Solid methane in neutron radiation: Cryogenic moderators and cometary cryo volcanism
NASA Astrophysics Data System (ADS)
Kirichek, O.; Lawson, C. R.; Jenkins, D. M.; Ridley, C. J. T.; Haynes, D. J.
2017-12-01
The effect of ionizing radiation on solid methane has previously been an area of interest in the astrophysics community. In the late 1980s this interest was further boosted by the possibility of using solid methane as a moderating medium in spallation neutron sources. Here we present test results of solid methane moderators commissioned at the ISIS neutron source, and compare them with a model based on the theory of thermal explosion. Good agreement between the moderator test data and our model suggests that the process of radiolysis defect recombination happens at two different temperature ranges: the ;lower temperature; recombination process occurs at around 20 K, with the ;higher temperature; process taking place between 50 and 60 K. We discuss consequences of this mechanism for the designing and operation of solid methane moderators used in advanced neutron sources. We also discuss the possible role of radiolysis defect recombination processes in cryo-volcanism on comets, and suggest an application based on this phenomenon.
NASA Astrophysics Data System (ADS)
Kirichek, O.; Savchenko, E. V.; Lawson, C. R.; Khyzhniy, I. V.; Jenkins, D. M.; Uyutnov, S. A.; Bludov, M. A.; Haynes, D. J.
2018-03-01
Physicochemical properties of solid methane exposed to ionizing radiation have attracted significant interest in recent years. Here we present new trends in the study of radiation effects in solid methane. We particularly focus on relaxation phenomena in solid methane pre-irradiated by energetic neutrons and electron beam. We compare experimental results obtained in the temperature range from 10K to 100K with a model based on the assumption that radiolysis defect recombinations happen in two stages, at two different temperatures. In the case of slow heating up of the solid methane sample, irradiated at 10K, the first wave of recombination occurs around 20K with a further second wave taking place between 50 and 60K. We also discuss the role of the recombination mechanisms in “burp” phenomenon discovered by J. Carpenter in the late 1980s. An understanding of these mechanisms is vital for the designing and operation of solid methane moderators used in advanced neutron sources and could also be a possible explanation for the driving forces behind cryo-volcanism on celestial bodies.
Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka
2018-04-28
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
NASA Astrophysics Data System (ADS)
Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka
2018-04-01
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
Methane and carbon at equilibrium in source rocks
2013-01-01
Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C < = > Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are ingested, but with high selectivity, consistent with competitive addition to receptor sites in a growing polymer. Mowry Shale ingests butane vigorously from argon, for example, but not from methane under the same conditions. 2) Production data for a well producing from Fayetteville Shale declines along the theoretical curve for withdrawing gas from higher hydrocarbons in equilibrium with carbon. 3) A new general gas-solid equilibrium model accounts for natural gas at thermodynamic equilibrium, and C6-C7 hydrocarbons constrained to invariant compositions. The results make a strong case for methane in equilibrium with carbon and higher hydrocarbons. If correct, the higher hydrocarbons in source rocks are gas reservoirs, raising the possibility of substantially more gas in shales than analytically apparent, and far more gas in shale deposits than currently recognized. PMID:24330266
Chemical pretreatment of lignocellulosic agroindustrial waste for methane production.
Pellera, Frantseska-Maria; Gidarakos, Evangelos
2018-01-01
This study investigates the effect of different chemical pretreatments on the solubilization and the degradability of different solid agroindustrial waste, namely winery waste, cotton gin waste, olive pomace and juice industry waste. Eight different reagents were investigated, i.e. sodium hydroxide (NaOH), sodium bicarbonate (NaHCO 3 ), sodium chloride (NaCl), citric acid (H 3 Cit), acetic acid (AcOH), hydrogen peroxide (H 2 O 2 ), acetone (Me 2 CO) and ethanol (EtOH), under three condition sets resulting in treatments of varying intensity, depending on process duration, reagent dosage and temperature. Results indicated that chemical pretreatment under more severe conditions is more effective on the solubilization of lignocellulosic substrates, such as those of the present study and among the investigated reagents, H 3 Cit, H 2 O 2 and EtOH appeared to be the most effective to this regard. At the same time, although chemical pretreatment in general did not improve the methane potential of the substrates, moderate to high severity conditions were found to generally be the most satisfactory in terms of methane production from pretreated materials. In fact, moderate severity treatments using EtOH for winery waste, H 3 Cit for olive pomace and H 2 O 2 for juice industry waste and a high severity treatment with EtOH for cotton gin waste, resulted in maximum specific methane yield values. Ultimately, the impact of pretreatment parameters on the different substrates seems to be dependent on their characteristics, in combination with the specific mode of action of each reagent. The overall energy balance of such a system could probably be improved by using lower operating powers and higher solid to liquid ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thallam Thattai, A.; van Biert, L.; Aravind, P. V.
2017-12-01
Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.
Using Methane Absorption to Probe Jupiter's Atmosphere
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaics of a belt-zone boundary near Jupiter's equator in near-infrared light moderately absorbed by atmospheric methane (top panel), and strongly absorbed by atmospheric methane (bottom panel). The four images that make up each of these mosaics were taken within a few minutes of each other. Methane in Jupiter's atmosphere absorbs light at specific wavelengths called absorption bands. By detecting light close and far from these absorption bands, Galileo can probe to different depths in Jupiter's atmosphere. Sunlight near 732 nanometers (top panel) is moderately absorbed by methane. Some of the light reflected from clouds deep in Jupiter's troposphere is absorbed, enhancing the higher features. Sunlight at 886 nanometers (bottom panel) is strongly absorbed by methane. Most of the light reflected from the deeper clouds is absorbed, making these clouds invisible. Features in the diffuse cloud layer higher in Jupiter's atmosphere are greatly enhanced.
North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoOptical constants of liquid and solid methane
NASA Technical Reports Server (NTRS)
Martonchik, John V.; Orton, Glenn S.
1994-01-01
The optical constants n(sub r) + in(sub i) of liquid methane and phase 1 solid methane were determined over the entire spectral range by the use of various data sources published in the literature. Kramers-Kronig analyses were performed on the absorption spectra of liquid methane at the boiling point (111 K) and the melting point (90 K) and on the absorption spectra of phase 1 solid methane at the melting point and at 30 K. Measurements of the static dielectric constant at these temperatures and refractive indices determined over limited spectral ranges were used as constraints in the analyses. Applications of methane optical properties to studies of outer solar system bodies are described.
Extraction of soluble substances from organic solid municipal waste to increase methane production.
Campuzano, Rosalinda; González-Martínez, Simón
2015-02-01
This work deals with the analysis of the methane production from Mexico City's urban organic wastes after separating soluble from suspended substances. Water was used to extract soluble substances under three different water to waste ratios and after three extraction procedures. Methane production was measured at 35 °C during 21 days using a commercial methane potential testing device. Results indicate that volatile solids extraction increases with dilution rate to a maximum of 40% at 20 °C and to 43% at 93 °C. The extracts methane production increases with the dilution rate as a result of enhanced dissolved solids extraction. The combined (extract and bagasse) methane production reached, in 6 days, 66% of the total methane produced in 21 days. The highest methane production rates were measured during the first six days. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microbial diversity and dynamics during methane production from municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu; Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706; Wolfe, Georgia L., E-mail: gwolfe@wisc.edu
2013-10-15
Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing ofmore » 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.« less
Co-digestion of solid waste: Towards a simple model to predict methane production.
Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme
2018-04-01
Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacFarlane, R. E.
An accurate representation of the scattering of neutrons by the materials used to build cold sources at neutron scattering facilities is important for the initial design and optimization of a cold source, and for the analysis of experimental results obtained using the cold source. In practice, this requires a good representation of the physics of scattering from the material, a method to convert this into observable quantities (such as scattering cross sections), and a method to use the results in a neutron transport code (such as the MCNP Monte Carlo code). At Los Alamos, the authors have been developing thesemore » capabilities over the last ten years. The final set of cold-moderator evaluations, together with evaluations for conventional moderator materials, was released in 1994. These materials have been processed into MCNP data files using the NJOY Nuclear Data Processing System. Over the course of this work, they were able to develop a new module for NJOY called LEAPR based on the LEAP + ADDELT code from the UK as modified by D.J. Picton for cold-moderator calculations. Much of the physics for methane came from Picton`s work. The liquid hydrogen work was originally based on a code using the Young-Koppel approach that went through a number of hands in Europe (including Rolf Neef and Guy Robert). It was generalized and extended for LEAPR, and depends strongly on work by Keinert and Sax of the University of Stuttgart. Thus, their collection of cold-moderator scattering kernels is truly an international effort, and they are glad to be able to return the enhanced evaluations and processing techniques to the international community. In this paper, they give sections on the major cold moderator materials (namely, solid methane, liquid methane, and liquid hydrogen) using each section to introduce the relevant physics for that material and to show typical results.« less
Methane generation from waste materials
Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza
2010-03-23
An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.
Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin
2016-05-01
Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-Temperature Quantum-Classical Transition in Solid Methane
NASA Astrophysics Data System (ADS)
Zakharov, A. Yu.; Leont'eva, A. V.; Prokhorov, A. Yu.; Erenburg, A. I.
2017-04-01
Some experimental studies have reported that physical properties of solid methane exhibit a number of anomalies in the temperature interval between 0.5 T _tr and T _tr (T _tr is triple point of methane). This paper contains an attempt of systematization and theoretical interpretation of the observed anomalies.
Direct methane solid oxide fuel cells and their related applications
NASA Astrophysics Data System (ADS)
Lin, Yuanbo
Solid oxide fuel cells (SOFCs), renowned for their high electrical generation efficiency with low pollutant production, are promising for reducing global energy and environmental concerns. However, there are major barriers for SOFC commercialization. A primary challenge is reducing the capital cost of SOFC power plants to levels that can compete with other generation methods. While the focus of this thesis research was on operation of SOFCs directly with methane fuel, the underlying motivation was to make SOFCs more competitive by reducing their cost. This can be achieved by making SOFCs that reduce the size and complexity of the required "balance of plant". Firstly, direct operation of SOFCs on methane is desirable since it can eliminate the external reformer. However, effective means must be found to suppress deleterious anode coking in methane. In this thesis, the operating conditions under which SOFCs can operate stably and without anode coking were investigated in detail, and the underlying mechanisms of coking and degradation were determined. Furthermore, a novel design utilizing an inert anode barrier layer was developed and shown to substantially improve stability against coking. Secondly, the direct methane SOFCs were investigated for use as electrochemical partial oxidation (EPOx) reactors that can co-generate electricity and synthesis gas (CO+H2) from methane. The results indicated that conventional SOFCs work quite well as methane partial oxidation reactors, producing syngas at relatively high rates. While this approach would not decrease the cost of SOFC power plant, it would improve prospects for commercialization by increasing the value of the power plant, because two products, electricity and syngas, can be sold. Thirdly, SOFCs utilizing thin (La,Sr)(Ga,Mg)O3 electrolytes were demonstrated. This highly conductive material allows lower SOFC operation temperature, leading to the use of lower-cost materials for sealing, interconnection, and balance of plant. Deleterious electrolyte/electrode reactions and electrolyte La loss were avoided during high-temperature co-firing by using thin La-doped ceria barrier layers, allowing very high power densities at moderate operating temperatures. (La,Sr)(Ga,Mg)O3-(La,Sr)(Fe,Co)O3 composite cathodes were investigated and optimal processing parameters that yield low interfacial polarization resistance at intermediate temperature were determined.
Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming
2016-09-01
Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.
Motte, J-C; Escudié, R; Bernet, N; Delgenes, J-P; Steyer, J-P; Dumas, C
2013-09-01
Among all the process parameters of solid-state anaerobic digestion (SS-AD), total solid content (TS), inoculation (S/X ratio) and size of the organic solid particles can be optimized to improve methane yield and process stability. To evaluate the effects of each parameter and their interactions on methane production, a three level Box-Behnken experimental design was implemented in SS-AD batch tests degrading wheat straw by adjusting: TS content from 15% to 25%, S/X ratio (in volatile solids) between 28 and 47 and particle size with a mean diameter ranging from 0.1 to 1.4mm. A dynamic analysis of the methane production indicates that the S/X ratio has only an effect during the start-up phase of the SS-AD. During the growing phase, TS content becomes the main parameter governing the methane production and its strong interaction with the particle size suggests the important role of water compartmentation on SS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ok, Salim; Hoyt, David W.; Andersen, Amity
Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less
Ok, Salim; Hoyt, David W.; Andersen, Amity; ...
2017-01-18
Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ok, Salim; Hoyt, David W.; Andersen, Amity
Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nano-porous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed non-porous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2 bar, 32.6 bar, 56.4 bar, 65.1 bar, 112.7 bar, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less
Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases
2016-08-01
AnMBR) technology with clinoptilolite ion exchange and GreenBox™ ammonia electrolysis. The system generates both methane and hydrogen fuels...experimental setup. ................................................ 21 Figure 10. Methane phase semi batch experimental setup, a total of three reactors were...set up for PS + solid, Bioc and ADS methane phase reactors. .................... 21 Figure 11. Dried PS solid for the control, Bioc blend for the
Shen, Jiacheng; Zhu, Jun
2016-01-01
Poultry litter (PL) can be good feedstock for biogas production using anaerobic digestion. In this study, methane production from batch co-digestion of PL and wheat straw (WS) was investigated for two factors, i.e., total solid (2%, 5%, and 10%) and volatile solid (0, 25, and 50% of WS), constituting a 3 × 3 experimental design. The results showed that the maximum specific methane volume [197 mL (g VS)(‑1)] was achieved at 50% VS from WS at 5% TS level. It was estimated that the inhibitory threshold of free ammonia was about 289 mg L(--1), beyond which reduction of methanogenic activity by at least 54% was observed. The specific methane volume and COD removal can be expressed using two response surface models (R(2) = 0.9570 and 0.9704, respectively). Analysis of variance of the experimental results indicated that the C/N ratio was the most significant factor influencing the specific methane volume and COD removal in the co-digestion of these two materials.
Salminen, E; Einola, J; Rintala, J
2003-09-01
The biological methane production rate and yield of different poultry slaughtering residues were studied. Poultry offal, blood, and bonemeal were rich in proteins and lipids and showed high methane yields, 0.7-0.9, 0.5, and 0.6-0.7 m3 kg(-1) volatile solids(added), respectively (270-340, 100, and 150-170 m3 ton(-1) wet weight). Blood and bonemeal produced methane rapidly, whereas the methane production of offal was more delayed probably due to long-chain fatty acid inhibition. The length of delay depended on the source and concentration of inoculum and incubation temperature, sewage sludge at 35 degrees C having the shortest delay of a few days, while granular sludge did not produce methane within 94 days of incubation. Feather showed a somewhat lower methane yield, 0.21 m3 kg(-1) volatile solids(added) (50 m3 ton(-1) wet weight). Combined thermal (120 degrees C, 5 min) and enzymatic (commercial alkaline endopeptidase, 2-10 g l(-1)) pre-treatments increased its methane yield by 37 to 51%. Thermal (70-120 degrees C, 5-60 min), chemical (NaOH 2-10 g l(-1), 2-24 h), and enzymatic pre-treatments were less effective, with methane yield increasing by 5 to 32%. Based on the present results, anaerobic digestion of the studied poultry slaughtering residues appears a promising possibility because of the high methane yield and nitrogen content of these residues (8 to 14% N of total solids), whereas pre-treatments were shown to improve the methane production of feather.
Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion
2016-06-01
and purification of methane -rich biogas was conducted at the US Air Force Academy. Cost and performance of the technology with respect to renewable...SUBJECT TERMS Food waste, FOG, solid waste, anaerobic digestion, methane , biogas, biomethane, biogas purification, vehicle fuel, renewable energy...The project demonstrated the ability to digest these wastes in a controlled and predictable manner to maximize the generation of biogas, a methane
Partial oxidation of methane (POM) assisted solid oxide co-electrolysis
Chen, Fanglin; Wang, Yao
2017-02-21
Methods for simultaneous syngas generation by opposite sides of a solid oxide co-electrolysis cell are provided. The method can comprise exposing a cathode side of the solid oxide co-electrolysis cell to a cathode-side feed stream; supplying electricity to the solid oxide co-electrolysis cell such that the cathode side produces a product stream comprising hydrogen gas and carbon monoxide gas while supplying oxygen ions to an anode side of the solid oxide co-electrolysis cell; and exposing the anode side of the solid oxide co-electrolysis cell to an anode-side feed stream. The cathode-side feed stream comprises water and carbon dioxide, and the anode-side feed stream comprises methane gas such that the methane gas reacts with the oxygen ions to produce hydrogen and carbon monoxide. The cathode-side feed stream can further comprise nitrogen, hydrogen, or a mixture thereof.
An afterburner-powered methane/steam reformer for a solid oxide fuel cells application
NASA Astrophysics Data System (ADS)
Mozdzierz, Marcin; Chalusiak, Maciej; Kimijima, Shinji; Szmyd, Janusz S.; Brus, Grzegorz
2018-04-01
Solid oxide fuel cell (SOFC) systems can be fueled by natural gas when the reforming reaction is conducted in a stack. Due to its maturity and safety, indirect internal reforming is usually used. A strong endothermic methane/steam reforming process needs a large amount of heat, and it is convenient to provide thermal energy by burning the remainders of fuel from a cell. In this work, the mathematical model of afterburner-powered methane/steam reformer is proposed. To analyze the effect of a fuel composition on SOFC performance, the zero-dimensional model of a fuel cell connected with a reformer is formulated. It is shown that the highest efficiency of a solid oxide fuel cell is achieved when the steam-to-methane ratio at the reforming reactor inlet is high.
Santos-Ballardo, David U; Font-Segura, Xavier; Ferrer, Antoni Sánchez; Barrena, Raquel; Rossi, Sergio; Valdez-Ortiz, Angel
2015-03-01
One of the principal opportunity areas in the development of the microalgal biodiesel industry is the energy recovery from the solid microalgal biomass residues to optimise the fuel production. This work reports the cumulative methane yields reached from the anaerobic digestion of the solid microalgal biomass residues using different types of inocula, reporting also the improvement of biogas production using the co-digestion of microalgal biomass with glycerol. Results demonstrate that the solid microalgal biomass residues showed better biogas production using a mesophilic inoculum, reaching almost two-fold higher methane production than under thermophilic conditions. Furthermore, the solid microalgal biomass residues methane production rate showed an increase from 173.78 ± 9.57 to 438.46 ± 40.50 mL of methane per gram of volatile solids, when the co-digestion with glycerol was performed. These results are crucial to improve the energy balance of the biodiesel production from Tetraselmis suecica, as well as proposing an alternative way to treat the wastes derived from the microalgae biodiesel production. © The Author(s) 2015.
Buffière, P; Dooms, M; Hattou, S; Benbelkacem, H
2018-07-01
The role of the hydrolytic stage in high solids temperature phased anaerobic digestion was investigated with a mixture of cattle slurry and maize silage with variable ratios (100, 70 and 30% volatile solids coming from cattle slurry). It was incubated for 48 h at 37, 55, 65 and 72 °C. Soluble chemical oxygen demand and biochemical methane potential were measured at 0, 24 and 48 h. Higher temperatures improved the amount of solubilized COD, which confirmed previously reported results. Nevertheless, solubilization mostly took place during the first 24 h. The rate of methane production in post-hydrolysis BMPs increased after 48 h hydrolysis time, but not after 24 h. The first order kinetic constant rose by 40% on average. No correlation was observed between soluble COD and downstream methane production rate, indicating a possible modification of the physical structure of the particulate solids during the hydrolytic stage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Suksong, Wantanasak; Kongjan, Prawit; Prasertsan, Poonsuk; Imai, Tsuyoshi; O-Thong, Sompong
2016-08-01
This study investigated the improvement of biogas production from solid-state anaerobic digestion (SS-AD) of oil palm biomass by optimizing of total solids (TS) contents, feedstock to inoculum (F:I) ratios and carbon to nitrogen (C:N) ratios. Highest methane yield from EFB, OPF and OPT of 358, 280 and 324m(3)CH4ton(-1)VS, respectively, was achieved at TS content of 16%, C:N ratio of 30:1 and F:I ratio of 2:1. The main contribution to methane from biomass was the degradation of cellulose and hemicellulose. The highest methane production of 72m(3)CH4ton(-1) biomass was achieved from EFB. Bacteria community structure in SS-AD process of oil palm biomass was dominated by Ruminococcus sp. and Clostridium sp., while archaea community was dominated by Methanoculleus sp. Oil palm biomass has great potential for methane production via SS-AD. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kadobayashi, H.; Hirai, H.; Ohfuji, H.; Kojima, Y.; Ohishi, Y.; Hirao, N.; Ohtake, M.; Yamamoto, Y.
2017-10-01
The phase transition mechanism of methane hydrate from sH to filled-ice Ih structure was examined using a combination of time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device (CCD) camera observation under fixed pressure conditions. Prior to time-resolved Raman experiments, the typical C-H vibration modes and their pressure dependence of three methane hydrate structures, fluid methane and solid methane were measured using Raman spectroscopy to distinguish the phase transitions of methane hydrates from decomposition to solid methane and ice VI or VII. Experimental results by XRD, Raman spectroscopy and CCD camera observation revealed that the structural transition of sH to filled-ice Ih occurs through a collapse of the sH framework followed by the release of fluid methane that is then gradually incorporated into the filled-ice Ih to reconstruct its structure. These observations suggest that the phase transition of sH to filled-ice Ih takes place by a typical reconstructive mechanism.
Haag, Nicola Leonard; Nägele, Hans-Joachim; Fritz, Thomas; Oechsner, Hans
2015-02-01
A green biorefinery enables the material and energetic use of biomass via lactic acid and methane production. Different ensiling techniques were applied to maize and amaranth with the aim to increase the amount of lactic acid in the silage. In addition the methane formation potential of the ensiled samples and the remaining solid residues after separating the organic juice were assessed. Treating maize with homofermentative lactic acid bacteria in combination with carbonated lime increased the amount of lactic acid about 91.9%. For amaranth no additional lactic acid production was obtained by treating the raw material. Specific methane yields for the solid residues of amaranth were significantly lower in comparison to the corresponding silages. The most promising treatment resulted in a production of 127.9±4.1 g kg(-1) DM lactic acid and a specific methane yield for the solid residue of 349.5±6.6 lN kg(-1) ODM. Copyright © 2014 Elsevier Ltd. All rights reserved.
Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre
2016-01-01
Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and utilized methane and methanol as sole carbon and energy source. Isolates grew at pH range 4.2–7.5 (optimal 5.5–6.0) and at a temperature range of 30–60°C (optimal 51–55°C). 16S rRNA gene phylogeny placed them in a well-separated branch forming a cluster together with the genus Methylocaldum as the closest relatives (93.1–94.1% sequence similarity). The genes pmoA, mxaF, and cbbL were detected, but mmoX was absent. Strains BFH1 and BFH2 are, to our knowledge, the first isolated acid-tolerant moderately thermophilic methane oxidizers of the class Gammaproteobacteria. Each strain probably denotes a novel species and they most likely represent a novel genus within the family Methylococcaceae of type I methanotrophs. Furthermore, the isolates increase our knowledge of acid-tolerant aerobic methanotrophs and signify a previously unrecognized biological methane sink in tropical ecosystems. PMID:27379029
Quantifying Methane Abatement Efficiency at Three Municipal Solid Waste Landfills; Final Report
Measurements were conducted at three municipal solid waste landfills to compare fugitive methane emissions from the landfill cells to the quantity of collected gas (i.e., gas collection efficiency). The measurements were conducted over a multi-week sampling campaign using EPA Oth...
