Sample records for solid knowledge base

  1. New solid-state chemistry technologies to bring better drugs to market: knowledge-based decision making.

    PubMed

    Park, Aeri; Chyall, Leonard J; Dunlap, Jeanette; Schertz, Christine; Jonaitis, David; Stahly, Barbara C; Bates, Simon; Shipplett, Rex; Childs, Scott

    2007-01-01

    Modern drug development demands constant deployment of more effective technologies to mitigate the high cost of bringing new drugs to market. In addition to cost savings, new technologies can improve all aspects of pharmaceutical development. New technologies developed at SSCI, Inc. include solid form development of an active pharmaceutical ingredients. (APIs) are PatternMatch software and capillary-based crystallisation techniques that not only allow for fast and effective solid form screening, but also extract maximum property information from the routine screening data that is generally available. These new technologies offer knowledge-based decision making during solid form development of APIs and result in more developable API solid forms.

  2. Teaching and Learning about Solid Waste: Aspects of Content Knowledge

    ERIC Educational Resources Information Center

    Cinquetti, Heloisa Chalmers Sisla; de Carvalho, Luiz Marcelo

    2007-01-01

    This paper investigates aspects of content knowledge related to teaching and learning about solid waste, focusing on the processes of learning and teaching by Elementary School teachers in Brazil, in two modalities of continuing education: courses and school-based meetings. We analyse elements of teachers' reflections whilst referring to three…

  3. Learning to Be a Math Teacher: What Knowledge Is Essential?

    ERIC Educational Resources Information Center

    Reid, Mary; Reid, Steven

    2017-01-01

    This study critically examined the math content knowledge (MCK) of teacher candidates (TCs) enrolled in a two-year Master of Teaching (MT) degree. Teachers require a solid math knowledge base in order to support students' achievement. Provincial and international math assessments have been of major concern in Ontario, Canada, due to declining…

  4. Towards sustainable solid waste management: Investigating household participation in solid waste management

    NASA Astrophysics Data System (ADS)

    Akil, A. M.; Ho, C. S.

    2014-02-01

    The aim of this paper is to assess the readiness of Iskandar Malaysia community to accept solid waste recycling. The research is based on quantitative research design and descriptive survey of the households at Iskandar Malaysia using the stratified sampling method for a sample of 670. The survey was conducted using a structured questionnaire that covered two basic principles; a) recycling knowledge; b) willingness to recycle. Data was analysed using the SPSS to carry out statistical analysis. The finding shows households' knowledge towards the solid waste recycling is good and positive. However, finding also shows that respondents have incomprehensive knowledge on the method of disposal as more than 50% of householders only recycle papers and textiles. Most of the households agreed to participate in the activities of the separation of waste if the facility will be made available at their kerbside. Therefore, it is recommended that government should provide more in-depth knowledge by intensifying the awareness of the households in the recycling programs. In term of urban planning and management, the location of recycling facility can be analysing by using GIS. This is important to understand the catchment area of each neighbourhood or precinct to ensure effective household participation.

  5. Fluidized-Solid-Fuel Injection Process

    NASA Technical Reports Server (NTRS)

    Taylor, William

    1992-01-01

    Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.

  6. Perception of nurse caring, skills, and knowledge based on appearance.

    PubMed

    Thomas, Christine M; Ehret, Abigail; Ellis, Briana; Colon-Shoop, Sara; Linton, Jean; Metz, Stacie

    2010-11-01

    The objective of the study was to assess differences among perceptions of patients, nurses, nursing faculty, and nursing students regarding nurse caring, skill, and knowledge based on attire and level of visible body art. People often make judgments (positive and negative) based on how a person appears. Given somewhat more flexible dress codes for nurses, we wondered what type of perceptions a variety of stakeholders would have of nurses in different levels of attire. A descriptive comparative design was used. A convenience sample of 240 patients, nurses, students, and faculty were surveyed regarding their perceptions of a nurse based on appearance. Multivariate analyses of variance were calculated to determine if participants' perception of nurse caring, skill, and knowledge differed by scrub type or level of body art. For the entire sample, the nurse wearing the solid scrub was rated significantly more skilled and knowledgeable than a nurse wearing print or T-shirt attire. Students rated the nurse wearing the solid scrub and print scrub significantly more skilled and knowledgeable. They rated the print scrub higher, with faculty rating it lower. Nurses rated the T-shirt attire more caring than faculty. Patients rated the T-shirt attire more skilled than faculty and students. All subjects rated the nurse with the most body art (piercings and visible tattoo) the least caring, skilled, and knowledgeable. Nurses rated the most amount of body art more caring than patients and faculty. Students rated the most amount of body art more caring than patients and faculty. The conflict between the right to self-expression and professional role expectations during nurse and patient interactions is a difficult one. However, because a nurse's appearance can impact perceptions during an encounter, dress codes in the acute care setting should take this into account. To be perceived as skilled and knowledgeable, nurses should wear a solid colored uniform with limited visible body art.

  7. Professionals' Perceptions about the Use of Research in Educational Practice

    ERIC Educational Resources Information Center

    Ion, Georgeta; Iucu, Romita

    2014-01-01

    The Lisbon strategy adopted in 2000 by the European Council considers knowledge to be the key element in ensuring future European Union economic growth and in promoting social cohesion. With this aim in mind, a solid base is needed so that knowledge can not only be produced and but also be used to good effect. For any undertaking based on the…

  8. Contemporary Readings in Curriculum

    ERIC Educational Resources Information Center

    Stern, Barbara Slater; Kysilka, Marcella L.

    2008-01-01

    This book provides beginning teachers and educational leaders with a series of articles that can help them build their curriculum knowledge base. Features include: (1) Provides a historical context of the curriculum field, giving educators a solid foundation for curriculum knowledge; (2) Describes the political nature of curriculum and how we must…

  9. Conducting Reflective, Hands-On Research with Advanced Characterization Instruments: A High-Level Undergraduate Practical Exploring Solid-State Polymorphism

    ERIC Educational Resources Information Center

    Coles, S. J.; Mapp, L. K.

    2016-01-01

    An undergraduate practical exercise has been designed to provide hands-on, instrument-based experience of advanced characterization techniques. A research experience approach is taken, centered around the concept of solid-state polymorphism, which requires a detailed knowledge of molecular and crystal structure to be gained by advanced analytical…

  10. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber.

    PubMed

    Su, Xiancui; Wang, Yiran; Zhang, Baitao; Zhao, Ruwei; Yang, Kejian; He, Jingliang; Hu, Qiangqiang; Jia, Zhitai; Tao, Xutang

    2016-05-01

    In this Letter, a high-quality, few-layered black phosphorus (BP) saturable absorber (SA) was fabricated successfully, and a femtosecond solid-state laser modulated by BP-SA was experimentally demonstrated for the first time, to the best of our knowledge. Pulses as short as 272 fs were achieved with an average output power of 0.82 W, corresponding to the pulse energy of 6.48 nJ and peak power of 23.8 MW. So far, these represent the shortest pulse duration and highest output power ever obtained with a BP-based mode-locked solid-state laser. The results indicate the promising potential of few-layered BP-SA for applications in solid-state femtosecond mode-locked lasers.

  11. A New Model for Temperature Jump at a Fluid-Solid Interface

    PubMed Central

    Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong

    2016-01-01

    The problem presented involves the development of a new analytical model for the general fluid-solid temperature jump. To the best of our knowledge, there are no analytical models that provide the accurate predictions of the temperature jump for both gas and liquid systems. In this paper, a unified model for the fluid-solid temperature jump has been developed based on our adsorption model of the interfacial interactions. Results obtained from this model are validated with available results from the literature. PMID:27764230

  12. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance.

    PubMed

    Tan, Angel; Rao, Shasha; Prestidge, Clive A

    2013-12-01

    The diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications.

  13. Climate Change: Creating Conditions Conducive to Quality STEM Undergraduate Education

    ERIC Educational Resources Information Center

    Baldwin, Roger G.

    2009-01-01

    In an era of global competition and a technology-based economy, it is increasingly important that college students graduate with a solid foundation of knowledge and understanding of science and mathematics. They must be able to use their scientific knowledge on their jobs and in their role as citizens of a society where complex policy and resource…

  14. Assessment of College Students' Knowledge and Attitudes toward Solid Waste Management in North Central Zone of Nigeria

    ERIC Educational Resources Information Center

    Dung, Mohammed Dauda; Makilik, Mangut; Ozoji, Bernadette Ebele

    2017-01-01

    This study focused on assessment of colleges of education students' knowledge and attitudes toward solid waste management in the North Central zone of Nigeria. The cross-sectional survey design was adopted. A students' knowledge and attitudes toward solid waste management questionnaire were used to collect data from 1,800 students. The findings…

  15. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    PubMed Central

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  16. Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Fischbach, Sean; Fredrick, Robert

    2012-01-01

    Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.

  17. Ground-Based Aerosol Measurements

    EPA Science Inventory

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to ...

  18. Highly Efficient Plastic Crystal Ionic Conductors for Solid-state Dye-sensitized Solar Cells

    PubMed Central

    Hwang, Daesub; Kim, Dong Young; Jo, Seong Mu; Armel, Vanessa; MacFarlane, Douglas R.; Kim, Dongho; Jang, Sung-Yeon

    2013-01-01

    We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2–4 mScm−1) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices. PMID:24343425

  19. Solid Tumors After Chemotherapy or Surgery for Testicular Nonseminoma: A Population-Based Study

    PubMed Central

    Fung, Chunkit; Fossa, Sophie D.; Milano, Michael T.; Oldenburg, Jan; Travis, Lois B.

    2013-01-01

    Purpose Increased risks of solid tumors after older radiotherapy strategies for testicular cancer (TC) are well established. Few population-based studies, however, focus on solid cancer risk among survivors of TC managed with nonradiotherapy approaches. We quantified the site-specific risk of solid cancers among testicular nonseminoma patients treated in the modern era of cisplatin-based chemotherapy, without radiotherapy. Patients and Methods Standardized incidence ratios (SIRs) for solid tumors were calculated for 12,691 patients with testicular nonseminoma reported to the population-based Surveillance, Epidemiology, and End Results program (1980 to 2008) and treated initially with either chemotherapy (n = 6,013) or surgery (n = 6,678) without radiotherapy. Patients accrued 116,073 person-years of follow-up. Results Two hundred ten second solid cancers were observed. No increased risk followed surgery alone (SIR, 0.93; 95% CI, 0.76 to 1.14; n = 99 solid cancers), whereas significantly increased 40% excesses (SIR, 1.43; 95% CI, 1.18 to 1.73; n = 111 solid cancers) occurred after chemotherapy. Increased risks of solid cancers after chemotherapy were observed in most follow-up periods (median latency, 12.5 years), including more than 20 years after treatment (SIR, 1.54; 95% CI, 0.96 to 2.33); significantly increased three- to seven-fold risks occurred for cancers of the kidney (SIR, 3.37; 95% CI, 1.79 to 5.77), thyroid (SIR, 4.40; 95% CI, 2.19 to 7.88), and soft tissue (SIR, 7.49; 95% CI, 3.59 to 13.78). Conclusion To our knowledge, this is the first large population-based series reporting significantly increased risks of solid cancers among patients with testicular nonseminoma treated in the modern era of cisplatin-based chemotherapy. Subsequent analytic studies should focus on the evaluation of dose-response relationships, types of solid cancers, latency patterns, and interactions with other possible factors, including genetic susceptibility. PMID:24043737

  20. Design criteria monograph for pressurized metal cases

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Organiation and presentation of data pertaining to design of solid propellant rocket engine cases are discussed. Design criteria are presented in form of monograph based on accumulated experience and knowledge. Improvements in reliability, cost effectiveness, and engine efficiency are stressed.

  1. Automatic programming of arc welding robots

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Srikanth

    Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid models are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and to create an automatic programming system for robotic arc welding. In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using a hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described. The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described. A new approach using fixed path modified continuation methods is proposed in the final section to plan continuously the trajectory of weld seams in an integrated welding robot and positioner environment. The joint displacement, velocity, and acceleration histories all along the path as a function of the path parameter for the best possible welding condition are provided for the robot and the positioner to track various paths normally encountered in arc welding.

  2. Introduction of a Framework for Dynamic Knowledge Representation of the Control Structure of Transplant Immunology: Employing the Power of Abstraction with a Solid Organ Transplant Agent-Based Model

    PubMed Central

    An, Gary

    2015-01-01

    Agent-based modeling has been used to characterize the nested control loops and non-linear dynamics associated with inflammatory and immune responses, particularly as a means of visualizing putative mechanistic hypotheses. This process is termed dynamic knowledge representation and serves a critical role in facilitating the ability to test and potentially falsify hypotheses in the current data- and hypothesis-rich biomedical research environment. Importantly, dynamic computational modeling aids in identifying useful abstractions, a fundamental scientific principle that pervades the physical sciences. Recognizing the critical scientific role of abstraction provides an intellectual and methodological counterweight to the tendency in biology to emphasize comprehensive description as the primary manifestation of biological knowledge. Transplant immunology represents yet another example of the challenge of identifying sufficient understanding of the inflammatory/immune response in order to develop and refine clinically effective interventions. Advances in immunosuppressive therapies have greatly improved solid organ transplant (SOT) outcomes, most notably by reducing and treating acute rejection. The end goal of these transplant immune strategies is to facilitate effective control of the balance between regulatory T cells and the effector/cytotoxic T-cell populations in order to generate, and ideally maintain, a tolerant phenotype. Characterizing the dynamics of immune cell populations and the interactive feedback loops that lead to graft rejection or tolerance is extremely challenging, but is necessary if rational modulation to induce transplant tolerance is to be accomplished. Herein is presented the solid organ agent-based model (SOTABM) as an initial example of an agent-based model (ABM) that abstractly reproduces the cellular and molecular components of the immune response to SOT. Despite its abstract nature, the SOTABM is able to qualitatively reproduce acute rejection and the suppression of acute rejection by immunosuppression to generate transplant tolerance. The SOTABM is intended as an initial example of how ABMs can be used to dynamically represent mechanistic knowledge concerning transplant immunology in a scalable and expandable form and can thus potentially serve as useful adjuncts to the investigation and development of control strategies to induce transplant tolerance. PMID:26594211

  3. Introduction of a Framework for Dynamic Knowledge Representation of the Control Structure of Transplant Immunology: Employing the Power of Abstraction with a Solid Organ Transplant Agent-Based Model.

    PubMed

    An, Gary

    2015-01-01

    Agent-based modeling has been used to characterize the nested control loops and non-linear dynamics associated with inflammatory and immune responses, particularly as a means of visualizing putative mechanistic hypotheses. This process is termed dynamic knowledge representation and serves a critical role in facilitating the ability to test and potentially falsify hypotheses in the current data- and hypothesis-rich biomedical research environment. Importantly, dynamic computational modeling aids in identifying useful abstractions, a fundamental scientific principle that pervades the physical sciences. Recognizing the critical scientific role of abstraction provides an intellectual and methodological counterweight to the tendency in biology to emphasize comprehensive description as the primary manifestation of biological knowledge. Transplant immunology represents yet another example of the challenge of identifying sufficient understanding of the inflammatory/immune response in order to develop and refine clinically effective interventions. Advances in immunosuppressive therapies have greatly improved solid organ transplant (SOT) outcomes, most notably by reducing and treating acute rejection. The end goal of these transplant immune strategies is to facilitate effective control of the balance between regulatory T cells and the effector/cytotoxic T-cell populations in order to generate, and ideally maintain, a tolerant phenotype. Characterizing the dynamics of immune cell populations and the interactive feedback loops that lead to graft rejection or tolerance is extremely challenging, but is necessary if rational modulation to induce transplant tolerance is to be accomplished. Herein is presented the solid organ agent-based model (SOTABM) as an initial example of an agent-based model (ABM) that abstractly reproduces the cellular and molecular components of the immune response to SOT. Despite its abstract nature, the SOTABM is able to qualitatively reproduce acute rejection and the suppression of acute rejection by immunosuppression to generate transplant tolerance. The SOTABM is intended as an initial example of how ABMs can be used to dynamically represent mechanistic knowledge concerning transplant immunology in a scalable and expandable form and can thus potentially serve as useful adjuncts to the investigation and development of control strategies to induce transplant tolerance.

  4. Establishing a Campus-Based Assessment Program.

    ERIC Educational Resources Information Center

    Ewell, Peter T.

    1987-01-01

    Assessment has at two purposes--to improve teaching and learning and to promote greater external accountability. Determining an appropriate assessment approach depends on clear knowledge of what is intended, solid research about available instruments and about the experiences of other institutions, and a diagnosis of the local organizational and…

  5. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents CFB process analysis focused on combustion and NO profiles in pilot and industrial scale bituminous coal combustion.

  6. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Refractive indices of superlattices made of III-V semiconductor compounds and their solid solutions and semiconductor waveguide laser structures

    NASA Astrophysics Data System (ADS)

    Unger, K.

    1988-11-01

    An analysis is made of the theoretical problems encountered in precision calculations of refractive indices of semiconductor materials arising in connection with the use of superlattices as active layers in double-heterostructure lasers and in connection with the use of the impurity-induced disordering effect, i.e., the ability to transform selectively a superlattice into a corresponding solid solution. This can be done by diffusion or ion implantation. A review is given of calculations of refractive indices based on the knowledge of the energy band structure and the role of disorder is considered particularly. An anomaly observed in the (InAl)As system is considered. It is shown that the local field effects and exciton transitions are important. A reasonable approach is clearly a direct calculation of the difference between the refractive indices of superlattices based on compounds and of those based on their solid solutions.

  7. Project Management in Instructional Design: ADDIE Is Not Enough

    ERIC Educational Resources Information Center

    Van Rooij, Shahron Williams

    2010-01-01

    In the digital age, instructional designers must possess both a sound instructional design knowledge base and solid project management skills that will enable them to complete courseware projects on time, on budget and in conformance with client expectations. Project management skills include the ability to apply repeatable processes, along with…

  8. Review 2000: The Challenge of Knowledge and Know-How.

    ERIC Educational Resources Information Center

    Science and Technology Policy Council of Finland, Helsinki.

    The public sector in Finland faces tasks and challenges in promoting science, technology, and innovations in conditions of global change. Sustainable economic, social, and cultural development will continue to demand comprehensive development of the innovation system based on solid cooperation between the public and private sectors in the country.…

  9. Integrated Humanities: A Participatory Course for a Multi-Cultural Environment.

    ERIC Educational Resources Information Center

    Thomas, Timothy R.

    A course description and syllabus are provided for "Integrated Humanities," a general education course taught at Northern New Mexico Community College to provide students with a solid, reliable knowledge base and framework upon which to build future educational experiences. Following introductory material, a syllabus for students is…

  10. A knowledge acquisition process to analyse operational problems in solid waste management facilities.

    PubMed

    Dokas, Ioannis M; Panagiotakopoulos, Demetrios C

    2006-08-01

    The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions.

  11. Knowledge acquisition and rapid protyping of an expert system: Dealing with real world problems

    NASA Technical Reports Server (NTRS)

    Bailey, Patrick A.; Doehr, Brett B.

    1988-01-01

    The knowledge engineering and rapid prototyping phases of an expert system that does fault handling for a Solid Amine, Water Desorbed CO2 removal assembly for the Environmental Control and Life Support System for space based platforms are addressed. The knowledge acquisition phase for this project was interesting because it could not follow the textbook examples. As a result of this, a variety of methods were used during the knowledge acquisition task. The use of rapid prototyping and the need for a flexible prototype suggested certain types of knowledge representation. By combining various techniques, a representative subset of faults and a method for handling those faults was achieved. The experiences should prove useful for developing future fault handling expert systems under similar constraints.

  12. A dryland ecologist’s mid-career retrospective on LTER and the science-management interface

    USDA-ARS?s Scientific Manuscript database

    My association with the LTER Program has encouraged a multidisciplinary scientific approach emphasizing broad spatial scales and site-based knowledge. It also provides a solid basis from which to link science and management. In my position as a federal research scientist, I do not teach university c...

  13. Bridging the Gap between Experts in Designing Multimedia-Based Instructional Media for Learning

    ERIC Educational Resources Information Center

    Razak, Rafiza Abdul

    2013-01-01

    The research identified and explored the cognitive knowledge among the instructional multimedia design and development experts comprising of multimedia designer, graphic designer, subject-matter expert and instructional designer. A critical need exists for a solid understanding of the factors that influence team decision making and performance in…

  14. The Applicant Based Training Model Setting Conditions for Recruiting Success

    DTIC Science & Technology

    2002-07-01

    the RS XO is another critical 32. function that falls into the scope of their responsibly and requires specific training in marketing and advertising . During...Phase I require a solid working knowledge of marketing and advertising . OpsO: Phase II actions require the OpsO receive advanced training in data

  15. Determining the pH of Mars from the Viking labelled release reabsorption effect

    NASA Technical Reports Server (NTRS)

    Plumb, Robert C.

    1992-01-01

    The acid-base properties and redox potentials of solids are two of the more fundamental chemical parameters characterizing a material. Knowledge of these parameters for martian regolith fines would be of considerable value in determining what specific compounds are present and making judgements on what reactions are possible.

  16. Translating three states of knowledge--discovery, invention, and innovation

    PubMed Central

    2010-01-01

    Background Knowledge Translation (KT) has historically focused on the proper use of knowledge in healthcare delivery. A knowledge base has been created through empirical research and resides in scholarly literature. Some knowledge is amenable to direct application by stakeholders who are engaged during or after the research process, as shown by the Knowledge to Action (KTA) model. Other knowledge requires multiple transformations before achieving utility for end users. For example, conceptual knowledge generated through science or engineering may become embodied as a technology-based invention through development methods. The invention may then be integrated within an innovative device or service through production methods. To what extent is KT relevant to these transformations? How might the KTA model accommodate these additional development and production activities while preserving the KT concepts? Discussion Stakeholders adopt and use knowledge that has perceived utility, such as a solution to a problem. Achieving a technology-based solution involves three methods that generate knowledge in three states, analogous to the three classic states of matter. Research activity generates discoveries that are intangible and highly malleable like a gas; development activity transforms discoveries into inventions that are moderately tangible yet still malleable like a liquid; and production activity transforms inventions into innovations that are tangible and immutable like a solid. The paper demonstrates how the KTA model can accommodate all three types of activity and address all three states of knowledge. Linking the three activities in one model also illustrates the importance of engaging the relevant stakeholders prior to initiating any knowledge-related activities. Summary Science and engineering focused on technology-based devices or services change the state of knowledge through three successive activities. Achieving knowledge implementation requires methods that accommodate these three activities and knowledge states. Accomplishing beneficial societal impacts from technology-based knowledge involves the successful progression through all three activities, and the effective communication of each successive knowledge state to the relevant stakeholders. The KTA model appears suitable for structuring and linking these processes. PMID:20205873

  17. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries

    DOE PAGES

    Zhu, Yizhou; He, Xingfeng; Mo, Yifei

    2015-12-11

    All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less

  18. Part 3. a novel stereocontrolled, in situ, solution- and solid-phase, Aza Michael approach for high-throughput generation of tetrahydroaminoquinoline-derived natural-product-like architectures.

    PubMed

    Prakesch, Michael; Srivastava, Stuti; Leek, Donald M; Arya, Prabhat

    2006-01-01

    With the goal of rapidly accessing tetrahydroquinoline-based natural-product-like polycyclic architectures, herein, we report an unprecedented, in situ, stereocontrolled Aza Michael approach in solution and on the solid phase. The mild reaction conditions required to reach the desired target are highly attractive for the use of this method in library generation. To our knowledge, this approach has not been used before, and it opens a novel route leading to a wide variety of tetrahydroquinoline-derived bridged tricyclic derivatives.

  19. Indirect measurement of the solid/liquid interface using the minimization technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, H.; Chun, M.

    1985-11-01

    The phenomenon of solidification of a flowing fluid in a vertical tube is closely related to the relocation dynamics of molten nuclear fuels in hypothetical core-disruptive accidents of a liquid-metal fast breeder reactor. The knowledge of the transient shape and the position of the liquid/solid interface is of practical importance in analysis of phase change processes. Sparrow and Broadbent directly measured the solid liquid interface via experiments, whereas Viskanta observed the solid/liquid interface motion via a photographic method. In this paper, a new method to predict the transient position of the solid/liquid interface is developed. This method is based onmore » the minimization technique. To use this method one needs the temperature of the wall on which the phase change is to take place. The new technique is useful, in particular, for the case of inward solidification of a flowing fluid in a tube where direct measurement of the solid/liquid interface is not possible, whereas the tube wall temperature measurement is relatively easy.« less

  20. Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber.

    PubMed

    Zhou, Rong; Tang, Pinghua; Chen, Yu; Chen, Shuqing; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2014-01-10

    Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.

  1. [From gene cloning to expressional analysis--practice and experience from educational reform of experimental gene engineering].

    PubMed

    Wu, Yan-Hua; Guo, Bin; Lou, Hui-Ling; Cui, Yu-Liang; Gu, Hui-Juan; Qiao, Shou-Yi

    2012-02-01

    Experimental gene engineering is a laboratory course focusing on the molecular structure, expression pattern and biological function of genes. Providing our students with a solid knowledge base and correct ways to conduct research is very important for high-quality education of genetic engineering. Inspired by recent progresses in this field, we improved the experimental gene engineering course by adding more updated knowledge and technologies and emphasizing on the combination of teaching and research, with the aim of offering our students a good start in their scientific careers.

  2. The nature and pollutant role of solids at the water-sediment interface in combined sewer networks.

    PubMed

    Chebbo, G; Ashley, R; Gromaire, M C

    2003-01-01

    Solids at the water-sediment interface in combined sewers are known to be important for pollution potential during storm washout via CSOs. They have been investigated in several studies, but nonetheless, little is known about the origins, build-up, transport and nature of these solids. From a review of current knowledge it is apparent that whilst there is general agreement that these solids are largely organic and have high polluting potential, their modes of transport and definition are not generally agreed upon. It is possible that there may be several "types" of these solids, defined as either: "near bed solids" or "fluid sediments/dense undercurrents", possibly representing transport modes in flows with different ranges of ambient (dry weather) velocities and with differing sewerage layouts. Current knowledge is presented and new ideas for resolving the uncertainties regarding the nature, movement and effects of this material are outlined.

  3. Analytical thermal model for end-pumped solid-state lasers

    NASA Astrophysics Data System (ADS)

    Cini, L.; Mackenzie, J. I.

    2017-12-01

    Fundamentally power-limited by thermal effects, the design challenge for end-pumped "bulk" solid-state lasers depends upon knowledge of the temperature gradients within the gain medium. We have developed analytical expressions that can be used to model the temperature distribution and thermal-lens power in end-pumped solid-state lasers. Enabled by the inclusion of a temperature-dependent thermal conductivity, applicable from cryogenic to elevated temperatures, typical pumping distributions are explored and the results compared with accepted models. Key insights are gained through these analytical expressions, such as the dependence of the peak temperature rise in function of the boundary thermal conductance to the heat sink. Our generalized expressions provide simple and time-efficient tools for parametric optimization of the heat distribution in the gain medium based upon the material and pumping constraints.

  4. Membranes in Lithium Ion Batteries

    PubMed Central

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  5. Increasing Early Opportunities in Engineering for Advanced Learners in Elementary Classrooms: A Review of Recent Literature

    ERIC Educational Resources Information Center

    Dailey, Debbie; Cotabish, Alicia; Jackson, Nykela

    2018-01-01

    Present and future challenges in our society demand a solid science, technology, engineering, and mathematics (STEM) knowledge base, innovative thinking, and the ability to ask the right questions to generate multiple solutions. To prepare innovators to meet these challenges, we must recognize and develop their talents. This advancement and growth…

  6. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    ERIC Educational Resources Information Center

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  7. The International Computer and Information Literacy Study (ICILS): Main Findings and Implications for Education Policies in Europe

    ERIC Educational Resources Information Center

    European Commission, 2014

    2014-01-01

    The 2013 European Commission Communication on Opening up Education underlined the importance of solid evidence to assess developments and take full advantage of the impact of technology on education, and called for sustained effort and international cooperation to improve our knowledge-base in this area. The International Computer and Information…

  8. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process.more » This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.« less

  9. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    PubMed

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  10. Constraints to 3R construction waste reduction among contractors in Penang

    NASA Astrophysics Data System (ADS)

    Ng, L. S.; Tan, L. W.; Seow, T. W.

    2018-04-01

    Rapid development of construction industry increases construction waste on landfill leading to shorter life span of the landfill. Waste reduction through Reduce, Reuse and Recycle (3R) practice has been encouraged in construction industry towards sustainable waste management since couple of decades ago. However, waste reduction through 3R is still at its infancy in construction industry in Penang, Malaysia. The aim of this paper is to determinate the constraints to construction waste reduction through 3R among contractors in Penang. The findings reported herein is based on feedbacks from 143 construction contractors of grade CIDB G7, G6 and G5 based in Penang, experts from Penang Local Authority, CIDB in Penang and its headquarters, National Solid Waste Management Department, and headquarters of Solid Waste and Public Cleansing Management Corporation (SWCorp). Based on interviews and questionnaire surveys, constraints identified are Time and cost, Contractor’s attitude and low participation, Lack of enforcement law and regulation, Lack of awareness and knowledge, Lack of coordination, and Lack of space. Awareness and knowledge, and enforcement law and regulation are the major barriers which influence others constraints as well. Therefore, these constraints should be emphasized by the authorities in order to improve the implementation of 3R construction waste reduction.

  11. Probabilistic failure assessment with application to solid rocket motors

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Davidson, Barry D.; Moore, Nicholas R.

    1990-01-01

    A quantitative methodology is being developed for assessment of risk of failure of solid rocket motors. This probabilistic methodology employs best available engineering models and available information in a stochastic framework. The framework accounts for incomplete knowledge of governing parameters, intrinsic variability, and failure model specification error. Earlier case studies have been conducted on several failure modes of the Space Shuttle Main Engine. Work in progress on application of this probabilistic approach to large solid rocket boosters such as the Advanced Solid Rocket Motor for the Space Shuttle is described. Failure due to debonding has been selected as the first case study for large solid rocket motors (SRMs) since it accounts for a significant number of historical SRM failures. Impact of incomplete knowledge of governing parameters and failure model specification errors is expected to be important.

  12. Flow Cytometry and Solid Organ Transplantation: A Perfect Match

    PubMed Central

    Maguire, Orla; Tario, Joseph D.; Shanahan, Thomas C.; Wallace, Paul K.; Minderman, Hans

    2015-01-01

    In the field of transplantation, flow cytometry serves a well-established role in pre-transplant crossmatching and monitoring immune reconstitution following hematopoietic stem cell transplantation. The capabilities of flow cytometers have continuously expanded and this combined with more detailed knowledge of the constituents of the immune system, their function and interaction and newly developed reagents to study these parameters have led to additional utility of flow cytometry-based analyses, particularly in the post-transplant setting. This review discusses the impact of flow cytometry on managing alloantigen reactions, monitoring opportunistic infections and graft rejection and gauging immunosuppression in the context of solid organ transplantation. PMID:25296232

  13. Brain-Based Learning, Neuroscience, and Their Impact on One Religious Educator

    ERIC Educational Resources Information Center

    Winings, Kathy

    2011-01-01

    The constellation of religious education courses that are offered in the author's school seek to equip students with the tools and knowledge they need to not only provide a solid understanding of faith for those they will teach but also a passion to seek out profound spiritual growth. Since she teaches most of the religious education courses, the…

  14. Knowledge and understanding of dissolved solids in the Rio Grande–San Acacia, New Mexico, to Fort Quitman, Texas, and plan for future studies and monitoring

    USGS Publications Warehouse

    Moyer, Douglas; Anderholm, Scott K.; Hogan, James F.; Phillips, Fred M.; Hibbs, Barry J.; Witcher, James C.; Matherne, Anne Marie; Falk, Sarah E.

    2013-01-01

    -Focused Hydrogeology Studies at Inflow Sources: Map dissolved-solids concentrations in the Rio Grande and underlying alluvial aquifer; perform hydrogeologic characterization of subsurface areas containing unusually high concentrations of dissolved solids. -Modeling of Dissolved Solids: Develop models to simulate the transport and storage of dissolved solids in both surface-water and groundwater systems.

  15. Physico-chemical foundations underpinning microarray and next-generation sequencing experiments

    PubMed Central

    Harrison, Andrew; Binder, Hans; Buhot, Arnaud; Burden, Conrad J.; Carlon, Enrico; Gibas, Cynthia; Gamble, Lara J.; Halperin, Avraham; Hooyberghs, Jef; Kreil, David P.; Levicky, Rastislav; Noble, Peter A.; Ott, Albrecht; Pettitt, B. Montgomery; Tautz, Diethard; Pozhitkov, Alexander E.

    2013-01-01

    Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized. PMID:23307556

  16. Desorption of Arsenic from Drinking Water Distribution System Solids

    EPA Science Inventory

    Given the limited knowledge regarding the soluble release of arsenic from DWDS solids, the objectives of this research were to: 1) investigate the effect of pH on the dissolution/desorption of arsenic from DWDS solids, and 2) examine the effect of orthophosphate on the soluble re...

  17. Breakthroughs in Composition Instruction Methods without Evidence of Tangible Improvements in Students' Composition: When Will Change Come?

    ERIC Educational Resources Information Center

    Walsh, S. M.

    Throughout the early years of the twentieth century, literacy education was based on the solid understanding of grammar. Yet as early as 1923, empirical data indicated that the link between knowledge of grammar and correct use of English was tenuous at best. Despite formidable evidence, some educators still advocate the use of grammar as a…

  18. Trends in the management of residual municipal solid waste.

    PubMed

    Rada, E C; Istrate, I A; Ragazzi, M

    2009-06-01

    In agreement with European Union directives, the integrated management of municipal solid waste must be developed ensuring a balanced relationship between the streams of selective collection and the one regarding the residual waste. A theoretical scenario is made where the residual municipal solid waste is composed only of non-recyclable fractions. An important aspect concerns the role of the organic fraction as selective collection can significantly decrease its content in the residual waste. This paper focuses on the planning, design and management consequences of this unsteady scenario. The treatments that are considered are: combustion, gasification, pyrolysis, integrated thermal plants, aerobic mechanical-biological treatments, anaerobic mechanical-biological treatments and other types of treatment. The considerations are based on the experience of the authors not only in terms of development of research but also in terms of transfer of the research results to the real scale, and knowledge of the state-of-the-art of the sector.

  19. Knowledge, attitudes, and beliefs that can influence infant feeding practices in American Indian mothers.

    PubMed

    Eckhardt, Cara L; Lutz, Tam; Karanja, Njeri; Jobe, Jared B; Maupomé, Gerardo; Ritenbaugh, Cheryl

    2014-10-01

    The promotion of healthy infant feeding is increasingly recognized as an important obesity-prevention strategy. This is relevant for American Indian populations that exhibit high levels of obesity and low compliance with infant feeding guidelines. The literature examining the knowledge, attitudes, and beliefs surrounding infant feeding within the American Indian population is sparse and focuses primarily on breastfeeding, with limited information on the introduction of solid foods and related practices that can be important in an obesity-prevention context. This research presents descriptive findings from a baseline knowledge, attitudes, and beliefs questionnaire on infant feeding and related behaviors administered to mothers (n=438) from five Northwest American Indian tribes that participated in the Prevention of Toddler Overweight and Teeth Health Study (PTOTS). Enrollment occurred during pregnancy or up to 6 months postpartum. The knowledge, attitudes, and beliefs questionnaire focused on themes of breastfeeding/formula feeding and introducing solid foods, with supplemental questions on physical activity. Knowledge questions were multiple choice or true/false. Attitudes and beliefs were assessed on Likert scales. Descriptive statistics included frequencies and percents and means and standard deviations. Most women knew basic breastfeeding recommendations and facts, but fewer recognized the broader health benefits of breastfeeding (eg, reducing diabetes risk) or knew when to introduce solid foods. Women believed breastfeeding to be healthy and perceived their social networks to agree. Attitudes and beliefs about formula feeding and social support were more ambivalent. This work suggests opportunities to increase the perceived value of breastfeeding to include broader health benefits, increase knowledge about solid foods, and strengthen social support. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  20. Composting of Municipal Solid Wastes in the United States.

    ERIC Educational Resources Information Center

    Breidenbach, Andrew W.

    To gain more comprehensive knowledge about composting as a solid waste management tool and to better assess the limited information available, the Federal solid waste management program, within the U. S. Public Health Service, entered into a joint experimental windrow composting project in 1966 with the Tennessee Valley Authority and the City of…

  1. Solid lubricants

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1991-01-01

    The state of knowledge of solid lubricants is reviewed. The results of research on solid lubricants from the 1940's to the present are presented from a historical perspective. Emphasis is placed largely, but not exclusively, on work performed at NASA Lewis Research Center with a natural focus on aerospace applications. However, because of the generic nature of the research, the information presented in this review is applicable to most areas where solid lubricant technology is useful.

  2. Experimental cocrystal screening and solution based scale-up cocrystallization methods.

    PubMed

    Malamatari, Maria; Ross, Steven A; Douroumis, Dennis; Velaga, Sitaram P

    2017-08-01

    Cocrystals are crystalline single phase materials composed of two or more different molecular and/or ionic compounds generally in a stoichiometric ratio which are neither solvates nor simple salts. If one of the components is an active pharmaceutical ingredient (API), the term pharmaceutical cocrystal is often used. There is a growing interest among drug development scientists in exploring cocrystals, as means to address physicochemical, biopharmaceutical and mechanical properties and expand solid form diversity of the API. Conventionally, coformers are selected based on crystal engineering principles, and the equimolar mixtures of API and coformers are subjected to solution-based crystallization that are commonly employed in polymorph and salt screening. However, the availability of new knowledge on cocrystal phase behaviour in solid state and solutions has spurred the development and implementation of more rational experimental cocrystal screening as well as scale-up methods. This review aims to provide overview of commonly employed solid form screening techniques in drug development with an emphasis on cocrystal screening methodologies. The latest developments in understanding and the use of cocrystal phase diagrams in both screening and solution based scale-up methods are also presented. Final section is devoted to reviewing the state of the art research covering solution based scale-up cocrystallization process for different cocrystals besides more recent continuous crystallization methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  4. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  5. A multiple criteria analysis for household solid waste management in the urban community of Dakar.

    PubMed

    Kapepula, Ka-Mbayu; Colson, Gerard; Sabri, Karim; Thonart, Philippe

    2007-01-01

    Household solid waste management is a severe problem in big cities of developing countries. Mismanaged solid waste dumpsites produce bad sanitary, ecological and economic consequences for the whole population, especially for the poorest urban inhabitants. Dealing with this problem, this paper utilizes field data collected in the urban community of Dakar, in view of ranking nine areas of the city with respect to multiple criteria of nuisance. Nine criteria are built and organized in three families that represent three classical viewpoints: the production of wastes, their collection and their treatment. Thanks to the method PROMETHEE and the software ARGOS, we do a pair-wise comparison of the nine areas, which allows their multiple criteria rankings according to each viewpoint and then globally. Finding the worst and best areas in terms of nuisance for a better waste management in the city is our final purpose, fitting as well as possible the needs of the urban community. Based on field knowledge and on the literature, we suggest applying general and area-specific remedies to the household solid waste problems.

  6. Case based reasoning in criminal intelligence using forensic case data.

    PubMed

    Ribaux, O; Margot, P

    2003-01-01

    A model that is based on the knowledge of experienced investigators in the analysis of serial crime is suggested to bridge a gap between technology and methodology. Its purpose is to provide a solid methodology for the analysis of serial crimes that supports decision making in the deployment of resources, either by guiding proactive policing operations or helping the investigative process. Formalisation has helped to derive a computerised system that efficiently supports the reasoning processes in the analysis of serial crime. This novel approach fully integrates forensic science data.

  7. Fabrication of a saturable absorber WS2 and its mode locking in solid-state laser

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Yu; Zhang, Ling; Tang, Xiao-Ying; Yang, Ying-Ying

    2018-04-01

    We report on a passively mode-locked Nd : LuVO4 laser using a type saturable absorber of tungsten disulfide (WS2) fabricated by chemical vapor deposition method. At the pump power of 3.3 W, 1.18-W average output power of continuous-wave mode-locked laser with optical conversion efficiency of 36% was achieved. To the best of our knowledge, this is the highest output power of passively mode-locked solid-state laser based on WS2. The repetition rate of passively mode-locked pulse was 80 MHz with the pulse energy of 14.8 nJ. Our experimental results show that WS2 is an excellent type of saturable absorber.

  8. Library and Information Professionals as Knowledge Engagement Specialists. Theories, Competencies and Current Educational Possibilities in Accredited Graduate Programmes

    ERIC Educational Resources Information Center

    Prado, Javier Calzada; Marzal, Miguel Angel

    2013-01-01

    Introduction: The role of library and information science professionals as knowledge facilitators is solidly grounded in the profession's theoretical foundations as much as connected with its social relevance. Knowledge science is presented in this paper as a convenient theoretical framework for this mission, and knowledge engagement…

  9. Adoption of Clean Cookstoves after Improved Solid Fuel Stove Programme Exposure: A Cross-Sectional Study in Three Peruvian Andean Regions.

    PubMed

    Wolf, Jennyfer; Mäusezahl, Daniel; Verastegui, Hector; Hartinger, Stella M

    2017-07-08

    This study examined measures of clean cookstove adoption after improved solid fuel stove programmes in three geographically and culturally diverse rural Andean settings and explored factors associated with these measures. A questionnaire was administered to 1200 households on stove use and cooking behaviours including previously defined factors associated with clean cookstove adoption. Logistic multivariable regressions with 16 pre-specified explanatory variables were performed for three outcomes; (1) daily improved solid fuel stove use, (2) use of liquefied petroleum gas stove and (3) traditional stove displacement. Eighty-seven percent of households reported daily improved solid fuel stove use, 51% liquefied petroleum gas stove use and 66% no longer used the traditional cookstove. Variables associated with one or more of the three outcomes are: education, age and civil status of the reporting female, household wealth and size, region, encounters of problems with the improved solid fuel stove, knowledge of somebody able to build an improved solid fuel stove, whether stove parts are obtainable in the community, and subsidy schemes. We conclude that to be successful, improved solid fuel stove programmes need to consider (1) existing household characteristics, (2) the household's need for ready access to maintenance and repair, and (3) improved knowledge at the community level.

  10. Adoption of Clean Cookstoves after Improved Solid Fuel Stove Programme Exposure: A Cross-Sectional Study in Three Peruvian Andean Regions

    PubMed Central

    Wolf, Jennyfer; Mäusezahl, Daniel; Verastegui, Hector; Hartinger, Stella M.

    2017-01-01

    This study examined measures of clean cookstove adoption after improved solid fuel stove programmes in three geographically and culturally diverse rural Andean settings and explored factors associated with these measures. A questionnaire was administered to 1200 households on stove use and cooking behaviours including previously defined factors associated with clean cookstove adoption. Logistic multivariable regressions with 16 pre-specified explanatory variables were performed for three outcomes; (1) daily improved solid fuel stove use, (2) use of liquefied petroleum gas stove and (3) traditional stove displacement. Eighty-seven percent of households reported daily improved solid fuel stove use, 51% liquefied petroleum gas stove use and 66% no longer used the traditional cookstove. Variables associated with one or more of the three outcomes are: education, age and civil status of the reporting female, household wealth and size, region, encounters of problems with the improved solid fuel stove, knowledge of somebody able to build an improved solid fuel stove, whether stove parts are obtainable in the community, and subsidy schemes. We conclude that to be successful, improved solid fuel stove programmes need to consider (1) existing household characteristics, (2) the household’s need for ready access to maintenance and repair, and (3) improved knowledge at the community level. PMID:28698468

  11. A smart telerobotic system driven by monocular vision

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.

    1994-01-01

    A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.

  12. Northeast Artificial Intelligence Consortium (NAIC). Volume 12. Computer Architecture for Very Large Knowledge Bases

    DTIC Science & Technology

    1990-12-01

    data rate to the electronics would be much lower on the average and the data much "richer" in information. Intelligent use of...system bottleneck, a high data rate should be provided by I/O systems. 2. machines with intelligent storage management specially designed for logic...management information processing, surveillance sensors, intelligence data collection and handling, solid state sciences, electromagnetics, and propagation, and electronic reliability/maintainability and compatibility.

  13. Thermostructural responses of carbon phenolics in a restrained thermal growth test

    NASA Technical Reports Server (NTRS)

    Wang, C. Jeff

    1992-01-01

    The thermostructural response of carbon phenolic components in a solid rocket motor (SRM) is a complex process. It involves simultaneous heat and mass transfer along with chemical reactions in a multiphase system with time-dependent material properties and boundary conditions. In contrast to metals, the fracture of fiber-reinforced composites is characterized by the initiation and progression of multiple failures of different modes such as matrix cracks, interfacial debonding, fiber breaks, and delamination. The investigation of thermostructural responses of SRM carbon phenolics is further complicated by different failure modes under static and dynamic load applications. Historically, there have been several types of post-firing anomalies found in the carbon phenolic composites of the Space Shuttle SRM nozzle. Three major failure modes which have been observed on SRM nozzles are pocketing (spallation), ply-lift, and wedge-out. In order to efficiently control these anomalous phenomena, an investigation of fracture mechanisms under NASA/MSFC RSRM (Redesigned Solid Rocket Motor) and SPIP (Solid Propulsion Integrity Program) programs have been conducted following each anomaly. This report reviews the current progress in understanding the effects of the thermostructural behavior of carbon phenolics on the failure mechanisms of the SRM nozzle. A literature search was conducted and a technical bibliography was developed to support consolidation and assimilation of learning from the RSRM and SPIP investigation efforts. Another important objective of this report is to present a knowledge-based design basis for carbon phenolics that combines the analyses of thermochemical decomposition, pore pressure stresses, and thermostructural properties. Possible areas of application of the knowledge-based design include critical material properties development, nozzle component design, and SRM materials control.

  14. An exploration of knowledge, attitudes and advice given by health professionals to parents in Ireland about the introduction of solid foods. A pilot study

    PubMed Central

    2010-01-01

    Background For the purposes of this paper "weaning is defined as the introduction of the first solid foods to infants". Global recommendations by the World Health Organisation (WHO) recommend that all infants be exclusively breast-fed for the first six months of life. No global recommendations have been made for formula fed infants. In Europe it is recommended that weaning foods should be introduced between 18 weeks and 26 weeks regardless of whether infants are breast or formula fed. In the United Kingdom it is recommended that solids be introduced at around six-months for both breast and formula fed infants. In Ireland official guidelines recommend that breast fed infants should be introduced solids at 6 months of age while for formula fed infants the recommendation is for 4 months. The disparity between these global, European, UK and local recommendations may be a source of confusion for parents and health care professional based in Ireland. Emerging evidence suggests that babies in Ireland are given solid foods before the recommended age but there has been little investigation of the weaning advice provided by health professionals. Since community health professionals have routine parent interactions in the pre-weaning and early-weaning period and hence are in a unique position to positively influence parental weaning decisions, this study aimed to explore their knowledge, attitudes and advice practices about weaning. Methods A mixed-methods approach was used for the research, commencing with a multi-disciplinary focus group to guide and develop a questionnaire. Questionnaires were then distributed in a postal survey to General Practitioners (GPs) (n 179), Practice Nurses (PNs) (n 121), Public Health Nurses (PHNs) (n 107) and Community Dieticians (CDs) (n 8). Results The results indicate varying levels of knowledge of official weaning recommendations and a variety of advice practices. CDs and PHNs acknowledged a clear role in providing weaning advice while demonstrating high confidence levels in providing this advice. However, 19% of PNs and 7% of GP respondents did not acknowledge that they have a role in providing weaning advice to parents; even though Health Service Executive (HSE) written literature given to parents states that they should seek information from PNs and GPs. Conclusion Small pockets of misinformation about the introduction of solid foods persist amongst health professionals which may lead to inconsistent advice for parents. Further research is needed. PMID:20409309

  15. Analytical methodologies based on LC-MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-01-01

    In this work, two analytical methodologies based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were developed for quantification of emerging pollutants identified in sewage sludge after a previous wide-scope screening. The target list included 13 emerging contaminants (EC): thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-aminoantipyrine (4-AA), 4-acetyl aminoantipyrine (4-AAA), 4-formyl aminoantipyrine (4-FAA), venlafaxine and benzoylecgonine. The aqueous and solid phases of the sewage sludge were analyzed making use of Solid-Phase Extraction (SPE) and UltraSonic Extraction (USE) for sample treatment, respectively. The methods were validated at three concentration levels: 0.2, 2 and 20 μg L(-1) for the aqueous phase, and 50, 500 and 2000 μg kg(-1) for the solid phase of the sludge. In general, the method was satisfactorily validated, showing good recoveries (70-120%) and precision (RSD < 20%). Regarding the limit of quantification (LOQ), it was below 0.1 μg L(-1) in the aqueous phase and below 50 μg kg(-1) in the solid phase for the majority of the analytes. The method applicability was tested by analysis of samples from a wider study on degradation of emerging pollutants in sewage sludge under anaerobic digestion. The key benefits of these methodologies are: • SPE and USE are appropriate sample procedures to extract selected emerging contaminants from the aqueous phase of the sewage sludge and the solid residue. • LC-MS/MS is highly suitable for determining emerging contaminants in both sludge phases. • Up to our knowledge, the main metabolites of dipyrone had not been studied before in sewage sludge.

