle which eliminates the necessity of diurnal tracking of the sun. The technique can be applied to the construction of thin panels and has the potential for significantly reducing, their cost per unit area.

  18. Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy based on the Monte Carlo MCNPX code

    NASA Astrophysics Data System (ADS)

    Chiavassa, S.; Aubineau-Lanièce, I.; Bitar, A.; Lisbona, A.; Barbet, J.; Franck, D.; Jourdain, J. R.; Bardiès, M.

    2006-02-01

    Dosimetric studies are necessary for all patients treated with targeted radiotherapy. In order to attain the precision required, we have developed Oedipe, a dosimetric tool based on the MCNPX Monte Carlo code. The anatomy of each patient is considered in the form of a voxel-based geometry created using computed tomography (CT) images or magnetic resonance imaging (MRI). Oedipe enables dosimetry studies to be carried out at the voxel scale. Validation of the results obtained by comparison with existing methods is complex because there are multiple sources of variation: calculation methods (different Monte Carlo codes, point kernel), patient representations (model or specific) and geometry definitions (mathematical or voxel-based). In this paper, we validate Oedipe by taking each of these parameters into account independently. Monte Carlo methodology requires long calculation times, particularly in the case of voxel-based geometries, and this is one of the limits of personalized dosimetric methods. However, our results show that the use of voxel-based geometry as opposed to a mathematically defined geometry decreases the calculation time two-fold, due to an optimization of the MCNPX2.5e code. It is therefore possible to envisage the use of Oedipe for personalized dosimetry in the clinical context of targeted radiotherapy.

  19. ISCE: A Modular, Reusable Library for Scalable SAR/InSAR Processing

    NASA Astrophysics Data System (ADS)

    Agram, P. S.; Lavalle, M.; Gurrola, E. M.; Sacco, G. F.; Rosen, P. A.

    2016-12-01

    Traditional community SAR/InSAR processing software tools have primarily focused on differential interferometry and Solid Earth applications. The InSAR Scientific Computing Environment (ISCE) was specifically designed to support the Earth Sciences user community as well as large scale operational processing tasks, thanks to its two-layered (Python+C/Fortran) architecture and modular framework. ISCE is freely distributed as a source tarball, allowing advanced users to modify and extend it for their research purposes and developing exploratory applications, while providing a relatively simple user interface for novice users to perform routine data analysis efficiently. Modular design of the ISCE library also enables easier development of applications to address the needs of Ecosystems, Cryosphere and Disaster Response communities in addition to the traditional Solid Earth applications. In this talk, we would like to emphasize the broader purview of the ISCE library and some of its unique features that sets it apart from other freely available community software like GMTSAR and DORIS, including: Support for multiple geometry regimes - Native Doppler (ALOS-1) as well Zero Doppler (ESA missions) systems. Support for data acquired by airborne platforms - e.g, JPL's UAVSAR and AirMOSS, DLR's F-SAR. Radiometric Terrain Correction - Auxiliary output layers from the geometry modules include projection angles, incidence angles, shadow-layover masks. Dense pixel offsets - Parallelized amplitude cross correlation for cryosphere / ionospheric correction applications. Rubber sheeting - Pixel-by-pixel offsets fields for resampling slave imagery for geometric co-registration/ ionospheric corrections. Preliminary Tandem-X processing support - Bistatic geometry modules. Extensibility to support other non-Solid Earth missions - Modules can be directly adopted for use with other SAR missions, e.g., SWOT. Preliminary support for multi-dimensional data products- multi-polarization, multi-frequency, multi-temporal, multi-baseline stacks via the PLANT and GIAnT toolboxes. Rapid prototyping - Geometry manipulation functionality at the python level allows users to prototype and test processing modules at the interpreter level before optimal implementation in C/C++/Fortran.

  20. A Generic Microdisturbanace Transmissibility Model For Reaction Wheels

    NASA Astrophysics Data System (ADS)

    Penate Castro, Jose; Seiler, Rene

    2012-07-01

    The increasing demand for space missions with high- precision pointing requirements for their payload instruments is underlining the importance of studying the impact of micro-level disturbances on the overall performance of spacecraft. For example, a satellite with an optical telescope taking high-resolution images might be very sensitive to perturbations, generated by moving equipment and amplified by the structure of the equipment itself as well as that of the host spacecraft that is accommodating both, the sources of mechanical disturbances and sensitive payload instruments. One of the major sources of mechanical disturbances inside a satellite may be found with reaction wheels. For investigation of their disturbance generation and propagation characteristics, a finite element model with parametric geometry definition has been developed. The model covers the main structural features of typical reaction wheel assemblies and can be used for a transmissibility representation of the equipment. With the parametric geometry definition approach, a wide range of different reaction wheel types and sizes can be analysed, without the need for (re-)defining an individual reaction wheel configuration from scratch. The reaction wheel model can be combined with a finite element model of the spacecraft structure and the payload for an end-to-end modelling and simulation of the microdisturbance generation and propagation. The finite element model has been generated in Patran® Command Language (PCL), which provides a powerful and time-efficient way to change parameters in the model, for creating a new or modifying an existing geometry, without requiring comprehensive manual interactions in the modelling pre-processor. As part of the overall modelling approach, a tailored structural model of the mechanical ball bearings has been implemented, which is one of the more complex problems to deal with, among others, due to the anisotropic stiffness and damping characteristics. Together, with the time and frequency domain representations of the local sources of the disturbance forces and moments (e.g. due to rotor unbalance), the new model enables adequate estimation of the disturbances at the mechanical interface of a reaction wheel with a transmissibility representation, furthermore the analysis of their propagation in a host structure and their effects on a payload item.

  1. Granular flows in constrained geometries

    NASA Astrophysics Data System (ADS)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  2. Collision of Physics and Software in the Monte Carlo Application Toolkit (MCATK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweezy, Jeremy Ed

    2016-01-21

    The topic is presented in a series of slides organized as follows: MCATK overview, development strategy, available algorithms, problem modeling (sources, geometry, data, tallies), parallelism, miscellaneous tools/features, example MCATK application, recent areas of research, and summary and future work. MCATK is a C++ component-based Monte Carlo neutron-gamma transport software library with continuous energy neutron and photon transport. Designed to build specialized applications and to provide new functionality in existing general-purpose Monte Carlo codes like MCNP, it reads ACE formatted nuclear data generated by NJOY. The motivation behind MCATK was to reduce costs. MCATK physics involves continuous energy neutron & gammamore » transport with multi-temperature treatment, static eigenvalue (k eff and α) algorithms, time-dependent algorithm, and fission chain algorithms. MCATK geometry includes mesh geometries and solid body geometries. MCATK provides verified, unit-test Monte Carlo components, flexibility in Monte Carlo application development, and numerous tools such as geometry and cross section plotters.« less

  3. Theoretical models for supercritical fluid extraction.

    PubMed

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A new method for acoustic containerless processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1984-01-01

    The development of an acoustic positioner, which uses only one acoustic mode in chambers of rectangular, cylindrical, and spherical geometries, for high-temperature containerless processing of materials in space is described. The objective of the single-mode positioner is to develop sufficient acoustic forces to stably localize and manipulate molten materials. In order to attain this goal the transducer power, energy transfer medium, and chamber geometry and dimensions need to be optimized. The use of a variable frequency compression driver or solid-state piezoelectric transducer to optimize these properties is investigated; it is determined that a solid-state transducer would be most applicable for optimizing the positioner. The positioning capabilities of this single-mode positioner are discussed. The dependence of the acoustic forces on temperature and ambient pressure is studied. The development of a levitator to process a molten sample at 1500 C in the space environment using the cylindrical (011) mode is illustrated.

  5. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data

    PubMed Central

    Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu

    2018-01-01

    Abstract Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density (d), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction. PMID:29707064

  6. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data.

    PubMed

    Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu

    2018-01-01

    Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density ( d ), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction.

  7. Three-dimensional representation of curved nanowires.

    PubMed

    Huang, Z; Dikin, D A; Ding, W; Qiao, Y; Chen, X; Fridman, Y; Ruoff, R S

    2004-12-01

    Nanostructures, such as nanowires, nanotubes and nanocoils, can be described in many cases as quasi one-dimensional curved objects projecting in three-dimensional space. A parallax method to construct the correct three-dimensional geometry of such one-dimensional nanostructures is presented. A series of scanning electron microscope images was acquired at different view angles, thus providing a set of image pairs that were used to generate three-dimensional representations using a matlab program. An error analysis as a function of the view angle between the two images is presented and discussed. As an example application, the importance of knowing the true three-dimensional shape of boron nanowires is demonstrated; without the nanowire's correct length and diameter, mechanical resonance data cannot provide an accurate estimate of Young's modulus.

  8. Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study

    NASA Astrophysics Data System (ADS)

    Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.

    2016-06-01

    Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.

  9. Hydroelastic vibration analysis of partially liquid-filled shells using a series representation of the liquid

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Herr, R. W.; Sewall, J. L.

    1980-01-01

    A series representation of the oscillatory behavior of incompressible nonviscous liquids contained in partially filled elastic tanks is presented. Each term is selected on the basis of hydroelastic vibrations in circular cylindrical tanks. Using a complementary energy principle, the superposition of terms is made to approximately satisfy the liquid-tank interface compatibility. This analysis is applied to the gravity sloshing and hydroelastic vibrations of liquids in hemispherical tanks and in a typical elastic aerospace propellant tank. With only a few series terms retained, the results correlate very well with existing analytical results, NASTRAN-generated analytical results, and experimental test results. Hence, although each term is based on a cylindrical tank geometry, the superposition can be successfully applied to noncylindrical tanks.

  10. Triangles bridge the scales: Quantifying cellular contributions to tissue deformation

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Etournay, Raphaël; Popović, Marko; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    2017-03-01

    In this article, we propose a general framework to study the dynamics and topology of cellular networks that capture the geometry of cell packings in two-dimensional tissues. Such epithelia undergo large-scale deformation during morphogenesis of a multicellular organism. Large-scale deformations emerge from many individual cellular events such as cell shape changes, cell rearrangements, cell divisions, and cell extrusions. Using a triangle-based representation of cellular network geometry, we obtain an exact decomposition of large-scale material deformation. Interestingly, our approach reveals contributions of correlations between cellular rotations and elongation as well as cellular growth and elongation to tissue deformation. Using this triangle method, we discuss tissue remodeling in the developing pupal wing of the fly Drosophila melanogaster.

  11. Method for determining optimal supercell representation of interfaces

    NASA Astrophysics Data System (ADS)

    Stradi, Daniele; Jelver, Line; Smidstrup, Søren; Stokbro, Kurt

    2017-05-01

    The geometry and structure of an interface ultimately determines the behavior of devices at the nanoscale. We present a generic method to determine the possible lattice matches between two arbitrary surfaces and to calculate the strain of the corresponding matched interface. We apply this method to explore two relevant classes of interfaces for which accurate structural measurements of the interface are available: (i) the interface between pentacene crystals and the (1 1 1) surface of gold, and (ii) the interface between the semiconductor indium-arsenide and aluminum. For both systems, we demonstrate that the presented method predicts interface geometries in good agreement with those measured experimentally, which present nontrivial matching characteristics and would be difficult to guess without relying on automated structure-searching methods.

  12. Local White Matter Geometry from Diffusion Tensor Gradients

    PubMed Central

    Savadjiev, Peter; Kindlmann, Gordon L.; Bouix, Sylvain; Shenton, Martha E.; Westin, Carl-Fredrik

    2009-01-01

    We introduce a mathematical framework for computing geometrical properties of white matter fibres directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to define scalar indices (or measures) that describe the local white matter geometry directly from the diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar indices of (1) fibre dispersion and (2) fibre curving, and we demonstrate them on synthetic and in vivo data. Finally, we illustrate their applicability to a group study on schizophrenia. PMID:19896542

  13. Local White Matter Geometry from Diffusion Tensor Gradients

    PubMed Central

    Savadjiev, Peter; Kindlmann, Gordon L.; Bouix, Sylvain; Shenton, Martha E.; Westin, Carl-Fredrik

    2010-01-01

    We introduce a mathematical framework for computing geometrical properties of white matter fibres directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to define scalar indices (or measures) that describe the local white matter geometry directly from the diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar indices of (1) fibre dispersion and (2) fibre curving, and we demonstrate them on synthetic and in vivo data. Finally, we illustrate their applicability to a group study on schizophrenia. PMID:20426006

  14. Commutative Algebras of Toeplitz Operators in Action

    NASA Astrophysics Data System (ADS)

    Vasilevski, Nikolai

    2011-09-01

    We will discuss a quite unexpected phenomenon in the theory of Toeplitz operators on the Bergman space: the existence of a reach family of commutative C*-algebras generated by Toeplitz operators with non-trivial symbols. As it tuns out the smoothness properties of symbols do not play any role in the commutativity, the symbols can be merely measurable. Everything is governed here by the geometry of the underlying manifold, the hyperbolic geometry of the unit disk. We mention as well that the complete characterization of these commutative C*-algebras of Toeplitz operators requires the Berezin quantization procedure. These commutative algebras come with a powerful research tool, the spectral type representation for the operators under study, which permit us to answer to many important questions in the area.

  15. Generalized -deformed correlation functions as spectral functions of hyperbolic geometry

    NASA Astrophysics Data System (ADS)

    Bonora, L.; Bytsenko, A. A.; Guimarães, M. E. X.

    2014-08-01

    We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with , is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to . With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry.

  16. On the performance of metrics to predict quality in point cloud representations

    NASA Astrophysics Data System (ADS)

    Alexiou, Evangelos; Ebrahimi, Touradj

    2017-09-01

    Point clouds are a promising alternative for immersive representation of visual contents. Recently, an increased interest has been observed in the acquisition, processing and rendering of this modality. Although subjective and objective evaluations are critical in order to assess the visual quality of media content, they still remain open problems for point cloud representation. In this paper we focus our efforts on subjective quality assessment of point cloud geometry, subject to typical types of impairments such as noise corruption and compression-like distortions. In particular, we propose a subjective methodology that is closer to real-life scenarios of point cloud visualization. The performance of the state-of-the-art objective metrics is assessed by considering the subjective scores as the ground truth. Moreover, we investigate the impact of adopting different test methodologies by comparing them. Advantages and drawbacks of every approach are reported, based on statistical analysis. The results and conclusions of this work provide useful insights that could be considered in future experimentation.

  17. Computational representation of the aponeuroses as NURBS surfaces in 3D musculoskeletal models.

    PubMed

    Wu, Florence T H; Ng-Thow-Hing, Victor; Singh, Karan; Agur, Anne M; McKee, Nancy H

    2007-11-01

    Computational musculoskeletal (MSK) models - 3D graphics-based models that accurately simulate the anatomical architecture and/or the biomechanical behaviour of organ systems consisting of skeletal muscles, tendons, ligaments, cartilage and bones - are valued biomedical tools, with applications ranging from pathological diagnosis to surgical planning. However, current MSK models are often limited by their oversimplifications in anatomical geometries, sometimes lacking discrete representations of connective tissue components entirely, which ultimately affect their accuracy in biomechanical simulation. In particular, the aponeuroses - the flattened fibrous connective sheets connecting muscle fibres to tendons - have never been geometrically modeled. The initiative was thus to extend Anatomy3D - a previously developed software bundle for reconstructing muscle fibre architecture - to incorporate aponeurosis-modeling capacity. Two different algorithms for aponeurosis reconstruction were written in the MEL scripting language of the animation software Maya 6.0, using its NURBS (non-uniform rational B-splines) modeling functionality for aponeurosis surface representation. Both algorithms were validated qualitatively against anatomical and functional criteria.

  18. Analysis of students’ spatial thinking in geometry: 3D object into 2D representation

    NASA Astrophysics Data System (ADS)

    Fiantika, F. R.; Maknun, C. L.; Budayasa, I. K.; Lukito, A.