Methane potential of sterilized solid slaughterhouse wastes.
Pitk, Peep; Kaparaju, Prasad; Vilu, Raivo
2012-07-01
The aim of the current study was to determine chemical composition and methane potential of Category 2 and 3 solid slaughterhouse wastes rendering products (SSHWRP) viz. melt, decanter sludge, meat and bone meal (MBM), technical fat and flotation sludge from wastewater treatment. Chemical analyses showed that SSHWRP were high in protein and lipids with total solids (TS) content of 96-99%. Methane yields of the SSHWRP were between 390 and 978 m(3) CH(4)/t volatile solids (VS)(added). Based on batch experiments, anaerobic digestion of SSHWRP from the dry rendering process could recover 4.6 times more primary energy than the energy required for the rendering process. Estonia has technological capacity to sterilize all the produced Category 2 and 3 solid slaughterhouse wastes (SSHW) and if separated from Category 1 animal by-products (ABP), it could be further utilized as energy rich input material for anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stern, L.A.; Kirby, S.H.; Durham, W.B.
1996-01-01
Slow, constant-volume heating of water ice plus methane gas mixtures forms methane clathrate hydrate by a progressive reaction that occurs at the nascent ice/liquid water interface. As this reaction proceeds, the rate of melting of metastable water ice may be suppressed to allow short-lived superheating of ice to at least 276 kelvin. Plastic flow properties measured on clathrate test specimens are significantly different from those of water ice; under nonhydrostatic stress, methane clathrate undergoes extensive strain hardening and a process of solid-state disproportionation or exsolution at conditions well within its conventional hydrostatic stability field.
Kim, Dong-Jin; Lee, Jonghak
2012-01-01
Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.
Solid methane on Triton and Pluto - 3- to 4-micron spectrophotometry
NASA Technical Reports Server (NTRS)
Spencer, John R.; Buie, Marc W.; Bjoraker, Gordon L.
1990-01-01
Methane has been identified in the Pluto/Charon system on the basis of absorption features in the reflectance spectrum at 1.5 and 2.3 microns; attention is presently given to observations of a 3.25 micron-centered deep absorption feature in Triton and Pluto/Charon system reflectance spectra. This absorption may indicate the presence of solid methane, constituting either the dominant surface species or a mixture with a highly transparent substance, such as N2 frost.
Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw.
Tian, Jiang-Hao; Pourcher, Anne-Marie; Bureau, Chrystelle; Peu, Pascal
2017-01-01
Solid state anaerobic digestion (SSAD) with leachate recirculation is an appropriate method for the valorization of agriculture residues. Rape straw is a massively produced residue with considerable biochemical methane potential, but its degradation in SSAD remains poorly understood. A thorough study was conducted to understand the performance of rape straw as feedstock for laboratory solid state anaerobic digesters. We investigated the methane production kinetics of rape straw in relation to cellulose accessibility to cellulase and the microbial community. Improving cellulose accessibility through milling had a positive influence on both the methane production rate and methane yield. The SSAD of rape straw reached 60% of its BMP in a 40-day pilot-scale test. Distinct bacterial communities were observed in digested rape straw and leachate, with Bacteroidales and Sphingobacteriales as the most abundant orders, respectively. Archaeal populations showed no phase preference and increased chronologically. Copyright © 2016 Elsevier Ltd. All rights reserved.
METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE
Frazer, J.W.
1959-10-27
A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.
Anaerobic digestion of water hyacinth and sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Srivastava, V.J.; Chynoweth, D.P.
1986-01-01
The Institute of Gas Technology (IGT) has been operating an experimental test unit (ETU) at the Walt Disney World (WDW) wastewater treatment plant to demonstrate the conversion of water hyacinth and sludge to methane in a solids concentrating (SOLCON) digester. Results from 2 years to operation have confirmed earlier laboratory observations that this digester achieves higher methane yields and solids conversion than those observed in continuous stirred tank reactors. Methane yields as high as 0.49 m/sup 3/ kg/sup -1/ (7.9 SCF/lb) volatile solids added have been obtained during steady-state operation on a blend of water hyacinth and sludge. 9 refs.,more » 5 figs., 5 tabs.« less
Tuneable diode laser gas analyser for methane measurements on a large scale solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Lengden, Michael; Cunningham, Robert; Johnstone, Walter
2011-10-01
A new in-line, real time gas analyser is described that uses tuneable diode laser spectroscopy (TDLS) for the measurement of methane in solid oxide fuel cells. The sensor has been tested on an operating solid oxide fuel cell (SOFC) in order to prove the fast response and accuracy of the technology as compared to a gas chromatograph. The advantages of using a TDLS system for process control in a large-scale, distributed power SOFC unit are described. In future work, the addition of new laser sources and wavelength modulation will allow the simultaneous measurement of methane, water vapour, carbon-dioxide and carbon-monoxide concentrations.
Gomez-Lahoz, C; Fernández-Giménez, B; Garcia-Herruzo, F; Rodriguez-Maroto, J M; Vereda-Alonso, C
2007-03-01
The possible management of Fruit and Vegetable Solid Wastes (FVSWs) through their simultaneous digestion with the primary sludge of Municipal Wastewater Treatment plants is investigated. This alternative allows the recovery of energy and a solid product that can be used as an amendment for soils that generated the residue, while is not expensive. Results indicate that the ratio of FVSWs to sludge and the pH control are the main variables determining the methane production and concentration. NaHCO3 was selected to achieve the pH control. The results for a ratio of 50% sludge together with 10 g NaHCO3/kg of residue are among the best obtained, with a methane yield of about 90 L per kg of volatile solids, and a methane concentration of 40% (v/v) of the biogas. A 50% reduction of the total solids; 21% reduction of the volatile solids (in terms of total solids); and a pH value of the sludge, which is 6.9 indicate that the digested sludge can be a good material for soil amendment.
Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo
2017-05-01
Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Continuous catalytic decomposition of methane
NASA Technical Reports Server (NTRS)
Clifford, J. E.; Hillenbrand, L. J.; Kim, B. C.; Kolic, E. S.; Zupan, J.
1973-01-01
Water is conserved by employing sequence of reactions whereby 75 percent of methane from Sabatier reaction is decomposed to solid carbon and hydrogen; hydrogen is then separated from residual methane and utilized in usual Sabatier reaction to reduce remaining metabolic carbon dioxide.
Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco; Pontoni, Ludovico
2014-10-01
This work investigates the role of the moisture content on anaerobic digestion of food waste, as representative of rapidly biodegradable substrates, analysing the role of volatile fatty acid production on process kinetics. A range of total solids from 4.5% to 19.2% is considered in order to compare methane yields and kinetics of reactors operated under wet to dry conditions. The experimental results show a reduction of the specific final methane yield of 4.3% and 40.8% in semi-dry and dry conditions compared with wet conditions. A decreasing trend of the specific initial methane production rate is observed when increasing the total solids concentration. Because of lack of water, volatile fatty acids accumulation occurs during the first step of the process at semi-dry and dry conditions, which is considered to be responsible for the reduction of process kinetic rates. The total volatile fatty acids concentration and speciation are proposed as indicators of process development at different total solids content. © The Author(s) 2014.
Liew, Lo Niee; Shi, Jian; Li, Yebo
2011-10-01
Previous studies have shown that alkali pretreatment prior to anaerobic digestion (AD) can increase the digestibility of lignocellulosic biomass and methane yield. In order to simplify the process and reduce the capital cost, simultaneous alkali treatment and anaerobic digestion was evaluated for methane production from fallen leaves. The highest methane yield of 82 L/kg volatile solids (VS) was obtained at NaOH loading of 3.5% and substrate-to-inoculum (S/I) ratio of 4.1. The greatest enhancement in methane yield was achieved at S/I ratio of 6.2 with NaOH loading of 3.5% which was 24-fold higher than that of the control (without NaOH addition). Reactors at S/I ratio of 8.2 resulted in failure of the AD process. In addition, increasing the total solid (TS) content from 20% to 26% reduced biogas yield by 35% at S/I ratio of 6.2 and NaOH loading of 3.5%. Cellulose and hemicellulose degradation and methane yields are highly related. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yao, Yiqing; Luo, Yang; Li, Tian; Yang, Yingxue; Sheng, Hongmei; Virgo, Nolan; Xiang, Yun; Song, Yuan; Zhang, Hua; An, Lizhe
2014-01-01
Solid-state anaerobic digestion (SS-AD) was initially adopted for the treatment of municipal solid waste. Recently, SS-AD has been increasingly applied to treat lignocellulosic biomass, such as agricultural and forestry residues. However, studies on the SS-AD process are few. In this study, the process performance and methane yield from SS-AD of alkaline-pretreated poplar processing residues (PPRs) were investigated using the properties of soil, such as buffering capacity and nutritional requirements. The results showed that the lignocellulosic structures of the poplar sample were effectively changed by NaOH pretreatment, as indicated by scanning electron microscopy and Fourier transform infrared spectra analysis. The start-up was markedly hastened, and the process stability was enhanced. After NaOH pretreatment, the maximum methane yield (96.1 L/kg volatile solids (VS)) was obtained under a poplar processing residues-to-soil sample (P-to-S) ratio of 2.5:1, which was 29.9% and 36.1% higher than that of PPRs (74.0 L/kg VS) and that of experiments without NaOH pretreatment (70.6 L/kg VS), respectively. During steady state, the increase in the methane content of the experiment with a P-to-S ratio of 2.5:1 was 4.4 to 50.9% higher than that of the PPRs. Degradation of total solids and volatile solids ranged from 19.3 to 33.0% and from 34.9 to 45.9%, respectively. The maximum reductions of cellulose and hemicellulose were 52.6% and 42.9%, respectively, which were in accordance with the maximal methane yield. T 80 for the maximum methane yield for the experiments with NaOH pretreatment was 11.1% shorter than that for the PPRs. Pretreatment with NaOH and addition of soil led to a significant improvement in the process performance and the methane yield of SS-AD of PPRs. The changes in lignocellulosic structures induced by NaOH pretreatment led to an increase in methane yield. For the purpose of practical applications, SS-AD with soil addition is a convenient, economical, and practical technique.
Yalcinkaya, Sedat; Malina, Joseph F
2015-06-01
The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this relationship and allowed estimation of key performance parameters that provide additional insight into the factors affecting biochemical methane potential. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seasonal multiphase equilibria in the atmospheres of Titan and Pluto
NASA Astrophysics Data System (ADS)
Tan, S. P.; Kargel, J. S.
2017-12-01
At the extremely low temperatures in Titan's upper troposphere and on Pluto's surface, the atmospheres as a whole are subject to freeze into solid solutions, not pure ices. The presence of the solid phases introduces conditions with rich phase equilibria upon seasonal changes, even if the temperature undergoes only small changes. For the first time, the profile of atmospheric methane in Titan's troposphere will be reproduced complete with the solid solutions. This means that the freezing point, i.e. the altitude where the first solid phase appears, is determined. The seasonal change will also be evaluated both at the equator and the northern polar region. For Pluto, also for the first time, the seasonal solid-vapor equilibria will be evaluated. The fate of the two solid phases, the methane-rich and carbon-monoxide-rich solid solutions, will be analyzed upon temperature and pressure changes. Such investigations are enabled by the development of a molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, which includes solid solutions in its phase-equilibria calculations. The atmospheres of Titan and Pluto are modeled as ternary gas mixtures: nitrogen-methane-ethane and nitrogen-methane-carbon monoxide, respectively. Calculations using CRYOCHEM can provide us with compositions not only in two-phase equilibria, but also that in three-phase equilibria. Densities of all phases involved will also be calculated. For Titan, density inversion between liquid and solid phases will be identified and presented. In the inversion, the density of solid phase is less than that in the liquid phase. The method and results of this work will be useful for further investigations and modeling on the atmospheres of Titan, Pluto, and other bodies with similar conditions in the Solar System and beyond.
Methane yield in source-sorted organic fraction of municipal solid waste.
Davidsson, Asa; Gruvberger, Christopher; Christensen, Thomas H; Hansen, Trine Lund; Jansen, Jes la Cour
2007-01-01
Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.
Mass-radius relationships and constraints on the composition of Pluto
NASA Technical Reports Server (NTRS)
Lupo, M. J.; Lewis, J. S.
1980-01-01
With the new upper limit of Pluto's mass, an upper limit for Pluto's density of 1.74 g/cu cm has been found. Assuming Pluto to be 100% methane, available methane density data can be used to set a lower limit of 0.53 g/cu cm on Pluto's density, thus placing an absolute upper limit of 1909 km on the radius and a lower limit of 0.32 on the albedo. The results of 280 computer models covering a wide range of composition ratios of rock, water ice, and methane ice are reported. Limits are placed on Pluto's silicate content, and a simple spacecraft method for determining Pluto's water content from its density and moment of inertia is given. The low thermal conductivity and strength of solid methane suggest rapid solid-state convection in Pluto's methane layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Fuqing; Shi Jian; Lv Wen
2013-01-15
Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of cornmore » stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.« less
Xu, Fuqing; Wang, Zhi-Wu; Tang, Li; Li, Yebo
2014-09-01
In solid-state anaerobic digestion (SS-AD) of cellulosic biomass, the volumetric methane production rate has often been found to increase with the increase in total solids (TS) content until a threshold is reached, and then to decrease. This phenomenon cannot be explained by conventional understanding derived from liquid anaerobic digestion. This study proposed that the high TS content-caused mass diffusion limitation may be responsible for the observed methane production deterioration. Based on this hypothesis, a new SS-AD model was developed by taking into account the mass diffusion limitation and hydrolysis inhibition. The good agreement between model simulation and the experimental as well as literature data verified that the observed reduction in volumetric methane production rate could be ascribed to hydrolysis inhibition as a result of the mass diffusion limitation in SS-AD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermal Modeling and Management of Solid Oxide Fuel Cells Operating with Internally Reformed Methane
NASA Astrophysics Data System (ADS)
Wu, Yiyang; Shi, Yixiang; Cai, Ningsheng; Ni, Meng
2018-06-01
A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell (SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electrochemical reactions, mass transport, momentum and heat transfer in the SOFC unit. After model validation, parametric simulations are conducted to investigate how the methane pre-reforming ratio affects the transport and electrochemistry of the SOFC unit. It is found that the methane steam reforming reaction has a "smoothing effect", which can achieve more uniform distributions of gas compositions, current density and temperature among the cell plane. In the case of 1500 W/m2 power density output, adding 20% methane absorbs 50% of internal heat production inside the cell, reduces the maximum temperature difference inside the cell from 70 K to 22 K and reduces the cathode air supply by 75%, compared to the condition of completely pre-reforming of methane. Under specific operating conditions, the pre-reforming ratio of methane has an optimal range for obtaining a good temperature distribution and good cell performance.
Passive drainage and biofiltration of landfill gas: Australian field trial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dever, S.A.; Swarbrick, G.E.; Stuetz, R.M.
2007-07-01
In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane,more » and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Srivastava, V.J.; Punwani, D.V.
1988-01-01
The Institute of Gas Technology (IGT) has been operating a 4.5-m/sup 3/, anaerobic solids-concentrating digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida, since January 1984. This digester development work is part of a larger effort that provides effective community waste treatment and disposal options while recovering a valuable methane resources from these wastes. Excellent conversions to methane have been obtained in the digester during 4 years of uninterrupted operation. Data were collected on wastes from experimental municipal wastewater treatment applications, that is, water hyacinths were harvested from secondary wastewater treatment channels and combined with sludgemore » from primary clarifiers to maximize potential methane recoveries in the digester; wastes from agricultural operations, that is, sorghum was selected as a candidate because it represents both a potential energy crop, as well as a waste resource if only portions of the plant are converted after grain production; and wastes from municipal waste collection. Municipal solids waste (MSW) from a commercial resource recovery center was selected. 3 refs., 4 figs., 5 tabs.« less
Binding of methane to activated mineral surfaces - a methane sink on Mars?
NASA Astrophysics Data System (ADS)
Nørnberg, P.; Knak Jensen, S. J.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, Ebbe; Iversen, J. J.; Kondrup, J. C.
2015-10-01
Tumbling experiments that simulate the wind erosion of quartz grains in an atmosphere of 13 C-enriched methane are reported. The eroded grains are analyzed by 13C and 29 Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250oC. These findings offer a model for a methane sink that might explain the fast disappearance of methane on Mars.
Assessment of anaerobic biodegradability of five different solid organic wastes
NASA Astrophysics Data System (ADS)
Kristanto, Gabriel Andari; Asaloei, Huinny
2017-03-01
The concept of waste to energy emerges as an alternative solution to increasing waste generation and energy crisis. In the waste to energy concept, waste will be used to produce renewable energy through thermochemical, biochemical, and physiochemical processes. In an anaerobic digester, organic matter brake-down due to anaerobic bacteria produces methane gas as energy source. The organic waste break-down is affected by various characteristics of waste components, such as organic matter content (C, N, O, H, P), solid contents (TS and VS), nutrients ratio (C/N), and pH. This research aims to analyze biodegradability and potential methane production (CH4) from organic waste largely available in Indonesia. Five solid wastes comprised of fecal sludge, cow rumen, goat farm waste, traditional market waste, and tofu dregs were analyzed which showed tofu dregs as waste with the highest rate of biodegradability compared to others since the tofu dregs do not contain any inhibitor which is lignin, have 2.7%VS, 14 C/N ratios and 97.3% organic matter. The highest cumulative methane production known as Biochemical Methane Potential was achieved by tofu dregs with volume of 77 ml during 30-day experiment which then followed by cow rumen, goat farm waste, and traditional market waste. Subsequently, methane productions were calculated through percentage of COD reduction, which showed the efficiency of 99.1% that indicates complete conversion of the high organic matter into methane.
and implemented methanogenesis systems for the growth and collection of biogenic methane from municipal solid waste. Following that, he performed in-situ investigations on thermogenic methane from
Crone, Brian C; Garland, Jay L; Sorial, George A; Vane, Leland M
2016-11-01
The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10-30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11-100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Microporous membranes can recover up to 98.9% of dissolved methane in AnMBR effluents which have low COD and SS concentrations. Sequential Down-flow Hanging Sponge (DHS) reactors have been used to recover between 57 and 88% of dissolved methane from Upflow Anaerobic Sludge Blanket (UASB) reactor effluent at concentrations of greater than 30% and oxidize the rest for a 99% removal of total dissolved methane. They can also remove 90% of suspended solids and COD in UASB effluents and produce a high quality effluent. In situ degassing can increase process stability, COD removal, biomass retention, and headspace methane concentrations. A model for estimating energy consumption associated with membrane-based dissolved methane recovery predicts that recovered dissolved and headspace methane may provide all the energy required for operation of an anaerobic system treating DWW at psychrophilic temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pretreatment of food waste with high voltage pulse discharge towards methane production enhancement.
Zou, Lianpei; Ma, Chaonan; Liu, Jianyong; Li, Mingfei; Ye, Min; Qian, Guangren
2016-12-01
Anaerobic batch tests were performed to investigate the methane production enhancement and solid transformation rates from food waste (FW) by high voltage pulse discharge (HVPD) pretreatment. The total cumulative methane production with HVPD pretreatment was 134% higher than that of the control. The final volatile solids transformation rates of FW with and without HVPD pretreatment were 54.3% and 32.3%, respectively. Comparison study on HVPD pretreatment with acid, alkali and ultrasonic pretreatments showed that the methane production and COD removal rates of FW pretreated with HVPD were more than 100% higher than the control, but only about 50% higher can be obtained with other pretreatments. HVPD pretreatment could be a promising pretreatment method in the application of energy recovery from FW. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing
2016-01-01
High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704
NASA Astrophysics Data System (ADS)
Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing
2016-10-01
High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.
Green plants as solar energy converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
A survey covers the potential of energy production from biomass and solid wastes; various processes for the combustion of wastes, such as the co-combustion of solid waste and sewage sludge at the St. Paul/Seneca Treatment Plant Sludge Incinerator; various biological processes for the conversion of solid wastes to fuel such as the Institute of Gas Technology 400 l. digestor for the biogasification of municipal solid waste and sewage solids to a methane-rich product gas; the use of industrial wastes for fuel, such as slash and mill residues used as fuel in lumber mills; the biogasification of animal wastes by usingmore » small-scale on-site digesters to produce methane gas for cooking and lighting; energy farming methods, such as growing giant California kelp, sargassum, and plankton as suitable feedstock for the production of methane, fertilizers, and food; problems, such as the possible alteration of the reflectivity of large areas of the earth's surface by rapidly growing plants raised for biomass; and benefits such as the reduction in air, water, and land pollution associated with the use of wastes and biomass grown especially for energy.« less
NASA Astrophysics Data System (ADS)
Timmermann, H.; Sawady, W.; Reimert, R.; Ivers-Tiffée, E.
The internal reforming of methane in a solid oxide fuel cell (SOFC) is investigated and modeled for flow conditions relevant to operation. To this end, measurements are performed on anode-supported cells (ASC), thereby varying gas composition (y CO = 4-15%, yH2 = 5 - 17 % , yCO2 = 6 - 18 % , yH2O = 2 - 30 % , yCH4 = 0.1 - 20 %) and temperature (600-850 °C). In this way, operating conditions for both stationary applications (methane-rich pre-reformate) as well as for auxiliary power unit (APU) applications (diesel-POX reformate) are represented. The reforming reaction is monitored in five different positions alongside the anodic gas channel by means of gas chromatography. It is shown that methane is converted in the flow field for methane-rich gas compositions, whereas under operation with diesel reformate the direction of the reaction is reversed for temperatures below 675 °C, i.e. (exothermic) methanation occurs along the anode. Using a reaction model, a rate equation for reforming could be derived which is also valid in the case of methanation. By introducing this equation into the reaction model the methane conversion along a catalytically active Ni-YSZ cermet SOFC anode can be simulated for the operating conditions specified above.
Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems
NASA Technical Reports Server (NTRS)
Mwara, Kamwana N.
2015-01-01
Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.
Significance of dissolved methane in effluents of anaerobically ...
The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro
Total solids content drives high solid anaerobic digestion via mass transfer limitation.
Abbassi-Guendouz, Amel; Brockmann, Doris; Trably, Eric; Dumas, Claire; Delgenès, Jean-Philippe; Steyer, Jean-Philippe; Escudié, Renaud
2012-05-01
The role of the total solids (TS) content on anaerobic digestion was investigated in batch reactors. A range of TS contents from 10% to 35% was evaluated, four replicates were performed. The total methane production slightly decreased with TS concentrations increasing from 10% to 25% TS. Two behaviors were observed at 30% TS: two replicates had similar performances to that at 25% TS; for the two other replicates, the methane production was inhibited as observed at 35% TS. This difference suggested that 30% TS content corresponded to a threshold of the solids content, above which methanogenesis was strongly inhibited. The Anaerobic Digestion Model No. 1 (ADM1) was used to describe the experimental data. The effects of hydrolysis step and liquid/gas mass transfer were particularly investigated. The simulations showed that mass transfer limitation could explain the low methane production at high TS, and that hydrolysis rate constants slightly decreased with increasing TS. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biogas and methane yield in response to co- and separate digestion of biomass wastes.