  16. Rock-Solid Support: Florida District Weighs Effectiveness of Science Professional Learning

    ERIC Educational Resources Information Center

    Shear, Linda; Penuel, William R.

    2010-01-01

    The best science teachers are not only experts in teaching and knowledgeable about science content, but they are also great at teaching science. They have specialized teaching knowledge, including knowledge of effective pedagogical practices in science, student difficulties with understanding content, and curricular purposes. As a result,…

  17. Teaching Complicated Conceptual Knowledge with Simulation Videos in Foundational Electrical Engineering Courses

    ERIC Educational Resources Information Center

    Chen, Baiyun; Wei, Lei; Li, Huihui

    2016-01-01

    Building a solid foundation of conceptual knowledge is critical for students in electrical engineering. This mixed-method case study explores the use of simulation videos to illustrate complicated conceptual knowledge in foundational communications and signal processing courses. Students found these videos to be very useful for establishing…

  18. Optimized quantum sensing with a single electron spin using real-time adaptive measurements.

    PubMed

    Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  19. Optimized quantum sensing with a single electron spin using real-time adaptive measurements

    NASA Astrophysics Data System (ADS)

    Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.

    2016-03-01

    Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

  20. A contribution to the knowledge of HMX decomposition and application of results. [at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Kraeutle, K. J.

    1980-01-01

    The decomposition of cyclotramethylenetetranitramine (HMX) in the solid and liquid phase was studied by isothermal and nonisothermal heating at atmospheric pressure. Decomposition rates of solid HMX changed with sample size and gaseous environment. Kinetic parameters were obtained from weight loss measurements in the temperature range 229 C - 269 C. These tests also yielded highly porous solid residues. Qualitative aspects of solid and liquid phase decomposition of HMX with additives were also investigated in isothermal and nonisothermal tests.

  1. Ionization behavior of polyphosphoinositides determined via the preparation of pH titration curves using solid-state 31P NMR.

    PubMed

    Graber, Zachary T; Kooijman, Edgar E

    2013-01-01

    Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.

  2. Teaching to Learn and Learning to Teach

    NASA Astrophysics Data System (ADS)

    Bao, Lei

    2010-02-01

    In STEM education, widely accepted teaching goals include not only the development of solid content knowledge but also the development of general scientific reasoning abilities that will enable students to successfully handle open-ended real-world tasks in future careers and design their own experiments to solve scientific, engineering, and social problems. Traditionally, it is often expected that consistent and rigorous content learning will help develop students' general reasoning abilities; however, our research has shown that the content-rich style of STEM education made little impact on the development of students' scientific reasoning abilities. Therefore, how to train teachers who can help students develop both solid content knowledge and adequate scientific reasoning skills has become an important question for educators and researchers. Research has also suggested that inquiry based science instruction can promote scientific reasoning abilities and that the scientific reasoning skills of instructors can also significantly affect their ability to use inquiry methods effectively in science courses. In this talk, I will compare the features of the teacher preparation programs in China and USA and discuss the possible strength and weakness of the education systems and programs in the two countries. Understanding the different education settings and the outcome can help researchers in both countries to learn from each other's success and to avoid known problems. Examples of current research that may foster such knowledge development among researchers from both countries will be discussed. )

  3. Climbing The Knowledge Mountain - The New Solids Processing Design And Management Manual (Presentation)

    EPA Science Inventory

    The USEPA, Water Environment Federation (WEF) and Water Environment Research Foundation (WERF), under a Cooperative Research and Development Agreement (CRADA), are undertaking a massive effort to produce a Solids Processing Design and Management Manual (Manual). The Manual, repr...

  4. Climbing The Knowledge Mountain - The New Solids Processing Design And Management Manual

    EPA Science Inventory

    The USEPA, Water Environment Federation (WEF) and Water Environment Research Foundation (WERF), under a Cooperative Research and Development Agreement (CRADA), are undertaking a massive effort to produce a Solids Processing Design and Management Manual (Manual). The Manual, repr...

  5. Solid-phase organic synthesis of difluoroalkyl entities using a novel fluorinating cleavage strategy: part 1. Linker development: scope and limitations.

    PubMed

    Wiehn, Matthias S; Lindell, Stephen D; Bräse, Stefan

    2009-01-01

    An efficient method to synthesize gem-difluorinated compounds on solid supports is described. The strategy is based on the design of a novel sulfur linker system that enables, to the best of our knowledge for the first time, the release of target structures from the resin under simultaneous fluorination. Starting from an immobilized dithiol, coupling with an excess of aldehyde or ketone furnished dithianes. These can be further functionalized prior to release from the resin using our newly developed fluorinating cleavage conditions. Amide forming reactions, palladium-catalyzed reactions (Heck, Suzuki, and Sonogashira couplings), reductions, alkylations, and olefinations were successfully explored on the linker. The difluorinated target substances were obtained in modest to excellent yields and in high purities.

  6. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. OWLing Clinical Data Repositories With the Ontology Web Language

    PubMed Central

    Pastor, Xavier; Lozano, Esther

    2014-01-01

    Background The health sciences are based upon information. Clinical information is usually stored and managed by physicians with precarious tools, such as spreadsheets. The biomedical domain is more complex than other domains that have adopted information and communication technologies as pervasive business tools. Moreover, medicine continuously changes its corpus of knowledge because of new discoveries and the rearrangements in the relationships among concepts. This scenario makes it especially difficult to offer good tools to answer the professional needs of researchers and constitutes a barrier that needs innovation to discover useful solutions. Objective The objective was to design and implement a framework for the development of clinical data repositories, capable of facing the continuous change in the biomedicine domain and minimizing the technical knowledge required from final users. Methods We combined knowledge management tools and methodologies with relational technology. We present an ontology-based approach that is flexible and efficient for dealing with complexity and change, integrated with a solid relational storage and a Web graphical user interface. Results Onto Clinical Research Forms (OntoCRF) is a framework for the definition, modeling, and instantiation of data repositories. It does not need any database design or programming. All required information to define a new project is explicitly stated in ontologies. Moreover, the user interface is built automatically on the fly as Web pages, whereas data are stored in a generic repository. This allows for immediate deployment and population of the database as well as instant online availability of any modification. Conclusions OntoCRF is a complete framework to build data repositories with a solid relational storage. Driven by ontologies, OntoCRF is more flexible and efficient to deal with complexity and change than traditional systems and does not require very skilled technical people facilitating the engineering of clinical software systems. PMID:25599697

  8. OWLing Clinical Data Repositories With the Ontology Web Language.

    PubMed

    Lozano-Rubí, Raimundo; Pastor, Xavier; Lozano, Esther

    2014-08-01

    The health sciences are based upon information. Clinical information is usually stored and managed by physicians with precarious tools, such as spreadsheets. The biomedical domain is more complex than other domains that have adopted information and communication technologies as pervasive business tools. Moreover, medicine continuously changes its corpus of knowledge because of new discoveries and the rearrangements in the relationships among concepts. This scenario makes it especially difficult to offer good tools to answer the professional needs of researchers and constitutes a barrier that needs innovation to discover useful solutions. The objective was to design and implement a framework for the development of clinical data repositories, capable of facing the continuous change in the biomedicine domain and minimizing the technical knowledge required from final users. We combined knowledge management tools and methodologies with relational technology. We present an ontology-based approach that is flexible and efficient for dealing with complexity and change, integrated with a solid relational storage and a Web graphical user interface. Onto Clinical Research Forms (OntoCRF) is a framework for the definition, modeling, and instantiation of data repositories. It does not need any database design or programming. All required information to define a new project is explicitly stated in ontologies. Moreover, the user interface is built automatically on the fly as Web pages, whereas data are stored in a generic repository. This allows for immediate deployment and population of the database as well as instant online availability of any modification. OntoCRF is a complete framework to build data repositories with a solid relational storage. Driven by ontologies, OntoCRF is more flexible and efficient to deal with complexity and change than traditional systems and does not require very skilled technical people facilitating the engineering of clinical software systems.

  9. Toxicodynamics of Mycotoxins in the Framework of Food Risk Assessment—An In Silico Perspective

    PubMed Central

    Dall’Asta, Chiara

    2018-01-01

    Mycotoxins severely threaten the health of humans and animals. For this reason, many countries have enforced regulations and recommendations to reduce the dietary exposure. However, even though regulatory actions must be based on solid scientific knowledge, many aspects of their toxicological activity are still poorly understood. In particular, deepening knowledge on the primal molecular events triggering the toxic stimulus may be relevant to better understand the mechanisms of action of mycotoxins. The present work presents the use of in silico approaches in studying the mycotoxins toxicodynamics, and discusses how they may contribute in widening the background of knowledge. A particular emphasis has been posed on the methods accounting the molecular initiating events of toxic action. In more details, the key concepts and challenges of mycotoxins toxicology have been introduced. Then, topical case studies have been presented and some possible practical implementations of studying mycotoxins toxicodynamics have been discussed. PMID:29360783

  10. KSC-2009-5882

    NASA Image and Video Library

    2009-10-21

    VANDENBERG AIR FORCE BASE, Calif. - At Space Launch Complex 2 at Vandenberg Air Force Base in California, workers receive the first of three solid rocket boosters for the United Launch Alliance Delta II rocket for launch of NASA's Wide-field Infrared Survey Explorer, or WISE, at the pad. WISE will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects which will be catalogued and provide a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled for Dec. 7. For additional information, visit http://wise.ssl.berkeley.edu. Photo credit: NASA/VAFB

  11. Updated Review of Planetary Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Fischer, G.; Simões, F.; Renno, N.; Zarka, P.

    2008-06-01

    This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955 997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.

  12. Updated Review of Planetary Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Fischer, G.; Simões, F.; Renno, N.; Zarka, P.

    This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955-997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.

  13. Integrating knowledge-based multi-criteria evaluation techniques with GIS for landfill site selection: A case study using AHP

    NASA Astrophysics Data System (ADS)

    Fagbohun, B. J.; Aladejana, O. O.

    2016-09-01

    A major challenge in most growing urban areas of developing countries, without a pre-existing land use plan is the sustainable and efficient management of solid wastes. Siting a landfill is a complicated task because of several environmental regulations. This challenge gives birth to the need to develop efficient strategies for the selection of proper waste disposal sites in accordance with all existing environmental regulations. This paper presents a knowledge-based multi-criteria decision analysis using GIS for the selection of suitable landfill site in Ado-Ekiti, Nigeria. In order to identify suitable sites for landfill, seven factors - land use/cover, geology, river, soil, slope, lineament and roads - were taken into consideration. Each factor was classified and ranked based on prior knowledge about the area and existing guidelines. Weights for each factor were determined through pair-wise comparison using Saaty's 9 point scale and AHP. The integration of factors according to their weights using weighted index overlay analysis revealed that 39.23 km2 within the area was suitable to site a landfill. The resulting suitable area was classified as high suitability covering 6.47 km2 (16.49%), moderate suitability 25.48 km2 (64.95%) and low suitability 7.28 km2 (18.56%) based on their overall weights.

  14. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion

    PubMed Central

    2013-01-01

    Background In solid-state anaerobic digestion (AD) bioprocesses, hydrolytic and acidogenic microbial metabolisms have not yet been clarified. Since these stages are particularly important for the establishment of the biological reaction, better knowledge could optimize the process performances by process parameters adjustment. Results This study demonstrated the effect of total solids (TS) content on microbial fermentation of wheat straw with six different TS contents ranging from wet to dry conditions (10 to 33% TS). Three groups of metabolic behaviors were distinguished based on wheat straw conversion rates with 2,200, 1,600, and 1,400 mmol.kgVS-1 of fermentative products under wet (10 and 14% TS), dry (19 to 28% TS), and highly dry (28 to 33% TS) conditions, respectively. Furthermore, both wet and dry fermentations showed acetic and butyric acid metabolisms, whereas a mainly butyric acid metabolism occurred in highly dry fermentation. Conclusion Substrate conversion was reduced with no changes of the metabolic pathways until a clear limit at 28% TS content, which corresponded to the threshold value of free water content of wheat straw. This study suggested that metabolic pathways present a limit of TS content for high-solid AD. PMID:24261971

  15. SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj

    2013-07-01

    Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the ontology, supports SPARQL queries, allows for modifications based on successive discoveries, and provides an accessible knowledge base on the Web.

  16. MUNICIPAL SOLID WASTE DISPOSAL IN ESTUARIES AND COASTAL MARSHLANDS

    EPA Science Inventory

    This report is a survey of the existing situation with regards to municipal solid waste disposal in the coastal zone. Both the scientific literature and the regulatory community were surveyed to determine the state-of-knowledge of the impact of such disposal on the environment, p...

  17. Image-based metrology of porous tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Robb, Richard A.

    2006-03-01

    Tissue engineering is an interdisciplinary effort aimed at the repair and regeneration of biological tissues through the application and control of cells, porous scaffolds and growth factors. The regeneration of specific tissues guided by tissue analogous substrates is dependent on diverse scaffold architectural indices that can be derived quantitatively from the microCT and microMR images of the scaffolds. However, the randomness of pore-solid distributions in conventional stochastic scaffolds presents unique computational challenges. As a result, image-based characterization of scaffolds has been predominantly qualitative. In this paper, we discuss quantitative image-based techniques that can be used to compute the metrological indices of porous tissue engineering scaffolds. While bulk averaged quantities such as porosity and surface are derived directly from the optimal pore-solid delineations, the spatially distributed geometric indices are derived from the medial axis representations of the pore network. The computational framework proposed (to the best of our knowledge for the first time in tissue engineering) in this paper might have profound implications towards unraveling the symbiotic structure-function relationship of porous tissue engineering scaffolds.

  18. Inverse problems in complex material design: Applications to non-crystalline solids

    NASA Astrophysics Data System (ADS)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  19. A framework for a decision support system for municipal solid waste landfill design.

    PubMed

    Verge, Ashley; Rowe, R Kerry

    2013-12-01

    A decision support system (Landfill Advisor or LFAdvisor) was developed to integrate current knowledge of barrier systems into a computer application to assist in landfill design. The program was developed in Visual Basic and includes an integrated database to store information. LFAdvisor presents the choices available for each liner component (e.g. leachate collection system, geomembrane liner, clay liners) and provides advice on their suitability for different situations related to municipal solid waste landfills (e.g. final cover, base liner, lagoon liner). Unique to LFAdvisor, the service life of each engineered component is estimated based on results from the latest research. LFAdvisor considers the interactions between liner components, operating conditions, and the existing site environment. LFAdvisor can be used in the initial stage of design to give designers a good idea of what liner components will likely be required, while alerting them to issues that are likely to arise. A systems approach is taken to landfill design with the ultimate goal of maximising long-term performance and service life.

  20. Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples.

    PubMed

    Ren, Ji-Yun; Wang, Xiao-Li; Li, Xiao-Li; Wang, Ming-Lin; Zhao, Ru-Song; Lin, Jin-Ming

    2018-02-01

    Covalent organic frameworks (COFs), which are a new type of carbonaceous polymeric material, have attracted great interest because of their large surface area and high chemical and thermal stability. However, to the best of our knowledge, no work has reported the use of magnetic COFs as adsorbents for magnetic solid-phase extraction (MSPE) to enrich and determine environmental pollutants. This work aims to investigate the feasibility of using covalent triazine-based framework (CTF)/Fe 2 O 3 composites as MSPE adsorbents to enrich and analyze perfluorinated compounds (PFCs) at trace levels in water samples. Under the optimal conditions, the method developed exhibited low limits of detection (0.62-1.39 ng·L -1 ), a wide linear range (5-4000 ng L -1 ), good repeatability (1.12-9.71%), and good reproducibility (2.45-7.74%). The new method was successfully used to determine PFCs in actual environmental water samples. MSPE based on CTF/Fe 2 O 3 composites exhibits potential for analysis of PFCs at trace levels in environmental water samples. Graphical abstract Magnetic covalent triazine-based frameworks (CTFs) were used as magnetic solid-phase extraction adsorbents for the sensitive determination of perfluorinated compounds in environmental water samples. PFBA perfluorobutyric acid, PFBS perfluorobutane sulfonate, PFDA perfluorodecanoic acid, PFDoA perfluorododecanoic acid, PFHpA perfluoroheptanoic acid, PFHxA perfluorohexanoic acid, PFHxS perfluorohexane sulfonate, PFNA perfluorononanoic acid, PFOA perfluorooctanoic acid, PFPeA perfluoropentanoic acid, PFUdA Perfluoroundecanoic acid.

  1. Characterization of domestic graywater and graywater solids.

    PubMed

    Sievers, Jan Christian; Londong, Jörg

    2018-03-01

    The knowledge of loads and concentrations is fundamental for the design of graywater treatment units, but the data on the characteristics of graywater and in particular graywater solids are weak. As general design values regarding graywater treatment facilities are not available for Germany, the objective of this article is to elaborate the characteristics of graywater and graywater solids. This paper describes the results of six sampling campaigns carried out on graywater systems in the German cities Berlin, Lübeck and Kiel. All graywater samples were collected proportional to the flow and the graywater solids were gathered separately. The collected data include graywater volumes and characteristics regarding the organic pollution (chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD 5 )) and nutrients (total nitrogen (TN), total phosphorus (TP)). The graywater volume fluctuated depending on the location. The specific average flow was 68 litre per inhabitant per day (L/inh.d). Inhabitant-specific loads of 49.3 gCOD t /inh·d, 28 gBOD 5 /inh.d, 1 gTN t /inh.d and 0.38 gTP t /inh.d (subscript 't' = total) were found. Information about the composition of graywater solids in terms of quantity and quality is seriously lacking. Therefore, graywater solids were examined with respect to organic matter (COD) and nutrients (TN, TP). The contribution of graywater solids with particle sizes over 200 microns in relation to the total inhabitant-specific load was approximately 3-8% depending on the parameter. The qualitative and quantitative characteristics of the investigated graywater fractions may serve as a base for the estimation of design values.

  2. Words matter: Reframing exercise is medicine for the general population to optimize motivation and create sustainable behaviour change.

    PubMed

    Fortier, Michelle; Guérin, Eva; Segar, Michelle L

    2016-11-01

    Exercise is medicine (EIM) is grounded in strong evidence regarding the benefits of physical activity. Despite the contributions of EIM initiatives worldwide, rates of physical inactivity remain alarmingly high. We propose a reframe of EIM for the general population to improve motivation and foster sustainable behaviour change. We draw on a solid knowledge-base to explain the value of broadening the nomenclature to physical activity and of promoting a message of well-being via enjoyable physical activity.

  3. Hannelore Wass as a Teacher.

    PubMed

    Thornton, Gordon

    2015-01-01

    As an educator, Hannelore Wass had a major influence on young professionals who were teaching in the field of thanatology. She influenced new professors by mentoring and providing an exceptional example of a compassionate, competent professional in the fields of thanatology and educational methodology. As a strong advocate for death education for all ages, Hannelore was a supporter of death educators. Her books provided a solid knowledge base in dying, death, and bereavement and thereby helped professionals learn the body of information in thanatology.

  4. Evaluation of Selected Recycling Curricula: Educating the Green Citizen.

    ERIC Educational Resources Information Center

    Boerschig, Sally; De Young, Raymond

    1993-01-01

    Solid waste curricula from various programs around the country were reviewed using eight variables identified as predictors of conservation behavior. Scores demonstrated that solid waste curricula focus mainly on knowledge and include, to a lesser extent, attitude change and action strategies. Lists the 14 programs evaluated in the study. (MDH)

  5. International trends in solid-state lighting : analyses of the article and patent literature.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Jeffrey Yeenien; Huey, Mark C.; Boyack, Kevin W.

    We present an analysis of the literature of solid-state lighting, based on a comprehensive dataset of 35,851 English-language articles and 12,420 U.S. patents published or issued during the years 1977-2004 in the foundational knowledge domain of electroluminescent materials and phenomena. The dataset was created using a complex, iteratively developed search string. The records in the dataset were then partitioned according to: whether they are articles or patents, their publication or issue date, their national or continental origin, whether the active electroluminescent material was inorganic or organic, and which of a number of emergent knowledge sub-domains they aggregate into on themore » basis of bibliographic coupling. From these partitionings, we performed a number of analyses, including: identification of knowledge sub-domains of historical and recent importance, and trends over time of the contributions of various nations and continents to the knowledge domain and its sub-domains. Among the key results: (1) The knowledge domain as a whole has been growing quickly: the average growth rates of the inorganic and organic knowledge sub-domains have been 8%/yr and 25%/yr, respectively, compared to average growth rates less than 5%/yr for English-language articles and U.S. patents in other knowledge domains. The growth rate of the organic knowledge sub-domain is so high that its historical dominance by the inorganic knowledge sub-domain will, at current trajectories, be reversed in the coming decade. (2) Amongst nations, the U.S. is the largest contributor to the overall knowledge domain, but Japan is on a trajectory to become the largest contributor within the coming half-decade. Amongst continents, Asia became the largest contributor during the past half-decade, overwhelmingly so for the organic knowledge sub-domain. (3) The relative contributions to the article and patent datasets differ for the major continents: North America contributing relatively more patents, Europe contributing relatively more articles, and Asia contributing in a more balanced fashion. (4) For the article dataset, the nations that contribute most in quantity also contribute most in breadth, while the nations that contribute less in quantity concentrate their contributions in particular knowledge sub-domains. For the patent dataset, North America and Europe tend to contribute improvements in end-use applications (e.g., in sensing, phototherapy and communications), while Asia tends to contribute improvements at the materials and chip levels. (5) The knowledge sub-domains that emerge from aggregations based on bibliographic coupling are roughly organized, for articles, by the degree of localization of electrons and holes in the material or phenomenon of interest, and for patents, according to both their emphasis on chips, systems or applications, and their emphasis on organic or inorganic materials. (6) The six 'hottest' topics in the article dataset are: spintronics, AlGaN UV LEDs, nanowires, nanophosphors, polyfluorenes and electrophosphorescence. The nine 'hottest' topics in the patent dataset are: OLED encapsulation, active-matrix displays, multicolor OLEDs, thermal transfer for OLED fabrication, ink-jet printed OLEDs, phosphor-converted LEDs, ornamental LED packages, photocuring and phototherapy, and LED retrofitting lamps. A significant caution in interpreting these results is that they are based on English-language articles and U.S. patents, and hence will tend to over-represent the strength of English-speaking nations (particularly the U.S.), and under-represent the strength of non-English-speaking nations (particularly China).« less

  6. Knowledge about HIV in a Community Sample of Urban African Americans in the South.

    PubMed

    Klein, H; Sterk, C E; Elifson, K W

    2016-10-01

    Race and HIV are intertwined in complex ways. African Americans, particularly those residing in the southern United States, are at great risk for contracting and subsequently transmitting HIV. Research on the extent to which members of this population understand the risks associated with engaging in specific behaviors is limited. This paper examines HIV knowledge among at-risk adult African American men and women and the factors associated with levels of HIV knowledge. Based on a conceptual model derived from Social Disorganization Theory and Syndemics Theory, interviews were conducted between 2009 and 2011. Questionnaire-based interviews were conducted with 1,864 respondents from 80 strategically-chosen census block groups in Atlanta, Georgia. An innovative approach to assessing amount of HIV knowledge was implemented, to derive better estimates of the extent of knowledge. Overall, HIV knowledge was low (average=43.5% correct answers). Seven factors were identified as contributing uniquely to having higher levels of knowledge about HIV transmission: (1) younger age, (2) being educated beyond the high school level, (3) being gay, lesbian or bisexual, (4) experiencing sexual abuse during childhood and/or adolescence, (5) drinking alcohol less frequently, (6) knowing a larger number of HIV-infected persons and (7) knowing anyone currently living with "full blown" AIDS. HIV educational and intervention programs targeting at-risk African American adults need to develop effective ways of bolstering a solid understanding of how HIV is/not transmitted. In particular, efforts need to be targeted toward older adults, those with lower levels of educational attainment and persons who are not acquainted with anyone who is HIV-infected.

  7. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.

    PubMed

    Shin, Homin; Schweizer, Kenneth S

    2013-02-28

    We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.

  8. Polymorph selection: the role of nucleation, crystal growth and molecular modeling.

    PubMed

    Erdemir, Deniz; Lee, Alfred Y; Myerson, Allan S

    2007-11-01

    Solution crystallization is an important separation and purification process used in the chemical, pharmaceutical and food industries. The quality of a crystalline product is generally judged by four main criteria: purity, crystal habit, particle size and solid form. Consistent production of the desired polymorph is crucial as the unanticipated emergence of a different crystal form may have severe consequences. Thus, the selection of a solid-state form for a crystalline product is vital and is ultimately based on knowledge of the properties of the other polymorphs. This review discusses the role of nucleation, crystal growth and molecular modeling on polymorphism in molecular crystals. Examples are presented demonstrating how the first two factors can govern the appearance of a particular crystalline form, and how the latter factor can be used as a tool for understanding polymorphism.

  9. Parametric Study of Radiative Cooling of Solid Antihydrogen

    DTIC Science & Technology

    1989-03-01

    knowledge of things academic and otherwise. 0 Abstract - .. . / ’A computer model of a cryogenic system for storing solid antimatter is used to explore the...radiative cooling-power requirements for long-term antimatter storage. If vacuum-chamber pressures as low as 1 torr can be reached, and the rest of the...large set of assumptions is valid, milligram quantities of solid antimatter could be stored indefinitely at 1.5 K using cooling powers of less than a

  10. Learning Difficulties with Solids of Revolution: Classroom Observations

    ERIC Educational Resources Information Center

    Mofolo-Mbokane, Batseba; Engelbrecht, Johann; Harding, Ansie

    2013-01-01

    The study aims to identify areas of difficulty in learning about volumes of solids of revolution (VSOR) at a Further Education and Training college in South Africa. Students' competency is evaluated along five skill factors which refer to knowledge skills required to succeed in performing tasks relating to applications of the definite integral, in…

  11. Instructional Strategies to Promote Student Strategic Thinking When Using SolidWorks

    ERIC Educational Resources Information Center

    Toto, Roxanne; Colledge, Thomas; Frederick, David; Pung, Wik Hung

    2014-01-01

    Reflective of current trends in industry, engineering design professionals are expected to have knowledge of 3D modeling software. Responding to this need, engineering curricula seek to effectively prepare students for the workforce by requiring instruction in the use of 3D parametric solid modeling. Recent literature contains many examples that…

  12. A green emissive amorphous fac-Alq3 solid generated by grinding crystalline blue fac-Alq3 powder.

    PubMed

    Bi, Hai; Chen, Dong; Li, Di; Yuan, Yang; Xia, Dandan; Zhang, Zuolun; Zhang, Hongyu; Wang, Yue

    2011-04-14

    A novel green emissive Alq(3) solid with a facial isomeric form has been obtained by grinding the typical blue luminescent fac-Alq(3) crystalline powder. This is the first report, to the best of our knowledge, that a fac-Alq(3) isomer emits green light.

  13. Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR

    USDA-ARS?s Scientific Manuscript database

    Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...

  14. Single-Specimen Technique to Establish the J-Resistance of Linear Viscoelastic Solids with Constant Poisson's Ratio

    NASA Technical Reports Server (NTRS)

    Gutierrez-Lemini, Danton; McCool, Alex (Technical Monitor)

    2001-01-01

    A method is developed to establish the J-resistance function for an isotropic linear viscoelastic solid of constant Poisson's ratio using the single-specimen technique with constant-rate test data. The method is based on the fact that, for a test specimen of fixed crack size under constant rate, the initiation J-integral may be established from the crack size itself, the actual external load and load-point displacement at growth initiation, and the relaxation modulus of the viscoelastic solid, without knowledge of the complete test record. Since crack size alone, of the required data, would be unknown at each point of the load-vs-load-point displacement curve of a single-specimen test, an expression is derived to estimate it. With it, the physical J-integral at each point of the test record may be established. Because of its basis on single-specimen testing, not only does the method not require the use of multiple specimens with differing initial crack sizes, but avoids the need for tracking crack growth as well.

  15. Knowledge-based and model-based hybrid methodology for comprehensive waste minimization in electroplating plants

    NASA Astrophysics Data System (ADS)

    Luo, Keqin

    1999-11-01

    The electroplating industry of over 10,000 planting plants nationwide is one of the major waste generators in the industry. Large quantities of wastewater, spent solvents, spent process solutions, and sludge are the major wastes generated daily in plants, which costs the industry tremendously for waste treatment and disposal and hinders the further development of the industry. It becomes, therefore, an urgent need for the industry to identify technically most effective and economically most attractive methodologies and technologies to minimize the waste, while the production competitiveness can be still maintained. This dissertation aims at developing a novel WM methodology using artificial intelligence, fuzzy logic, and fundamental knowledge in chemical engineering, and an intelligent decision support tool. The WM methodology consists of two parts: the heuristic knowledge-based qualitative WM decision analysis and support methodology and fundamental knowledge-based quantitative process analysis methodology for waste reduction. In the former, a large number of WM strategies are represented as fuzzy rules. This becomes the main part of the knowledge base in the decision support tool, WMEP-Advisor. In the latter, various first-principles-based process dynamic models are developed. These models can characterize all three major types of operations in an electroplating plant, i.e., cleaning, rinsing, and plating. This development allows us to perform a thorough process analysis on bath efficiency, chemical consumption, wastewater generation, sludge generation, etc. Additional models are developed for quantifying drag-out and evaporation that are critical for waste reduction. The models are validated through numerous industrial experiments in a typical plating line of an industrial partner. The unique contribution of this research is that it is the first time for the electroplating industry to (i) use systematically available WM strategies, (ii) know quantitatively and accurately what is going on in each tank, and (iii) identify all WM opportunities through process improvement. This work has formed a solid foundation for the further development of powerful WM technologies for comprehensive WM in the following decade.

  16. SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration.

    PubMed

    Parro, Víctor; de Diego-Castilla, Graciela; Rodríguez-Manfredi, José A; Rivas, Luis A; Blanco-López, Yolanda; Sebastián, Eduardo; Romeral, Julio; Compostizo, Carlos; Herrero, Pedro L; García-Marín, Adolfo; Moreno-Paz, Mercedes; García-Villadangos, Miriam; Cruz-Gil, Patricia; Peinado, Verónica; Martín-Soler, Javier; Pérez-Mercader, Juan; Gómez-Elvira, Javier

    2011-01-01

    The search for unequivocal signs of life on other planetary bodies is one of the major challenges for astrobiology. The failure to detect organic molecules on the surface of Mars by measuring volatile compounds after sample heating, together with the new knowledge of martian soil chemistry, has prompted the astrobiological community to develop new methods and technologies. Based on protein microarray technology, we have designed and built a series of instruments called SOLID (for "Signs Of LIfe Detector") for automatic in situ detection and identification of substances or analytes from liquid and solid samples (soil, sediments, or powder). Here, we present the SOLID3 instrument, which is able to perform both sandwich and competitive immunoassays and consists of two separate functional units: a Sample Preparation Unit (SPU) for 10 different extractions by ultrasonication and a Sample Analysis Unit (SAU) for fluorescent immunoassays. The SAU consists of five different flow cells, with an antibody microarray in each one (2000 spots). It is also equipped with an exclusive optical package and a charge-coupled device (CCD) for fluorescent detection. We demonstrated the performance of SOLID3 in the detection of a broad range of molecular-sized compounds, which range from peptides and proteins to whole cells and spores, with sensitivities at 1-2 ppb (ng mL⁻¹) for biomolecules and 10⁴ to 10³ spores per milliliter. We report its application in the detection of acidophilic microorganisms in the Río Tinto Mars analogue and report the absence of substantial negative effects on the immunoassay in the presence of 50 mM perchlorate (20 times higher than that found at the Phoenix landing site). Our SOLID instrument concept is an excellent option with which to detect biomolecules because it avoids the high-temperature treatments that may destroy organic matter in the presence of martian oxidants.

  17. Grandmothers' knowledge positively influences maternal knowledge and infant and young child feeding practices.

    PubMed

    Karmacharya, Chandni; Cunningham, Kenda; Choufani, Jowel; Kadiyala, Suneetha

    2017-08-01

    To examine associations between grandmothers' knowledge and infant and young child feeding (IYCF) practices and to test whether the associations are independent of or operate via maternal knowledge. Cross-sectional household survey data from households with a child under 5 years (n 4080). We used multivariate regression analyses, adjusted for child, maternal, grandmother and household characteristics, and district-level clustering, to test associations between grandmothers' knowledge and IYCF practices for children aged 6-24 months living with a grandmother. We used causal mediation to formally test the direct effect of grandmothers' knowledge on IYCF practices v. maternal knowledge mediating these associations. Two hundred and forty rural communities, sixteen districts of Nepal. Children aged 6-24 months (n1399), including those living with grandmothers (n 748). We found that the odds of optimal breast-feeding practices were higher (early breast-feeding initiation: 2·2 times, P=0·002; colostrum feeding: 4·2 times, P<0·001) in households where grandmothers had correct knowledge v. those with incorrect knowledge. The same pattern was found for correct timing of introduction of water (2·6), milk (2·4), semi-solids (3·2), solids (2·9), eggs (2·6) and meat (2·5 times; all P<0·001). For the two pathways we were able to test, mothers' correct knowledge mediated these associations between grandmothers' knowledge and IYCF practices: colostrum feeding (b=10·91, P<0·001) and the introduction of complementary foods (b=5·18, P<0·001). Grandmothers' correct knowledge translated into mothers' correct knowledge and, therefore, optimal IYCF practices. Given grandmothers' influence in childcare, engagement of grandmothers in health and nutrition interventions could improve mothers' knowledge and facilitate better child feeding.

  18. Baculovirus phylogeny and evolution.

    PubMed

    Herniou, Elisabeth A; Jehle, Johannes A

    2007-10-01

    The family Baculoviridae represents one of the largest and most diverse groups of viruses and a unique model for studying the forces driving the evolution and biodiversity of double-stranded DNA viruses with large genomes. With the advent of comparative genomics, the phylogenetic relationships of baculoviruses have been put on solid bases. This, as well as improved bioinformatic approaches, has provided a detailed picture of baculovirus phylogeny and evolution. According to the present knowledge, baculoviruses can be classified into at least four evolutionary lineages: the most ancestral dipteran nucleopolyhedroviruses, the hymenopteran nucleopolyhedroviruses and the lepidopteran nucleopolyhedroviruses and granuloviruses. Despite the growing understanding of baculovirus phylogeny and macro-evolution, our knowledge of the micro-evolutionary processes within baculovirus species and virus populations is still limited. Here we present the state of the art on baculovirus phylogeny and evolution.

  19. Immune microenvironment in colorectal cancer: a new hallmark to change old paradigms.

    PubMed

    de la Cruz-Merino, Luis; Henao Carrasco, Fernando; Vicente Baz, David; Nogales Fernández, Esteban; Reina Zoilo, Juan José; Codes Manuel de Villena, Manuel; Pulido, Enrique Grande

    2011-01-01

    Impact of immune microenvironment in prognosis of solid tumors has been extensively studied in the last few years. Specifically in colorectal carcinoma, increased knowledge of the immune events around these tumors and their relation with clinical outcomes have led to consider immune microenvironment as one of the most important prognostic factors in this disease. In this review we will summarize and update the current knowledge with respect to this intriguing and complex new hallmark of cancer, paying special attention to infiltration by T-infiltrating lymphocytes and their subtypes in colorectal cancer, as well as its eventual clinical translation in terms of long-term prognosis. Finally, we suggest some possible investigational approaches based on combinatorial strategies to trigger and boost immune reaction against tumor cells.

  20. Stopping power in D6Li plasmas for target ignition studies

    NASA Astrophysics Data System (ADS)

    Cortez, Ross J.; Cassibry, Jason T.

    2018-02-01

    The ability to calculate the range of charged fusion products in a target is critical when estimating driver requirements. Additionally, charged particle ranges are a determining factor in the possibility that a burn front will propagate through the surrounding cold fuel layer, igniting the plasma. Performance parameters of the plasma, such as yield, gain, etc therefore rely on accurate knowledge of particle ranges and stopping power over a wide range of densities and temperatures. Further, this knowledge is essential in calculating ignition conditions for a given target design. In this paper, stopping power is calculated for DD and D6Li plasmas using a molecular dynamics based model. Emphasis is placed on solid D6Li which has been recently considered as a fuel option for fusion propulsion systems.

  1. Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy.

    PubMed

    Mananga, Eugène S; Charpentier, Thibault

    2011-07-28

    In this article, we present an alternative expansion scheme called Floquet-Magnus expansion (FME) used to solve a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state nuclear magnetic resonance (NMR) in particular. The commonly used methods to treat theoretical problems in solid-state NMR are the average Hamiltonian theory (AHT) and the Floquet theory (FT), which have been successful for designing sophisticated pulse sequences and understanding of different experiments. To the best of our knowledge, this is the first report of the FME scheme in the context of solid state NMR and we compare this approach with other series expansions. We present a modified FME scheme highlighting the importance of the (time-periodic) boundary conditions. This modified scheme greatly simplifies the calculation of higher order terms and shown to be equivalent to the Floquet theory (single or multimode time-dependence) but allows one to derive the effective Hamiltonian in the Hilbert space. Basic applications of the FME scheme are described and compared to previous treatments based on AHT, FT, and static perturbation theory. We discuss also the convergence aspects of the three schemes (AHT, FT, and FME) and present the relevant references. © 2011 American Institute of Physics

  2. Food allergy knowledge, attitudes and beliefs: Focus groups of parents, physicians and the general public

    PubMed Central

    Gupta, Ruchi S; Kim, Jennifer S; Barnathan, Julia A; Amsden, Laura B; Tummala, Lakshmi S; Holl, Jane L

    2008-01-01

    Background Food allergy prevalence is increasing in US children. Presently, the primary means of preventing potentially fatal reactions are avoidance of allergens, prompt recognition of food allergy reactions, and knowledge about food allergy reaction treatments. Focus groups were held as a preliminary step in the development of validated survey instruments to assess food allergy knowledge, attitudes, and beliefs of parents, physicians, and the general public. Methods Eight focus groups were conducted between January and July of 2006 in the Chicago area with parents of children with food allergy (3 groups), physicians (3 groups), and the general public (2 groups). A constant comparative method was used to identify the emerging themes which were then grouped into key domains of food allergy knowledge, attitudes, and beliefs. Results Parents of children with food allergy had solid fundamental knowledge but had concerns about primary care physicians' knowledge of food allergy, diagnostic approaches, and treatment practices. The considerable impact of children's food allergies on familial quality of life was articulated. Physicians had good basic knowledge of food allergy but differed in their approach to diagnosis and advice about starting solids and breastfeeding. The general public had wide variation in knowledge about food allergy with many misconceptions of key concepts related to prevalence, definition, and triggers of food allergy. Conclusion Appreciable food allergy knowledge gaps exist, especially among physicians and the general public. The quality of life for children with food allergy and their families is significantly affected. PMID:18803842

  3. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    NASA Astrophysics Data System (ADS)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply, economically and ecologically. Based on the knowledge of the screen printing sensor production a complete solid state electrolyte oxygen sensor could be produced using Inkjet technology. First measurements in oxygen environment already show promising results. A defined oxygen concentration could be seen during exposition of the Inkjet sensors in an oxygen environment. The obtained results demonstrate the potential to use the technology development in other applications such as in situ respiratory gas analysis systems for human spaceflight. Further approaches at the Institute of Space Systems include the implementation of Inkjet printed solid state electrolyte sensors for the use as redundant safety sensors for the Institute's hybrid life support test beds including fuel cells and algal photo bioreactor elements.

  4. Methods of Predicting Solid Waste Characteristics.

    ERIC Educational Resources Information Center

    Boyd, Gail B.; Hawkins, Myron B.

    The project summarized by this report involved a preliminary design of a model for estimating and predicting the quantity and composition of solid waste and a determination of its feasibility. The novelty of the prediction model is that it estimates and predicts on the basis of knowledge of materials and quantities before they become a part of the…

  5. Areas and Volumes in Pre-Calculus

    ERIC Educational Resources Information Center

    Jarrett, Joscelyn A.

    2008-01-01

    This article suggests the introduction of the concepts of areas bounded by plane curves and the volumes of solids of revolution in Pre-calculus. It builds on the basic knowledge that students bring to a pre-calculus class, derives a few more formulas, and gives examples of some problems on plane areas and the volumes of solids of revolution that…

  6. The Relationship between Voting Knowledge and Voting Attitudes of Selected Ninth and Tenth Grade Students.

    ERIC Educational Resources Information Center

    Golden, Kathleen

    1985-01-01

    A study showed that the acquisition of voting knowledge in a civics class positively influenced ninth- and tenth-grade students' attitudes toward voting. Teachers should give students a solid foundation concerning the electoral process and encourage students to participate in the political process. (RM)

  7. A NEW QUANTUM MECHANICAL THEORY OF EVOLUTION OF UNIVERSE AND LIFE

    PubMed Central

    Nigam, M C

    1990-01-01

    Based upon the principles of ancient science of Life, which admits both consciousness and matter, a new Quantum Mechanical theory of evolution of universe and life is propounded. The theory advocates: Right from the time, the evolution of universe takes place, life also starts evolving energies and ethereal – consciousness (subtler and real) in anti-electrons, as the complimentary partners. The material body acquires electrons for cordoning of atomic nuclei and displaying its manifestation, in the three spatial dimensions in scale of time. The ethereal consciousness acquires anti electrons for gaining necessary energy for superimposing itself over any of the manifested bodies of equivalent electronic energy and deriving the bliss of materialization. The theory is based upon the solid foundation of the ancient science (ethereal consciousness) laid down by the ancient seekers of knowledge like Kapila and Caraka who interpret many of the riddles of modern science on the frontiers of various disciplines of knowledge. PMID:22556513

  8. Palliative Care Use Among Patients With Solid Cancer Tumors: A National Cancer Data Base Study.

    PubMed

    Osagiede, Osayande; Colibaseanu, Dorin T; Spaulding, Aaron C; Frank, Ryan D; Merchea, Amit; Kelley, Scott R; Uitti, Ryan J; Ailawadhi, Sikander

    2018-07-01

    Palliative care has been increasingly recognized as an important part of cancer care but remains underutilized in patients with solid cancers. There is a current gap in knowledge regarding why palliative care is underutilized nationwide. To identify the factors associated with palliative care use among deceased patients with solid cancer tumors. Using the 2016 National Cancer Data Base, we identified deceased patients (2004-2013) with breast, colon, lung, melanoma, and prostate cancer. Data were described as percentages. Associations between palliative care use and patient, facility, and geographic characteristics were evaluated through multivariate logistic regression. A total of 1 840 111 patients were analyzed; 9.6% received palliative care. Palliative care use was higher in the following patient groups: survival >24 months (17% vs 2%), male (54% vs 46%), higher Charlson-Deyo comorbidity score (16% vs 8%), treatment at designated cancer programs (74% vs 71%), lung cancer (76% vs 28%), higher grade cancer (53% vs 24%), and stage IV cancer (59% vs 13%). Patients who lived in communities with a greater percentage of high school degrees had higher odds of receiving palliative care; Central and Pacific regions of the United States had lower odds of palliative care use than the East Coast. Patients with colon, melanoma, or prostate cancer had lower odds of palliative care than patients with breast cancer, whereas those with lung cancer had higher odds. Palliative care use in solid cancer tumors is variable, with a preference for patients with lung cancer, younger age, known insurance status, and higher educational level.

  9. Ground-Based Aerosol Measurements | Science Inventory ...

    EPA Pesticide Factsheets

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo

  10. Molecular interactions in high conductive gel electrolytes based on low molecular weight gelator.

    PubMed

    Bielejewski, Michał; Łapiński, Andrzej; Demchuk, Oleg

    2017-03-15

    Organic ionic gel (OIG) electrolytes, also known as gel electrolytes or ionogels are one example of modern functional materials with the potential to use in wide range of electrochemical applications. The functionality of OIGs arises from the thermally reversible solidification of electrolytes or ionic liquids and their superior ionic conductivity. To understand and to predict the properties of these systems it is important to get the knowledge about the interactions on molecular level between the solid gelator matrix and the electrolyte solution. This paper reports the spectroscopic studies (FT-IR, UV-Vis and Raman) of the gel electrolyte based on low molecular weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside and solution of quaternary ammonium salt, tetramethylammonium bromide. The solidification process was based on sol-gel technique. Below characteristic temperature, defined as gel to sol phase transition temperature, T gs , the samples were solid-like and showed high conductivity values of the same order as observed for pure liquid electrolytes. The investigations were performed for a OIGs in a wide range of molar concentrations of the electrolyte solution. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Factors influencing household participation in solid waste management (Case study: Waste Bank Malang)

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.

    2018-03-01

    Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.

  12. Computer aided fixture design - A case based approach

    NASA Astrophysics Data System (ADS)

    Tanji, Shekhar; Raiker, Saiesh; Mathew, Arun Tom

    2017-11-01

    Automated fixture design plays important role in process planning and integration of CAD and CAM. An automated fixture setup design system is developed where when fixturing surfaces and points are described allowing modular fixture components to get automatically select for generating fixture units and placed into position with satisfying assembled conditions. In past, various knowledge based system have been developed to implement CAFD in practice. In this paper, to obtain an acceptable automated machining fixture design, a case-based reasoning method with developed retrieval system is proposed. Visual Basic (VB) programming language is used in integrating with SolidWorks API (Application programming interface) module for better retrieval procedure reducing computational time. These properties are incorporated in numerical simulation to determine the best fit for practical use.

  13. Technologies for thermal management of mid-IR Sb-based surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Perez, J.-P.; Laurain, A.; Cerutti, L.; Sagnes, I.; Garnache, A.

    2010-04-01

    In this paper, for the first time to our knowledge, we report and demonstrate the technological steps dedicated to thermal management of antimonide-based surface emitting laser devices grown by molecular beam epitaxy. Key points of the technological process are firstly the bonding of the structure on the SiC host substrate and secondly the GaSb substrate removal to leave the Sb-based membrane. The structure design (etch stop layer, metallic mirror, etc), bonding process (metallic bonding via solid-liquid interdiffusion) and GaSb substrate removal process (selective wet-chemical etchants, etc) are presented. Optical characterizations together with external-cavity VCSEL laser emission at 2.3 µm at room temperature in continuous wave are presented.

  14. Preparation of actinide boride materials via solid-state metathesis reactions and actinide dicarbollide precursors

    NASA Astrophysics Data System (ADS)

    Lupinetti, Anthony J.; Fife, Julie; Garcia, Eduardo; Abney, Kent D.

    2000-07-01

    Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage, long-term storage, and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses.1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200 °C-1000 °C) using molecular and polymeric actinide borane and carborane complexes.

  15. Sol-gel synthesis, phase composition, morphological and structural characterization of Ca10(PO4)6(OH)2: XRD, FTIR, SEM, 3D SEM and solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras

    2016-09-01

    Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.

  16. Computational methods in the development of a knowledge-based system for the prediction of solid catalyst performance.

    PubMed

    Procelewska, Joanna; Galilea, Javier Llamas; Clerc, Frederic; Farrusseng, David; Schüth, Ferdi

    2007-01-01

    The objective of this work is the construction of a correlation between characteristics of heterogeneous catalysts, encoded in a descriptor vector, and their experimentally measured performances in the propene oxidation reaction. In this paper the key issue in the modeling process, namely the selection of adequate input variables, is explored. Several data-driven feature selection strategies were applied in order to obtain an estimate of the differences in variance and information content of various attributes, furthermore to compare their relative importance. Quantitative property activity relationship techniques using probabilistic neural networks have been used for the creation of various semi-empirical models. Finally, a robust classification model, assigning selected attributes of solid compounds as input to an appropriate performance class in the model reaction was obtained. It has been evident that the mathematical support for the primary attributes set proposed by chemists can be highly desirable.