    2018-05-01

    The aim of this study is to find out the spatial thinking process of students in transforming 3-dimensional (3D) object to 2-dimensional (2D) representation. Spatial thinking is helpful in using maps, planning routes, designing floor plans, and creating art. The student can engage geometric ideas by using concrete models and drawing. Spatial thinking in this study is identified through geometrical problems of transforming a 3-dimensional object into a 2-dimensional object image. The problem was resolved by the subject and analyzed by reference to predetermined spatial thinking indicators. Two representative subjects of elementary school were chosen based on mathematical ability and visual learning style. Explorative description through qualitative approach was used in this study. The result of this study are: 1) there are different representations of spatial thinking between a boy and a girl object, 2) the subjects has their own way to invent the fastest way to draw cube net.

  19. Tensor methodology and computational geometry in direct computational experiments in fluid mechanics

    NASA Astrophysics Data System (ADS)

    Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Julia

    2017-07-01

    The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite - element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate systems with direct and inverse transformations. So new method for mathematical representation and synthesis of computational experiment based on large particle method is proposed.

  20. [Representation and mathematical analysis of human crystalline lens].

    PubMed

    Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai

    2011-01-01

    The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.

  1. Beyond Point Clouds and Virtual Reality. Innovative Methods and Technologies for the Protection and Promotion of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Canevese, E. P.; De Gottardo, T.

    2017-05-01

    The morphometric and photogrammetric knowledge, combined with the historical research, are the indispensable prerequisites for the protection and enhancement of historical, architectural and cultural heritage. Nowadays the use of BIM (Building Information Modeling) as a supporting tool for restoration and conservation purposes is becoming more and more popular. However this tool is not fully adequate in this context because of its simplified representation of three-dimensional models, resulting from solid modelling techniques (mostly used in virtual reality) causing the loss of important morphometric information. One solution to this problem is imagining new advanced tools and methods that enable the building of effective and efficient three-dimensional representations backing the correct geometric analysis of the built model. Twenty-year of interdisciplinary research activities implemented by Virtualgeo focused on developing new methods and tools for 3D modeling that go beyond the simplified digital-virtual reconstruction used in standard solid modeling. Methods and tools allowing the creation of informative and true to life three-dimensional representations, that can be further used by various academics or industry professionals to carry out diverse analysis, research and design activities. Virtualgeo applied research activities, in line with the European Commission 2013's directives of Reflective 7 - Horizon 2020 Project, gave birth to GeomaticsCube Ecosystem, an ecosystem resulting from different technologies based on experiences garnered from various fields, metrology in particular, a discipline used in the automotive and aviation industry, and in general mechanical engineering. The implementation of the metrological functionality is only possible if the 3D model is created with special modeling techniques, based on surface modeling that allow, as opposed to solid modeling, a 3D representation of the manufact that is true to life. The advantages offered by metrological analysis are varied and important because they permit a precise and detailed overview of the 3D model's characteristics, and especially the over time monitoring of the model itself, these informations are impossible to obtain from a three-dimensional representation produced with solid modelling techniques. The applied research activities are also focused on the possibility of obtaining a photogrammetric and informative 3D model., Two distinct applications have been developed for this purpose, the first allows the classification of each individual element and the association of its material characteristics during the 3D modelling phase, whilst the second allows segmentations of the photogrammetric 3D model in its diverse aspects (materic, related to decay, chronological) with the possibility to make use and to populate the database, associated with the 3D model, with all types of multimedia contents.

  2. Solid State Research, 1977:3

    DTIC Science & Technology

    1977-08-15

    Reflectivity of CdGeAs, G.D. Holah* A. Miller* W. D. Dunnett* G.W. Iseler Solid State Commun. 23, 75 (1977) 4726 Thin-Film VO2 Submillimeter- Wave...Measure- ments 4439 X-Ray Lithographic and Pro- cessing Technologies for Fabricating Surface Relief Gratings with Profile Control < 400 A S. A...stripe-geometry lasers. The stripe width is 1 3 |i.m, and the cavity length is typically 3 80 to 400 |im. Ohmic contacts were made by

  3. Aromatic dipeptides and their salts—Solid-state linear-dichroic infrared (IR-LD) spectral analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.

    2008-07-01

    Stereo-structural analysis and IR-bands assignment of the aromatic dipeptides L-tryrosyl- L-phenylalanine ( Tyr-Phe), L-phenylalanyl- L-tyrosine ( Phe-Tyr) and their hydrochloride salts have been carried out by means of IR-LD spectroscopy of oriented as nematic liquid crystal suspension solid samples. The experimental data are compared with known crystallographic ones and theoretical predicted geometries at RHF/ and UHF/6-31G**.

  4. Experimental micro mechanics methods for conventional and negative Poisson's ratio cellular solids as Cosserat continua

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Continuum representations of micromechanical phenomena in structured materials are described, with emphasis on cellular solids. These phenomena are interpreted in light of Cosserat elasticity, a generalized continuum theory which admits degrees of freedom not present in classical elasticity. These are the rotation of points in the material, and a couple per unit area or couple stress. Experimental work in this area is reviewed, and other interpretation schemes are discussed. The applicability of Cosserat elasticity to cellular solids and fibrous composite materials is considered as is the application of related generalized continuum theories. New experimental results are presented for foam materials with negative Poisson's ratios.

  5. End-Member Formulation of Solid Solutions and Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtner, Peter C.

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less

  6. CAPRI (Computational Analysis PRogramming Interface): A Solid Modeling Based Infra-Structure for Engineering Analysis and Design Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Follen, Gregory J.

    1998-01-01

    CAPRI is a CAD-vendor neutral application programming interface designed for the construction of analysis and design systems. By allowing access to the geometry from within all modules (grid generators, solvers and post-processors) such tasks as meshing on the actual surfaces, node enrichment by solvers and defining which mesh faces are boundaries (for the solver and visualization system) become simpler. The overall reliance on file 'standards' is minimized. This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI provides a single call to interpolate grid-node based data from the surface discretization in one volume to another. Finally, design systems are possible where the results can be brought back into the CAD system (and therefore manufactured) because all geometry construction and modification are performed using the CAD system's geometry kernel.

  7. Birefringence of wood at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Todoruk, Tara M.; Schneider, Jon; Hartley, Ian D.; Reid, Matthew

    2008-06-01

    Fibre content of solid wood plays an important role in the wood products industry in terms of value. Additionally, fibre structure in composite wood products such as Oriented Strand Board (OSB) and paper products plays an important role in terms of strength properties. The effect of moisture content on wood properties is important in the manufacturing process and final product performance, and therefore its effect on the birefringence is of considerable interest. Since solid wood exhibits strong birefringence at terahertz frequencies, there may be potential applications of terahertz spectroscopy to fibre content and structure sensing. There are two potential sources for this strong birefringence: (i) form birefringence resulting from the porous structure of solid wood and (ii) intrinsic birefringence resulting from the dielectric properties of the material itself. In this report, the variability of birefringence within and between species, the dependence of the birefringence on moisture content and the relative contributions from form and intrinsic birefringence are examined. In order to clarify the role of these contributions to the measured birefringence, polarized terahertz reflection spectroscopy is examined and compared to the results obtained in a transmission geometry. Comparison of the birefringence measured in transmission and reflection geometries suggests that form birefringence may dominate.

  8. Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kazuyasu; , Satoshi, II; Takeuchi, Shintaro; Takagi, Shu; Matsumoto, Yoichiro

    2010-03-01

    For a given initial configuration of a multi-component geometry represented by voxel-based data on a fixed Cartesian mesh, a full Eulerian finite difference method facilitates solution of dynamic interaction problems between Newtonian fluid and hyperelastic material. The solid volume fraction, and the left Cauchy-Green deformation tensor are temporally updated on the Eulerian frame, respectively, to distinguish the fluid and solid phases, and to describe the solid deformation. The simulation method is applied to two- and three-dimensional motions of two biconcave neo-Hookean particles in a Poiseuille flow. Similar to the numerical study on the red blood cell motion in a circular pipe (Gong et al. in J Biomech Eng 131:074504, 2009), in which Skalak’s constitutive laws of the membrane are considered, the deformation, the relative position and orientation of a pair of particles are strongly dependent upon the initial configuration. The increase in the apparent viscosity is dependent upon the developed arrangement of the particles. The present Eulerian approach is demonstrated that it has the potential to be easily extended to larger system problems involving a large number of particles of complicated geometries.

  9. Some useful innovations with TRASYS and SINDA-85

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1993-01-01

    Several innovative methods were used to allow more efficient and accurate thermal analysis using SINDA-85 and TRASYS, including model integration and reduction, planetary surface calculations, and model animation. Integration with other modeling and analysis codes allows an analyst to import a geometry from a solid modeling or computer-aided design (CAD) software package, rather than building the geometry 'by hand.' This is more efficient as well as potentially more accurate. However, the use of solid modeling software often generates large analytical models. The problem of reducing large models was elegantly solved using the response of the transient derivative to a forcing step function. The thermal analysis of a lunar rover implemented two unusual features of the TRASYS/SINDA system. A little-known TRASYS routine SURFP calculates the solar heating of a rover on the lunar surface for several different rover positions and orientations. This is used not only to determine the rover temperatures, but also to automatically determine the power generated by the solar arrays. The animation of transient thermal results is an effective tool, especially in a vivid case such as the 14-day progress of the sun over the lunar rover. An animated color map on the solid model displays the progression of temperatures.

  10. Association of 2-acylaminopyridines and benzoic acids. Steric and electronic substituent effect studied by XRD, solution and solid-state NMR and calculations

    NASA Astrophysics Data System (ADS)

    Ośmiałowski, Borys; Kolehmainen, Erkki; Ejsmont, Krzysztof; Ikonen, Satu; Valkonen, Arto; Rissanen, Kari; Nonappa

    2013-12-01

    Eight single crystal X-ray structures, solid-state NMR spectroscopic, and theoretical studies utilizing QTAIM methodology were used to characterize the 2-acyl (alkyl in acyl = methyl, ethyl, t-butyl, and 1-adamantyl) amino-6-R-pyridine/4-R‧-benzoic acid (R,R‧ = H or Me) cocrystals. As expected among alkyl groups 1-adamantyl due to its bulkiness has the most significant effect on the relative positions of molecules in cocrystals. In addition, the subtle electronic and steric effects by the methyl substituents were observed. The theoretical calculations with full geometry optimizations are in agreement with the experimental findings (geometry, energy of hydrogen bonds). Based on the crystal structures and calculations it is concluded that p-methyl substituent in benzoic acid increase the hydrogen bond accepting ability of the CO oxygen and decreases the hydrogen bond donating ability of OH proton. The 15N solid-state (CP MAS) NMR chemical shifts prove that molecules in cocrystal are held together by hydrogen bonding. The biggest variation in the 15N chemical shift of acylamino nitrogen can be related with the size of the alkyl group in acyl moiety.

  11. Semi-regular remeshing based trust region spherical geometry image for 3D deformed mesh used MLWNN

    NASA Astrophysics Data System (ADS)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Ben Amar, Chokri

    2017-03-01

    Triangular surface are now widely used for modeling three-dimensional object, since these models are very high resolution and the geometry of the mesh is often very dense, it is then necessary to remesh this object to reduce their complexity, the mesh quality (connectivity regularity) must be ameliorated. In this paper, we review the main methods of semi-regular remeshing of the state of the art, given the semi-regular remeshing is mainly relevant for wavelet-based compression, then we present our method for re-meshing based trust region spherical geometry image to have good scheme of 3d mesh compression used to deform 3D meh based on Multi library Wavelet Neural Network structure (MLWNN). Experimental results show that the progressive re-meshing algorithm capable of obtaining more compact representations and semi-regular objects and yield an efficient compression capabilities with minimal set of features used to have good 3D deformation scheme.

  12. Spacetime-bridge solutions in vacuum gravity

    NASA Astrophysics Data System (ADS)

    Sengupta, Sandipan

    2017-11-01

    Vacuum spacetime solutions, which are representations of a bridgelike geometry, are constructed as purely geometric sources of curvature in gravity theory. These configurations satisfy the first-order equations of motion everywhere. Each of them consists of two identical sheets of asymptotically flat geometry, connected by a region of finite extension where the tetrad is noninvertible. The solutions can be classified into nonstatic and static spacetimes. The first class represents a single causal universe equipped (locally) with a timelike coordinate everywhere. The latter, on the other hand, could be interpreted as a sum of two self-contained universes which are causally disconnected. These geometries, even though they have different metrical dimensions in the regions within and away from the bridge, are regular. This is reflected through the associated gauge-covariant fields, which are continuous across the hypersurfaces connecting the invertible and noninvertible phases of the tetrad and are finite everywhere. These vacuum bridge solutions have no analogue in the Einsteinian theory of gravity.

  13. Quantitative 3-D Imaging, Segmentation and Feature Extraction of the Respiratory System in Small Mammals for Computational Biophysics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, Lynn L.; Trease, Harold E.; Fowler, John

    2007-03-15

    One of the critical steps toward performing computational biology simulations, using mesh based integration methods, is in using topologically faithful geometry derived from experimental digital image data as the basis for generating the computational meshes. Digital image data representations contain both the topology of the geometric features and experimental field data distributions. The geometric features that need to be captured from the digital image data are three-dimensional, therefore the process and tools we have developed work with volumetric image data represented as data-cubes. This allows us to take advantage of 2D curvature information during the segmentation and feature extraction process.more » The process is basically: 1) segmenting to isolate and enhance the contrast of the features that we wish to extract and reconstruct, 2) extracting the geometry of the features in an isosurfacing technique, and 3) building the computational mesh using the extracted feature geometry. “Quantitative” image reconstruction and feature extraction is done for the purpose of generating computational meshes, not just for producing graphics "screen" quality images. For example, the surface geometry that we extract must represent a closed water-tight surface.« less

  14. A dummy cell immersed boundary method for incompressible turbulence simulations over dirty geometries

    NASA Astrophysics Data System (ADS)

    Onishi, Keiji; Tsubokura, Makoto

    2016-11-01

    A methodology to eliminate the manual work required for correcting the surface imperfections of computer-aided-design (CAD) data, will be proposed. Such a technique is indispensable for CFD analysis of industrial applications involving complex geometries. The CAD geometry is degenerated into cell-oriented values based on Cartesian grid. This enables the parallel pre-processing as well as the ability to handle 'dirty' CAD data that has gaps, overlaps, or sharp edges without necessitating any fixes. An arbitrary boundary representation is used with a dummy-cell technique based on immersed boundary (IB) method. To model the IB, a forcing term is directly imposed at arbitrary ghost cells by linear interpolation of the momentum. The mass conservation is satisfied in the approximate domain that covers fluid region except the wall including cells. Attempts to Satisfy mass conservation in the wall containing cells leads to pressure oscillations near the IB. The consequence of this approximation will be discussed through fundamental study of an LES based channel flow simulation, and high Reynolds number flow around a sphere. And, an analysis comparing our results with wind tunnel experiments of flow around a full-vehicle geometry will also be presented.

  15. Bounded diffusion impedance characterization of battery electrodes using fractional modeling

    NASA Astrophysics Data System (ADS)

    Gabano, Jean-Denis; Poinot, Thierry; Huard, Benoît

    2017-06-01

    This article deals with the ability of fractional modeling to describe the bounded diffusion behavior encountered in modern thin film and nanoparticles lithium battery electrodes. Indeed, the diffusion impedance of such batteries behaves as a half order integrator characterized by the Warburg impedance at high frequencies and becomes a classical integrator described by a capacitor at low frequencies. The transition between these two behaviors depends on the particles geometry. Three of them will be considered in this paper: planar, cylindrical and spherical ones. The fractional representation proposed is a gray box model able to perfectly fit the low and high frequency diffusive impedance behaviors while optimizing the frequency response transition. Identification results are provided using frequential simulation data considering the three electrochemical diffusion models based on the particles geometry. Furthermore, knowing this geometry allows to estimate the diffusion ionic resistance and time constant using the relationships linking these physical parameters to the structural fractional model parameters. Finally, other simulations using Randles impedance models including the charge transfer impedance and the external resistance demonstrate the interest of fractional modeling in order to identify properly not only the charge transfer impedance but also the diffusion physical parameters whatever the particles geometry.