Adelard, Laetitia; Poulsen, Tjalfe G; Rakotoniaina, Volana
2015-01-01
The impact of co-digestion as opposed to separate digestion, on biogas and methane yield (apparent synergetic effects) was investigated for three biomass materials (pig manure, cow manure and food waste) under mesophilic conditions over a 36 day period. In addition to the three biomass materials (digested separately), 13 biomass mixtures (co-digested) were used. Two approaches for modelling biogas and methane yield during co-digestion, based on volatile solids concentration and ultimate gas and methane potentials, were evaluated. The dependency of apparent synergetic effects on digestion time and biomass mixture composition was further assessed using measured cumulative biogas and methane yields and specific biogas and methane generation rates. Results indicated that it is possible, based on known volatile solids concentration and ultimate biogas or methane yields for a set of biomass materials digested separately, to accurately estimate gas yields for biomass mixtures made from these materials using calibrated models. For the biomass materials considered here, modelling indicated that the addition of pig manure is the main cause of synergetic effects. Co-digestion generally resulted in improved ultimate biogas and methane yields compared to separate digestion. Biogas and methane production was furthermore significantly higher early (0-7 days) and to some degree also late (above 20 days) in the digestion process during co-digestion. © The Author(s) 2014.
Conversion of MSW (municipal solids waste) to methane in the SOLCON (solids-concentrating) digester
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Srivastava, V.J.; Isaacson, H.R.
1988-01-01
The Institute of Gas Technology (IGT) has been operating a 1200- gallon, anaerobic solids-concentrating (SOLCON) digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida since January of 1984. This digester development work is part of a larger effort, sponsored by the Gas Research Institute (GRI) Southern California Edison, that provides effective community waste treatment and disposal options while recovering a valuable methane resource from these wastes. Excellent conversions to methane have been obtained in the SOLCON digester during 4 years of uninterrupted operation. Data were collected on: (1) Wastes from experimental municipal wastewater treatment applications. Watermore » hyacinths were harvested from secondary wastewater treatment channels and combined with sludge from primary clarifiers to maximize potential methane recoveries in the digester. (2) Wastes from agricultural operations. Sorghum was selected as a candidate because it represents both a potential energy crop, as well as, a waste resource if only portions of the plant are converted after grain production. (3) Wastes from municipal waste collection.« less
Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste.
Chen, Xiang; Yan, Wei; Sheng, Kuichuan; Sanati, Mehri
2014-02-01
Co-digestion of food waste and green waste was conducted with six feedstock mixing ratios to evaluate biogas production. Increasing the food waste percentage in the feedstock resulted in an increased methane yield, while shorter retention time was achieved by increasing the green waste percentage. Food waste/green waste ratio of 40:60 was determined as preferred ratio for optimal biogas production. About 90% of methane yield was obtained after 24.5 days of digestion, with total methane yield of 272.1 mL/g VS. Based the preferred ratio, effect of total solids (TS) content on co-digestion of food waste and green waste was evaluated over a TS range of 5-25%. Results showed that methane yields from high-solids anaerobic digestion (15-20% TS) were higher than the output of liquid anaerobic digestion (5-10% TS), while methanogenesis was inhibited by further increasing the TS content to 25%. The inhibition may be caused by organic overloading and excess ammonia. Copyright © 2013 Elsevier Ltd. All rights reserved.
Schaefer, Scott H; Sung, Shihwu
2008-02-01
Anaerobic digestion of corn ethanol thin stillage was tested at thermophilic temperature (55 degrees C) with two completely stirred tank reactors. The thin stillage wastestream was organically concentrated with 100 g/L total chemical oxygen demand and 60 g/L volatiles solids and a low pH of approximately 4.0. Steady-state was achieved at 30-, 20-, and 15-day hydraulic retention times (HRTs) and digester failure at a 12-day HRT. Significant reduction of volatile solids was achieved, with a maximum reduction (89.8%) at the 20-day HRT. Methane yield ranged from 0.6 to 0.7 L methane/g volatile solids removed during steady-state operation. Effluent volatile fatty acids below 200 mg/L as acetic acid were achieved at 20- and 30-day HRTs. Ultrasonic pretreatment was used for one digester, although no significant improvement was observed. Ethanol plant natural gas consumption could be reduced 43 to 59% with the methane produced, while saving an estimated $7 to $17 million ($10 million likely) for a facility producing 360 million L ethanol/y.
Li, Yeqing; Yan, Fang; Li, Tao; Zhou, Ying; Jiang, Hao; Qian, Mingyu; Xu, Quan
2018-02-01
In this study, an integrated process was developed to produce methane and high-quality bio-briquette (BB) using corn straw (CS) through high-solid anaerobic digestion (HS-AD). CS was anaerobic digested by using a leach bed reactor at four leachate recirculation strategies. After digesting for 28 days, highest methane yield of 179.6 mL/g-VS, which was corresponded to energy production of 5.55 MJ/kg-CS, was obtained at a higher initial recirculation rate of 32 L-leachate per day. Compared with bio-briquette manufactured from raw CS and lignite, the compressive, immersion and falling strength properties of bio-briquette made from AD-treated CS (solid digestate) and lignite were significantly improved. A preferred BB can be obtained with side compressive strength of 863.8 ± 10.8 N and calorific value of 20.21 MJ/kg-BB. The finding of this study indicated that the integrated process could be an alternative way to produce methane and high-quality BB with CS. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Effect of moisture content on anaerobic methanization of municipal solid waste].
Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Bouchez, Théodore
2009-03-15
Biogas production, gas and liquid characteristics were investigated for comparing the effect of moisture content on methanization process of MSW with different compositions of food waste and cellulosic waste. Batch reactors were used to study the anaerobic methanization of typical Chinese and French municipal solid waste (MSW) and cellulosic waste with different moisture content, as 35%, field capacity (65%-70%), 80%, and saturated state (> 95%). The results showed that for the typical Chinese and French waste, which contained putrescible waste, the intermediate product, VFA, was diluted by high content of water, which helped to release the VFA inhibition on hydrolysis and methanization. Mass amount of methane was produced only when the moisture content of typical French waste was higher than 80%, while higher content of moisture was needed when the content of putrescible waste was higher in MSW, as > 95% for typical Chinese waste. Meanwhile the methane production rate and the ultimate cumulated methane production were increased when moisture content was leveled up. The ultimate cumulated methane production of the typical French waste with saturated state was 0.6 times higher than that of the waste with moisture content of 80%. For cellulosic waste, high moisture content of cellulosic materials contributed to increase the attachment area of microbes and enzyme on the surface of the materials, which enhance the waste hydrolysis and methanization. When the moisture content of the cellulosic materials increased from field capacity (65%) to saturated state (> 95%), the ultimate cumulated methane production increased for 3.8 times.
Costa, J C; Gonçalves, P R; Nobre, A; Alves, M M
2012-06-01
Biochemical methane potential of four species of Ulva and Gracilaria genus was assessed in batch assays at mesophilic temperature. The results indicate a higher specific methane production (per volatile solids) for one of the Ulva sp. compared with other macroalgae and for tests running with 2.5% of total solids (196±9 L CH(4) kg(-1)VS). Considering that macroalgae can potentially be a post treatment of municipal wastewater for nutrients removal, co-digestion of macroalgae with waste activated sludge (WAS) was assessed. The co-digestion of macroalgae (15%) with WAS (85%) is feasible at a rate of methane production 26% higher than WAS alone without decreasing the overall biodegradability of the substrate (42-45% methane yield). The use of anoxic marine sediment as inoculum had no positive effect on the methane production in batch assays. The limiting step of the overall anaerobic digestion process was the hydrolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Characteristics of the organic fraction of municipal solid waste and methane production: A review.
Campuzano, Rosalinda; González-Martínez, Simón
2016-08-01
Anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is a viable alternative for waste stabilization and energy recovery. Biogas production mainly depends on the type and amount of organic macromolecules. Based on results from different authors analysing OFMSW from different cities, this paper presents the importance of knowing the OFMSW composition to understand how anaerobic digestion can be used to produce methane. This analysis describes and discusses physical, chemical and bromatological characteristics of OFMSW reported by several authors from different countries and cities and their relationship to methane production. The main conclusion is that the differences are country and not city dependant. Cultural habits and OFMSW management systems do not allow a generalisation but the individual analysis for specific cities allow understanding the general characteristics for a better methane production. Not only are the OFMSW characteristics important but also the conditions under which the methane production tests were performed. Copyright © 2016. Published by Elsevier Ltd.
Enhanced Solid-State Biogas Production from Lignocellulosic Biomass by Organosolv Pretreatment
Mirmohamadsadeghi, Safoora; Zamani, Akram; Horváth, Ilona Sárvári
2014-01-01
Organosolv pretreatment was used to improve solid-state anaerobic digestion (SSAD) for methane production from three different lignocellulosic substrates (hardwood elm, softwood pine, and agricultural waste rice straw). Pretreatments were conducted at 150 and 180°C for 30 and 60 min using 75% ethanol solution as an organic solvent with addition of sulfuric acid as a catalyst. The statistical analyses showed that pretreatment temperature was the significant factor affecting methane production. Optimum temperature was 180°C for elmwood while it was 150°C for both pinewood and rice straw. Maximum methane production was 152.7, 93.7, and 71.4 liter per kg carbohydrates (CH), which showed up to 32, 73, and 84% enhancement for rice straw, elmwood, and pinewood, respectively, compared to those from the untreated substrates. An inverse relationship between the total methane yield and the lignin content of the substrates was observed. Kinetic analysis of the methane production showed that the process followed a first-order model for all untreated and pretreated lignocelluloses. PMID:25243134
Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio
2016-02-01
The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
2011-01-01
Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374
Transport Mechanism of Guest Methane in Water-Filled Nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bui, Tai; Phan, Anh; Cole, David R.
We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane throughmore » the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.« less
Transport Mechanism of Guest Methane in Water-Filled Nanopores
Bui, Tai; Phan, Anh; Cole, David R.; ...
2017-05-11
We computed the transport of methane through 1 nm wide slit-shaped pores carved out of selected solid substrates using classical molecular dynamics simulations. The transport mechanism was elucidated via the implementation of the well-tempered metadynamics algorithm, which allowed for the quantification and visualization of the free energy landscape sampled by the guest molecule. Models for silica, magnesium oxide, alumina, muscovite, and calcite were used as solid substrates. Slit-shaped pores of width 1 nm were carved out of these materials and filled with liquid water. Methane was then inserted at low concentration. The results show that the diffusion of methane throughmore » the hydrated pores is strongly dependent on the solid substrate. While methane molecules diffuse isotropically along the directions parallel to the pore surfaces in most of the pores considered, anisotropic diffusion was observed in the hydrated calcite pore. The differences observed in the various pores are due to local molecular properties of confined water, including molecular structure and solvation free energy. The transport mechanism and the diffusion coefficients are dependent on the free energy barriers encountered by one methane molecule as it migrates from one preferential adsorption site to a neighboring one. It was found that the heterogeneous water distribution in different hydration layers and the low free energy pathways in the plane parallel to the pore surfaces yield the anisotropic diffusion of methane molecules in the hydrated calcite pore. Our observations contribute to an ongoing debate on the relation between local free energy profiles and diffusion coefficients and could have important practical consequences in various applications, ranging from the design of selective membranes for gas separations to the sustainable deployment of shale gas.« less
[Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].
González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo
2015-01-01
The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Dhoble, Abhishek S.; Pullammanappallil, Pratap C.
2014-10-01
Waste treatment and management for manned long term exploratory missions to moon will be a challenge due to longer mission duration. The present study investigated appropriate digester technologies that could be used on the base. The effect of stirring, operation temperature, organic loading rate and reactor design on the methane production rate and methane yield was studied. For the same duration of digestion, the unmixed digester produced 20-50% more methane than mixed system. Two-stage design which separated the soluble components from the solids and treated them separately had more rapid kinetics than one stage system, producing the target methane potential in one-half the retention time than the one stage system. The two stage system degraded 6% more solids than the single stage system. The two stage design formed the basis of a prototype digester sized for a four-person crew during one year exploratory lunar mission.
Renewable Biochemical Methane Potential through Anaerobic Co-digestion from Selective Feed Stocks
NASA Astrophysics Data System (ADS)
Thara, K.; Navis Karthika, Ignatius; Dheenadayalan, M. S., Dr
2017-08-01
Biochemical Methane Potential (BMP) analysis provides a measure of the anaerobic biodegradability of a given substrate. BMP test is also used to evaluate the potential biogas (methane) production between various Co-digestion substrates. This test is also used to determine the amount of organic carbon in a given material that can be an aerobically converted to methane-Biogas. Studies were carried out for the production of biogas from the leather solid waste. Co-digestion (simultaneous digestion of two or more substrates) studies were carried out in batch reactor using the fleshing (a solid waste generated during the processing of raw hides or skins into finished leather) along with the fruit and vegetable waste at mesophilic condition 35° C). The anaerobic methanogenic seed sludge prepared separately followed by standard BMP test, which was used as the seed inoculums. Recent research on this topic is reviewed in this current paper.
Li, Xiaolan; Xu, Xueqin; Huang, Shansong; Zhou, Yun; Jia, Haijiang
2017-10-01
Methane production from waste activated sludge (WAS) anaerobic digestion is always low due to slow hydrolysis rate and inappropriate ratio of carbon to nitrogen (C/N). In this work, a novel approach, i.e., co-digestion of WAS and tobacco waste (TW) using ozone pretreatment, to greatly enhance the production of methane is reported. Experimental results showed the optimal C/N and ozone dosage for methane production was 24:1 and 90 mg/g suspended solids, and the corresponding methane production was 203.6 mL/g volatile suspended solids, which was 1.3-fold that in mono-WAS digestion. Further investigation showed the co-digestion of WAS and TW was beneficial to the consumptions of protein and cellulose; also, the presence of ozone enhanced the disruption of organic substrates and production of short chain fatty acids, which provided sufficient digestion substrates for methane generation. Analysis of microbial community structure suggested that members of the phyla Bacteroidetes and Firmicutes were the dominant species when ozone pretreatment was applied. The findings obtained in this work might be of great importance for the treatment of WAS and TW.
Pecorini, Isabella; Baldi, Francesco; Carnevale, Ennio Antonio; Corti, Andrea
2016-10-01
The aim of this research was to enhance the anaerobic biodegradability and methane production of two synthetic Organic Fractions of Municipal Solid Waste with different lignocellulosic contents by assessing microwave and autoclave pre-treatments. Biochemical Methane Potential assays were performed for 21days. Changes in the soluble fractions of the organic matter (measured by soluble chemical oxygen demand, carbohydrates and proteins), the first order hydrolysis constant kh and the cumulated methane production at 21days were used to evaluate the efficiency of microwaving and autoclaving pretreatments on substrates solubilization and anaerobic digestion. Microwave treatment led to a methane production increase of 8.5% for both the tested organic fractions while autoclave treatment had an increase ranging from 1.0% to 4.4%. Results showed an increase of the soluble fraction after pre-treatments for both the synthetic organic fractions. Soluble chemical oxygen demand observed significant increases for pretreated substrates (up to 219.8%). In this regard, the mediocre results of methane's production led to the conclusion that autoclaving and microwaving resulted in the hydrolysis of a significant fraction of non-biodegradable organic substances recalcitrant to anaerobic digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dadaser-Celik, Filiz; Azgin, Sukru Taner; Yildiz, Yalcin Sevki
2016-12-01
Biogas production from food waste has been used as an efficient waste treatment option for years. The methane yields from decomposition of waste are, however, highly variable under different operating conditions. In this study, a statistical experimental design method (Taguchi OA 9 ) was implemented to investigate the effects of simultaneous variations of three parameters on methane production. The parameters investigated were solid content (SC), carbon/nitrogen ratio (C/N) and food/inoculum ratio (F/I). Two sets of experiments were conducted with nine anaerobic reactors operating under different conditions. Optimum conditions were determined using statistical analysis, such as analysis of variance (ANOVA). A confirmation experiment was carried out at optimum conditions to investigate the validity of the results. Statistical analysis showed that SC was the most important parameter for methane production with a 45% contribution, followed by F/I ratio with a 35% contribution. The optimum methane yield of 151 l kg -1 volatile solids (VS) was achieved after 24 days of digestion when SC was 4%, C/N was 28 and F/I were 0.3. The confirmation experiment provided a methane yield of 167 l kg -1 VS after 24 days. The analysis showed biogas production from food waste may be increased by optimization of operating conditions. © The Author(s) 2016.
Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla
2016-03-01
As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to avoid environmental impact. Due to the biodegradability of manure, anaerobic digestion is an interesting alternative to treat these effluents. The low volatile solid concentration in the swine manure suggests the need for solid-liquid separation as a tool to improve biogas generation capacity. The present study aimed to determine the influence of simplified and cheap solid-liquid separation strategies (based on screening and settling) and different manure of each swine production phases (gestating and farrowing sows houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sows house (GSH-a and GSH-b), two farrowing sows house (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). The Biochemical Methane Production (BMP) tests were performed according to international standard procedure (VDI 4630). The settled sludge fraction responds for 20-30% of raw manure volume, producing 40-60% of the total methane yield. The methane potential of settled sludge fraction was about 2 times higher than the supernatant fraction. There are differences on biogas yield between the raw manure of different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH 970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences are relative to production phase (feed type, feeding techniques, etc.), but also the management of the effluent inside the facilities (water management). Copyright © 2015 Elsevier Ltd. All rights reserved.
Application of methane fermentation technology into organic wastes in closed agricultural system
NASA Astrophysics Data System (ADS)
Endo, Ryosuke; Kitaya, Yoshiaki
Sustainable and recycling-based systems are required in space agriculture which takes place in an enclosed environment. Methane fermentation is one of the most major biomass conversion technologies, because (1) it provides a renewable energy source as biogas including methane, suitable for energy production, (2) the nutrient-rich solids left after digestion can be used as compost for agriculture. In this study, the effect of the application of methane fermentation technology into space agriculture on the material and energy cycle was investigated.
Effect of temperature on continuous dry fermentation of swine manure.
Deng, Liangwei; Chen, Chuang; Zheng, Dan; Yang, Hongnan; Liu, Yi; Chen, Ziai
2016-07-15
Laboratory-scale experiments were performed on the dry digestion of solid swine manure in a semi-continuous mode using 4.5 L down plug-flow anaerobic reactors with an organic loading rate of 3.46 kg volatile solids (VS) m(-3) d(-1) to evaluate the effects of temperature (15, 25 and 35 °C). At 15 °C, biogas production was the poorest due to organic overload and acidification, with a methane yield of 0.036 L CH4 g(-1) VS added and a volumetric methane production rate of 0.125 L CH4 L(-1) d(-1). The methane yield and volumetric methane production rate at 25 °C (0.226 L CH4 g(-1) VS added and 0.783 L CH4 L(-1) d(-1), respectively) were 6.24 times higher than those at 15 °C. However, the methane yield (0.237 L CH4 g(-1) VS added) and the volumetric methane production rate (0.821 L CH4 L(-1) d(-1)) at 35 °C were only 4.86% higher than those at 25 °C, which indicated similar results were obtained at 25 °C and 35 °C. The lower biogas production at 35 °C in dry digestion compared with that in wet digestion could be attributed to ammonia inhibition. For a single pig farm, digestion of solid manure is accomplished in small-scale domestic or small-farm bioreactors, for which operating temperatures of 35 °C are sometimes difficult to achieve. Considering biogas production, ammonia inhibition and net energy recovery, an optimum temperature for dry digestion of solid swine manure is 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S
2017-06-01
Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH 4 kgVS fed -1 for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degueurce, Axelle; Trémier, Anne; Peu, Pascal
2016-09-01
Performances of batch mode solid state anaerobic digestion (SSAD) were investigated through several leachate recirculation strategies. Three parameters were shown to particularly influence methane production rates (MPR) and methane yields: the length of the interval between two recirculation events, the leachate to substrate (L:S) ratio and the volume of leachate recirculated. A central composite factor design was used to determine the influence of each parameter on methane production. Results showed that lengthening the interval between two recirculation events reduced methane yield. This effect can be counteracted by recirculating a large volume of leachate at a low L:S ratio. Steady methane production can be obtained by recirculating small amounts of leachate, and by lengthening the interval between two recirculations, regardless of the L:S ratio. However, several combinations of these parameters led to similar performances meaning that leachate recirculation practices can be modified as required by the specific constraints SSAD plants configurations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems.
Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A; Alavi, Saman; Ripmeester, John A
2012-09-11
There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.
NASA Astrophysics Data System (ADS)
Drobyshev, A.; Aldiyarov, A.; Sokolov, D.; Shinbayeva, A.
2017-06-01
Solid methane belongs to a group of crystals containing hydrogen atoms, whose macroscopic properties are greatly influenced by the spin interaction of hydrogen nuclei. In particular, the methane molecule, which has four protons with spin I=1/2, has three total spin modifications: para-, ortho- and meta-states with three values of the total spin moments of 0, 1 and 2, respectively. Equilibrium concentrations of these modifications and relaxation times are dependent on the temperature, affecting the observed thermal properties of solid methane, such as thermal conductivity, specific heat, thermal expansion. In this paper, we attempt to explain the peculiarities of thin film growth of methane at cryogenic temperatures from the viewpoint of spin-nuclear transformations. Our observations of absorption intensity at a frequency corresponding to 1/2 of the absorption band amplitude of deformation vibrations record a step-like change in the position of the absorption band during the sample deposition process. The observed phenomenon, in our opinion, is the demonstration of spin transformations during deposition.
Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems
Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.
2012-01-01
There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239
Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun
2015-12-01
A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Methane production by anaerobic digestion of water hyacinth (Eichhornia crassipes)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klass, D.L.; Ghosh, S.
1980-01-01
Water hyacinth under conventional high-rate digestion conditions exhibited higher methane yields and energy recovery efficiencies when grown in sewage-fed lagoons as compared to the corresponding values obtained with water hyacinth grown in a fresh-water pond. Mesophilic digestion provided the highest feed energy recovered in the product gas as methane while thermophilic digestion, when operated at sufficiently high loading rates and reduced detention times, gave the highest specific methane production rates. Methane yields, volatile solids reduction, and energy recovery as methane for the sewage-grown water hyacinth were in the same range as those observed for other biomass substrates when digested undermore » similar conditions.« less
Lee, Dae Hee; Behera, Shishir Kumar; Kim, Ji Won; Park, Hung-Suck
2009-02-01
This paper examines the applicability of food waste leachate (FWL) in bioreactor landfills or anaerobic digesters to produce methane as a sustainable solution to the persisting leachate management problem in Korea. Taking into account the climatic conditions in Korea and FWL characteristics, the effect of key parameters, viz., temperature, alkalinity and salinity on methane yield was investigated. The monthly average moisture content and the ratio of volatile solids to total solids of the FWL were found to be 84% and 91%, respectively. The biochemical methane potential experiment under standard digestion conditions showed the methane yield of FWL to be 358 and 478 ml/g VS after 10 and 28 days of digestion, respectively, with an average methane content of 70%. Elemental analysis showed the chemical composition of FWL to be C(13.02)H(23.01)O(5.93)N(1). The highest methane yield of 403 ml/g VS was obtained at 35 degrees C due to the adaptation of seed microorganisms to mesophilic atmosphere, while methane yields at 25, 45 and 55 degrees C were 370, 351 and 275 ml/g VS, respectively, at the end of 20 days. Addition of alkalinity had a favorable effect on the methane yield. Dilution of FWL with salinity of 2g/l NaCl resulted in 561 ml CH(4)/g VS at the end of 30 days. Considering its high biodegradability (82.6%) and methane production potential, anaerobic digestion of FWL in bioreactor landfills or anaerobic digesters with a preferred control of alkalinity and salinity can be considered as a sustainable solution to the present emergent problem.