  17. Teaching autonomy: turning the teaching evaluation of the Applied Optics course from impart knowledge to the new intelligent thinking

    NASA Astrophysics Data System (ADS)

    Zhao, Huifu; Chen, Yu; Liu, Dongmei

    2017-08-01

    There is a saying that "The teacher, proselytizes instructs dispels doubt." Traditional teaching methods, constantly let the students learn the knowledge in order to pursue the knowledge of a solid grasp, then assess the teaching result by evaluating of the degree of knowledge and memory. This approach cannot mobilize the enthusiasm of students to learn, and hinders the development of innovative thinking of students. And this assessment results have no practical significance, decoupling from practical application. As we all know, the course of Applied Optics is based on abstract theory. If the same teaching methods using for this course by such a "duck", it is unable to mobilize students' learning initiative, and then students' study results will be affected by passive acceptance of knowledge. How to take the initiative to acquire knowledge in the class to the students, and fully mobilize the initiative of students and to explore the potential of students, finally evaluation contents more research on the practical significance? Scholars continue to innovate teaching methods, as well as teaching evaluation indicators, the best teaching effect to promote the development of students. Therefore, this paper puts forward a set of teaching evaluation model of teaching autonomy. This so-called "autonomous teaching" is that teachers put forward the request or arrange the task and students complete the learning content in the form of a group to discuss learning before the lesson, and to complete the task of the layout, then teachers accept of students' learning achievements and answer questions. Every task is designed to evaluate the effectiveness of teaching. Every lesson should be combined with the progress of science and technology frontier of Applied Optics, let students understand the relationship between research and application in the future, mobilize the students interest in learning, training ability, learn to take the initiative to explore, team cooperation ability. As well, it has practical significance to every evaluation, making the teaching to active learning in teaching, cultivating students' creative potential, deep, solid foundation for the day after learning work.

  18. M ssbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermann, Raphael P

    2017-01-01

    This most comprehensive and unrivaled compendium in the field provides an up-to-date account of the chemistry of solids, nanoparticles and hybrid materials. Following a valuable introductory chapter reviewing important synthesis techniques, the handbook presents a series of contributions by about 150 international leading experts -- the "Who's Who" of solid state science. Clearly structured, in six volumes it collates the knowledge available on solid state chemistry, starting from the synthesis, and modern methods of structure determination. Understanding and measuring the physical properties of bulk solids and the theoretical basis of modern computational treatments of solids are given ample space, asmore » are such modern trends as nanoparticles, surface properties and heterogeneous catalysis. Emphasis is placed throughout not only on the design and structure of solids but also on practical applications of these novel materials in real chemical situations.« less

  19. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  20. Solid Modeling of Crew Exploration Vehicle Structure Concepts for Mass Optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2006-01-01

    Parametric solid and surface models of the crew exploration vehicle (CEV) command module (CM) structure concepts are developed for rapid finite element analyses, structural sizing and estimation of optimal structural mass. The effects of the structural configuration and critical design parameters on the stress distribution are visualized, examined to arrive at an efficient design. The CM structural components consisted of the outer heat shield, inner pressurized crew cabin, ring bulkhead and spars. For this study only the internal cabin pressure load case is considered. Component stress, deflection, margins of safety and mass are used as design goodness criteria. The design scenario is explored by changing the component thickness parameters and materials until an acceptable design is achieved. Aluminum alloy, titanium alloy and an advanced composite material properties are considered for the stress analysis and the results are compared as a part of lessons learned and to build up a structural component sizing knowledge base for the future CEV technology support. This independent structural analysis and the design scenario based optimization process may also facilitate better CM structural definition and rapid prototyping.

  1. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-01-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium’s highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10−4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries. PMID:27307440

  2. Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS

    NASA Astrophysics Data System (ADS)

    Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana

    2016-12-01

    The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34-80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics.

  3. Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS

    PubMed Central

    Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana

    2016-01-01

    The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34–80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics. PMID:28000704

  4. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  5. Boosting Students' Attitudes & Knowledge about Evolution Sets Them up for College Success

    ERIC Educational Resources Information Center

    Carter, B. Elijah; Infanti, Lynn M.; Wiles, Jason R.

    2015-01-01

    Students who enter college with a solid grounding in, and positive attitudes toward, evolutionary science are better prepared for and achieve at higher levels in university-level biology courses. We found highly significant, positive relationships between student knowledge of evolution and attitudes toward evolution, as well as between…

  6. Health hazards associated with solid waste disposal.

    PubMed

    Gaby, W L

    1981-01-01

    The landfilling and disposal of domestic solid waste should be considered as great or greater a public health hazard as raw sewage. Solid waste is toxic and contains a greater variety of pathogenic microorganisms than does sewage sludge. Of all the procedures for solid waste disposal, landfills have and will continue to give rise to serious public health problems of land and water pollution. Although the general public is opposed to landfilling our inept health officials have offered small communities and cities no choice. Small communities do not have the technical knowledge or the funds to initiate alternative procedures. As the volume of solid waste increases each year the magnitude of the health hazards will eventually force public health agencies to implement correct disposal procedures ultimately resulting in recycling.

  7. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    PubMed

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  8. MRI-based assessment of the pineal gland in a large population of children aged 0-5 years and comparison with pineoblastoma: part I, the solid gland.

    PubMed

    Galluzzi, Paolo; de Jong, Marcus C; Sirin, Selma; Maeder, Philippe; Piu, Pietro; Cerase, Alfonso; Monti, Lucia; Brisse, Hervé J; Castelijns, Jonas A; de Graaf, Pim; Goericke, Sophia L

    2016-07-01

    Differentiation between normal solid (non-cystic) pineal glands and pineal pathologies on brain MRI is difficult. The aim of this study was to assess the size of the solid pineal gland in children (0-5 years) and compare the findings with published pineoblastoma cases. We retrospectively analyzed the size (width, height, planimetric area) of solid pineal glands in 184 non-retinoblastoma patients (73 female, 111 male) aged 0-5 years on MRI. The effect of age and gender on gland size was evaluated. Linear regression analysis was performed to analyze the relation between size and age. Ninety-nine percent prediction intervals around the mean were added to construct a normal size range per age, with the upper bound of the predictive interval as the parameter of interest as a cutoff for normalcy. There was no significant interaction of gender and age for all the three pineal gland parameters (width, height, and area). Linear regression analysis gave 99 % upper prediction bounds of 7.9, 4.8, and 25.4 mm(2), respectively, for width, height, and area. The slopes (size increase per month) of each parameter were 0.046, 0.023, and 0.202, respectively. Ninety-three percent (95 % CI 66-100 %) of asymptomatic solid pineoblastomas were larger in size than the 99 % upper bound. This study establishes norms for solid pineal gland size in non-retinoblastoma children aged 0-5 years. Knowledge of the size of the normal pineal gland is helpful for detection of pineal gland abnormalities, particularly pineoblastoma.

  9. Electrospraying of polymer solutions: Study of formulation and process parameters.

    PubMed

    Smeets, Annelies; Clasen, Christian; Van den Mooter, Guy

    2017-10-01

    Over the past decade, electrospraying has proven to be a promising method for the preparation of amorphous solid dispersions, an established formulation strategy to improve the oral bioavailability of poorly soluble drug compounds. Due to the lack of fundamental knowledge concerning adequate single nozzle electrospraying conditions, a trial-and-error approach is currently the only option. The objective of this paper is to study/investigate the influence of the different formulation and process parameters, as well as their interplay, on the formation of a stable cone-jet mode as a prerequisite for a reproducible production of monodisperse micro- and nanoparticles. To this purpose, different polymers commonly used in the formulation of solid dispersions were electrosprayed to map out the workable parameter ranges of the process. The experiments evaluate the importance of the experimental parameters as flow rate, electric potential difference and the distance between the tip of the nozzle and collector. Based on this, the type of solvent and the concentration of the polymer solutions, along with their viscosity and conductivity, were identified as determinative formulation parameters. This information is of utmost importance to rationally design further electrospraying methods for the preparation of amorphous solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PACQUET, E.A.

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less

  11. Magnetic marker monitoring: high resolution real-time tracking of oral solid dosage forms in the gastrointestinal tract.

    PubMed

    Weitschies, Werner; Blume, Henning; Mönnikes, Hubert

    2010-01-01

    Knowledge about the performance of dosage forms in the gastrointestinal tract is essential for the development of new oral delivery systems, as well as for the choice of the optimal formulation technology. Magnetic Marker Monitoring (MMM) is an imaging technology for the investigation of the behaviour of solid oral dosage forms within the gastrointestinal tract, which is based on the labelling of solid dosage forms as a magnetic dipole and determination of the location, orientation and strength of the dipole after oral administration using measurement equipment and localization methods that are established in biomagnetism. MMM enables the investigation of the performance of solid dosage forms in the gastrointestinal tract with a temporal resolution in the range of a few milliseconds and a spatial resolution in 3D in the range of some millimetres. Thereby, MMM provides real-time tracking of dosage forms in the gastrointestinal tract. MMM is also suitable for the determination of dosage form disintegration and for quantitative measurement of in vivo drug release in case of appropriate extended release dosage forms like hydrogel-forming matrix tablets. The combination of MMM with pharmacokinetic measurements (pharmacomagnetography) enables the determination of in vitro-in vivo correlations (IVIC) and the delineation of absorption sites in the gastrointestinal tract. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan

    2015-05-13

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. Finally, these results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less

  13. Transition between morule-like and solid components may occur in solid-predominant adenocarcinoma of the lung: report of 2 cases with EGFR and KRAS mutations.

    PubMed

    Tajima, Shogo; Koda, Kenji

    2015-01-01

    A limited number of pulmonary adenocarcinoma cases with morule-like components have been described to date, and the most frequent histological subtype is papillary-predominant adenocarcinoma. Occasionally, this type of adenocarcinoma is associated with solid-predominant adenocarcinoma. EGFR mutations are predominant in adenocarcinoma with morule-like components, followed by ALK rearrangements. Herein, we present 2 cases of solid-predominant adenocarcinoma with morule-like components harboring either an EGFR or KRAS mutation. This KRAS-mutant case is the first to be associated with morule-like components, to the best of our knowledge. Both cases showed transition between micropapillary and morule-like components. Transition between morule-like and solid components was also observed in both cases. Although a few cases of solid-predominant adenocarcinoma have been shown to harbor morule-like components, this type of transition has not been previously well described. We surmised that the solid components of some EGFR-mutant adenocarcinomas might be derived from morule-like components.

  14. Slow off the Mark: Elementary School Teachers and the Crisis in STEM Education

    ERIC Educational Resources Information Center

    Epstein, Diana; Miller, Raegen T.

    2011-01-01

    Prospective teachers can typically obtain a license to teach elementary school without taking a rigorous college-level STEM class such as calculus, statistics, or chemistry, and without demonstrating a solid grasp of mathematics knowledge, scientific knowledge, or the nature of scientific inquiry. This is not a recipe for ensuring students have…

  15. Academic Libraries and Copyright: Do Librarians Really Have the Required Knowledge?

    ERIC Educational Resources Information Center

    Fernández-Molina, Juan-Carlos; Moraes, João Batista E.; Guimarães, José Augusto C.

    2017-01-01

    A solid professional performance on the part of academic librarians at present calls for adequate knowledge about copyright law, not only for the development of their own tasks without infringing the law, but also to guide and provide pertinent advice for library users (faculty and students). This paper presents the results of an online survey of…

  16. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids

    NASA Astrophysics Data System (ADS)

    Jerzy, MIZERACZYK; Artur, BERENDT

    2018-05-01

    Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).

  17. The need for an international debate in pediatrics about obesity and nutrition.

    PubMed

    de Hoyos-Parra, Ricardo

    2014-01-01

    Non-communicable diseases are at the center of international consultation and there's a general agreement on saying that several issues need to be solved before implementing prevention strategies and intervention programs. A sound knowledge of all the factors involved in the epidemic spread of a disease is the first target that has to be achieved in order to provide governments and policy makers with the best evidence-based conclusions. Present data are still too weak to gather solid decisions. Lack of standardized methods, common definitions or coherence with real life performances results therefore in conclusions that oscillate from one statement to its contrary. From this perspective, pediatricians and general practitioners are of great importance, being the direct link between the scientific community and children, having therefore the possibility to act at the first phases of obesity development, forging the best possible knowledge in order to transform prevention in the best possible cure.

  18. 3D numerical modelling of the propagation of radiative intensity through a X-ray tomographied ligament

    NASA Astrophysics Data System (ADS)

    Le Hardy, David; Badri, Mohd Afeef; Rousseau, Benoit; Chupin, Sylvain; Rochais, Denis; Favennec, Yann

    2017-06-01

    In order to explain the macroscopic radiative behaviour of an open-cell ceramic foam, knowledge of its solid phase distribution in space and the radiative contributions by this solid phase is required. The solid phase in an open-cell ceramic foam is arranged as a porous skeleton, which is itself composed of an interconnected network of ligament. Typically, ligaments being based on the assembly of grains more or less compacted, exhibit an anisotropic geometry with a concave cross section having a lateral size of one hundred microns. Therefore, ligaments are likely to emit, absorb and scatter thermal radiation. This framework explains why experimental investigations at this scale must be developed to extract accurate homogenized radiative properties regardless the shape and size of ligaments. To support this development, a 3D numerical investigation of the radiative intensity propagation through a real world ligament, beforehand scanned by X-Ray micro-tomography, is presented in this paper. The Radiative Transfer Equation (RTE), applied to the resulting meshed volume, is solved by combining Discrete Ordinate Method (DOM) and Streamline upwind Petrov-Garlekin (SUPG) numerical scheme. A particular attention is paid to propose an improved discretization procedure (spatial and angular) based on ordinate parallelization with the aim to reach fast convergence. Towards the end of this article, we present the effects played by the local radiative properties of three ceramic materials (silicon carbide, alumina and zirconia), which are often used for designing open-cell refractory ceramic foams.

  19. Leveraging Research Partnerships to Co-Produce Actionable Science and Build Institutional Capacity

    NASA Astrophysics Data System (ADS)

    Fleming, P.; Chinn, A.; Rufo Hill, J.; Edgerly, J.; Garcia, E.

    2017-12-01

    Seattle Public Utilities (SPU) provides high quality drinking water to 1.4 million people in the greater Seattle area and storm, wastewater and solid waste services to the City of Seattle. SPU's engagement on climate change has evolved significantly over the past 20 years. What began in 1997 as an inquiry into how El Nino may affect water supply has evolved into a broad based ongoing exploration that includes extensive in-house knowledge, capacity and expertise. This presentation will describe SPU's evolution from a funder and consumer of climate research to an active contributor to the development of applied research products, highlighted SPU's changing role in three climate impacts assessment studies. It will describe how SPU has leveraged these studies and partnerships to enhance its knowledge base, build its internal institutional capacity and produce actionable science that it is helping to foster incorporation of climate change into various aspects of utility planning and decision making. It will describe the PUMA Project and how the results from that research effort are being factored into SPU's state mandated Water System Plan.

  20. Measurement of breast-tissue x-ray attenuation by spectral mammography: solid lesions

    NASA Astrophysics Data System (ADS)

    Fredenberg, Erik; Kilburn-Toppin, Fleur; Willsher, Paula; Moa, Elin; Danielsson, Mats; Dance, David R.; Young, Kenneth C.; Wallis, Matthew G.

    2016-04-01

    Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to distinguish between cysts and solid tumours at mammography screening would be highly desirable to reduce recalls, but the development requires knowledge of the x-ray attenuation for cysts and tumours. We have previously measured the attenuation of cyst fluid using photon-counting spectral mammography. Data on x-ray attenuation for solid breast lesions are available in the literature, but cover a relatively wide range, likely caused by natural spread between samples, random measurement errors, and different experimental conditions. In this study, we have adapted a previously developed spectral method to measure the linear attenuation of solid breast lesions. A total of 56 malignant and 5 benign lesions were included in the study. The samples were placed in a holder that allowed for thickness measurement. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The spread in equivalent material thicknesses was relatively large between samples, which is likely to be caused mainly by natural variation and only to a minor extent by random measurement errors and sample inhomogeneity. No significant difference in attenuation was found between benign and malignant solid lesions. The separation between cyst-fluid and tumour attenuation was, however, significant, which suggests it may be possible to distinguish cystic from solid breast lesions, and the results lay the groundwork for a clinical trial. In addition, the study adds a relatively large sample set to the published data and may contribute to a reduction in the overall uncertainty in the literature.

  1. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.

    PubMed

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.

  2. Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation

    PubMed Central

    Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi

    2015-01-01

    Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133

  3. GIS-based approach for optimized siting of municipal solid waste landfill.

    PubMed

    Sumathi, V R; Natesan, Usha; Sarkar, Chinmoy

    2008-11-01

    The exponential rise in the urban population of the developing countries in the past few decades and the resulting accelerated urbanization phenomenon has brought to the fore the necessity to develop environmentally sustainable and efficient waste management systems. Sanitary landfill constitutes one of the primary methods of municipal solid waste disposal. Optimized siting decisions have gained considerable importance in order to ensure minimum damage to the various environmental sub-components as well as reduce the stigma associated with the residents living in its vicinity, thereby enhancing the overall sustainability associated with the life cycle of a landfill. This paper addresses the siting of a new landfill using a multi-criteria decision analysis (MCDA) and overlay analysis using a geographic information system (GIS). The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including geology, water supply resources, land use, sensitive sites, air quality and groundwater quality. Weightings were assigned to each criterion depending upon their relative importance and ratings in accordance with the relative magnitude of impact. The results from testing the system using different sites show the effectiveness of the system in the selection process.

  4. Influence of the anion nature and alkyl substituents in the behavior of ionic liquids derived from phenylpyridines

    NASA Astrophysics Data System (ADS)

    Dreyse, Paulina; Alarcón, Antonia; Galdámez, Antonio; González, Iván; Cortés-Arriagada, Diego; Castillo, Francisco; Mella, Andy

    2018-02-01

    Quaternary alkyl 2-phenylpyridinium and 2-(2,4-difluorophenyl)pyridinium amines with iodide, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions have been fully characterized by 1H NMR, FT-IR and MALDI mass spectroscopic methods and studied by quantum chemistry calculations. The compounds with bis(trifluoromethylsulfonyl)imide anion can be classified as ionic liquids, because they melt at room temperature. The quaternary amines with iodide and hexafluorophosphate anions are solid at 25 °C. The X-ray diffraction characterization of the 2-(2,4-difluorophenyl)-1-methylphenylpyridinium hexafluorophosphate and 1-ethyl-2-(2,4-difluorophenyl)phenylpyridinium hexafluorophosphate show an extensive series of Csbnd H⋯F, Csbnd F⋯π and Psbnd F⋯π intermolecular interactions, which give rise to a supramolecular network. The relationship between the solid-state structures and the melting points is discussed by the evaluation of the thermal behavior based on experimental data from Differential Scanning Calorimetry (DSC) studies, and also using the analysis of the ion pairs binding energies. These new compounds based on phenylpyridine allow us to grow the diversity of ionic liquids and their crystalline salts, increasing the knowledge about the chemical and physical properties of these ionic species.

  5. The effect of complex black carbon microphysics on the determination of the optical properties of brown carbon

    NASA Astrophysics Data System (ADS)

    Liu, Dantong; Taylor, Jonathan W.; Young, Dominque E.; Flynn, Michael J.; Coe, Hugh; Allan, James D.

    2015-01-01

    of the impacts of brown carbon (BrC) requires accurate determination of its physical properties, but a model must be invoked to derive these from instrument data. Ambient measurements were made in London at a site influenced by traffic and solid fuel (principally wood) burning, apportioned by single particle soot photometer data and optical properties measured using multiwavelength photoacoustic spectroscopy. Two models were applied: a commonly used Mie model treating the particles as single-coated spheres and a Rayleigh-Debye-Gans approximation treating them as aggregates of smaller-coated monomers. The derived solid fuel BrC parameters at 405 nm were found to be highly sensitive to the model treatment, with a mass absorption cross section ranging from 0.47 to 1.81 m2/g and imaginary refractive index from 0.013 to 0.062. This demonstrates that a detailed knowledge of particle morphology must be obtained and invoked to accurately parameterize BrC properties based on aerosol phase measurements.

  6. Effect of moisture content on the flowability of crushed ores

    NASA Astrophysics Data System (ADS)

    Cabrejos, Francisco

    2017-06-01

    In many mining and industrial processes where large quantities of non-degrading bulk materials such as crushed ores are handled, silos, hoppers, stockpiles and chutes are widely used because they are economical and reliable (if properly designed and operated). However, they are not free of trouble and may experience flow problems such as arching, ratholing, erratic flow, limited storage capacity, limited discharge flow rate, caking, segregation and/or flooding. Moisture content and fine particles significantly affect the flowability of most ores, increasing their cohesive strength and turning them more prone to these problems. The purpose of this article is to highlight a proven, scientific method that can be utilized to ensure reliable storage, flow and discharge of bulk solids in these equipment based on Jenike's flow-of-solids theory and laboratory testing. Knowledge of the flow properties of the material handled provides a design basis to ensure mass flow, avoid arching and prevent the formation of "ratholes". The effect of an increase in water content of the ore is discussed with experimental results.

  7. Application of a theoretical framework to foster a cardiac-diabetes self-management programme.

    PubMed

    Wu, C-J Jo; Chang, A M

    2014-09-01

    This paper analyses and illustrates the application of Bandura's self-efficacy construct to an innovative self-management programme for patients with both type 2 diabetes and coronary heart disease. Using theory as a framework for any health intervention provides a solid and valid foundation for aspects of planning and delivering such an intervention; however, it is reported that many health behaviour intervention programmes are not based upon theory and are consequently limited in their applicability to different populations. The cardiac-diabetes self-management programme has been specifically developed for patients with dual conditions with the strategies for delivering the programme based upon Bandura's self-efficacy theory. This patient group is at greater risk of negative health outcomes than that with a single chronic condition and therefore requires appropriate intervention programmes with solid theoretical foundations that can address the complexity of care required. The cardiac-diabetes self-management programme has been developed incorporating theory, evidence and practical strategies. This paper provides explicit knowledge of the theoretical basis and components of a cardiac-diabetes self-management programme. Such detail enhances the ability to replicate or adopt the intervention in similar or differing populations and/or cultural contexts as it provides in-depth understanding of each element within the intervention. Knowledge of the concepts alone is not sufficient to deliver a successful health programme. Supporting patients to master skills of self-care is essential in order for patients to successfully manage two complex, chronic illnesses. Valuable information has been provided to close the theory-practice gap for more consistent health outcomes, engaging with patients for promoting holistic care within organizational and cultural contexts. © 2014 International Council of Nurses.

  8. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A.; Rödel, J.

    2017-12-01

    We present a critical review that encompasses the fundamentals and state-of-the-art knowledge of barium titanate-based piezoelectrics. First, the essential crystallography, thermodynamic relations, and concepts necessary to understand piezoelectricity and ferroelectricity in barium titanate are discussed. Strategies to optimize piezoelectric properties through microstructure control and chemical modification are also introduced. Thereafter, we systematically review the synthesis, microstructure, and phase diagrams of barium titanate-based piezoelectrics and provide a detailed compilation of their functional and mechanical properties. The most salient materials treated include the (Ba,Ca)(Zr,Ti)O3, (Ba,Ca)(Sn,Ti)O3, and (Ba,Ca)(Hf,Ti)O3 solid solution systems. The technological relevance of barium titanate-based piezoelectrics is also discussed and some potential market indicators are outlined. Finally, perspectives on productive lines of future research and promising areas for the applications of these materials are presented.

  9. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Solid and hazardous waste exclusions (40 CFR section 261.4) updated as of July 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    This module explains each waste exclusion and its scope, so one can apply this knowledge in determining wheather a given waste is or is not regulated under RCRA Subtitle C. It cites the regulatory section for exclusions and identifies materials that are not solid wastes and solid wastes that are not hazardous wastes. It locates the manufacturing process unit exclusion and identifies the sample and treatability study exclusions and their applicability. It outlines and specifies the conditions for meeting the exclusions for household wastes and mixtures of domestic sewage.

  10. Efficacy and Acceptability of an Internet Platform to Improve the Learning of Nutritional Knowledge in Children: The ETIOBE Mates

    ERIC Educational Resources Information Center

    Banos, R. M.; Cebolla, A.; Oliver, E.; Alcaniz, M.; Botella, C.

    2013-01-01

    Possessing sufficient nutritional knowledge is a necessary component in the prevention and treatment of obesity. A solid understanding of nutrition can help people make appropriate food selections and can also help correct irrational ideas or myths people may believe about food. It is a challenge to provide this information to children in ways…

  11. An Action Research in Young Children (3-5) with Activities on Solid Waste Management in Greece: An Attempt for Assessment.

    ERIC Educational Resources Information Center

    Apanomeritaki, Olga

    This action research project sought to increase the waste management and recycling knowledge among 20 children age 4 and 5 years enrolled in a preschool program in Thessaloniki, Greece. A structured interview was developed to assess the children's pre-intervention knowledge of waste management and recycling. It indicated that most children knew…

  12. Application of Solid-State NMR to Reveal Structural Differences in Cefazolin Sodium Pentahydrate from Different Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Wei D.; Zou, Wen-Bo; Qian, Jian-Qin; Hu, Chang-Qin

    2018-04-01

    The solid form of an active pharmaceutical ingredient is important when developing a new chemical entity. A solid understanding of the crystal structure and morphology that affect the mechanical and physical characteristics of pharmaceutical powders determines the manufacturing process. Solid-state NMR, thermogravimetric analysis, X-ray diffraction, and Fourier-transform infrared spectroscopy were combined with theoretical calculation to investigate different crystal packings of α-cefazolin sodium from three different vendors and conformational polymorphism was identified to exist in the α-cefazolin sodium. Marginal differences observed among CEZ-Na pentahydrate 1, 2, and 3 were speculated as the proportion of conformation 2. Understanding the differences in the polymorphic structure of α-cefazolin sodium may help with making modifications to incorporate new knowledge with a product’s development.

  13. A review of lithium and non-lithium based solid state batteries

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam

    2015-05-01

    Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.

  14. Predictive model to describe water migration in cellular solid foods during storage.

    PubMed

    Voogt, Juliën A; Hirte, Anita; Meinders, Marcel B J

    2011-11-01

    Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Water migration in cellular solid foods involves migration through both the air cells and the solid matrix. For systems in which the water migration distance is large compared with the cell wall thickness of the solid matrix, the overall water flux through the system is dominated by the flux through the air. For these systems, water migration can be approximated well by a Fickian diffusion model. The effective diffusion coefficient can be expressed in terms of the material properties of the solid matrix (i.e. the density, sorption isotherm and diffusion coefficient of water in the solid matrix) and the morphological properties of the cellular structure (i.e. water vapour permeability and volume fraction of the solid matrix). The water vapour permeability is estimated from finite element method modelling using a simplified model for the cellular structure. It is shown that experimentally observed dynamical water profiles of bread rolls that differ in crust permeability are predicted well by the Fickian diffusion model. Copyright © 2011 Society of Chemical Industry.

  15. A high-capacitance flexible solid-state supercapacitor based on polyaniline and Metal-Organic Framework (UiO-66) composites

    NASA Astrophysics Data System (ADS)

    Shao, Liang; Wang, Qian; Ma, Zhonglei; Ji, Zhanyou; Wang, Xiaoying; Song, Doudou; Liu, Yuguo; Wang, Ni

    2018-03-01

    Metal-Organic Frameworks (MOFs) attract increasing attention in the field of energy storage, however, poor conductivity in most MOFs largely hinders their electrical properties. In this work, an effective strategy is developed to make the polyaniline (PANI) molecular chains grow in the pores of UiO-66 as one of the MOFs (labeled as PANI/UiO-66) to form a fixed interpenetrating network structure by using the highly stable porous MOFs, through a variety of synergistic effects to enhance the conductivity and electrochemical properties. Moreover, the design and analysis about PANI/UiO-66 is reported for the first time to our knowledge. In addition, PANI/UiO-66 exhibits an extraordinary capacitance of 1015 F g-1 at 1 A g-1 by electrochemical test. At the same time, the symmetric flexible solid-state supercapacitors is also assembled and tested. The resultant supercapacitor shows a favorable specific capacitance of 647 F g-1 at 1 A g-1 and a high cycling stability (91% capacitance retention after 5000 cycles). The bending test indicates that the obtained supercapacitor is flexible and its performance is only decreased 10% after 800 bending cycles with a bending angle of 180. This flexible solid-state supercapacitor shows great potential in energy storage device.

  16. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria.

    PubMed

    Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir

    2017-11-01

    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.

    PubMed

    Sills, Deborah L; Gossett, James M

    2012-04-01

    Fourier transform infrared, attenuated total reflectance (FTIR-ATR) spectroscopy, combined with partial least squares (PLS) regression, accurately predicted solubilization of plant cell wall constituents and NaOH consumption through pretreatment, and overall sugar productions from combined pretreatment and enzymatic hydrolysis. PLS regression models were constructed by correlating FTIR spectra of six raw biomasses (two switchgrass cultivars, big bluestem grass, a low-impact, high-diversity mixture of prairie biomasses, mixed hardwood, and corn stover), plus alkali loading in pretreatment, to nine dependent variables: glucose, xylose, lignin, and total solids solubilized in pretreatment; NaOH consumed in pretreatment; and overall glucose and xylose conversions and yields from combined pretreatment and enzymatic hydrolysis. PLS models predicted the dependent variables with the following values of coefficient of determination for cross-validation (Q²): 0.86 for glucose, 0.90 for xylose, 0.79 for lignin, and 0.85 for total solids solubilized in pretreatment; 0.83 for alkali consumption; 0.93 for glucose conversion, 0.94 for xylose conversion, and 0.88 for glucose and xylose yields. The sugar yield models are noteworthy for their ability to predict overall saccharification through combined pretreatment and enzymatic hydrolysis per mass dry untreated solids without a priori knowledge of the composition of solids. All wavenumbers with significant variable-important-for-projection (VIP) scores have been attributed to chemical features of lignocellulose, demonstrating the models were based on real chemical information. These models suggest that PLS regression can be applied to FTIR-ATR spectra of raw biomasses to rapidly predict effects of pretreatment on solids and on subsequent enzymatic hydrolysis. Copyright © 2011 Wiley Periodicals, Inc.

  18. Information Theory and the Earth's Density Distribution

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1979-01-01

    An argument for using the information theory approach as an inference technique in solid earth geophysics. A spherically symmetric density distribution is derived as an example of the method. A simple model of the earth plus knowledge of its mass and moment of inertia lead to a density distribution which was surprisingly close to the optimum distribution. Future directions for the information theory approach in solid earth geophysics as well as its strengths and weaknesses are discussed.

  19. Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids

    DTIC Science & Technology

    1977-01-01

    topography of the state of knowledge on the thermal expansion of nonmetallic solids. We believe there is also much food for reflec- West Lafayette...34 Lithium Silicates ......... 713 209 Magnesium Metasilicate MgSiO. .. ......... 715 210 Magnesium Orthosilicate Mg2 SiO . . . . . . . . . . . . 718 211...Antiferromagnetism of Praseodymium," Phys. Rev. Letters, 12(20), 553-5, 1964. 66. Goode, J.M., "Phase Transition Temperature of Polonium ,"J. Chem. Phys., 26(5), 1269

  20. Shall we upgrade one-dimensional secondary settler models used in WWTP simulators? - An assessment of model structure uncertainty and its propagation.

    PubMed

    Plósz, Benedek Gy; De Clercq, Jeriffa; Nopens, Ingmar; Benedetti, Lorenzo; Vanrolleghem, Peter A

    2011-01-01

    In WWTP models, the accurate assessment of solids inventory in bioreactors equipped with solid-liquid separators, mostly described using one-dimensional (1-D) secondary settling tank (SST) models, is the most fundamental requirement of any calibration procedure. Scientific knowledge on characterising particulate organics in wastewater and on bacteria growth is well-established, whereas 1-D SST models and their impact on biomass concentration predictions are still poorly understood. A rigorous assessment of two 1-DSST models is thus presented: one based on hyperbolic (the widely used Takács-model) and one based on parabolic (the more recently presented Plósz-model) partial differential equations. The former model, using numerical approximation to yield realistic behaviour, is currently the most widely used by wastewater treatment process modellers. The latter is a convection-dispersion model that is solved in a numerically sound way. First, the explicit dispersion in the convection-dispersion model and the numerical dispersion for both SST models are calculated. Second, simulation results of effluent suspended solids concentration (XTSS,Eff), sludge recirculation stream (XTSS,RAS) and sludge blanket height (SBH) are used to demonstrate the distinct behaviour of the models. A thorough scenario analysis is carried out using SST feed flow rate, solids concentration, and overflow rate as degrees of freedom, spanning a broad loading spectrum. A comparison between the measurements and the simulation results demonstrates a considerably improved 1-D model realism using the convection-dispersion model in terms of SBH, XTSS,RAS and XTSS,Eff. Third, to assess the propagation of uncertainty derived from settler model structure to the biokinetic model, the impact of the SST model as sub-model in a plant-wide model on the general model performance is evaluated. A long-term simulation of a bulking event is conducted that spans temperature evolution throughout a summer/winter sequence. The model prediction in terms of nitrogen removal, solids inventory in the bioreactors and solids retention time as a function of the solids settling behaviour is investigated. It is found that the settler behaviour, simulated by the hyperbolic model, can introduce significant errors into the approximation of the solids retention time and thus solids inventory of the system. We demonstrate that these impacts can potentially cause deterioration of the predictive power of the biokinetic model, evidenced by an evaluation of the system's nitrogen removal efficiency. The convection-dispersion model exhibits superior behaviour, and the use of this type of model thus is highly recommended, especially bearing in mind future challenges, e.g., the explicit representation of uncertainty in WWTP models.

  1. Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal

    DOEpatents

    Sheldon, Ray W.

    2001-01-01

    The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

  2. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.

    2018-06-01

    Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower lineshapes, as opposed to emission spectroscopy which requires higher plasma temperatures to be able to detect thermally excited emission. Improvements in laser and detection systems and spectroscopic techniques have allowed for isotopic measurements to be carried out at standoff distances under ambient atmospheric conditions, which have expanded the applicability of optical spectroscopy-based isotopic measurements to a variety of scientific fields. These technological advances offer an in-situ measurement capability that was previously not available. This review will focus on isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing knowledge/technological gaps identified from the current literature and suggestions for the future work.

  3. Magnetic Excitations and Geometric Confinement; Theory and simulations

    NASA Astrophysics Data System (ADS)

    Wysin, Gary Matthew

    2015-12-01

    In this book, author Gary Wysin provides an overview of model systems and their behaviour and effects, and is intended for advanced students and researchers in physics, chemistry and engineering interested in confined magnetics. It is also suitable as an auxiliary text in a class on magnetism or solid state physics. Previous physics knowledge is expected, along with some basic knowledge of classical electromagnetism and electromagnetic waves for the latter chapters.

  4. Complete coverage and covering completely: Breast feeding and complementary feeding: Knowledge, attitude, and practices of mothers.

    PubMed

    Jain, Sunil; Thapar, R K; Gupta, R K

    2018-01-01

    Knowing current trends for timely comprehensive action for health promotion practices is an important prerequisite for medical practitioners and policy makers. A survey of mothers at a Tertiary Care Hospital in central India. On the knowledge front >83.75% of the mothers studied showed good knowledge about breastfeeding and complementary feeding. Similar, but not as encouraging, were the results about attitude, with 76.25% of mothers having a positive attitude. The results of the practices part were varied. The WHO indicators assessed were 'early initiation of breastfeeding' (68.75%), 'exclusive breastfeeding under 6 months' (85%) (however exclusive breast feeding for first 6 months was carried out by only 36.25%), 'introduction of solid, semi-solid or soft foods' (48.75%), 'continued breastfeeding at 1 year' (63.75%) and 'continued breastfeeding at 2 years' (6.25%). There is a discrepancy between knowledge and practices. The exclusive breast feeding rates are far from the ideal and there is a decline of continued breast feeding beyond 15 months. This calls for sustained efforts with the aim - 'cover all and cover completely'. The ideal WHO indicator for exclusive breast feeding should be 'exclusive breastfeeding for first 6 months' which will provide information about the completeness of this ideal practice.

  5. On the Fracture Toughness and Stable Crack Growth in Shape Memory Alloys Under Combined Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Jape, Sameer Sanjay

    Advanced multifunctional materials such as shape memory alloys (SMAs) offer unprecedented improvement over conventional materials when utilized as high power output solid-state actuators in a plethora of engineering applications, viz. aerospace, automotive, oil and gas exploration, etc., replacing complex multi-component assemblies with compact single-piece adaptive components. These potential applications stem from the material's ability to produce large recoverable actuation strains when subjected to combined thermomechanical loads, via a diffusionless solid-to-solid phase transition between high-temperature cubic austenite and low-temperature monoclinic martensite crystalline phases. To ensure reliable design, functioning and durability of SMA-based actuators, it is imperative to develop a thorough scientific knowledge base and understanding about their fracture properties i.e. crack-initiation and growth during thermal actuation, vis-a-vis the phase transformation metrics (i.e. transformation strains, hysteresis, and temperatures, critical stresses for phase transformation, etc.) and microstructural features (grain size, precipitates, and texture). Systematic experimental and analytical investigation of SMA fracture response based on known theories and methodologies is posed with significant challenges due to the inherent complexity in SMA thermomechanical constitutive response arising out of the shape memory and pseudoelastic effects, martensite detwinning and variant reorientation, thermomechanical coupling, and transformation induced plasticity (TRIP). In this study, a numerical analysis is presented that addresses the fundamental need to study fracture in SMAs in the presence of aforementioned complexities. Finite element modeling with an energetics based fracture toughness criterion and SMA thermomechanical behavior with nonlinearities from thermomechanical coupling and TRIP was conducted. A specific analysis of a prototype boundary value fracture problem yielded results similar to those obtained experimentally, viz. stable crack growth with transformation toughening, dependence of failure cycle on bias load and catastrophic failure during cooling, and are explained using classical fracture mechanics theories. Influence of TRIP as a monotonically accumulating irrecoverable plastic strain on the crack-tip mechanical fields in case of stationary and advancing cracks is also investigated using the same computational tools. Thermomechanical coupling in shape memory alloys, which is an important factor when utilized as solid-state actuators manifests itself through the generation and absorption of latent of transformation and leads to non-uniform temperature distribution. The effect of this coupling vis-a-vis the mechanics of static and advancing cracks is also analyzed using the energetics based approach.

  6. Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy.

    PubMed

    Kawata, Yasuo; Arimura, Hidetaka; Ikushima, Koujirou; Jin, Ze; Morita, Kento; Tokunaga, Chiaki; Yabu-Uchi, Hidetake; Shioyama, Yoshiyuki; Sasaki, Tomonari; Honda, Hiroshi; Sasaki, Masayuki

    2017-10-01

    The aim of this study was to investigate the impact of pixel-based machine learning (ML) techniques, i.e., fuzzy-c-means clustering method (FCM), and the artificial neural network (ANN) and support vector machine (SVM), on an automated framework for delineation of gross tumor volume (GTV) regions of lung cancer for stereotactic body radiation therapy. The morphological and metabolic features for GTV regions, which were determined based on the knowledge of radiation oncologists, were fed on a pixel-by-pixel basis into the respective FCM, ANN, and SVM ML techniques. Then, the ML techniques were incorporated into the automated delineation framework of GTVs followed by an optimum contour selection (OCS) method, which we proposed in a previous study. The three-ML-based frameworks were evaluated for 16 lung cancer cases (six solid, four ground glass opacity (GGO), six part-solid GGO) with the datasets of planning computed tomography (CT) and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images using the three-dimensional Dice similarity coefficient (DSC). DSC denotes the degree of region similarity between the GTVs contoured by radiation oncologists and those estimated using the automated framework. The FCM-based framework achieved the highest DSCs of 0.79±0.06, whereas DSCs of the ANN-based and SVM-based frameworks were 0.76±0.14 and 0.73±0.14, respectively. The FCM-based framework provided the highest segmentation accuracy and precision without a learning process (lowest calculation cost). Therefore, the FCM-based framework can be useful for delineation of tumor regions in practical treatment planning. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Hyperfunctioning solid/trabecular follicular carcinoma of the thyroid gland.

    PubMed

    Giovanella, Luca; Fasolini, Fabrizio; Suriano, Sergio; Mazzucchelli, Luca

    2010-01-01

    A 68-year-old woman with solid/trabecular follicular thyroid carcinoma inside of an autonomously functioning thyroid nodule is described in this paper. The patient was referred to our clinic for swelling of the neck and an increased pulse rate. Ultrasonography showed a slightly hypoechoic nodule in the right lobe of the thyroid. Despite suppressed TSH levels, the (99m)Tc-pertechnetate scan showed a hot area corresponding to the nodule with a suppressed uptake in the remaining thyroid tissue. Histopathological examination of the nodule revealed a solid/trabecular follicular thyroid carcinoma. To the best of our knowledge, this is the first case of hyperfunctioning follicular solid/trabecular carcinoma reported in the literature. Even if a hyperfunctioning thyroid carcinoma is an extremely rare malignancy, careful management is recommended so that a malignancy will not be overlooked in the hot thyroid nodules.

  8. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    NASA Astrophysics Data System (ADS)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  9. Optimisation of a simple and reliable method based on headspace solid-phase microextraction for the determination of volatile phenols in beer.

    PubMed

    Pizarro, C; Pérez-del-Notario, N; González-Sáiz, J M

    2010-09-24

    A simple, accurate and sensitive method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-tandem mass spectrometry (GC-MS/MS) was developed for the analysis of 4-ethylguaiacol, 4-ethylphenol, 4-vinylguaiacol and 4-vinylphenol in beer. The effect of the presence of CO2 in the sample on the extraction of analytes was examined. The influence on extraction efficiency of different fibre coatings, of salt addition and stirring was also evaluated. Divinylbenzene/carboxen/polydimethylsiloxane was selected as extraction fibre and was used to evaluate the influence of exposure time, extraction temperature and sample volume/total volume ratio (Vs/Vt) by means of a central composite design (CCD). The optimal conditions identified were 80 degrees C for extraction temperature, 55 min for extraction time and 6 mL of beer (Vs/Vt 0.30). Under optimal conditions, the proposed method showed satisfactory linearity (correlation coefficients between 0.993 and 0.999), precision (between 6.3% and 9.7%) and detection limits (lower than those previously reported for volatile phenols in beers). The method was applied successfully to the analysis of beer samples. To our knowledge, this is the first time that a HS-SPME based method has been developed to determine simultaneously these four volatile phenols in beers. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Sample Size for Tablet Compression and Capsule Filling Events During Process Validation.

    PubMed

    Charoo, Naseem Ahmad; Durivage, Mark; Rahman, Ziyaur; Ayad, Mohamad Haitham

    2017-12-01

    During solid dosage form manufacturing, the uniformity of dosage units (UDU) is ensured by testing samples at 2 stages, that is, blend stage and tablet compression or capsule/powder filling stage. The aim of this work is to propose a sample size selection approach based on quality risk management principles for process performance qualification (PPQ) and continued process verification (CPV) stages by linking UDU to potential formulation and process risk factors. Bayes success run theorem appeared to be the most appropriate approach among various methods considered in this work for computing sample size for PPQ. The sample sizes for high-risk (reliability level of 99%), medium-risk (reliability level of 95%), and low-risk factors (reliability level of 90%) were estimated to be 299, 59, and 29, respectively. Risk-based assignment of reliability levels was supported by the fact that at low defect rate, the confidence to detect out-of-specification units would decrease which must be supplemented with an increase in sample size to enhance the confidence in estimation. Based on level of knowledge acquired during PPQ and the level of knowledge further required to comprehend process, sample size for CPV was calculated using Bayesian statistics to accomplish reduced sampling design for CPV. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Changing learning with new interactive and media-rich instruction environments: virtual labs case study report.

    PubMed

    Huang, Camillan

    2003-01-01

    Technology has created a new dimension for visual teaching and learning with web-delivered interactive media. The Virtual Labs Project has embraced this technology with instructional design and evaluation methodologies behind the simPHYSIO suite of simulation-based, online interactive teaching modules in physiology for the Stanford students. In addition, simPHYSIO provides the convenience of anytime web-access and a modular structure that allows for personalization and customization of the learning material. This innovative tool provides a solid delivery and pedagogical backbone that can be applied to developing an interactive simulation-based training tool for the use and management of the Picture Archiving and Communication System (PACS) image information system. The disparity in the knowledge between health and IT professionals can be bridged by providing convenient modular teaching tools to fill the gaps in knowledge. An innovative teaching method in the whole PACS is deemed necessary for its successful implementation and operation since it has become widely distributed with many interfaces, components, and customizations. This paper will discuss the techniques for developing an interactive-based teaching tool, a case study of its implementation, and a perspective for applying this approach to an online PACS training tool. Copyright 2002 Elsevier Science Ltd.

  12. Hardwood timber product markets: a focus on small-diameter

    Treesearch

    Bruce G. Hansen; Philip A. Araman; Cindi West; Al Schuler

    2000-01-01

    Reviews major solid wood and fiber markets. Discusses studies of "brown" maple acceptance including consumer preferences and knowledge. In conclusion, we review rubberwood attributes and its use in the manufacture of numerous wood products.

  13. Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W

    PubMed Central

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Qiu, Jianrong; Chen, Danping

    2015-01-01

    Single-mode ytterbium-doped phosphate all-solid photonic crystal fiber (AS-PCF) with 13.8 W output power and 32% slope efficiency was reported. By altering the diameter of the rods around the doped core and thus breaking the symmetry of the fiber, a polarization-maintaining AS-PCF with degree of polarization of >85% was also achieved, for the first time to knowledge, in a phosphate PCF. PMID:25684731

  14. Double-Edge Molecular Measurement of Lidar Wind Profiles in the VALID Campaign

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Flesia, Cristina; Lolli, Simone; Hirt, Christian

    2000-01-01

    We have developed a transportable container based direct detection Doppler lidar based on the double-edge molecular technique. The pulsed solid state system was built at the University of Geneva. It was used to make range resolved measurements of the atmospheric wind field as part of the VALID campaign at the Observatoire de Haute Provence in Provence, France in July 1999. Comparison of our lidar wind measurements, which were analyzed without knowledge of the results of rawinsonde measurements made under the supervision of ESA, show good agreement with these rawinsondes. These are the first Doppler lidar field measurements made with an eyesafe direct detection molecular-based system at 355 nm and serve as a demonstrator for future spaceborne direct detection wind systems such as the Atmospheric Dynamics mission. Winds are an important contributor to sea surface temperature measurements made with the Tropical Rainfall Measuring Mission (TRMM) and also affect the TRMM rainfall estimates.

  15. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    NASA Astrophysics Data System (ADS)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  16. The NASA "PERS" Program: Solid Polymer Electrolyte Development for Advanced Lithium-Based Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennett, William R.

    2007-01-01

    In fiscal year 2000, The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The ultimate objective of this development program, which was referred to as the Polymer Energy Rechargeable System (PERS), was to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. Out of a total of 38 proposals received in response to a NASA Research Announcement (NRA) solicitation, 18 proposals (13 contracts and 5 grants) were selected for initial award to address these technical challenges. Brief summaries of technical approaches, results and accomplishments of the PERS Program development efforts are presented. With Agency support provided through FY 2004, the PERS Program efforts were concluded in 2005, as internal reorganizations and funding cuts resulted in shifting programmatic priorities within NASA. Technically, the PERS Program participants explored, to various degrees over the lifetime of the formal program, a variety of conceptual approaches for developing and demonstrating performance of a viable advanced solid polymer electrolyte possessing the desired attributes, as well as several participants addressing all components of an integrated cell configuration. Programmatically, the NASA PERS Program was very successful, even though the very challenging technical goals for achieving a viable solid polymer electrolyte material or the overall envisioned long-term, program objectives were not met due to funding reductions. The NASA PERS Program provided research opportunities and generated and disseminated a wealth of new scientific knowledge and technical competencies within the polymer electrolyte area.

  17. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  18. Using the Knowledge, Process, Practice (KPP) model for driving the design and development of online postgraduate medical education.

    PubMed

    Shaw, Tim; Barnet, Stewart; Mcgregor, Deborah; Avery, Jennifer

    2015-01-01

    Online learning is a primary delivery method for continuing health education programs. It is critical that programs have curricula objectives linked to educational models that support learning. Using a proven educational modelling process ensures that curricula objectives are met and a solid basis for learning and assessment is achieved. To develop an educational design model that produces an educationally sound program development plan for use by anyone involved in online course development. We have described the development of a generic educational model designed for continuing health education programs. The Knowledge, Process, Practice (KPP) model is founded on recognised educational theory and online education practice. This paper presents a step-by-step guide on using this model for program development that encases reliable learning and evaluation. The model supports a three-step approach, KPP, based on learning outcomes and supporting appropriate assessment activities. It provides a program structure for online or blended learning that is explicit, educationally defensible, and supports multiple assessment points for health professionals. The KPP model is based on best practice educational design using a structure that can be adapted for a variety of online or flexibly delivered postgraduate medical education programs.

  19. Identifying Predictors of Arsenic Bioavailability in Low-Sulfide, Quartz-Hosted Gold Deposits: Case Study at the Empire Mine State Historic Park, CA, USA

    NASA Astrophysics Data System (ADS)

    Foster, A. L.; Alpers, C. N.; Burlak Regnier, T.; Blum, A.; Petersen, E. U.; Basta, N. T.; Whitacre, S.; Casteel, S. W.; Kim, C. S.