  16. Computational Issues Associated with Temporally Deforming Geometries Such as Thrust Vectoring Nozzles

    NASA Technical Reports Server (NTRS)

    Boyalakuntla, Kishore; Soni, Bharat K.; Thornburg, Hugh J.; Yu, Robert

    1996-01-01

    During the past decade, computational simulation of fluid flow around complex configurations has progressed significantly and many notable successes have been reported, however, unsteady time-dependent solutions are not easily obtainable. The present effort involves unsteady time dependent simulation of temporally deforming geometries. Grid generation for a complex configuration can be a time consuming process and temporally varying geometries necessitate the regeneration of such grids for every time step. Traditional grid generation techniques have been tried and demonstrated to be inadequate to such simulations. Non-Uniform Rational B-splines (NURBS) based techniques provide a compact and accurate representation of the geometry. This definition can be coupled with a distribution mesh for a user defined spacing. The present method greatly reduces cpu requirements for time dependent remeshing, facilitating the simulation of more complex unsteady problems. A thrust vectoring nozzle has been chosen to demonstrate the capability as it is of current interest in the aerospace industry for better maneuverability of fighter aircraft in close combat and in post stall regimes. This current effort is the first step towards multidisciplinary design optimization which involves coupling the aerodynamic heat transfer and structural analysis techniques. Applications include simulation of temporally deforming bodies and aeroelastic problems.

  17. Geometry and Photometry in 3D Visual Recognition

    DTIC Science & Technology

    1992-11-01

    Maybank 1990, Horn 1990, Horn 1991). The question, therefore, is why look for alternative representations of structure? There are three major problems...1975, Lenz and Tsai 1987, Faugeras, Luong and Maybank 1992). The third problem is related to the way shape is typically represented under the perspec...1985, Faugeras and Maybank 1990, Hildreth 1991, Horn 1990, Faugeras 1992, Faugeras, Luong and Maybank 1992). In general, the epipoles can be recovered

  18. Joint Sparse Representation for Robust Multimodal Biometrics Recognition

    DTIC Science & Technology

    2014-01-01

    comprehensive multimodal dataset and a face database are described in section V. Finally, in section VI, we discuss the computational complexity of...fingerprint, iris, palmprint , hand geometry and voice from subjects of different age, gender and ethnicity as described in Table I. It is a...Taylor, “Constructing nonlinear discriminants from multiple data views,” Machine Learning and Knowl- edge Discovery in Databases , pp. 328–343, 2010

  19. Solving Geometric Problems by Using Algebraic Representation for Junior High School Level 3 in Van Hiele at Geometric Thinking Level

    ERIC Educational Resources Information Center

    Suwito, Abi; Yuwono, Ipung; Parta, I. Nengah; Irawati, Santi; Oktavianingtyas, Ervin

    2016-01-01

    This study aims to determine the ability of algebra students who have 3 levels van Hiele levels. Follow its framework Dindyal framework (2007). Students are required to do 10 algebra shaped multiple choice, then students work 15 about the geometry of the van Hiele level in the form of multiple choice questions. The question has been tested levels…

  20. A Study of Topic and Topic Change in Conversational Threads

    DTIC Science & Technology

    2009-09-01

    AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND...ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES...unigrams. By converting documents to a vector space representations, the tools of geometry and algebra can be applied, and questions of difference

  1. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    NASA Astrophysics Data System (ADS)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  2. A visual LISP program for voxelizing AutoCAD solid models

    NASA Astrophysics Data System (ADS)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  3. The role of the "Casimir force analogue" at the microscopic processes of crystallization and melting

    NASA Astrophysics Data System (ADS)

    Chuvildeev, V. N.; Semenycheva, A. V.

    2016-10-01

    Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, "the Casimir force analogue", to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. "The Casimir force analogue" helps to estimate latent melting heat and to gain an insight into a solid-liquid transition problem.

  4. Lateral variations in lower mantle seismic velocity

    NASA Technical Reports Server (NTRS)

    Duffy, Thomas S.; Ahrens, Thomas J.

    1992-01-01

    To obtain a theoretical model which provides a rationale for the observed high values of velocity variations, the effect of a 0.1 to 0.2 percent partially molten volatile-rich material in various geometries which are heterogeneously dispersed in the lower mantle is examined. Data obtained indicate that, depending on aspect ratio and geometry, 0.1-0.2 percent partial melting in conjunction with about 100 K thermal anomalies can explain the seismic variations provided the compressibility of the melt differs by less than about 20 percent from the surrounding solid.

  5. Lorenz, Gödel and Penrose: new perspectives on determinism and causality in fundamental physics

    NASA Astrophysics Data System (ADS)

    Palmer, T. N.

    2014-07-01

    Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of meteorologist Ed Lorenz's work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz's fractal invariant set relate space-time calculus to deep areas of mathematics such as Gödel's Incompleteness Theorem. Could such properties also provide new perspectives on deep unsolved issues in fundamental physics? Recent developments in cosmology motivate what is referred to as the 'cosmological invariant set postulate': that the universe ? can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set ? in its state space. Symbolic representations of ? are constructed explicitly based on permutation representations of quaternions. The resulting 'invariant set theory' provides some new perspectives on determinism and causality in fundamental physics. For example, while the cosmological invariant set appears to have a rich enough structure to allow a description of (quantum) probability, its measure-zero character ensures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physical basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. Consistent with Penrose's suggestion of a deterministic but non-computable theory of fundamental physics, an alternative 'gravitational theory of the quantum' is proposed based on the geometry of ?, with new perspectives on the problem of black-hole information loss and potential observational consequences for the dark universe.

  6. A study of modelling simplifications in ground vibration predictions for railway traffic at grade

    NASA Astrophysics Data System (ADS)

    Germonpré, M.; Degrande, G.; Lombaert, G.

    2017-10-01

    Accurate computational models are required to predict ground-borne vibration due to railway traffic. Such models generally require a substantial computational effort. Therefore, much research has focused on developing computationally efficient methods, by either exploiting the regularity of the problem geometry in the direction along the track or assuming a simplified track structure. This paper investigates the modelling errors caused by commonly made simplifications of the track geometry. A case study is presented investigating a ballasted track in an excavation. The soil underneath the ballast is stiffened by a lime treatment. First, periodic track models with different cross sections are analyzed, revealing that a prediction of the rail receptance only requires an accurate representation of the soil layering directly underneath the ballast. A much more detailed representation of the cross sectional geometry is required, however, to calculate vibration transfer from track to free field. Second, simplifications in the longitudinal track direction are investigated by comparing 2.5D and periodic track models. This comparison shows that the 2.5D model slightly overestimates the track stiffness, while the transfer functions between track and free field are well predicted. Using a 2.5D model to predict the response during a train passage leads to an overestimation of both train-track interaction forces and free field vibrations. A combined periodic/2.5D approach is therefore proposed in this paper. First, the dynamic axle loads are computed by solving the train-track interaction problem with a periodic model. Next, the vibration transfer to the free field is computed with a 2.5D model. This combined periodic/2.5D approach only introduces small modelling errors compared to an approach in which a periodic model is used in both steps, while significantly reducing the computational cost.

  7. A basis for solid modeling of gear teeth with application in design and manufacture

    NASA Technical Reports Server (NTRS)

    Huston, Ronald L.; Mavriplis, Dimitrios; Oswald, Fred B.; Liu, Yung Sheng

    1992-01-01

    A new approach to modeling gear tooth surfaces is discussed. A computer graphics solid modeling procedure is used to simulate the tooth fabrication process. This procedure is based on the principles of differential geometry that pertain to envelopes of curves and surfaces. The procedure is illustrated with the modeling of spur, helical, bevel, spiral bevel, and hypoid gear teeth. Applications in design and manufacturing are discussed. Extensions to nonstandard tooth forms, to cams, and to rolling element bearings are proposed.

  8. A Basis for Solid Modeling of Gear Teeth with Application in Design and Manufacture

    NASA Technical Reports Server (NTRS)

    Huston, Ronald L.; Mavriplis, Dimitrios; Oswald, Fred B.; Liu, Yung Sheng

    1994-01-01

    This paper discusses a new approach to modeling gear tooth surfaces. A computer graphics solid modeling procedure is used to simulate the tooth fabrication processes. This procedure is based on the principles of differential geometry that pertain to envelopes of curves and surfaces. The procedure is illustrated with the modeling of spur, helical, bevel, spiral bevel and hypoid gear teeth. Applications in design and manufacturing arc discussed. Extensions to nonstandard tooth forms, to cams, and to rolling element hearings are proposed.

  9. Solid Modeling Aerospace Research Tool (SMART) user's guide, version 2.0

    NASA Technical Reports Server (NTRS)

    Mcmillin, Mark L.; Spangler, Jan L.; Dahmen, Stephen M.; Rehder, John J.

    1993-01-01

    The Solid Modeling Aerospace Research Tool (SMART) software package is used in the conceptual design of aerospace vehicles. It provides a highly interactive and dynamic capability for generating geometries with Bezier cubic patches. Features include automatic generation of commonly used aerospace constructs (e.g., wings and multilobed tanks); cross-section skinning; wireframe and shaded presentation; area, volume, inertia, and center-of-gravity calculations; and interfaces to various aerodynamic and structural analysis programs. A comprehensive description of SMART and how to use it is provided.

  10. Mononuclear nickel (II) and copper (II) coordination complexes supported by bispicen ligand derivatives: Experimental and computational studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nirupama; Niklas, Jens; Poluektov, Oleg

    2017-01-01

    The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visiblemore » region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.« less

  11. Vibrational spectroscopic analysis of a chymotrypsin inhibitor isolated from Schizolobium parahyba (Vell) Toledo seeds

    NASA Astrophysics Data System (ADS)

    Teles, Rozeni C. L.; Freitas, Sonia M.; Kawano, Yoshio; de Souza, Elizabeth M. T.; Arêas, Elizabeth P. G.

    1999-06-01

    Laser Raman and Fourier transform infrared spectroscopies were applied in the investigation of conformational features of a chymotrypsin inhibitor (SPC), inactive on trypsin, isolated from Schizolobium parahyba, a Leguminosae of the Cesalpinoidae family, found in tropical and subtropical regions. As a serine protease inhibitor, its importance is related to the control of proteolytic activity, which in turn is involved in a wide range of critically important biotechnological issues, such as blood coagulation, tumour cell growth, and plant natural defences against predators. SPC is a 20 kDa molecular mass monomeric protein, with two disulfide bonds. Its complete aminoacid primary sequence has not yet been determined. We analysed protein backbone conformation for the lyophylized solid and for an evaporated film, through Raman scattering and FTIR, respectively. The presence of significant amounts of disordered structures and of non-negligible contributions from α-helical and β-sheet structures were reckoned in both cases. The geometries of the disulfide bonds were defined: a gauche-gauche-gauche geometry was verified for one of the two bridges and a transient gauche-gauche-trans/trans-gauche-trans geometry has been indicated for the second one.Two out of the three tyrosine residues were shown to be in external location in the solid protein, as well as the only tryptophan residue.

  12. Giant slip lengths of a simple fluid at vibrating solid interfaces

    NASA Astrophysics Data System (ADS)

    Drezet, Aurélien; Siria, Alessandro; Huant, Serge; Chevrier, Joël

    2010-04-01

    It has been shown recently [A. Siria, A. Drezet, F. Marchi, F. Comin, S. Huant, and J. Chevrier, Phys. Rev. Lett. 102, 254503 (2009)] that in the plane-plane configuration, a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier-Stokes equations with partial slip boundary conditions at the solid-fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect-slip regime, the abovementioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results to those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. We show that the plane-plane geometry is more sensitive than the sphere-plane geometry for the measurement of slippage coefficients. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nanoelectromechanical systems.

  13. Giant slip lengths of a simple fluid at vibrating solid interfaces.

    PubMed

    Drezet, Aurélien; Siria, Alessandro; Huant, Serge; Chevrier, Joël

    2010-04-01

    It has been shown recently [A. Siria, A. Drezet, F. Marchi, F. Comin, S. Huant, and J. Chevrier, Phys. Rev. Lett. 102, 254503 (2009)] that in the plane-plane configuration, a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier-Stokes equations with partial slip boundary conditions at the solid-fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect-slip regime, the abovementioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results to those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. We show that the plane-plane geometry is more sensitive than the sphere-plane geometry for the measurement of slippage coefficients. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nanoelectromechanical systems.

  14. On Being a Client: What Every Library Director Should Know about Lawyers.

    ERIC Educational Resources Information Center

    Peat, W. Leslie

    1981-01-01

    Argues that the establishment of a solid working relationship with a competent lawyer is a regular part of the business of running a library, and provides practical advice on lawyer selection, fee arrangements, and the ground rules of legal representation. (RAA)

  15. Peridynamic Theory as a New Paradigm for Multiscale Modeling of Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silling, Stewart A.; Abdeljawad, Fadi; Ford, Kurtis Ross

    2017-09-01

    Sintering is a component fabrication process in which powder is compacted by pressing or some other means and then held at elevated temperature for a period of hours. The powder grains bond with each other, leading to the formation of a solid component with much lower porosity, and therefore higher density and higher strength, than the original powder compact. In this project, we investigated a new way of computationally modeling sintering at the length scale of grains. The model uses a high-fidelity, three-dimensional representation with a few hundred nodes per grain. The numerical model solves the peridynamic equations, in whichmore » nonlocal forces allow representation of the attraction, adhesion, and mass diffusion between grains. The deformation of the grains is represented through a viscoelastic material model. The project successfully demonstrated the use of this method to reproduce experimentally observed features of material behavior in sintering, including densification, the evolution of microstructure, and the occurrence of random defects in the sintered solid.« less

  16. Ignition transient analysis of solid rocket motor

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1990-01-01

    To predict pressure-time and thrust-time behavior of solid rocket motors, a one-dimensional numerical model is developed. The ignition phase of solid rocket motors (time less than 0.4 sec) depends critically on complex interactions among many elements, such as rocket geometry, heat and mass transfer, flow development, and chemical reactions. The present model solves the mass, momentum, and energy equations governing the transfer processes in the rocket chamber as well as the attached converging-diverging nozzle. A qualitative agreement with the SRM test data in terms of head-end pressure gradient and the total thrust build-up is obtained. Numerical results show that the burning rate in the star-segmented head-end section and the erosive burning are two important parameters in the ignition transient of the solid rocket motor (SRM).

  17. On the prediction of swirling flowfields found in axisymmetric combustor geometries

    NASA Technical Reports Server (NTRS)

    Rhode, D. L.; Lilley, D. G.; Mclaughlin, D. K.

    1981-01-01

    The paper reports research restricted to steady turbulence flow in axisymmetric geometries under low speed and nonreacting conditions. Numerical computations are performed for a basic two-dimensional axisymmetrical flow field similar to that found in a conventional gas turbine combustor. Calculations include a stairstep boundary representation of the expansion flow, a conventional k-epsilon turbulence model and realistic accomodation of swirl effects. A preliminary evaluation of the accuracy of computed flowfields is accomplished by comparisons with flow visualizations using neutrally-buoyant helium-filled soap bubbles as tracer particles. Comparisons of calculated results show good agreement, and it is found that a problem in swirling flows is the accuracy with which the sizes and shapes of the recirculation zones may be predicted, which may be attributed to the quality of the turbulence model.

  18. Modal analysis of the ultrahigh finesse Haroche QED cavity

    NASA Astrophysics Data System (ADS)

    Marsic, Nicolas; De Gersem, Herbert; Demésy, Guillaume; Nicolet, André; Geuzaine, Christophe

    2018-04-01

    In this paper, we study a high-order finite element approach to simulate an ultrahigh finesse Fabry–Pérot superconducting open resonator for cavity quantum electrodynamics. Because of its high quality factor, finding a numerically converged value of the damping time requires an extremely high spatial resolution. Therefore, the use of high-order simulation techniques appears appropriate. This paper considers idealized mirrors (no surface roughness and perfect geometry, just to cite a few hypotheses), and shows that under these assumptions, a damping time much higher than what is available in experimental measurements could be achieved. In addition, this work shows that both high-order discretizations of the governing equations and high-order representations of the curved geometry are mandatory for the computation of the damping time of such cavities.