Lu, Qin; Yi, Jing; Yang, Dianhai
2016-01-01
High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 high-throughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.
Lokshina, L Y; Vavilin, V A; Salminen, E; Rintala, J
2003-01-01
The anaerobic bioconversion of solid poultry slaughterhouse wastes was kinetically investigated. The modified version of
Natural gas hydrates; vast resource, uncertain future
Collett, T.S.
2001-01-01
Gas hydrates are naturally occurring icelike solids in which water molecules trap gas molecules in a cagelike structure known as a clathrate. Although many gases form hydrates in nature, methane hydrate is by far the most common; methane is the most abundant natural gas. The volume of carbon contained in methane hydrates worldwide is estimated to be twice the amount contained in all fossil fuels on Earth, including coal.
Sawamoto, Takuji; Nakamura, Megumi; Nekomoto, Kenji; Hoshiba, Shinji; Minato, Keiko; Nakayama, Motoo; Osada, Takashi
2016-06-01
In order to refine the national estimate of methane emission from stored cattle slurry, it is important to comprehend the basic characteristics of methane production. Two dairy cattle slurries were obtained from livestock farms located in Hokkaido (a northern island) and Kyushu (a southern island). The slurries were diluted with water into three levels: undiluted, three times diluted, and 10 times diluted. Three hundred mL of the slurries were put into a bottle with a headspace volume of 2.0 L, which was filled with nitrogen gas and then sealed by butyl rubber. Four levels of temperature were used for incubation: 35, 25, 15 and 5 °C. The time course of the cumulative methane production per volatile solid (VS) was satisfactorily expressed by an asymptotic regression model. The effect of dilution on the methane production per VS was not distinctive, but that of temperature was of primary importance. In particular, higher temperature yields a higher potential production and a shorter time when the cumulative production reaches half of the potential production. The inclusive and simple models obtained in this study indicate that the cumulative methane production from stored cattle slurry can be explained by VS, temperature and length of storage. © 2015 Japanese Society of Animal Science.
Determination of biogas generation potential as a renewable energy source from supermarket wastes.
Alkanok, Gizem; Demirel, Burak; Onay, Turgut T
2014-01-01
Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH4/g VS(added) was obtained from anaerobic digestion of wastes (FVFW+DPW+MW+SW) at 10% TS, with 66.4% of methane (CH4) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH4/g VS(added), respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH4/g VS(added) was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cyclic-Voltammetry-Based Solid-State Gas Sensor for Methane and Other VOC Detection.
Gross, Pierre-Alexandre; Jaramillo, Thomas; Pruitt, Beth
2018-05-15
We present the fabrication, characterization, and testing of an electrochemical volatile organic compound (VOC) sensor operating in gaseous conditions at room temperature. It is designed to be microfabricated and to prove the sensing principle based on cyclic voltammetry (CV). It is composed of a working electrode (WE), a counter electrode (CE), a reference electrode (RE), and a Nafion solid-state electrolyte. Nafion is a polymer that conducts protons (H + ) generated from redox reactions from the WE to the CE. The sensor needs to be activated prior to exposure to gases, which consists of hydrating the Nafion layer to enable its ion conduction properties. During testing, we have shown that our sensor is not only capable of detecting methane, but it can also quantify its concentration in the gas flow as well as differentiate its signal from carbon monoxide (CO). These results have been confirmed by exposing the sensor to two different concentrations of methane (50% and 10% of methane diluted in N 2 ), as well as pure CO. Although the signal is positioned in the H ads region of Pt, because of thermodynamic reasons it cannot be directly attributed to methane oxidation into CO 2 . However, its consistency suggests the presence of a methane-related oxidation process that can be used for detection, identification, and quantification purposes.
A sink for methane on Mars? The answer is blowing in the wind
NASA Astrophysics Data System (ADS)
Knak Jensen, Svend J.; Skibsted, Jørgen; Jakobsen, Hans J.; ten Kate, Inge L.; Gunnlaugsson, Haraldur P.; Merrison, Jonathan P.; Finster, Kai; Bak, Ebbe; Iversen, Jens J.; Kondrup, Jens C.; Nørnberg, Per
2014-07-01
Tumbling experiments that mimic the wind erosion of quartz grains in an atmosphere of 13C-enriched methane are reported. The eroded grains are analyzed by 13C and 29Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250 °C. The NMR findings offer an explanation for the fast disappearance of methane on Mars.
Aichinger, Peter; Wadhawan, Tanush; Kuprian, Martin; Higgins, Matthew; Ebner, Christian; Fimml, Christian; Murthy, Sudhir; Wett, Bernhard
2015-12-15
Making good use of existing water infrastructure by adding organic wastes to anaerobic digesters improves the energy balance of a wastewater treatment plant (WWTP) substantially. This paper explores co-digestion load limits targeting a good trade-off for boosting methane production, and limiting process-drawbacks on nitrogen-return loads, cake-production, solids-viscosity and polymer demand. Bio-methane potential tests using whey as a model co-substrate showed diversification and intensification of the anaerobic digestion process resulting in a synergistical enhancement in sewage sludge methanization. Full-scale case-studies demonstrate organic co-substrate addition of up to 94% of the organic sludge load resulted in tripling of the biogas production. At organic co-substrate addition of up to 25% no significant increase in cake production and only a minor increase in ammonia release of ca. 20% have been observed. Similar impacts were measured at a high-solids digester pilot with up-stream thermal hydrolyses where the organic loading rate was increased by 25% using co-substrate. Dynamic simulations were used to validate the synergistic impact of co-substrate addition on sludge methanization, and an increase in hydrolysis rate from 1.5 d(-1) to 2.5 d(-1) was identified for simulating measured gas production rate. This study demonstrates co-digestion for maximizing synergy as a step towards energy efficiency and ultimately towards carbon neutrality. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michele, Pognani, E-mail: michele.pognani@unimi.it; Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it; Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi
2015-01-15
Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doingmore » so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.« less
Yan, Hu; Zhao, Chen; Zhang, Jiafu; Zhang, Ruihong; Xue, Chunyu; Liu, Guangqing; Chen, Chang
2017-12-01
Enormous amounts of vegetable residues are wasted annually, causing many environmental problems due to their high moisture and organic contents. In this study, the methane production potential of 20 kinds of typical leafy vegetable residues in China were explored using a unified method. A connection between the biochemical components and the methane yields of these vegetables was well established which could be used to predict biogas performance in practice. A high volatile solid/total solid (VS/TS) ratio and hemicellulose content exhibited a positive impact on the biogas yield while lignin had a negative impact. In addition, three kinetic models were used to describe the methane production process of these agro-wastes. The systematic comparison of the methane production potentials of these leafy vegetables shown in this study will not only serve as a reference for basic research on anaerobic digestion but also provide useful data and information for agro-industrial applications of vegetable residues in future work.
Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul
2015-01-01
Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.
Nitsos, Christos; Triantafyllidis, Kostas
2015-01-01
Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones. PMID:26609521
Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill.
Cossu, Raffaello; Morello, Luca; Raga, Roberto; Cerminara, Giulia
2016-09-01
Landfilling continues to be one of the main methods used in managing Municipal Solid Waste (MSW) worldwide, particularly in developing countries. Although in many countries national legislation aims to reduce this practice as much as possible, landfill is a necessary and unavoidable step in closing the material cycle. The need for innovative waste management techniques to improve landfill management and minimize the adverse environmental impact produced has resulted in an increasing interest in innovative systems capable of accelerating waste stabilization. Landfill bioreactors allow decomposition kinetics to be increased and post-operational phase to be shortened; in particular, hybrid bioreactors combine the benefits afforded by both aerobic and anaerobic processes. Six bioreactor simulators were used in the present study: four managed as hybrid, with an initial semi-aerobic phase and a second anaerobic phase, and two as anaerobic control bioreactors. The main goal of the first aerated phase is to reduce Volatile Fatty Acids (VFA) in order to increase pH and enhance methane production during the anaerobic phase; for this reason, air injection was stopped only when these parameters reached the optimum range for methanogenic bacteria. Biogas and leachate were constantly monitored throughout the entire methanogenic phase with the aim of calibrating a Gompertz Model and evaluating the effects of pre-aeration on subsequent methane production. The results showed that moderate and intermittent pre-aeration produces a positive effect both on methane potential and in the kinetics of reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mor, Suman; Ravindra, Khaiwal; De Visscher, Alex; Dahiya, R P; Chandra, A
2006-12-01
There has been a significant increase in municipal solid waste (MSW) generation in India during the last few decades and its management has become a major issue because the poor waste management practices affect the health and amenity of the cities. In the present study, various physico-chemical parameters of the MSW were analyzed to characterize the waste dumped at Gazipur landfill site in Delhi, India, which shows that it contains a high fraction of degradable organic components. The decomposition of organic components produces methane, a significant contributor to global warming. Based on the waste composition, waste age and the total amount dumped, a first-order decay model (FOD) was applied to estimate the methane generation potential of the Gazipur landfill site, which yields an estimate of 15.3 Gg/year. This value accounts to about 1-3% of existing Indian landfill methane emission estimates. Based on the investigation of Gazipur landfill, we estimate Indian landfill methane emissions at 1.25 Tg/year or 1.68 Tg/year of methane generation potential. These values are within the range of existing estimates. A comparison of FOD with a recently proposed triangular model was also performed and it shows that both models can be used for the estimation of methane generation. However, the decrease of the emission after closure is more gradual in the case of the first-order model, leading to larger gas production predictions after more than 10 years of closure. The regional and global implications of national landfill methane emission are also discussed.
de la Torre, Andrea; Metivier, Aisha; Chu, Frances; ...
2015-11-25
Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration.
Development of Carbon and Sulphur Tolerant Anodes of Solid Oxide Fuel Cells
2010-01-14
LSCM/YSZ) composite anode is investigated in detail for the direct utilization of ethanol and methane (the main component of natural gas) in SOFCs...Impregnation of Pd nanoparticles significantly promotes the electrocatalytic activity of LSCM/YSZ composite anodes for the ethanol and methane... electrooxidation reaction. At 800°C, the electrode polarization resistance for the methane oxidation is reduced by a factor of 3 after impregnation of 0.10
Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste
NASA Astrophysics Data System (ADS)
Hao, W.; Hongtao, W.
2008-02-01
The effect of alkaline hydrothermal pre-treatment for anaerobic digestion of mechanically-sorted municipal solid waste (MSW) and source-sorted waste was studied. Waste was hydrothermally pre-treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170 °C at the dose of 4 g NaOH/100 g solid for one hour. Soluble COD was 13936 mg/L and methane yield was 164 ml/g VS for 6 days incubation at optimum conditions. More than 50% biogas increase was achieved over the control, and methane conversion ratio on carbon basis was enhanced to 30.6%. The digestion period was less than 6 days when pre-treatment temperature was above 130 °C. The organic part of sorted waste is mainly constituted of kitchen garbage and leaf. Model kitchen garbage was completely liquidized at 130 °C for one hour and the methane yield was 276 ml/g VS. Addition of alkali enhance hydroxylation rate and methane yield slightly. The biogas potential of leaf could be observed by pre-treatment above 150 °C under alkaline condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, T. D.; Patton, C. C.
The production af Coal-Bed Methane (CBM) is always accompanied by the production of large amounts of water. The produced water is typically too high in dissolved solids and salinity to be suitable for surface disposal.
Arikan, Osman A; Mulbry, Walter; Lansing, Stephanie
2015-09-01
Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion. In temperate climates, digesters require a considerable amount of additional heat energy to maintain temperatures at these levels. In this study, the effects of lower digestion temperatures (22 and 28°C), on the methane production from dairy digesters were evaluated and compared with 35°C using duplicate replicates of field-scale (FS) digesters with a 17-day hydraulic retention time. After acclimation, the FS digesters were operated for 12weeks using solids-separated manure at an organic loading rate (OLR) of 1.4kgVSm(-3)d(-1) and then for 8weeks using separated manure amended with manure solids at an OLR of 2.6kgVSm(-3)d(-1). Methane production values of the FS digesters at 22 and 28°C were about 70% and 87%, respectively, of the values from FS digesters at 35°C. The results suggest that anaerobic digesters treating dairy manure at 28°C were nearly as efficient as digesters operated at 35°C, with 70% of total methane achievable at 22°C. These results are relevant to small farms interested in anaerobic digestion for methane reduction without heat recovery from generators or for methane recovery from covered lagoon digesters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere
NASA Technical Reports Server (NTRS)
Sagan, C.
1974-01-01
The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.
Usack, Joseph G; Wiratni, Wiratni; Angenent, Largus T
2014-01-01
A government-sponsored initiative in Indonesia to design and implement low-cost anaerobic digestion systems resulted in 21 full-scale systems with the aim to satisfy the cooking fuel demands of rural households owning at least one cow. The full-scale design consisted of a 0.3 m diameter PVC pipe, which was operated as a conventional plug-flow system. The system generated enough methane to power a cooking stove for ∼ 1 h. However, eventual clogging from solids accumulation inside the bioreactor proved to be a major drawback. Here, we improved the digester configuration to remedy clogging while maintaining system performance. Controlled experiments were performed using four 9-L laboratory-scale digesters operated at a temperature of 27 ± 1 °C, a volatile solids loading rate of 2.0 g VS · L(-1) · day(-1), and a 21-day hydraulic retention time. Two of the digesters were replicates of the original design (control digesters), while the other two digesters included internal mixing or effluent recycle (experimental digesters). The performance of each digester was compared based on methane yields, VS removal efficiencies, and steady-state solids concentrations during an operating period of 311 days. Statistical analyses revealed that internal mixing and effluent recycling resulted in reduced solids accumulation compared to the controls without diminishing methane yields or solids removal efficiencies.
Li, Yan; Yan, Xi-Luan; Fan, Jie-Ping; Zhu, Jian-Hang; Zhou, Wen-Bin
2011-06-01
The objective of this work was to examine the feasibility of biogas production from the anaerobic co-digestion of herbal-extraction residues with swine manure. Batch and semi-continuous experiments were carried out under mesophilic anaerobic conditions. Batch experiments revealed that the highest specific biogas yield was 294 mL CH(4) g(-1) volatile solids added, obtained at 50% of herbal-extraction residues and 3.50 g volatile solids g(-1) mixed liquor suspended solids. Specific methane yield from swine manure alone was 207 mL CH(4) g(-1) volatile solid added d(-1) at 3.50 g volatile solids g(-1) mixed liquor suspended solids. Furthermore, specific methane yields were 162, 180 and 220 mL CH(4) g (-1) volatile solids added d(-1) for the reactors co-digesting mixtures with 10%, 25% and 50% herbal-extraction residues, respectively. These results suggested that biogas production could be enhanced efficiently by the anaerobic co-digestion of herbal-extraction residues with swine manure. Copyright © 2011 Elsevier Ltd. All rights reserved.
Methane emissions measured at two California landfills by OTM-10 and an acetylene tracer method
Methane emissions were measured at two municipal solid waste landfills in California using static flux chambers, an optical remote sensing approach known as vertical radial plume mapping (VRPM) using a tunable diode laser (TDL) and a novel acetylene tracer method. The tracer meth...
Methane and Hydrogen Production from Anaerobic Fermentation of Municipal Solid Wastes
NASA Astrophysics Data System (ADS)
Kobayashi, Takuro; Lee, Dong-Yeol; Xu, Kaiqin; Li, Yu-You; Inamori, Yuhei
Methane and hydrogen production was investigated in batch experiments of thermophilic methane and hydrogen fermentation, using domestic garbage and food processing waste classified by fat/carbohydrate balance as a base material. Methane production per unit of VS added was significantly positively correlated with fat content and negatively correlated with carbohydrate content in the substrate, and the average value of the methane production per unit of VS added from fat-rich materials was twice as large as that from carbohydrate-rich materials. By contrast, hydrogen production per unit of VS added was significantly positively correlated with carbohydrate content and negatively correlated with fat content. Principal component analysis using the results obtained in this study enable an evaluation of substrates for methane and hydrogen fermentation based on nutrient composition.
Determination of as-discarded methane potential in residential and commercial municipal solid waste.
Chickering, Giles W; Krause, Max J; Townsend, Timothy G
2018-06-01
Methane generation potential, L 0 , is a primary parameter of the first-order decay (FOD) model used for prediction and regulation of landfill gas (LFG) generation in municipal solid waste (MSW) landfills. The current US EPA AP-42 default value for L 0 , which has been in place for almost 20 years, is 100 m 3 CH 4 /Mg MSW as-discarded. Recent research suggests the yield of landfilled waste could be less than 60 m 3 CH 4 /Mg MSW. This study aimed to measure the L 0 of present-day residential and commercial as-discarded MSW. In doing so, 39 waste collection vehicles were sorted for composition before samples of each biodegradable fraction were analyzed for methane generation potential. Methane yields were determined for over 450 samples of 14 different biodegradable MSW fractions, later to be combined with moisture content and volatile solids data to calculate L 0 values for each waste load. An average value of 80 m 3 CH 4 /Mg MSW was determined for all samples with 95% of values in the interval 74-86 m 3 CH 4 /Mg MSW as-discarded. While no statistically significant difference was observed, commercial MSW yields (mean 85, median 88 m 3 CH 4 /Mg MSW) showed a higher average L 0 than residential MSW (mean 75, median 71 m 3 CH 4 /Mg MSW). Many methane potential values for individual fractions described in previous work were found within the range of values determined by BMP in this study. Copyright © 2018 Elsevier Ltd. All rights reserved.
Huang, Yu-Lian; Tan, Li; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji
2017-01-01
Thermophilic dry methane fermentation is advantageous for feedstock with high solid content. Distillation residue with 65.1 % moisture content was eluted from ethanol fermentation of kitchen waste and subjected to thermophilic dry methane fermentation, after adjusting the moisture content to 75 %. The effect of carbon to nitrogen (C/N) ratio on thermophilic dry methane fermentation was investigated. Results showed that thermophilic dry methane fermentation could not be stably performed for >10 weeks at a C/N ratio of 12.6 and a volatile total solid (VTS) loading rate of 1 g/kg sludge/d; however, it was stably performed at a C/N ratio of 19.8 and a VTS loading rate of 3 g/kg sludge/d with 83.4 % energy recovery efficiency. Quantitative PCR analysis revealed that the number of bacteria and archaea decreased by two orders of magnitude at a C/N ratio of 12.6, whereas they were not influenced at a C/N ratio of 19.8. Microbial community analysis revealed that the relative abundance of protein-degrading bacteria increased and that of organic acid-oxidizing bacteria and acetic acid-oxidizing bacteria decreased at a C/N ratio of 12.6. Therefore, there was accumulation of NH 4 + and acetic acid, which inhibited thermophilic dry methane fermentation.
NASA Astrophysics Data System (ADS)
Aoyama, C.
2017-12-01
Methane plumes often exist in the vicinity sea area where shallow type methane hydrates are extracted and they are observed as images displayed on monitors of multi-beam sonar and echo sounder onboard, where methane hydrates are expected at sea bottom on ROV observation data. The hydrates are generally considered to be generated in shallow depths below the sea floor. In this study, author examined annual amount of methane dissolving into seawater by measuring the amount of plume in order to make a quantification of dissolving methane from seafloor. Measurement procedure is plume exploration using multi-beam and quantitative echo sounder , submerge ROV to gushing point at seafloor , calculate the rising speed of methane plumes and examine the phases by monitoring seeping plumes from seafloor with high-definition camera. Components of seeping plumes were defined as methane hydrate particles based on the result by measuring water temperature. From this procedure, it can be concluded that the minimum rising speed of methane hydrate particles from gushing point is 1.6×10-1(m/s) and the maximum of 2.0×10-1(m/s) indicating a difference of more than ten times the gaseous theoretical value of 2.74(m/s). This speed is theoretically closer to the solid speed of the material with physical property similar to hydrates, which is 3.05×10-1 (m/s). Therefore, it can be determined that those particles are in the solid state, immediately above seafloor. To measure the amount of plumes seeping from gushing points funnel-shaped instruments with 20cm diameter opening were used to collect methane plumes in this sea area. This was performed in three different gushing points. As a result, 300ml of methane plume was collected in 643 seconds. Assuming that gushing points exist evenly in the sea area, the annual amount of methane gas seeping from these points will be 7.7×105m3 /per m2. Result shows a large quantity of methane seeping from seafloor into the water. This data is an important factor when considering carbon cycle and future development the shallow methane hydrate resources.
40 CFR Table Hh-4 to Subpart Hh of... - Landfill Methane Oxidation Fractions
Code of Federal Regulations, 2014 CFR
2014-07-01
... gas sent off-site). If a single monitoring location is used to monitor volumetric flow and CH4... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Landfill Methane Oxidation Fractions... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt...
Pitk, Peep; Kaparaju, Prasad; Palatsi, Jordi; Affes, Rim; Vilu, Raivo
2013-04-01
The rendering product of Category 2 and 3 Animal By-Products is known as sterilized mass (SM) and it is mainly composed of fat and proteins, making it interesting substrate for anaerobic digestion. Batch and semi-continuous laboratory experiments were carried out to investigate the effect of SM addition in co-digestion with sewage sludge on methane production and possible process limitations. Results showed that SM addition in the feed mixture up to 5% (w/w), corresponding to 68.1% of the organic loading, increased methane production 5.7 times, without any indication of process inhibition. Further increase of SM addition at 7.5% (w/w) caused methane production decrease and volatile solids removal reduction, that was mainly related to remarkably increased free ammonia concentration in the digester of 596.5±68.6 gNH3 L(-1). Sterilized mass addition of 10% (w/w) caused intensive foaming, LCFA accumulation of 9172±701.2 mgCOD-LCFA g(-1) sample and termination of the experiment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Brown, Dan; Shi, Jian; Li, Yebo
2012-11-01
Lignocellulosic biomass feedstocks (switchgrass, corn stover, wheat straw, yard waste, leaves, waste paper, maple, and pine) were evaluated for methane production under liquid anaerobic digestion (L-AD) and solid-state anaerobic digestion (SS-AD). No significant difference in methane yield between L-AD and SS-AD, except for waste paper and pine, were found. However, the volumetric productivity was 2- to 7-fold greater in the SS-AD system compared with the L-AD system, except for paper. Methane yields from corn stover, wheat straw, and switchgrass were 2-5 times higher than those from yard waste, maple, and pine biomass. Waste paper had a methane yield of only 15 L/kg VS caused by souring during SS-AD due to organic overloading. Pine also had very low biogas yield of 17 L/kg VS, indicating the need for pretreatment prior to SS-AD. The findings of this study can guide future studies to improve the efficiency and stability of SS-AD of lignocellulosic biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.
CH4 emission and recovery from municipal solid waste in China.
Xu, Xin-Hua; Yang, Yue-Ping; Wang, Da-Hui
2003-01-01
Methane ( CH4) is an important greenhouse gas and a major environmental pollutant, second only to carbon dioxide (CO2) in its contribution to potential global warming. In many cases, methane emission from landfills otherwise emitted to the atmosphere can be removed and utilized, or significantly reduced in quantity by using coat-effective management methods. The gas can also be used as a residential, commercial, or industrial fuel. Therefore, emission reduction strategies have the potential to become low cost, or even profitable. The annual growth rate of Municipal Solid Waste (MSW) output in China is 6.24%, with the highest levels found in South China, Southwest China and East China. Cities and towns are developing quickly in these regions. MSW output was only 76.36 Mt in 1991 and increased to 109.82 Mt in 1997, registering an average increase of 43.8% . In China, methane emission from landfills also increased from 5.88 Mt in 1991 to 8.46 Mt in 1997; so the recovery of methane from landfills is a profitable project.