    2016-12-01

    Seattle Public Utilities (SPU) provides high quality drinking water to 1.4 million people in the greater Seattle area and storm, wastewater and solid waste services to the City of Seattle. SPU's engagement on climate change has evolved significantly over the past 20 years. What began in 1997 as an inquiry into how El Nino may affect water supply has evolved into a broad based ongoing exploration that includes extensive in-house knowledge, capacity and expertise. This presentation will describe SPU's evolution from a funder and consumer of climate research to an active contributor to the development of applied research products, highlighted SPU's changing role in three climate impacts assessment studies. It will describe how SPU has leveraged these studies and partnerships to enhance its knowledge base, build its internal institutional capacity and produce actionable science that it is helping to foster incorporation of climate change into various aspects of utility planning and decision making. It will describe the PUMA Project and how the results from that research effort are being factored into SPU's state mandated Water System Plan.

  20. Ready for the World: preparing nursing students for tomorrow.

    PubMed

    Callen, Bonnie L; Lee, Jan L

    2009-01-01

    In 2004, a 5-year plan of international and intercultural education was developed by the University of Tennessee, Knoxville (UTK) to help students become ready for the changing world in which they will live. This program is called "Ready for the World." The University of Tennessee College of Nursing in Knoxville has integrated many of the suggestions from this program into the undergraduate nursing curriculum to prepare students for the world by making the world their classroom. Intercultural learning includes both a solid base of knowledge obtained in the classroom and multiple experiences that involve cultural interaction. Experiences begin on UTK's diverse campus and expand to the surrounding city of Knoxville, including interactions with vulnerable populations such as the homeless or elderly persons, then to nearby Appalachian communities, and on to Central America. Many of these experiences are offered for credit in the Community Health Nursing or the Transcultural Nursing courses. The knowledge nursing students acquire and their varied experiences will help them gain cultural competence for their future nursing practice.

  1. Model-based development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis

    NASA Astrophysics Data System (ADS)

    Polverino, Pierpaolo; Pianese, Cesare; Sorrentino, Marco; Marra, Dario

    2015-04-01

    The paper focuses on the design of a procedure for the development of an on-field diagnostic algorithm for solid oxide fuel cell (SOFC) systems. The diagnosis design phase relies on an in-deep analysis of the mutual interactions among all system components by exploiting the physical knowledge of the SOFC system as a whole. This phase consists of the Fault Tree Analysis (FTA), which identifies the correlations among possible faults and their corresponding symptoms at system components level. The main outcome of the FTA is an inferential isolation tool (Fault Signature Matrix - FSM), which univocally links the faults to the symptoms detected during the system monitoring. In this work the FTA is considered as a starting point to develop an improved FSM. Making use of a model-based investigation, a fault-to-symptoms dependency study is performed. To this purpose a dynamic model, previously developed by the authors, is exploited to simulate the system under faulty conditions. Five faults are simulated, one for the stack and four occurring at BOP level. Moreover, the robustness of the FSM design is increased by exploiting symptom thresholds defined for the investigation of the quantitative effects of the simulated faults on the affected variables.

  2. Caracterisation des proprietes dielectriques de materiaux composites a base de polyethylene terephtalate recycle

    NASA Astrophysics Data System (ADS)

    Mebarki, Fouzia

    The aim of this study is to examine the possibility of using thermoplastic composite materials for electrical applications such as supports of automotive engine ignition systems. We are particularly interested in composites based on recycled polyethylene terephtalate (PET). Conventional isolations like PET cannot meet the new prescriptive requirements. The introduction of reinforcement materials, such as glass fibers and mica can improve the mechanical characteristics of these materials. However, this enhancement may also reduce electrical properties especially since these composites have to be used under severe thermal and electric stresses. In order to estimate PET composite insulation lifetimes, accelerated aging tests were carried out at temperatures ranging from room temperature to 140°C and at a frequency of 300Hz. Studies at high temperature will help to identify the service temperature of candidate materials. Dielectric breakdown tests have been made on a large number of samples according to the standard of dielectric strength tests of solid insulating ASTM D-149. These tests have to identify the problematic samples and to check solid insulation quality. The different knowledge gained from this analysis was used to predict material performance. This will give the company the possibility to improve existing formulations and subsequently develop a material having electrical and thermal properties suitable for this application.

  3. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    NASA Astrophysics Data System (ADS)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  4. Swinging into Pendulums with a Background.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Cook, Julie

    1993-01-01

    Explains reasons why students have misconceptions concerning pendulum swings. Presents a series of 10 pendulum task cards to provide middle-school students with a solid mental scaffolding upon which to build their knowledge of kinetic energy and pendulums. (PR)

  5. Use of Drying Technologies for Resource Recovery from Solid Wastes and Brines

    NASA Technical Reports Server (NTRS)

    Wignarajah, Kanapathipillai; Alba, Ric; Fisher, John W.; Hogan, John A.; Polonsky, Alex

    2010-01-01

    Long term storage of unprocessed biological wastes and human wastes can present major health issues and a loss of potential resources. Space vehicles and planetary habitats are typically resource-scarce or resource-limited environments for long-term human habitation. To-date, most of the resources will need to be supplied from Earth, but this may not be possible for long duration human exploration. Based on present knowledge, there is only very limited in-situ resources on planetary habitats. Hence, the opportunity to "live off the land" in a planetary habitat is limited. However, if we assume that wastes generated by human explorers are viewed as resources, there is great potential to utilize and recycle them, thereby reducing the requirements for supply Earth and enabling the "live off the land" exploration scenario. Technologies used for the recovery of resources from wastes should be reliable, safe, easy to operate, fail-proof, modular, automated and preferably multifunctional in being capable of handling mixed solid and liquid wastes. For a lunar habitat, energy does not appear to be the major driving factor amongst the technologies studied. Instead, reliability appears to be more important[1] . This paper reports studies to date on drying technologies to remove water from solid wastes and brines. Experimental performance data obtained for recovery water from wastes and brine are presented. Simplicity of operation of hardware and energy efficiency are discussed. Some improvements and modifications to hardware were performed. Hopefully, this information will assist in future efforts in the "downselection" of technologies for recovery of water and resources from solid wastes and brines.

  6. Development of novel sibutramine base-loaded solid dispersion with gelatin and HPMC: physicochemical characterization and pharmacokinetics in beagle dogs.

    PubMed

    Lim, Hyun-Tae; Balakrishnan, Prabagar; Oh, Dong Hoon; Joe, Kwan Hyung; Kim, Young Ran; Hwang, Doo Hyung; Lee, Yong-Bok; Yong, Chul Soon; Choi, Han-Gon

    2010-09-15

    To develop a novel sibutramine base-loaded solid dispersion with enhanced solubility and bioavailability, various solid dispersions were prepared using a spray drying technique with hydrophilic polymers such as gelatin, HPMC and citric acid. Their solubility, thermal characteristics and crystallinity were investigated. The dissolution and pharmacokinetics of the sibutramine base-loaded solid dispersion were then compared with a sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The solid dispersions prepared with gelatin gave higher drug solubility than those prepared without gelatin, irrespective of the amount of polymer. The sibutramine base-loaded solid dispersions containing hydrophilic polymer and citric acid showed higher drug solubility compared to sibutramine base and sibutramine hydrochloride monohydrate. Among the formulations tested, the solid dispersion composed of sibutramine base/gelatin/HPMC/citric acid at the weight ratio of 1/0.8/0.2/0.5 gave the highest solubility of 5.03+/-0.24 mg/ml. Our DSC and powder X-ray diffraction results showed that the drug was present in an altered amorphous form in this solid dispersion. The difference factor (f(1)) values between solid dispersion and commercial product were 2.82, 6.65 and 6.31 at pH 1.2, 4.0 and 6.8, respectively. Furthermore, they had the similarity factor (f(2)) value of 65.68, 53.43 and 58.97 at pH 1.2, 4.0 and 6.8, respectively. Our results suggested that the solid dispersion and commercial product produced a similar correlation of dissolution profiles at all pH ranges. The AUC, C(max) and T(max) of the parent drug and metabolite I and II from the solid dispersion were not significantly different from those of the commercial product, suggesting that the solid dispersion might be bioequivalent to the commercial product in beagle dogs. Thus, the sibutramine base-loaded solid dispersion prepared with gelatin, HPMC and citric acid is a promising candidate for improving the solubility and bioavailability of the poorly water-soluble sibutramine base. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  7. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Hyperfunctioning Solid/Trabecular Follicular Carcinoma of the Thyroid Gland

    PubMed Central

    Giovanella, Luca; Fasolini, Fabrizio; Suriano, Sergio; Mazzucchelli, Luca

    2010-01-01

    A 68-year-old woman with solid/trabecular follicular thyroid carcinoma inside of an autonomously functioning thyroid nodule is described in this paper. The patient was referred to our clinic for swelling of the neck and an increased pulse rate. Ultrasonography showed a slightly hypoechoic nodule in the right lobe of the thyroid. Despite suppressed TSH levels, the 99mTc-pertechnetate scan showed a hot area corresponding to the nodule with a suppressed uptake in the remaining thyroid tissue. Histopathological examination of the nodule revealed a solid/trabecular follicular thyroid carcinoma. To the best of our knowledge, this is the first case of hyperfunctioning follicular solid/trabecular carcinoma reported in the literature. Even if a hyperfunctioning thyroid carcinoma is an extremely rare malignancy, careful management is recommended so that a malignancy will not be overlooked in the hot thyroid nodules. PMID:20847957

  9. Ionic liquids for metal extraction from chalcopyrite: solid, liquid and gas phase studies.

    PubMed

    Kuzmina, O; Symianakis, E; Godfrey, D; Albrecht, T; Welton, T

    2017-08-16

    We studied leaching of Cu and Fe from naturally occurring chalcopyrite ore using aqueous solutions of ionic liquids (ILs) based on imidazolium and ethylammonium cations and hydrogensulfate, nitrate, acetate or dicyanamide anions. Liquid, solid and gas phases of the leaching systems were characterised. We have shown that nonoxidative leaching is greatly dependant not only on temperature and pH, but on the anion species of the IL. Solutions of 1-butylimidazolium hydrogen sulfate exhibited the best leaching performance among hydrogen sulphate ILs. We have suggested that the formation of an oxide layer in some ILs may be responsible for a reduced leaching ability. The analysis of the gas phase showed the production of CO 2 and CS 2 in all leached samples. Our results suggested that the CS 2 produced upon leaching could be responsible for decreasing the sulfur, but not oxide, layer on the surface of chalcopyrite samples and therefore more efficient leaching. This is the first study, to our knowledge, to provide a systematic comparison of the leaching performance of ILs composed of different anions and cations and without added oxidants.

  10. Zein as a Pharmaceutical Excipient in Oral Solid Dosage Forms: State of the Art and Future Perspectives.

    PubMed

    Berardi, Alberto; Bisharat, Lorina; AlKhatib, Hatim S; Cespi, Marco

    2018-05-07

    Zein is the main storage protein of corn and it has several industrial applications. Mainly in the last 10-15 years, zein has emerged as a potential pharmaceutical excipient with unique features. Zein is a natural, biocompatible and biodegradable material produced from renewable sources. It is insoluble, yet due to its amphiphilic nature, it has self-assembling properties, which have been exploited for the formation of micromicroparticle and nanoparticle and films. Moreover, zein can hydrate so it has been used in swellable matrices for controlled drug release. Other pharmaceutical applications of zein in oral drug delivery include its incorporation in solid dispersions of poorly soluble drugs and in colonic drug delivery systems. This review describes the features of zein significant for its use as a pharmaceutical excipient for oral drug delivery, and it summaries the literature relevant to macroscopic zein-based oral dosage forms, i.e. tablets, capsules, beads and powders. Particular attention is paid to the most novel formulations and applications of zein. Moreover, gaps of knowledge as well as possible venues for future investigations on zein are highlighted.

  11. EarthCube: Advancing Partnerships, Collaborative Platforms and Knowledge Networks in the Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Stephen, Diggs; Lee, Allison

    2014-05-01

    The National Science Foundation's EarthCube initiative aims to create a community-driven data and knowledge management system that will allow for unprecedented data sharing across the geosciences. More than 2,500 participants through forums, work groups, EarthCube events, and virtual and in-person meetings have participated. The individuals that have engaged represent the core earth-system sciences of solid Earth, Atmosphere, Oceans, and Polar Sciences. EarthCube is a cornerstone of NSF's Cyberinfrastructure for the 21st Century (CIF21) initiative, whose chief objective is to develop a U.S. nationwide, sustainable, and community-based cyberinfrastructure for researchers and educators. Increasingly effective community-driven cyberinfrastructure allows global data discovery and knowledge management and achieves interoperability and data integration across scientific disciplines. There is growing convergence across scientific and technical communities on creating a networked, knowledge management system and scientific data cyberinfrastructure that integrates Earth system and human dimensions data in an open, transparent, and inclusive manner. EarthCube does not intend to replicate these efforts, but build upon them. An agile development process is underway for the development and governance of EarthCube. The agile approach was deliberately selected due to its iterative and incremental nature while promoting adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness.

  12. Integration of Basic Knowledge Models for the Simulation of Cereal Foods Processing and Properties.

    PubMed

    Kristiawan, Magdalena; Kansou, Kamal; Valle, Guy Della

    Cereal processing (breadmaking, extrusion, pasting, etc.) covers a range of mechanisms that, despite their diversity, can be often reduced to a succession of two core phenomena: (1) the transition from a divided solid medium (the flour) to a continuous one through hydration, mechanical, biochemical, and thermal actions and (2) the expansion of a continuous matrix toward a porous structure as a result of the growth of bubble nuclei either by yeast fermentation or by water vaporization after a sudden pressure drop. Modeling them is critical for the domain, but can be quite challenging to address with mechanistic approaches relying on partial differential equations. In this chapter we present alternative approaches through basic knowledge models (BKM) that integrate scientific and expert knowledge, and possess operational interest for domain specialists. Using these BKMs, simulations of two cereal foods processes, extrusion and breadmaking, are provided by focusing on the two core phenomena. To support the use by non-specialists, these BKMs are implemented as computer tools, a Knowledge-Based System developed for the modeling of the flour mixing operation or Ludovic ® , a simulation software for twin screw extrusion. They can be applied to a wide domain of compositions, provided that the data on product rheological properties are available. Finally, it is stated that the use of such systems can help food engineers to design cereal food products and predict their texture properties.

  13. POLLUTION CONTROL GUIDANCE FOR GEOTHERMAL ENERGY DEVELOPMENT

    EPA Science Inventory

    This report summarizes the EPA regulatory approach toward geothermal energy development. The state of knowledge is described with respect to the constituents of geothermal effluents and emissions, including water, air, solid wastes, and noise. Pollutant effects are discussed. Pol...

  14. Cren(ulation)-­1,2 Preshot Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall

    2015-12-21

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the RichtmyerMeshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less

  15. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousculp, Christopher L.; Oro, David Michael; Margolin, Len G.

    2015-08-06

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacentmore » to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.« less

  16. Preliminary Results on Lunar Interior Properties from the GRAIL Mission

    NASA Technical Reports Server (NTRS)

    Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, H. Jay; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.; hide

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k2. Lunar structure includes a thin crust, a deep mantle, a fluid core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future GRAIL will search for evidence of tidal dissipation and a solid inner core.

  17. Testicular calculus: A rare case.

    PubMed

    Sen, Volkan; Bozkurt, Ozan; Demır, Omer; Tuna, Burcin; Yorukoglu, Kutsal; Esen, Adil

    2015-01-01

    Testicular calculus is an extremely rare case with unknown etiology and pathogenesis. To our knowledge, here we report the third case of testicular calculus. A 31-year-old man was admitted to our clinic with painful solid mass in left testis. After diagnostic work-up for a possible testicular tumour, he underwent inguinal orchiectomy and histopathologic examination showed a testicular calculus. Case hypothesis: Solid testicular lesions in young adults generally correspond to testicular cancer. Differential diagnosis should be done carefully. Future implications: In young adults with painful and solid testicular mass with hyperechogenic appearance on scrotal ultrasonography, testicular calculus must be kept in mind in differential diagnosis. Further reports on this topic may let us do more clear recommendations about the etiology and treatment of this rare disease.

  18. Pneumocystis Pneumonia in Solid-Organ Transplant Recipients

    PubMed Central

    Iriart, Xavier; Le Bouar, Marine; Kamar, Nassim; Berry, Antoine

    2015-01-01

    Pneumocystis pneumonia (PCP) is well known and described in AIDS patients. Due to the increasing use of cytotoxic and immunosuppressive therapies, the incidence of this infection has dramatically increased in the last years in patients with other predisposing immunodeficiencies and remains an important cause of morbidity and mortality in solid-organ transplant (SOT) recipients. PCP in HIV-negative patients, such as SOT patients, harbors some specificity compared to AIDS patients, which could change the medical management of these patients. This article summarizes the current knowledge on the epidemiology, risk factors, clinical manifestations, diagnoses, prevention, and treatment of Pneumocystis pneumonia in solid-organ transplant recipients, with a particular focus on the changes caused by the use of post-transplantation prophylaxis. PMID:29376913

  19. Towards ethically improved animal experimentation in the study of animal reproduction.

    PubMed

    Blache, D; Martin, G B; Maloney, S K

    2008-07-01

    The ethics of animal-based research is a continuing area of debate, but ethical research protocols do not prevent scientific progress. In this paper, we argue that our current knowledge of the factors that affect reproductive processes provides researchers with a solid foundation upon which they can conduct more ethical research and simultaneously produce data of higher quality. We support this argument by showing how a deep understanding of the genetics, nutrition and temperament of our experimental animals can improve compliance with two of the '3 Rs', reduction and refinement, simply by offering better control over the variance in our experimental model. The outcome is a better experimental design, on both ethical and scientific grounds.

  20. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  1. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser.

    PubMed

    Xu, Jin-Long; Li, Xian-Lei; Wu, Yong-Zhong; Hao, Xiao-Peng; He, Jing-Liang; Yang, Ke-Jian

    2011-05-15

    High-quality graphene sheets with lateral size over 20 μm have been obtained by bath sonicating after subjecting the wormlike graphite marginally to mixed oxidizer. To date, to our knowledge, they are the largest graphene sheets prepared by exfoliation in the liquid phase. A saturable absorber mirror was fabricated based on these sheets. We exploited it to realize mode-locking operation in a diode-pumped Nd:GdVO(4) laser. A pulse duration of 16 ps was produced with an average power of 360 mW and a highest pulse energy of 8.4 nJ for a graphene mode-locked laser. © 2011 Optical Society of America

  2. [For a sociology of intervention in mental health.].

    PubMed

    Rhéaume, J; Sévigny, R

    1988-01-01

    Mental health workers develop a solid understanding of social phenomenon, which gives them direction and on which they are able to base their interventions. This is what the authors call the "implicit sociology" ("sociologie implicite") of workers. The article describes the principal elements of this special knowledge through information gathered from workers in clinical environments, private practice and "alternative" organizations. The authors focus on the idea workers make of health/mental handicaps, of their clientele, of their involvement, of the organizational and societal context of their work, of their "role" in society. Finally, the authors show how a sociological approach can help improve one's understanding of how to deal with mental health.

  3. Surgical and molecular pathology of pancreatic neoplasms.

    PubMed

    Hackeng, Wenzel M; Hruban, Ralph H; Offerhaus, G Johan A; Brosens, Lodewijk A A

    2016-06-07

    Histologic characteristics have proven to be very useful for classifying different types of tumors of the pancreas. As a result, the major tumor types in the pancreas have long been classified based on their microscopic appearance. Recent advances in whole exome sequencing, gene expression profiling, and knowledge of tumorigenic pathways have deepened our understanding of the underlying biology of pancreatic neoplasia. These advances have not only confirmed the traditional histologic classification system, but also opened new doors to early diagnosis and targeted treatment. This review discusses the histopathology, genetic and epigenetic alterations and potential treatment targets of the five major malignant pancreatic tumors - pancreatic ductal adenocarcinoma, pancreatic neuroendocrine tumor, solid-pseudopapillary neoplasm, acinar cell carcinoma and pancreatoblastoma.

  4. Semantic modeling of plastic deformation of polycrystalline rock

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan A.; Davarpanah, Armita

    2018-02-01

    We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.

  5. Studies in Three Phase Gas-Liquid Fluidised Systems

    NASA Astrophysics Data System (ADS)

    Awofisayo, Joyce Ololade

    1992-01-01

    Available from UMI in association with The British Library. The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid -solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with "true" three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties.

  6. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  7. Characterization of suspended solids and total phosphorus loadings from small watersheds in Wisconsin

    USGS Publications Warehouse

    Danz, Mari E.; Corsi, Steven R.; Graczyk, David J.; Bannerman, Roger T.

    2010-01-01

    Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area Ecoregion, the Northern Lakes and Forests Ecoregion, the North Central Hardwoods Ecoregion, and the Southeastern Wisconsin Till Plains Ecoregion. The Northern Lakes and Forests and the North Central Hardwoods Ecoregions were combined into one region for analysis due to a lack of sufficient data in each region. Urban watersheds, all located in the Southeastern Wisconsin Till Plains, were analyzed separately from rural watersheds as the Rural Southeastern Wisconsin Till Plains region and the Urban Southeastern Wisconsin Till Plains region. Results provide information on the distribution of loadings and streamflow between base flow and stormflow, the timing of loadings and streamflow throughout the year, and information regarding the number of days in which the majority of the annual loading is transported. The average contribution to annual solids loading from stormflow periods for the Driftless Area Ecoregion was 84 percent, the Northern Lakes and Forests/North Central Hardwoods region was 71 percent, the Rural Southeastern Wisconsin Till Plains region was 70 percent, and the Urban Southeastern Wisconsin Till Plains region was 90 percent. The average contributions to annual total phosphorus loading from stormflow periods were 72, 49, 61, and 76 percent for each of the respective regions. The average contributions to annual streamflow from stormflow periods are 20, 23, 31, and 50 percent for each of the respective regions. In all regions, the most substantial loading contributions for solids were in the late winter (February through March), spring (April through May), and early summer (June through July), with fall (October through November) and early winter (December through January) contributing the smallest loadings. The Northern Lakes and Forests/North Central Hardwoods region had some substantial loading in September. There was a similar pattern for total phosphorus loading in all regions, with the pattern somewhat less pronounced in urban watersheds. As with the loading results, average monthly streamflow values were greatest in late winter, spring, and early summer, with the lowest values typically in fall and early winter. Loading contributions were greater from stormflow than from base flow in all instances, except total phosphorus in the Northern Lakes and Forests/North Central Hardwoods region, which had equal or greater base-flow contribution for several months. Base flow constituted a greater percentage of the total streamflow than stormflow in all rural watersheds for all regions. Only a few storms each year dominated the annual loading totals for solids and total phosphorus. When daily loading values were ranked for the year, all regions reached 50 percent of the annual solids loading in the 5 highest loading days and nearly 50 percent of the annual total phosphorus loading in the 14 highest loading days.

  8. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  9. Finite element analysis of the effect of a non-planar solid-liquid interface on the lateral solute segregation during unidirectional solidification

    NASA Technical Reports Server (NTRS)

    Carlson, F. M.; Chin, L.-Y.; Fripp, A. L.; Crouch, R. K.

    1982-01-01

    The effect of solid-liquid interface shape on lateral solute segregation during steady-state unidirectional solidification of a binary mixture is calculated under the assumption of no convection in the liquid. A finite element technique is employed to compute the concentration field in the liquid and the lateral segregation in the solid with a curved boundary between the liquid and solid phases. The computational model is constructed assuming knowledge of the solid-liquid interface shape; no attempt is made to relate this shape to the thermal field. The influence of interface curvature on the lateral compositional variation is investigated over a range of system parameters including diffusivity, growth speed, distribution coefficient, and geometric factors of the system. In the limiting case of a slightly nonplanar interface, numerical results from the finite element technique are in good agreement with the analytical solutions of Coriell and Sekerka obtained by using linear theory. For the general case of highly non-planar interface shapes, the linear theory fails and the concentration field in the liquid as well as the lateral solute segregation in the solid can be calculated by using the finite element method.

  10. 40 CFR Table 3 to Subpart Ddddd of... - Work Practice Standards

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: natural gas, synthetic natural gas, propane, distillate oil, syngas, ultra-low sulfur diesel, fuel oil... start firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases....While firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases...

  11. 40 CFR Table 3 to Subpart Ddddd of... - Work Practice Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: natural gas, synthetic natural gas, propane, distillate oil, syngas, ultra-low sulfur diesel, fuel oil... start firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases....While firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases...

  12. Universities in capacity building in sustainable development: focus on solid waste management and technology.

    PubMed

    Agamuthu, P; Hansen, Jens Aage

    2007-06-01

    This paper analyses some of the higher education and research capacity building experiences gained from 1998-2006 by Danish and Malaysian universities. The focus is on waste management, directly relating to both the environmental and socio-economic dimensions of sustainable development. Primary benefits, available as an educational legacy to universities, were obtained in terms of new and enhanced study curricula established on Problem-oriented Project-based Learning (POPBL) pedagogy, which strengthened academic environmental programmes at Malaysian and Danish universities. It involved more direct and mutually beneficial cooperation between academia and businesses in both countries. This kind of university reach-out is considered vital to development in all countries actively striving for global and sustainable development. Supplementary benefits were accrued for those involved directly in activities such as the 4 months of field studies, workshops, field courses and joint research projects. For students and academics, the gains have been new international dimensions in university curricula, enhanced career development and research collaboration based on realworld cases. It is suggested that the area of solid waste management offers opportunities for much needed capacity building in higher education and research, contributing to sustainable waste management on a global scale. Universities should be more actively involved in such educational, research and innovation programmes to make the necessary progress. ISWA can support capacity building activities by utilizing its resources--providing a lively platform for debate, securing dissemination of new knowledge, and furthering international networking beyond that which universities already do by themselves. A special challenge to ISWA may be to improve national and international professional networks between academia and business, thereby making education, research and innovation the key driving mechanisms in sustainable development in solid waste management.

  13. Computational methods in preformulation study for pharmaceutical solid dosage forms of therapeutic proteins

    NASA Astrophysics Data System (ADS)

    Majee, Sutapa Biswas; Biswas, Gopa Roy

    2017-06-01

    Design and delivery of protein-based biopharmaceuticals needs detailed planning and strict monitoring of intermediate processing steps, storage conditions and container-closure system to ensure a stable, elegant and biopharmaceutically acceptable dosage form. Selection of manufacturing process variables and conditions along with packaging specifications can be achieved through properly designed preformulation study protocol for the formulation. Thermodynamic stability and biological activity of therapeutic proteins depend on folding-unfolding and three-dimensional packing dynamics of amino acid network in the protein molecule. Lack of favourable environment may cause protein aggregation with loss in activity and even fatal immunological reaction. Although lyophilization can enhance the stability of protein-based formulations in the solid state, it can induce protein unfolding leading to thermodynamic instability. Formulation stabilizers such as preservatives can also result in aggregation of therapeutic proteins. Modern instrumental techniques in conjunction with computational tools enable rapid and accurate prediction of amino acid sequence, thermodynamic parameters associated with protein folding and detection of aggregation "hot-spots." Globular proteins pose a challenge during investigations on their aggregation propensity. Biobetter therapeutic monoclonal antibodies with enhanced stability, solubility and reduced immunogenic potential can be designed through mutation of aggregation-prone zones. The objective of the present review article is to focus on the various analytical methods and computational approaches used in the study of thermodynamic stability and aggregation tendency of therapeutic proteins, with an aim to develop optimal and marketable formulation. Knowledge of protein dynamics through application of computational tools will provide the essential inputs and relevant information for successful and meaningful completion of preformulation studies on solid dosage forms of therapeutic proteins.

  14. Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling

    DTIC Science & Technology

    2008-09-01

    ER D C/ CE R L TR -0 8 -1 3 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling Gary L. Gerdes, Deborah...release; distribution is unlimited. ERDC/CERL TR-08-13 September 2008 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling...a technology to process domestic solid waste using a unique hydrothermal system. The process was successfully demonstrated at Forts Benning and

  15. Targeting New Markets.

    ERIC Educational Resources Information Center

    Green, Craig A.

    1990-01-01

    Often necessary to meet enrollment goals in a competitive age, student recruitment from new sources requires a sound knowledge of marketing, solid research, effective organization, and institutional activities that will attract the desired populations. Experience at Westminster College (Utah) illustrates that the process is not particularly…

  16. A Month of Breastfeeding Associated with Greater Adherence to Pediatric Nutrition Guidelines.

    PubMed

    Khalessi, Ali; Reich, Stephanie M

    2013-07-01

    Research has shown that both breastfeeding and delaying the introduction of solids or liquids other than breast milk protect against obesity later in early childhood. To compare whether breastfeeding mothers adhere to more of the American Academy of Pediatrics (AAP) feeding recommendations for infants. This longitudinal study compared the breastfeeding knowledge, intentions, and practices as well as complementary feeding choices of 163 ethnically diverse, primiparous women over the first 18 months of motherhood. Although almost all women knew about the health benefits of (98%) breastfeeding and intended to (98%) breastfeed, only 85% initiated and 51% continued beyond 4 weeks. Breastfeeding for longer durations was associated with better feeding choices. Mothers who breastfed for more weeks were more likely to adhere to AAP guidelines on liquids other than breast milk at 4, 6, and 12 months, and introduce solids, liquids other than breast milk, and other complimentary foods at later ages. Furthermore, mothers who breastfed for less than 1 month were more likely to introduce solids by 2 months in comparison to mothers who breastfed for 1 month or more (OR=3.22). Knowledge and intentions do not explain breastfeeding initiation or continuation. However, when women committed to more weeks of breastfeeding, especially more than 4 weeks, they made better nutrition choices for their infants.

  17. Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert

    2018-02-01

    Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.

  18. Exploring Learning Progressions of New Science Teachers

    NASA Astrophysics Data System (ADS)

    Krise, Kelsy Marie

    First-, second- and third-year teachers can be considered novice teachers with a solid foundation. The beginning years of teaching are intense times for learning, in which teachers can build upon their foundational knowledge. However, traditional mentoring programs often focus on technical advice and emotional support to help teachers survive the first years. This study set out to understand new science teachers' pedagogical content knowledge (PCK) in order to identify how their learning progresses. Understanding teachers' ideas will allow one to think about the development of educative mentoring practices that promote the advancement of teachers' knowledge. To investigate teachers' learning progressions, the following research questions guided this study: What is the nature of pedagogical content knowledge of first-, second- and third-year science teachers at various points across the school year? To which aspects of pedagogical content knowledge do first-, second- and third-year teachers pay attention at various points across the school year? Which aspects of pedagogical content knowledge are challenging for first-, second- and third-year teachers at various points across the school year? First-, second- and third-year teachers were interviewed, observed, and their teaching artifacts were collected across the school year. Data were examined to uncover learning progressions, when ideas became more sophisticated across first-, second-, and third-year teachers. The findings of this study contribute to an understanding of how teachers' learning progresses and allows for a trajectory of learning to be described. The trajectory can be used to inform the design of university-based mentoring programs for new teachers. The descriptions of the nature of teachers' PCK and the aspects of PCK to which teachers pay attention and find challenging shed light on the support necessary to promote continued teacher learning.

  19. Normal Forces at Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Das, Ratul

    Adhesion can be defined as the tendency of dissimilar particles or surfaces to cling on to one another. Fields that require knowledge about adhesion interactions at the solid-liquid interface span over a wide spectrum from biotechnological issues such as liquid adhesion to skin tissues, insect feet adhesion to solids, or contact lenses to tear fluid adhesion; filtration issues such as membrane fouling and membrane affinity to different liquids; oil and gas extraction where one needs knowledge of the adhesion of the oil and brine to the rock; fuel cells in which droplets are formed on the electrodes and need to be considered in the system's design; classic chemical engineering industry such as drop adhesion to the mist eliminators in flash drums, or to heat exchangers; and classic surface science such as nano-structured surfaces, self cleaning surfaces, and general wetting phenomena. We execute the Young-Dupre (Y-P) gedanken experiment to establish unique values of work of adhesion rather than a work of adhesion range that the contact angle hysteresis results in. We use the Centrifugal Adhesion Balance (CAB) which allows independent manipulation of normal and lateral forces to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. The values obtained for the work of adhesion are independent of drop size and are in agreement with the Y-P estimate. Cyclically varying the normal force, just to prevent the drop flying away from the surface will also enable us to study the Contact Angle Hysteresis for a pendant drop. With this set up, the work of adhesion is not only calculated from experimental normal force measurements, but the found results are also used to provide a venue for calculating the Young equilibrium contact angle, theta0. According to Shanahan and de Gennes, a liquid drop with a non-zero contact angle is associated with a deformation of the solid surface at the three phase contact line, causing the triple line to protrude up and form a rim, this is due to the unsatisfied normal component of the surface tension. Such rims were demonstrated by Care et al, and by Extrand, and the stresses associated with the rims facilitate reorientation of solid molecules at the interface, and therefore result in stronger solid liquid interaction at the rim. This stronger interaction gives rise to retention forces (due to adhesion). Recently, Xu et al, wrote a force equation based on this understanding, we test the validity of this approach and the Furmidge - Dussan model and other, more empirical, retention force approaches. A liquid drop that partially wets a solid surface will slide along the plane when a force beyond a critical value is applied to it. We study the sliding pattern of such a drop. Experiments for identifying the pattern of motion of liquid drops under influence of different normal forces are performed. We use a centrifugal adhesion balance (CAB) to study the pattern of drop motion under different effective gravities. A drop on a solid surface only slides after a certain critical force is applied to it, which is dependent on the drop volume, surface heterogeneities and other factors, even after the application of force the drop doesn't continue to move uniformly, which is the subject matter of this discussion.

  20. Diffuse skull base/cervical fusion syndromes in two siblings with spondylocostal dysostosis syndrome: analysis via three dimensional computed tomography scanning.

    PubMed

    Al Kaissi, Ali; Ben Chehida, Farid; Ben Ghachem, Maher; Klaushofer, Klaus; Grill, Franz

    2008-06-01

    A study on a pair of male sibs to reach for the etiological understanding of unusual skull base/spine maldevelopment. Previously, radiographs alone were used to formulate this diagnosis. Here, three-dimensional computed tomography (3D CT) studies further clarified the typical diagnostic findings associated with spondylocostal dysostosis (SCD). Interestingly, patients with SCD are at increased risk for diffuse skull base/cervical fusion syndromes and can result in severe neurologic deficits associated with any degree of trauma. Classically SCD is defined as a skeletal dysplasia with clinical and radiologic manifestations, consisting of short neck and trunk, nonprogressive scoliosis and abnormalities of vertebral segmentation and of the ribs. Radiograms have been adopted as the only modality for the classification and prognostication of patients with SCD. Detailed clinical and radiographic examinations were undertaken with emphasis on the significance of the 3D CT scanning. We observed extensive fusion of the clivus with the cervical/entire spine, resulting in a remarkable solid, immobile, and fixed bony ankylosis of extremely serious outcome. Patients with spondylcostal dysostosis are predisposed to develop extensive skull-base-cervical spine fusion. The latter might lead to the development of a solid, immobile, and fixed bony ankylosis. In children/adults trivial injuries and/or high-energy trauma can lead to serious intracranial and spinal cord injury. Comprehensive orthopedic and neurosurgeons management must follow the recognition of these anomalies. To the best of our knowledge, no previous CT studies of the spine have been published in patients with SCD.

  1. [Why controlled studies may lead to misleading and unconfirmed therapeutic concepts--a critical view of evidence-based medicine].

    PubMed

    Flachskampf, F A

    2002-03-01

    The concept of evidence-based medicine has gathered widespread support during recent years. While this concept has clear merits in compiling and qualifying up-to-date information for clinical decisions, it should be viewed with caution as the sole valid knowledge source for clinical decision-making. The limitations of such an approach are particularly striking when reviewing two key developments in modern cardiology, fibrinolysis and acute percutaneous intervention in acute myocardial infarction. In both cases, early studies and meta-analyses showed no benefit for these therapeutic interventions over earlier treatment. Only after further refinement (mainly in dosage, time window, concomitant heparin therapy for fibrinolysis, and the introduction of stents and IIb/IIIa inhibitors for acute intervention) did these therapies become universally acknowledged. It is therefore crucial to understand that especially for physicians actively participating in the development of a clinical field clinical decisions cannot be exclusively based on published evidence. Another important problem to consider is the time gap between the emergence of new therapies and the publication and reception by the medical audience, in particular in rapidly evolving fields as cardiology. While it is clear that clinical decision-making must be backed by solid knowledge of the published evidence, in particular the specialist involved in-depth in the field may use not yet proven therapeutic concepts and measures to the patient's advantage.

  2. An extended laser flash technique for thermal diffusivity measurement of high-temperature materials

    NASA Technical Reports Server (NTRS)

    Shen, F.; Khodadadi, J. M.

    1993-01-01

    Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the thermal diffusivity of high-temperature solid samples of pure Nickel and Inconel 718 superalloys are presented. Preliminary measurements showing surface temperature histories are discussed.

  3. The experimental evaluation and application of high-temperature solid lubricants. Ph.D. Thesis - Case Western Reserve Univ., 1989 Final Report

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1990-01-01

    A research program is described which developes an understanding of high-temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high-temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid lubricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these seal materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials.

  4. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction.

    PubMed

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St + = 24 and the particle Reynolds number Re p = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y + = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  5. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction

    PubMed Central

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-01-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors’ knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced. PMID:29104418

  6. Structure and transport properties of nanostructured materials.

    PubMed

    Sonwane, C G; Li, Q

    2005-03-31

    In the present manuscript, we have presented the simulation of nanoporous aluminum oxide using a molecular-dynamics approach with recently developed dynamic charge transfer potential using serial/parallel programming techniques (Streitz and Mintmire Phys. Rev. B 1994, 50, 11996). The structures resembling recently invented ordered nanoporous crystalline material, MCM-41/SBA-15 (Kresge et al. Nature 1992, 359, 710), and inverted porous solids (hollow nanospheres) with up to 10 000 atoms were fabricated and studied in the present work. These materials have been used for separation of gases and catalysis. On several occasions including the design of the reactor, the knowledge of surface diffusion is necessary. In the present work, a new method for estimating surface transport of gases based on a hybrid Monte Carlo method with unbiased random walk of tracer atom on the pore surface has been introduced. The nonoverlapping packings used in the present work were fabricated using an algorithm of very slowly settling rigid spheres from a dilute suspension into a randomly packed bed. The algorithm was modified to obtain unimodal, homogeneous Gaussian and segregated bimodal porous solids. The porosity of these solids was varied by densification using an arbitrary function or by coarsening from a highly densified pellet. The surface tortuosity for the densified solids indicated an inverted bell shape curve consistent with the fact that at very high porosities there is a reduction in the connectivity while at low porosities the pores become inaccessible or dead-end. The first passage time distribution approach was found to be more efficient in terms of computation time (fewer tracer atoms needed for the linearity of Einstein's plot). Results by hybrid discrete-continuum simulations were close to the discrete simulations for a boundary layer thickness of 5lambda.

  7. Generic immunosuppression in solid organ transplantation: a Canadian perspective.

    PubMed

    Harrison, Jennifer J; Schiff, Jeffrey R; Coursol, Christian J; Daley, Christopher J A; Dipchand, Anne I; Heywood, Norine M; Keough-Ryan, Tammy M; Keown, Paul A; Levy, Gary A; Lien, Dale C; Wichart, Jenny R; Cantarovich, Marcelo

    2012-04-15

    The introduction of generic immunosuppressant medications may present an opportunity for cost savings in solid organ transplantation if equivalent clinical outcomes to the branded counterparts can be achieved. An interprofessional working group of the Canadian Society of Transplantation was established to develop recommendations on the use of generic immunosuppression in solid organ transplant recipients (SOTR) based on a review of the available data. Under current Health Canada licensing requirements, a demonstration of bioequivalence with the branded formulation in healthy volunteers allows for bridging of clinical data. Cyclosporine, tacrolimus, and sirolimus are designated as "critical dose drugs" and are held to stricter criteria. However, whether this provides sufficient guarantee of therapeutic equivalence in SOTR remains controversial, and failure to maintain an appropriate balance of immunosuppression may have serious consequences, including rejection, graft loss, and death. Published evidence supporting therapeutic equivalence of generic formulations in SOTR is lacking. Moreover, in the setting of multiple generic formulations the potential for uncontrolled product switching is a major concern, since generic preparations are not required to demonstrate bioequivalence with each other. Although close monitoring is recommended with any change in formulation, drug product switches are likely to occur without prescriber knowledge and may pose a significant patient safety risk. The advent of generic immunosuppression will require new practices including more frequent therapeutic drug and clinical monitoring, and increased patient education. The additional workload placed on transplant centers without additional funding will create challenges and could ultimately jeopardize patient outcomes. Until more robust clinical data are available and adequate regulatory safeguards are instituted, caution in the use of generic immunosuppressive drugs in solid organ transplantation is warranted.

  8. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction

    NASA Astrophysics Data System (ADS)

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  9. Fundamental interfacial studies of advanced solid lubricants and their operating environments

    NASA Astrophysics Data System (ADS)

    Gilley, Kevin

    Solid lubricants are a class of materials that are utilized in applications and environments where traditional lubrication schemes cannot be implemented. A variety of materials display solid lubrication, and in this study a number of solid lubricants were investigated. Firstly, electrolessly deposited nickel boride alloys were annealed at different temperatures under a flow of oxygen. The surface chemistry, friction, and wear behavior of the coating were then investigated. It was found that when annealed above 550°C the coatings had a dramatic change in surface chemistry, where the Ni 3B had formed a thick layer of B2O3 on the surface. This oxide then reacted at ambient temperatures with moist air to form the lubricious compound H3BO3. This led to a coefficient of friction below 0.1 and a slight increase of the wear rate from 10 -8 mm3/Nm to 10-7 mm3/Nm. Secondly, the surface chemistry of advanced MoS2 based coatings that had been exposed to low earth orbit was investigated. It was found that this exposure produced the complete oxidation of the coatings. Also, exposure to the unique space environments resulted in the deposition of large amounts of contaminant SiO2 on the surface. Lastly the tribological properties of single crystal cadmium sulfide were investigated. There is nearly no knowledge of the tribological activity of cadmium sulfide in the literature, so the study was performed as an initial investigation into the material. It was discovered that cadmium sulfide did not show low friction, with a coefficient of friction of approximately 0.25, but did show low wear, with a wear rate of approximately 3x10-7 mm3/Nm.

  10. Properties of the Lunar Interior: Preliminary Results from the GRAIL Mission

    NASA Technical Reports Server (NTRS)

    Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.; hide

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission [1] has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field [2,3] while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k(sub 2). Lunar structure includes a thin crust, a thick mantle layer, a fluid outer core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future, we will search for evidence of tidal dissipation and a solid inner core using GRAIL data.

  11. Satisfaction and dissatisfaction in the work of recyclable solid waste segregators: convergent-care research.

    PubMed

    Coelho, Alexa Pupiara Flores; Beck, Carmem Lúcia Colomé; Silva, Rosângela Marion da; Prestes, Francine Cassol; Camponogara, Silviamar; Peserico, Anahlú

    2017-04-01

    describe elements that promote satisfaction and dissatisfaction in the work of recyclable solid waste segregators and conduct a nursing action focused on these elements. qualitative research, convergent-care, conducted with members of the cooperative. Data production occurred during 2015 through participation observation, semi-structured interviews, and a convergence group. Analysis comprised the phases Apprehension, Synthesis, Theorization, and Transference. four categories emerged. They showed satisfaction and dissatisfaction related to identification with tasks and work content, material and personal gains obtained from solid waste segregation, prejudice, lack of appreciation, and difficulties in interpersonal relationships. This last item, due to its importance, received a nursing action. the study contributed to the advancement of knowledge and the association of possibilities between the research performance and nursing care for workers.

  12. Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst.

    PubMed

    Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin

    2010-03-25

    Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.

  13. A Model of Solid Waste Management Based Multilateral Co-Operation in Semi-Urban Community

    ERIC Educational Resources Information Center

    Kanchanabhandhu, Chanchai; Woraphong, Seree

    2016-01-01

    The purpose of this research was to construct a model of solid waste management based on multilateral cooperation in semi-urban community. Its specific objectives were to 1) study the solid waste situation and involvement of community in the solid waste management in Wangtaku Sub-district, Muang District, Nakhon Pathom Province; 2) construct a…

  14. Dynamic interaction of two-phase debris flow with pyramidal defense structures: An optimal strategy to efficiently protecting the desired area

    NASA Astrophysics Data System (ADS)

    Kattel, Parameshwari; Kafle, Jeevan; Fischer, Jan-Thomas; Mergili, Martin; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    In this work we analyze the dynamic interaction of two phase debris flows with pyramidal obstacles. To simulate the dynamic interaction of two-phase debris flow (a mixture of solid particles and viscous fluid) with obstacles of different dimensions and orientations, we employ the general two-phase mass flow model (Pudasaini, 2012). The model consists of highly non-linear partial differential equations representing the mass and momentum conservations for both solid and fluid. Besides buoyancy, the model includes some dominant physical aspects of the debris flows such as generalized drag, virtual mass and non-Newtonian viscous stress as induced by the gradient of solid-volume-fraction. Simulations are performed with high-resolution numerical schemes to capture essential dynamics, including the strongly re-directed flow with multiple stream lines, mass arrest and debris-vacuum generation when the rapidly cascading debris mass suddenly encounters the obstacle. The solid and fluid phases show fundamentally different interactions with obstacles, flow spreading and dispersions, run-out dynamics, and deposition morphology. A forward-facing pyramid deflects the mass wider, and a rearward-facing pyramid arrests a portion of solid-mass at its front. Our basic study reveals that appropriately installed obstacles, their dimensions and orientations have a significant influence on the flow dynamics, material redistribution and redirection. The precise knowledge of the change in dynamics is of great importance for the optimal and effective protection of designated areas along the mountain slopes and the runout zones. Further important results are, that specific installations lead to redirect either solid, or fluid, or both, in the desired amounts and directions. The present method of the complex interactions of real two-phase mass flows with the obstacles may help us to construct defense structures and to design advanced and physics-based engineering solutions for the prevention and mitigation of natural hazards caused by geophysical mass flows. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  15. Solid cancer mortality associated with chronic external radiation exposure at the French atomic energy commission and nuclear fuel company.

    PubMed

    Metz-Flamant, C; Samson, E; Caër-Lorho, S; Acker, A; Laurier, D

    2011-07-01

    Studies of nuclear workers make it possible to directly quantify the risks associated with ionizing radiation exposure at low doses and low dose rates. Studies of the CEA (Commissariat à l'Energie Atomique) and AREVA Nuclear Cycle (AREVA NC) cohort, currently the most informative such group in France, describe the long-term risk to nuclear workers associated with external exposure. Our aim is to assess the risk of mortality from solid cancers among CEA and AREVA NC nuclear workers and its association with external radiation exposure. Standardized mortality ratios (SMRs) were calculated and internal Poisson regressions were conducted, controlling for the main confounding factors [sex, attained age, calendar period, company and socioeconomic status (SES)]. During the period 1968-2004, there were 2,035 solid cancers among the 36,769 CEA-AREVA NC workers. Cumulative external radiation exposure was assessed for the period 1950-2004, and the mean cumulative dose was 12.1 mSv. Mortality rates for all causes and all solid cancers were both significantly lower in this cohort than in the general population. A significant excess of deaths from pleural cancer, not associated with cumulative external dose, was observed, probably due to past asbestos exposure. We observed a significant excess of melanoma, also unassociated with dose. Although cumulative external dose was not associated with mortality from all solid cancers, the central estimated excess relative risk (ERR) per Sv of 0.46 for solid cancer mortality was higher than the 0.26 calculated for male Hiroshima and Nagasaki A-bomb survivors 50 years or older and exposed at the age of 30 years or older. The modification of our results after stratification for SES demonstrates the importance of this characteristic in occupational studies, because it makes it possible to take class-based lifestyle differences into account, at least partly. These results show the great potential of a further joint international study of nuclear workers, which should improve knowledge about the risks associated with chronic low doses and provide useful risk estimates for radiation protection.

  16. Quantitative workflow based on NN for weighting criteria in landfill suitability mapping

    NASA Astrophysics Data System (ADS)

    Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Alkhasawneh, Mutasem Sh.; Aziz, Hamidi Abdul

    2017-10-01

    Our study aims to introduce a new quantitative workflow that integrates neural networks (NNs) and multi criteria decision analysis (MCDA). Existing MCDA workflows reveal a number of drawbacks, because of the reliance on human knowledge in the weighting stage. Thus, new workflow presented to form suitability maps at the regional scale for solid waste planning based on NNs. A feed-forward neural network employed in the workflow. A total of 34 criteria were pre-processed to establish the input dataset for NN modelling. The final learned network used to acquire the weights of the criteria. Accuracies of 95.2% and 93.2% achieved for the training dataset and testing dataset, respectively. The workflow was found to be capable of reducing human interference to generate highly reliable maps. The proposed workflow reveals the applicability of NN in generating landfill suitability maps and the feasibility of integrating them with existing MCDA workflows.