  19. Scattering of focused ultrasonic beams by cavities in a solid half-space.

    PubMed

    Rahni, Ehsan Kabiri; Hajzargarbashi, Talieh; Kundu, Tribikram

    2012-08-01

    The ultrasonic field generated by a point focused acoustic lens placed in a fluid medium adjacent to a solid half-space, containing one or more spherical cavities, is modeled. The semi-analytical distributed point source method (DPSM) is followed for the modeling. This technique properly takes into account the interaction effect between the cavities placed in the focused ultrasonic field, fluid-solid interface and the lens surface. The approximate analytical solution that is available in the literature for the single cavity geometry is very restrictive and cannot handle multiple cavity problems. Finite element solutions for such problems are also prohibitively time consuming at high frequencies. Solution of this problem is necessary to predict when two cavities placed in close proximity inside a solid can be distinguished by an acoustic lens placed outside the solid medium and when such distinction is not possible.

  20. Movement Timing and Invariance Arise from Several Geometries

    PubMed Central

    Bennequin, Daniel; Fuchs, Ronit; Berthoz, Alain; Flash, Tamar

    2009-01-01

    Human movements show several prominent features; movement duration is nearly independent of movement size (the isochrony principle), instantaneous speed depends on movement curvature (captured by the 2/3 power law), and complex movements are composed of simpler elements (movement compositionality). No existing theory can successfully account for all of these features, and the nature of the underlying motion primitives is still unknown. Also unknown is how the brain selects movement duration. Here we present a new theory of movement timing based on geometrical invariance. We propose that movement duration and compositionality arise from cooperation among Euclidian, equi-affine and full affine geometries. Each geometry posses a canonical measure of distance along curves, an invariant arc-length parameter. We suggest that for continuous movements, the actual movement duration reflects a particular tensorial mixture of these canonical parameters. Near geometrical singularities, specific combinations are selected to compensate for time expansion or compression in individual parameters. The theory was mathematically formulated using Cartan's moving frame method. Its predictions were tested on three data sets: drawings of elliptical curves, locomotion and drawing trajectories of complex figural forms (cloverleaves, lemniscates and limaçons, with varying ratios between the sizes of the large versus the small loops). Our theory accounted well for the kinematic and temporal features of these movements, in most cases better than the constrained Minimum Jerk model, even when taking into account the number of estimated free parameters. During both drawing and locomotion equi-affine geometry was the most dominant geometry, with affine geometry second most important during drawing; Euclidian geometry was second most important during locomotion. We further discuss the implications of this theory: the origin of the dominance of equi-affine geometry, the possibility that the brain uses different mixtures of these geometries to encode movement duration and speed, and the ontogeny of such representations. PMID:19593380

  1. Effects of anode geometry on forward wide-angle neon ion emissions in 3.5 kJ plasma focus device by novel mega-size panorama polycarbonate image detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Soltani, Z.; Sarlak, Z.

    2018-03-01

    Forward wide-angle neon ion emissions in a 3.5 kJ plasma focus device (PFD) were studied using 5 different anode top geometries; hollow-end cylinder, solid triangle, solid hemisphere, hollow-end cone and flat-end cone. Position-sensitive mega-size panorama polycarbonate ion image detectors (MS-PCID) developed by dual-cell circular mega-size electrochemical etching (MS-ECE) systems were applied for processesing wide-angle neon ion images on MS-PCIDs exposed on the PFD cylinder top base under a single pinch shot. The images can be simply observed, analyzed and relatively quantified in terms of ion emission angular distributions even by the unaided eyes. By analysis of the forward neon ion emission images, the ion emission yields, ion emission angular distributions, iso-fluence ion contours and solid angles of ion emissions in 4π PFD space were determined. The neon ion emission yields on the PFD cylinder top base are in an increasing order ~2.1×109, ~2.2 ×109, ~2.8×109, ~2.9×109, and ~3.5×109 neon ions/shot for the 5 stated anode top geometries respectively. The panorama neon ion images as diagnosed even by the unaided eyes demonstrate the lowest and highest ion yields from the hollow-end cylinder and flat-end cone anode tops respectively. Relative dynamic qualitative neon ion spectrometry was made by the unaided eyes demonstrating relative neon ion energy as they appear. The study also demonstrates the unique power of the MS-PCID/MS-ECE imaging system as an advanced state-of-the-art ion imaging method for wide-angle dynamic parametric studies in PFD space and other ion study applications.

  2. Modelling non-Euclidean movement and landscape connectivity in highly structured ecological networks

    USGS Publications Warehouse

    Sutherland, Christopher; Fuller, Angela K.; Royle, J. Andrew

    2015-01-01

    The ecological distance SCR model uses spatially indexed capture-recapture data to estimate how activity patterns are influenced by landscape structure. As well as reducing bias in estimates of abundance, this approach provides biologically realistic representations of home range geometry, and direct information about species-landscape interactions. The incorporation of both structural (landscape) and functional (movement) components of connectivity provides a direct measure of species-specific landscape connectivity.

  3. Aeroelastic Deflection of NURBS Geometry

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1998-01-01

    The purpose of this paper is to present an algorithm for using NonUniform Rational B-Spline (NURBS) representation in an aeroelastic loop. The algorithm is based on creating a least-squares NURBS surface representing the aeroelastic defection. The resulting NURBS surfaces are used to update either the original Computer- Aided Design (CAD) model, Computational Structural Mechanics (CSM) grid or the Computational Fluid Dynamics (CFD) grid. Results are presented for a generic High-Speed Civil Transport (HSCT).

  4. FIDDLE: A Computer Code for Finite Difference Development of Linear Elasticity in Generalized Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2005-01-01

    A three-dimensional numerical solver based on finite-difference solution of three-dimensional elastodynamic equations in generalized curvilinear coordinates has been developed and used to generate data such as radial and tangential stresses over various gear component geometries under rotation. The geometries considered are an annulus, a thin annular disk, and a thin solid disk. The solution is based on first principles and does not involve lumped parameter or distributed parameter systems approach. The elastodynamic equations in the velocity-stress formulation that are considered here have been used in the solution of problems of geophysics where non-rotating Cartesian grids are considered. For arbitrary geometries, these equations along with the appropriate boundary conditions have been cast in generalized curvilinear coordinates in the present study.

  5. Ab initio and density functional computations of the vibrational spectrum, molecular geometry and some molecular properties of the antidepressant drug sertraline (Zoloft) hydrochloride

    NASA Astrophysics Data System (ADS)

    Sagdinc, Seda; Kandemirli, Fatma; Bayari, Sevgi Haman

    2007-02-01

    Sertraline hydrochloride is a highly potent and selective inhibitor of serotonin (5HT). It is a basic compound of pharmaceutical application for antidepressant treatment (brand name: Zoloft). Ab initio and density functional computations of the vibrational (IR) spectrum, the molecular geometry, the atomic charges and polarizabilities were carried out. The infrared spectrum of sertraline is recorded in the solid state. The observed IR wave numbers were analysed in light of the computed vibrational spectrum. On the basis of the comparison between calculated and experimental results and the comparison with related molecules, assignments of fundamental vibrational modes are examined. The X-ray geometry and experimental frequencies are compared with the results of our theoretical calculations.

  6. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy

    PubMed Central

    Borojeni, Azadeh A.T.; Frank-Ito, Dennis O.; Kimbell, Julia S.; Rhee, John S.; Garcia, Guilherme J. M.

    2016-01-01

    Virtual surgery planning based on computational fluid dynamics (CFD) simulations has the potential to improve surgical outcomes for nasal airway obstruction (NAO) patients, but the benefits of virtual surgery planning must outweigh the risks of radiation exposure. Cone beam computed tomography (CBCT) scans represent an attractive imaging modality for virtual surgery planning due to lower costs and lower radiation exposures compared with conventional CT scans. However, to minimize the radiation exposure, the CBCT sinusitis protocol sometimes images only the nasal cavity, excluding the nasopharynx. The goal of this study was to develop an idealized nasopharynx geometry for accurate representation of outlet boundary conditions when the nasopharynx geometry is unavailable. Anatomically-accurate models of the nasopharynx created from thirty CT scans were intersected with planes rotated at different angles to obtain an average geometry. Cross sections of the idealized nasopharynx were approximated as ellipses with cross-sectional areas and aspect ratios equal to the average in the actual patient-specific models. CFD simulations were performed to investigate whether nasal airflow patterns were affected when the CT-based nasopharynx was replaced by the idealized nasopharynx in 10 NAO patients. Despite the simple form of the idealized geometry, all biophysical variables (nasal resistance, airflow rate, and heat fluxes) were very similar in the idealized vs. patient-specific models. The results confirmed the expectation that the nasopharynx geometry has a minimal effect in the nasal airflow patterns during inspiration. The idealized nasopharynx geometry will be useful in future CFD studies of nasal airflow based on medical images that exclude the nasopharynx. PMID:27525807

  7. iPad Infuse Creativity in Solid Geometry Teaching

    ERIC Educational Resources Information Center

    Liu, Nelson

    2013-01-01

    We unveiled our plans to revolutionize the students' spatial conception development through the challenge and support of a cooperative learning of practice, the development of the profession as a whole and through sharing innovation and expertise. This encompasses cognitive consultancy, curriculum integration, solutions architecture, management…

  8. Curriculum Change in Secondary School Mathematics

    ERIC Educational Resources Information Center

    Alspaugh, John W.; and others

    1970-01-01

    Discusses six major trends in mathematics curriculum development: lowering of grade placement, teaching methods from memorization to discovery, introduction and deletion of content, integration of plane and solid geometry, algebra, and trigonometry, emphasis upon needs and characteristics of student, and increasing rate of curriculum change.…

  9. Sweet-Tooth Geometry.

    ERIC Educational Resources Information Center

    Scanlon, Regina M.

    2003-01-01

    Describes an engaging project in which students have to design and construct a three-dimensional candy box that would appeal to children. Requires students to make the box out of prisms, pyramids, or cylinders, determine the surface area and volume of the solids, and write a persuasive business letter. (YDS)

  10. Accurate representation of B-DNA double helical structure with implicit solvent and counterions.

    PubMed Central

    Wang, Lihua; Hingerty, Brian E; Srinivasan, A R; Olson, Wilma K; Broyde, Suse

    2002-01-01

    High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands. PMID:12080128

  11. Cost analysis of composite fan blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Stelson, T. S.; Barth, C. F.

    1980-01-01

    The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  12. Non-Coalescence Effects in Microgravity

    NASA Technical Reports Server (NTRS)

    Neitzel, G. Paul

    1998-01-01

    Non-coalescence of two bodies of the same liquid and the suppression of contact between liquid drops and solid surfaces is being studied through a pair of parallel investigations being conducted at the Georgia Institute of Technology and the Microgravity Research and Support (MARS) Center in Naples, Italy. Both non-coalescence and contact suppression are achieved by exploiting the mechanism of thermocapillary convection to drive a lubricating film of surrounding gas (air) into the space between the two liquid free surfaces (non-coalescence) or between the drop free surface and the solid (contact suppression). Earlier experiments performed included flow-visualization experiments in both axisymmetric and (nearly) two-dimensional geometries and quantitative measurements of film thickness in the contact-suppression case in both geometries. Work done in the second year has focused on obtaining quantitative results relating to the effects of variable air pressure, development of analytical and numerical models of non-coalescing droplets and to pursuing potential applications of these self-lubricated systems.

  13. Solid-state laser pumping with a planar compound parabolic concentrator.

    PubMed

    Panteli, D V; Pani, B M; Beli, L Z

    1997-10-20

    A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.

  14. Constitutional self-organization of adenine-uracil-derived hybrid materials.

    PubMed

    Arnal-Hérault, Carole; Barboiu, Mihai; Pasc, Andreea; Michau, Mathieu; Perriat, Pascal; van der Lee, Arie

    2007-01-01

    The alkoxysilane nucleobase adenine (A) and uracil (U) precursors described in this paper generate in solution a complex library of hydrogen-bonded aggregates, which can be expressed in the solid state as discrete higher oligomers. The different interconverting outputs that nucleobases may form by oligomerization define a dynamic polyfunctional diversity that may be "extracted selectively" in solid state by sol-gel transcription, under the intrinsic stability of the system. After the sol-gel process, unique constitutional preference for specific geometries in hybrid materials is consistent with a preferential arrangement of nucleobase systems, favoring the self-assembly by the Hoogsteen geometry. FTIR and NMR spectroscopy and X-ray powder diffraction experiments demonstrate the formation of self-organized hybrid supramolecular materials. Electron microscopy reveals the micrometric platelike morphology of the hybrid materials. The M(A-U) hybrid material is nanostructured in ordered circular domains of 5 nm in diameter of alternative light and dark rows with an one-dimensional periodicity of 3.5 A.

  15. Thermal stress analysis of symmetric shells subjected to asymmetric thermal loads

    NASA Technical Reports Server (NTRS)

    Negaard, G. R.

    1980-01-01

    The performance of the NASTRAN level 16.0 axisymmetric solid elements when subjected to both symmetric and asymmetric thermal loading was investigated. A ceramic radome was modeled using both the CTRAPRG and the CTRAPAX elements. The thermal loading applied contained severe gradients through the thickness of the shell. Both elements were found to be more sensitive to the effect of the thermal gradient than to the aspect ratio of the elements. Analysis using the CTRAPAX element predicted much higher thermal stresses than the analysis using the CTRAPRG element, prompting studies of models for which theoretical solutions could be calculated. It was found that the CTRAPRG element solutions were satisfactory, but that the CTRAPAX element was very geometry dependent. This element produced erroneous results if the geometry was allowed to vary from a rectangular cross-section. The most satisfactory solution found for this type of problem was to model a small segment of a symmetric structure with isoparametric solid elements and apply the cyclic symmetry option in NASTRAN.

  16. Drilling of CFRP and GFRP composite laminates using one shot solid carbide step drill K44

    NASA Astrophysics Data System (ADS)

    Nagaraja, R.; Rangaswamy, T.

    2018-04-01

    Drilling is a very common machining operation to install fasteners for assembly of laminates Drilling of Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP) composite laminate materials are different from that of convention materials that causes excessive tool wear and edge delamination. This paper reports on the tool geometry, cutting speed and feed rate. In this work two composite materials CFRP-G926 and Glass-7781 composite materials of varying thickness are drilled to investigate the effect of feed rate, and cutting speed. The study mainly focused on drilling laminates specimen of varying thickness 9 mm, 9.6 mm and 12 mm by using a single shot solid carbide step drill K44. The drilling is performed from lower to higher feed rate and cutting speed to investigate the hole quality, bottom top edge delamination, fiber breakages and local cracks. The work performed shows that a proper combination of tool geometry, cutting speed and feed rate can help to reduce the occurrence of delamination.

  17. The HALNA project: Diode-pumped solid-state laser for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Kawashima, T.; Ikegawa, T.; Kawanaka, J.; Miyanaga, N.; Nakatsuka, M.; Izawa, Y.; Matsumoto, O.; Yasuhara, R.; Kurita, T.; Sekine, T.; Miyamoto, M.; Kan, H.; Furukawa, H.; Motokoshi, S.; Kanabe, T.

    2006-06-01

    High-enery, rep.-rated, diode-pumped solid-state laser (DPSSL) is one of leading candidates for inertial fusion energy driver (IFE) and related laser-driven high-field applications. The project for the development of IFE laser driver in Japan, HALNA (High Average-power Laser for Nuclear Fusion Application) at ILE, Osaka University, aims to demonstrate 100-J pulse energy at 10 Hz rep. rate with 5 times diffraction limited beam quality. In this article, the advanced solid-state laser technologies for one half scale of HALNA (50 J, 10 Hz) are presented including thermally managed slab amplifier of Nd:phosphate glass and zig-zag optical geometry, and uniform, large-area diode-pumping.

  18. Pressure Oscillations and Structural Vibrations in Space Shuttle RSRM and ETM-3 Motors

    NASA Technical Reports Server (NTRS)

    Mason, D. R.; Morstadt, R. A.; Cannon, S. M.; Gross, E. G.; Nielsen, D. B.