Weak interactions between water and clathrate-forming gases at low pressures
Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; ...
2015-07-17
Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10 –1 mbar methane or 10 –5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 10 7 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10 –5 mbar methane does not alter their morphology, suggestingmore » that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.« less
Seasonal variation in methane emission from stored slurry and solid manures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husted, S.
1994-05-01
Methane (CH{sub 4}) is an important greenhouse gas and recent inventories have suggested that livestock manure makes a significant contribution to global CH{sub 4} emissions. The emission of CH{sub 4} from stored pig slurry, cattle slurry, pig solid manure, and cattle solid manure was followed during a 1-yr period. Methane emission was determined by dynamic chambers. Emission rates followed a ln-normal distribution for all four manures, Indicating large spatial and seasonal variation& Monthly geometric means for pig slurry, cattle slurry, pig solid manure, and cattle solid manure varied from 0.4 to 35.8, 0.0 to 34.5, 0.4 to 142.1, and 0.1more » to 42.7 g CH{sub 4} m{sup -3} d{sup -1}, respectively. For slurries CH{sub 4} emission rates increased significantly with storage temperatures, the Q{sub 10} value ranging from 14 to 5.7 depending on slurry type. The presence of a natural surface crust reduced CH{sub 4} emission from slurry by a factor of 11 to 12. Surface crust effects declined with increasing slurry temperature. Solid manures stored in dungheaps showed significant heat production. Pig solid manure temperatures were maintained at 30 to 60{degrees}C throughout most of the year, while cattle solid manure temperatures were close to ambient levels until late spring, when heat production was initiated. Methanogenesis in solid manure also increased with increasing temperatures. For pig solid manure, CH{sub 4} emission rates peaked at 35 to 45{degrees}C. No distinct temperature optimum could be detected for cattle solid manure, however, temperatures rarely exceeded 45{degrees}C. The Q{sub 10} values for dungheaps ranged from 2.7 to 10.3 depending on-manure type and Q{sub 10} temperature interval. Annual CH{sub 4} emissions from pig slurry, cattle slurry, pig solid manure, and cattle solid manure were estimated at 8.9, 15.5, 27.3, and 5.3 kg animal{sup -1} yr{sup -1}, respectively. 27 refs., 6 figs., 2 tabs.« less
Distillation of granulated scrap tires in a pilot plant.
López, Félix A; Centeno, Teresa A; Alguacil, Francisco José; Lobato, Belén
2011-06-15
This paper reports the pyrolytic treatment of granulated scrap tires (GST) in a pilot distillation unit at moderate temperature (550°C) and atmospheric pressure, to produce oil, char and gas products. Tire-derived oil is a complex mixture of organic C(5)-C(24) compounds, including a very large proportion of aromatic compounds. This oil has a high gross calorific value (∼ 43 MJ kg(-1)) and N and S contents of 0.4% and 0.6%, respectively, falling within the specifications of certain heating fuels. The distillation gas is composed of hydrocarbons; methane and n-butane are the most abundant, investing the distillation gas with a very high gross calorific value (∼ 68 MJ Nm(-3)). This gas is transformed into electric power by a co-generation turbine. The distillation char is mostly made of carbon but with significant inorganic impurities (∼ 12 wt%). The quality of the solid residue of the process is comparable to that of some commercial chars. The quantity of residual solids, and the qualities of the gas, liquid and solid fractions, are similar to those obtained by conventional pyrolytic treatments of waste tires. However, the simplicity of the proposed technology and its low investment costs make it a very attractive alternative. Copyright © 2011 Elsevier B.V. All rights reserved.
Liu, Chang-Ling; Ye, Yu-Guang; Meng, Qing-Guo; Lü, Wan-Jun; Wang, Fei-Fei
2011-06-01
Micro laser Raman spectroscopic technique was used for in situ observation of the micro-processes of methane hydrate formed and decomposed in a high pressure transparent capillary. The changes in clathrate structure of methane hydrate were investigated during these processes. The results show that, during hydrate formation, the Raman peak (2 917 cm(-1)) of methane gas gradually splits into two peaks (2 905 and 2 915 cm(-1)) representing large and small cages, respectively, suggesting that the dissolved methane molecules go into two different chemical environments. In the meantime, the hydrogen bonds interaction is strengthened because water is changing from liquid to solid state gradually. As a result, the O-H stretching vibrations of water shift to lower wavenumber. During the decomposition process of methane hydrates, the Raman peaks of the methane molecules both in the large and small cages gradually clear up, and finally turn into a single peak of methane gas. The experimental results show that laser Raman spectroscopy can accurately demonstrate some relevant information of hydrate crystal structure changes during the formation and dissociation processes of methane hydrate.
Sensai, P; Thangamani, A; Visvanathan, C
2014-01-01
Anaerobic co-digestion of high solids containing distillers grains and swine manure (total solids, 27 +/- 2% and 18 +/- 2%, respectively) was evaluated in this study to assess the effect of C/N ratio and organic loading rate (OLR). Feed mixture was balanced to achieve a C/N ratio of 30/1 by mixing distillers grains and swine manure. Pilot-scale co-digestion of distillers grains and swine manure was carried out under thermophilic conditions in the continuous mode for seven different OLRs from R1 to R7 (3.5, 5, 6, 8, 10, 12 and 14 kg VS/m3 day) under high solid anaerobic digestion. The methane yield and volatile solid (VS) removal were consistent; ranging from 0.33 to 0.34 m3CH4/kg VS day and 50-53%, respectively, until OLR 8 kg VS/m3 day. After which methane yield and VS removal significantly decreased to 0.26 m3 CH4/kg VS day and 42%, respectively, when OLR was increased to 14 kg VS/m3 day. However, during operation, at OLR of 10 kg VS/m3 day, the methane yield and VS removal increased after the 19th day to 0.33 m3 CH4/kg VS day and 46%, respectively, indicating that a longer acclimatization period is required by methanogens at a higher loading rate.
Usack, Joseph G.; Wiratni, Wiratni; Angenent, Largus T.
2014-01-01
A government-sponsored initiative in Indonesia to design and implement low-cost anaerobic digestion systems resulted in 21 full-scale systems with the aim to satisfy the cooking fuel demands of rural households owning at least one cow. The full-scale design consisted of a 0.3 m diameter PVC pipe, which was operated as a conventional plug-flow system. The system generated enough methane to power a cooking stove for ∼1 h. However, eventual clogging from solids accumulation inside the bioreactor proved to be a major drawback. Here, we improved the digester configuration to remedy clogging while maintaining system performance. Controlled experiments were performed using four 9-L laboratory-scale digesters operated at a temperature of 27 ± 1°C, a volatile solids loading rate of 2.0 g VS·L−1 ·day−1, and a 21-day hydraulic retention time. Two of the digesters were replicates of the original design (control digesters), while the other two digesters included internal mixing or effluent recycle (experimental digesters). The performance of each digester was compared based on methane yields, VS removal efficiencies, and steady-state solids concentrations during an operating period of 311 days. Statistical analyses revealed that internal mixing and effluent recycling resulted in reduced solids accumulation compared to the controls without diminishing methane yields or solids removal efficiencies. PMID:24715809
Weitz, Melissa; Coburn, Jeffrey B; Salinas, Edgar
2008-05-01
This paper estimates national methane emissions from solid waste disposal sites in Panama over the time period 1990-2020 using both the 2006 Intergovernmental Panel on Climate Change (IPCC) Waste Model spreadsheet and the default emissions estimate approach presented in the 1996 IPCC Good Practice Guidelines. The IPCC Waste Model has the ability to calculate emissions from a variety of solid waste disposal site types, taking into account country- or region-specific waste composition and climate information, and can be used with a limited amount of data. Countries with detailed data can also run the model with country-specific values. The paper discusses methane emissions from solid waste disposal; explains the differences between the two methodologies in terms of data needs, assumptions, and results; describes solid waste disposal circumstances in Panama; and presents the results of this analysis. It also demonstrates the Waste Model's ability to incorporate landfill gas recovery data and to make projections. The former default method methane emissions estimates are 25 Gg in 1994, and range from 23.1 Gg in 1990 to a projected 37.5 Gg in 2020. The Waste Model estimates are 26.7 Gg in 1994, ranging from 24.6 Gg in 1990 to 41.6 Gg in 2020. Emissions estimates for Panama produced by the new model were, on average, 8% higher than estimates produced by the former default methodology. The increased estimate can be attributed to the inclusion of all solid waste disposal in Panama (as opposed to only disposal in managed landfills), but the increase was offset somewhat by the different default factors and regional waste values between the 1996 and 2006 IPCC guidelines, and the use of the first-order decay model with a time delay for waste degradation in the IPCC Waste Model.
The potential of biogas production from municipal solid waste in a tropical climate.
Getahun, Tadesse; Gebrehiwot, Mulat; Ambelu, Argaw; Van Gerven, Tom; Van der Bruggen, Bart
2014-07-01
The objective of this study was to estimate the potential of organic municipal solid waste generated in an urban setting in a tropical climate to produce biogas. Five different categories of wastes were considered: fruit waste, food waste, yard waste, paper waste, and mixed waste. These fractions were assessed for their efficiency for biogas production in a laboratory-scale batch digester for a total period of 8 weeks at a temperature of 15-30 °C. During this period, fruit waste, food waste, yard waste, paper waste, and mixed waste were observed to produce 0.15, 0.17, 0.10, 0.08, and 0.15 m(3) of biogas per kilogram of volatile solids, respectively. The biogas produced and caloric value of each feedstock was in the range of 1.25 × 10(-3) m(3) (17 kWh)/cap/day (paper waste) to 15 × 10(-3) m(3) (170 kWh)/cap/day (mixed waste). Paper waste produced the least (<1×10(-3)(<17.8 kWh)/cap/day), and mixed waste produced the highest methane yield (10 × 10(-3) m(3) (178 kWh)/cap/day). Thus, mixed waste was found to be more efficient than other feedstocks for biogas and methane production; this was mainly related to the better C/N ratio in mixed waste. Taking the total waste production in Jimma into account, the total mixed organic solid waste could produce 865 × 10(3) m(3) (5.4 m(3)/capita) of biogas or 537 × 10(3) m(3) (3.4 m(3)/capita) of methane per year. The total caloric value of methane production potential from mixed organic municipal solid waste was many times higher than the total energy requirement of the area.
Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production.
Capson-Tojo, Gabriel; Rouez, Maxime; Crest, Marion; Trably, Eric; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud
2017-11-01
Dry anaerobic digestion is a promising option for food waste treatment and valorization. However, accumulation of ammonia and volatile fatty acids often occurs, leading to inefficient processes and digestion failure. Co-digestion with cardboard may be a solution to overcome this problem. The effect of the initial substrate to inoculum ratio (0.25 to 1gVS·gVS -1 ) and the initial total solids contents (20-30%) on the kinetics and performance of dry food waste mono-digestion and co-digestion with cardboard was investigated in batch tests. All the conditions produced methane efficiently (71-93% of the biochemical methane potential). However, due to lack of methanogenic activity, volatile fatty acids accumulated at the beginning of the digestion and lag phases in the methane production were observed. At increasing substrate to inoculum ratios, the initial acid accumulation was more pronounced and lower cumulative methane yields were obtained. Higher amounts of soluble organic matter remained undegraded at higher substrate loads. Although causing slightly longer lag phases, high initial total solids contents did not jeopardize the methane yields. Cardboard addition reduced acid accumulation and the decline in the yields at increasing substrate loads. However, cardboard addition also caused higher concentrations of propionic acid, which appeared as the most last acid to be degraded. Nevertheless, dry co-digestion of food waste and cardboard in urban areas is demonstrated asan interesting feasible valorization option. Copyright © 2017 Elsevier Ltd. All rights reserved.
ELECTROCHEMISTRY AND ON-CELL REFORMATION MODELING FOR SOLID OXIDE FUEL CELL STACKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recknagle, Kurtis P.; Jarboe, Daniel T.; Johnson, Kenneth I.
2007-01-16
ABSTRACT Providing adequate and efficient cooling schemes for solid-oxide-fuel-cell (SOFC) stacks continues to be a challenge coincident with the development of larger, more powerful stacks. The endothermic steam-methane reformation reaction can provide cooling and improved system efficiency when performed directly on the electrochemically active anode. Rapid kinetics of the endothermic reaction typically causes a localized temperature depression on the anode near the fuel inlet. It is desirable to extend the endothermic effect over more of the cell area and mitigate the associated differences in temperature on the cell to alleviate subsequent thermal stresses. In this study, modeling tools validated formore » the prediction of fuel use, on-cell methane reforming, and the distribution of temperature within SOFC stacks, are employed to provide direction for modifying the catalytic activity of anode materials to control the methane conversion rate. Improvements in thermal management that can be achieved through on-cell reforming is predicted and discussed. Two operating scenarios are considered: one in which the methane fuel is fully pre-reformed, and another in which a substantial percentage of the methane is reformed on-cell. For the latter, a range of catalytic activity is considered and the predicted thermal effects on the cell are presented. Simulations of the cell electrochemical and thermal performance with and without on-cell reforming, including structural analyses, show a substantial decrease in thermal stresses for an on-cell reforming case with slowed methane conversion.« less
Zhao, Hong-Bao
2014-01-01
Taking the standard size coal block samples defined by ISRM as research objects, both properties of methane diffusion of coal block under triaxial compressive stress and characteristic influences caused by methane pressure were systematically studied with thermo-fluid-solid coupling with triaxial servocontrolled seepage equipment of methane-containing coal. The result shows the methane diffusion property of coal block under triaxial compressive stress was shown in four-stage as follow, first is sharply reduce stage, second is hyperbolic reduce stage, third is close to a fixed value stage, fourth stage is 0. There is a special point making the reduced rate of characteristic curve of methane diffusion speed become sharply small; the influences of shape of methane diffusion speed characteristic curve caused by methane pressure are not obvious, which only is shown in numerical size of methane diffusion speed. Test time was extended required by appear of the special point makes the reduce rate of methane diffusion speed become sharply small. The fitting four-phase relation of methane diffusion of coal block under triaxial compressive stress was obtained, and the idea is proposed that influences of the fitting four-phase relation caused by methane pressure were only shown in value of fitting parameters. PMID:25531000
Jin, Jingwei; Dai, Xiaohu
2014-01-01
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352
Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu
2014-01-01
The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.
Methane yield enhancement via electroporation of organic waste.
Safavi, Seyedeh Masoumeh; Unnthorsson, Runar
2017-08-01
An experimental study with pulsed electric field (PEF) pre-treatment was conducted to investigate its effect on methane production. PEF pre-treatment converts organic solids into soluble and colloidal forms, increasing bioavailability for anaerobic microorganisms participating in methane generation process. The substrates tested were landfill leachate and fruit/vegetable. Three treatment intensities of 15, 30, and 50kWh/m 3 were applied to investigate the influence of pre-treatment on methane production via biochemical methane potential test. Threshold treatment intensity was found to be around 30kWh/m 3 for landfill leachate beyond which the methane production enhanced linearly with increase in intensity. Methane production of the landfill leachate significantly increased up to 44% with the highest intensity. The result of pulsed electric field pre-treatment on fruit/vegetable showed that 15kWh/m 3 was the intensity by which the highest amount of methane (up to 7%) was achieved. Beyond this intensity, the methane production decreased. Chemical oxygen demand removals were increased up to 100% for landfill leachate and 17% for fruit/vegetable, compared to the untreated slurries. Results indicate that the treatment intensity has a significant effect on the methane production and biosolid removal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methane Hydrate in Confined Spaces: An Alternative Storage System.
Borchardt, Lars; Casco, Mirian Elizabeth; Silvestre-Albero, Joaquin
2018-06-05
Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane hydrate formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biogasification of Walt Disney World biomass waste blend. Final report, January 1982-December 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Chynoweth, D.P.; Srivastava, V.J.
1986-10-01
The objective of the research is to develop efficient processes for conversion of biomass-waste blends to methane and other resources. To evaluate the technical and economic feasibility, an experimental test unit (ETU) was designed and operated at the Reedy Creek Wastewater Treatment Plant at Walt Disney World in Lake Buena Vista, Florida. The facility integrates a biomethanogenic-conversion process with a wastewater-treatment process employing water hyacinth ponds for secondary and tertiary treatment of sewage. Harvested water hyacinth is subsequently combined with sludge from the primary wastewater clarifier and fed at 1-wet-ton per day to the ETU digester. This results in themore » production of methane and other useful products. The digester was operated as a non-mixed, solids concentrating digester to encourage higher solids and microorganism retention times. Data collected during six steady-state operating periods confirmed earlier laboratory observations that this digester consistently produces 15 to 25% higher methane yields and conversions when compared to conventional stirred-tank digester. Digester operation was evaluated at different loading rates, solids blend ratios and feed configurations. Results from the program have provided a data base for the design of larger conversion systems.« less
Hu, Yu-ying; Wu, Jing; Wang, Shi-feng; Cao, Zhi-ping; Wang, Kai-jun; Zuo, Jian-e
2015-08-01
Livestock manure is a kind of waste with high organic content and sanitation risk. In order to investigate the impact of thermal treatment on the anaerobic digestion of high-solid-content swine manure, 70 degrees C thermal treatment was conducted to treat raw manure (solid content 27.6%) without any dilution. The results indicated that thermal treatment could reduce the organic matters and improve the performance of anaerobic digestion. When the thermal treatment time was 1d, 2d, 3d, 4d, the VS removal rates were 15.1%, 15.5%, 17.8% and 20.0%, respectively. The methane production rates (CH4/VSadd) were 284.4, 296.3, 309.2 and 264.4 mL x g(-1), which was enhanced by 49.7%, 55.9%, 62.7% and 39.2%, respectively. The highest methane production rate occurred when the thermal treatment time was 3d. The thermal treatment had an efficient impact on promoting the performance of methane production rate with a suitable energy consumption. On the other hand, thermal treatment could act as pasteurization. This showed that thermal treatment would be of great practical importance.
Determination of biogas generation potential as a renewable energy source from supermarket wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkanok, Gizem; Demirel, Burak, E-mail: burak.demirel@boun.edu.tr; Onay, Turgut T.
2014-01-15
Highlights: • Disposal of supermarket wastes in landfills may contribute to environmental pollution. • High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. • Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. • Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactorsmore » were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.« less
Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J
2016-05-01
Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rincón, B.; Bujalance, L.; Fermoso, F. G.; Martín, A.
2014-01-01
The effect of ultrasound (US) pretreatment on two-phase olive mil solid waste (OMSW) composition and subsequent anaerobic biodegradation was evaluated by chemical oxygen demand solubilization and biochemical methane potential (BMP) tests. OMSW was ultrasonically pretreated at a power of 200 W and frequency of 24 kHz for time periods of 20, 40, 60, 90, 120, and 180 minutes, corresponding to specific energies of 11367, 21121, 34072, 51284, 68557, and 106003 kJ/kg total solids, respectively. In order to evaluate the US pretreatment, a low, medium, and high exposure time, that is, 20, 90, and 180 min, were selected for BMP tests. Methane yields of 311 ± 15, 393 ± 14, and 370 ± 20 mL CH4/g VSadded (VS: volatile solids) were obtained for 20, 90, and 180 minutes, respectively, while the untreated OMSW gave 373 ± 4 mL CH4/g VSadded. From a kinetic point of view, the BMP tests showed a first exponential stage and a second sigmoidal stage. In the first stage, the kinetic constant obtained for US pretreated OMSW at 20 minutes was 46% higher than those achieved for the pretreated OMSW at 90 and 180 minutes and 48% higher than that for untreated OMSW. The maximum methane production rate achieved was 12% higher than that obtained for untreated OMSW. PMID:25197705
An advanced carbon reactor subsystem for carbon dioxide reduction
NASA Technical Reports Server (NTRS)
Noyes, Gary P.; Cusick, Robert J.
1986-01-01
An evaluation is presented of the development status of an advanced carbon-reactor subsystem (ACRS) for the production of water and dense, solid carbon from CO2 and hydrogen, as required in physiochemical air revitalization systems for long-duration manned space missions. The ACRS consists of a Sabatier Methanation Reactor (SMR) that reduces CO2 with hydrogen to form methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolize methane to carbon and hydrogen; the carbon is recycled to the SMR, while the produce carbon is periodically removed from the CFR. A preprototype ACRS under development for the NASA Space Station is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.
2006-04-07
This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anodemore » ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.« less
Li, Yangyang; Xu, Fuqing; Li, Yu; Lu, Jiaxin; Li, Shuyan; Shah, Ajay; Zhang, Xuehua; Zhang, Hongyu; Gong, Xiaoyan; Li, Guoxue
2018-03-01
Anaerobic co-digestion is commonly believed to be benefical for biogas production. However, additional of co-substrates may require additional energy inputs and thus affect the overall energy efficiency of the system. In this study, reactor performance and energy analysis of solid state anaerobic digestion (SS-AD) of tomato residues with dairy manure and corn stover were investigated. Different fractions of tomato residues (0, 20, 40, 60, 80 and 100%, based on volatile solid weight (VS)) were co-digested with dairy manure and corn stover at 15% total solids. Energy analysis based on experimental data was conducted for three scenarios: SS-AD of 100% dairy manure, SS-AD of binary mixture (60% dairy manure and 40% corn stover, VS based), and SS-AD of ternary mixture (36% dairy manure, 24% corn stover, and 40% tomato residues, VS based). For each scenario, the energy requirements for individual process components, including feedstock collection and transportation, feedstock pretreatment, biogas plant operation, digestate processing and handling, and the energy production were examined. Results showed that the addition of 20 and 40% tomato residues increased methane yield compared to that of the dairy manure and corn stover mixture, indicating that the co-digestion could balance nutrients and improve the performance of solid-state anaerobic digestion. The energy required for heating substrates had the dominant effect on the total energy consumption. The highest volatile solids (VS) reduction (57.0%), methane yield (379.1 L/kg VS feed ), and net energy production were achieved with the mixture of 24% corn stover, 36% dairy manure, and 40% tomato residues. Thus, the extra energy input for adding tomato residues for co-digestion could be compensated by the increase of methane yield. Copyright © 2017 Elsevier Ltd. All rights reserved.
Title I preliminary engineering for: A. S. E. F. solid waste to methane gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1976-01-01
An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec.more » 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.« less
Nikolaeva, S; Sánchez, E; Borja, R; Raposo, F; Colmenarejo, M F; Montalvo, S; Jiménez-Rodríguez, A M
2009-02-01
The effect of the hydraulic retention time (HRT) on the performance of two up-flow anaerobic fixed bed digesters (UFAFBDs) packed with waste tire rubber (D1) and waste tire rubber and zeolite (D2) as micro-organism immobilization supports was studied. It was found that a first-order kinetic model described well the experimental results obtained. The kinetic constants for COD, BOD5, total solids (TS) and volatile solids (VS) removal were determined to be higher in digester D2 than in digester D1 or control. Specifically, they were 0.28 +/- 0.01, 0.32 +/- 0.02, 0.16 +/- 0.01 and 0.24 +/- 0.01 d(- 1) respectively for D1 and 0.33 +/- 0.02, 0.40 +/- 0.02, 0.21 +/- 0.01 and 0.28 +/- 0.01 d(- 1) respectively for D2. This was significant at the 95% confidence level. In addition, the first-order model was also adequate for assessing the effect of the HRT on the removal efficiency and methane production. Maximum methane yield and the first-order constant for methane production were determined and the results obtained were comparable with those obtained by other authors but operating at higher HRTs. Maximum methane yields and the kinetic constant for methane production were 11.1% and 29.4% higher in digester D2 than in D1.