  17. Formation of crystalline InGaO₃(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor.

    PubMed

    Guo, Yujie; Van Bilzen, Bart; Locquet, Jean Pierre; Seo, Jin Won

    2015-12-11

    One-dimensional single crystalline InGaO3(ZnO)n (IGZO) nanostructures have great potential for various electrical and optical applications. This paper demonstrates for the first time, to our knowledge, a non-vacuum route for the synthesis of IGZO nanowires by annealing ZnO nanowires covered with solution-based IGZO precursor. This method results in nanowires with highly periodic IGZO superlattice structure. The phase transition of IGZO precursor during thermal treatment was systematically studied. Transmission electron microscopy studies reveal that the formation of the IGZO structure is driven by anisotropic inter-diffusion of In, Ga, and Zn atoms, and also by the crystallization of the IGZO precursor. Optical measurements using cathodoluminescence and UV-vis spectroscopy confirm that the nanowires consist of the IGZO compound with wide optical band gap and suppressed luminescence.

  18. Plant comparative genetics after 10 years.

    PubMed

    Gale, M D; Devos, K M

    1998-10-23

    The past 10 years have seen the discovery of unexpected levels of conservation of gene content and gene orders over millions of years of evolution within grasses, crucifers, legumes, some trees, and Solanaceae crops. Within the grasses, which include the three 500-million-ton-plus-per-year crops (wheat, maize, and rice), and the crucifers, which include all the Brassica crops, colinearity looks good enough to do most map-based cloning only in the small genome model species, rice and Arabidopsis. Elsewhere, knowledge gained in a few major crops is being pooled and applied across the board. The extrapolation of information from the well-studied species to orphan crops, which include many tropical species, is providing a solid base for their improvement. Genome rearrangements are giving new insights into evolution. In fact, comparative genetics is the key that will unlock the secrets of crop plants with genomes larger than that of humans.

  19. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Crouse, Richard J.; And Others

    1991-01-01

    The first idea concerns a board game similar to tic-tac-toe in which the strategy involves the knowledge of the factorization of quadratic polynomials. The second game uses the calculation of the surface areas of solid figures applying the specific examples of cigar boxes and cylindrical tin cans. (JJK)

  20. The Corporate Classroom.

    ERIC Educational Resources Information Center

    Stenger, Richard S.

    1991-01-01

    In many states, schools use programs developed by industry to teach about environmental issues. Corporate-sponsored curricula appear to expose children to knowledge about nature, energy use, solid waste, and recycling, but they often actually display an incomplete and self-serving picture that is raising concern among environmentalists and…

  1. Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios

    NASA Astrophysics Data System (ADS)

    Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.

    2014-12-01

    The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.

  2. Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production.

    PubMed

    Chanona, J; Ribes, J; Seco, A; Ferrer, J

    2006-01-01

    This paper presents a model-knowledge based algorithm for optimising the primary sludge fermentation process design and operation. This is a recently used method to obtain the volatile fatty acids (VFA), needed to improve biological nutrient removal processes, directly from the raw wastewater. The proposed algorithm consists in a heuristic reasoning algorithm based on the expert knowledge of the process. Only effluent VFA and the sludge blanket height (SBH) have to be set as design criteria, and the optimisation algorithm obtains the minimum return sludge and waste sludge flow rates which fulfil those design criteria. A pilot plant fed with municipal raw wastewater was operated in order to obtain experimental results supporting the developed algorithm groundwork. The experimental results indicate that when SBH was increased, higher solids retention time was obtained in the settler and VFA production increased. Higher recirculation flow-rates resulted in higher VFA production too. Finally, the developed algorithm has been tested by simulating different design conditions with very good results. It has been able to find the optimal operation conditions in all cases on which preset design conditions could be achieved. Furthermore, this is a general algorithm that can be applied to any fermentation-elutriation scheme with or without fermentation reactor.

  3. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Potential reduction of non-residential solid waste in Sukomanunggal district West Surabaya

    NASA Astrophysics Data System (ADS)

    Warmadewanthi, I. D. A. A.; Reswari, S. A.

    2018-01-01

    Sukomanunggal district a development unit 8 with the designation as a regional trade and services, industrial, education, healthcare, offices, and shopping center. The development of this region will make an increasing solid waste generation, especially waste from non-residential facilities. The aims of this research to know the potential reduction of waste source. The method used is the Likert scale questionnaire to determine the knowledge, attitude, and behavior of non-residential facilities manager. Results from this research are the existing reduction of non-residential solid waste is 5.34%, potential reduction of the waste source is optimization of plastic and paper waste with the reduction rate up to 19,52%. The level of public participation existing amounted to 46.79% with a willingness to increase recycling efforts amounted to 72.87%. Efforts that can be developed to increase public awareness of 3R are providing three types of bins, modification of solid waste collection schedule according to a type of waste that has been sorted, the provision of the communal bin.

  5. [Preparation, quality control and thyroid molecule imaging of solid-target based radionuclide ioine-124].

    PubMed

    Zhu, H; Wang, F; Guo, X Y; Li, L Q; Duan, D B; Liu, Z B; Yang, Z

    2018-04-18

    To provide useful information for the further production and application of this novel radio-nuclide for potential clinical application. 124 Te (p,n) 124 I nuclide reaction was used for the 124 I production. Firstly, the target material, 124 TeO 2 (200 mg) and Al2O3 (30 mg) mixture, were compressed into the round platinum based solid target by tablet device. HM-20 medical cyclotron was applied to irradiate the solid target slice for 6-10 h with helium and water cooling. Then, the radiated solid target was placed for 12 h (overnight) to decay the radioactive impurity; finally, 124 I was be purified by dry distillation using 1 mL/min nitrogen for about 6 hours and radiochemical separation methods. Micro-PET imaging studies were performed to investigate the metabolism properties and thyroid imaging ability of 124 I.After 740 kBq 124 I was injected intravenously into the tail vein of the normal mice, the animals were imaged with micro-PET and infused with CT. The micro-PET/CT infusion imaging revealed actual state 124 I's metabolism in the mice. It was been successfully applied for 200 mg 124 TeO 2 plating by the tablet device on the surface of platinum. It showed smooth, dense surface and without obviously pits and cracks. The enriched 124 Te target was irradiated for 6 to 10 hours at about 12.0 MeV with 20 μA current on HM-20 cyclotron. Then 370-1 110 MBq 124 I could be produced on the solid target after irradiation and 370-740 MBq high specific activity could be collected afterdry distillation separation and radio-chemical purification. 124 I product was finally dissolved in 0.01 mol/L NaOH for the future distribution. The gamma spectrum of the produced 124 I-solution showed that radionuclide purity was over 80.0%. The micro-PET imaging of 124 I in the normal mice exhibited the thyroid and stomach accumulations and kidney metabolism, the bladder could also be clearly visible, which was in accordance with what was previously reported. To the best of our knowledge, it was the first production of 124 I report in China. In this study, the preparation of 124 TeO 2 solid target was successfully carried out by using the tablet device. After irradiation of the 124 TeO 2 solid target and radio-chemical purification, we successfully produced 370-740 MBq high specific activity 124 I by a cyclotron for biomedical application, and micro-PET imaging of 124 I in normal mice exhibited the thyroid accumulations. Also, slight uptake in stomach were also monitored with almost nonuptake in other organs in the micro-PET imaging. The production of 124 I is expected to provide a new solid target radionuclide for the scientific research and potential clinical application of our country.

  6. Determining paediatric patient thickness from a single digital radiograph-a proof of principle.

    PubMed

    Worrall, Mark; Vinnicombe, Sarah; Sutton, David G

    2018-04-05

    This work presents a proof of principle for a method of estimating the thickness of an attenuator from a single radiograph using the image, the exposure factors with which it was acquired and a priori knowledge of the characteristics of the X-ray unit and detector used for the exposure. It is intended this could be developed into a clinical tool to assist with paediatric patient dose audit, for which a measurement of patient size is required. The proof of principle used measured pixel value and effective linear attenuation coefficient to estimate the thickness of a Solid Water attenuator. The kerma at the detector was estimated using a measurement of pixel value on the image and measured detector calibrations. The initial kerma was estimated using a lookup table of measured output values. The effective linear attenuation coefficient was measured for Solid Water at varying kV p . 11 test images of known and varying thicknesses of Solid Water were acquired at 60, 70 and 81 kV p . Estimates of attenuator thickness were made using the model and the results compared to the known thickness. Estimates of attenuator thickness made using the model differed from the known thickness by 3.8 mm (3.2%) on average, with a range of 0.5-10.8 mm (0.5-9%). A proof of principle is presented for a method of estimating the thickness of an attenuator using a single radiograph of the attenuator. The method has been shown to be accurate using a Solid Water attenuator, with a maximum difference between estimated and known attenuator thickness of 10.8 mm (9%). The method shows promise as a clinical tool for estimating abdominal paediatric patient thickness for paediatric patient dose audit, and is only contingent on the type of data routinely collected by Medical Physics departments. Advances in knowledge: A computational model has been created that is capable of accurately estimating the thickness of a uniform attenuator using only the radiographic image, the exposure factors with which it was acquired and a priori knowledge of the characteristics of the X-ray unit and detector used for the exposure.

  7. An optoelectronic detecting based environment perception experiment for primer students using multiple-layer laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Shifeng; Wang, Rui; Zhang, Pengfei; Dai, Xiang; Gong, Dawei

    2017-08-01

    One of the motivations of OptoBot Lab is to train primer students into qualified engineers or researchers. The series training programs have been designed by supervisors and implemented with tutoring for students to test and practice their knowledge from textbooks. An environment perception experiment using a 32 layers laser scanner is described in this paper. The training program design and laboratory operation is introduced. The four parts of the experiments which are preparation, sensor calibration, 3D space reconstruction, and object recognition, are the participating students' main tasks for different teams. This entire program is one of the series training programs that play significant role in establishing solid research skill foundation for opto-electronic students.

  8. Why not serve an educational buffet for students? Blended learning in optics experimental education

    NASA Astrophysics Data System (ADS)

    Zhou, Ya; Hu, Yao; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Kong, Lingqin; Hao, Qun; Huang, Yifan

    2017-08-01

    When talking about higher education, it's hard not to run into a discussion on what's really better for student learning: online learning or traditional learning? Of course, the key is to offer both, and potentially emphasize blended learning as the less polarizing option. Online courses are much more flexible and less expensive, but powerless while hands-on practical capacity is involved. Traditional experimental course can maintain a fluid and solid learning process but is less productive due to its scheduled time and simplex access. In this paper, a buffet-style knowledge service mode applied in a 12-week-long project-based experimental course Optoelectronic Instrument Experiments (OIE) is discussed. Our purpose is to find a blended learning mode in experimental education.

  9. Quality of life and disease understanding: impact of attending a patient-centered cancer symposium.

    PubMed

    Padrnos, Leslie; Dueck, Amylou C; Scherber, Robyn; Glassley, Pamela; Stigge, Rachel; Northfelt, Donald; Mikhael, Joseph; Aguirre, Annette; Bennett, Robert M; Mesa, Ruben A

    2015-06-01

    To evaluate the impact of a patient-centered symposium as an educational intervention on a broad population of cancer patients. We developed a comprehensive patient symposium. Through voluntary questionnaires, we studied the impact of this cancer symposium on quality of life, cancer-specific knowledge, and symptom management among cancer patients. Symposium attendees were provided surveys prior to and 3 months following the educational intervention. Surveys included (1) EORTC-QLQ-C30; (2) disease understanding tool developed for this conference; (3) validated disease-specific questionnaires. Changes over time were assessed using McNemar's tests and paired t-tests for categorical and continuous variables, respectively. A total of 158 attendees completed the pre-convention survey. Most respondents reported at least "quite a bit" of understanding regarding treatment options, screening modalities, symptomatology, and cancer-related side effects. Attendees endorsed the least understanding of disease-related stress, risk factors, fatigue management, and legal issues related to disease/treatment. At 3 months, there was improvement in understanding (12 of 14 areas of self-reported knowledge especially regarding nutrition, and stress/fatigue management). However, no significant change was seen in QLQ-C30 functioning, fatigue, pain, or insomnia. A patient symposium, as an educational intervention improves a solid knowledge base amongst attendees regarding their disease, increases knowledge in symptom management, but may be insufficient to impact QoL as a single intervention. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. Solid Loss of Carrots During Simulated Gastric Digestion.

    PubMed

    Kong, Fanbin; Singh, R Paul

    2011-03-01

    The knowledge of solid loss kinetics of foods during digestion is crucial for understanding the factors that constrain the release of nutrients from the food matrix and their fate of digestion. The objective of this study was to investigate the solid loss of carrots during simulated gastric digestion as affected by pH, temperature, viscosity of gastric fluids, mechanical force present in stomach, and cooking. Cylindrical carrot samples were tested by static soaking method and using a model stomach system. The weight retention, moisture, and loss of dry mass were determined. The results indicated that acid hydrolysis is critical for an efficient mass transfer and carrot digestion. Internal resistance rather than external resistance is dominant in the transfer of soluble solids from carrot to gastric fluid. Increase in viscosity of gastric fluid by adding 0.5% gum (w/w) significantly increased the external resistance and decreased mass transfer rate of carrots in static soaking. When mechanical force was not present, 61% of the solids in the raw carrot samples were released into gastric fluid after 4 h of static soaking in simulated gastric juice. Mechanical force significantly increased solid loss by causing surface erosion. Boiling increased the disintegration of carrot during digestion that may favor the loss of solids meanwhile reducing the amount of solids available for loss in gastric juice. Weibull function was successfully used to describe the solid loss of carrot during simulated digestion. The effective diffusion coefficients of solids were calculated using the Fick's second law of diffusion for an infinite cylinder, which are between 0.75 × 10(-11) and 8.72 × 10(-11) m(2)/s, depending on the pH of the gastric fluid.

  11. A double medium model for diffusion in fluid-bearing rock

    NASA Astrophysics Data System (ADS)

    Wang, H. F.

    1993-09-01

    The concept of a double porosity medium to model fluid flow in fractured rock has been applied to model diffusion in rock containing a small amount of a continuous fluid phase that surrounds small volume elements of the solid matrix. The model quantifies the relative role of diffusion in the fluid and solid phases of the rock. The fluid is the fast diffusion path, but the solid contains the volumetrically significant amount of the diffusing species. The double medium model consists of two coupled differential equations. One equation is the diffusion equation for the fluid concentration; it contains a source term for change in the average concentration of the diffusing species in the solid matrix. The second equation represents the assumption that the change in average concentration in a solid element is proportional to the difference between the average concentration in the solid and the concentration in the fluid times the solid-fluid partition coefficient. The double medium model is shown to apply to laboratory data on iron diffusion in fluid-bearing dunite and to measured oxygen isotope ratios at marble-metagranite contacts. In both examples, concentration profiles are calculated for diffusion taking place at constant temperature, where a boundary value changes suddenly and is subsequently held constant. Knowledge of solid diffusivities can set a lower bound to the length of time over which diffusion occurs, but only the product of effective fluid diffusivity and time is constrained for times longer than the characteristic solid diffusion time. The double medium results approach a local, grain-scale equilibrium model for times that are large relative to the time constant for solid diffusion.

  12. Enhanced solubility and bioavailability of sibutramine base by solid dispersion system with aqueous medium.

    PubMed

    Li, Dong Xun; Jang, Ki-Young; Kang, Wonku; Bae, Kyoungjin; Lee, Mann Hyung; Oh, Yu-Kyoung; Jee, Jun-Pil; Park, Young-Joon; Oh, Dong Hoon; Seo, Youn Gee; Kim, Young Ran; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon

    2010-01-01

    To develop a novel sibutramine base-loaded solid dispersion with improved solubility bioavailability, various solid dispersions were prepared with water, hydroxypropylmethyl cellulose (HPMC), poloxamer and citric acid using spray-drying technique. The effect of HPMC, poloxamer and citric acid on the aqueous solubility of sibutramine was investigated. The physicochemical properties of solid dispersion were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction. The dissolution and pharmacokinetics in rats of solid dispersion were evaluated compared to the sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The sibutramine base-loaded solid dispersion gave two type forms. Like conventional solid dispersion system, one type appeared as a spherical shape with smooth surface, as the carriers and drug with relatively low melting point were soluble in water and formed it. The other appeared as an irregular form with relatively rough surface. Unlike conventional solid dispersion system, this type changed no crystalline form of drug. Our results suggested that this type was formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting from changing the hydrophobic drug to hydrophilic form. The sibutramine-loaded solid dispersion at the weight ratio of sibutramine base/HPMC/poloxamer/citric acid of 5/3/3/0.2 gave the maximum drug solubility of about 3 mg/ml. Furthermore, it showed the similar plasma concentration, area under the curve (AUC) and C(max) of parent drug, metabolite I and II to the commercial product, indicating that it might give the similar drug efficacy compared to the sibutramine hydrochloride monohydrate-loaded commercial product in rats. Thus, this solid dispersion system would be useful to deliver poorly water-soluble sibutramine base with enhanced bioavailability.

  13. High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon.

    PubMed

    Notohara, Hiroo; Urita, Koki; Yamamura, Hideyuki; Moriguchi, Isamu

    2018-06-08

    Extensive research efforts are devoted to development of high performance all-solid-state lithium ion batteries owing to their potential in not only improving safety but also achieving high stability and high capacity. However, conventional approaches based on a fabrication of highly dense electrode and solid electrolyte layers and their close contact interface is not always applicable to high capacity alloy- and/or conversion-based active materials such as SnO 2 accompanied with large volume change in charging-discharging. The present work demonstrates that SnO 2 -embedded nanoporous carbons without solid electrolyte inside the nanopores are a promising candidate for high capacity and stable anode material of all-solid-state battery, in which the volume change reactions are restricted in the nanopores to keep the constant electrode volume. A prototype all-solid-state full cell consisting of the SnO 2 -based anode and a LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 -based cathode shows a good performance of 2040 Wh/kg at 268.6 W/kg based on the anode material weight.

  14. Applied Electronics and Optical Laboratory: an optimized practical course for comprehensive training on optics and electronics

    NASA Astrophysics Data System (ADS)

    Wang, Kaiwei; Wang, Xiaoping

    2017-08-01

    In order to enhance the practical education and hands-on experience of optoelectronics and eliminate the overlapping contents that previously existed in the experiments section adhering to several different courses, a lab course of "Applied Optoelectronics Laboratory" has been established in the College of Optical Science and Engineering, Zhejiang University. The course consists of two sections, i.e., basic experiments and project design. In section 1, basic experiments provide hands-on experience with most of the fundamental concept taught in the corresponding courses. These basic experiments including the study of common light sources such as He-Ne laser, semiconductor laser and solid laser and LED; the testing and analysis of optical detectors based on effects of photovoltaic effect, photoconduction effect, photo emissive effect and array detectors. In section 2, the course encourages students to build a team and establish a stand-alone optical system to realize specific function by taking advantage of the basic knowledge learned from section 1. Through these measures, students acquired both basic knowledge and the practical application skills. Moreover, interest in science has been developed among students.

  15. Emerging evidence for CHFR as a cancer biomarker: from tumor biology to precision medicine.

    PubMed

    Derks, Sarah; Cleven, Arjen H G; Melotte, Veerle; Smits, Kim M; Brandes, Johann C; Azad, Nilofer; van Criekinge, Wim; de Bruïne, Adriaan P; Herman, James G; van Engeland, Manon

    2014-03-01

    Novel insights in the biology of cancer have switched the paradigm of a "one-size-fits-all" cancer treatment to an individualized biology-driven treatment approach. In recent years, a diversity of biomarkers and targeted therapies has been discovered. Although these examples accentuate the promise of personalized cancer treatment, for most cancers and cancer subgroups no biomarkers and effective targeted therapy are available. The great majority of patients still receive unselected standard therapies with no use of their individual molecular characteristics. Better knowledge about the underlying tumor biology will lead the way toward personalized cancer treatment. In this review, we summarize the evidence for a promising cancer biomarker: checkpoint with forkhead and ring finger domains (CHFR). CHFR is a mitotic checkpoint and tumor suppressor gene, which is inactivated in a diverse group of solid malignancies, mostly by promoter CpG island methylation. CHFR inactivation has shown to be an indicator of poor prognosis and sensitivity to taxane-based chemotherapy. Here we summarize the current knowledge of altered CHFR expression in cancer, the impact on tumor biology and implications for personalized cancer treatment.

  16. Test bench for measurements of NOvA scintillator properties at JINR

    NASA Astrophysics Data System (ADS)

    Velikanova, D. S.; Antoshkin, A. I.; Anfimov, N. V.; Samoylov, O. B.

    2018-04-01

    The NOvA experiment was built to study oscillation parameters, mass hierarchy, CP- violation phase in the lepton sector and θ23 octant, via vɛ appearance and vμ disappearance modes in both neutrino and antineutrino beams. These scientific goals require good knowledge about NOvA scintillator basic properties. The new test bench was constructed and upgraded at JINR. The main goal of this bench is to measure scintillator properties (for solid and liquid scintillators), namely α/β discrimination and Birk's coefficients for protons and other hadrons (quenching factors). This knowledge will be crucial for recovering the energy of the hadronic part of neutrino interactions with scintillator nuclei. α/β discrimination was performed on the first version of the bench for LAB-based and NOvA scintillators. It was performed again on the upgraded version of the bench with higher statistic and precision level. Preliminary result of quenching factors for protons was obtained. A technical description of both versions of the bench and current results of the measurements and analysis are presented in this work.

  17. Geology and photometric variation of solar system bodies with minor atmospheres: implications for solid exoplanets.

    PubMed

    Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-09-01

    A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets.

  18. Geology and Photometric Variation of Solar System Bodies with Minor Atmospheres: Implications for Solid Exoplanets

    PubMed Central

    Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-01-01

    Abstract A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5–50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments—Planetary geology—Solar System—Extrasolar terrestrial planets. Astrobiology 14, 753–768. PMID:25238324

  19. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall

    2016-03-21

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface ismore » adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.« less

  20. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles.

    PubMed

    Zhang, Ying; Kuang, Min; Zhang, Lijuan; Yang, Pengyuan; Lu, Haojie

    2013-06-04

    In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.

  1. Application of life cycle assessment for hospital solid waste management: A case study.

    PubMed

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz

    2016-10-01

    This study was meant to determine environmental aspects of hospital waste management scenarios using a life cycle analysis approach. The survey for this study was conducted at the largest hospital in a major city of Pakistan. The hospital was thoroughly analyzed from November 2014 to January 2015 to quantify its wastes by category. The functional unit of the study was selected as 1 tonne of disposable solid hospital waste. System boundaries included transportation of hospital solid waste and its treatment and disposal by landfilling, incineration, composting, and material recycling methods. These methods were evaluated based on their greenhouse gas emissions. Landfilling and incineration turned out to be the worst final disposal alternatives, whereas composting and material recovery displayed savings in emissions. An integrated system (composting, incineration, and material recycling) was found as the best solution among the evaluated scenarios. This study can be used by policymakers for the formulation of an integrated hospital waste management plan. This study deals with environmental aspects of hospital waste management scenarios. It is an increasing area of concern in many developing and resource-constrained countries of the world. The life cycle analysis (LCA) approach is a useful tool for estimation of greenhouse gas emissions from different waste management activities. There is a shortage of information in existing literature regarding LCA of hospital wastes. To the best knowledge of the authors this work is the first attempt at quantifying the environmental footprint of hospital waste in Pakistan.

  2. Multi-Disciplinary Design Optimization Using WAVE

    NASA Technical Reports Server (NTRS)

    Irwin, Keith

    2000-01-01

    The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.

  3. ForM@Ter: a French Solid Earth Research Infrastructure Project

    NASA Astrophysics Data System (ADS)

    Mandea, M.; Diament, M.; Jamet, O.; Deschamps-Ostanciaux, E.

    2017-12-01

    Recently, some noteworthy initiatives to develop efficient research e-infrastructures for the study of the Earth's system have been set up. However, some gaps between the data availability and their scientific use still exists, either because technical reasons (big data issues) or because of the lack of a dedicated support in terms of expert knowledge of the data, software availability, or data cost. The need for thematic cooperative platforms has been underlined over the last years, as well as the need to create thematic centres designed to federate the scientific community of Earth's observation. Four thematic data centres have been developed in France, covering the domains of ocean, atmosphere, land, and solid Earth sciences. For the Solid Earth science community, a research infrastructure project named ForM@Ter was launched by the French Space Agency (CNES) and the National Centre for Scientific Research (CNRS), with the active participation of the National institute for geographical and forestry information (IGN). Currently, it relies on the contributions of scientists from more than 20 French Earth science laboratories.Preliminary analysis have showed that a focus on the determination of the shape and movements of the Earth surface (ForM@Ter: Formes et Mouvements de la Terre) can federate a wide variety of scientific areas (earthquake cycle, tectonics, morphogenesis, volcanism, erosion dynamics, mantle rheology, geodesy) and offers many interfaces with other geoscience domains, such as glaciology or snow evolution. This choice motivates the design of an ambitious data distribution scheme, including a wide variety of sources - optical imagery, SAR, GNSS, gravity, satellite altimetry data, in situ observations (inclinometers, seismometers, etc.) - as well as a wide variety of processing techniques. In the evolving context of the current and forthcoming national and international e-infrastructures, the challenge of the project is to design a non-redundant service based on interoperations with existing services, and to cope with highly complex data flows due to the granularity of the data and its associated knowledge. Here, a presentation of the project status and of the first available operational functionalities is foreseen.

  4. Note: design and development of improved indirectly heated cathode based strip electron gun.

    PubMed

    Maiti, Namita; Bade, Abhijeet; Tembhare, G U; Patil, D S; Dasgupta, K

    2015-02-01

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.

  5. Note: Design and development of improved indirectly heated cathode based strip electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, Namita; Patil, D. S.; Dasgupta, K.

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor themore » non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.« less

  6. Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries.

    PubMed

    Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won

    2017-12-13

    Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.

  7. 40 CFR 262.11 - Hazardous waste determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste determination. 262.11 Section 262.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Administrator under 40 CFR 260.21; or (2) Applying knowledge of the hazard characteristic of the waste in light...

  8. 40 CFR 281.41 - Requirements for enforcement authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for enforcement authority. 281.41 Section 281.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... for each day of violation. (b) The burden of proof and degree of knowledge or intent required under...

  9. Liter - Metric Volume.

    ERIC Educational Resources Information Center

    Sisk, Diane

    This autoinstructional program, developed as part of a general science course, is offered for students in the middle schools. Mathematics of fractions and decimals is considered to be prerequisite knowledge. The behavioral objectives are directed toward mastery of determining volumes of solid objects using the water displacement method as well as…

  10. A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: myricetin cocrystals and a ternary phase diagram.

    PubMed

    Hong, Chao; Xie, Yan; Yao, Yashu; Li, Guowen; Yuan, Xiurong; Shen, Hongyi

    2015-01-01

    To develop a streamlined strategy for pharmaceutical cocrystal preparation without knowledge of the stoichiometric ratio by preparing and characterizing the cocrystals of myricetin (MYR) with four cocrystal coformers (CCF). An approach based on the phase solubility diagram (PSD) was used for MYR cocrystals preparation and the solid-state properties were characterized by differential scanning calorimetry (DSC), fourier transform-infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The ternary phase diagram (TPD) was constructed by combining the PSD and nuclear magnetic resonance (NMR) data. After that, the TPD was verified by traditional methods. The dissolution of MYR in the four cocrystals and pure MYR within three different media were also evaluated. A simple research method for MYR cocrystal preparation was obtained as follows: first, the PSD of MYR and CCF was constructed and analyzed; second, by transforming the curve in the PSD to a TPD, a region of pure cocrystals formation was exhibited, and then MYR cocrystals were prepared and identified by DSC, FT-IR, PXRD, and SEM; third, with the composition of the prepared cocrystal from NMR, the TPD of the MYR-CCF-Solvent system was constructed. The powder dissolution data showed that the solubility and dissolution rate of MYR was significantly enhanced by the cocrystals. A novel strategy for pharmaceutical cocrystals preparation without knowledge of the stoichiometric ratio based on the TPD was established and MYR cocrystals were successfully prepared. The present study provides a systematic approach for pharmaceutical cocrystal generation, which benefits the development and application of cocrystal technology in drug delivery.

  11. Implementation and research priorities for FCTC Articles 13 and 16: tobacco advertising, promotion, and sponsorship and sales to and by minors.

    PubMed

    Nagler, Rebekah H; Viswanath, Kasisomayajula

    2013-04-01

    Article 13 of the Framework Convention on Tobacco Control (FCTC) calls for a comprehensive ban on tobacco advertising, promotion, and sponsorship (TAPS), and Article 16 calls for prohibition of tobacco sales to and by minors. Although these mandates are based on sound science, many countries have found provision implementation to be rife with challenges. This paper reviews the history of tobacco marketing and minor access restrictions in high-, middle-, and low-income countries, identifying past challenges and successes. We consider current challenges to FCTC implementation, how these barriers can be addressed, and what research is necessary to support such efforts. Specifically, we identify implementation and research priorities for FCTC Articles 13 and 16. Although a solid evidence base underpins the FCTC's call for TAPS bans and minor access restrictions, we know substantially less about how best to implement these restrictions. Drawing on the regulatory experiences of high-, middle-, and low-income countries, we discern several implementation and research priorities, which are organized into 4 categories: policy enactment and enforcement, human capital expertise, the effects of FCTC marketing and youth access policies, and knowledge exchange and transfer among signatories. Future research should provide detailed case studies on implementation successes and failures, as well as insights into how knowledge of successful restrictions can be translated into tobacco control policy and practice and shared among different stakeholders. Tobacco marketing surveillance, sales-to-minors compliance checks, enforcement and evaluation of restriction policies, and capacity building and knowledge transfer are likely to prove central to effective implementation.

  12. Creation of an optically tunable, solid tissue phantom for use in cancer detection

    NASA Astrophysics Data System (ADS)

    Tucker, Matthew B.; Wallace, Catherine; Mantena, Sreekar; Cornwell, Neil; Ross, Weston; Odion, Ren; Vo-Dinh, Tuan; Codd, Patrick

    2018-02-01

    An optically tunable, solid tissue phantom was developed in order to aid in the verification and validation of non-destructive cancer detection technologies based on fluorescence spectroscopy. The solid tissue phantom contained agarose, hemoglobin, Intralipid, NADH, and FAD. The redox ratio of the solid phantoms were shown to be tunable; thus, indicating that these phantoms could be used to tailor specific optical conditions that mimic cancerous and healthy tissues. Therefore, this solid tissue phantom can serve as a suitable test bed to evaluate fluorescence spectroscopy based cancer detection devices.

  13. Applications of tribology to determine attrition by wear of particulate solids in CFB systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayham, Samuel C.; Breault, Ronald; Monazam, Esmail

    In recent years, much attention has been focused on the development of novel technologies for carbon capture and chemicals production that utilize a circulating fluidized bed (CFB) configuration; examples include chemical looping combustion and circulation of temperature swing adsorbents in a CFB configuration for CO 2 capture. A major uncertainty in determining the economic feasibility of these technologies is the required solids makeup rate, which, among other factors, is due to impact and wear attrition at various locations, including standpipes, cyclones, and the gas jets in fluid beds. While correlations have been developed that estimate the attrition rates at thesemore » areas, these correlations are dependent on constants that are uncertain without extensive experiment in the corresponding unit operation. Thus, it is difficult to determine the attrition rate a priori without performing extensive experiments on the materials or scaling up entirely. In this work, the authors outline a methodology for predictive attrition based on fundamental material properties from fields of tribology—specifically, the study of wear—to the knowledge of forces and sliding distances determined from hydrodynamic models to develop basic attrition models for novel CFB systems. The equations are derived for the standpipe and cyclone, which are common components found in CFBs, and the cyclone equation is compared to experimental data of attrition in the literature. The cyclone equation derived in this work results in an abrasion rate based on (1) material properties such as particle density and hardness, (2) inlet velocity, and (3) cyclone geometry. According to this equation, increasing the diameter of the cyclone and the solids inlet velocity tends to increase the rate of abrasion of the catalyst, while decreasing the hardness increases the abrasion rate. The functionality of the increasing attrition rate with velocity increase implies that increasing the efficiency of the cyclone may also increase the attrition rate via abrasion. With modifications to the severity coefficient term to include the solids loading, the cyclone equation derived in this work fits data from Reppenhagen and Werther with a coefficient of determination (R2) of 92%.« less

  14. Applications of tribology to determine attrition by wear of particulate solids in CFB systems

    DOE PAGES

    Bayham, Samuel C.; Breault, Ronald; Monazam, Esmail

    2016-11-03

    In recent years, much attention has been focused on the development of novel technologies for carbon capture and chemicals production that utilize a circulating fluidized bed (CFB) configuration; examples include chemical looping combustion and circulation of temperature swing adsorbents in a CFB configuration for CO 2 capture. A major uncertainty in determining the economic feasibility of these technologies is the required solids makeup rate, which, among other factors, is due to impact and wear attrition at various locations, including standpipes, cyclones, and the gas jets in fluid beds. While correlations have been developed that estimate the attrition rates at thesemore » areas, these correlations are dependent on constants that are uncertain without extensive experiment in the corresponding unit operation. Thus, it is difficult to determine the attrition rate a priori without performing extensive experiments on the materials or scaling up entirely. In this work, the authors outline a methodology for predictive attrition based on fundamental material properties from fields of tribology—specifically, the study of wear—to the knowledge of forces and sliding distances determined from hydrodynamic models to develop basic attrition models for novel CFB systems. The equations are derived for the standpipe and cyclone, which are common components found in CFBs, and the cyclone equation is compared to experimental data of attrition in the literature. The cyclone equation derived in this work results in an abrasion rate based on (1) material properties such as particle density and hardness, (2) inlet velocity, and (3) cyclone geometry. According to this equation, increasing the diameter of the cyclone and the solids inlet velocity tends to increase the rate of abrasion of the catalyst, while decreasing the hardness increases the abrasion rate. The functionality of the increasing attrition rate with velocity increase implies that increasing the efficiency of the cyclone may also increase the attrition rate via abrasion. With modifications to the severity coefficient term to include the solids loading, the cyclone equation derived in this work fits data from Reppenhagen and Werther with a coefficient of determination (R2) of 92%.« less

  15. Observation of multiple dielectric relaxations in BaTiO3-Bi(Li1/3Ti2/3)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Zhou, Changrong; Feteira, Antonio

    2017-11-01

    Dense (1 - x)BaTiO3- xBi(Li1/3Ti2/3)O3 ceramics were fabricated by the solid state reaction route. Powder X-ray diffraction analyses revealed an increase in the unit cell volume with increasing x and a change on the average crystal structure from tetragonal (space group P4mm) to cubic ( Pm\\bar{3}m ) at x > 0.10. Raman spectroscopy analyses corroborated a change of symmetry, but also showed the local structure for x > 0.10 to be inconsistent with the centrosymmetric ( Pm\\bar{3}m ) space group. The dielectric measurements revealed for the first time, to our knowledge, a double relaxor behaviour in a BaTiO3-based solid solution. Basically, with increasing x, the sharp ferroelectric anomaly at the Curie temperature ( T c) shifts towards lower temperatures until a relaxor-type response is observed, but simultaneously, another relaxation emerges above T c. The first arises from poor coupling between polar nanoregions, whereas the later obeys the Arrhenius Law and may be associated either with a defect-dipole reorientation or a Skanavi-type mechanism.

  16. Identifying Twice-Exceptional Children and Three Gifted Styles in the Japanese Primary Science Classroom

    NASA Astrophysics Data System (ADS)

    Sumida, Manabu

    2010-10-01

    Children with mild developmental disorders sometimes show giftedness. In this study, an original checklist was developed to identify gifted characteristics specific to science learning among twice-exceptional primary school children in Japan. The checklist consisted of 60 items on Attitudes, Thinking, Skills, and Knowledge/Understanding. A total of 86 children from eight primary schools in an urban area in Japan, 50% of whom had Learning Disabilities (LD), Attention Deficit/Hyperactivity Disorder (ADHD), and/or High-functioning Autism (HA), were observed using the checklist. Factor analysis revealed three factors. A cluster analysis with the subscale points of each factor identified three "gifted styles" in science. These were: (1) Spontaneous Style; (2) Expert Style; and (3) Solid Style. LD/ADHD/HA children characteristically displayed a Spontaneous Style while the non- LD/ADHD/HA children were characterized by the Solid Style. In both subject groups, the number of Expert Style children was the lowest with no significant difference in their numbers. Based on the results of this research, this paper discusses the implications of the findings for teaching science to twice-exceptional children and argues the benefits of inclusive science education for children with and without mild developmental disorders.

  17. The mechanics and design of a lightweight three-dimensional graphene assembly

    PubMed Central

    Qin, Zhao; Jung, Gang Seob; Kang, Min Jeong; Buehler, Markus J.

    2017-01-01

    Recent advances in three-dimensional (3D) graphene assembly have shown how we can make solid porous materials that are lighter than air. It is plausible that these solid materials can be mechanically strong enough for applications under extreme conditions, such as being a substitute for helium in filling up an unpowered flight balloon. However, knowledge of the elastic modulus and strength of the porous graphene assembly as functions of its structure has not been available, preventing evaluation of its feasibility. We combine bottom-up computational modeling with experiments based on 3D-printed models to investigate the mechanics of porous 3D graphene materials, resulting in new designs of carbon materials. Our study reveals that although the 3D graphene assembly has an exceptionally high strength at relatively high density (given the fact that it has a density of 4.6% that of mild steel and is 10 times as strong as mild steel), its mechanical properties decrease with density much faster than those of polymer foams. Our results provide critical densities below which the 3D graphene assembly starts to lose its mechanical advantage over most polymeric cellular materials. PMID:28070559

  18. Phenomenological study of decoherence in solid-state spin qubits due to nuclear spin diffusion

    NASA Astrophysics Data System (ADS)

    Biercuk, Michael J.; Bluhm, Hendrik

    2011-06-01

    We present a study of the prospects for coherence preservation in solid-state spin qubits using dynamical decoupling protocols. Recent experiments have provided the first demonstrations of multipulse dynamical decoupling sequences in this qubit system, but quantitative analyses of potential coherence improvements have been hampered by a lack of concrete knowledge of the relevant noise processes. We present calculations of qubit coherence under the application of arbitrary dynamical decoupling pulse sequences based on an experimentally validated semiclassical model. This phenomenological approach bundles the details of underlying noise processes into a single experimentally relevant noise power spectral density. Our results show that the dominant features of experimental measurements in a two-electron singlet-triplet spin qubit can be replicated using a 1/ω2 noise power spectrum associated with nuclear spin flips in the host material. Beginning with this validation, we address the effects of nuclear programming, high-frequency nuclear spin dynamics, and other high-frequency classical noise sources, with conjectures supported by physical arguments and microscopic calculations where relevant. Our results provide expected performance bounds and identify diagnostic metrics that can be measured experimentally in order to better elucidate the underlying nuclear spin dynamics.

  19. Still's Disease in a Pediatric Patient after Liver Transplantation.

    PubMed

    Meza, Juan-Carlos; Muñoz-Buitrón, Evelyn; Bonilla-Abadía, Fabio; Cañas, Carlos Alberto; Tobón, Gabriel J

    2013-01-01

    Still's disease (SD) is a multisystemic inflammatory disease characterized by persistent arthritis and in many cases with fever of unknown origin. Diagnosis of SD is challenging because of nonspecific characteristics and especially in the case of a patient with solid organ transplantation and immunosuppressive therapy where multiple causes of fever are possible. There is no diagnostic test for SD, even though some useful diagnostic criteria or laboratory findings, such as serum ferritin levels, have been proposed, and useful imaging studies for the diagnosis or followup of SD have not been developed. We report the case of a 9-year-old child who presented with high grade fever associated with joint pain after a history of liver transplantation and immunosuppressive therapy. Laboratory tests showed increased acute phase reactants, elevated ferritin, and leukocytosis. An 18 F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) was performed identifying abnormal hypermetabolic areas localized in spleen, transplanted liver, and bone marrow secondary to inflammatory process. All infectious, autoimmune, and malignant causes were ruled out. A diagnosis of SD was performed and a steroid-based regimen was initiated with adequate response and no evidence of recurrence. To our knowledge this is the first case of SD following a solid organ transplant.

  20. Mobility of Heavy Metals (Pb, Cd, Zn) in the Pampeano and Puelche Aquifers, Argentina: Partition and Retardation Coefficients.

    PubMed

    Jakomin, L M; Marbán, L; Grondona, S; Glok Galli, M; Martínez, D E

    2015-09-01

    The prediction about metals behaviour in soil requires knowledge on their solid-liquid partitioning. Usually it is expressed with an empirical distribution coefficient or Kd, which gives the ratio of the metal concentration in the solid phase to that in the solution. Kd values have been determined for Zn, Pb and Cd from samples representing the two most exploited aquifers in Argentina, Pampeano and Puelche, at three different locations in the province of Buenos Aires. The Pampeano aquifer presented higher Kd values than the Puelche aquifer. Comparing Kd values, different relationships could be observed: (a) Pampeano aquifer: Pb > Zn > Cd, and (b) Puelche aquifer: Pb > Cd > Zn. Kd for Cd seems to be linked to cationic exchange capacity, but solid phases precipitation can be more determining for Pb and Zn.

  1. A Month of Breastfeeding Associated with Greater Adherence to Pediatric Nutrition Guidelines

    PubMed Central

    Khalessi, Ali; Reich, Stephanie M.

    2013-01-01

    Background Research has shown that both breastfeeding and delaying the introduction of solids or liquids other than breast milk protect against obesity later in early childhood. Objectives To compare whether breastfeeding mothers adhere to more of the American Academy of Pediatrics (AAP) feeding recommendations for infants. Method This longitudinal study compared the breastfeeding knowledge, intentions, and practices as well as complementary feeding choices of 163 ethnically diverse, primiparous women over the first 18 months of motherhood. Results Although almost all women knew about the health benefits of (98%) breastfeeding and intended to (98%) breastfeed, only 85% initiated and 51% continued beyond 4 weeks. Breastfeeding for longer durations was associated with better feeding choices. Mothers who breastfed for more weeks were more likely to adhere to AAP guidelines on liquids other than breast milk at 4, 6, and 12 months, and introduce solids, liquids other than breast milk, and other complimentary foods at later ages. Furthermore, mothers who breastfed for less than 1 month were more likely to introduce solids by 2 months in comparison to mothers who breastfed for 1 month or more (OR=3.22). Conclusion Knowledge and intentions do not explain breastfeeding initiation or continuation. However, when women committed to more weeks of breastfeeding, especially more than 4 weeks, they made better nutrition choices for their infants. PMID:24062596

  2. Early Recurrence of a Solid Variant of Aneurysmal Bone Cyst in a Young Child After Resection: Technique and Literature Review and Two-year Follow-up After Corpectomy.

    PubMed

    Samir Barakat, Ahmed; Alsingaby, Hisham; Shousha, Mootaz; El Saghir, Hesham; Boehm, Heinrich

    2018-05-15

    Aneurysmal bone cysts (ABCs) are considered to be rare benign tumors that may affect long bones or the vertebral column. Their incidence varies and is reported to be 1.4% of all benign skeletal tumors. The solid-variant aneurysmal bone cyst (S-ABC) is even rarer and constitutes 3.5% to 7% of all vertebral ABCs. We report the case of an Enneking stage 3 S-ABC in a 5-year-old boy at C7 that showed rapid local recurrence after primary excision from posterior and dorsal stabilization requiring ventral corpectomy and posterior excision of the right lateral mass and right posterolateral fusion. Histologic examination disclosed an S-ABC. To our knowledge, this is the first case of S-ABC described in the literature that used both anterior and posterior approaches and complete corpectomy. Over a 2-year period, the patient showed no radiologic or clinical signs of local recurrence with excellent neurologic function. Solid-variant aneurysmal bone cysts are difficult to diagnose and treat, and careful clinical and radiologic assessment should be done to tailor an appropriate surgical plan to prevent recurrence and neurologic sequelae. To the best of our knowledge, there are to date no publications that studied the behavior of this subtype.

  3. Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.

    PubMed

    Fröhlich, Holger; Bahamondez, Gloria; Götschel, Frank; Korf, Ulrike

    2015-01-01

    Aberrant activation of sonic Hegdehog (SHH) signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs). To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina) and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays). We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors.

  4. Current knowledge on Mycobacterium leprae transmission: a systematic literature review.

    PubMed

    Bratschi, Martin W; Steinmann, Peter; Wickenden, Anna; Gillis, Thomas P

    2015-06-01

    Summary The transmission pathways of Mycobacterium leprae are not fully understood. Solid evidence exists for an increased risk for individuals living in close contact with leprosy patients but the existence of zoonotic leprosy, environmental reservoirs and trauma-related transmission has also been established. To assess the current state of knowledge on M. leprae transmission, we conducted a systematic review of the peer-reviewed literature pertaining to this topic. Major electronic bibliographic databases were searched for relevant peer-reviewed articles published up to January 2014. No restrictions on study types, participants and location were applied, and all outcomes demonstrated to contribute to the transmission of M. leprae were considered. Included studies were grouped by mode of transmission, namely (i) human-to-human via aerosols or direct contact; (ii) direct inoculation (e.g. injury); and (iii) transmission to humans from environmental or zoonotic reservoirs, and by insects. The importance of the different transmission pathways and the strength of the evidence were assessed considering the number of publications describing similar findings, the consistency of the findings and the methodological quality of the studies. A total of 79 relevant articles were retained out of 3,805 hits resulting from the application of the search strategy. Solid evidence for transmission among contacts exists, and for zoonotic leprosy in the southern States of the USA. Based on the extant evidence, skin-to-skin contact, aerosols/droplets and shedding of bacteria into the environment and subsequent infection, e.g. through dust or small wounds, all remain possible options. No study has unequivocally demonstrated the mechanisms by which M. leprae bacteria travel from one case of leprosy to another.

  5. GIS based solid waste management information system for Nagpur, India.

    PubMed

    Vijay, Ritesh; Jain, Preeti; Sharma, N; Bhattacharyya, J K; Vaidya, A N; Sohony, R A

    2013-01-01

    Solid waste management is one of the major problems of today's world and needs to be addressed by proper utilization of technologies and design of effective, flexible and structured information system. Therefore, the objective of this paper was to design and develop a GIS based solid waste management information system as a decision making and planning tool for regularities and municipal authorities. The system integrates geo-spatial features of the city and database of existing solid waste management. GIS based information system facilitates modules of visualization, query interface, statistical analysis, report generation and database modification. It also provides modules like solid waste estimation, collection, transportation and disposal details. The information system is user-friendly, standalone and platform independent.

  6. Dutch Treat for U.S. Database Producers.

    ERIC Educational Resources Information Center

    Boumans, Jak

    1984-01-01

    Reports on investments in the United States (including database activities) by four Dutch publishing companies--Elsevier-NDU, VNU, Kluwer, Wolters Samsom Group. An analysis of the reasons behind these investments, the solidness of the companies, the approach to the U.S. information market, and the knowledge transfer to Europe are highlighted. (EJS)

  7. Elementary School Mathematics Priorities

    ERIC Educational Resources Information Center

    Wilson, W. Stephen

    2009-01-01

    This article first describes some of the basic skills and knowledge that a solid elementary school mathematics foundation requires. It then elaborates on several points germane to these practices. These are then followed with a discussion and conclude with final comments and suggestions for future research. The article sets out the five…

  8. Salinity mobilization and transport from rangelands: assessment, recommendations, and knowledge gaps

    USDA-ARS?s Scientific Manuscript database

    The purpose of the salinity project is to improve the understanding of sources and transport mechanisms in rangeland catchments that deliver dissolved solids (salts) to streams within the Upper Colorado River Basin (UCRB) through a review of relevant literature on what is known about the impact of r...

  9. Student Employee Development in Student Affairs

    ERIC Educational Resources Information Center

    Athas, Christina; Oaks, D'Arcy John; Kennedy-Phillips, Lance

    2013-01-01

    Employment within student affairs divisions offers environments in which students can apply the knowledge they have gained, as well as acquire new competencies, helping them to build solid foundations for their futures. Researchers used an online survey to assess the outcomes associated with part-time student employment within the student affairs…

  10. Principles for Quality Undergraduate Education in Psychology

    ERIC Educational Resources Information Center

    American Psychologist, 2011

    2011-01-01

    The principles for undergraduate education in psychology presented here are designed for creating a world-class educational system that provides students with the workplace skills needed in this information age; a solid academic background that prepares them for advanced study in a wide range of fields; and the knowledge, skills, and abilities…

  11. Qualitative analysis of volatiles in rabbiteye blueberry cultivars at various maturities using rapid solid-phase micro extraction

    USDA-ARS?s Scientific Manuscript database

    Recently, superfruits, such as blueberries, have received much attention as scientists, marketers, and consumers push forward knowledge and demand for high antioxidant, healthier diets. Production and consumption are steadily increasing. Yet, there are very few studies detailing the aroma, astring...