    2004-01-01

    The complex interactions between internal motor pressure oscillations resulting from vortex shedding, the motor's internal acoustic modes, and the motor's structural vibration modes were assessed for the Space Shuttle four-segment booster Reusable Solid Rocket Motor and for the five-segment engineering test motor ETM-3. Two approaches were applied 1) a predictive procedure based on numerically solving modal representations of a solid rocket motor s acoustic equations of motion and 2) a computational fluid dynamics two-dimensional axi-symmetric large eddy simulation at discrete motor burn times.

  19. Study into Point Cloud Geometric Rigidity and Accuracy of TLS-Based Identification of Geometric Bodies

    NASA Astrophysics Data System (ADS)

    Klapa, Przemyslaw; Mitka, Bartosz; Zygmunt, Mariusz

    2017-12-01

    Capability of obtaining a multimillion point cloud in a very short time has made the Terrestrial Laser Scanning (TLS) a widely used tool in many fields of science and technology. The TLS accuracy matches traditional devices used in land surveying (tacheometry, GNSS - RTK), but like any measurement it is burdened with error which affects the precise identification of objects based on their image in the form of a point cloud. The point’s coordinates are determined indirectly by means of measuring the angles and calculating the time of travel of the electromagnetic wave. Each such component has a measurement error which is translated into the final result. The XYZ coordinates of a measuring point are determined with some uncertainty and the very accuracy of determining these coordinates is reduced as the distance to the instrument increases. The paper presents the results of examination of geometrical stability of a point cloud obtained by means terrestrial laser scanner and accuracy evaluation of solids determined using the cloud. Leica P40 scanner and two different settings of measuring points were used in the tests. The first concept involved placing a few balls in the field and then scanning them from various sides at similar distances. The second part of measurement involved placing balls and scanning them a few times from one side but at varying distances from the instrument to the object. Each measurement encompassed a scan of the object with automatic determination of its position and geometry. The desk studies involved a semiautomatic fitting of solids and measurement of their geometrical elements, and comparison of parameters that determine their geometry and location in space. The differences of measures of geometrical elements of balls and translations vectors of the solids centres indicate the geometrical changes of the point cloud depending on the scanning distance and parameters. The results indicate the changes in the geometry of scanned objects depending on the point cloud quality and distance from the measuring instrument. Varying geometrical dimensions of the same element suggest also that the point cloud does not keep a stable geometry of measured objects.

  20. On the Importance of Solar Eclipse Geometry in the Interpretation of Ionospheric Observations

    NASA Astrophysics Data System (ADS)

    Stankov, S.; Verhulst, T. G. W.

    2017-12-01

    A reliable interpretation of solar eclipse effects on the geospace environment, and on the ionosphere in particular, necessitates a careful consideration of the so-called eclipse geometry. A solar eclipse is a relatively rare astronomical phenomenon, which geometry is rather complex, specific for each event, and fast changing in time. The standard, most popular way to look at the eclipse geometry is via the two-dimensional representation (map) of the solar obscuration on the Earth's surface, in which the path of eclipse totality is drawn together with isolines of the gradually-decreasing eclipse magnitude farther away from this path. Such "surface maps" are widely used to readily explain some of the solar eclipse effects including, for example, the well-known decrease in total ionisation (due to the substantial decrease in solar irradiation), usually presented by the popular and easy to understand ionospheric characteristic of Total Electron Content (TEC). However, many other effects, especially those taking place at higher altitudes, cannot be explained in this fashion. Instead, a complete, four-dimensional (4D) description of the umbra (and penumbra), would be required. This presentation will address the issue of eclipse geometry effects on various ionospheric observations carried out during the total solar eclipse of August 21, 2017. In particular, GPS-based TEC and ionosonde measurements will be analysed and the eclipse effects on the ionosphere will be interpreted with respect to the actual eclipse geometry at ionospheric heights. Whenever possible, a comparison will be made with results from previous events, such as the ones from March 20, 2015 and October 3, 2005.

  1. The field representation language.

    PubMed

    Tsafnat, Guy

    2008-02-01

    The complexity of quantitative biomedical models, and the rate at which they are published, is increasing to a point where managing the information has become all but impossible without automation. International efforts are underway to standardise representation languages for a number of mathematical entities that represent a wide variety of physiological systems. This paper presents the Field Representation Language (FRL), a portable representation of values that change over space and/or time. FRL is an extensible mark-up language (XML) derivative with support for large numeric data sets in Hierarchical Data Format version 5 (HDF5). Components of FRL can be reused through unified resource identifiers (URI) that point to external resources such as custom basis functions, boundary geometries and numerical data. To demonstrate the use of FRL as an interchange we present three models that study hyperthermia cancer treatment: a fractal model of liver tumour microvasculature; a probabilistic model simulating the deposition of magnetic microspheres throughout it; and a finite element model of hyperthermic treatment. The microsphere distribution field was used to compute the heat generation rate field around the tumour. We used FRL to convey results from the microsphere simulation to the treatment model. FRL facilitated the conversion of the coordinate systems and approximated the integral over regions of the microsphere deposition field.

  2. Biologically Inspired Model for Inference of 3D Shape from Texture

    PubMed Central

    Gomez, Olman; Neumann, Heiko

    2016-01-01

    A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387

  3. Some Useful Innovations with Trasys and Sinda-85

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1993-01-01

    Several innovative methods have been used to allow more efficient and accurate thermal analysis using SINDA-85 and TRASYS, including model integration and reduction, planetary surface calculations, and model animation. Integration with other modeling and analysis codes allows an analyst to import a geometry from a solid modeling or computer-aided design (CAD) software package, rather than building the geometry "by hand." This is more efficient as well as potentially more accurate. However, the use of solid modeling software often generates large analytical models. The problem of reducing large models has been elegantly solved using the response of the transient derivative to a forcing step function. The thermal analysis of a lunar rover implemented two unusual features of the TRASYS/SINDA system. A little-known TRASYS routine SURFP calculates the solar heating of a rover on the lunar surface for several different rover positions and orientations. This is used not only to determine the rover temperatures, but also to automatically determine the power generated by the solar arrays. The animation of transient thermal results is an effective tool, especially in a vivid case such as the 14-day progress of the sun over the lunar rover. An animated color map on the solid model displays the progression of temperatures.

  4. Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali S. Siahpush; John Crepeau; Piyush Sabharwall

    2013-07-01

    Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.

  5. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: Impacts of geomorphological parameters and river flow representation

    DOE PAGES

    Luo, Xiangyu; Li, Hong -Yi; Leung, L. Ruby; ...

    2017-03-23

    In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes.more » This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that representing floodplain inundation could significantly improve the simulated streamflow and river stages. Refining floodplain topography, channel geometry and Manning roughness coefficients, as well as accounting for backwater effects had notable impacts on the simulated surface water dynamics in the Amazon Basin. As a result, the understanding obtained in this study could be helpful in improving modeling of surface hydrology in basins with evident inundation, especially at regional to continental scales.« less

  6. Modeling surface water dynamics in the Amazon Basin using MOSART-Inundation v1.0: Impacts of geomorphological parameters and river flow representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiangyu; Li, Hong -Yi; Leung, L. Ruby

    In the Amazon Basin, floodplain inundation is a key component of surface water dynamics and plays an important role in water, energy and carbon cycles. The Model for Scale Adaptive River Transport (MOSART) was extended with a macroscale inundation scheme for representing floodplain inundation. The extended model, named MOSART-Inundation, was used to simulate surface hydrology of the entire Amazon Basin. Previous hydrologic modeling studies in the Amazon Basin identified and addressed a few challenges in simulating surface hydrology of this basin, including uncertainties of floodplain topography and channel geometry, and the representation of river flow in reaches with mild slopes.more » This study further addressed four aspects of these challenges. First, the spatial variability of vegetation-caused biases embedded in the HydroSHEDS digital elevation model (DEM) data was explicitly addressed. A vegetation height map of about 1 km resolution and a land cover dataset of about 90 m resolution were used in a DEM correction procedure that resulted in an average elevation reduction of 13.2 m for the entire basin and led to evident changes in the floodplain topography. Second, basin-wide empirical formulae for channel cross-sectional dimensions were refined for various subregions to improve the representation of spatial variability in channel geometry. Third, the channel Manning roughness coefficient was allowed to vary with the channel depth, as the effect of riverbed resistance on river flow generally declines with increasing river size. Lastly, backwater effects were accounted for to better represent river flow in mild-slope reaches. The model was evaluated against in situ streamflow records and remotely sensed Envisat altimetry data and Global Inundation Extent from Multi-Satellites (GIEMS) inundation data. In a sensitivity study, seven simulations were compared to evaluate the impacts of the five modeling aspects addressed in this study. The comparisons showed that representing floodplain inundation could significantly improve the simulated streamflow and river stages. Refining floodplain topography, channel geometry and Manning roughness coefficients, as well as accounting for backwater effects had notable impacts on the simulated surface water dynamics in the Amazon Basin. As a result, the understanding obtained in this study could be helpful in improving modeling of surface hydrology in basins with evident inundation, especially at regional to continental scales.« less

  7. Recent Advances in Registration, Integration and Fusion of Remotely Sensed Data: Redundant Representations and Frames

    NASA Technical Reports Server (NTRS)

    Czaja, Wojciech; Le Moigne-Stewart, Jacqueline

    2014-01-01

    In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.

  8. Fuzzy Similarity and Fuzzy Inclusion Measures in Polyline Matching: A Case Study of Potential Streams Identification for Archaeological Modelling in GIS

    NASA Astrophysics Data System (ADS)

    Ďuračiová, Renata; Rášová, Alexandra; Lieskovský, Tibor

    2017-12-01

    When combining spatial data from various sources, it is often important to determine similarity or identity of spatial objects. Besides the differences in geometry, representations of spatial objects are inevitably more or less uncertain. Fuzzy set theory can be used to address both modelling of the spatial objects uncertainty and determining the identity, similarity, and inclusion of two sets as fuzzy identity, fuzzy similarity, and fuzzy inclusion. In this paper, we propose to use fuzzy measures to determine the similarity or identity of two uncertain spatial object representations in geographic information systems. Labelling the spatial objects by the degree of their similarity or inclusion measure makes the process of their identification more efficient. It reduces the need for a manual control. This leads to a more simple process of spatial datasets update from external data sources. We use this approach to get an accurate and correct representation of historical streams, which is derived from contemporary digital elevation model, i.e. we identify the segments that are similar to the streams depicted on historical maps.

  9. C{sub 60}: Sphere or polyhedron?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddon, R.C.

    1997-02-19

    In the original publication on the subject, C{sub 60} was depicted with the aid of a soccer ball, but this representation soon gave way to the familiar line drawing of chemical bonds between nucleii. To a large extent the dichotomy in the representation of the fullerenes remains today, and it is the purpose of this paper to pose and address the question that appears in the title. Of course, in reality the answer is well-known, and neither the sphere nor the polyhedron represent C{sub 60}, which like other molecules exists as a collection of nuclei with an associated distribution ofmore » electron density. Nevertheless, it is of interest to consider which of these conventional representations is most relevant for the fullerenes and in particular the language most appropriate to the description of the shape of these molecules and the geometry of the carbon atoms. The analysis presented here shows that topology of the molecule is paramount, and hence, C{sub 60} (and the fullerenes) are best modeled as polyhedra. 16 refs., 3 figs.« less

  10. 18 CFR 375.103 - Official seal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... protruding from a solid color wing-like shape. Below the eagle shall appear five squares, arranged in a horizontal line. Each of these squares shall contain a circle representing an area of the Commission's responsibility. The first square at the left of the line shall include a stylized representation of a pipeline...

  11. 18 CFR 375.103 - Official seal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... protruding from a solid color wing-like shape. Below the eagle shall appear five squares, arranged in a horizontal line. Each of these squares shall contain a circle representing an area of the Commission's responsibility. The first square at the left of the line shall include a stylized representation of a pipeline...

  12. 18 CFR 375.103 - Official seal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... protruding from a solid color wing-like shape. Below the eagle shall appear five squares, arranged in a horizontal line. Each of these squares shall contain a circle representing an area of the Commission's responsibility. The first square at the left of the line shall include a stylized representation of a pipeline...

  13. 18 CFR 375.103 - Official seal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... protruding from a solid color wing-like shape. Below the eagle shall appear five squares, arranged in a horizontal line. Each of these squares shall contain a circle representing an area of the Commission's responsibility. The first square at the left of the line shall include a stylized representation of a pipeline...

  14. 18 CFR 375.103 - Official seal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... protruding from a solid color wing-like shape. Below the eagle shall appear five squares, arranged in a horizontal line. Each of these squares shall contain a circle representing an area of the Commission's responsibility. The first square at the left of the line shall include a stylized representation of a pipeline...

  15. Platonic Symmetry and Geometric Thinking

    ERIC Educational Resources Information Center

    Zsombor-Murray, Paul

    2007-01-01

    Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…

  16. A comparative study on different methods of automatic mesh generation of human femurs.

    PubMed

    Viceconti, M; Bellingeri, L; Cristofolini, L; Toni, A

    1998-01-01

    The aim of this study was to evaluate comparatively five methods for automating mesh generation (AMG) when used to mesh a human femur. The five AMG methods considered were: mapped mesh, which provides hexahedral elements through a direct mapping of the element onto the geometry; tetra mesh, which generates tetrahedral elements from a solid model of the object geometry; voxel mesh which builds cubic 8-node elements directly from CT images; and hexa mesh that automatically generated hexahedral elements from a surface definition of the femur geometry. The various methods were tested against two reference models: a simplified geometric model and a proximal femur model. The first model was useful to assess the inherent accuracy of the meshes created by the AMG methods, since an analytical solution was available for the elastic problem of the simplified geometric model. The femur model was used to test the AMG methods in a more realistic condition. The femoral geometry was derived from a reference model (the "standardized femur") and the finite element analyses predictions were compared to experimental measurements. All methods were evaluated in terms of human and computer effort needed to carry out the complete analysis, and in terms of accuracy. The comparison demonstrated that each tested method deserves attention and may be the best for specific situations. The mapped AMG method requires a significant human effort but is very accurate and it allows a tight control of the mesh structure. The tetra AMG method requires a solid model of the object to be analysed but is widely available and accurate. The hexa AMG method requires a significant computer effort but can also be used on polygonal models and is very accurate. The voxel AMG method requires a huge number of elements to reach an accuracy comparable to that of the other methods, but it does not require any pre-processing of the CT dataset to extract the geometry and in some cases may be the only viable solution.

  17. Geometrical modeling of complete dental shapes by using panoramic X-ray, digital mouth data and anatomical templates.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2015-07-01

    In the field of orthodontic planning, the creation of a complete digital dental model to simulate and predict treatments is of utmost importance. Nowadays, orthodontists use panoramic radiographs (PAN) and dental crown representations obtained by optical scanning. However, these data do not contain any 3D information regarding tooth root geometries. A reliable orthodontic treatment should instead take into account entire geometrical models of dental shapes in order to better predict tooth movements. This paper presents a methodology to create complete 3D patient dental anatomies by combining digital mouth models and panoramic radiographs. The modeling process is based on using crown surfaces, reconstructed by optical scanning, and root geometries, obtained by adapting anatomical CAD templates over patient specific information extracted from radiographic data. The radiographic process is virtually replicated on crown digital geometries through the Discrete Radon Transform (DRT). The resulting virtual PAN image is used to integrate the actual radiographic data and the digital mouth model. This procedure provides the root references on the 3D digital crown models, which guide a shape adjustment of the dental CAD templates. The entire geometrical models are finally created by merging dental crowns, captured by optical scanning, and root geometries, obtained from the CAD templates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Towards Accurate Prediction of Turbulent, Three-Dimensional, Recirculating Flows with the NCC

    NASA Technical Reports Server (NTRS)

    Iannetti, A.; Tacina, R.; Jeng, S.-M.; Cai, J.