Míchal, Pavel; Švehla, Pavel; Plachý, Vladimír; Tlustoš, Pavel
2017-07-01
Within this research, biogas production, representation of methane in biogas and volatile solids (VSs) removal efficiency were compared using batch tests performed with the samples of intensively and extensively planted grasses originating from public areas. Before the batch tests, the samples were stored at different temperatures achievable on biogas plants applying trigeneration strategy (-18°C, +3°C, +18°C and +35°C). Specific methane production from intensively planted grasses was relatively high (0.33-0.41 m 3 /kg VS) compared to extensively planted grasses (0.20-0.33 m 3 /kg VS). VSs removal efficiency reached 59.8-68.8% for intensively planted grasses and 34.6-56.5% for extensively planted grasses. Freezing the intensively planted grasses at -18°C proved to be an effective thermal pretreatment leading to high biogas production (0.61 m 3 /kg total solid (TS)), high representation of methane (64.0%) in biogas and good VSs removal efficiency (68.8%). The results of this research suggest that public areas or sport parks seem to be available, cheap and at the same time very effective feedstock for biogas production.
Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon
2013-11-15
Lab-scale High Efficiency Digestion (HED) systems containing a Mesophilic Anaerobic Reactor (MAR), Thermophilic Aerobic Reactor (TAR), liquid/solid separation unit, and thermal-alkaline treatment were developed to evaluate the efficiencies of sludge reduction and methane production. The HED process was divided into three phases to examine the influence of sludge pretreatment and pretreated sludge recirculation using TCOD and VSS reduction, COD solubilization, and methane production. The VSS removal with a solid/liquid separation unit, sludge recirculation, and thermal-alkaline treatment drastically increased up to 95% compared to the feed concentration. In addition, the results of COD solubilization and VSS/TSS showed that the solubilization of cells and organic matters by the thermal-alkaline treatment was highly increased, which was also consistent with the SEM images. In particular, the methane production rate increased 24-fold when the feed sludge and recirculated sludge were pretreated together. Collectively, the HED experiments performed with sludge recirculation and thermal-alkaline treatment demonstrated that the HED systems can be successfully employed for highly efficient sewage sludge reduction and methane gas production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rice, C.A.
2003-01-01
This study investigated the composition of water co-produced with coalbed methane (CBM) from the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in east-central Utah to better understand coalbed methane reservoirs. The Ferron coalbed methane play currently has more than 600 wells producing an average of 240 bbl/day/well water. Water samples collected from 28 wellheads in three fields (Buzzards Bench, Drunkards Wash, and Helper State) of the northeast-southwest trending play were analyzed for chemical and stable isotopic composition.Water produced from coalbed methane wells is a Na-Cl-HCO3 type. Water from the Drunkards Wash field has the lowest total dissolved solids (TDS) (6300 mg/l) increasing in value to the southeast and northeast. In the Helper State field, about 6 miles northeast, water has the highest total dissolved solids (43,000 mg/l), and major ion abundance indicates the possible influence of evaporite dissolution or mixing with a saline brine. In the southern Buzzards Bench field, water has variable total dissolved solids that are not correlated with depth or spatial distance. Significant differences in the relative compositions are present between the three fields implying varying origins of solutes and/or different water-rock interactions along multiple flow paths.Stable isotopic values of water from the Ferron range from +0.9??? to -11.4??? ?? 18O and -32??? to -90??? ?? 2H and plot below the global meteoric water line (GMWL) on a line near, but above values of present-day meteoric water. Isotopic values of Ferron water are consistent with modification of meteoric water along a flow path by mixing with an evolved seawater brine and/or interaction with carbonate minerals. Analysis of isotopic values versus chloride (conservative element) and total dissolved solids concentrations indicates that recharge water in the Buzzards Bench area is distinct from recharge water in Drunkards Wash and is about 3 ??C warmer. These variations in isotopes along with compositional variations imply that the Ferron reservoir is heterogeneous and compartmentalized, and that multiple flow paths may exist. ?? 2003 Published by Elsevier B.V. All rights reserved.
BIODEGRADATIVE ANALYSIS OF MUNICIPAL SOLID WASTE IN LABORATORY-SCALE LANDFILLS
The report gives results of research to characterize the anaerobic biodegradability of the major biodegradable components of municipal solid waste (MSW). Tests were conducted in quadruplicate in 2-L reactors operated to obtain maximum yields. Measured methane (CH4) yields for gra...
High solids fermentation reactor
Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.
1993-03-02
A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.
High solids fermentation reactor
Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.
1993-01-01
A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.
Kinetics of Methane Production from Swine Manure and Buffalo Manure.
Sun, Chen; Cao, Weixing; Liu, Ronghou
2015-10-01
The degradation kinetics of swine and buffalo manure for methane production was investigated. Six kinetic models were employed to describe the corresponding experimental data. These models were evaluated by two statistical measurements, which were root mean square prediction error (RMSPE) and Akaike's information criterion (AIC). The results showed that the logistic and Fitzhugh models could predict the experimental data very well for the digestion of swine and buffalo manure, respectively. The predicted methane yield potential for swine and buffalo manure was 487.9 and 340.4 mL CH4/g volatile solid (VS), respectively, which was close to experimental values, when the digestion temperature was 36 ± 1 °C in the biochemical methane potential assays. Besides, the rate constant revealed that swine manure had a much faster methane production rate than buffalo manure.
Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field
Mand, Jaspreet; Park, Hyung S.; Okoro, Chuma; Lomans, Bart P.; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit
2016-01-01
Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176
Rumen protozoa and methanogenesis: not a simple cause-effect relationship.
Morgavi, Diego P; Martin, Cécile; Jouany, Jean-Pierre; Ranilla, Maria José
2012-02-01
Understanding the interactions between hydrogen producers and consumers in the rumen ecosystem is important for ruminant production and methane mitigation. The present study explored the relationships between rumen protozoa, methanogens and fermentation characteristics. A total of six donor sheep harbouring (F, faunated) or not (D, defaunated) protozoa in their rumens (D animals were kept without protozoa for a period of a few months (D - ) or for more than 2 years (D+)) were used in in vitro and in vivo experiments. In vitro the absence of protozoa decreased NH3 and butyrate production and had no effect on methane. In contrast, the liquid-associated bacterial and methanogens fraction of D+ inocula produced more methane than D - and F inoculum (P < 0·05). In vivo fermentation parameters of donor animals showed the same trend on NH3 and butyrate and showed that D+ animals were high methane emitters, while D - were the lowest ( - 35 %). The concentration of dissolved dihydrogen measured after feeding followed the opposite trend. Methane emissions did not correlate with the relative abundance of methanogens in the rumen measured by quantitative PCR, but there was a trend for higher methanogens concentration in the solid-associated population of D+ animals compared with D - animals. In contrast, PCR-denaturing gradient gel electrophoresis profiles of methanogens' methyl coenzyme-M reductase A gene showed a clear clustering in liquid-associated fractions for all three groups of donors but fewer differences in solid-associated fractions. These results show that the absence of protozoa may affect differently the methanogen community and methane emissions in wethers.
NASA Astrophysics Data System (ADS)
Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen; Xia, Chang-rong
2009-08-01
A porous NiO/yttria-stabilized zirconia anode substrate for tubular solid oxide fuel cells was prepared by gel casting technique. Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm2 when it was fed with H2 fuel at 700 °C, but the power density increased to 400 mW/cm2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 °C. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.
NASA Astrophysics Data System (ADS)
Roshandell, Melika
A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding from the experimental component of the research was that hydrates can burn completely, and that they burn most rapidly just after ignition and then burn steadily when some of the water in the dissociated zone is allowed to drain away. Excessive surfactant in the water creates a foam layer around the hydrate that acts as an insulator. The layer prevents sufficient heat flux from reaching the hydrate surface below the foam to release additional methane and the hydrate flame extinguishes. No self-healing or ice-freezing processes were observed in any of the combustion experiments. There is some variability, but a typical hydrate flame is receiving between one and two moles of water vapor from the liquid dissociated zone of the hydrate for each mole of methane it receives from the dissociating solid region. This limits the flame temperature to approximately 1800 K. In the theoretical portion of the study, a physical model using an energy balance from methane combustion was developed to understand the energy transfer between the three phases of gas, liquid and solid during the hydrate burn. Also this study provides an understanding of the different factors impacting the hydrate's continuous burn, such as the amount of water vapor in the flame. The theoretical study revealed how the water layer thickness on the hydrate surface, and its effect on the temperature gradient through the dissociated zone, plays a significant role in the hydrate dissociation rate and methane release rate. Motivated by the above mentioned observation from the theoretical analysis, a 1-D two-phase numerical simulation based on a moving front model for hydrate dissociation from a thermal source was developed. This model was focused on the dynamic growth of the dissociated zone and its effect on the dissociation rate. The model indicated that the rate of hydrate dissociation with a thermal source is a function of the dissociated zone thickness. It shows that in order for a continuous dissociation and methane release, some of the water from the dissociated zone needs to be drained. The results are consistent with the experimental observations. The understanding derived from the experiments and the numerical model permitted a brief exploration into the potential effects of pressure on the combustion of methane hydrates. The prediction is that combustion should improve under high pressure conditions because the evaporation of water is suppressed allowing more energy into the dissociation. Future experiments are needed to validate these initial findings.
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-21
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-01
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952
NASA Astrophysics Data System (ADS)
Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo
2016-01-01
Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.
NASA Astrophysics Data System (ADS)
Nguyen, H. T.; Le, M. V.; Nguyen, T. A.; Nguyen, T. A. N.
2017-06-01
The solid oxide fuel cell is one of the promising technologies for future energy demand. Solid oxide fuel cell operated in the single-chamber mode exhibits several advantages over conventional single oxide fuel cell due to the simplified, compact, sealing-free cell structure. There are some studies on simulating the behavior of this type of fuel cell but they mainly focus on the 2D model. In the present study, a three-dimensional numerical model of a single chamber solid oxide fuel cell (SOFC) is reported and solved using COMSOL Multiphysics software. Experiments of a planar button solid oxide fuel cell were used to verify the simulation results. The system is fed by methane and oxygen and operated at 700°C. The cathode is LSCF6482, the anode is GDC-Ni, the electrolyte is LDM and the operating pressure is 1 atm. There was a good agreement between the cell temperature and current voltage estimated from the model and measured from the experiment. The results indicate that the model is applicable for the single chamber solid oxide fuel cell and it can provide a basic for the design, scale up of single chamber solid oxide fuel cell system.
Santos, M M O; van Elk, A G P; Romanel, C
2015-12-01
Solid waste disposal sites (SWDS) - especially landfills - are a significant source of methane, a greenhouse gas. Although having the potential to be captured and used as a fuel, most of the methane formed in SWDS is emitted to the atmosphere, mainly in developing countries. Methane emissions have to be estimated in national inventories. To help this task the Intergovernmental Panel on Climate Change (IPCC) has published three sets of guidelines. In addition, the Kyoto Protocol established the Clean Development Mechanism (CDM) to assist the developed countries to offset their own greenhouse gas emissions by assisting other countries to achieve sustainable development while reducing emissions. Based on methodologies provided by the IPCC regarding SWDS, the CDM Executive Board has issued a tool to be used by project developers for estimating baseline methane emissions in their project activities - on burning biogas from landfills or on preventing biomass to be landfilled and so avoiding methane emissions. Some inconsistencies in the first two IPCC guidelines have already been pointed out in an Annex of IPCC latest edition, although with hidden details. The CDM tool uses a model for methane estimation that takes on board parameters, factors and assumptions provided in the latest IPCC guidelines, while using in its core equation the one of the second IPCC edition with its shortcoming as well as allowing a misunderstanding of the time variable. Consequences of wrong ex-ante estimation of baseline emissions regarding CDM project activities can be of economical or environmental type. Example of the first type is the overestimation of 18% in an actual project on biogas from landfill in Brazil that harms its developers; of the second type, the overestimation of 35% in a project preventing municipal solid waste from being landfilled in China, which harms the environment, not for the project per se but for the undue generated carbon credits. In a simulated landfill - the same amount of waste for 20 years -, the error would be an overestimation of 25% if the CDM project activity starts from the very first year or an underestimation of 15% if it starts just after the landfill closure. Therefore, a correction in the tool to calculate emissions from landfills as adopted by the CDM Executive Board is needed. Moreover, in countries not using the latest IPCC guidelines, which provides clear formulas to prevent misunderstandings, inventory compilers can also benefit from this paper by having more accurate results in national GHG inventories related to solid waste disposal, especially when increasing amounts of waste are landfilled, which is the case of the developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.
López-Escobar, Luis A; Martínez-Hernández, Sergio; Corte-Cano, Grisel; Méndez-Contreras, Juan M
2014-01-01
The influence of the increase of the organic loading rate (OLR) on methane production in a continuous stirred-tank reactor (CSTR) from physicochemical sludge generated in a poultry slaughterhouse was evaluated. Total solid (TS) to obtain OLR of 1, 5, 10 and 15 g VS L(-1) day(-1), with hydraulic retention times of 29, 6, 6 and 4, respectively, were conditioned. The results showed a decrease in pH levels and an increase in the theoretical volatile fatty acids (VFA). While the yield of methane production decreased from 0.48 to 0.10 LCH4/g VSremoved, respectively, the OLR-10 managed on average 38% removal of volatile solids (VS) and a yield biogas production of 0.81 Lbiogas g(-1) VSremoved and 1.35 L day(-1). This suggests that the OLR increases in an anaerobic system from physicochemical sludge only inhibits the methanogenic metabolism, because there is still substrate consumption and biogas production.
Anaerobic biodegradability of Category 2 animal by-products: methane potential and inoculum source.
Pozdniakova, Tatiana A; Costa, José C; Santos, Ricardo J; Alves, M M; Boaventura, Rui A R
2012-11-01
Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ormaechea, Pedro; Castrillón, Leonor; Marañón, Elena; Fernández-Nava, Yolanda; Negral, Luis; Megido, Laura
2017-03-01
To increase the production of methane, when cattle manure (CM) is digested, pretreatments can be applied and/or the manure can be co-digested with other wastes. In this research work, a mixture of CM, food waste (FW) and raw glycerine (Gly) in a proportion in weight of 87% CM, 10% FW and 3% Gly was digested, (a) without pretreatment and (b) with pretreatment by ultrasound, applying a sonication energy of 1040 kJ/kg total solids. Specific methane production was 290 L CH 4 /kg volatile solids (VS) without pretreatment and 520 L CH 4 /kg VS with pretreatment. With respect to the volumetric methane production, 1.07 L CH 4 /L reactor .day was produced in the first case, and in the second case, 1.98 L CH 4 /L reactor .day. We can conclude that the application of ultrasound pretreatment significantly improved the production of biogas.
Recovery of failed solid-state anaerobic digesters.
Yang, Liangcheng; Ge, Xumeng; Li, Yebo
2016-08-01
This study examined the performance of three methods for recovering failed solid-state anaerobic digesters. The 9-L digesters, which were fed with corn stover, failed at a feedstock/inoculum (F/I) ratio of 10 with negligible methane yields. To recover the systems, inoculum was added to bring the F/I ratio to 4. Inoculum was either added to the top of a failed digester, injected into it, or well-mixed with the existing feedstock. Digesters using top-addition and injection methods quickly resumed and achieved peak yields in 10days, while digesters using well-mixed method recovered slowly but showed 50% higher peak yields. Overall, these methods recovered 30-40% methane from failed digesters. The well-mixed method showed the highest methane yield, followed by the injection and top-addition methods. Recovered digesters outperformed digesters had a constant F/I ratio of 4. Slow mass transfer and slow growth of microbes were believed to be the major limiting factors for recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biomethanation potential for co-digestion of municipal solid waste and rice straw: A batch study.
Negi, Suraj; Dhar, Hiya; Hussain, Athar; Kumar, Sunil
2018-04-01
Rice straw (RS) contains a high amount of lignocellulosic materials which are difficult to degrade without thermal pretreatment. In the present study, co-digestion of municipal solid waste (MSW) and RS was carried out in three different ratios i.e., 1:1, 2:1, and 3:1 to get the maximum biomethanation potential and methane generation rate constant (k). The biogas and methane (CH 4 ) potential increased by 60% and 57%, respectively for MSW and RS in the ratio 2:1 as compared to other combination. The values of k, biochemical methane potential (µ b ) and sludge activity were measured as 0.1 d -1 , 0.99 CH 4 -COD/COD fed and 0.50 g CH 4 -COD/g VSS, respectively. The sludge activity was found to be 100% for 2:1 ratio. Co-digestion of RS with MSW can also optimize the C/N ratio which is an essential parameter in the anaerobic digestion process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi
2016-01-01
In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.
Pretel, R; Moñino, P; Robles, A; Ruano, M V; Seco, A; Ferrer, J
2016-09-01
The objective of this study was to evaluate the economic and environmental sustainability of a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and organic fraction of municipal solid waste (OFMSW) at ambient temperature in mild/hot climates. To this aim, power requirements, energy recovery from methane (biogas methane and methane dissolved in the effluent), consumption of reagents for membrane cleaning, and sludge handling (polyelectrolyte and energy consumption) and disposal (farmland, landfilling and incineration) were evaluated within different operating scenarios. Results showed that, for the operating conditions considered in this study, AnMBR technology is likely to be a net energy producer, resulting in considerable cost savings (up to €0.023 per m(3) of treated water) when treating low-sulphate influent. Life cycle analysis (LCA) results revealed that operating at high sludge retention times (70 days) and treating UWW jointly with OFMSW enhances the overall environmental performance of AnMBR technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
2015-16 ENSO Drove Tropical Soil Moisture Dynamics and Methane Fluxes
NASA Astrophysics Data System (ADS)
Aronson, E. L.; Dierick, D.; Botthoff, J.; Swanson, A. C.; Johnson, R. F.; Allen, M. F.
2017-12-01
The El Niño/Southern Oscillation Event (ENSO) cycle drives large-scale climatic trends globally. Within the new world tropics, El Niño brings dryer weather than the counterpart La Niña. Atmospheric methane growth rates have shown extreme variability over the past three decades. One proposed driver is the proportion of tropical land surface saturated, affecting methane production or consumption. We measured methane flux bimonthly through the transition of 2015-16 ENSO. The date of measurement, across El Niño and La Niña within the typical "rainy" and "dry" seasons, to be the most significant driver of methane flux. Soil moisture varied across this time period, and regulated methane flux. During the strong El Niño, extreme dry soil conditions occurred in a typical "rainy" season month reducing soil moisture. Wetter than usual soil conditions appeared during the "rainy" season month of the moderate La Niña. The dry El Niño soils corresponded to greater methane consumption by tropical forest soils, and a reduced local atmospheric column methane concentration. Conversely, the wet La Niña soils had lower methane consumption and higher local atmospheric column methane concentrations. The ENSO cycle is a strong driver of tropical terrestrial and wetland soil moisture conditions, and can regulate global atmospheric methane dynamics.
Li, Yangyang; Li, Yu; Zhang, Difang; Li, Guoxue; Lu, Jiaxin; Li, Shuyan
2016-10-01
Solid-state anaerobic co-digestion of tomato residues with dairy manure and corn stover was conducted at 20% total solids under 35°C for 45days. Results showed digestion of mixed tomato residues with dairy manure and corn stover improved methane yields. The highest VS reduction (46.2%) and methane yield (415.4L/kg VSfeed) were achieved with the ternary mixtures of 33% corn stover, 54% dairy manure, and 13% tomato residues, lead to a 0.5-10.2-fold higher than that of individual feedstocks. Inhibition of volatile fatty acids (VFAs) to biogas production occurred when more than 40% tomato residues were added. The results indicated that ternary mixtures diluted the inhibitors that would otherwise cause inhibition in the digestion of tomato residues as a mono-feedstock. Copyright © 2016. Published by Elsevier Ltd.
Dang, Yan; Sun, Dezhi; Woodard, Trevor L; Wang, Li-Ying; Nevin, Kelly P; Holmes, Dawn E
2017-08-01
Growth of bacterial and archaeal species capable of interspecies electron exchange was stimulated by addition of conductive materials (carbon cloth or granular activated carbon (GAC)) to anaerobic digesters treating dog food (a substitute for the dry-organic fraction of municipal solid waste (OFMSW)). Methane production (772-1428mmol vs <80mmol), volatile solids removal (78%-81% vs 54%-64%) and COD removal efficiencies (∼80% vs 20%-30%) were all significantly higher in reactors amended with GAC or carbon cloth than controls. OFMSW degradation was also significantly accelerated and VFA concentrations were substantially lower in reactors amended with conductive materials. These results suggest that both conductive materials (carbon cloth and GAC) can promote conversion of OFMSW to methane even in the presence of extremely high VFA concentrations (∼500mM). Copyright © 2017 Elsevier Ltd. All rights reserved.
Dependence of Surface Contrast on Emission Angle in Cassini ISS 938-nm Images of Titan
NASA Technical Reports Server (NTRS)
Fussner, S.; McEwen, A.; Perry, J.; Turtle, E.; Dawson, D.; Porco, C.; West, R.
2005-01-01
Titan, the largest of Saturn s moons, is one of the most difficult solid surfaces in the Solar System to study. It is shrouded in a thick atmosphere with fine haze particles extending up to 500 km. [1] The atmosphere itself is rich in methane, which allows clear viewing of the surface only through narrow "windows" in the methane spectrum. Even in these methane windows, the haze absorbs and scatters light, blurring surface features and reducing the contrast of images. The haze optical depth is high at visible wavelengths, and decreases at longer (infrared) wavelengths. [2
Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand
Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.
2002-01-01
Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.
Huiliñir, César; Montalvo, Silvio; Guerrero, Lorna
2015-01-01
The effect of fly ash on biodegradability and methane production from secondary paper and pulp sludge, including its modeling, was evaluated. Three tests with fly ash concentrations of 0, 10 and 20 mg/L were evaluated at 32 °C. Methane production was modeled using the modified Gompertz equation. The results show that the doses used produce a statistically significant increase of accumulated methane, giving values greater than 225 mL of CH4 per gram of volatile solids (VS) added, and 135% greater than that obtained in the control assay. Biodegradability of VS increased 143% with respect to the control assays, giving values around 43%. The modified Gompertz model can describe well methane generation from residual sludge of the paper industry water treatment, with parameter values between those reported in the literature. Thus, the addition of fly ash to the process causes a significant increase of accumulated methane and VS removal, improving the biodegradability of paper and pulp sludge.