  12. Constructing Spatial Understanding

    ERIC Educational Resources Information Center

    Obara, Samuel

    2010-01-01

    Activities that enable students to move between two and three dimensions will help them understand solid geometry. This knowledge is critical for teachers, and they need to learn this skill so that they can give their students the opportunity to experience hands-on geometry and benefit from the challenge of creating nets, building models, and…

  13. Highly Sensitive Biosensing with Solid-State Nanopores Displaying Enzymatically Reconfigurable Rectification Properties.

    PubMed

    Pérez-Mitta, Gonzalo; Peinetti, Ana S; Cortez, M Lorena; Toimil-Molares, María Eugenia; Trautmann, Christina; Azzaroni, Omar

    2018-05-09

    Molecular design of biosensors based on enzymatic processes taking place in nanofluidic elements is receiving increasing attention by the scientific community. In this work, we describe the construction of novel ultrasensitive enzymatic nanopore biosensors employing "reactive signal amplifiers" as key elements coupled to the transduction mechanism. The proposed framework offers innovative design concepts not only to amplify the detected ionic signal and develop ultrasensitive nanopore-based sensors but also to construct nanofluidic diodes displaying specific chemo-reversible rectification properties. The integrated approach is demonstrated by electrostatically assembling poly(allylamine) on the anionic pore walls followed by the assembly of urease. We show that the cationic weak polyelectrolyte acts as a "reactive signal amplifier" in the presence of local pH changes induced by the enzymatic reaction. These bioinduced variations in proton concentration ultimately alter the protonation degree of the polyamine resulting in amplifiable, controlled, and reproducible changes in the surface charge of the pore walls, and consequently on the generated ionic signals. The "iontronic" response of the as-obtained devices is fully reversible, and nanopores are reused and assayed with different urea concentrations, thus ensuring reliable design. The limit of detection (LOD) was 1 nM. To the best of our knowledge, this value is the lowest LOD reported to date for enzymatic urea detection. In this context, we envision that this approach based on the use of "reactive signal amplifiers" into solid-state nanochannels will provide new alternatives for the molecular design of highly sensitive nanopore biosensors as well as (bio)chemically addressable nanofluidic elements.

  14. Optical Gauging of Liquid and Solid Hydrogen in Zero-g Environments for Space Applications

    NASA Astrophysics Data System (ADS)

    Caimi, F. M.; Kocak, D. M.; Justak, J. F.

    2006-04-01

    Knowledge of fuel reserve levels is required for propellant management systems and power considerations in many space applications. Although methods are known for gauging fuel amounts in gravitational environments, no simple passive method is known for quantifying fuel reserves in a zero-g environment. Current ground-based methods for cryogenic liquid quantification use wire resistance measurements or point sensors, combined with pressure and temperature measurements to arrive at the desired accuracy. This paper presents an optical sensor design based on existing radiometric and integrating sphere techniques that have the potential to provide quantification in both zero-g and ground based applications. The general approach relies upon optical absorption of liquid or solid hydrogen in a vibrational overtone spectral region. The cryogen storage tank is configured as an "Integrating Sphere." Inside the tank, in a zero-g environment, the liquid and/or gaseous fuel will be free-floating and/or attached to the walls. Incident light irradiates even the smallest portion of the sphere due to the integration. The amount of light absorbed in the tank will be proportional to the amount of fuel present. Therefore, regardless of scatter, all light passed through the medium in the sphere is contained and can be quantified. This paper presents simulations for various liquid hydrogen volumetric configurations and confirms utility of the method. Initial experimental results for a liquid hydrogen analyte in non-zero-g environments are provided. Using this sensor, it is possible to achieve a 10× increase in fuel measurement accuracy which can provide an increased orbit or payload capability.

  15. Assessment of Solid Sorbent Systems for Post-Combustion Carbon Dioxide Capture at Coal-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Glier, Justin C.

    In an effort to lower future CO2 emissions, a wide range of technologies are being developed to scrub CO2 from the flue gases of fossil fuel-based electric power and industrial plants. This thesis models one of several early-stage post-combustion CO2 capture technologies, solid sorbent-based CO2 capture process, and presents performance and cost estimates of this system on pulverized coal power plants. The spreadsheet-based software package Microsoft Excel was used in conjunction with AspenPlus modelling results and the Integrated Environmental Control Model to develop performance and cost estimates for the solid sorbent-based CO2 capture technology. A reduced order model also was created to facilitate comparisons among multiple design scenarios. Assumptions about plant financing and utilization, as well as uncertainties in heat transfer and material design that affect heat exchanger and reactor design were found to produce a wide range of cost estimates for solid sorbent-based systems. With uncertainties included, costs for a supercritical power plant with solid sorbent-based CO2 capture ranged from 167 to 533 per megawatt hour for a first-of-a-kind installation (with all costs in constant 2011 US dollars) based on a 90% confidence interval. The median cost was 209/MWh. Post-combustion solid sorbent-based CO2 capture technology is then evaluated in terms of the potential cost for a mature system based on historic experience as technologies are improved with sequential iterations of the currently available system. The range costs for a supercritical power plant with solid sorbent-based CO2 capture was found to be 118 to 189 per megawatt hour with a nominal value of 163 per megawatt hour given the expected range of technological improvement in the capital and operating costs and efficiency of the power plant after 100 GW of cumulative worldwide experience. These results suggest that the solid sorbent-based system will not be competitive with currently available liquid amine-systems in the absence of significant new improvements in solid sorbent properties and process system design to reduce the heat exchange surface area in the regenerator and cross-flow heat exchanger. Finally, the importance of these estimates for policy makers is discussed.

  16. EPICO 3.0. Antifungal prophylaxis in solid organ transplant recipients.

    PubMed

    Zaragoza, Rafael; Aguado, José María; Ferrer, Ricard; Rodríguez, Alejandro H; Maseda, Emilio; Llinares, Pedro; Grau, Santiago; Muñoz, Patricia; Fortún, Jesús; Bouzada, Mercedes; Pozo, Juan Carlos Del; León, Rafael

    Although over the past decade the management of invasive fungal infection has improved, considerable controversy persists regarding antifungal prophylaxis in solid organ transplant recipients. To identify the key clinical knowledge and make by consensus the high level recommendations required for antifungal prophylaxis in solid organ transplant recipients. Spanish prospective questionnaire, which measures consensus through the Delphi technique, was conducted anonymously and by e-mail with 30 national multidisciplinary experts, specialists in invasive fungal infections from six national scientific societies, including intensivists, anesthetists, microbiologists, pharmacologists and specialists in infectious diseases that responded to 12 questions prepared by the coordination group, after an exhaustive review of the literature in the last few years. The level of agreement achieved among experts in each of the categories should be equal to or greater than 70% in order to make a clinical recommendation. In a second term, after extracting the recommendations of the selected topics, a face-to-face meeting was held with more than 60 specialists who were asked to validate the pre-selected recommendations and derived algorithm. Echinocandin antifungal prophylaxis should be considered in liver transplant with major risk factors (retransplantation, renal failure requiring dialysis after transplantation, pretransplant liver failure, not early reoperation, or MELD>30); heart transplant with hemodialysis, and surgical re-exploration after transplantation; environmental colonization by Aspergillus, or cytomegalovirus (CMV) infection; and pancreas and intestinal transplant in case of acute graft rejection, hemodialysis, initial graft dysfunction, post-perfusion pancreatitis with anastomotic problems or need for laparotomy after transplantation. Antifungal fluconazole prophylaxis should be considered in liver transplant without major risk factors and MELD 20-30, split or living donor, choledochojejunostomy, increased transfusion requirements, renal failure without replacement therapy, early reoperation, or multifocal colonization or infection with Candida; intestinal and pancreas transplant with no risk factors for echinocandin treatment. Liposomal amphotericin B antifungal prophylaxis should be considered in lung transplant (inhalant form) and liver transplant with major risk factors. Antifungal prophylaxis with voriconazole should be considered in lung transplant, and heart transplant with hemodialysis, surgical re-exploration after transplantation, environmental colonization by Aspergillus, or CMV infection. The management of antifungal prophylaxis in solid organ transplant recipients requires the application of knowledge and skills that are detailed in our recommendations and the algorithm developed therein. These recommendations, based on the DELPHI methodology, may help to identify potential patients, standardize their management and improve overall prognosis. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Designed Synthesis of Mesoporous Solid-Supported Lewis Acid-Base Pairs and Their CO2 Adsorption Behaviors.

    PubMed

    Zakharova, Maria V; Masoumifard, Nima; Hu, Yimu; Han, Jongho; Kleitz, Freddy; Fontaine, Frédéric-Georges

    2018-04-18

    Conventional amines and phosphines, such as diethylenetriamine, diphenylpropylphosphine, triethylamine, and tetramethylpiperidine, were grafted or impregnated on the surface of metalated SBA-15 materials, such as Ti-, Al-, and Zr-SBA-15, to generate air-stable solid-supported Lewis acid-base pairs. The Lewis acidity of the metalated materials before and after the introduction of Lewis bases was verified by means of pyridine adsorption-Fourier transform infrared spectroscopy. Detailed characterization of the materials was achieved by solid-state 13 C and 31 P MAS NMR spectroscopy, low-temperature N 2 physisorption, X-ray photoelectron spectroscopy, and energy-dispersive X-ray mapping analyses. Study of their potential interactions with CO 2 was performed using CO 2 adsorption isotherm experiments, which provided new insights into their applicability as solid CO 2 adsorbents. A correlation between solid-supported Lewis acid-base pair strength and the resulting affinity to CO 2 is discussed based on the calculation of isosteric enthalpy of adsorption.

  18. USARCENT AOR Contingency Base Waste Stream Analysis: An Analysis of Solid Waste Streams at Five Bases in the U. S. Army Central (USARCENT) Area of Responsibility

    DTIC Science & Technology

    2013-03-31

    certainly remain comingled with other solid waste. For example, some bases provided containers for segregation of recyclables including plastic and...prevalent types of solid waste are food (19.1% by average sample weight), wood (18.9%), and plastics (16.0%) based on analysis of bases in...within the interval shown. Food and wood wastes are the largest components of the average waste stream (both at ~19% by weight), followed by plastic

  19. Comparison of solid-state and submerged-state fermentation for the bioprocessing of switchgrass to ethanol and acetate by Clostridium phytofermentans.

    PubMed

    Jain, Abhiney; Morlok, Charles K; Henson, J Michael

    2013-01-01

    The conversion of sustainable energy crops using microbiological fermentation to biofuels and bioproducts typically uses submerged-state processes. Alternatively, solid-state fermentation processes have several advantages when compared to the typical submerged-state processes. This study compares the use of solid-state versus submerged-state fermentation using the mesophilic anaerobic bacterium Clostridium phytofermentans in the conversion of switchgrass to the end products of ethanol, acetate, and hydrogen. A shift in the ratio of metabolic products towards more acetate and hydrogen production than ethanol production was observed when C. phytofermentans was grown under solid-state conditions as compared to submerged-state conditions. Results indicated that the end product concentrations (in millimolar) obtained using solid-state fermentation were higher than using submerged-state fermentation. In contrast, the total fermentation products (in weight of product per weight of carbohydrates consumed) and switchgrass conversion were higher for submerged-state fermentation. The conversion of xylan was greater than glucan conversion under both fermentation conditions. An initial pH of 7 and moisture content of 80 % resulted in maximum end products formation. Scanning electron microscopy study showed the presence of biofilm formed by C. phytofermentans growing on switchgrass under submerged-state fermentation whereas bacterial cells attached to surface and no apparent biofilm was observed when grown under solid-state fermentation. To our knowledge, this is the first study reporting consolidated bioprocessing of a lignocellulosic substrate by a mesophilic anaerobic bacterium under solid-state fermentation conditions.

  20. Computation of turbulence and dispersion of cork in the NETL riser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiradilok, Veeraya; Gidaspow, Dimitri; Breault, R.W.

    The knowledge of dispersion coefficients is essential for reliable design of gasifiers. However, a literature review had shown that dispersion coefficients in fluidized beds differ by more than five orders of magnitude. This study presents a comparison of the computed axial solids dispersion coefficients for cork particles to the NETL riser cork data. The turbulence properties, the Reynolds stresses, the granular temperature spectra and the radial and axial gas and solids dispersion coefficients are computed. The standard kinetic theory model described in Gidaspow’s 1994 book, Multiphase Flow and Fluidization, Academic Press and the IIT and Fluent codes were used tomore » compute the measured axial solids volume fraction profiles for flow of cork particles in the NETL riser. The Johnson–Jackson boundary conditions were used. Standard drag correlations were used. This study shows that the computed solids volume fractions for the low flux flow are within the experimental error of those measured, using a two-dimensional model. At higher solids fluxes the simulated solids volume fractions are close to the experimental measurements, but deviate significantly at the top of the riser. This disagreement is due to use of simplified geometry in the two-dimensional simulation. There is a good agreement between the experiment and the three-dimensional simulation for a high flux condition. This study concludes that the axial and radial gas and solids dispersion coefficients in risers operating in the turbulent flow regime can be computed using a multiphase computational fluid dynamics model.« less

  1. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua

    2018-06-01

    Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.

  2. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques.

    PubMed

    Meng, Fan; Gala, Urvi; Chauhan, Harsh

    2015-01-01

    Solid dispersion has been a topic of interest in recent years for its potential in improving oral bioavailability, especially for poorly water soluble drugs where dissolution could be the rate-limiting step of oral absorption. Understanding the physical state of the drug and polymers in solid dispersions is essential as it influences both the stability and solubility of these systems. This review emphasizes on the classification of solid dispersions based on the physical states of drug and polymer. Based on this classification, stability aspects such as crystallization tendency, glass transition temperature (Tg), drug polymer miscibility, molecular mobility, etc. and solubility aspects have been discussed. In addition, preparation and characterization methods for binary solid dispersions based on the classification have also been discussed.

  3. A Different Laboratory Tale: Fifty Years of Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Westfall, Catherine

    2006-05-01

    I explore the fifty-year development of Mössbauer spectroscopy by focusing on three episodes in its development at Argonne National Laboratory: work by nuclear physicists using radioactive sources in the early 1960s, work by solid-state physicists using radioactive resources from the mid- 1960s through the 1970s,and work by solid-state physicists using the Advanced Photon Source from the 1980s to 2005. These episodes show how knowledge about the properties of matter was produced in a national-laboratory context and highlights the web of connections that allow nationallaboratory scientists working at a variety of scales to produce both technological and scientific innovations.

  4. Education of the Strength of Materials in College of Technology

    NASA Astrophysics Data System (ADS)

    Shimaoka, Mitsuyoshi

    The Strength of Materials comprises not only mechanics of solids, which are not limited to elastic deformation, but also materials testing. Because the students who belong to the author's department have little knowledge about the materials' characteristics, they imagine that this subject is difficult. In this paper, it is discussed how to make the students understand the essential and some important points of this subject. For students in college of technology, the author points out that the lecture concentrating on the elastic deformation of solid members is most important and that the basic mathematics used in this subject must be explained once again early in this lesson.

  5. Design of indirectly heated thoriated tungsten cathode based strip electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, Namita; Thakur, K.B.; Patil, D.S.

    Design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270 degree bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten. The solid cathode design has been suitably done to achieve required electron beam cross section. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to reduce the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments shows that the modified design achieves one tomore » one correspondence of the solid cathode length and the electron beam length. (author)« less

  6. Nanoscale View of Dewetting and Coating on Partially Wetted Solids.

    PubMed

    Deng, Yajun; Chen, Lei; Liu, Qiao; Yu, Jiapeng; Wang, Hao

    2016-05-19

    There remain significant gaps in our ability to predict dewetting and wetting despite the extensive study over the past century. An important reason is the absence of nanoscopic knowledge about the processes near the moving contact line. This experimental study for the first time obtained the liquid morphology within 10 nm of the contact line, which was receding at low speed (U < 50 nm/s). The results put an end to long-standing debate about the microscopic contact angle, which turned out to be varying with the speed as opposed to the constant-angle assumption that has been frequently employed in modeling. Moreover, a residual film of nanometer thickness ubiquitously remained on the solid after the receding contact line passed. This microscopic residual film modified the solid surface and thus made dewetting far from a simple reverse of wetting. A complete scenario for dewetting and coating is provided.

  7. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  8. Polymorphic Transformation in Mixtures of High- and Low-Melting Fractions of Milk Fat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisneros,A.; Mazzanti, G.; Campos, R.

    2006-01-01

    The kinetics of crystallization of high-melting fraction (HMF) and a mixture of 40% HMF and 60% low-melting fraction (LMF) of milk fat were studied at 5 C by time-resolved in-situ synchrotron X-ray diffraction. HMF crystallized in the {alpha} polymorph, had a longer lifetime than the ones previously reported in pure milk fat, and was almost completely solid. The HMF/LMF mixture crystallized initially in the {alpha} form and transformed into the {beta}' polymorph, with a solid fat content much lower than that of HMF. The polymorphic change was therefore attributed to a delayed sudden formation of {beta}' mixed crystals from themore » uncrystallized melt. These findings are important for the food industry and as fundamental knowledge to improve our understanding of the origin of the macroscopic physical properties of solid milk fat fractions used in many manufacturing processes.« less

  9. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    NASA Astrophysics Data System (ADS)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  10. Knowledge representation of rock plastic deformation

    NASA Astrophysics Data System (ADS)

    Davarpanah, Armita; Babaie, Hassan

    2017-04-01

    The first iteration of the Rock Plastic Deformation (RPD) ontology models the semantics of the dynamic physical and chemical processes and mechanisms that occur during the deformation of the generally inhomogeneous polycrystalline rocks. The ontology represents the knowledge about the production, reconfiguration, displacement, and consumption of the structural components that participate in these processes. It also formalizes the properties that are known by the structural geology and metamorphic petrology communities to hold between the instances of the spatial components and the dynamic processes, the state and system variables, the empirical flow laws that relate the variables, and the laboratory testing conditions and procedures. The modeling of some of the complex physio-chemical, mathematical, and informational concepts and relations of the RPD ontology is based on the class and property structure of some well-established top-level ontologies. The flexible and extensible design of the initial version of the RPD ontology allows it to develop into a model that more fully represents the knowledge of plastic deformation of rocks under different spatial and temporal scales in the laboratory and in solid Earth. The ontology will be used to annotate the datasets related to the microstructures and physical-chemical processes that involve them. This will help the autonomous and globally distributed communities of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and enhanced data integration and software interoperability.

  11. Pushing Critical Thinking Skills With Multiple-Choice Questions: Does Bloom's Taxonomy Work?

    PubMed

    Zaidi, Nikki L Bibler; Grob, Karri L; Monrad, Seetha M; Kurtz, Joshua B; Tai, Andrew; Ahmed, Asra Z; Gruppen, Larry D; Santen, Sally A

    2018-06-01

    Medical school assessments should foster the development of higher-order thinking skills to support clinical reasoning and a solid foundation of knowledge. Multiple-choice questions (MCQs) are commonly used to assess student learning, and well-written MCQs can support learner engagement in higher levels of cognitive reasoning such as application or synthesis of knowledge. Bloom's taxonomy has been used to identify MCQs that assess students' critical thinking skills, with evidence suggesting that higher-order MCQs support a deeper conceptual understanding of scientific process skills. Similarly, clinical practice also requires learners to develop higher-order thinking skills that include all of Bloom's levels. Faculty question writers and examinees may approach the same material differently based on varying levels of knowledge and expertise, and these differences can influence the cognitive levels being measured by MCQs. Consequently, faculty question writers may perceive that certain MCQs require higher-order thinking skills to process the question, whereas examinees may only need to employ lower-order thinking skills to render a correct response. Likewise, seemingly lower-order questions may actually require higher-order thinking skills to respond correctly. In this Perspective, the authors describe some of the cognitive processes examinees use to respond to MCQs. The authors propose that various factors affect both the question writer and examinee's interaction with test material and subsequent cognitive processes necessary to answer a question.

  12. Measuring the Thermodynamics of the Alloy/Scale Interface

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    A method is proposed for the direct measurement of the thermodynamic properties of the alloy and oxide compound at the alloy/scale interface observed during steady-state oxidation. The thermodynamic properties of the alloy/scale interface define the driving force for solid-state transport in the alloy and oxide compound. Accurate knowledge of thermodynamic properties of the interface will advance our understanding of oxidation behavior. The method is based on the concept of local equilibrium and assumes that an alloy+scale equilibrium very closely approximates the alloy/scale interface observed during steady-state oxidation. The thermodynamics activities of this alloy+scale equilibrium are measured directly by Knudsen effusion-cell mass spectrometer (KEMS) using the vapor pressure technique. The theory and some practical considerations of this method are discussed in terms of beta-NiAl oxidation.

  13. Engineering Education in K-12 Schools

    NASA Astrophysics Data System (ADS)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  14. Astrochemistry and the Role of Laboratory and Theoretical Support

    NASA Technical Reports Server (NTRS)

    Herbst, E.

    2006-01-01

    We emphasize some current needs of astrochemists for laboratory data. The data are urgently required both to detect molecules in assorted regions and to produce robust models of these regions. Three areas of laboratory-based research are particularly crucial and yet are not being studied in the United States: (i) reactions more complex than the formation of molecular hydrogen occurring on interstellar grain analogs, (ii) molecular spectroscopy in the THz (far-infrared) region of the electromagnetic spectrum, and (iii) gas-phase kinetics of reactions leading to complex molecules. Without solid knowledge of many unstudied but key reactions, both in the gas and on grains, astrochemists will not be in position to keep up with the large amount of new information expected to come from the next generation of telescopes.

  15. New technology in the management of liver trauma

    PubMed Central

    Chatoupis, Konstantinos; Papadopoulou, Glikeria; Kaskarelis, Ioannis

    2013-01-01

    The liver is the second most frequently injured solid organ in patients with blunt abdominal trauma. Hence the diagnosis and clinical assessment of hepatic trauma is of great importance because of the relationship of the liver to high morbidity and mortality. Multi detector-row computed tomography is the main diagnostic modality for the examination of hepatic parenchyma and other associated organ injuries, such as acute or delayed complications. Based on clinical and radiological findings, the majority of patients are managed conservatively, with the most important criterion of surgical therapy being hemodynamic instability. Radiologists must demonstrate a high knowledge of imaging recommendations and standardization of reporting to enable the selection of the appropriate treatment algorithm. Transcatheter embolization therapy is a method of great potential for the management of patients with traumatic hepatic injuries. PMID:24714662

  16. Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth

    PubMed Central

    Ehrenfreund, Pascale; Cami, Jan

    2010-01-01

    Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702

  17. Sensitivity, Specificity, and Receiver Operating Characteristics: A Primer for Neuroscience Nurses.

    PubMed

    McNett, Molly; Amato, Shelly; Olson, DaiWai M

    2017-04-01

    It is important for neuroscience nurses to have a solid understanding of the instruments they use in clinical practice. Specifically, when reviewing reports of research instruments, nurses should be knowledgeable of analytical terms when determining the applicability of instruments for use in clinical practice. The purpose of this article is to review 3 such analytical terms: sensitivity, specificity, and receiver operating characteristic curves. Examples of how these terms are used in the neuroscience literature highlight the relevance of these terms to neuroscience nursing practice. As the role of the nurse continues to expand, it is important not to simply accept all instruments as valid but to be able to critically evaluate their properties for applicability to nursing practice and evidence-based care of our patients.

  18. Continuous powder feeding for pharmaceutical solid dosage form manufacture: a short review.

    PubMed

    Blackshields, Caroline A; Crean, Abina M

    2018-07-01

    There has been a noticeable shift from pharmaceutical batch processing towards a more continuous mode of manufacture for solid oral dosage forms. Continuous solid oral dose processes would not be possible in the absence of a highly accurate feeding system. The performance of feeders defines the content of formulations and is therefore a critical operation in continuous manufacturing of solid dosage forms. It was the purpose of this review to review the role of the initial powder feeding step in a continuous manufacturing process. Different feeding mechanisms are discussed with a particular emphasis on screw controlled loss in weight (LIW) feeding. The importance of understanding the physical properties of the raw materials and its impact on the feeding process is reviewed. Prior knowledge of materials provides an initial indication of how the powders will behave through processing and facilitates in the selection of the most suitable (i) feeder (capacity), (ii) feeding mechanism, and (iii) in the case of screw feeder - screw type. The studies identified in this review focus on the impact of material on powder feeding performance.

  19. New anti-angiogenic strategies in pediatric solid malignancies: agents and biomarkers of a near future.

    PubMed

    Taylor, Melissa; Rössler, Jochen; Geoerger, Birgit; Vassal, Gilles; Farace, Françoise

    2010-07-01

    Antiangiogenic strategies are affording considerable interest and have become a major milestone in therapeutics of various adult cancers. However, progress has been slow to expand such therapies to patients with pediatric solid malignancies. This review discusses the principal pathways for angiogenesis in pediatric solid malignancies and summarizes recent preclinical and clinical data on antiangiogenesis strategies in these tumors. The reader will gain state-of-the-art knowledge in the current advancements of antiangiogenic therapies in pediatric clinical trials in regard to supporting preclinical data, and in the status of potential biomarkers investigated for monitoring angiogenesis inhibitors. Mechanisms of resistance to antiangiogenic therapy will also be discussed. Finally, we describe our experience in the monitoring of circulating endothelial cells and progenitors and their potential role as biomarkers of metastatic disease and resistance to antiangiogenic therapies. Evaluation and development of antiangiogenesis protocols are starting and represent a crucial step in the management of pediatric solid malignancies today. Emphasis should be placed on the development of proper surrogate markers to monitor antiangiogenic activity and on the possible long-term effects of these therapies in a pediatric population.

  20. Using Writing as a Constructivist Instructional Tool

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2006-12-01

    Researchers in the area of cognitive science and educational psychology have shown that instructors who encourage student writing are actually helping in motivating a reluctant pupil. It has also been reported that writing indirectly rewards an individual with dynamic interest. Furthermore, it is believed that writing strengthens the self-confidence of a lethargic learner. (Kosakowski, 1998). All in all, promoting writing helps and supports learners cultivate a positive attitude toward the subject matter in question. The constructivist approach promotes a learning paradigm and helps individuals learn and understand by "constructing" knowledge. Learners are effectively encouraged to generate and build their own knowledge base. Learners document progress by constructing new concepts based on previously gained knowledge. The role of the teacher is actually to facilitate the creation of a learning environment. The constructivist approach when used in the classroom enables the students to become more active, independent thinkers of knowledge. Education World writer Gloria Chaika (Chaika, 2000) states that "Talent is important, but practice creates the solid base that allows that unique talent to soar. Like athletes, writers learn by doing. Good writing requires the same kind of dedicated practice that athletes put in. Young writers often lack the support they need to practice writing and develop their talent to the fullest, though." The author has successfully utilized some of these principles and techniques in a senior level course he teaches. He has encouraged students to try to solve problems their own way and has asked them to observe, document, assess and evaluate the results. In the classroom, the author takes the role of a coach and helps the students approach the problem with a different viewpoint. Eventually the students document their conclusions in a page-long essay. This type of writing assignment not only builds critical thinking abilities but also generates improved written communication skills among learners. References: Kosakowski, John, (1998). The Benefits of Information Technology. ERIC Digests; Technology Integration; Technology Role, ED0-IR-98-04 Chaika, Gloria (2000),Encourage Student Writing: Published on the Web, Education World http://www.education-world.com/a_tech/tech042.shtml

  1. Factors that affect the willingness of residents to pay for solid waste management in Hong Kong.

    PubMed

    Yeung, Iris M H; Chung, William

    2018-03-01

    In Hong Kong, problems involving solid waste management have become an urgent matter in recent years. To solve these problems, the Hong Kong government proposed three policies, namely, waste charging, landfill extension, and development of new incinerators. In this study, a large sample questionnaire survey was conducted to examine the knowledge and attitude of residents on the three policies, the amount of their daily waste disposal, and their willingness to pay (WTP). Results reveal that only 22.7% of respondents are aware of the earliest time that one of the landfills will be sated, and more than half of respondents support the three policies. However, more than one third of residents (36.1%) are unwilling to pay the minimum waste charge amount of HK$30 estimated by the Council for Sustainable Development in Hong Kong. Logit model results indicate that five key factors affect WTP, namely, knowledge of residents on the timing of landfill fullness, degree of support in waste charge policy, amount of daily waste disposal, age, and income. These results suggest that strong and rigorous promotional and educational programs are needed to improve the knowledge and positive attitude of residents towards recycling methods and the three policies. However, subsidy should be provided to low-income groups who cannot afford to pay the waste charge.

  2. Pedagogical Tools to Address Clinical Anatomy and Athletic Training Student Learning Styles

    ERIC Educational Resources Information Center

    Mazerolle, Stephanie; Yeargin, Susan

    2010-01-01

    Context: A thorough knowledge of anatomy is needed in four of the six domains of athletic training: prevention, injury/condition recognition, immediate care, and treatment/rehabilitation. Students with a solid foundation can achieve competency in these specific domains. Objective: To provide educators with pedagogical tools to promote a deeper…

  3. Laryngeal Support Device Enhances the Learning of Laryngeal Anatomy and Voice Physiology

    ERIC Educational Resources Information Center

    Curcio, Daniella Franco; Behlau, Mara; Barros, Mirna Duarte; Smith, Ricardo Luiz

    2012-01-01

    Multidisciplinary cooperation in health care requires a solid knowledge in the basic sciences for a common ground of communication. In speech pathology, these fundamentals improve the accuracy of descriptive diagnoses and support the development of new therapeutic techniques and strategies. The aim of this study is to briefly discuss the benefits…

  4. The First R: Every Child's Right to Read. (Language and Literacy Series).

    ERIC Educational Resources Information Center

    Graves, Michael F., Ed.; And Others

    This book suggests that learning to read should be a right for all children. From this viewpoint, the book constructs a bridge between current knowledge of reading processes and educational practice by incorporating a comprehensive range of theory, practice, and research, and a solid foundation in education and psychological science. Topics…

  5. 78 FR 46549 - Approval and Promulgation of Implementation Plans; Idaho: State Board Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... such board or body or the head of an executive agency with similar powers be adequately disclosed.'' 42... Requirements Idaho Code Sec. 39-107, Board--Composition--Officers-- Compensation--Powers--Subpoena--Depositions... regard to their knowledge of and interest in solid waste; two (2) members shall be chosen for their...

  6. The State of State World History Standards, 2006

    ERIC Educational Resources Information Center

    Mead, Walter Russell

    2006-01-01

    This first-ever thorough report reviews academic standards in world history in all 50 states and the District of Columbia to determine whether we are setting the solid, challenging expectations for our schools and children that will equip the next generation with the skills and knowledge it will need. The report, written by renowned historian…

  7. A Design Case of Scaffolding Hybrid/Online Student-Centered Learning with Multimedia

    ERIC Educational Resources Information Center

    Hsiao, E-Ling; Mikolaj, Peter; Shih, Ya-Ting

    2017-01-01

    Implementing student-centered learning in hybrid/online settings is very challenging due to the physical separation of instructor and students. This article discusses the need for instructors to provide scaffolds and multimedia modules to facilitate knowledge construction in the student-centered learning process. To offer students solid learning…

  8. National Mathematics Advisory Panel Reports of the Task Groups and Subcommittees

    ERIC Educational Resources Information Center

    US Department of Education, 2008

    2008-01-01

    For students to compete in the 21st-century global economy, knowledge of and proficiency in mathematics are critical. Whether headed to college or to the workforce, today's high school graduates need solid mathematics skill. The National Mathematics Advisory Panel was created in 2006 and charged with reviewing the best available scientific…

  9. What do Two-Year-Olds Understand about Hidden-Object Events?

    ERIC Educational Resources Information Center

    Mash, Clay; Novak, Elizabeth; Berthier, Neil E.; Keen, Rachel

    2006-01-01

    Preferential-looking studies suggest that by 2 months of age, infants may have knowledge about some object properties, such as solidity. Manual search studies of toddlers examining these same concepts, however, have failed to provide evidence for the same understanding. Investigators have recently attempted to reconcile this disparity but failed…

  10. Evolution of a Profession: The Importance of Education and Good Practice within Outward Bound.

    ERIC Educational Resources Information Center

    Gassner, Michael

    2002-01-01

    Outdoor adventure educators need a solid foundation in theoretical knowledge that will influence and guide equally important practical skills. A strong sense of professional practice should be instilled in new outdoor adventure educators to prevent them from becoming insulated in their ideas and practices. Philosophical underpinnings and good…

  11. Mathematics in Chemistry: Indeterminate Forms and Their Meaning

    ERIC Educational Resources Information Center

    Segurado, Manuel A. P.; Silva, Margarida F. B.; Castro, Rita

    2011-01-01

    The mathematical language and its tools are complementary to the formalism in chemistry, in particular at an advanced level. It is thus crucial, for its understanding, that students acquire a solid knowledge in Calculus and that they know how to apply it. The frequent occurrence of indeterminate forms in multiple areas, particularly in Physical…

  12. Stories In Stone: Teacher's Guide. Grades 4-9. LHS GEMS.

    ERIC Educational Resources Information Center

    Cuff, Kevin; And Others

    While rocks and minerals are often regarded as among the most static and solid objects, the body of knowledge of which they are part is always changing. This teachers guide contains activities and experiments designed to enhance students understanding of geology and petrology. By examining actual specimens of the Earth's crust, students learn…

  13. Opportunities for Public Relations Research in Public Health.

    ERIC Educational Resources Information Center

    Wise, Kurt

    2001-01-01

    Considers how communication researchers have developed a solid body of knowledge in the health field but know little about the activities of public relations practitioners in public health bodies. Suggests that public relations scholarship and practice have much to offer the field of public health in helping public health bodies meet their…

  14. H[subscript 2]O and You

    ERIC Educational Resources Information Center

    Jackson, Julie

    2009-01-01

    Learning about states of matter is fun and exciting when students, acting as water molecules, role-play moving from a solid to a liquid to a gas. The 5-E lesson plan model provides the framework for this activity, ensuring that students actively engage in inquiry science while creatively constructing knowledge. (Contains 2 figures.)

  15. Presumed choroidal metastasis of Merkel cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, K.W.; Rosenwasser, G.O.; Alexander, E. III

    1990-05-01

    Merkel cell carcinoma is a rare skin tumor of neural crest origin and is part of the amine precursor uptake and decarboxylase system. It typically occurs on the face of elderly people. Distant metastasis is almost uniformly fatal. Choroidal metastasis, to our knowledge, has not been described. We report a patient with Merkel cell carcinoma who had a synchronous solid choroidal tumor and a biopsy-proven brain metastasis. Our 56-year-old patient presented with a rapidly growing, violaceous preauricular skin tumor. Computed tomography of the head disclosed incidental brain and choroidal tumors. Light and electron microscopy of biopsy specimens of both themore » skin and the brain lesions showed Merkel cell carcinoma. Ophthalmoscopy, fluorescein angiography, and A and B echography revealed a solid choroidal mass. The brain and skin tumors responded well to irradiation. A radioactive episcleral plaque was applied subsequently to the choroidal tumor. All tumors regressed, and the patient was doing well 28 months later. To our knowledge this is the first case of presumed choroidal metastasis of Merkel cell carcinoma.« less

  16. Automated solid-phase extraction coupled online with HPLC-FLD for the quantification of zearalenone in edible oil.

    PubMed

    Drzymala, Sarah S; Weiz, Stefan; Heinze, Julia; Marten, Silvia; Prinz, Carsten; Zimathies, Annett; Garbe, Leif-Alexander; Koch, Matthias

    2015-05-01

    Established maximum levels for the mycotoxin zearalenone (ZEN) in edible oil require monitoring by reliable analytical methods. Therefore, an automated SPE-HPLC online system based on dynamic covalent hydrazine chemistry has been developed. The SPE step comprises a reversible hydrazone formation by ZEN and a hydrazine moiety covalently attached to a solid phase. Seven hydrazine materials with different properties regarding the resin backbone, pore size, particle size, specific surface area, and loading have been evaluated. As a result, a hydrazine-functionalized silica gel was chosen. The final automated online method was validated and applied to the analysis of three maize germ oil samples including a provisionally certified reference material. Important performance criteria for the recovery (70-120 %) and precision (RSDr <25 %) as set by the Commission Regulation EC 401/2006 were fulfilled: The mean recovery was 78 % and RSDr did not exceed 8 %. The results of the SPE-HPLC online method were further compared to results obtained by liquid-liquid extraction with stable isotope dilution analysis LC-MS/MS and found to be in good agreement. The developed SPE-HPLC online system with fluorescence detection allows a reliable, accurate, and sensitive quantification (limit of quantification, 30 μg/kg) of ZEN in edible oils while significantly reducing the workload. To our knowledge, this is the first report on an automated SPE-HPLC method based on a covalent SPE approach.

  17. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgopolova, Ekaterina A.; Ejegbavwo, Otega A.; Martin, Corey R.

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures towards fundamental understanding of mechanisms involved in actinide integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials were built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with “unsaturated” metal nodes. The first successfulmore » attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt% in mono- and bi-actinide frameworks with minimal structural density. Overall, combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures, and therefore, shed light on possible optimization of nuclear waste administration.« less

  18. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal-Organic Frameworks.

    PubMed

    Dolgopolova, Ekaterina A; Ejegbavwo, Otega A; Martin, Corey R; Smith, Mark D; Setyawan, Wahyu; Karakalos, Stavros G; Henager, Charles H; Zur Loye, Hans-Conrad; Shustova, Natalia B

    2017-11-22

    Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures toward fundamental understanding of mechanisms involved in actinide (An) integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials was built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with "unsaturated" metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt % in mono- and biactinide frameworks with minimal structural density. Overall, the combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures and, therefore, shed light on possible optimization of nuclear waste administration.

  19. Insights in public health: Community strengthening through canoe culture: Ho'omana'o Mau as method and metaphor.

    PubMed

    Ho-Lastimosa, Ilima; Hwang, Phoebe W; Lastimosa, Bob

    2014-12-01

    Historical trauma occurs across generations and is evidenced by indigenous disparities. Efforts made to address this issue commonly utilize European ethnocentric methods. Rather, a community-based approach should be used to empower indigenous communities. God's Country Waimanalo (GCW) is a grassroots organization developed by Native Hawaiians for Native Hawaiians. Its wa'a (canoe) project, Ho'omana'o Mau (everlasting memories; abbreviated Ho'o) is meant to perpetuate pre-colonial Hawaiian practices by educating Native Hawaiian communities and its partners through hands on experience. Since 2012, GCW has opened its wa'a curricula to educators, counselors, and students from the University of Hawai'i at Manoa, Queen Lili'uokalani Children's Center, Alu Like, Hina Mauka, and the Youth Correctional Facility and contributed to Waimanalo based events such as funeral ash scattering and the papio fishing tournament. As metaphor, Ho'o is viewed as the catalyst to engage the next generation of Hawaiians to remember where they descend from, the lineage of chiefs and royalty, while establishing a solid foundation of independence and enhancing their ability to become self-sustaining. As a method, Ho'o is viewed as a classroom, a hands-on learning environment, and an ocean vessel, assembled according to traditional Hawaiian knowledge. Through this knowledge and practice, both indigenous and non-indigenous communities can work together in empowering Native Hawaiians to overcome historical trauma and reduce health disparities.

  20. OMIT: dynamic, semi-automated ontology development for the microRNA domain.

    PubMed

    Huang, Jingshan; Dang, Jiangbo; Borchert, Glen M; Eilbeck, Karen; Zhang, He; Xiong, Min; Jiang, Weijian; Wu, Hao; Blake, Judith A; Natale, Darren A; Tan, Ming

    2014-01-01

    As a special class of short non-coding RNAs, microRNAs (a.k.a. miRNAs or miRs) have been reported to perform important roles in various biological processes by regulating respective target genes. However, significant barriers exist during biologists' conventional miR knowledge discovery. Emerging semantic technologies, which are based upon domain ontologies, can render critical assistance to this problem. Our previous research has investigated the construction of a miR ontology, named Ontology for MIcroRNA Target Prediction (OMIT), the very first of its kind that formally encodes miR domain knowledge. Although it is unavoidable to have a manual component contributed by domain experts when building ontologies, many challenges have been identified for a completely manual development process. The most significant issue is that a manual development process is very labor-intensive and thus extremely expensive. Therefore, we propose in this paper an innovative ontology development methodology. Our contributions can be summarized as: (i) We have continued the development and critical improvement of OMIT, solidly based on our previous research outcomes. (ii) We have explored effective and efficient algorithms with which the ontology development can be seamlessly combined with machine intelligence and be accomplished in a semi-automated manner, thus significantly reducing large amounts of human efforts. A set of experiments have been conducted to thoroughly evaluate our proposed methodology.

  1. OMIT: Dynamic, Semi-Automated Ontology Development for the microRNA Domain

    PubMed Central

    Huang, Jingshan; Dang, Jiangbo; Borchert, Glen M.; Eilbeck, Karen; Zhang, He; Xiong, Min; Jiang, Weijian; Wu, Hao; Blake, Judith A.; Natale, Darren A.; Tan, Ming

    2014-01-01

    As a special class of short non-coding RNAs, microRNAs (a.k.a. miRNAs or miRs) have been reported to perform important roles in various biological processes by regulating respective target genes. However, significant barriers exist during biologists' conventional miR knowledge discovery. Emerging semantic technologies, which are based upon domain ontologies, can render critical assistance to this problem. Our previous research has investigated the construction of a miR ontology, named Ontology for MIcroRNA Target Prediction (OMIT), the very first of its kind that formally encodes miR domain knowledge. Although it is unavoidable to have a manual component contributed by domain experts when building ontologies, many challenges have been identified for a completely manual development process. The most significant issue is that a manual development process is very labor-intensive and thus extremely expensive. Therefore, we propose in this paper an innovative ontology development methodology. Our contributions can be summarized as: (i) We have continued the development and critical improvement of OMIT, solidly based on our previous research outcomes. (ii) We have explored effective and efficient algorithms with which the ontology development can be seamlessly combined with machine intelligence and be accomplished in a semi-automated manner, thus significantly reducing large amounts of human efforts. A set of experiments have been conducted to thoroughly evaluate our proposed methodology. PMID:25025130

  2. Effect of Solid to Liquid Ratio on Heavy Metal Removal by Geopolymer-Based Adsorbent

    NASA Astrophysics Data System (ADS)

    Ariffin, N.; Abdullah, M. M. A. B.; Arif Zainol, M. R. R. Mohd; Baltatu, M. S.; Jamaludin, L.

    2018-06-01

    Microstructure of three-dimensional aluminosilicate which similar to zeolite cause geopolymer based adsorbent accepted in the treatment of wastewater. This paper presents an investigation on the copper removal from the wastewater by varying the solid to liquid ratio in the fly ash, kaolin and sludge-based geopolymer adsorbent. The adsorption test was conducted to study the efficiency of the adsorbent and the copper concentration was examined by using Atomic Adsorption Spectrometry (AAS). The optimum solid to liquid ratio with the highest percentage removal were 1.0, 0.5 and 0.8 for fly ash-based geopolymer, kaolin-based geopolymer and sludge-based geopolymer adsorbent.

  3. A new model for fluid velocity slip on a solid surface.

    PubMed

    Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong

    2016-10-12

    A general adsorption model is developed to describe the interactions between near-wall fluid molecules and solid surfaces. This model serves as a framework for the theoretical modelling of boundary slip phenomena. Based on this adsorption model, a new general model for the slip velocity of fluids on solid surfaces is introduced. The slip boundary condition at a fluid-solid interface has hitherto been considered separately for gases and liquids. In this paper, we show that the slip velocity in both gases and liquids may originate from dynamical adsorption processes at the interface. A unified analytical model that is valid for both gas-solid and liquid-solid slip boundary conditions is proposed based on surface science theory. The corroboration with the experimental data extracted from the literature shows that the proposed model provides an improved prediction compared to existing analytical models for gases at higher shear rates and close agreement for liquid-solid interfaces in general.

  4. Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Zhang, Dechao; Zhang, Long; Yang, Kun; Wang, Hongqiang; Yu, Chuang; Xu, Di; Xu, Bo; Wang, Li-Min

    2017-10-25

    Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO 4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO 4 /Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.

  5. Application of headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry to determine esters of carboxylic acids and other volatile compounds in Dermestes maculatus and Dermestes ater lipids.

    PubMed

    Cerkowniak, Magdalena; Boguś, Mieczysława I; Włóka, Emilia; Stepnowski, Piotr; Gołębiowski, Marek

    2018-02-01

    A constant problem in veterinary medicine, human healthcare, agriculture, forestry and horticulture is the large number of pests, and the lack of effective methods to combat them which cause no harm to the rest of the environment. It is recommended and desired to reduce the use of chemicals and increase the use of agents based on knowledge acquired in the fields of biology, chemistry and agrochemicals. To learn the defense mechanisms of insects we should consider not only the site of their physiological ability to protect against external factors (cuticle), but also the possibility of chemical protection, formed by all compounds on the surface and in the body of insects. In this study, a procedure was developed to determine the esters of carboxylic acids in insect lipids. Headspace solid-phase microextraction was followed by gas chromatography coupled with gas spectrometry. First, the best conditions were selected for the analysis to obtain the best chromatographic separation. An RTx-5 column was used for this purpose. Polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polyacrylate fibers were used to isolate acid esters. PDMS/DVB fiber achieved the best conditions for the extraction; the extraction time was 50 min, the extraction temperature was 105°C and the desorption time was 10 min at 230°C. These solid-phase microextraction conditions were used to analyze volatile compounds extracted from insects belonging to the Dermestidae family. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Solid state, thermal synthesis of site-specific protein-boron cluster conjugates and their physicochemical and biochemical properties.

    PubMed

    Goszczyński, Tomasz M; Kowalski, Konrad; Leśnikowski, Zbigniew J; Boratyński, Janusz

    2015-02-01

    Boron clusters represent a vast family of boron-rich compounds with extraordinary properties that provide the opportunity of exploitation in different areas of chemistry and biology. In addition, boron clusters are clinically used in boron neutron capture therapy (BNCT) of tumors. In this paper, a novel, in solid state (solvent free), thermal method for protein modification with boron clusters has been proposed. The method is based on a cyclic ether ring opening in oxonium adduct of cyclic ether and a boron cluster with nucleophilic centers of the protein. Lysozyme was used as the model protein, and the physicochemical and biological properties of the obtained conjugates were characterized. The main residues of modification were identified as arginine-128 and threonine-51. No significant changes in the secondary or tertiary structures of the protein after tethering of the boron cluster were found using mass spectrometry and circular dichroism measurements. However, some changes in the intermolecular interactions and hydrodynamic and catalytic properties were observed. To the best of our knowledge, we have described the first example of an application of cyclic ether ring opening in the oxonium adducts of a boron cluster for protein modification. In addition, a distinctive feature of the proposed approach is performing the reaction in solid state and at elevated temperature. The proposed methodology provides a new route to protein modification with boron clusters and extends the range of innovative molecules available for biological and medical testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Different amorphous solid-state forms of roxithromycin: A thermodynamic and morphological study.

    PubMed

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique Elizabeth

    2016-02-10

    The striking impact that different preparation methods have on the characteristics of amorphous solid-state forms has attracted considerable attention during the last two decades. The pursuit of more extensive knowledge regarding polyamorphism therefore continues. The aim of this study was firstly, to investigate the influence of different preparation techniques to obtain amorphous solid-state forms for the same active pharmaceutical ingredient, namely roxithromycin. The preparation techniques also report on a method utilizing hot air, which although it is based on a melt intermediary step, is considered a novel preparation method. Secondly, to conduct an in-depth investigation into any physico-chemical differences between the resulting amorphous forms and thirdly, to bring our findings into context with that of previous work done, whilst simultaneously discussing a well-defined interpretation for the term polyamorphism and propose a discernment between true polyamorphism and pseudo-polyamorphism/atypical-polyamorphism. The preparation techniques included melt, solution, and a combination of solution-mechanical disruption as intermediary steps. The resulting amorphous forms were investigated using differential scanning calorimetry, X-ray powder diffraction, hot-stage microscopy, scanning electron microscopy, and vapor sorption. Clear and significant thermodynamic differences were determined between the four amorphous forms. It was also deduced from this study that different preparation techniques have a mentionable impact on the morphological properties of the resulting amorphous roxithromycin powders. Thermodynamic properties as well as the physical characteristics of the amorphous forms greatly governed other physico-chemical properties i.e. solubility and dissolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Soluble CD30 serum level--an adequate marker for allograft rejection of solid organs?