    2001-01-01

    The National Combustion Code (NCC) was used to calculate the steady state, nonreacting flow field of a prototype Lean Direct Injection (LDI) swirler. This configuration used nine groups of eight holes drilled at a thirty-five degree angle to induce swirl. These nine groups created swirl in the same direction, or a corotating pattern. The static pressure drop across the holes was fixed at approximately four percent. Computations were performed on one quarter of the geometry, because the geometry is considered rotationally periodic every ninety degrees. The final computational grid used was approximately 2.26 million tetrahedral cells, and a cubic nonlinear k - epsilon model was used to model turbulence. The NCC results were then compared to time averaged Laser Doppler Velocimetry (LDV) data. The LDV measurements were performed on the full geometry, but four ninths of the geometry was measured. One-, two-, and three-dimensional representations of both flow fields are presented. The NCC computations compare both qualitatively and quantitatively well to the LDV data, but differences exist downstream. The comparison is encouraging, and shows that NCC can be used for future injector design studies. To improve the flow prediction accuracy of turbulent, three-dimensional, recirculating flow fields with the NCC, recommendations are given.

  19. Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis.

    PubMed

    Kumar, Kuldeep; Desrosiers, Christian; Siddiqi, Kaleem; Colliot, Olivier; Toews, Matthew

    2017-09-01

    White matter characterization studies use the information provided by diffusion magnetic resonance imaging (dMRI) to draw cross-population inferences. However, the structure, function, and white matter geometry vary across individuals. Here, we propose a subject fingerprint, called Fiberprint, to quantify the individual uniqueness in white matter geometry using fiber trajectories. We learn a sparse coding representation for fiber trajectories by mapping them to a common space defined by a dictionary. A subject fingerprint is then generated by applying a pooling function for each bundle, thus providing a vector of bundle-wise features describing a particular subject's white matter geometry. These features encode unique properties of fiber trajectories, such as their density along prominent bundles. An analysis of data from 861 Human Connectome Project subjects reveals that a fingerprint based on approximately 3000 fiber trajectories can uniquely identify exemplars from the same individual. We also use fingerprints for twin/sibling identification, our observations consistent with the twin data studies of white matter integrity. Our results demonstrate that the proposed Fiberprint can effectively capture the variability in white matter fiber geometry across individuals, using a compact feature vector (dimension of 50), making this framework particularly attractive for handling large datasets. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Modeling water vapor and heat transfer in the normal and the intubated airways.

    PubMed

    Tawhai, Merryn H; Hunter, Peter J

    2004-04-01

    Intubation of the artificially ventilated patient with an endotracheal tube bypasses the usual conditioning regions of the nose and mouth. In this situation any deficit in heat or moisture in the air is compensated for by evaporation and thermal transfer from the pulmonary airway walls. To study the dynamics of heat and water transport in the intubated airway, a coupled system of nonlinear equations is solved in airway models with symmetric geometry and anatomically based geometry. Radial distribution of heat, water vapor, and velocity in the airway are described by power-law equations. Solution of the time-dependent system of equations yields dynamic airstream and mucosal temperatures and air humidity. Comparison of model results with two independent experimental studies in the normal and intubated airway shows a close correlation over a wide range of minute ventilation. Using the anatomically based model a range of spatially distributed temperature paths is demonstrated, which highlights the model's ability to predict thermal behavior in airway regions currently inaccessible to measurement. Accurate representation of conducting airway geometry is shown to be necessary for simulating mouth-breathing at rates between 15 and 100 l x min(-1), but symmetric geometry is adequate for the low minute ventilation and warm inspired air conditions that are generally supplied to the intubated patient.

  1. Synergism of the method of characteristics and CAD technology for neutron transport calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Wang, D.; He, T.

    2013-07-01

    The method of characteristics (MOC) is a very popular methodology in neutron transport calculation and numerical simulation in recent decades for its unique advantages. One of the key problems determining whether the MOC can be applied in complicated and highly heterogeneous geometry is how to combine an effective geometry processing method with MOC. Most of the existing MOC codes describe the geometry by lines and arcs with extensive input data, such as circles, ellipses, regular polygons and combination of them. Thus they have difficulty in geometry modeling, background meshing and ray tracing for complicated geometry domains. In this study, amore » new idea making use of a CAD solid modeler MCAM which is a CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport developed by FDS Team in China was introduced for geometry modeling and ray tracing of particle transport to remove these geometrical limitations mentioned above. The diamond-difference scheme was applied to MOC to reduce the spatial discretization error of the flat flux approximation in theory. Based on MCAM and MOC, a new MOC code was developed and integrated into SuperMC system, which is a Super Multi-function Computational system for neutronics and radiation simulation. The numerical testing results demonstrated the feasibility and effectiveness of the new idea for geometry treatment in SuperMC. (authors)« less

  2. Putting Cocrystal Stoichiometry to Work: A Reactive Hydrogen-Bonded "Superassembly" Enables Nanoscale Enlargement of a Metal-Organic Rhomboid via a Solid-State Photocycloaddition.

    PubMed

    Chu, Qianli; Duncan, Andrew J E; Papaefstathiou, Giannis S; Hamilton, Tamara D; Atkinson, Manza B J; Mariappan, S V Santhana; MacGillivray, Leonard R

    2018-04-11

    Enlargement of a self-assembled metal-organic rhomboid is achieved via the organic solid state. The solid-state synthesis of an elongated organic ligand was achieved by a template directed [2 + 2] photodimerization in a cocrystal. Initial cocrystals obtained of resorcinol template and reactant alkene afforded a 1:2 cocrystal with the alkene in a stacked yet photostable geometry. Cocrystallization performed in the presence of excess template resulted in a 3:2 cocrystal composed of novel discrete 10-component hydrogen-bonded "superassemblies" wherein the alkenes undergo a head-to-head [2 + 2] photodimerization. Isolation and reaction of elongated photoproduct with Cu(II) ions afforded a metal-organic rhomboid of nanoscale dimensions that hosts small molecules in the solid state as guests.

  3. Interactions between flames on parallel solid surfaces

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1995-01-01

    The interactions between flames spreading over parallel solid sheets of paper are being studied in normal gravity and in microgravity. This geometry is of practical importance since in most heterogeneous combustion systems, the condensed phase is non-continuous and spatially distributed. This spatial distribution can strongly affect burning and/or spread rate. This is due to radiant and diffusive interactions between the surface and the flames above the surfaces. Tests were conducted over a variety of pressures and separation distances to expose the influence of the parallel sheets on oxidizer transport and on radiative feedback.

  4. Host-guest complexes of local anesthetics with cucurbit[6]uril and para-sulphonatocalix[8]arene in the solid state

    NASA Astrophysics Data System (ADS)

    Danylyuk, Oksana; Butkiewicz, Helena; Coleman, Anthony W.; Suwinska, Kinga

    2017-12-01

    Here we describe the host-guest inclusion complexes of local anesthetic drugs with two macrocyclic hosts cucurbit[6]uril and para-sulphonatocalix[8]arene in the solid state. The anesthetic agents used in the co-crystallization with the supramolecular hosts are lidocaine, procaine, procainamide, prilocaine and proparacaine. Both macrocycles encapsulate the alkylammonium moieties of anestetics guests into their cavities although the mechanism of complexation, host-guest stoichiometry and geometry differ depending on the nature of the supramolecular host.

  5. Determination of the mean solid-liquid interface energy of pivalic acid

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gliksman, M. E.

    1989-01-01

    A high-confidence solid-liquid interfacial energy is determined for an anisotropic material. A coaxial composite having a cylindrical specimen chamber geometry provides a thermal gradient with an axial heating wire. The surface energy is derived from measurements of grain boundary groove shapes. Applying this method to pivalic acid, a surface energy of 2.84 erg/sq cm was determined with a total systematic and random error less than 10 percent. The value of interfacial energy corresponds to 24 percent of the latent heat of fusion per molecule.

  6. 3D finite element models of shoulder muscles for computing lines of actions and moment arms.

    PubMed

    Webb, Joshua D; Blemker, Silvia S; Delp, Scott L

    2014-01-01

    Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle-muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.

  7. 3D Finite Element Models of Shoulder Muscles for Computing Lines of Actions and Moment Arms

    PubMed Central

    Webb, Joshua D.; Blemker, Silvia S.; Delp, Scott L.

    2014-01-01

    Accurate representation of musculoskeletal geometry is needed to characterize the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account the large attachment areas, muscle-muscle interactions, and complex muscle fiber trajectories typical of shoulder muscles. To better represent shoulder muscle geometry we developed three-dimensional finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fiber paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fiber moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the three-dimensional model of supraspinatus showed that the anterior fibers provide substantial internal rotation while the posterior fibers act as external rotators. Including the effects of large attachment regions and three-dimensional mechanical interactions of muscle fibers constrains muscle motion, generates more realistic muscle paths, and allows deeper analysis of shoulder muscle function. PMID:22994141

  8. Visualizing Gyrokinetic Turbulence in a Tokamak

    NASA Astrophysics Data System (ADS)

    Stantchev, George

    2005-10-01

    Multi-dimensional data output from gyrokinetic microturbulence codes are often difficult to visualize, in part due to the non-trivial geometry of the underlying grids, in part due to high irregularity of the relevant scalar field structures in turbulent regions. For instance, traditional isosurface extraction methods are likely to fail for the electrostatic potential field whose level sets may exhibit various geometric pathologies. To address these issues we develop an advanced interactive 3D gyrokinetic turbulence visualization framework which we apply in the study of microtearing instabilities calculated with GS2 in the MAST and NSTX geometries. In these simulations GS2 uses field-line-following coordinates such that the computational domain maps in physical space to a long, twisting flux tube with strong cross-sectional shear. Using statistical wavelet analysis we create a sparse multiple-scale volumetric representation of the relevant scalar fields, which we visualize via a variation of the so called splatting technique. To handle the problem of highly anisotropic flux tube configurations we adapt a geometry-driven surface illumination algorithm that places local light sources for effective feature-enhanced visualization.

  9. Thermal-Hydraulic Transient Analysis of a Packed Particle Bed Reactor Fuel Element

    DTIC Science & Technology

    1990-06-01

    long fuel elements, arranged to form a core , were analyzed for an up-power transient from 0 MWt to approximately 18 MWt. The simple model significantly...VARIATIONS IN FUEL ELEMENT GEOMETRY ............. 60 4.4 VARIATIONS IN THE MANNER OF TRANSIENT CONTROL ..... 62 4.5 CORE REPRESENTATION BY MULTIPLE FUEL ...the HTGR , however, the PBR packs small fuel particles between inner and outer retention elements, designated as frits. The PBR is appropriate for a

  10. Midfield wireless powering of subwavelength autonomous devices.

    PubMed

    Kim, Sanghoek; Ho, John S; Poon, Ada S Y

    2013-05-17

    We obtain an analytical bound on the efficiency of wireless power transfer to a weakly coupled device. The optimal source is solved for a multilayer geometry in terms of a representation based on the field equivalence principle. The theory reveals that optimal power transfer exploits the properties of the midfield to achieve efficiencies far greater than conventional coil-based designs. As a physical realization of the source, we present a slot array structure whose performance closely approaches the theoretical bound.

  11. A fictitious domain method for fluid/solid coupling applied to the lithosphere/asthenosphere interaction.

    NASA Astrophysics Data System (ADS)

    Cerpa, Nestor; Hassani, Riad; Gerbault, Muriel

    2014-05-01

    A large variety of geodynamical problems can be viewed as a solid/fluid interaction problem coupling two bodies with different physics. In particular the lithosphere/asthenosphere mechanical interaction in subduction zones belongs to this kind of problem, where the solid lithosphere is embedded in the asthenospheric viscous fluid. In many fields (Industry, Civil Engineering,etc.), in which deformations of solid and fluid are "small", numerical modelers consider the exact discretization of both domains and fit as well as possible the shape of the interface between the two domains, solving the discretized physic problems by the Finite Element Method (FEM). Although, in a context of subduction, the lithosphere is submitted to large deformation, and can evolve into a complex geometry, thus leading to important deformation of the surrounding asthenosphere. To alleviate the precise meshing of complex geometries, numerical modelers have developed non-matching interface methods called Fictitious Domain Methods (FDM). The main idea of these methods is to extend the initial problem to a bigger (and simpler) domain. In our version of FDM, we determine the forces at the immersed solid boundary required to minimize (at the least square sense) the difference between fluid and solid velocities at this interface. This method is first-order accurate and the stability depends on the ratio between the fluid background mesh size and the interface discretization. We present the formulation and provide benchmarks and examples showing the potential of the method : 1) A comparison with an analytical solution of a viscous flow around a rigid body. 2) An experiment of a rigid sphere sinking in a viscous fluid (in two and three dimensional cases). 3) A comparison with an analog subduction experiment. Another presentation aims at describing the geodynamical application of this method to Andean subduction dynamics, studying cyclic slab folding on the 660 km discontinuity, and its relationship with flat subduction.

  12. The small low SNR target tracking using sparse representation information

    NASA Astrophysics Data System (ADS)

    Yin, Lifan; Zhang, Yiqun; Wang, Shuo; Sun, Chenggang

    2017-11-01

    Tracking small targets, such as missile warheads, from a remote distance is a difficult task since the targets are "points" which are similar to sensor's noise points. As a result, traditional tracking algorithms only use the information contained in point measurement, such as the position information and intensity information, as characteristics to identify targets from noise points. But in fact, as a result of the diffusion of photon, any small target is not a point in the focal plane array and it occupies an area which is larger than one sensor cell. So, if we can take the geometry characteristic into account as a new dimension of information, it will be of helpful in distinguishing targets from noise points. In this paper, we use a novel method named sparse representation (SR) to depict the geometry information of target intensity and define it as the SR information of target. Modeling the intensity spread and solving its SR coefficients, the SR information is represented by establishing its likelihood function. Further, the SR information likelihood is incorporated in the conventional Probability Hypothesis Density (PHD) filter algorithm with point measurement. To illustrate the different performances of algorithm with or without the SR information, the detection capability and estimation error have been compared through simulation. Results demonstrate the proposed method has higher estimation accuracy and probability of detecting target than the conventional algorithm without the SR information.

  13. A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    PubMed Central

    Carmeli, Cristian; Lopez-Aguado, Laura; Schmidt, Kerstin E.; De Feo, Oscar; Innocenti, Giorgio M.

    2007-01-01

    Background The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization. PMID:18074012

  14. A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx

    PubMed Central

    Sumets, P. P.; Cater, J. E.; Long, D. S.; Clarke, R. J.

    2015-01-01

    We describe a new boundary-integral representation for biphasic mixture theory, which allows us to efficiently solve certain elastohydrodynamic–mobility problems using boundary element methods. We apply this formulation to model the motion of a rigid particle through a microtube which has non-uniform wall shape, is filled with a viscous Newtonian fluid, and is lined with a thin poroelastic layer. This is relevant to scenarios such as the transport of small rigid cells (such as neutrophils) through microvessels that are lined with an endothelial glycocalyx layer (EGL). In this context, we examine the impact of geometry upon some recently reported phenomena, including the creation of viscous eddies, fluid flux into the EGL, as well as the role of the EGL in transmitting mechanical signals to the underlying endothelial cells. PMID:26345494

  15. D Topological Indoor Building Modeling Integrated with Open Street Map

    NASA Astrophysics Data System (ADS)

    Jamali, A.; Rahman, A. Abdul; Boguslawski, P.

    2016-09-01

    Considering various fields of applications for building surveying and various demands, geometry representation of a building is the most crucial aspect of a building survey. The interiors of the buildings need to be described along with the relative locations of the rooms, corridors, doors and exits in many kinds of emergency response, such as fire, bombs, smoke, and pollution. Topological representation is a challenging task within the Geography Information Science (GIS) environment, as the data structures required to express these relationships are particularly difficult to develop. Even within the Computer Aided Design (CAD) community, the structures for expressing the relationships between adjacent building parts are complex and often incomplete. In this paper, an integration of 3D topological indoor building modeling in Dual Half Edge (DHE) data structure and outdoor navigation network from Open Street Map (OSM) is presented.