Gough, Heidi L; Nelsen, Diane; Muller, Christopher; Ferguson, John
2013-02-01
Recent interest in carbon-neutral biofuels has revived interest in co-digestion for methane generation. At wastewater treatment facilities, organic wastes may be co-digested with sludge using established anaerobic digesters. However, changes to organic loadings may induce digester instability, particularly for thermophilic digesters. To examine this problem, thermophilic (55 degrees C) co-digestion was studied for two food-industry wastes in semi-continuous laboratory digesters; in addition, the wastes' biochemical methane potentials were tested. Wastes with high chemical oxygen demand (COD) content were selected as feedstocks allowing increased input of potential energy to reactors without substantially altering volumetric loadings. Methane generation increased while reactor pH and volatile solids remained stable. Lag periods observed prior to methane stimulation suggested that acclimation of the microbial community may be critical to performance during co-digestion. Chemical oxygen demand mass balances in the experimental and control reactors indicated that all of the food industry waste COD was converted to methane.
Zhao, Xiaoling; Liu, Jinhuan; Liu, Jingjing; Yang, Fuyu; Zhu, Wanbin; Yuan, Xufeng; Hu, Yuegao; Cui, Zongjun; Wang, Xiaofen
2017-10-01
Silage processing has a crucial positive impact on the methane yield of anaerobic treated substrates. Changes in the characteristics of switchgrass after ensiling with different additives and their effects on methane production and microbial community changes during anaerobic digestion were investigated. After ensiling (CK), methane yield was increased by 33.59% relative to that of fresh switchgrass (FS). In comparison with the CK treatment, methane production was improved by 17.41%, 13.08% and 8.72% in response to ensiling with LBr+X, LBr and X, respectively. A modified Gompertz model predicted that the optimum treatment was LBr+X, with a potential cumulative methane yield of 178.31mL/g total solids (TS) and a maximum biogas production rate of 44.39mL/g TS·d. Firmicutes and Bacteroidetes were the predominant bacteria in FS and silage switchgrass; however, the switchgrass treated with LBr+X was rich in Synergistetes, which was crucial for methane production. Copyright © 2017. Published by Elsevier Ltd.
Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John
2014-04-01
The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhou, Xu; Wang, Qilin; Jiang, Guangming
2015-04-01
Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Albizia biomass is a forestry waste, and holds a great potential in biogas production by solid-state anaerobic digestion (SS-AD). However, low methane yields from albizia chips were observed due to their recalcitrant structure. In this study, albizia chips were pretreated by Ceriporiopsis subvermisp...
Need for improvements in physical pretreatment of source-separated household food waste.
Bernstad, A; Malmquist, L; Truedsson, C; la Cour Jansen, J
2013-03-01
The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13-39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14-36Nm(3)/ton separately collected solid organic household waste. Also, 13-32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.(1) Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range
Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.
2001-01-01
A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ripmeester, J. A.
2010-04-01
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
Alavi, Saman; Ripmeester, J A
2010-04-14
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Ductile flow of methane hydrate
Durham, W.B.; Stern, L.A.; Kirby, S.H.
2003-01-01
Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.
Methane emissions from MBT landfills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.
2013-09-15
Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance atmore » MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.« less
Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong
2016-01-01
Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.
Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong
2016-01-01
Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2–C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2–C7) generated in the bioconversion process were 0.01–1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane. PMID:27695055
Sublimation systems and associated methods
Turner, Terry D.; McKellar, Michael G.; Wilding, Bruce M.
2016-02-09
A system for vaporizing and sublimating a slurry comprising a fluid including solid particles therein. The system includes a first heat exchanger configured to receive the fluid including solid particles and vaporize the fluid and a second heat exchanger configured to receive the vaporized fluid and solid particles and sublimate the solid particles. A method for vaporizing and sublimating a fluid including solid particles therein is also disclosed. The method includes feeding the fluid including solid particles to a first heat exchanger, vaporizing the fluid, feeding the vaporized fluid and solid particles to a second heat exchanger and sublimating the solid particles. In some embodiments the fluid including solid particles is liquid natural gas or methane including solid carbon dioxide particles.
Co-digestion of sewage sludge with crude or pretreated glycerol to increase biogas production.
Dos Santos Ferreira, Janaína; Volschan, Isaac; Cammarota, Magali Christe
2018-05-23
Anaerobic co-digestion of sewage sludge and glycerol from the biodiesel industry was evaluated in three experimental stages. In the first step, the addition of higher proportions of crude glycerol (5-20% v/v) to the sludge was evaluated, and the results showed a marked decrease in pH and inhibition of methane production. In the second step, co-digestion of sludge with either a lower proportion (1% v/v) of crude glycerol or glycerol pretreated to remove salinity resulted in volatile acid accumulation and low methane production. The accumulation of volatile acids due to the rapid degradation of glycerol in the mixture was more detrimental to methanogenesis than the salinity of the crude glycerol. In the third step, much lower amounts of crude glycerol were added to the sludge (0.3, 0.5, 0.7% v/v), resulting in buffering of the reaction medium and higher methane production than in the control (pure sludge). The best condition for co-digestion was with the addition of 0.5% (v/v) crude glycerol to the sewage sludge, which equals 0.6 g glycerol/g volatile solids applied. Under this condition, the specific methane production (mL CH 4 /g volatile solids applied) was 1.7 times higher than in the control.
NASA Astrophysics Data System (ADS)
Sauvet, A.-L.; Fouletier, J.
The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.
Reversing methanogenesis to capture methane for liquid biofuel precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soo, Valerie W. C.; McAnulty, Michael J.; Tripathi, Arti
Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) frommore » a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl 3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl 3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using 13C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. Lastly, we anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.« less
Reversing methanogenesis to capture methane for liquid biofuel precursors
Soo, Valerie W. C.; McAnulty, Michael J.; Tripathi, Arti; ...
2016-01-14
Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) frommore » a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl 3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl 3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using 13C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. Lastly, we anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.« less
NASA Technical Reports Server (NTRS)
Schack, C. J.
1972-01-01
The preparation of the tetraperchlorate of methane (TPM) was attempted. Displacement of halogen from carbon tetrahalides was accomplished with either CCl4 or CBr4 using the halogen perchlorates, ClOClO3, and BOClO3. Although the displacement process was successful, the generated carbon perchlorate intermediates were not isolated. Instead, these species decomposed to COCl2, CO2, and Cl2O7. The vigorous displacement reaction that often occurred required moderation. Fluorocarbon solvents and chlorine perchlorate were successfully tested for compatibility, permitting their use in these synthetic reactions. While the sought for moderating effect was obtained, the net result of the displacement of halogen from CX sub 4 substrates was the same as before. Thus only CO2, COCl2, and Cl2O7 were isolated.
Wang, Dongbo; Liu, Xuran; Zeng, Guangming; Zhao, Jianwei; Liu, Yiwen; Wang, Qilin; Chen, Fei; Li, Xiaoming; Yang, Qi
2018-03-01
Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo
2018-03-01
Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methane oxidation at a surface-sealed boreal landfill.
Einola, Juha; Sormunen, Kai; Lensu, Anssi; Leiskallio, Antti; Ettala, Matti; Rintala, Jukka
2009-07-01
Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005-June 2006) were 0.86-6.2 m(3) ha(-1) h(-1). Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1-3 points showed significantly higher methane fluxes into the soil cover (20-135 m(3) ha(-1) h(-1)) and methane emissions (6-135 m(3) ha(-1) h(-1)) compared to the other points (< 20 m(3) ha(-1) h(-1) and < 10 m(3) ha(-1) h(-1), respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.
Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan
NASA Astrophysics Data System (ADS)
Kasten, Sabine; Nöthen, Kerstin; Hensen, Christian; Spieß, Volkhard; Blumenberg, Martin; Schneider, Ralph R.
2012-12-01
The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates "from above". As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to have persisted for a considerably longer time at the Worm Hole site, amounting to a few tens of thousands of years.
NASA Astrophysics Data System (ADS)
Aoyama, D.; Aoyama, C.
2014-12-01
The plume comes out to the surface of the water, and methane is released for low water temperature and low temperature in the Arctic Ocean by the atmosphere. Methane released by the atmosphere is combined with oxygen and becomes carbon dioxide and the water, and the greenhouse effect is higher in 20 times than carbon dioxide. If quantity of the methane plume is quantified, I may estimate the quantity of existing methane underground and can estimate the scale of methane melting into it in seawater. The methane plume solved in seawater is one element of the carbon cycle. It is important that I elucidate this element in thinking about the carbon cycle of the wide sense. However, there is not the report that I showed quantitatively how much methane melts into it in seawater a year from the methane plume. Therefore, in this article, I identified an aspect of gush methane as it by the sound data with the fishfinder and by a gush picture of the methane plume. With that in mind, I quantified the quantity of the methane plume. As a result, the following things became clear. The methane hydrate grain to gush out from a gush mouth is a solid at the bottom of the sea direct top. In this sea area, methane of 7.7*104m3 per unit area gushes out. In addition, the sea area where 6.3*106m3 gushed out existed.
Temperature and hydrology affect methane emissions from Prairie Pothole Wetlands
Bansal, Sheel; Tangen, Brian; Finocchiaro, Raymond
2016-01-01
The Prairie Pothole Region (PPR) in central North America consists of millions of depressional wetlands that each have considerable potential to emit methane (CH4). Changes in temperature and hydrology in the PPR from climate change may affect methane fluxes from these wetlands. To assess the potential effects of changes in climate on methane emissions, we examined the relationships between flux rates and temperature or water depth using six years of bi-weekly flux measurements during the snow-free period from six temporarily ponded and six permanently ponded wetlands in North Dakota, USA. Methane flux rates were among the highest reported for freshwater wetlands, and had considerable spatial and temporal variation. Methane flux rates increased with increasing temperature and water depth, and were especially high when conditions were warmer and wetter than average (163 ± 28 mg CH4 m−2 h−1) compared to warmer and drier (37 ± 7 mg CH4 m−2 h−1). Methane emission rates from permanent wetlands were less sensitive to changes in temperature and water depth compared to temporary wetlands, likely due to higher sulfate concentrations in permanent wetlands. While the predicted increase in temperature with climate change will likely increase methane emission rates from PPR wetlands, drier conditions could moderate these increases.
Wang, Zhe; Guo, Min; Baker, Gary A.; Stetter, Joseph R.; Lin, Lu; Mason, Andrew J.
2017-01-01
Current sensor devices for the detection of methane or natural gas emission are either expensive and have high power requirements or fail to provide a rapid response. This report describes an electrochemical methane sensor utilizing a non-volatile and conductive pyrrolidinium-based ionic liquid (IL) electrolyte and an innovative internal standard method for methane and oxygen dual-gas detection with high sensitivity, selectivity, and stability. At a platinum electrode in bis(trifluoromethylsulfonyl)imide (NTf2)-based ILs, methane is electro-oxidized to produce CO2 and water when an oxygen reduction process is included. The in situ generated CO2 arising from methane oxidation was shown to provide an excellent internal standard for quantification of the electrochemical oxygen sensor signal. The simultaneous quantification of both methane and oxygen in real time strengthens the reliability of the measurements by cross-validation of two ambient gases occurring within a single sample matrix and allows for the elimination of several types of random and systematic errors in the detection. We have also validated this IL-based methane sensor employing both conventional solid macroelectrodes and flexible microfabricated electrodes using single- and double-potential step chronoamperometry. PMID:25093213
Kandel, Tanka P; Sutaryo, Sutaryo; Møller, Henrik B; Jørgensen, Uffe; Lærke, Poul E
2013-02-01
This study examined the influence of harvest time on biomass yield, dry matter partitioning, biochemical composition and biological methane potential of reed canary grass harvested twice a month in one-cut (OC) management. The regrowth of biomass harvested in summer was also harvested in autumn as a two-cut management with (TC-F) or without (TC-U) fertilization after summer harvest. The specific methane yields decreased significantly with crop maturity that ranged from 384 to 315 and from 412 to 283 NL (normal litre) (kgVS)(-1) for leaf and stem, respectively. Approximately 45% more methane was produced by the TC-F management (5430Nm(3)ha(-1)) as by the OC management (3735Nm(3)ha(-1)). Specific methane yield was moderately correlated with the concentrations of fibre components in the biomass. Larger quantity of biogas produced at the beginning of the biogas assay from early harvested biomass was to some extent off-set by lower concentration of methane. Copyright © 2012 Elsevier Ltd. All rights reserved.
The impact of compaction and leachate recirculation on waste degradation in simulated landfills.
Ko, Jae Hac; Yang, Fan; Xu, Qiyong
2016-07-01
This study investigated the impact of compaction and leachate recirculation on anaerobic degradation of municipal solid waste (MSW) at different methane formation phases. Two stainless steel lysimeters, C1 and C2, were constructed by equipping a hydraulic cylinder to apply pressure load (42kPs) on the MSW. When MSW started to produce methane, C1 was compacted, but C2 was compacted when the methane production rate declined from the peak generation rate. Methane production of C1was inhibited by the compaction and resulted in producing a total of 106L methane (44L/kgVS). However, the compaction in C2 promoted MSW degradation resulting in producing a total of 298L methane (125L/kgVS). The concentrations of volatile fatty acids and chemical oxygen demand showed temporary increases, when pressure load was applied. It was considered that the increased substrate accessibility within MSW by compaction could cause either the inhibition or the enhancement of methane production, depending the tolerability of methanogens on the acidic inhibition. Leachate recirculation also gave positive effects on methane generation from wet waste in the decelerated methanogenic phase by increasing mass transfer and the concentrations of volatile fatty acids. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guven, Huseyin; Akca, Mehmet Sadik; Iren, Erol; Keles, Fatih; Ozturk, Izzet; Altinbas, Mahmut
2018-01-01
The main aim of the study was to evaluate the co-digestion performance of OFMSW with different wastes. Leachate, reverse osmosis (RO) concentrate collected from a leachate treatment facility and dewatered sewage sludge taken from a wastewater treatment plant (WWTP) were used for co-digestion in this paper. An extra effort was made to observe the effect of leachate inclusion in the co-digestion. In the study, the mono-digestion of OFMSW, leachate, RO concentrate and sewage sludge as well as digestion of 7 different waste mixtures were carried out for this objective. The experiments were carried out for approximately 50days under mesophilic conditions. The highest methane yield was 785L CH 4 /kg VS added in the reactor, which had only OFMSW. While the methane yield derived from OFMSW was found higher than previous studies, methane yield of leachate was found to be 110L CH 4 /kg VS added , which was lower than findings in the literature. The mono-substrate of OFMSW was followed by the reactor of having waste mixture of leachate+sewage sludge+OFMSW+water (C7) with 391L CH 4 /kg VS added , which was the only combination included water. In order to understand the effect of leachate and water inclusions on co-digestion, two separate waste combinations; leachate+sewage sludge+OFMSW+water (C7) and leachate+sewage sludge+OFMSW (C1) were prepared that had different amounts of leachate but same amounts of other wastes. The methane yield of leachate+sewage sludge+OFMSW+water (C7) indicated that addition of some water instead of leachate could stimulate biogas production. Methane yield of this reactor was found to be 71% higher than the waste combination of leachate+sewage sludge+OFMSW (C1). It could be thought that the high amount of non-biodegradable matters in leachate could be responsible for lower methane yield in leachate+sewage sludge+OFMSW (C1) reactor. Methane yields of the reactors showed that co-digestion of OFMSW and leachate could be a solution not only for treatment of leachate and but also increasing the biogas potential of leachate. Leachate addition could also adjust optimum total solids (TS) content in anaerobic digestion. It was also understood that RO concentrate did not affect the methane yield in a negative way. The similar characterization of leachate and RO concentrate in this study could offer the utilization of RO concentrate instead of leachate. The findings showed that volatile solids (VS) removals were changed from 32% to 61% in the reactors. While the reactor of leachate+RO concentrate+OFMSW (C6) had the highest VS removal, the reactor of the sole substrate leachate had the lowest VS removal. Copyright © 2017 Elsevier Ltd. All rights reserved.
González-Suárez, A; Pereda-Reyes, I; Pozzi, E; da Silva, A José; Oliva-Merencio, D; Zaiat, M
2016-04-01
The effect of natural mineral on the mono-digestion of maize straw was evaluated in continuously stirred tank reactors (CSTRs) at 38 °C. Different strategies of mineral addition were studied. The organic loading rate (OLR) was varied from 0.5 to 2.5 g volatile solid (VS) L(-1) d(-1). A daily addition of 1 g mineral L(-1) in reactor 2 (R2) diminished the methane production by about 11 % with respect to the initial phase. However, after a gradual addition of mineral, an average methane yield of 257 NmL CH4 g VS(-1) was reached and the methane production was enhanced by 30 % with regard to R1. An increase in the frequency of mineral addition did not enhance the methane production. The archaeal community was more sensitive to the mineral than the bacterial population whose similarity stayed high between R1 and R2. Significant difference in methane yield was found for both reactors throughout the operation.
Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna
2017-06-01
The effect of aerobic pretreatment and fly ash addition on the production of methane from mixed sludge is studied. Three assays with pretreated and not pretreated mixed sludge in the presence of fly ash (concentrations of 0, 10, 25, 50, 250 and 500mg/L) were run at mesophilic condition. It was found that the combined use of aerobic pretreatment and fly ash addition increases methane production up to 70% when the fly ash concentrations were lower than 50mg/L, while concentrations higher than 250mg/L cause up to 11% decrease of methane production. For the anaerobic treatment of mixed sludge without pretreatment, the fly ash improved methane generation at all the concentrations studied, with a maximum of 56%. The removal of volatile solids does not show an improvement compared to the separate use of an aerobic pre-treatment and fly ash addition. Therefore, the combined use of the aerobic pre-treatment and fly ash addition improves only the production of methane. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Wenzheng; Wang, Yanming; Song, Wujun; Li, Xueqin
2017-03-20
A multiband infrared diagnostic (MBID) method for methane emission monitoring in limited underground environments was presented considering the strong optical background of gas/solid attenuation. Based on spatial distribution of aerosols and complex refractive index of dust particles, forward calculations were carried out with/without methane to obtain the spectral transmittance through the participating atmosphere in a mine roadway. Considering the concurrent attenuation and absorption behavior of dust and gases, four infrared wavebands were selected to retrieve the methane concentration combined with a stochastic particle swarm optimization (SPSO) algorithm. Inversion results prove that the presented MBID method is robust and effective in identifying methane at concentrations of 0.1% or even lower with inversed relative error within 10%. Further analyses illustrate that the four selected wavebands are indispensable, and the MBID method is still valid with transmission signal disturbance in a conventional dust-polluted atmosphere under mechanized mining condition. However, the effective detection distance should be limited within 50 m to ensure inversed relative error less than 5% at 1% methane concentration.
Qin, Yong; Wang, Haoshu; Li, Xiangru; Cheng, Jay Jiayang; Wu, Weixiang
2017-12-01
Magnetic biochar is a potential economical anaerobic digestion (AD) additive. To better understand the possible role of magnetic biochar for the improvement of biomethanization performance and the retention of methanogens, magnetic biochar fabricated under different precursor concentrations were introduced into organic fraction of municipal solid waste (OFMSW) slurry AD system. Results showed that methane production in AD treatment with magnetic biochar fabricated under 3.2g FeCl 3 :100g rice-straw ratio increased by 11.69% compared with control treatment without biochar addition, due to selective enrichment of microorganisms participating in anaerobic digestion on magnetic biochar. AD treatment with magnetic biochar fabricated under 32g FeCl 3 :100g rice-straw ratio resulted in 38.34% decreasement of methane production because of the competition of iron oxide for electron. Furthermore, 25% of total methanogens were absorbed on magnetic biochar and can be harvested with magnet, which can offer a potential solution for preventing the methanogens loss in the anaerobic digesters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zheng, Wei; Lü, Fan; Phoungthong, Khamphe; He, Pinjing
2014-06-01
The evolution of spectral properties during anaerobic digestion (AD) of 29 types of biodegradable solid waste was investigated to determine if spectral characteristics could be used for assessment of biological stabilization during AD. Biochemical methane potential tests were conducted and spectral indicators (including the ratio of ultraviolet-visible absorbance at 254nm to dissolved organic carbon concentration (SUVA254), the ratio of ultraviolet-visible absorbance measured at 465nm and 665nm (E4/E6), and the abundance of fluorescence peaks) were measured at different AD phases. Inter-relationship between organic degradation and spectral indicators were analyzed by principle component analysis. The results shows that from methane production phase to the end of methane production phase, SUVA254 increased by 0.16-10.93 times, the abundance of fulvic acid-like compounds fluorescence peak increased by 0.01-0.54 times, the abundance of tyrosine fluorescence peak decreased by 0.03-0.64 times. Therefore, these indicators were useful to judge the course of mixed waste digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron.
Zhang, Yaobin; Feng, Yinghong; Yu, Qilin; Xu, Zibin; Quan, Xie
2014-05-01
Anaerobic digestion of waste activated sludge usually requires pretreatment procedure to improve the bioavailability of sludge, which involves considerable energy and high expenditures. This study proposes a cost-effective method for enhanced anaerobic digestion of sludge without a pretreatment by directly adding iron into the digester. The results showed that addition of Fe(0) powder could enhance 14.46% methane yield, and Fe scrap (clean scrap) could further enhance methane yield (improving rate 21.28%) because the scrap has better mass transfer efficiency with sludge and liquid than Fe(0) powder. The scrap of Fe with rust (rusty scrap) could induce microbial Fe(III) reduction, which resulted in achieving the highest methane yield (improving rate 29.51%), and the reduction rate of volatile suspended solids (VSS) was also highest (48.27%) among Fe powder, clean scrap and rusty scrap. PCR-DGGE proved that the addition of rusty scrap could enhance diversity of acetobacteria and enrich iron-reducing bacteria to enhance degradation of complex substrates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rincón, B; Bujalance, L; Fermoso, F G; Martín, A; Borja, R
2013-07-01
The effect of thermal pretreatment on two-phase olive mill solid waste was evaluated by chemical oxygen demand solubilisation and biochemical methane potential (BMP) tests. Temperatures of 100, 120, 160 and 180°C were applied during 60, 120 and 180 min for each temperature studied. The highest chemical oxygen demand solubilisation after pretreatment (42%) was found for 120 and 180°C during 180 min in both cases. These two conditions were selected for the BMP tests. BMP tests showed two different stages: a first exponential stage and a sigmoidal zone after a lag period. No influence of the pretreatment was observed on the kinetic constant of the first-stage. Clear difference was observed in the maximum methane production rate of the second stage, 76.8 mL CH4/(g VS day) was achieved after pretreatment at 180°C (180 min), value 22% and 40% higher than that obtained for the untreated and pretreated OMSW at 120°C, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Methane hydrate - A major reservoir of carbon in the shallow geosphere?
Kvenvolden, K.A.
1988-01-01
Methane hydrates are solids composed of rigid cages of water molecules that enclose methane. Sediment containing methane hydrates is found within specific pressure-temperature conditions that occur in regions of permafrost and beneath the sea in outer continental margins. Because methane hydrates are globally widespread and concentrate methane within the gas-hydrate structure, the potential amount of methane present in the shallow geosphere at subsurface depths of < ???2000 m is very large. However, estimates of the amount are speculative and range over about three orders of magnitude, from 2 ?? 103 to 4 ?? 106 Gt (gigatons = 1015 g) of carbon, depending on the assumptions made. The estimate I favor is ??? 1 ?? 104 Gt of carbon. The estimated amount of organic carbon in the methane-hydrate reservoir greatly exceeds that in many other reservoirs of the global carbon cycle - for example, the atmosphere (3.6 Gt); terrestrial biota (830 Gt); terrestrial soil, detritus and peat (1960 Gt); marine biota (3 Gt); and marine dissolved materials (980 Gt). In fact, the amount of carbon may exceed that in all fossil fuel deposits (5 ?? 103 Gt). Because methane hydrates contain so much methane and occur in the shallow geosphere, they are of interest as a potential resource of natural gas and as a possible source of atmospheric methane released by global warming. As a potential resource, methane hydrates pose both engineering and production problems. As a contributor to a changing global climate, destabilized methane hydrates, particularly those in shallow, nearshore regions of the Arctic Ocean, may have some effect, but this effect will probably be minimal, at least during the next 100 years. ?? 1988.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng
Here, the conversion of methane into alcohols under moderate reaction conditions is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can convert methane to methanol and ethanol in a single, steady-state process at 723 K using O 2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO 2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to themore » synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less
Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng; ...