    PubMed

    Schlaf, G; Altermann, W W; Rothhoff, A; Seliger, B

    2007-11-01

    The CD30 molecule, a 120 kDa cell surface glycoprotein, is a member of the tumor necrosis factor receptor (TNF-R) superfamily and was originally identified on the surface of Reed-Sternberg cells and anaplastic large cell lymphomas in Hodgkin's disease patients. In addition to lymphoproliferative disorders the expression of CD30 was found in both activated CD8+ and CD4+ Th2 cells which lead to the activation of B-cells and consequently to the inhibition of the Th1-type cellular immunity. The membrane-bound CD30 molecule can be proteolytically cleaved, thereby generating a soluble form (sCD30) of about 85 kDa. Low serum levels of soluble CD30 were found in healthy humans, whereas increased sCD30 serum concentrations were detected under pathophysiological situations such as systemic lupus erythematosus, rheumatoid arthritis, certain viral infections and adult T cell leukaemia/lymphoma. In addition, it has recently been suggested that pre- or post-transplant levels of sCD30 represent a biomarker for graft rejection associated with an impaired outcome for transplanted patients. We here review (i) the current knowledge of the clinical significance of sCD30 serum levels for solid organ transplantations and (ii) our own novel data regarding inter- and intra-individual variations as well as time-dependent alterations of sCD30 levels in patients. (iii) Based on this information the implementation of sCD30 as predictive pre-transplant or post-transplant parameter for solid organ transplantation is critically discussed.

  9. Quantifying suspended solids in small rivers using satellite data.

    PubMed

    Isidro, Celso M; McIntyre, Neil; Lechner, Alex M; Callow, Ian

    2018-09-01

    The management of suspended solids and associated contaminants in rivers requires knowledge of sediment sources. In-situ sampling can only describe the integrated impact of the upstream sources. Empirical models that use surface reflectance from satellite images to estimate total suspended solid (TSS) concentrations can be used to supplement measurements and provide spatially continuous maps. However, there are few examples, especially in narrow, shallow and hydrologically dynamic rivers found in mountainous areas. A case study of the Didipio catchment in Philippines was used to address these issues. Four 5-m resolution RapidEye images, from between the years 2014 and 2016, and near-simultaneous ground measurements of TSS concentrations were used to develop a power law model that approximates the relationship between TSS and reflectance for each of four spectral bands. A second dataset using two 2-m resolution Pleiades-1A and a third using a 6-m resolution SPOT-6 image along with ground-based measurements, were consistent with the model when using the red band data. Using that model, encompassing data from all three datasets, gave an R 2 value of 65% and a root mean square error of 519mgL -1 . A linear relationship between reflectance and TSS exists from 1mgL -1 to approximately 500mgL -1 . In contrast, for TSS measurements between 500mgL -1 and 3580mgL -1 reflectance increases at a generally lower and more variable rate. The results were not sensitive to changing the pixel location within the vicinity of the ground sampling location. The model was used to generate a continuous map of TSS concentration within the catchment. Further ground-based measurements including TSS concentrations that are higher than 3580mgL -1 would allow the model to be developed and applied more confidently over the full relevant range of TSS. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

    DOE PAGES

    Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan; ...

    2017-03-20

    Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

  11. Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan

    Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

  12. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication.

    PubMed

    Li, Qing; Jiang, Jingkun; Wang, Shuxiao; Rumchev, Krassi; Mead-Hunter, Ryan; Morawska, Lidia; Hao, Jiming

    2017-01-15

    This review briefly introduces current status of indoor and ambient air pollution originating from household coal and biomass combustion in mainland China. Owing to low combustion efficiency, emissions of CO, PM 2.5 , black carbon (BC), and polycyclic aromatic hydrocarbons have significant adverse consequences for indoor and ambient air qualities, resulting in relative contributions of more than one-third in all anthropogenic emissions. Their contributions are higher in less economically developed regions, such as Guizhou (61% PM 2.5 , 80% BC), than that in more developed regions, such as Shanghai (4% PM 2.5 , 17% BC). Chimneys can reduce ~80% indoor PM 2.5 level when burning dirty solid fuels, such as plant materials. Due to spending more time near stoves, housewives suffer much more (~2 times) PM 2.5 than the adult men, especially in winter in northern China (~4 times). Improvement of stove combustion/thermal efficiencies and solid fuel quality are the two essential methods to reduce pollutant emissions. PM 2.5 and BC emission factors (EFs) have been identified to increase with volatile matter content in traditional stove combustion. EFs of dirty fuels are two orders higher than that of clean ones. Switching to clean ones, such as semi-coke briquette, was identified to be a feasible path for reducing >90% PM 2.5 and BC emissions. Otherwise, improvement of thermal and combustion efficiencies by using under-fire technology can reduce ~50% CO 2 , 87% NH 3 , and 80% PM 2.5 and BC emissions regardless of volatile matter content in solid fuel. However, there are still some knowledge gaps, such as, inventory for the temporal impact of household combustion on air quality, statistic data for deployed clean solid fuels and advanced stoves, and the effect of socioeconomic development. Additionally, further technology research for reducing air pollution emissions is urgently needed, especially low cost and clean stove when burning any type of solid fuel. Furthermore, emission-abatement oriented policy should base on sound scientific evidence to significantly reduce pollutant emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Yamachi, H.

    2017-12-01

    As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the failure envelope of the Mohr-Coulomb criterion that describes shear-related rupture. The critical value of the volumetric strain for rupture may be controlled by the apparent cohesion and apparent angle of internal friction of the Mohr-Coulomb criterion.

  14. Implementation and Research Priorities for FCTC Articles 13 and 16: Tobacco Advertising, Promotion, and Sponsorship and Sales to and by Minors

    PubMed Central

    2013-01-01

    Introduction: Article 13 of the Framework Convention on Tobacco Control (FCTC) calls for a comprehensive ban on tobacco advertising, promotion, and sponsorship (TAPS), and Article 16 calls for prohibition of tobacco sales to and by minors. Although these mandates are based on sound science, many countries have found provision implementation to be rife with challenges. Objective: This paper reviews the history of tobacco marketing and minor access restrictions in high-, middle-, and low-income countries, identifying past challenges and successes. We consider current challenges to FCTC implementation, how these barriers can be addressed, and what research is necessary to support such efforts. Specifically, we identify implementation and research priorities for FCTC Articles 13 and 16. Discussion: Although a solid evidence base underpins the FCTC’s call for TAPS bans and minor access restrictions, we know substantially less about how best to implement these restrictions. Drawing on the regulatory experiences of high-, middle-, and low-income countries, we discern several implementation and research priorities, which are organized into 4 categories: policy enactment and enforcement, human capital expertise, the effects of FCTC marketing and youth access policies, and knowledge exchange and transfer among signatories. Future research should provide detailed case studies on implementation successes and failures, as well as insights into how knowledge of successful restrictions can be translated into tobacco control policy and practice and shared among different stakeholders. Conclusion: Tobacco marketing surveillance, sales-to-minors compliance checks, enforcement and evaluation of restriction policies, and capacity building and knowledge transfer are likely to prove central to effective implementation. PMID:23291641

  15. A standardized motor imagery introduction program (MIIP) for neuro-rehabilitation: development and evaluation.

    PubMed

    Wondrusch, C; Schuster-Amft, C

    2013-01-01

    For patients with central nervous system (CNS) lesions and sensorimotor impairments a solid motor imagery (MI) introduction is crucial to understand and use MI to improve motor performance. The study's aim was to develop and evaluate a standardized MI group introduction program (MIIP) for patients after stroke, multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI). Phase 1: Based on literature a MIIP was developed comprising MI theory (definition, type, mode, perspective, planning) and MI practice (performance, control). Phase 2: Development of a 27-item self-administered MIIP evaluation questionnaire, assessing MI knowledge self-evaluation of the ability to perform MI and patient satisfaction with the MIIP. Phase 3: Evaluation of MIIP and MI questionnaire by 2 independent MI experts based on predefined criteria and 2 patients using semi-structured interviews. Phase 4: Case series with a pre-post design to evaluate MIIP (3 × 30 min) using the MI questionnaire, Imaprax, Kinaesthetic and Visual Imagery Questionnaire, and Mental Chronometry. The paired t-test and the Wilcoxon signed-rank test were used to determine significant changes. Data of eleven patients were analysed (5 females; age 62.3 ± 14.1 years). Declarative MI knowledge improved significantly from 5.4 ± 2.2 to 8.8 ± 2.9 (p = 0.010). Patients demonstrated good satisfaction with MIIP (mean satisfaction score: 83.2 ± 11.4%). MI ability remained on a high level but showed no significant change, except a significant decrease in the Kinaesthetic and Visual Imagery Questionnaire score. The presented MIIP seems to be valid and feasible for patients with CNS lesions and sensorimotor impairments resulting in improved MI knowledge. MIIP sessions can be held in groups of four or less. MI ability and Mental Chronometry remained unchanged after 3 training sessions.

  16. A three-dimensional architecture of vertically aligned multilayer graphene facilitates heat dissipation across joint solid surfaces

    NASA Astrophysics Data System (ADS)

    Liang, Qizhen; Yao, Xuxia; Wang, Wei; Wong, C. P.

    2012-02-01

    Low operation temperature and efficient heat dissipation are important for device life and speed in current electronic and photonic technologies. Being ultra-high thermally conductive, graphene is a promising material candidate for heat dissipation improvement in devices. In the application, graphene is expected to be vertically stacked between contact solid surfaces in order to facilitate efficient heat dissipation and reduced interfacial thermal resistance across contact solid surfaces. However, as an ultra-thin membrane-like material, graphene is susceptible to Van der Waals forces and usually tends to be recumbent on substrates. Thereby, direct growth of vertically aligned free-standing graphene on solid substrates in large scale is difficult and rarely available in current studies, bringing significant barriers in graphene's application as thermal conductive media between joint solid surfaces. In this work, a three-dimensional vertically aligned multi-layer graphene architecture is constructed between contacted Silicon/Silicon surfaces with pure Indium as a metallic medium. Significantly higher equivalent thermal conductivity and lower contact thermal resistance of vertically aligned multilayer graphene are obtained, compared with those of their recumbent counterpart. This finding provides knowledge of vertically aligned graphene architectures, which may not only facilitate current demanding thermal management but also promote graphene's widespread applications such as electrodes for energy storage devices, polymeric anisotropic conductive adhesives, etc.

  17. New mud system produces solids-free, reusable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Corpus Christi, Texas, based Cameron Equipment Co., Inc., has developed a closed-loop mud treating system that removes solids from water-based systems and leaves the separated fluid clean and chemical free enough to be re-used directly on the rig. The system has been successfully applied by a Gulf of Mexico operator in areas where zero discharge is required. The alternative mud conditions program offered by the developers is called the Cameron Fluid Recycling System. Designed for closed-loop water-based fluids, the system is a new method of removing solids from normally discharged fluids such as drilling mud, waste and wash water,more » or any other water-based fluid that contains undesirable solids. The patented method efficiently produces end products that are (1) dry solids; and (2) essentially 100% solids-free fluid that can be re-used in the same mud system. All excess drilling mud, and all wash water that would normally go to the reserve pit or a cuttings barge are collected in a tank. Recycled fluid is compatible with the mud system fluid, no harmful chemicals are used, and pH is not altered.« less

  18. Beyond the Compositional Threshold of Nanoparticle-Based Materials.

    PubMed

    Portehault, David; Delacroix, Simon; Gouget, Guillaume; Grosjean, Rémi; Chan-Chang, Tsou-Hsi-Camille

    2018-04-17

    The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion, great promise. We will span methods of low temperature "chimie douce" aqueous synthesis coupled to microwave heating, sol-gel chemistry and processing coupled to solid state reactions, and then molten salt synthesis. These protocols pave the way to metastable low valence oxyhydroxides, vanadates, perovskite oxides, boron carbon nitrides, and metal borides, all obtained at the nanoscale with structural and morphological features differing from "usual" nanomaterials. These nano-objects show original properties, from sensing, thermoelectricity, charge and spin transports, photoluminescence, and catalysis, which require advanced characterization of surface states. We then identify future trends of synthetic methodologies that will merit further attention in this burgeoning field, by emphasizing the importance of unveiling reaction mechanisms and coupling experiments with modeling.

  19. Method of production of pure hydrogen near room temperature from aluminum-based hydride materials

    DOEpatents

    Pecharsky, Vitalij K.; Balema, Viktor P.

    2004-08-10

    The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.

  20. Knowledge information management toolkit and method

    DOEpatents

    Hempstead, Antoinette R.; Brown, Kenneth L.

    2006-08-15

    A system is provided for managing user entry and/or modification of knowledge information into a knowledge base file having an integrator support component and a data source access support component. The system includes processing circuitry, memory, a user interface, and a knowledge base toolkit. The memory communicates with the processing circuitry and is configured to store at least one knowledge base. The user interface communicates with the processing circuitry and is configured for user entry and/or modification of knowledge pieces within a knowledge base. The knowledge base toolkit is configured for converting knowledge in at least one knowledge base from a first knowledge base form into a second knowledge base form. A method is also provided.

  1. Outcomes of Solid Organ Transplants After Simultaneous Solid Organ and Vascularized Composite Allograft Procurements: A Nationwide Analysis.

    PubMed

    Aycart, Mario A; Alhefzi, Muayyad; Sharma, Gaurav; Krezdorn, Nicco; Bueno, Ericka M; Talbot, Simon G; Carty, Matthew J; Tullius, Stefan G; Pomahac, Bohdan

    2017-06-01

    Current knowledge of the impact of facial vascularized composite allograft (VCA) procurement on the transplantation outcomes of the concomitantly recovered solid organs is limited to isolated case reports and short-term results. Here we report on a nationwide analysis of facial allograft donor surgery experience and long-term outcomes of the concomitantly recovered solid organs and their recipients. There were 10 facial VCA procurements in organ donors between December 2008 and October 2014. We identified the population of subjects who received solid organs from these 10 donors using the Scientific Registry of Transplant Recipients. We retrospectively reviewed operative characteristics, intraoperative parameters, and postoperative outcomes. Six of 10 donor surgeries were performed at outside institutions, all on brain-dead donors. Mean operative duration for facial VCA recovery was 6.9 hours (range, 4-13.25 hours). A total of 36 solid organs were recovered and transplanted into 35 recipients. Survival rates for kidney and liver recipients were 100% and 90% at a median follow-up of 33 and 27.5 months, respectively (range, 6-72 months). Graft survival rates for kidneys and livers were 15 of 16 (94%) and 9 of 10 (90%), respectively. Recipient and graft survival rates for hearts and lungs were 75% (n = 4) and 100% (n = 3) at mean follow-up time of 14.75 and 16 months, respectively. A liver recipient died at 22 months from unknown causes and a heart recipient died of leukemia at 10 months. Facial VCA procurement does not appear to adversely affect the outcomes of transplant recipients of concomitantly recovered solid organ allografts.

  2. Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids.

    PubMed

    Bozyigit, Deniz; Jakob, Michael; Yarema, Olesya; Wood, Vanessa

    2013-04-24

    We demonstrate current-based, deep level transient spectroscopy (DLTS) on semiconductor nanocrystal solids to obtain quantitative information on deep-lying trap states, which play an important role in the electronic transport properties of these novel solids and impact optoelectronic device performance. Here, we apply this purely electrical measurement to an ethanedithiol-treated, PbS nanocrystal solid and find a deep trap with an activation energy of 0.40 eV and a density of NT = 1.7 × 10(17) cm(-3). We use these findings to draw and interpret band structure models to gain insight into charge transport in PbS nanocrystal solids and the operation of PbS nanocrystal-based solar cells.

  3. Designed synthesis and stacking architecture of solid and mesoporous TiO(2) nanoparticles for enhancing the light-harvesting efficiency of dye-sensitized solar cells.

    PubMed

    Ahn, Ji Young; Moon, Kook Joo; Kim, Ji Hoon; Lee, Sang Hyun; Kang, Jae Wook; Lee, Hyung Woo; Kim, Soo Hyung

    2014-01-22

    We fabricated solid and mesoporous TiO2 nanoparticles (NPs) with relatively large primary sizes of approximately 200 nm via inorganic templates for aero-sol-gel and subsequent aqueous-washing processes. The amount of dye molecules adsorbed by the internal pores in the mesoporous TiO2 NPs was increased by creating the nanopores within the solid TiO2 NPs. Simultaneously, the light-scattering effect of the mesoporous TiO2 NPs fabricated by this approach was secured by maintaining their spherical shape and relatively large average size. By precisely accumulating the fabricated solid or mesoporous 200 nm diameter TiO2 NPs on top of a conventional 25 nm diameter TiO2 NP-based underlayer, we could systematically examine the effect of the solid and mesoporous TiO2 NPs on the photovoltaic performance of dye-sensitized solar cells (DSSCs). Consequently, the stacking architecture of the mesoporous TiO2 NP-based overlayer, which functioned as both a light-scattering and dye-supporting medium, on top of a conventional solid TiO2 NP-based underlayer in a DSSC photoelectrode (i.e., double-layer structures) was found to be very promising for significantly improving the photovoltaic properties of conventional solid TiO2 NP single-layer-based DSSCs.

  4. Cause-effect relationships in nutritional intervention studies for health claims substantiation: guidance for trial design.

    PubMed

    Navas-Carretero, Santiago; Martinez, J Alfredo

    2015-07-01

    The growing worldwide interest on functional food research has been accompanied by increasing regulatory guidelines in this area, with the aim of ensuring that any claimed effect in foods, beyond their nutritional role, is based on scientific unequivocal evidence. In order to assess the cause-effect relationship between the regular consumption of a food or a food component and the beneficial outcome for the consumer, an appropriate study design is required. Previous knowledge and research on the specific claimed food or product may be an adequate basis for defining a hypothesis and accurate objectives. Other key factors to take into account are based on the outcomes studied, the length of the trial, sample size and type, as well as the transparency on reporting the results obtained. Based on the Consolidated Standards on Reporting Trials statement (CONSORT), together with the specific guidelines published by the European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies, the present article aims at summarizing key questions conducting to the most appropriate study design for solid health claim substantiation.

  5. Gadolinium-Based Contrast Agents for MR Cancer Imaging

    PubMed Central

    Zhou, Zhuxian; Lu, Zheng-Rong

    2013-01-01

    Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents have been routinely used for detecting tumor at an early stage. Gadolinium based contrast agents are the most commonly used contrast agents in clinical MRI. There have been significant efforts to design and develop novel Gd(III) contrast agents with high relaxivity, low toxicity and specific tumor binding. The relaxivity of the Gd(III) contrast agents can be increased by proper chemical modification. The toxicity of Gd(III) contrast agents can be reduced by increasing the agents’ thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific contrast agents. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR contrast agents for tumor imaging. PMID:23047730

  6. Synthesis of POSS-based ionic conductors with low glass transition temperatures for efficient solid-state dye-sensitized solar cells.

    PubMed

    Zhang, Wei; Wang, Zhong-Sheng

    2014-07-09

    Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.

  7. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Martinez-Ibañez, Maria; Piszcz, Michal; Rodriguez-Martinez, Lide M.; Zhang, Heng; Armand, Michel

    2018-04-01

    Novel solid polymer electrolytes (SPEs), comprising of comb polymer matrix grafted with soft and disordered polyether moieties (Jeffamine®) and lithium bis(fluorosulfonyl)imide (LiFSI) are investigated in all-solid-state lithium metal (Li°) polymer cells. The LiFSI/Jeffamine-based SPEs are fully amorphous at room temperature with glass transitions as low as ca. -55 °C. They show higher ionic conductivities than conventional poly(ethylene oxide) (PEO)-based SPEs at ambient temperature region, and good electrochemical compatibility with Li° electrode. These exceptional properties enable the operational temperature of Li° | LiFePO4 cells to be decreased from an elevated temperature (70 °C) to room temperature. Those results suggest that LiFSI/Jeffamine-based SPEs can be promising electrolyte candidates for developing safe and high performance all-solid-state Li° batteries.

  8. Using Ontologies to Formalize Services Specifications in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Breitman, Karin Koogan; Filho, Aluizio Haendchen; Haeusler, Edward Hermann

    2004-01-01

    One key issue in multi-agent systems (MAS) is their ability to interact and exchange information autonomously across applications. To secure agent interoperability, designers must rely on a communication protocol that allows software agents to exchange meaningful information. In this paper we propose using ontologies as such communication protocol. Ontologies capture the semantics of the operations and services provided by agents, allowing interoperability and information exchange in a MAS. Ontologies are a formal, machine processable, representation that allows to capture the semantics of a domain and, to derive meaningful information by way of logical inference. In our proposal we use a formal knowledge representation language (OWL) that translates into Description Logics (a subset of first order logic), thus eliminating ambiguities and providing a solid base for machine based inference. The main contribution of this approach is to make the requirements explicit, centralize the specification in a single document (the ontology itself), at the same that it provides a formal, unambiguous representation that can be processed by automated inference machines.

  9. The industrial applications of cassava: current status, opportunities and prospects.

    PubMed

    Li, Shubo; Cui, Yanyan; Zhou, Yuan; Luo, Zhiting; Liu, Jidong; Zhao, Mouming

    2017-06-01

    Cassava (Manihot esculenta Crantz) is a drought-tolerant, staple food crop that is grown in tropical and subtropical areas. As an important raw material, cassava is a valuable food source in developing countries and is also extensively employed for producing starch, bioethanol and other bio-based products (e.g. feed, medicine, cosmetics and biopolymers). These cassava-based industries also generate large quantities of wastes/residues rich in organic matter and suspended solids, providing great potential for conversion into value-added products through biorefinery. However, the community of cassava researchers is relatively small and there is very limited information on cassava. Therefore this review summarizes current knowledge on the system biology, economic value, nutritional quality and industrial applications of cassava and its wastes in an attempt to accelerate understanding of the basic biology of cassava. The review also discusses future perspectives with respect to integrating and utilizing cassava information resources for increasing the economic and environmental sustainability of cassava industries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. New Contemporary Criterion-Referenced Assessment Instruments for Astronomy & Geology: TOAST & EGGS

    NASA Astrophysics Data System (ADS)

    Guffey, Sarah Katie; Slater, Stephanie J.; Slater, Timothy F.

    2015-08-01

    Considerable effort in the astronomy and Earth sciences education research over the past decade has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing discipline-based education research allowing scholar to establish the initial, incoming knowledge state of students as well as to attempt to measure some of the impacts of innovative instructional interventions. Before now, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. Whereas first-generation assessment tools, such as the Astronomy Diagnostics Test ADT2) were based primarily upon further identifying documented astronomy misconceptions, scholars from the CAPER Center for Astronomy & Physics Education Research team are creating contemporary instruments based instead by developing items using modern test construction techniques and tightly aligned to the consensus learning goals identified by the American Association of the Advancement of Science’s Project 2061 Benchmarks, and the National Research Council’s National Science Education Standards, and the National Research Council’s Frameworks for A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. These consensus learning goals are further enhanced guiding documents from the American Astronomical Society - Chair’s Conference on ASTRO 101 and the NSF-funded Earth Science Literacy Initiative. Two of the resulting criterion-referenced assessment tools widely used by researchers are the Test Of Astronomy STandards (TOAST) and the Exam of GeoloGy StandardS (EGGS). These easy-to-use and easy-to-score multiple-choice instruments have a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact teaching innovations with learning goals tightly aligned to consensus goals of the broader education community.

  11. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.

    PubMed

    Ishii, Kazuei; Furuichi, Toru; Tanikawa, Noboru

    2009-02-01

    Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.

  12. Developing the experts we need: Fostering adaptive expertise through education.

    PubMed

    Mylopoulos, Maria; Kulasegaram, Kulamakan; Woods, Nicole N

    2018-06-01

    In this era of increasing complexity, there is a growing gap between what we need our medical experts to do and the training we provide them. While medical education has a long history of being guided by theories of expertise to inform curriculum design and implementation, the theories that currently underpin our educational programs do not account for the expertise necessary for excellence in the changing health care context. The more comprehensive view of expertise gained by research on both clinical reasoning and adaptive expertise provides a useful framing for re-shaping physician education, placing emphasis on the training of clinicians who will be adaptive experts. That is, have both the ability to apply their extensive knowledge base as well as create new knowledge as dictated by patient needs and context. Three key educational approaches have been shown to foster the development of adaptive expertise: learning that emphasizes understanding, providing students with opportunities to embrace struggle and discovery in their learning, and maximizing variation in the teaching of clinical concepts. There is solid evidence that a commitment to these educational approaches can help medical educators to set trainees on the path towards adaptive expertise. © 2018 John Wiley & Sons, Ltd.

  13. Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption.

    PubMed

    de Graaf, S E; Faoro, L; Burnett, J; Adamyan, A A; Tzalenchuk, A Ya; Kubatkin, S E; Lindström, T; Danilov, A V

    2018-03-20

    Noise and decoherence due to spurious two-level systems located at material interfaces are long-standing issues for solid-state quantum devices. Efforts to mitigate the effects of two-level systems have been hampered by a lack of knowledge about their chemical and physical nature. Here, by combining dielectric loss, frequency noise and on-chip electron spin resonance measurements in superconducting resonators, we demonstrate that desorption of surface spins is accompanied by an almost tenfold reduction in the charge-induced frequency noise in the resonators. These measurements provide experimental evidence that simultaneously reveals the chemical signatures of adsorbed magnetic moments and highlights their role in generating charge noise in solid-state quantum devices.

  14. Thermodynamically constrained correction to ab initio equations of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Martin; Mattsson, Thomas R.

    2014-07-07

    We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence ofmore » the exchange-correlation functional used.« less

  15. An unusual manifestation of post-transplant lymphoproliferative disorder in the lip after pediatric heart transplantation.

    PubMed

    Chen, C; Akanay-Diesel, S; Schuster, F R; Klee, D; Schmidt, K G; Donner, B C

    2012-11-01

    PTLD is a serious and frequently observed complication after solid organ transplantation. We present a six-yr-old girl with a rapidly growing, solid tumor of the lip four yr after orthotopic heart transplantation, which was classified as monomorphic PTLD with the characteristics of a diffuse large B-cell lymphoma. Treatment with reduction in immunosuppression, ganciclovir, and anti B-cell monoclonal antibody (rituximab) resulted in full remission since 12 months. To the best of our knowledge, this report is the first description of PTLD in the lip in a pediatric patient after heart transplantation in the English literature. © 2012 John Wiley & Sons A/S.

  16. Noble gases and the early history of the Earth: Inappropriate paradigms and assumptions inhibit research and communication

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Alexander, E. C., Jr.

    1985-01-01

    The development of models as tracers of nobel gases through the Earth's evolution is discussed. A new set of paradigms embodying present knowledge was developed. Several important areas for future research are: (1) measurement of the elemental and isotopic compositions of the five noble gases in a large number of terrestrial materials, thus better defining the composition and distribution of terrestrial noble gases; (2) determinations of relative diffusive behavior, chemical behavior, and the distribution between solid and melt of noble gases under mantle conditions are urgently needed; (3) disequilibrium behavior in the nebula needs investigation, and the behavior of plasmas and possible cryotrapping on cold nebular solids are considered.

  17. Conformational and vibrational reassessment of solid paracetamol

    NASA Astrophysics Data System (ADS)

    Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.

    2017-08-01

    This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.

  18. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  19. Optofluidic devices with integrated solid-state nanopores

    PubMed Central

    Hawkins, Aaron R.; Schmidt, Holger

    2016-01-01

    This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook. PMID:27046940

  20. Investigation of solid plume simulation criteria to produce flight plume effects on multibody configuration in wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Frost, A. L.; Dill, C. C.

    1986-01-01

    An investigation to determine the sensitivity of the space shuttle base and forebody aerodynamics to the size and shape of various solid plume simulators was conducted. Families of cones of varying angle and base diameter, at various axial positions behind a Space Shuttle launch vehicle model, were wind tunnel tested. This parametric evaluation yielded base pressure and force coefficient data which indicated that solid plume simulators are an inexpensive, quick method of approximating the effect of engine exhaust plumes on the base and forebody aerodynamics of future, complex multibody launch vehicles.

  1. Interview with Dr. Charles Nolan: Dean of Admissions, Franklin W. Olin College of Engineering

    ERIC Educational Resources Information Center

    Helms, Robin Matross

    2003-01-01

    This article presents an interview with Dr. Charles Nolan, the former Dean of Admission at the Franklin W. Olin College of Engineering, in Needham, Massachusetts. Chartered in 1997, Olin College has taken a new approach to undergraduate engineering education by providing its students with both a solid engineering background and knowledge in the…

  2. An Introduction to Logic Control Systems for the Behavioral Scientist, Part I, Text.

    ERIC Educational Resources Information Center

    Larsen, Lawrence A.

    This programed instruction course gives a basic introduction to solid state programing equipment. Course objectives include giving the student (1) a working knowledge of the various types of units used in building digital logic control systems and (2) an idea of how they interconnect to perform different functions. The course has no prerequisites…

  3. A Study of Three Outcomes of a College Level Course in Physical Science for Nonscience Students (Adapted PSNS).

    ERIC Educational Resources Information Center

    Frangos, George John

    This study was designed to determine if an adapted version of Physical Science for Nonscience Students (PSNS), a physical science course used for nonscience majors in college, significantly contributes to an understanding of the scientific enterprise, positive attitudes toward science and scientists, and knowledge of solid matter and the…

  4. "Because Sometimes Your Failures Can Also Teach You Certain Skills": Lecturer and Student Perceptions of Employability Skills at a Transnational University

    ERIC Educational Resources Information Center

    Paterson, Richard

    2017-01-01

    This exploratory study investigates lecturers' and students' understanding of the concepts and language underpinning higher education strategies of developing employability skills. While a solid grounding in discipline-specific knowledge and skills is what most graduate degrees aim at providing, employability skills are increasingly becoming an…

  5. How to Perform a Literature Review with Free and Open Source Software

    ERIC Educational Resources Information Center

    Pearce, Joshua M.

    2018-01-01

    As it provides a firm foundation for advancing knowledge, a solid literature review is a critical feature of any academic investigation. Yet, there are several challenges in performing literature reviews including: (1) lack of access to the literature because of costs, (2) fracturing of the literature into many sources, lack of access and…

  6. Analysis of carbon functional groups in mobile humic acid and recalcitrant calcium humate extracted from eight US soils

    USDA-ARS?s Scientific Manuscript database

    Solid state 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to study the structure of soil humic fractions; however, knowledge regarding carbon structural relationships in humic fractions is limited. In this study, mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fr...

  7. Neuroanatomy Education: The Impact on Perceptions, Attitudes, and Knowledge of an Intensive Course on General Practice Residents

    ERIC Educational Resources Information Center

    Arantes, Mavilde; Barbosa, Joselina Maria; Ferreira, Maria Amélia

    2017-01-01

    General practitioners are responsible for the management of an increasing number of patients with neurological illness, and thus a solid education in neurosciences is a necessary component of their training. This study examines the effects of an intensive clinical neuroanatomy course on twenty general practice residents' perceptions, attitudes,…

  8. Familiarity with Latin and Greek Anatomical Terms and Course Performance in Undergraduates

    ERIC Educational Resources Information Center

    Pampush, James D.; Petto, Andrew J.

    2011-01-01

    Commonly used technical anatomy and physiology (A&P) terms are predominantly rooted in Latin and Greek vocabulary, so it is commonly inferred that a solid grounding in Latin and Greek roots of medical terminology will improve student learning in anatomy and related disciplines. This study examines the association of etymological knowledge of…

  9. World-Class Ambitions, Weak Standards: An Excerpt from "The State of State Science Standards 2012"

    ERIC Educational Resources Information Center

    American Educator, 2012

    2012-01-01

    A solid science education program begins by clearly establishing what well-educated youngsters need to learn about this multifaceted domain of human knowledge. The first crucial step is setting clear academic standards for the schools--standards that not only articulate the critical science content students need to learn, but that also properly…

  10. Investigation of the physical and chemical characteristics of rural solid waste in China and its spatiotemporal distributions.

    PubMed

    Wu, Xiaohui; Yue, Bo; Huang, Qifei; Wang, Qi; Li, Zhilong; Wang, Yutang; Yu, Junying

    2018-04-13

    Despite governmental efforts toward the development of policies, funds, and technologies, the inherent characteristics of rural solid waste (RSW) discharge have led to great difficulties in RSW pollution control. However, establishing a realistic management strategy requires greater knowledge of RSW generation. Therefore, the RSW of 72 typical towns and villages from 12 provinces of China was analyzed for physicochemical characteristics, as well as its spatiotemporal distribution. The largest proportion of kitchen waste, coal ash, plastic, and paper of RSW was 33.70% ± 17.87%, 26.50% ± 17.61%, 13.48% ± 5.68%, and 10.75% ± 5.75%, respectively, in 2015. Although RSW had the potential for composting, it was still necessary to pay special attention to heavy metals pollution of RSW. The spatiotemporal distributions of RSW components were extremely non-homogenous, and significant variations existed in the kitchen residue, coal ash, plastic, and paper because of differences in economic growth, climatic changes, dietary habits, energy consumption structure, and consumer preferences. No obvious differences in RSW components were observed between villages and market towns. Overall, RSW treatment and management approaches should be considered based on local conditions of RSW generation.

  11. Astrobiology: An astronomer's perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergin, Edwin A.

    2014-12-08

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the processmore » of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.« less

  12. Conversion of microwave pyrolysed ASR's char using high temperature agents.

    PubMed

    Donaj, Pawel; Blasiak, Wlodzimierz; Yang, Weihong; Forsgren, Christer

    2011-01-15

    Pyrolysis enables to recover metals and organic feedstock from waste conglomerates such as: automotive shredder residue (ASR). ASR as well as its pyrolysis solid products, is a morphologically and chemically varied mixture, containing mineral materials, including hazardous heavy metals. The aim of the work is to generate fundamental knowledge on the conversion of the organic residues of the solid products after ASR's microwave pyrolysis, treated at various temperatures and with two different types of gasifying agent: pure steam or 3% (v/v) of oxygen. The research is conducted using a lab-scale, plug-flow gasifier, with an integrated scale for analysing mass loss changes over time of experiment, serving as macro TG at 950, 850 and 760 °C. The reaction rate of char decomposition was investigated, based on carbon conversion during gasification and pyrolysis stage. It was found in both fractions that char conversion rate decreases with the rise of external gas temperature, regardless of the gasifying agent. No significant differences between the reaction rates undergoing with steam and oxygen for char decomposition has been observed. This abnormal char behaviour might have been caused by the inhibiting effects of ash, especially alkali metals on char activity or due to deformation of char structure during microwave heating. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Fugacity ratio estimations for high-melting rigid aromatic compounds.

    PubMed

    Van Noort, Paul C M

    2004-07-01

    Prediction of the environmental fate of organic compounds requires knowledge of their tendency to stay in the gas and water phase. Vapor pressure and aqueous solubility are commonly used descriptors for these processes. Depending on the type of distribution process, values for either the pure solid state or the (subcooled) liquid state have to be used. Values for the (subcooled) liquid state can be calculated from those for the solid state, and vice versa, using the fugacity ratio. Fugacity ratios are usually calculated from the entropy of fusion and the melting point. For polycyclic aromatic hydrocarbons, chlorobenzenes, chlorodibenzofuranes, and chlorodibenzo(p)dioxins, fugacity ratios calculated using experimental entropies of fusion were systematically less than those obtained from a thermodynamically more rigorous approach using heat capacity data. The deviation was more than 1 order of magnitude at the highest melting point. The use of a universal value for the entropy of fusion of 56 J/molK resulted in either over or underestimation by up to more than 1 order of magnitude. A simple correction factor, based on the melting point only, was derived. This correction factor allowed the fugacity ratios to be estimated from experimental entropies of fusion and melting point with an accuracy better than 0.1-0.2 log units. Copyright 2004 Elsevier Ltd.

  14. Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    2004-10-01

    The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.

  15. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair.

    PubMed

    Kiraly, Laszlo; Tofeig, Magdi; Jha, Neerod Kumar; Talo, Haitham

    2016-02-01

    Three-dimensional (3D) printed prototypes of malformed hearts have been used for education, communication, presurgical planning and simulation. We present a case of a 5-month old infant with complex obstruction at the neoaortic to transverse arch and descending aortic junction following the neonatal modified Norwood-1 procedure for hypoplastic left heart syndrome. Digital 3D models were created from a routine 64-slice CT dataset; then life-size solid and magnified hollow models were printed with a 3D printer. The solid model provided further insights into details of the anatomy, whereas the surgical approach and steps of the operation were simulated on the hollow model. Intraoperative assessment confirmed the anatomical accuracy of the 3D models. The operation was performed in accordance with preoperative simulation: sliding autologous flaps achieved relief of the obstruction without additional patching. Knowledge gained from the models fundamentally contributed to successful outcome and improved patient safety. This case study presents an effective use of 3D models in exploring complex spatial relationship at the aortic arch and in simulation-based planning of the operative procedure. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Build-up of toxic metals on the impervious surfaces of a commercial seaport.

    PubMed

    Ziyath, Abdul M; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2016-05-01

    In the context of increasing threats to the sensitive marine ecosystem by toxic metals, this study investigated the metal build-up on impervious surfaces specific to commercial seaports. The knowledge generated from this study will contribute to managing toxic metal pollution of the marine ecosystem. The study found that inter-modal operations and main access roadway had the highest loads followed by container storage and vehicle marshalling sites, while the quay line and short term storage areas had the lowest. Additionally, it was found that Cr, Al, Pb, Cu and Zn were predominantly attached to solids, while significant amount of Cu, Pb and Zn were found as nutrient complexes. As such, treatment options based on solids retention can be effective for some metal species, while ineffective for other species. Furthermore, Cu and Zn are more likely to become bioavailable in seawater due to their strong association with nutrients. Mathematical models to replicate the metal build-up process were also developed using experimental design approach and partial least squares regression. The models for Cr and Pb were found to be reliable, while those for Al, Zn and Cu were relatively less reliable, but could be employed for preliminary investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Construction of nanostructures for selective lithium ion conduction using self-assembled molecular arrays in supramolecular solids

    NASA Astrophysics Data System (ADS)

    Moriya, Makoto

    2017-12-01

    In the development of innovative molecule-based materials, the identification of the structural features in supramolecular solids and the understanding of the correlation between structure and function are important factors. The author investigated the development of supramolecular solid electrolytes by constructing ion conduction paths using a supramolecular hierarchical structure in molecular crystals because the ion conduction path is an attractive key structure due to its ability to generate solid-state ion diffusivity. The obtained molecular crystals exhibited selective lithium ion diffusion via conduction paths consisting of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and small molecules such as ether or amine compounds. In the present review, the correlation between the crystal structure and ion conductivity of the obtained molecular crystals is addressed based on the systematic structural control of the ionic conduction paths through the modification of the component molecules. The relationship between the crystal structure and ion conductivity of the molecular crystals provides a guideline for the development of solid electrolytes based on supramolecular solids exhibiting rapid and selective lithium ion conduction.

  18. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production

    NASA Astrophysics Data System (ADS)

    Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther

    2018-04-01

    Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.

  19. Thermodynamic modeling of solid solutions between monosulfate and monochromate 3CaO Bullet Al{sub 2}O{sub 3} Bullet Ca[(CrO{sub 4}){sub x}(SO{sub 4}){sub 1-x}] Bullet nH{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leisinger, Sabine M., E-mail: sabine.leisinger@eawag.ch; Institute of Biogeochemistry and Pollutant Dynamics, ETH, CH-8092 Zurich; Lothenbach, Barbara

    2012-01-15

    In hydrated cement paste AFm-phases are regarded to play an important role in the binding of the toxic contaminant chromate through isomorphic substitution with sulfate. Solid solutions formation can lower the solubility of the solids, thus reducing chromate leaching concentrations. Solid solutions between monosulfate and monochromate were synthesized and characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and inductive coupled plasma optical emission spectroscopy (ICP-OES). Based on the measured ion concentrations in solution total solubility products of the solid solution series were determined. For pure monochromate a logK = - 28.4more » {+-} 0.7 was determined. Results from solid and solution analysis showed that limited solid solutions exist. Based on XRD diffractograms a solid solution with a miscibility gap 0.15 < Crx < 0.85 with a dimensionless Guggenheim parameter of 2.43 was proposed.« less

  20. Solid-phase materials for chelating metal ions and methods of making and using same

    DOEpatents

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  1. Chimeric Antigen Receptor-Modified T Cells for Solid Tumors: Challenges and Prospects

    PubMed Central

    Guo, Yelei; Wang, Yao; Han, Weidong

    2016-01-01

    Recent studies have highlighted the successes of chimeric antigen receptor-modified T- (CART-) cell-based therapy for B-cell malignancies, and early phase clinical trials have been launched in recent years. The few published clinical studies of CART cells in solid tumors have addressed safety and feasibility, but the clinical outcome data are limited. Although antitumor effects were confirmed in vitro and in animal models, CART-cell-based therapy still faces several challenges when directed towards solid tumors, and it has been difficult to achieve the desired outcomes in clinical practice. Many studies have struggled to improve the clinical responses to and benefits of CART-cell treatment of solid tumors. In this review, the status quo of CART cells and their clinical applications for solid tumors will be summarized first. Importantly, we will suggest improvements that could increase the therapeutic effectiveness of CART cells for solid tumors and their future clinical applications. These interventions will make treatment with CART cells an effective and routine therapy for solid tumors. PMID:26998495

  2. A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air

    NASA Astrophysics Data System (ADS)

    Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan

    2005-05-01

    The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.

  3. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  4. Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction

    DOE PAGES

    Xie, Miao; Mohammadi, Reza; Turner, Christopher L.; ...

    2015-07-29

    In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  5. ADAPTATION OF A TECHNIQUE FOR PREDICTING LARGE SOLID ROCKET MOTOR SPECIFIC IMPULSE FROM DATA OBTAINED IN MICROMOTORS.

    DTIC Science & Technology

    Laboratory. The purpose of this technique is to predict specific impulse in large solid rocket motors based on data obtained in micromotors . As little as 2...concerning performance of a propellant in a large solid motor. Predictions, based on data obtained in micromotors , were within 0.6% of the delivered impulse in 6-pound motors and 70-pound BATES motors. (Author)

  6. Breastfeeding knowledge among health workers in rural South Africa.

    PubMed

    Shah, Sonal; Rollins, Nigel C; Bland, Ruth

    2005-02-01

    The aim of the study was to conduct a rapid assessment of breastfeeding knowledge amongst health workers in an area of high HIV prevalence. A cross-sectional survey using semi-structured questionnaires and problem-based scenarios was carried out. Responses were compared to those recommended in the World Health Organization (WHO) Breastfeeding Counselling Course. The setting was a rural area of KwaZulu Natal, with a population of 220 000 people. At the time of the study approximately 36 per cent of pregnant women were HIV-infected and no programme to prevent mother-to-child transmission was in place. A convenient sample of 71 healthcare workers (14 doctors, 25 professional nurses, 16 staff nurses, and 16 community health workers) were included in the study. Over 50% of respondents had given breastfeeding advice to clients over the previous month. However, there were significant discrepancies in breastfeeding knowledge compared to WHO recommendations. Ninety-three per cent (n = 13) of doctors knew that breastfeeding should be initiated within 30 min of delivery, but 71 per cent (n = 10) would recommend water, and 50 per cent (n = 7) solids to breastfed infants under 6 months of age. Fifty-seven per cent (n = 8) considered glucose water necessary for neonatal jaundice, constipation, and for infants immediately after delivery. Only 44 per cent (n = 7) of staff nurses and 56 per cent (n = 14) of professional nurses knew that breastfeeding should be on demand. The majority would recommend water, formula milk, and solids to breastfed infants under 6 months of age, and glucose water for neonatal jaundice and immediately after delivery. Knowledge of community health workers differed most from WHO recommendations: only 37 per cent (n = 6) knew that breastfeeding should be initiated within 30 min of delivery, 68 per cent (n = 11) thought breastfeeding should be on schedule and not on demand, and the majority would recommend supplements to infants under 6 months of age. Few respondents suggested taking a feeding history or observing a breastfeed in response to the problem scenarios. The most commonly given responses to problems of babies who were perceived to be thirsty, unsatisfied, or crying after feeds was to supplement with other fluids or feeds. There is a need for systematic and ongoing training in breastfeeding and infant feeding counselling in the context of HIV, so that breastfeeding is not undermined by the current HIV pandemic, and exclusive breastfeeding continues to be promoted for all HIV-uninfected women, women of unknown status, and HIV-infected women who choose to breastfeed.

  7. Novel SiO2-deposited CaF2 substrate for vibrational sum-frequency generation (SFG) measurements of chemisorbed monolayers in an aqueous environment.

    PubMed

    Padermshoke, Adchara; Konishi, Shouta; Ara, Masato; Tada, Hirokazu; Ishibashi, Taka-Aki

    2012-06-01

    A novel SiO(2)-deposited CaF(2) (SiO(2)/CaF(2)) substrate for measuring vibrational sum-frequency generation (SFG) spectra of silane-based chemisorbed monolayers in aqueous media has been developed. The substrate is suitable for silanization and transparent over a broad range of the infrared (IR) probe. The present work demonstrates the practical application of the SiO(2)/CaF(2) substrate and, to our knowledge, the first SFG spectrum at the solid/water interface of a silanized monolayer observed over the IR fingerprint region (1780-1400 cm(-1)) using a back-side probing geometry. This new substrate can be very useful for SFG studies of various chemisorbed organic molecules, particularly biological compounds, in aqueous environments.

  8. All-temperature magnon theory of ferromagnetism

    NASA Astrophysics Data System (ADS)

    Datta, Sambhu N.; Panda, Anirban

    2009-08-01

    We present an all-temperature magnon formalism for ferromagnetic solids. To our knowledge, this is the first time that all-temperature spin statistics have been calculated. The general impression up to now is that the magnon formalism breaks down at the Curie point as it introduces a series expansion and unphysical states. Our treatment is based on an accurate quantum mechanical representation of the Holstein-Primakoff transformation. To achieve this end, we introduce the 'Kubo operator'. The treatment is valid for all 14 types of Bravais lattices, and not limited to simple cubic unit cells. In the present work, we carry out a zeroth-order treatment involving all possible spin states, and leaving out all unphysical states. In a subsequent paper we will show that the perturbed energy values are very different, but the magnetic properties undergo only small modifications from the zeroth-order results.

  9. Contraception for adolescents.

    PubMed

    2014-10-01

    Contraception is a pillar in reducing adolescent pregnancy rates. The American Academy of Pediatrics recommends that pediatricians develop a working knowledge of contraception to help adolescents reduce risks of and negative health consequences related to unintended pregnancy. Over the past 10 years, a number of new contraceptive methods have become available to adolescents, newer guidance has been issued on existing contraceptive methods, and the evidence base for contraception for special populations (adolescents who have disabilities, are obese, are recipients of solid organ transplants, or are HIV infected) has expanded. The Academy has addressed contraception since 1980, and this policy statement updates the 2007 statement on contraception and adolescents. It provides the pediatrician with a description and rationale for best practices in counseling and prescribing contraception for adolescents. It is supported by an accompanying technical report. Copyright © 2014 by the American Academy of Pediatrics.

  10. Dual-wavelength laser with topological charge

    NASA Astrophysics Data System (ADS)

    Yu, Haohai; Xu, Miaomiao; Zhao, Yongguang; Wang, Yicheng; Han, Shuo; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang

    2013-09-01

    We demonstrate the simultaneous oscillation of different photons with equal orbital angular momentum in solid-state lasers for the first time to our knowledge. Single tunable Hermite-Gaussian (HG0,n) (0 ≤ n ≤ 7) laser modes with dual wavelength were generated using an isotropic cavity. With a mode-converter, the corresponding Laguerre-Gaussian (LG0,n) laser modes were obtained. The oscillating laser modes have two types of photons at the wavelengths of 1077 and 1081 nm and equal orbital angular momentum of nħ per photon. These results identify the possibility of simultaneous oscillation of different photons with equal and controllable orbital angular momentum. It can be proposed that this laser should have promising applications in many fields based on its compact structure, tunable orbital angular momentum, and simultaneous oscillation of different photons with equal orbital angular momentum.

  11. Isolation and identification of chitin in the black coral Parantipathes larix (Anthozoa: Cnidaria).

    PubMed

    Bo, Marzia; Bavestrello, Giorgio; Kurek, Denis; Paasch, Silvia; Brunner, Eike; Born, René; Galli, Roberta; Stelling, Allison L; Sivkov, Viktor N; Petrova, Olga V; Vyalikh, Denis; Kummer, Kurt; Molodtsov, Serguei L; Nowak, Dorota; Nowak, Jakub; Ehrlich, Hermann

    2012-01-01

    Until now, there is a lack of knowledge about the presence of chitin in numerous representatives of corals (Cnidaria). However, investigations concerning the chitin-based skeletal organization in different coral taxa are significant from biochemical, structural, developmental, ecological and evolutionary points of view. In this paper, we present a thorough screening for the presence of chitin within the skeletal formations of a poorly investigated Mediterranean black coral, Parantipathes larix (Esper, 1792), as a typical representative of the Schizopathidae family. Using a wide array variety of techniques ((13)C solid state NMR, Fourier transform infrared (FTIR), Raman, NEXAFS, Morgan-Elson assay and Calcofluor White Staining), we unambiguously show for the first time that chitin is an important component within the skeletal stalks as well as pinnules of this coral. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Recent analytical developments for powder characterization

    NASA Astrophysics Data System (ADS)

    Brackx, E.; Pages, S.; Dugne, O.; Podor, R.