  16. A Flight Deck Perspective of Self-Separation

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Rosekind, Mark (Technical Monitor)

    1997-01-01

    I will be participating on a Free Flight Human Factors Panel at the Ninth International Symposium on Aviation Psychology in Columbus, Ohio. My representation is related to the work that our group has conducted on flight deck issues associate with free flight. Our group completed a full-mission simulation study investigating procedural issues associated with airborne self-separation. Ten crews flew eight scenarios each in the B747-400 simulator at Ames. Each scenario had a representation of different conflict geometries with intruder aircraft. New alerting logic was created and integrated into the simulator to enable self-separation. In addition, new display features were created to help provide for enhanced information to the flight crew about relevant aircraft, The participants were asked to coordinate maneuvers for self-separation with the intruder aircraft. Data analyses for the many of the crew procedures have been completed.

  17. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry

    PubMed Central

    Meyer, Andrew J.; Patten, Carolynn

    2017-01-01

    Neuromusculoskeletal disorders affecting walking ability are often difficult to manage, in part due to limited understanding of how a patient’s lower extremity muscle excitations contribute to the patient’s lower extremity joint moments. To assist in the study of these disorders, researchers have developed electromyography (EMG) driven neuromusculoskeletal models utilizing scaled generic musculoskeletal geometry. While these models can predict individual muscle contributions to lower extremity joint moments during walking, the accuracy of the predictions can be hindered by errors in the scaled geometry. This study presents a novel EMG-driven modeling method that automatically adjusts surrogate representations of the patient’s musculoskeletal geometry to improve prediction of lower extremity joint moments during walking. In addition to commonly adjusted neuromusculoskeletal model parameters, the proposed method adjusts model parameters defining muscle-tendon lengths, velocities, and moment arms. We evaluated our EMG-driven modeling method using data collected from a high-functioning hemiparetic subject walking on an instrumented treadmill at speeds ranging from 0.4 to 0.8 m/s. EMG-driven model parameter values were calibrated to match inverse dynamic moments for five degrees of freedom in each leg while keeping musculoskeletal geometry close to that of an initial scaled musculoskeletal model. We found that our EMG-driven modeling method incorporating automated adjustment of musculoskeletal geometry predicted net joint moments during walking more accurately than did the same method without geometric adjustments. Geometric adjustments improved moment prediction errors by 25% on average and up to 52%, with the largest improvements occurring at the hip. Predicted adjustments to musculoskeletal geometry were comparable to errors reported in the literature between scaled generic geometric models and measurements made from imaging data. Our results demonstrate that with appropriate experimental data, joint moment predictions for walking generated by an EMG-driven model can be improved significantly when automated adjustment of musculoskeletal geometry is included in the model calibration process. PMID:28700708

  18. Origins of contrasting copper coordination geometries in crystalline copper sulfate pentahydrate.

    PubMed

    Ruggiero, Michael T; Erba, Alessandro; Orlando, Roberto; Korter, Timothy M

    2015-12-14

    Metal-aqua ion ([M(H2O)n](X+)) formation is a fundamental step in mechanisms that are central to enzymatic and industrial catalysis. Past investigations of such ions have yielded a wealth of information regarding their properties, however questions still exist involving the exact structures of these complexes. A prominent example of this is hexaaqua copper(II) ([Cu(H2O)6](2+)), with the solution versus gas-phase configurations under debate. The differences are often attributed to the intermolecular interactions between the bulk solvent and the aquated complex, resulting in structures stabilized by extended hydrogen-bonding networks. Yet solution phase systems are difficult to study due to the lack of atomic-level positional details. Crystalline solids are ideal models for comparative study, as they contain fixed structures that can be fully characterized using diffraction techniques. Here, crystalline copper sulfate pentahydrate (CuSO4·5H2O), which contains two unique copper-water geometries, was studied in order to elucidate the origin of these contrasting hydrated metal envrionments. A combination of solid-state density functional theory and low-temperature X-ray diffraction was used to probe the electronic origins of this phenomenon. This was accomplished through implementation of crystal orbital overlap population and crystal orbital Hamiltonian population analyses into a developmental version of the CRYSTAL14 software. These new computational methods help highlight the delicate interplay between electronic structure and metal-water geometries.

  19. Online capacitive densitometer

    DOEpatents

    Porges, K.G.

    1988-01-21

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.

  20. Index of Refraction without Geometry

    ERIC Educational Resources Information Center

    Farkas, N.; Henriksen, P. N.; Ramsier, R. D.

    2006-01-01

    This article presents several activities that permit students to determine the index of refraction of transparent solids and liquids using simple equipment without the need for geometrical relationships, special lighting or optical instruments. Graphical analysis of the measured data is shown to be a useful method for determining the index of…

  1. Online capacitive densitometer

    DOEpatents

    Porges, Karl G.

    1990-01-01

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.

  2. Geometry in Nature: Patterns. Environmental Module for Use in a Mathematics Laboratory Setting.

    ERIC Educational Resources Information Center

    Trojan, Arthur; And Others

    This module, designed to help students find and identify various geometric shapes and solids, contains 26 worksheets. Topics covered by these worksheets include: identification and grouping of objects with particular patterns, work with pentagons, hexagons, spirals, and symmetry. Teaching suggestions are included. (MK)

  3. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses.

    PubMed

    Chiastra, Claudio; Wu, Wei; Dickerhoff, Benjamin; Aleiou, Ali; Dubini, Gabriele; Otake, Hiromasa; Migliavacca, Francesco; LaDisa, John F

    2016-07-26

    The optimal stenting technique for coronary artery bifurcations is still debated. With additional advances computational simulations can soon be used to compare stent designs or strategies based on verified structural and hemodynamics results in order to identify the optimal solution for each individual's anatomy. In this study, patient-specific simulations of stent deployment were performed for 2 cases to replicate the complete procedure conducted by interventional cardiologists. Subsequent computational fluid dynamics (CFD) analyses were conducted to quantify hemodynamic quantities linked to restenosis. Patient-specific pre-operative models of coronary bifurcations were reconstructed from CT angiography and optical coherence tomography (OCT). Plaque location and composition were estimated from OCT and assigned to models, and structural simulations were performed in Abaqus. Artery geometries after virtual stent expansion of Xience Prime or Nobori stents created in SolidWorks were compared to post-operative geometry from OCT and CT before being extracted and used for CFD simulations in SimVascular. Inflow boundary conditions based on body surface area, and downstream vascular resistances and capacitances were applied at branches to mimic physiology. Artery geometries obtained after virtual expansion were in good agreement with those reconstructed from patient images. Quantitative comparison of the distance between reconstructed and post-stent geometries revealed a maximum difference in area of 20.4%. Adverse indices of wall shear stress were more pronounced for thicker Nobori stents in both patients. These findings verify structural analyses of stent expansion, introduce a workflow to combine software packages for solid and fluid mechanics analysis, and underscore important stent design features from prior idealized studies. The proposed approach may ultimately be useful in determining an optimal choice of stent and position for each patient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. On some problems in a theory of thermally and mechanically interacting continuous media. Ph.D. Thesis; [linearized theory of interacting mixture of elastic solid and viscous fluid

    NASA Technical Reports Server (NTRS)

    Lee, Y. M.

    1971-01-01

    Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.

  5. The relationship between experimental geometry, heat rate, and ultrasound wave speed measurement while observing phase changes in highly attenuative materials

    NASA Astrophysics Data System (ADS)

    Moore, David G.; Stair, Sarah L.; Jack, David A.

    2018-04-01

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors' previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile is presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. The trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.

  6. The Relationship Between Experimental Geometry Heat Rate and Ultrasound Wave Speed Measurement While Observing Phase Changes in Highly Attenuative Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, David G.; Stair, Sarah Louise; Jack, David A.

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors’ previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile ismore » presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. Lastly, the trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.« less

  7. The Relationship Between Experimental Geometry Heat Rate and Ultrasound Wave Speed Measurement While Observing Phase Changes in Highly Attenuative Materials

    DOE PAGES

    Moore, David G.; Stair, Sarah Louise; Jack, David A.

    2018-04-01

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors’ previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile ismore » presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. Lastly, the trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.« less

  8. Structural analysis of geochemical samples by solid-state nuclear magnetic resonance spectrometry. Role of paramagnetic material

    USGS Publications Warehouse

    Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.

    1987-01-01

    An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.

  9. A fictitious domain finite element method for simulations of fluid-structure interactions: The Navier-Stokes equations coupled with a moving solid

    NASA Astrophysics Data System (ADS)

    Court, Sébastien; Fournié, Michel

    2015-05-01

    The paper extends a stabilized fictitious domain finite element method initially developed for the Stokes problem to the incompressible Navier-Stokes equations coupled with a moving solid. This method presents the advantage to predict an optimal approximation of the normal stress tensor at the interface. The dynamics of the solid is governed by the Newton's laws and the interface between the fluid and the structure is materialized by a level-set which cuts the elements of the mesh. An algorithm is proposed in order to treat the time evolution of the geometry and numerical results are presented on a classical benchmark of the motion of a disk falling in a channel.

  10. Geometric charges in theories of elasticity and plasticity

    NASA Astrophysics Data System (ADS)

    Moshe, Michael

    The mechanics of many natural systems is governed by localized sources of stresses. Examples include ''plastic events'' that occur in amorphous solids under external stress, defects formation in crystalline material, and force-dipoles applied by cells adhered to an elastic substrate. Recent developments in a geometric formulation of elasticity theory paved the way for a unifying mathematical description of such singular sources of stress, as ''elastic charges''. In this talk I will review basic results in this emerging field, focusing on the geometry and mechanics of elastic charges in two-dimensional solid bodies. I will demonstrate the applicability of this new approach in three different problems: failure of an amorphous solid under load, mechanics of Kirigami, and wrinkle patterns in geometrically-incompatible elastic sheets.

  11. Computer-aided tissue engineering: benefiting from the control over scaffold micro-architecture.

    PubMed

    Tarawneh, Ahmad M; Wettergreen, Matthew; Liebschner, Michael A K

    2012-01-01

    Minimization schema in nature affects the material arrangements of most objects, independent of scale. The field of cellular solids has focused on the generalization of these natural architectures (bone, wood, coral, cork, honeycombs) for material improvement and elucidation into natural growth mechanisms. We applied this approach for the comparison of a set of complex three-dimensional (3D) architectures containing the same material volume but dissimilar architectural arrangements. Ball and stick representations of these architectures at varied material volumes were characterized according to geometric properties, such as beam length, beam diameter, surface area, space filling efficiency, and pore volume. Modulus, deformation properties, and stress distributions as contributed solely by architectural arrangements was revealed through finite element simulations. We demonstrated that while density is the greatest factor in controlling modulus, optimal material arrangement could result in equal modulus values even with volumetric discrepancies of up to 10%. We showed that at low porosities, loss of architectural complexity allows these architectures to be modeled as closed celled solids. At these lower porosities, the smaller pores do not greatly contribute to the overall modulus of the architectures and that a stress backbone is responsible for the modulus. Our results further indicated that when considering a deposition-based growth pattern, such as occurs in nature, surface area plays a large role in the resulting strength of these architectures, specifically for systems like bone. This completed study represents the first step towards the development of mathematical algorithms to describe the mechanical properties of regular and symmetric architectures used for tissue regenerative applications. The eventual goal is to create logical set of rules that can explain the structural properties of an architecture based solely upon its geometry. The information could then be used in an automatic fashion to generate patient-specific scaffolds for the treatment of tissue defects.

  12. Improved water-level forecasting for the Northwest European Shelf and North Sea through direct modelling of tide, surge and non-linear interaction

    NASA Astrophysics Data System (ADS)

    Zijl, Firmijn; Verlaan, Martin; Gerritsen, Herman

    2013-07-01

    In real-time operational coastal forecasting systems for the northwest European shelf, the representation accuracy of tide-surge models commonly suffers from insufficiently accurate tidal representation, especially in shallow near-shore areas with complex bathymetry and geometry. Therefore, in conventional operational systems, the surge component from numerical model simulations is used, while the harmonically predicted tide, accurately known from harmonic analysis of tide gauge measurements, is added to forecast the full water-level signal at tide gauge locations. Although there are errors associated with this so-called astronomical correction (e.g. because of the assumption of linearity of tide and surge), for current operational models, astronomical correction has nevertheless been shown to increase the representation accuracy of the full water-level signal. The simulated modulation of the surge through non-linear tide-surge interaction is affected by the poor representation of the tide signal in the tide-surge model, which astronomical correction does not improve. Furthermore, astronomical correction can only be applied to locations where the astronomic tide is known through a harmonic analysis of in situ measurements at tide gauge stations. This provides a strong motivation to improve both tide and surge representation of numerical models used in forecasting. In the present paper, we propose a new generation tide-surge model for the northwest European Shelf (DCSMv6). This is the first application on this scale in which the tidal representation is such that astronomical correction no longer improves the accuracy of the total water-level representation and where, consequently, the straightforward direct model forecasting of total water levels is better. The methodology applied to improve both tide and surge representation of the model is discussed, with emphasis on the use of satellite altimeter data and data assimilation techniques for reducing parameter uncertainty. Historic DCSMv6 model simulations are compared against shelf wide observations for a full calendar year. For a selection of stations, these results are compared to those with astronomical correction, which confirms that the tide representation in coastal regions has sufficient accuracy, and that forecasting total water levels directly yields superior results.

  13. The R/S System: A Method for Assignment and Some Recent Modifications.

    ERIC Educational Resources Information Center

    Eliel, Ernest L.

    1985-01-01

    Assigning "R" or "S" descriptors to chiral centers by inspection of a stereoformula often results in mistakes, especially when three-dimensional representations (with solid and dashed bonds for substituents pointing to front or rear) are used. Therefore, a method is presented that can be applied to all three-dimensional…

  14. Water, Water Everywhere: Phase Diagrams of Ordinary Water Substance

    ERIC Educational Resources Information Center

    Glasser, L.

    2004-01-01

    The full phase diagram of water in the form of a graphical representation of the three-dimensional (3D) PVT diagram using authentic data is presented. An interesting controversy regarding the phase behavior of water was the much-touted proposal of a solid phase of water, polywater, supposedly stable under atmospheric conditions.

  15. Frequency method for determining the parameters of the electromagnetic brakes and slip-type couplings with solid magnetic circuits

    NASA Technical Reports Server (NTRS)

    Guseynov, F. G.; Abbasova, E. M.

    1977-01-01

    The equivalent representation of brakes and coupling by lumped circuits is investigated. Analytical equations are derived for relating the indices of the transients to the parameters of the equivalent circuits for arbitrary rotor speed. A computer algorithm is given for the calculations.

  16. From in silica to in silico: retention thermodynamics at solid-liquid interfaces.

    PubMed

    El Hage, Krystel; Bemish, Raymond J; Meuwly, Markus

    2018-06-28

    The dynamics of solvated molecules at the solid/liquid interface is essential for a molecular-level understanding for the solution thermodynamics in reversed phase liquid chromatography (RPLC). The heterogeneous nature of the systems and the competing intermolecular interactions makes solute retention in RPLC a surprisingly challenging problem which benefits greatly from modelling at atomistic resolution. However, the quality of the underlying computational model needs to be sufficiently accurate to provide a realistic description of the energetics and dynamics of systems, especially for solution-phase simulations. Here, the retention thermodynamics and the retention mechanism of a range of benzene-derivatives in C18 stationary-phase chains in contact with water/methanol mixtures is studied using point charge (PC) and multipole (MTP) electrostatic models. The results demonstrate that free energy simulations with a faithful MTP representation of the computational model provide quantitative and molecular level insight into the thermodynamics of adsorption/desorption in chromatographic systems while a conventional PC representation fails in doing so. This provides a rational basis to develop more quantitative and validated models for the optimization of separation systems.

  17. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.

    PubMed

    Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi; Tatsumisago, Masahiro

    2012-05-22

    Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safety, long-cycle lives and versatile geometries. Rechargeable sodium batteries are more suitable than lithium-ion batteries, because they use abundant and ubiquitous sodium sources. Solid electrolytes are critical for realizing all-solid-state sodium batteries. Here we show that stabilization of a high-temperature phase by crystallization from the glassy state dramatically enhances the Na(+) ion conductivity. An ambient temperature conductivity of over 10(-4) S cm(-1) was obtained in a glass-ceramic electrolyte, in which a cubic Na(3)PS(4) crystal with superionic conductivity was first realized. All-solid-state sodium batteries, with a powder-compressed Na(3)PS(4) electrolyte, functioned as a rechargeable battery at room temperature.

  18. Stochastic Geometry and Quantum Gravity: Some Rigorous Results

    NASA Astrophysics Data System (ADS)

    Zessin, H.

    The aim of these lectures is a short introduction into some recent developments in stochastic geometry which have one of its origins in simplicial gravity theory (see Regge Nuovo Cimento 19: 558-571, 1961). The aim is to define and construct rigorously point processes on spaces of Euclidean simplices in such a way that the configurations of these simplices are simplicial complexes. The main interest then is concentrated on their curvature properties. We illustrate certain basic ideas from a mathematical point of view. An excellent representation of this area can be found in Schneider and Weil (Stochastic and Integral Geometry, Springer, Berlin, 2008. German edition: Stochastische Geometrie, Teubner, 2000). In Ambjørn et al. (Quantum Geometry Cambridge University Press, Cambridge, 1997) you find a beautiful account from the physical point of view. More recent developments in this direction can be found in Ambjørn et al. ("Quantum gravity as sum over spacetimes", Lect. Notes Phys. 807. Springer, Heidelberg, 2010). After an informal axiomatic introduction into the conceptual foundations of Regge's approach the first lecture recalls the concepts and notations used. It presents the fundamental zero-infinity law of stochastic geometry and the construction of cluster processes based on it. The second lecture presents the main mathematical object, i.e. Poisson-Delaunay surfaces possessing an intrinsic random metric structure. The third and fourth lectures discuss their ergodic behaviour and present the two-dimensional Regge model of pure simplicial quantum gravity. We terminate with the formulation of basic open problems. Proofs are given in detail only in a few cases. In general the main ideas are developed. Sufficiently complete references are given.

  19. Optimal sampling with prior information of the image geometry in microfluidic MRI.

    PubMed

    Han, S H; Cho, H; Paulsen, J L

    2015-03-01

    Recent advances in MRI acquisition for microscopic flows enable unprecedented sensitivity and speed in a portable NMR/MRI microfluidic analysis platform. However, the application of MRI to microfluidics usually suffers from prolonged acquisition times owing to the combination of the required high resolution and wide field of view necessary to resolve details within microfluidic channels. When prior knowledge of the image geometry is available as a binarized image, such as for microfluidic MRI, it is possible to reduce sampling requirements by incorporating this information into the reconstruction algorithm. The current approach to the design of the partial weighted random sampling schemes is to bias toward the high signal energy portions of the binarized image geometry after Fourier transformation (i.e. in its k-space representation). Although this sampling prescription is frequently effective, it can be far from optimal in certain limiting cases, such as for a 1D channel, or more generally yield inefficient sampling schemes at low degrees of sub-sampling. This work explores the tradeoff between signal acquisition and incoherent sampling on image reconstruction quality given prior knowledge of the image geometry for weighted random sampling schemes, finding that optimal distribution is not robustly determined by maximizing the acquired signal but from interpreting its marginal change with respect to the sub-sampling rate. We develop a corresponding sampling design methodology that deterministically yields a near optimal sampling distribution for image reconstructions incorporating knowledge of the image geometry. The technique robustly identifies optimal weighted random sampling schemes and provides improved reconstruction fidelity for multiple 1D and 2D images, when compared to prior techniques for sampling optimization given knowledge of the image geometry. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Aircraft Conceptual Design Using Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  1. Extension of a simplified computer program for analysis of solid-propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.

    1973-01-01

    A research project to develop a computer program for the preliminary design and performance analysis of solid propellant rocket engines is discussed. The following capabilities are included as computer program options: (1) treatment of wagon wheel cross sectional propellant configurations alone or in combination with circular perforated grains, (2) calculation of ignition transients with the igniter treated as a small rocket engine, (3) representation of spherical circular perforated grain ends as an alternative to the conical end surface approximation used in the original program, and (4) graphical presentation of program results using a digital plotter.

  2. A framework for qualitative reasoning about solid objects

    NASA Technical Reports Server (NTRS)

    Davis, E.

    1987-01-01

    Predicting the behavior of a qualitatively described system of solid objects requires a combination of geometrical, temporal, and physical reasoning. Methods based upon formulating and solving differential equations are not adequate for robust prediction, since the behavior of a system over extended time may be much simpler than its behavior over local time. A first-order logic, in which one can state simple physical problems and derive their solution deductively, without recourse to solving the differential equations, is discussed. This logic is substantially more expressive and powerful than any previous AI representational system in this domain.

  3. Numerical and experimental evaluations of the flow past nested chevrons

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Foss, J. K.; Spalart, P. R.

    1989-01-01

    An effort is made to contribute to the development of CFD by relating the successful use of vortex dynamics in the computation of the pressure drop past a planar array of chevron-shaped obstructions. An ensemble of results was used to compute the loss coefficient k, stimulating an experimental program for the assessment of the measured loss coefficient for the same geometry. The most provocative result of this study has been the representation of kinetic energy production in terms of vorticity source terms.

  4. Mathematics for Physics

    NASA Astrophysics Data System (ADS)

    Stone, Michael; Goldbart, Paul

    2009-07-01

    Preface; 1. Calculus of variations; 2. Function spaces; 3. Linear ordinary differential equations; 4. Linear differential operators; 5. Green functions; 6. Partial differential equations; 7. The mathematics of real waves; 8. Special functions; 9. Integral equations; 10. Vectors and tensors; 11. Differential calculus on manifolds; 12. Integration on manifolds; 13. An introduction to differential topology; 14. Group and group representations; 15. Lie groups; 16. The geometry of fibre bundles; 17. Complex analysis I; 18. Applications of complex variables; 19. Special functions and complex variables; Appendixes; Reference; Index.

  5. On parts and holes: the spatial structure of the human body.

    PubMed

    Donnelly, Maureen

    2004-01-01

    Spatial representation and reasoning is a central component of medical informatics. The spatial concepts most often used in medicine are not the quantitative, point-based concepts of classical geometry, but rather qualitative relations among extended objects such as body parts. A mereotopology is a formal theory of qualitative spatial relations, such as parthood and connection. This paper considers how an extension of mereotopology which includes also location relations can be used to represent and reason about the spatial structure of the human body.

  6. Ab initio SCF calculations on the potential energy surface of potassium cyanide (KCN)

    NASA Astrophysics Data System (ADS)

    Wormer, Paul E. S.; Tennyson, Jonathan

    1981-08-01

    The potential energy surface of KCN has been generated by ab initio SCF calculations in the region of equilibrium bond distances. An analytic representation of the surface is presented. The calculations show that the bonding between K and CN is ionic, and that the structure of KCN is triangular, which confirms recent experimental findings. The computed geometry is &KCN = 62.4°, rCK = 5.492a0, and rCN = 2.186a0.

  7. Self-Reacting Friction Stir Welding for Aluminum Complex Curvature Applications

    NASA Technical Reports Server (NTRS)

    Brown, Randy J.; Martin, W.; Schneider, J.; Hartley, P. J.; Russell, Carolyn; Lawless, Kirby; Jones, Chip

    2003-01-01

    This viewgraph representation provides an overview of sucessful research conducted by Lockheed Martin and NASA to develop an advanced self-reacting friction stir technology for complex curvature aluminum alloys. The research included weld process development for 0.320 inch Al 2219, sucessful transfer from the 'lab' scale to the production scale tool and weld quality exceeding strenght goals. This process will enable development and implementation of large scale complex geometry hardware fabrication. Topics covered include: weld process development, weld process transfer, and intermediate hardware fabrication.

  8. Effect of transition dipole phase on high-order-harmonic generation in solid materials

    NASA Astrophysics Data System (ADS)

    Jiang, Shicheng; Wei, Hui; Chen, Jigen; Yu, Chao; Lu, Ruifeng; Lin, C. D.

    2017-11-01

    High-order harmonic spectra from solid materials driven by single-color multicycle laser fields sometimes contain even harmonics. In this work we attribute the appearance of even harmonics to the nonzero transition dipole phase (TDP) when the solid system has broken symmetry. By calculating the harmonic efficiency from graphene and gapped graphene by using the semiconductor Bloch equations under the tight-binding approximation, we demonstrate the role of the TDP, which has been ignored for a long time. When the crystal has inversion symmetry, or reflection symmetry with the symmetry plane perpendicular to the laser polarization direction, the TDP can be neglected. Without such symmetry, however, the TDP will lead to the appearance of even harmonics. We further show that the TDP is sensitive to the crystal geometry. To extract the structure information from the harmonic spectra of a solid the TDP cannot be ignored.

  9. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties.

    PubMed

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-31

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this "liquid wire" and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  10. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties

    NASA Astrophysics Data System (ADS)

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  11. Visualizing the shape of soft solid and fluid contacts between two surfaces

    NASA Astrophysics Data System (ADS)

    Pham, Jonathan; Schellenberger, Frank; Kappl, Michael; Vollmer, Doris; Butt, Hans-Jürgen

    The soft contact between two surfaces is fundamentally interesting for soft materials and fluid mechanics and relevant for friction and wear. The deformation of soft solid interfaces has received much interest because it interestingly reveals similarities to fluid wetting. We present an experimental route towards visualizing the three-dimensional contact geometry of either liquid-solid (i.e., oil and glass) or solid-solid (i.e., elastomer and glass) interfaces using a home-built combination of confocal microscopy and atomic force microscopy. We monitor the shape of a fluid capillary bridge and the depth of indentation in 3D while simultaneously measuring the force. In agreement with theoretical predictions, the height of the capillary bridge depends on the interfacial tensions. By using a slowly evaporating solvent, we quantify the temporal evolution of the capillary bridge and visualized the influence of pinning points on its shape. The position dependence of the advancing and receding contact angle along the three-phase contact line, particle-liquid-air, is resolved. Extending our system, we explore the contact deformation of soft solids where elasticity, in addition to surface tension, becomes an important factor.

  12. Geometry and solid angle corrections for accurate measurement of multipole and parity mixing ratios using nuclear orientation

    NASA Astrophysics Data System (ADS)

    Roccia, S.; Gaulard, C.; Étilé, A.; Chakma, R.

    2017-07-01

    In the context of nuclear orientation, we propose a new method to correct the multipole mixing ratios for asymmetries in the geometry of the setup but also in the detection system. This method is also robust against temperature fluctuations, beam intensity fluctuations and uncertainties in the nuclear structure of the nuclei. Additionally, this method provides a natural way to combine data from different detectors and make good use of all available statistics. We could use this method to demonstrate the accuracy that can be reached with the PolarEx setup now installed at the ALTO facility.

  13. 3-D Distribution of Retained Colloids in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Perez-Reche, F. J.; Holzner, M.; Kinzelbach, W. K.; Otten, W.

    2013-12-01

    It is well accepted that colloid transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to colloid immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Such factors depend on interfacial conditions provided by the water saturation of the porous medium. Yet, the current understanding of the importance of colloid retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which colloidal silver particles were transported for conditions of varying water content. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the four main locations where colloids can become retained (interfaces with the liquid-solid, gas-liquid and gas-solid, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, iii) morphological characteristics of the deposited colloidal aggregates, and iv) channel widths of 3-dimensional pore-water network representations. The results presented provide, for the first time, a direct statistical evaluation on the significance of colloid retention by attachment to the liquid-solid, gas-liquid, gas-solid interfaces, and by straining in the bulk liquid. Additionally, an effective-pore structure characteristic is proposed to improve predictions of mass removal by straining under various water saturations. A) Unsaturated conditions. B) Saturated conditions. Left: Tomograph slice illustrating with false coloring Regions Of Interest corresponding to retention locations at the gas-liquid (purple), gas-solid (white) and solid-liquid interface (blue), and the bulk liquid (teal). Right: Deposition profiles of silver colloids (Ag) per retention location (T: total, GLI: gas-liquid interface, GSI: gas-solid interface, SLI: solid-liquid interface, L: bulk liquid) (Top). Depth profiles of the volume occupied by each retention location (Middle). Normalized deposition profiles of silver volume retained by its corresponding retention-location volume (Bottom).

  14. Solid-liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method.

    PubMed

    Ambler, Michael; Vorselaars, Bart; Allen, Michael P; Quigley, David

    2017-02-21

    We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid-liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core-shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.

  15. A two-system, single-analysis, fluid-structure interaction technique for modelling abdominal aortic aneurysms.

    PubMed

    Kelly, S C; O'Rourke, M J

    2010-01-01

    This work reports on the implementation and validation of a two-system, single-analysis, fluid-structure interaction (FSI) technique that uses the finite volume (FV) method for performing simulations on abdominal aortic aneurysm (AAA) geometries. This FSI technique, which was implemented in OpenFOAM, included fluid and solid mesh motion and incorporated a non-linear material model to represent AAA tissue. Fully implicit coupling was implemented, ensuring that both the fluid and solid domains reached convergence within each time step. The fluid and solid parts of the FSI code were validated independently through comparison with experimental data, before performing a complete FSI simulation on an idealized AAA geometry. Results from the FSI simulation showed that a vortex formed at the proximal end of the aneurysm during systolic acceleration, and moved towards the distal end of the aneurysm during diastole. Wall shear stress (WSS) values were found to peak at both the proximal and distal ends of the aneurysm and remain low along the centre of the aneurysm. The maximum von Mises stress in the aneurysm wall was found to be 408kPa, and this occurred at the proximal end of the aneurysm, while the maximum displacement of 2.31 mm occurred in the centre of the aneurysm. These results were found to be consistent with results from other FSI studies in the literature.

  16. The Influence of Dynamic Contact Angle on Wetting Dynamics

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Garoff, Steven

    2005-01-01

    When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.

  17. Decoding Task and Stimulus Representations in Face-responsive Cortex

    PubMed Central

    Kliemann, Dorit; Jacoby, Nir; Anzellotti, Stefano; Saxe, Rebecca R.

    2017-01-01

    Faces provide rich social information about others’ stable traits (e.g., age) and fleeting states of mind (e.g., emotional expression). While some of these facial aspects may be processed automatically, observers can also deliberately attend to some features while ignoring others. It remains unclear how internal goals (e.g., task context) influence the representational geometry of variable and stable facial aspects in face-responsive cortex. We investigated neural response patterns related to decoding i) the intention to attend to a facial aspect before its perception, ii) the attended aspect of a face and iii) stimulus properties. We measured neural responses while subjects watched videos of dynamic positive and negative expressions, and judged the age or the expression’s valence. Split-half multivoxel pattern analyses (MVPA) showed that (i) the intention to attend to a specific aspect of a face can be decoded from left fronto-lateral, but not face-responsive regions; (ii) during face perception, the attend aspect (age vs emotion) could be robustly decoded from almost all face-responsive regions; and (iii) a stimulus property (valence), was represented in right posterior superior temporal sulcus and medial prefrontal cortices. The effect of deliberately shifting the focus of attention on representations suggest a powerful influence of top-down signals on cortical representation of social information, varying across cortical regions, likely reflecting neural flexibility to optimally integrate internal goals and dynamic perceptual input. PMID:27978778

  18. Bioreactor Cultivation of Anatomically Shaped Human Bone Grafts

    PubMed Central

    Temple, Joshua P.; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L.

    2015-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes. PMID:24014312

  19. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation

    PubMed Central

    Sáenz, P. J.; Wray, A. W.; Che, Z.; Matar, O. K.; Valluri, P.; Kim, J.; Sefiane, K.

    2017-01-01

    The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications. PMID:28294114

  20. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation.

    PubMed

    Sáenz, P J; Wray, A W; Che, Z; Matar, O K; Valluri, P; Kim, J; Sefiane, K

    2017-03-15

    The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications.

Top