    2015-07-01

    Powders and divided solid materials are widely represented as finished or intermediary products in industries as widely varied as foodstuffs, cosmetics, construction, pharmaceuticals, electronic transmission, and energy. Their optimal use requires a mastery of the transformation process based on knowledge of the different phenomena concerned (sintering, chemical reactivity, purity, etc.). Their modelling and understanding need a prior acquisition of sets of data and characteristics which are more or less challenging to obtain. The goal of this study is to present the use of different physico-chemical characterization techniques adapted to uranium-containing powders analyzed either in a raw state or after a specific preparation (ionic polishing). The new developments touched on concern dimensional characterization techniques for grains and pores by image analysis, chemical surface characterization and powder chemical reactivity characterization. The examples discussed are from fabrication process materials used in the nuclear fuel cycle.

  13. Debris flows: behavior and hazard assessment

    USGS Publications Warehouse

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  14. Evidence and evidence gaps in therapies of nasal obstruction and rhinosinusitis

    PubMed Central

    Rotter, Nicole

    2016-01-01

    Therapeutic decisions in otorhinolaryngology are based on clinical experience, surgical skills, and scientific evidence. Recently, evidence-based therapies have gained increased attention and importance due to their potential to improve the individual patient’s treatment and their potential at the same time to reduce treatment costs. In clinical practice, it is almost impossible to stay ahead of the increasing mass of literature and on the other hand critically assess the presented data. A solid scientific and statistical knowledge as well as a significant amount of spare time are required to detect systematic bias and other errors in study designs, also with respect to assessing whether or not a study should be part of an individual therapeutic decision. Meta-analyses, reviews, and clinical guidelines are, therefore, of increasing importance for evidence-based therapy in clinical practice. This review is an update of the availability of external evidence for the treatment of nasal obstruction and rhinosinusitis. It becomes evident that both groups of diseases differ significantly in the availability of external evidence. Furthermore, it becomes obvious that surgical treatment options are normally based on evidence of significantly lower quality than medical treatment options. PMID:28025606

  15. Calculus domains modelled using an original bool algebra based on polygons

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2016-08-01

    Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.

  16. Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions.

    PubMed

    Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-01-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.

  17. Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun

    2013-04-01

    Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.

  18. Mathematical modeling of ethanol production in solid-state fermentation based on solid medium' dry weight variation.

    PubMed

    Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad

    2018-04-21

    In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.

  19. Diagram-based Analysis of Causal Systems (DACS): elucidating inter-relationships between determinants of acute lower respiratory infections among children in sub-Saharan Africa.

    PubMed

    Rehfuess, Eva A; Best, Nicky; Briggs, David J; Joffe, Mike

    2013-12-06

    Effective interventions require evidence on how individual causal pathways jointly determine disease. Based on the concept of systems epidemiology, this paper develops Diagram-based Analysis of Causal Systems (DACS) as an approach to analyze complex systems, and applies it by examining the contributions of proximal and distal determinants of childhood acute lower respiratory infections (ALRI) in sub-Saharan Africa. Diagram-based Analysis of Causal Systems combines the use of causal diagrams with multiple routinely available data sources, using a variety of statistical techniques. In a step-by-step process, the causal diagram evolves from conceptual based on a priori knowledge and assumptions, through operational informed by data availability which then undergoes empirical testing, to integrated which synthesizes information from multiple datasets. In our application, we apply different regression techniques to Demographic and Health Survey (DHS) datasets for Benin, Ethiopia, Kenya and Namibia and a pooled World Health Survey (WHS) dataset for sixteen African countries. Explicit strategies are employed to make decisions transparent about the inclusion/omission of arrows, the sign and strength of the relationships and homogeneity/heterogeneity across settings.Findings about the current state of evidence on the complex web of socio-economic, environmental, behavioral and healthcare factors influencing childhood ALRI, based on DHS and WHS data, are summarized in an integrated causal diagram. Notably, solid fuel use is structured by socio-economic factors and increases the risk of childhood ALRI mortality. Diagram-based Analysis of Causal Systems is a means of organizing the current state of knowledge about a specific area of research, and a framework for integrating statistical analyses across a whole system. This partly a priori approach is explicit about causal assumptions guiding the analysis and about researcher judgment, and wrong assumptions can be reversed following empirical testing. This approach is well-suited to dealing with complex systems, in particular where data are scarce.

  20. Diagram-based Analysis of Causal Systems (DACS): elucidating inter-relationships between determinants of acute lower respiratory infections among children in sub-Saharan Africa

    PubMed Central

    2013-01-01

    Background Effective interventions require evidence on how individual causal pathways jointly determine disease. Based on the concept of systems epidemiology, this paper develops Diagram-based Analysis of Causal Systems (DACS) as an approach to analyze complex systems, and applies it by examining the contributions of proximal and distal determinants of childhood acute lower respiratory infections (ALRI) in sub-Saharan Africa. Results Diagram-based Analysis of Causal Systems combines the use of causal diagrams with multiple routinely available data sources, using a variety of statistical techniques. In a step-by-step process, the causal diagram evolves from conceptual based on a priori knowledge and assumptions, through operational informed by data availability which then undergoes empirical testing, to integrated which synthesizes information from multiple datasets. In our application, we apply different regression techniques to Demographic and Health Survey (DHS) datasets for Benin, Ethiopia, Kenya and Namibia and a pooled World Health Survey (WHS) dataset for sixteen African countries. Explicit strategies are employed to make decisions transparent about the inclusion/omission of arrows, the sign and strength of the relationships and homogeneity/heterogeneity across settings. Findings about the current state of evidence on the complex web of socio-economic, environmental, behavioral and healthcare factors influencing childhood ALRI, based on DHS and WHS data, are summarized in an integrated causal diagram. Notably, solid fuel use is structured by socio-economic factors and increases the risk of childhood ALRI mortality. Conclusions Diagram-based Analysis of Causal Systems is a means of organizing the current state of knowledge about a specific area of research, and a framework for integrating statistical analyses across a whole system. This partly a priori approach is explicit about causal assumptions guiding the analysis and about researcher judgment, and wrong assumptions can be reversed following empirical testing. This approach is well-suited to dealing with complex systems, in particular where data are scarce. PMID:24314302

  1. Ginzburg-Landau theory for the solid-liquid interface of bcc elements. II - Application to the classical one-component plasma, the Wigner crystal, and He-4

    NASA Technical Reports Server (NTRS)

    Zeng, X. C.; Stroud, D.

    1989-01-01

    The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.

  2. Magnetic solid lipid nanoparticles in hyperthermia against colon cancer.

    PubMed

    Muñoz de Escalona, María; Sáez-Fernández, Eva; Prados, José C; Melguizo, Consolación; Arias, José L

    2016-05-17

    A reproducible double emulsion/solvent evaporation procedure is developed to formulate magnetic solid lipid nanoparticles (average size≈180 nm) made of iron oxide cores embedded within a glyceryl trimyristate solid matrix. The physicochemical characterization of the nanocomposites ascertained the efficacy of the preparation conditions in their production, i.e. surface properties (electrokinetic and thermodynamic data) were almost indistinguishable from those of the solid lipid nanomatrix, while electron microscopy characterizations and X-ray diffraction patterns confirmed the satisfactory coverage of the magnetite nuclei. Hemocompatibility of the particles was established in vitro. Hysteresis cycle determinations defined the appropriate magnetic responsiveness of the nanocomposites, and their heating characteristics were investigated in a high frequency alternating gradient of magnetic field: a constant maximum temperature of 46 °C was obtained within 40 min. Finally, in vitro tests performed on human HT29 colon adenocarcinoma cells demonstrated a promising decrease in cell viability after treatment with the nanocomposites and exposure to that alternating electromagnetic field. To the best of our knowledge, this is the first time that such type of nanoformulation with very promising hyperthermia characteristics has been developed for therapeutic aims. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Public concerns and behaviours towards solid waste management in Italy.

    PubMed

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  4. Solid waste management of small island developing states-the case of the Seychelles: a systemic and collaborative study of Swiss and Seychellois students to support policy.

    PubMed

    Meylan, Grégoire; Lai, Adelene; Hensley, John; Stauffacher, Michael; Krütli, Pius

    2018-05-15

    Solid waste management (SWM) is a significant challenge for the Seychelles. Waste generation, fueled by economic development and tourism, increases steadily, while landfilling continues to be the main disposal path, thus exacerbating the island nation's specific weaknesses. Due to the small scale of the Seychelles economy, there is little capital available to stimulate innovations in SWM and generate the knowledge for setting priorities and guiding SWM action. Students from ETH Zurich and UniSey conducted a transdisciplinary case study (tdCS) to fill this knowledge gap and gain insights into the obstacles and opportunities related to sustainable SWM. The tdCS approach allowed students to gain comprehensive and in-depth knowledge about the SWM system required to set priorities for action and next steps. The government should streamline the different financial frameworks according to a clear principle (e.g., polluter pays principle). Specific biogenic waste streams represent a potential source of energy and fertilizers. Expanding the scope and densifying the network of collection points could help raise recycling rates of other waste fractions. Diverting biogenic waste and recycling more glass, metals, paper, and plastics would also significantly reduce landfilling rates. Regardless of future amounts of waste ending up on landfills, the latter must be reengineered before the surrounding environment suffers major adverse impacts. All these actions imply a government-driven approach which integrates the views of stakeholders and consumers alike.

  5. The elimination of trans fats from spreads: how science helped to turn an industry around.

    PubMed

    Korver, Onno; Katan, Martijn B

    2006-06-01

    Mensink and Katan showed in 1990 that trans fats reduce high- and increase low-density lipoprotein cholesterol. Unilever aided this study because the company considered knowledge on trans fats incomplete in spite of their long history of safe use. The decision in 1994 to remove trans fats from Unilever's retail spreads was triggered by media events, but it was built on a solid understanding of the nutritional and technological aspects of trans fats. Over the next 14 years, manufacturers worldwide followed suit. This experience illustrates that food companies need to know about the health effects of their products and how to apply that knowledge.

  6. On knowing oneself directly and through others.

    PubMed

    La Farge, Lucy

    2008-01-01

    For certain patients, the experience of self lacks solidity and conviction. These patients appear to be unable to know themselves directly and turn to others in their environment and in fantasy in order to discover or confirm a vision of themselves. The author argues that we can come to understand these patients' shadowy sense of self by looking at direct self-knowledge and knowledge of the self that is acquired through others as two storylines. Detailed clinical material from the analysis of a woman who came to analysis feeling shadowy and insubstantial illustrates the value of attention to both storylines and to the changing relationship between them.

  7. Comparison of clinical knowledge bases for summarization of electronic health records.

    PubMed

    McCoy, Allison B; Sittig, Dean F; Wright, Adam

    2013-01-01

    Automated summarization tools that create condition-specific displays may improve clinician efficiency. These tools require new kinds of knowledge that is difficult to obtain. We compared five problem-medication pair knowledge bases generated using four previously described knowledge base development approaches. The number of pairs in the resulting mapped knowledge bases varied widely due to differing mapping techniques from the source terminologies, ranging from 2,873 to 63,977,738 pairs. The number of overlapping pairs across knowledge bases was low, with one knowledge base having half of the pairs overlapping with another knowledge base, and most having less than a third overlapping. Further research is necessary to better evaluate the knowledge bases independently in additional settings, and to identify methods to integrate the knowledge bases.

  8. Gravitational Role in Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.

    1998-01-01

    To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.

  9. Nanocrystal-polymer nanocomposite electrochromic device

    DOEpatents

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  10. Medication administration via enteral feeding tube: a survey of pharmacists' knowledge.

    PubMed

    Joos, Elke; Verbeke, Stacey; Mehuys, Els; Van Bocxlaer, Jan; Remon, Jean Paul; Van Winckel, Myriam; Boussery, Koen

    2016-02-01

    Medication administration to patients with an enteral feeding tube (EFT) is complex and prone to errors. Community pharmacists may be ideally placed to provide training and advice on this topic in individual patients as well as in institutions supplied by the pharmacy. To assess community pharmacists’ knowledge on guideline recommendations regarding medication preparation and administration through EFT. Knowledge of guideline recommendations was assessed using a 15-item self-administered online questionnaire (April–June 2014). Questions reflected key aspects of guideline recommendations on medication administration via EFT. All graduated community pharmacists from the Dutch-speaking part of Belgium were eligible for participation. A total of 105 community pharmacists completed the questionnaire. Median self-perceived knowledge of medication administration via EFT was 2 (on a 0–10 scale). On average 5.2 (SD 2.6) out of the 15 questions were answered correctly. Strikingly, the ability to select suspensions in a list of liquid medications and knowledge on crushability of solid dosage forms were low. Our findings demonstrate that pharmacists’ knowledge on correct medication administration via EFT is too limited to be able to provide good advice to EFT patients or their caregivers. Tailored training on this topic is needed.

  11. Systemic Inflammation-Based Biomarkers and Survival in HIV-Positive Subject With Solid Cancer in an Italian Multicenter Study.

    PubMed

    Raffetti, Elena; Donato, Francesco; Pezzoli, Chiara; Digiambenedetto, Simona; Bandera, Alessandra; Di Pietro, Massimo; Di Filippo, Elisa; Maggiolo, Franco; Sighinolfi, Laura; Fornabaio, Chiara; Castelnuovo, Filippo; Ladisa, Nicoletta; Castelli, Francesco; Quiros Roldan, Eugenia

    2015-08-15

    Recently, some systemic inflammation-based biomarkers have been demonstrated useful for predicting risk of death in patients with solid cancer independently of tumor characteristics. This study aimed to investigate the prognostic role of systemic inflammation-based biomarkers in HIV-infected patients with solid tumors and to propose a risk score for mortality in these subjects. Clinical and pathological data on solid AIDS-defining cancer (ADC) and non-AIDS-defining cancer (NADC), diagnosed between 1998 and 2012 in an Italian cohort, were analyzed. To evaluate the prognostic role of systemic inflammation- and nutrition-based markers, univariate and multivariable Cox regression models were applied. To compute the risk score equation, the patients were randomly assigned to a derivation and a validation sample. A total of 573 patients (76.3% males) with a mean age of 46.2 years (SD = 10.3) were enrolled. 178 patients died during a median of 3.2 years of follow-up. For solid NADCs, elevated Glasgow Prognostic Score, modified Glasgow Prognostic Score, neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and Prognostic Nutritional Index were independently associated with risk of death; for solid ADCs, none of these markers was associated with risk of death. For solid NADCs, we computed a mortality risk score on the basis of age at cancer diagnosis, intravenous drug use, and Prognostic Nutritional Index. The areas under the receiver operating characteristic curve were 0.67 (95% confidence interval: 0.58 to 0.75) in the derivation sample and 0.66 (95% confidence interval: 0.54 to 0.79) in the validation sample. Inflammatory biomarkers were associated with risk of death in HIV-infected patients with solid NADCs but not with ADCs.

  12. Health risk reduction behaviors model for scavengers exposed to solid waste in municipal dump sites in Nakhon Ratchasima Province, Thailand

    PubMed Central

    Thirarattanasunthon, Phiman; Siriwong, Wattasit; Robson, Mark; Borjan, Marija

    2012-01-01

    The aim of this study was to evaluate the effect of comprehensive health risk protection behaviors, knowledge, attitudes, and practices among scavengers in open dump sites. A control group of 44 scavengers and an intervention group of 44 scavengers participated in this study. Interventions included the use of personal protective equipment, health protection training, and other measures. The analysis showed significant differences before and after the intervention program and also between the control and intervention groups. These observations suggest that further action should be taken to reduce adverse exposure during waste collection. To reduce health hazards to workers, dump site scavenging should be incorporated into the formal sector program. Solid waste and the management of municipal solid waste has become a human and environmental health issue and future research should look at constructing a sustainable model to help protect the health of scavengers and drive authorities to adopt safer management techniques. PMID:22969307

  13. A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid.

    PubMed

    Santos, Juan E; Savioli, Gabriela B

    2015-11-01

    This paper presents an analysis of a model for the propagation of waves in a poroelastic solid saturated by a three-phase viscous, compressible fluid. The constitutive relations and the equations of motion are stated first. Then a plane wave analysis determines the phase velocities and attenuation coefficients of the four compressional waves and one shear wave that propagate in this type of medium. A procedure to compute the elastic constants in the constitutive relations is defined next. Assuming the knowledge of the shear modulus of the dry matrix, the other elastic constants in the stress-strain relations are determined by employing ideal gedanken experiments generalizing those of Biot's theory for single-phase fluids. These experiments yield expressions for the elastic constants in terms of the properties of the individual solid and fluids phases. Finally the phase velocities and attenuation coefficients of all waves are computed for a sample of Berea sandstone saturated by oil, gas, and water.

  14. Experimental study of thermoacoustic effects on a single plate Part I: Temperature fields

    NASA Astrophysics Data System (ADS)

    Wetzel, M.; Herman, C.

    The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions.

  15. Knowledge repositories for multiple uses

    NASA Technical Reports Server (NTRS)

    Williamson, Keith; Riddle, Patricia

    1991-01-01

    In the life cycle of a complex physical device or part, for example, the docking bay door of the Space Station, there are many uses for knowledge about the device or part. The same piece of knowledge might serve several uses. Given the quantity and complexity of the knowledge that must be stored, it is critical to maintain the knowledge in one repository, in one form. At the same time, because of quantity and complexity of knowledge that must be used in life cycle applications such as cost estimation, re-design, and diagnosis, it is critical to automate such knowledge uses. For each specific use, a knowledge base must be available and must be in a from that promotes the efficient performance of that knowledge base. However, without a single source knowledge repository, the cost of maintaining consistent knowledge between multiple knowledge bases increases dramatically; as facts and descriptions change, they must be updated in each individual knowledge base. A use-neutral representation of a hydraulic system for the F-111 aircraft was developed. The ability to derive portions of four different knowledge bases is demonstrated from this use-neutral representation: one knowledge base is for re-design of the device using a model-based reasoning problem solver; two knowledge bases, at different levels of abstraction, are for diagnosis using a model-based reasoning solver; and one knowledge base is for diagnosis using an associational reasoning problem solver. It was shown how updates issued against the single source use-neutral knowledge repository can be propagated to the underlying knowledge bases.

  16. Drag of Clean and Fouled Net Panels – Measurements and Parameterization of Fouling

    PubMed Central

    Gansel, Lars Christian; Plew, David R.; Endresen, Per Christian; Olsen, Anna Ivanova; Misimi, Ekrem; Guenther, Jana; Jensen, Østen

    2015-01-01

    Biofouling is a serious problem in marine aquaculture and it has a number of negative impacts including increased forces on aquaculture structures and reduced water exchange across nets. This in turn affects the behavior of fish cages in waves and currents and has an impact on the water volume and quality inside net pens. Even though these negative effects are acknowledged by the research community and governmental institutions, there is limited knowledge about fouling related effects on the flow past nets, and more detailed investigations distinguishing between different fouling types have been called for. This study evaluates the effect of hydroids, an important fouling organism in Norwegian aquaculture, on the forces acting on net panels. Drag forces on clean and fouled nets were measured in a flume tank, and net solidity including effect of fouling were determined using image analysis. The relationship between net solidity and drag was assessed, and it was found that a solidity increase due to hydroids caused less additional drag than a similar increase caused by change in clean net parameters. For solidities tested in this study, the difference in drag force increase could be as high as 43% between fouled and clean nets with same solidity. The relationship between solidity and drag force is well described by exponential functions for clean as well as for fouled nets. A method is proposed to parameterize the effect of fouling in terms of an increase in net solidity. This allows existing numerical methods developed for clean nets to be used to model the effects of biofouling on nets. Measurements with other types of fouling can be added to build a database on effects of the accumulation of different fouling organisms on aquaculture nets. PMID:26151907

  17. Star Maps, Planispheres, and Celestial Calendars : Engaging Students, Educators, and Communities with Multicultural STEM/STEAM Visual Resources

    NASA Astrophysics Data System (ADS)

    Lee, Annette S.; Wilson, William; Tibbetts, Jeffrey; Gawboy, Carl

    2017-06-01

    Aim:Designed by A. Lee, the Native Skywatchers initiative seeks to remember and revitalize indigenous star and earth knowledge, promoting the native voice as the lead voice. The overarching goal of Native Skywatchers is to communicate the knowledge that indigenous people practiced a sustainable way of living and sustainable engineering through a living and participatory relationship with the above and below, sky and earth. We aim to improve current inequities in education for native young people, to inspire increased cultural pride, and promote community wellness. We hope to inspire all participants towards a rekindling of the excitement and curiosity that causes us to look up at the sky in wonder generation after generation.Results:Presented here are several Native Skywatchers initiatives under the broad categories of: 1.) star maps, 2.) planispheres, and 3.) celestial calendars. In 2012 two indigenous star maps were created: the Ojibwe Giizhig Anung Masinaaigan-Ojibwe Sky Star Map (A. Lee, W. Wilson, C. Gawboy), and the D(L)akota star map, Makoce Wicanhpi Wowapi (A. Lee, J. Rock). More recently, a collaboration with W. Buck, science educator, at the Manitoba First Nations Resource Centre (MFNRC), in Winnipeg, Manitoba produced a third indigenous star map: Ininew Achakos Masinikan-Cree Star Map Book. Having star maps that are rooted in astronomical knowledge and cultural wisdoms has allowed communities multiple and ongoing opportunities for inclusive culture-based STEM learning. Next, planispheres were created based on the indigenous star maps. A learning and teaching hands-on tool, the planispheres, help partakers understand the patterns of motion in the night sky in addition to simply identifying the constellations. Most recently, calendar-paintings of the yearly motion of the Sun, the phases of the Moon, and the Venus-year have all been added to the growing list of Native Skywatchers resources. Working collaboratively with regional schools, educators, museums, liaisons, and communities this work offers a solid example of how community based participatory programs can be the spark for effective culture-based STEM learning.

  18. Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus.

    PubMed

    Senesi, Sonia; Ghelardi, Emilia; Celandroni, Francesco; Salvetti, Sara; Parisio, Eva; Galizzi, Alessandro

    2004-02-01

    Knowledge of the highly regulated processes governing the production of flagella in Bacillus subtilis is the result of several observations obtained from growing this microorganism in liquid cultures. No information is available regarding the regulation of flagellar formation in B. subtilis in response to contact with a solid surface. One of the best-characterized responses of flagellated eubacteria to surfaces is swarming motility, a coordinate cell differentiation process that allows collective movement of bacteria over solid substrates. This study describes the swarming ability of a B. subtilis hypermotile mutant harboring a mutation in the ifm locus that has long been known to affect the degree of flagellation and motility in liquid media. On solid media, the mutant produces elongated and hyperflagellated cells displaying a 10-fold increase in extracellular flagellin. In contrast to the mutant, the parental strain, as well as other laboratory strains carrying a wild-type ifm locus, fails to activate a swarm response. Furthermore, it stops to produce flagella when transferred from liquid to solid medium. Evidence is provided that the absence of flagella is due to the lack of flagellin gene expression. However, restoration of flagellin synthesis in cells overexpressing sigma(D) or carrying a deletion of flgM does not recover the ability to assemble flagella. Thus, the ifm gene plays a determinantal role in the ability of B. subtilis to contact with solid surfaces.

  19. Mycoestrogen determination in cow milk: Magnetic solid-phase extraction followed by liquid chromatography and tandem mass spectrometry analysis.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; La Barbera, Giorgia; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo

    2016-12-01

    Recently, magnetic solid-phase extraction has gained interest because it presents various operational advantages over classical solid-phase extraction. Furthermore, magnetic nanoparticles are easy to prepare, and various materials can be used in their synthesis. In the literature, there are only few studies on the determination of mycoestrogens in milk, although their carryover in milk has occurred. In this work, we wanted to develop the first (to the best of our knowledge) magnetic solid-phase extraction protocol for six mycoestrogens from milk, followed by liquid chromatography and tandem mass spectrometry analysis. Magnetic graphitized carbon black was chosen as the adsorbent, as this carbonaceous material, which is very different from the most diffuse graphene and carbon nanotubes, had already shown selectivity towards estrogenic compounds in milk. The graphitized carbon black was decorated with Fe 3 O 4 , which was confirmed by the characterization analyses. A milk deproteinization step was avoided, using only a suitable dilution in phosphate buffer as sample pretreatment. The overall process efficiency ranged between 52 and 102%, whereas the matrix effect considered as signal suppression was below 33% for all the analytes even at the lowest spiking level. The obtained method limits of quantification were below those of other published methods that employ classical solid-phase extraction protocols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Solid Geometry in the Works of an Iron Artisan

    ERIC Educational Resources Information Center

    Castro, Fernando

    2003-01-01

    The author shares a story of how Luis González, an iron artisan, helped the author build a wooden and iron toy truck. The knowledge required to build the skeleton for the parallelepiped in the construction of the truck is not in the mathematical high school curriculum in Venezuela. Although Luis never received a degree beyond high school,…

  1. Craniopharyngioma in the Temporal Lobe: A Case Report

    PubMed Central

    Baik, Seung Kug; Kim, Sang-Pyo; Kim, Il-Man; Sevick, Robert J.

    2004-01-01

    Herein, we report on an unusual case of craniopharyngioma arising in the temporal lobe with no prior history of surgery and with no connection to the craniopharyngeal duct. MR images showed a cystic tumor with a small solid portion. To the best of our knowledge, this is the first case of a craniopharyngioma occurring in the temporal lobe. PMID:15064562

  2. Designing Professional Development around Key Principles and Formative Assessments to Improve Teachers' Knowledge to Teach Mathematics

    ERIC Educational Resources Information Center

    Vendlinski, Terry P.; Hemberg, Bryan; Mundy, Chris; Phelan, Julia

    2009-01-01

    The authors' hypothesis is that if teachers (as experts) understand and teach concepts from the position of expertise teacher quality will improve. They believe that focusing on the key ideas will deepen both teacher and student understanding and allow learners to build the concepts necessary to form solid foundations for the application of…

  3. Explicitly Targeting Pre-Service Teacher Scientific Reasoning Abilities and Understanding of Nature of Science through an Introductory Science Course

    ERIC Educational Resources Information Center

    Koenig, Kathleen; Schen, Melissa; Bao, Lei

    2012-01-01

    Development of a scientifically literate citizenry has become a national focus and highlights the need for K-12 students to develop a solid foundation of scientific reasoning abilities and an understanding of nature of science, along with appropriate content knowledge. This implies that teachers must also be competent in these areas; but…

  4. An evaluation of possible mechanisms for conversion of sulfur dioxide to sulfuric acid and sulfate aerosols in the troposphere

    Treesearch

    Jack G. Calvert

    1976-01-01

    The mechanisms and rates of conversion of sulfur dioxide to sulfur trioxide, sulfuric acid, and other "sulfate" aerosol precursors are considered in view of current knowledge related to atmospheric reactions and chemical kinetics. Several heterogeneous pathways exist for SO2 oxidation promoted on solid catalyst particles and in aqueous...

  5. Basic technique for solid lesions: Cytology, core, or both?

    PubMed Central

    Hébert-Magee, Shantel

    2014-01-01

    This chapter highlights key fundamentals relevant to post-procurement tissue handling of materials obtains by aspiration and/or biopsy and details the subtle techniques that can significantly impact patient management and practice patterns. A basic knowledge of tissue handling and processing is imperative for endosonographers who attempt to achieve a greater than 95% diagnostic accuracy with their tissue-acquisition procedures. PMID:24949408

  6. Teaching Nature of Scientific Inquiry in Chemistry: How Do German Chemistry Teachers Use Labwork to Teach NOSO?

    ERIC Educational Resources Information Center

    Strippel, C. G.; Sommer, K.

    2015-01-01

    Learning about scientific inquiry (SI) is an important aspect of scientific literacy and there is a solid international consensus of what should be learned about it. Learning about SI comprises both the doing of science (process) and knowledge about the nature of scientific inquiry (NOSI). German reform documents promote inquiry generally but do…

  7. Solid-State Neutron Detector Device

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)

    2017-01-01

    The structure and methods of fabricating a high efficiency compact solid state neutron detector based on III-Nitride semiconductor structures deposited on a substrate. The operation of the device is based on absorption of neutrons, which results in generation of free carriers.

  8. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization.

    PubMed

    Zheng, Chen-Xi; Sui, Bing-Dong; Hu, Cheng-Hu; Qiu, Xin-Yu; Zhao, Pan; Jin, Yan

    2018-04-27

    Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review.

    PubMed

    Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han

    2017-01-01

    In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Cartridge Theory: a description of the functioning of horizontal subsurface flow constructed wetlands for wastewater treatment, based on modelling results.

    PubMed

    Samsó, Roger; García, Joan

    2014-03-01

    Despite the fact that horizontal subsurface flow constructed wetlands have been in operation for several decades now, there is still no clear understanding of some of their most basic internal functioning patterns. To fill this knowledge gap, on this paper we present what we call "The Cartridge Theory". This theory was derived from simulation results obtained with the BIO_PORE model and explains the functioning of urban wastewater treatment wetlands based on the interaction between bacterial communities and the accumulated solids leading to clogging. In this paper we start by discussing some changes applied to the biokinetic model implemented in BIO_PORE (CWM1) so that the growth of bacterial communities is consistent with a well-known population dynamics models. This discussion, combined with simulation results for a pilot wetland system, led to the introduction of "The Cartridge Theory", which states that the granular media of horizontal subsurface flow wetlands can be assimilated to a generic cartridge which is progressively consumed (clogged) with inert solids from inlet to outlet. Simulations also revealed that bacterial communities are poorly distributed within the system and that their location is not static but changes over time, moving towards the outlet as a consequence of the progressive clogging of the granular media. According to these findings, the life-span of constructed wetlands corresponds to the time when bacterial communities are pushed as much towards the outlet that their biomass is not anymore sufficient to remove the desirable proportion of the influent pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth.

    PubMed

    Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R; Vande Geest, Jonathan P

    2016-01-01

    The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues.

  12. Development and optimization of a solid-phase microextraction gas chromatography-tandem mass spectrometry methodology to analyse ultraviolet filters in beach sand.

    PubMed

    Vila, Marlene; Llompart, Maria; Garcia-Jares, Carmen; Homem, Vera; Dagnac, Thierry

    2018-06-06

    A methodology based on solid-phase microextraction (SPME) followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of eleven multiclass ultraviolet (UV) filters in beach sand. To the best of our knowledge, this is the first time that this extraction technique is applied to the analysis of UV filters in sand samples, and in other kind of environmental solid samples. Main extraction parameters such as the fibre coating, the amount of sample, the addition of salt, the volume of water added to the sand, and the temperature were optimized. An experimental design approach was implemented in order to find out the most favourable conditions. The final conditions consisted of adding 1 mL of water to 1 g of sample followed by the headspace SPME for 20 min at 100 °C, using PDMS/DVB as fibre coating. The SPME-GC-MS/MS method was validated in terms of linearity, accuracy, limits of detection and quantification, and precision. Recovery studies were also performed at three concentration levels in real Atlantic and Mediterranean sand samples. The recoveries were generally above 85% and relative standard deviations below 11%. The limits of detection were in the pg g -1 level. The validated methodology was successfully applied to the analysis of real sand samples collected from Atlantic Ocean beaches in the Northwest coast of Spain and Portugal, Canary Islands (Spain), and from Mediterranean Sea beaches in Mallorca Island (Spain). The most frequently found UV filters were ethylhexyl salicylate (EHS), homosalate (HMS), 4-methylbenzylidene camphor (4MBC), 2-ethylhexyl methoxycinnamate (2EHMC) and octocrylene (OCR), with concentrations up to 670 ng g -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Microstructural and microchemical studies of phase stability in V-O solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Chanchal, E-mail: chanchal@igcar.gov.in

    2017-02-15

    Over the last couple of decades vanadium and V-based alloys have received significant attention as a potential structural material for fusion power applications because of their favourable mechanical properties under irradiation and at elevated temperatures. They are also considered as the advanced options of storage materials for hydrogen and its isotopes. However, the higher affinity of V for O, C and N poses critical challenges in its engineering applications since they lead to degradation of mechanical properties. They can further interact with the matrix to produce metallic oxy-carbo-nitride precipitates. To a certain limit, these precipitates are beneficial and can bemore » exploited to enhance the mechanical behaviour of the alloy through suitable microstructural design. However, this requires a prior knowledge of the interaction between the alloy and the impurity solutes. In the present work vanadium specific experiments have been designed and carried out to bring out the V-interstitial solute interaction by charging oxygen in the near surface region of vanadium. Microstructural and microchemical behaviour of the V-O solid solution has been studied through HRTEM (high resolution transmission electron microscopy) and HAADF (high angle annular dark field) coupled with EELS. Quantitative electron microscopy has been carried out to study structural modification of the alloy in atomic level caused by O charging. - Highlights: •Controlled experiments were carried out in pulsed laser ablation set-up to promote V-O interaction. • As a consequence of O dissolution, V transformed into a bct structure which is otherwise a bcc structure. •In V-O solid solution, dissolved O in the V matrix introduces significant amount of lattice strain. • Present work can be extended for introducing interstitial O in other pure transition metals and their alloys.« less

  14. A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth

    PubMed Central

    Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R.; Vande Geest, Jonathan P.

    2016-01-01

    The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues. PMID:27078495

  15. Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morvan, B.; Tinel, A.; Sainidou, R.

    2014-12-07

    Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.

  16. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    DOEpatents

    Lu, Chun [Monroeville, PA

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  17. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    PubMed

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  18. Heavily Yb-doped phosphate large-mode area all-solid photonic crystal fiber operating at 990 nm

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Qiu, Jianrong; Chen, Danping

    2015-07-01

    We demonstrate, for the first time to our knowledge, a 16 wt.% Yb-doped phosphate large-mode area all-solid photonic crystal fiber (AS-PCF) laser operating at 990 nm. By carefully tailoring the absorption and emission properties of the active glass and designing the structure of AS-PCF, the excitation of the 990 nm laser and the depression of the laser above 1 µm can be easily realized even without any wavelength-selective optics. The single-mode behavior of PCF with a 35 µm doped core, the largest core diameter of approximately 1 µm in phosphate fiber, is theoretically investigated by finite-difference time-domain method and experimentally confirmed.

  19. Si-Ge-metal ternary phase diagram calculations

    NASA Technical Reports Server (NTRS)

    Fleurial, J. P.; Borshchevsky, A.

    1990-01-01

    Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).

  20. Super earth interiors and validity of Birch's Law for ultra-high pressure metals and ionic solids

    NASA Astrophysics Data System (ADS)

    Ware, Lucas Andrew

    2015-01-01

    Super Earths, recently detected by the Kepler Mission, expand the ensemble of known terrestrial planets beyond our Solar System's limited group. Birch's Law and velocity-density systematics have been crucial in constraining our knowledge of the composition of Earth's mantle and core. Recently published static diamond anvil cell experimental measurements of sound velocities in iron, a key deep element in most super Earth models, are inconsistent with each other with regard to the validity of Birch's Law. We examine the range of validity of Birch's Law for several metallic elements, including iron, and ionic solids shocked with a two-stage light gas gun into the ultra-high pressure, temperature fluid state and make comparisons to the recent static data.

  1. Continuous supercritical synthesis and dielectric behaviour of the whole BST solid solution.

    PubMed

    Reverón, H; Elissalde, C; Aymonier, C; Bousquet, C; Maglione, M; Cansell, F

    2006-07-28

    In this study we show that pure and well crystallized nanoparticles of Ba(x)Sr(1-x)TiO(3) (BST) can be synthesized over the entire range of composition through the hydrolysis and further crystallization of alkoxide precursors under supercritical conditions. To our knowledge, this is the first time that the whole ferroelectric solid solution has been produced in a continuous way, using the same experimental conditions. The composition of the powder can be easily controlled by adjusting the feed solution composition. The powders consist of soft-aggregated monocrystalline nanoparticles with an average particle size ranging from approximately 20 to 40 nm. Ferroelectric ceramics with accurately adjustable Curie temperature (100-390 K) can thus be obtained by sintering.

  2. Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil*

    PubMed Central

    Zhang, Shu-ying; Wang, Qing-feng; Wan, Rui; Xie, Shu-guang

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in a municipal solid waste (MSW) composting site. Knowledge of changes in microbial structure is useful to identify particular PAH degraders. However, the microbial community in the MSW composting soil and its change associated with prolonged exposure to PAHs and subsequent biodegradation remain largely unknown. In this study, anthracene was selected as a model compound. The bacterial community structure was investigated using terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene clone library analysis. The two bimolecular tools revealed a large shift of bacterial community structure after anthracene amendment and subsequent biodegradation. Genera Methylophilus, Mesorhizobium, and Terrimonas had potential links to anthracene biodegradation, suggesting a consortium playing an active role. PMID:21887852

  3. A Discussion of Knowledge Based Design

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1999-01-01

    A discussion of knowledge and Knowledge- Based design as related to the design of aircraft is presented. The paper discusses the perceived problem with existing design studies and introduces the concepts of design and knowledge for a Knowledge- Based design system. A review of several Knowledge-Based design activities is provided. A Virtual Reality, Knowledge-Based system is proposed and reviewed. The feasibility of Virtual Reality to improve the efficiency and effectiveness of aerodynamic and multidisciplinary design, evaluation, and analysis of aircraft through the coupling of virtual reality technology and a Knowledge-Based design system is also reviewed. The final section of the paper discusses future directions for design and the role of Knowledge-Based design.

  4. Encapsulated Solid-Liquid Phase Change Nanoparticles as Thermal Barcodes for Highly Sensitive Detections of Multiple Lung Cancer Biomarkers

    DTIC Science & Technology

    2012-10-01

    5e. TASK NUMBER LC90061 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...transduction mechanism based on solid- liquid phase change nanoparticles works for the detection of multiple proteins. A series of metal and alloy...early stage. With the support from DOD-LCRP, we have proved the new signal transduction mechanism based on solid-liquid phase change nanoparticles works

  5. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    PubMed

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given study.

  6. Nanoscale inhomogeneity and photoacid generation dynamics in extreme ultraviolet resist materials

    NASA Astrophysics Data System (ADS)

    Wu, Ping-Jui; Wang, Yu-Fu; Chen, Wei-Chi; Wang, Chien-Wei; Cheng, Joy; Chang, Vencent; Chang, Ching-Yu; Lin, John; Cheng, Yuan-Chung

    2018-03-01

    The development of extreme ultraviolet (EUV) lithography towards the 22 nm node and beyond depends critically on the availability of resist materials that meet stringent control requirements in resolution, line edge roughness, and sensitivity. However, the molecular mechanisms that govern the structure-function relationships in current EUV resist systems are not well understood. In particular, the nanoscale structures of the polymer base and the distributions of photoacid generators (PAGs) should play a critical roles in the performance of a resist system, yet currently available models for photochemical reactions in EUV resist systems are exclusively based on homogeneous bulk models that ignore molecular-level details of solid resist films. In this work, we investigate how microscopic molecular organizations in EUV resist affect photoacid generations in a bottom-up approach that describes structure-dependent electron-transfer dynamics in a solid film model. To this end, molecular dynamics simulations and stimulated annealing are used to obtain structures of a large simulation box containing poly(4-hydroxystyrene) (PHS) base polymers and triphenylsulfonium based PAGs. Our calculations reveal that ion-pair interactions govern the microscopic distributions of the polymer base and PAG molecules, resulting in a highly inhomogeneous system with nonuniform nanoscale chemical domains. Furthermore, the theoretical structures were used in combination of quantum chemical calculations and the Marcus theory to evaluate electron transfer rates between molecular sites, and then kinetic Monte Carlo simulations were carried out to model electron transfer dynamics with molecular structure details taken into consideration. As a result, the portion of thermalized electrons that are absorbed by the PAGs and the nanoscale spatial distribution of generated acids can be estimated. Our data reveal that the nanoscale inhomogeneous distributions of base polymers and PAGs strongly affect the electron transfer and the performance of the resist system. The implications to the performances of EUV resists and key engineering requirements for improved resist systems will also be discussed in this work. Our results shed light on the fundamental structure dependence of photoacid generation and the control of the nanoscale structures as well as base polymer-PAG interactions in EVU resist systems, and we expect these knowledge will be useful for the future development of improved EUV resist systems.

  7. A microstructure-based model for shape distortion during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.

  8. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  9. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  10. Quantifying the risks of solid aerosol geoengineering: the role of fundamental material properties

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Keutsch, F. N.; Keith, D.

    2017-12-01

    Solid aerosols have been considered as an alternative to sulfate aerosols for solar geoengineering due to their optical and chemical properties, which lead to different and possibly more attractive risk profiles. Solid aerosols can achieve higher solar scattering efficiency due to their higher refractive index, and in some cases may also be less effective absorbers of thermal infrared radiation. The optical properties of solid aerosols are however sensitive functions of the detailed physical properties of solid materials in question. The relevant details include the exact crystalline structure of the aerosols, the physical size of the particles, and interactions with background stratospheric molecular and particulate constituents. In this work, we examine the impact of these detailed physical properties on the radiative properties of calcite (CaCO3) solid aerosols. We examine how crystal morphology, size, chemical reactions, and interaction with background stratospheric aerosol may alter the scattering and absorption properties of calcite aerosols for solar and thermal infrared radiation. For example, in small particles, crystal lattice vibrations associated with the particle surface may lead to substantially different infrared absorption properties than bulk materials. We examine the wavelength dependence of absorption by the particles, which may lead to altered patterns of stratospheric radiative heating and equilibrium temperatures. Such temperature changes can lead to dynamical changes, with consequences for both stratospheric composition and tropospheric climate. We identify important uncertainties in the current state of understanding, investigate risks associated with these uncertainties, and survey potential approaches to quantitatively improving our knowledge of the relevant material properties.

  11. Light-Weighted Automatic Import of Standardized Ontologies into the Content Management System Drupal.

    PubMed

    Beger, Christoph; Uciteli, Alexandr; Herre, Heinrich

    2017-01-01

    The amount of ontologies, which are utilizable for widespread domains, is growing steadily. BioPortal alone, embraces over 500 published ontologies with nearly 8 million classes. In contrast, the vast informative content of these ontologies is only directly intelligible by experts. To overcome this deficiency it could be possible to represent ontologies as web portals, which does not require knowledge about ontologies and their semantics, but still carries as much information as possible to the end-user. Furthermore, the conception of a complex web portal is a sophisticated process. Many entities must be analyzed and linked to existing terminologies. Ontologies are a decent solution for gathering and storing this complex data and dependencies. Hence, automated imports of ontologies into web portals could support both mentioned scenarios. The Content Management System (CMS) Drupal 8 is one of many solutions to develop web presentations with less required knowledge about programming languages and it is suitable to represent ontological entities. We developed the Drupal Upper Ontology (DUO), which models concepts of Drupal's architecture, such as nodes, vocabularies and links. DUO can be imported into ontologies to map their entities to Drupal's concepts. Because of Drupal's lack of import capabilities, we implemented the Simple Ontology Loader in Drupal (SOLID), a Drupal 8 module, which allows Drupal administrators to import ontologies based on DUO. Our module generates content in Drupal from existing ontologies and makes it accessible by the general public. Moreover Drupal offers a tagging system which may be amplified with multiple standardized and established terminologies by importing them with SOLID. Our Drupal module shows that ontologies can be used to model content of a CMS and vice versa CMS are suitable to represent ontologies in a user-friendly way. Ontological entities are presented to the user as discrete pages with all appropriate properties, links and tags.

  12. Understanding of evaluation capacity building in practice: a case study of a national medical education organization.

    PubMed

    Sarti, Aimee J; Sutherland, Stephanie; Landriault, Angele; DesRosier, Kirk; Brien, Susan; Cardinal, Pierre

    2017-01-01

    Evaluation capacity building (ECB) is a topic of great interest to many organizations as they face increasing demands for accountability and evidence-based practices. ECB is about building the knowledge, skills, and attitudes of organizational members, the sustainability of rigorous evaluative practices, and providing the resources and motivations to engage in ongoing evaluative work. There exists a solid foundation of theoretical research on ECB, however, understanding what ECB looks like in practice is relatively thin. Our purpose was to investigate what ECB looks like firsthand within a national medical educational organization. The context for this study was the Acute Critical Events Simulation (ACES) organization in Canada, which has successfully evolved into a national educational program, driven by physicians. We conducted an exploratory qualitative study to better understand and describe ECB in practice. In doing so, interviews were conducted with program leaders and instructors so as to gain a richer understanding of evaluative processes and practices. A total of 21 individuals participated in the semistructured interviews. Themes from our qualitative data analysis included the following: evaluation knowledge, skills, and attitudes, use of evaluation findings, shared evaluation beliefs and commitment, evaluation frameworks and processes, and resources dedicated to evaluation. The national ACES organization was a useful case study to explore ECB in practice. The ECB literature provided a solid foundation to understand the purpose and nuances of ECB. This study added to the paucity of studies focused on examining ECB in practice. The most important lesson learned was that the organization must have leadership who are intrinsically motivated to employ and use evaluation data to drive ongoing improvements within the organization. Leaders who are intrinsically motivated will employ risk taking when evaluation practices and processes may be somewhat unfamiliar. Creating and maintaining a culture of data use and ongoing inquiry have enabled national ACES to achieve a sustainable evaluation practice.

  13. Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice

    NASA Astrophysics Data System (ADS)

    Nose, Keisuke; Pissuwan, Dakrong; Goto, Masahiro; Katayama, Yoshiki; Niidome, Takuro

    2012-05-01

    Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients.Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30651d

  14. Research Update: Comparison of salt- and molecular-based iodine treatments of PbS nanocrystal solids for solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jähnig, Fabian; Bozyigit, Deniz; Yarema, Olesya

    2015-02-01

    Molecular- and salt-based chemical treatments are believed to passivate electronic trap states in nanocrystal-based semiconductors, which are considered promising for solar cells but suffer from high carrier recombination. Here, we compare the chemical, optical, and electronic properties of PbS nanocrystal-based solids treated with molecular iodine and tetrabutylammonium iodide. Surprisingly, both treatments increase—rather than decrease—the number density of trap states; however, the increase does not directly influence solar cell performance. We explain the origins of the observed impact on solar cell performance and the potential in using different chemical treatments to tune charge carrier dynamics in nanocrystal-solids.

  15. A review on solid phase extraction of actinides and lanthanides with amide based extractants.

    PubMed

    Ansari, Seraj A; Mohapatra, Prasanta K

    2017-05-26

    Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassal, N.; Salmon, E.; Fauvarque, J.F.

    1999-01-01

    Sealed alkaline solid polymer electrolyte nickel/metal hydride laboratory cells have been constructed and tested to evaluate their properties. Studies of the cycle life, self-discharge, and behavior of cells at different temperatures were carried out. The first results on the electrochemical behavior of an alkaline solid polymer electrolyte [based on poly(ethylene oxide), potassium hydroxide, and water] medium are presented here and show good reversibility of this all-solid-state system for more than 500 cycles, without significant loss of capacity and with a reasonable average discharge efficiency (close to 80%). The temperature-dependence study allowed the determination of optimum operating conditions between 0 andmore » 40 C. Characteristics of the solid polymer electrolyte based Ni/MH cells are compared to those of several other rechargeable battery systems.« less

  17. Semi-Solid and Solid Dosage Forms for the Delivery of Phage Therapy to Epithelia.

    PubMed

    Brown, Teagan L; Petrovski, Steve; Chan, Hiu Tat; Angove, Michael J; Tucci, Joseph

    2018-02-26

    The delivery of phages to epithelial surfaces for therapeutic outcomes is a realistic proposal, and indeed one which is being currently tested in clinical trials. This paper reviews some of the known research on formulation of phages into semi-solid dosage forms such as creams, ointments and pastes, as well as solid dosage forms such as troches (or lozenges and pastilles) and suppositories/pessaries, for delivery to the epithelia. The efficacy and stability of these phage formulations is discussed, with a focus on selection of optimal semi-solid bases for phage delivery. Issues such as the need for standardisation of techniques for formulation as well as for assessment of efficacy are highlighted. These are important when trying to compare results from a range of experiments and across different delivery bases.

  18. Semi-Solid and Solid Dosage Forms for the Delivery of Phage Therapy to Epithelia

    PubMed Central

    Petrovski, Steve; Chan, Hiu Tat; Angove, Michael J.; Tucci, Joseph

    2018-01-01

    The delivery of phages to epithelial surfaces for therapeutic outcomes is a realistic proposal, and indeed one which is being currently tested in clinical trials. This paper reviews some of the known research on formulation of phages into semi-solid dosage forms such as creams, ointments and pastes, as well as solid dosage forms such as troches (or lozenges and pastilles) and suppositories/pessaries, for delivery to the epithelia. The efficacy and stability of these phage formulations is discussed, with a focus on selection of optimal semi-solid bases for phage delivery. Issues such as the need for standardisation of techniques for formulation as well as for assessment of efficacy are highlighted. These are important when trying to compare results from a range of experiments and across different delivery bases. PMID:29495355

  19. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    PubMed

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  20. Modeling the impact of solid noise barriers on near road air quality

    EPA Science Inventory

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutan...

Top