2017-08-08
Here, the conversion of methane into alcohols under moderate reaction conditions is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can convert methane to methanol and ethanol in a single, steady-state process at 723 K using O 2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO 2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to themore » synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less
Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature
2013-01-01
In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield and methane contents were evaluated. Since poultry manure is a poor substrate, in term of the availability of the nutrients, external supplementation of carbon has to be regularly performed, in order to achieve a stable and efficient process. The complete-mix, pilot-scale digester with working volume of 70 L was used. The digestion operated at 25°C, 30°C and 35°C with organic loading rates of 1.0, 2.0, 2.5, 3.0, 3.5 and 4.0 kg Volatile solid/m3d and a HRT of 15 days. At a temperature of 35°C, the methane yield was increased by 43% compared to 25°C. Anaerobic co-digestion appeared feasible with a loading rate of 3.0 kg VS/m3d at 35°C. At this state, the specific methane yield was calculated about 0.12 m3/kg VS with a methane content of 53–70.2% in the biogas. The volatile solid (VS) removal was 72%. As a result of volatile fatty acid accumulation and decrease in pH, when the loading rate was less than 1 or greater than 4 kg VS/m3d, the process was inhibited or overloaded, respectively. Both the lower and higher loading rates resulted in a decline in the methane yield. PMID:24502409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca; Colturato, L.F.; Font, X.
2010-10-15
Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSWmore » under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.« less
Martín-González, L; Colturato, L F; Font, X; Vicent, T
2010-10-01
Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW. (c) 2010 Elsevier Ltd. All rights reserved.
Eddy Covariance Measurements of Methane Flux Using an Open-Path Gas Analyzer
NASA Astrophysics Data System (ADS)
Burba, G.; Anderson, T.; Zona, D.; Schedlbauer, J.; Anderson, D.; Eckles, R.; Hastings, S.; Ikawa, H.; McDermitt, D.; Oberbauer, S.; Oechel, W.; Riensche, B.; Starr, G.; Sturtevant, C.; Xu, L.
2008-12-01
Methane is an important greenhouse gas with a warming potential of about 23 times that of carbon dioxide over a 100-year cycle (Houghton et al., 2001). Measurements of methane fluxes from the terrestrial biosphere have mostly been made using flux chambers, which have many advantages, but are discrete in time and space and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in- situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and remote deployment due to lower power demands in the absence of a pump. The prototype open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 6 ppb at 10 Hz sampling in controlled laboratory environment. Field maintenance is minimized by a self-cleaning mechanism to keep the lower mirror free of contamination. Eddy Covariance measurements of methane flux using the prototype open-path methane analyzer are presented for the period between 2006 and 2008 in three ecosystems with contrasting weather and moisture conditions: (1) Fluxes over a short-hydroperiod sawgrass wetland in the Florida Everglades were measured in a warm and humid environment with temperatures often exceeding 25oC, variable winds, and frequent heavy dew at night; (2) Fluxes over coastal wetlands in an Arctic tundra were measured in an environment with frequent sub-zero temperatures, moderate winds, and ocean mist; (3) Fluxes over pacific mangroves in Mexico were measured in an environment with moderate air temperatures high winds, and sea spray. Presented eddy covariance flux data were collected from a co-located prototype open-path methane analyzer, LI-7500, and sonic anemometer at a 10 Hz rate. Data were processed using EdiRe software following standard FluxNet methodology, including stationarity tests, frequency response, and Webb- Pearman-Leuning density terms. Further details are provided in the extended conference paper at: ftp://ftp.licor.com/public/GBurba/AGU LI- 7700 Paper-2008.pdf
Jang, H M; Park, S K; Ha, J H; Park, J M
2014-01-01
In this study, a process that combines the mesophilic anaerobic digestion (MAD) process with thermophilic aerobic digestion (TAD) for high-strength food wastewater (FWW) treatment was developed to examine the removal of organic matter and methane production. All effluent discharged from the MAD process was separated into solid and liquid portions. The liquid part was discarded and the sludge part was passed to the TAD process for further degradation. Then, the digested sludge from the TAD process was recycled back to the MAD unit to achieve low sludge discharge from the combined process. The reactor combination was operated in two phases: during Phase I, 40 d of total hydraulic retention time (HRT) was applied; during Phase II, 20 d was applied. HRT of the TAD process was fixed at 5 d. For a comparison, a control process (single-stage MAD) was operated with the same HRTs of the combined process. Our results indicated that the combined process showed over 90% total solids, volatile solids and chemical oxygen demand removal efficiencies. In addition, the combined process showed a significantly higher methane production rate than that of the control process. Consequently, the experimental data demonstrated that the combined MAD-TAD process was successfully employed for high-strength FWW treatment with highly efficient organic matter reduction and methane production.
Ni modified ceramic anodes for direct-methane solid oxide fuel cells
Xiao, Guoliang; Chen, Fanglin
2016-01-19
In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.
Direct use of methane in coal liquefaction
Sundaram, Muthu S.; Steinberg, Meyer
1987-01-01
This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.
Dhiman, Saurabh Sudha; Shrestha, Namita; David, Aditi; Basotra, Neha; Johnson, Glenn R; Chadha, Bhupinder S; Gadhamshetty, Venkataramana; Sani, Rajesh K
2018-06-01
Residual solid and liquid streams from the one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process were treated with two separate biochemical routes for renewable energy transformation. The solid residual stream was subjected to thermophilic anaerobic digestion (TAD), which produced 95 ± 7 L methane kg -1 volatile solid with an overall energy efficiency of 12.9 ± 1.7%. A methanotroph, Methyloferula sp., was deployed for oxidation of mixed TAD biogas into methanol. The residual liquid stream from CRUDE process was used in a Microbial Fuel Cell (MFC) to produce electricity. Material balance calculations confirmed the integration of biochemical routes (i.e. CRUDE, TAD, and MFC) for developing a sustainable approach of energy regeneration. The current work demonstrates the utilization of different residual streams originated after food waste processing to release minimal organic load to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cocoa residues as viable biomass for renewable energy production through anaerobic digestion.
Acosta, Nayaret; De Vrieze, Jo; Sandoval, Verónica; Sinche, Danny; Wierinck, Isabella; Rabaey, Korneel
2018-05-31
The aim of this work was to evaluate the bioenergy potential of cocoa residue via anaerobic digestion. Batch and fed-batch lab-scale reactors were operated under low and high solids conditions. In the batch tests, 59 ± 4% of Chemical Oxygen Demand (COD) was recovered as methane. This corresponded with an average methane yield of 174 (wet) and 193 (dry) L kg -1 volatile solids fed, whereas a series of fed-batch reactors produced 70 ± 24 (wet) and 107 ± 39 (dry) L CH 4 kg -1 volatile solids fed during stable conditions. A case study was developed for canton Balao (Ecuador) based on our experimental data, operational estimates and available cocoa waste in the area. Annually, 8341 MWh could be produced, meeting 88% of the current electricity demand in Balao. This case study proves the potential for cocoa waste as a source of renewable energy in rural areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Corton, John; Toop, Trisha; Walker, Jonathan; Donnison, Iain S; Fraser, Mariecia D
2014-10-01
The integrated generation of solid fuel and biogas from biomass (IFBB) system is an innovative approach to maximising energy conversion from low input high diversity (LIHD) biomass. In this system water pre-treated and ensiled LIHD biomass is pressed. The press fluid is anaerobically digested to produce methane that is used to power the process. The fibrous fraction is densified and then sold as a combustion fuel. Two process options designed to concentrate the press fluid were assessed to ascertain their influence on productivity in an IFBB like system: sedimentation and the omission of pre-treatment water. By concentrating press fluid and not adding water during processing, energy production from methane was increased by 75% per unit time and solid fuel productivity increased by 80% per unit of fluid produced. The additional energy requirements for pressing more biomass in order to generate equal volumes of feedstock were accounted for in these calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Methane-free biogas for direct feeding of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P.
This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H 2/CO 2 mixture instead of conventional CH 4/CO 2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it. In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H 2/CO 2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650-800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits. A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm -2 with biogas, versus 0.55 W cm -2 with H 2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it was demonstrated the interest relying on a sustainable biomass processing which produces a biogas which can be directly fed to SOFC using traditional anode materials and avoiding the reformer component since the methane-free mixture is already safe for carbon deposition.
Carrillo-Reyes, Julian; Buitrón, Germán
2016-12-01
A native microalgae consortium treated under thermal-acidic hydrolysis was used to produce hydrogen and methane in a two-step sequential process. Different acid concentrations were tested, generating hydrogen and methane yields of up to 45mLH 2 gVS -1 and 432mLCH 4 gVS -1 , respectively. The hydrogen production step solubilized the particulate COD (chemical oxygen demand) up to 30%, creating considerable amounts of volatile fatty acids (up to 10gCODL -1 ). It was observed that lower acid concentration presented higher hydrogen and methane production potential. The results revealed that thermal acid hydrolysis of a native microalgae consortium is a simple but effective strategy for producing hydrogen and methane in the sequential process. In addition to COD removal (50-70%), this method resulted in an energy recovery of up to 15.9kJ per g of volatile solids of microalgae biomass, one of the highest reported. Copyright © 2016 Elsevier Ltd. All rights reserved.
Methane production from wheat straw with anaerobic sludge by heme supplementation.
Xi, Yonglan; Chang, Zhizhou; Ye, Xiaomei; Xu, Rong; Du, Jing; Chen, Guangyin
2014-11-01
Wheat straw particles were directly used as substrate for batch anaerobic digestion with anaerobic sludge under 35°C to evaluate the effects of adding heme on methane production. When 1mg/l heme was added to the fermentation process with no agitated speed, a maximum cumulative methane production of 12227.8ml was obtained with cumulative methane yield of wheat straw was 257.4ml/g-TS (total solid), which was increased by 20.6% compared with 213.5ml/g-TS of no heme was added in the reactor. Meanwhile, oxido-reduction potential (ORP) level was decreased, the activity of coenzyme F420 was significantly improved and NADH/NAD(+) ratio were the highest than other experimental groups. These results suggest that heme-supplemented anaerobic sludge with no agitated speed may be providing a more reductive environment, which is a cost-effective method of anaerobic digestion from biomass waste to produce methane with less energy consuming. Copyright © 2014 Elsevier Ltd. All rights reserved.
Irradiation Products On Dwarf Planet Makemake
NASA Astrophysics Data System (ADS)
Brown, M. E.; Schaller, E. L.; Blake, G. A.
2015-03-01
The dark, reddish tinged surfaces of icy bodies in the outer solar system are usually attributed to the long term irradiation of simple hydrocarbons leading to the breaking of C-H bonds, loss of hydrogen, and the production of long carbon chains. While the simple hydrocarbon methane is stable and detected on the most massive bodies in the Kuiper Belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and the possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.4 to 2.5 μm in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detection of solid ethylene and evidence for acetylene and high-mass alkanes—all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.
A modeling study of methane hydrate decomposition in contact with the external surface of zeolites.
Smirnov, Konstantin S
2017-08-30
The behavior of methane hydrate (MH) enclosed between the (010) surfaces of the silicalite-1 zeolite was studied by means of molecular dynamics simulations at temperatures of 150 and 250 K. Calculations reveal that the interaction with the hydrophilic surface OH groups destabilizes the clathrate structure of hydrate. While MH mostly conserves the structure in the simulation at the low temperature, thermal motion at the high temperature breaks the fragilized cages of H-bonded water molecules, thus leading to the release of methane. The dissociation proceeds in a layer-by-layer manner starting from the outer parts of the MH slab until complete hydrate decomposition. The released CH 4 molecules are absorbed by the microporous solid, whereas water is retained at the surfaces of hydrophobic silicalite and forms a meniscus in the interlayer space. Methane uptake reaches 70% of the silicalite sorption capacity. The energy necessary for the endothermic MH dissociation is supplied by the exothermic methane absorption by the zeolite.
NASA Astrophysics Data System (ADS)
Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho
2017-03-01
Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.
The interaction of climate change and methane hydrates
Ruppel, Carolyn D.; Kessler, John D.
2017-01-01
Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.
The interaction of climate change and methane hydrates
NASA Astrophysics Data System (ADS)
Ruppel, Carolyn D.; Kessler, John D.
2017-03-01
Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.
The interaction of climate change and methane hydrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruppel, Carolyn D.; Kessler, John D.
Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perceptionmore » that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.« less
The interaction of climate change and methane hydrates
Ruppel, Carolyn D.; Kessler, John D.
2016-12-14
Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perceptionmore » that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.« less
Assessment of methane generation, oxidation, and emission in a subtropical landfill test cell.
Moreira, João M L; Candiani, Giovano
2016-08-01
This paper presents results of a methane balance assessment in a test cell built in a region with a subtropical climate near São Paulo, Brazil. Measurements and calculations were carried out to obtain the total methane emission to the atmosphere, the methane oxidation rate in the cover, and the total methane generation rate in the test cell. The oxidation rate was obtained through a calculation scheme based on a vertical one-dimensional methane transport in the cover region. The measured maximum and mean methane fluxes to the atmosphere were 124.4 and 15.87 g m(-2) d(-1), respectively. The total methane generation rate obtained for the test cell was 0.0380 ± 0.0075 mol s(-1). The results yielded that 69 % of the emitted methane occurred through the central well and 31 % through the cover interface with the atmosphere. The evaluations of the methane oxidation fraction for localized conditions in the lateral embankment of the test cell yielded 0.36 ± 0.11, while for the whole test cell yielded 0.15 ± 0.10. These results conciliate localized and overall evaluations reported in the literature. The specific methane generation rate obtained for the municipal solid waste with an age of 410 days was 317 ± 62 mol year(-1) ton(-1). This result from the subtropical São Paulo region is lower than reported figures for tropical climates and higher than reported figures for temperate climates.
Solid fossil-fuel recovery by electrical induction heating in situ - A proposal
NASA Astrophysics Data System (ADS)
Fisher, S.
1980-04-01
A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.
Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.
2013-01-01
Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864
Impact of paper and cardboard suppression on OFMSW anaerobic digestion.
Fonoll, X; Astals, S; Dosta, J; Mata-Alvarez, J
2016-10-01
Mechanical-biological treatment plants treat municipal solid waste to recover recyclable materials, nutrients and energy. Waste paper and cardboard (WP), the second main compound in municipal solid waste (∼30% in weight basis), is typically used for biogas generation. However, its recovery is gaining attention as it can be used to produce add-value products like bioethanol and residual derived fuel. Nevertheless, WP suppression or replacement will impact anaerobic digestion in terms of biogas production, process stability and digestate management. Two lab-scale reactors were used to assess the impact of WP in anaerobic digestion performance. A control reactor was only fed with biowaste (BioW), while a second reactor was fed with two different mixtures of BioW and WP, i.e. 85/15% and 70/30% (weight basis). Results indicate that either replacing half of the WP by BioW or removing half of the WP has little impact on the methane production. When removing half of the WP, methane production could be sustained by a larger waste biodegradability. The replacement of all WP by BioW increased the reactor methane production (∼37%), while removing all WP would have reduced the methane production about 15%. Finally, replacing WP loading rate by BioW led to a system less tolerant to instability periods and with poorer digestate quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
The construction and operation of a low-cost poultry waste digester.
Steinsberger, S C; Shih, J C
1984-05-01
A simple and low-cost poultry waste digester (PWD) was constructed to treat the waste from 4000 caged laying hens on University Research Unit No. 2 at North Carolina State University. The system was built basically of a plastic lining with insulation, a heating system, a hot-water tank, and other metering equipment. It was operated at 50 degrees C and pH 7.5-8.0. The initiation of methane production was achieved using the indigenous microflora in the poultry waste. At an optimal loading rate (7.5 kg volatile solids/m(3) day), the PWD produced biogas (55% methane) at a rate of 4.0 m(3)/m(3) day. The PWD was biologically stable and able to tolerate temporary overloads and shutdowns. A higher loading rate failed to maintain a high gas production rate and caused drops in methane content and pH value. Under optimal conditions, a positive energy balance was demonstrated with a net surplus of 50.6% of the gross energy. For methane production, the PWD system was proved to be technically feasible. The simple design and inexpensive materials used for this model could significantly reduce the cost of digestion compared to more conventional systems. More studies are needed to determine the durability, the required maintenance of the system, and the most economical method of biogas and solid residue utilization.
Remote-Raman and Micro-Raman Studies of Solid CO2, CH4, Gas Hydrates and Ice
NASA Technical Reports Server (NTRS)
Sharma, S. K.; Misra, A. K.; Lucey, P. G.; Exarhos, G. J.; Windisch, C. F., Jr.
2004-01-01
It is well known that on Mars CO2 is the principal constituent of the thin atmosphere and on a seasonal basis CO2 snow and frost coats the polar caps. Also over 25% of the Martian atmosphere freezes out and sublimes again each year. The Mars Odyssey Emission Imaging system (THEMIS) has discovered water ice exposed near the edge of Mars southern perennials cap. In recent years, it has been suggested that in Martian subsurface CO2 may exist as gas hydrate (8CO2 + 44 H2O) with melting temperature of 10C. Since the crust of Mars has been stable for enough time there is also a possibility that methane formed by magmatic processes and/or as a byproduct of anaerobic deep biosphere activity to have raised toward the planet s surface. This methane would have been captured and stored as methane hydrate, which concentrates methane and water. Determination of abundance and distribution of these ices on the surface and in the near surface are of fundamental importance for understanding Martian atmosphere, and for future exploration of Mars. In this work, we have evaluated feasibility of using remote Raman and micro-Raman spectroscopy as potential nondestructive and non-contact techniques for detecting solid CO2, CH4 gas, and gas hydrates as well as water-ice on planetary surfaces.
Genifuel Hydrothermal Processing Bench Scale Technology ...
Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C and 2900 psig on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350◦C and 2900 psig on the HTL aqueous phase product using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbon balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. It should be noted that HTL test results for secondary sludge may have been affected by equipment problems. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the product of HTL tests with primary sludge, secondary sludge, and
High pressure flame system for pollution studies with results for methane-air diffusion flames
NASA Technical Reports Server (NTRS)
Miller, I. M.; Maahs, H. G.
1977-01-01
A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.
Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde
2015-02-01
Duplicate carefully-characterized municipal solid waste (MSW) specimens were reconstituted with waste constituents obtained from a MSW landfill and biodegraded in large-scale landfill simulators for about a year. Repeatability and relationships between changes in physical, chemical, and microbial characteristics taking place during the biodegradation process were evaluated. Parameters such as rate of change of soluble chemical oxygen demand in the leachate (rsCOD), rate of methane generation (rCH4), rate of specimen volume reduction (rVt), DNA concentration in the leachate, and archaeal community structures in the leachate and solid waste were monitored during operation. The DNA concentration in the leachate was correlated to rCH4 and rVt. The rCH4 was related to rsCOD and rVt when waste biodegradation was intensive. The structures of archaeal communities in the leachate and solid waste of both simulators were very similar and Methanobacteriaceae were the dominant archaeal family throughout the testing period. Monitoring the chemical and microbial characteristics of the leachate was informative of the biodegradation process and volume reduction in the simulators, suggesting that leachate monitoring could be informative of the extent of biodegradation in a full-scale landfill. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanakya, H.N.; Sharma, Isha; Ramachandra, T.V.
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their compositionmore » was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.« less
Chanakya, H N; Sharma, Isha; Ramachandra, T V
2009-04-01
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.
Meng, Lingyu; Xie, Li; Kinh, Co Thi; Suenaga, Toshikazu; Hori, Tomoyuki; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki
2018-03-01
This study investigated the effect of the feedstock-to-inoculum (F/I) ratio on performance of the solid-state anaerobic co-digestion of pig urine and rice straw inoculated with a solid digestate, and clarified the microbial community succession. A 44-day biochemical methane potential test at F/I ratios of 0.5, 1, 2 and 3 at 55 °C and a 35-day large-scale batch test at F/I ratios of 0.5 and 3 at 55 °C were conducted to investigate the effects of F/I ratio on anaerobic digestibility and analyze microbial community succession, respectively. The highest cumulative methane yield was 353.7 m 3 /t VS in the large-scale batch test. Volatile fatty acids did not accumulate at any F/I ratios. The volatile solids reduction rate was highest at a F/I ratio of 0.5. Microbial community structures were similar between F/I ratios of 3 and 0.5, despite differences in digestion performance, suggesting that stable operation can be achieved at these ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methane flux from the Amazon River floodplain - Emissions during rising water
NASA Technical Reports Server (NTRS)
Bartlett, Karen B.; Crill, Patrick M.; Bonassi, Jose A.; Richey, Jeffrey E.; Harriss, Robert C.
1990-01-01
Methane flux data obtained during a period of high and falling water level in the course of the dry season of 1985 (the Amazon Boundary Layer Experiment, ABLE 2A) and a period of moderate and rising water during the wet season of 1987 (ABLE 2B) were used to characterize the influence of seasonal variations in the vegetation, water column depth, and chemistry, as well as atmospheric dynamics, on the methane flux from the Amazon River floodplain. It was found that the annual estimate of methane from wetlands is identical to the annual estimate made by Matthews and Fung (1987) (both at 111 Tg). However, it was found that peatlands between 50 and 70 N contribute 39 Tg, with the large areas of forested and nonforested bogs making up 37 Tg of this figure, while the figures of Matthews and Fung were 63 and 62 Tg, respectively.
Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai
2018-02-01
Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.
Geology beneath and beside the notorious Payatas open dump, Metro Manila, Philippines
NASA Astrophysics Data System (ADS)
Tomarong, C.; Arcilla, C.; de Sales, L.; Chua, S.; Garcia, E.; Pamintuan, G.
2003-04-01
With a minimum of 6000 tonnes/day municipal waste output, and with NO existing operational sanitary landfill and with incineration illegal, Metro Manila has a very serious solid waste disposal problem. Unsorted municipal waste are being piled in open dumps, the most notorious of which is the Payatas open dump. A recent, tragic garbage-slide in this open dump caused dozens of deaths, news of which were broadcast internationally. Political expediency laced with a lot of corruption, rather than sound science, was the main basis for selecting this site as an open dump. As an example, this dump is situated < 1 km from the Novaliches Watershed Reservation, one of the main sources of drinking water for Metro Manila’s 12 million population! Yet, after dumping operations that have lasted more than 10 years, only recently were the preliminary geologic studies begun. Payatas is not a designed landfill and its untreated leachate is openly polluting the headwaters of the Marikina and Pasig Rivers. In addition, during the summer months, there is always the constant threat of fire due to methane induced burning from the dump, aside from the aerial pollution from dioxins and furans derived from incomplete combustion of municipal solid waste. With limited funding from the Quezon City government, a feasibility study was conducted to assess the methane generation potential of Payatas. This interdisciplinary study comprised bedrock geological studies, topographic mapping of the dump, drilling of the dump to obtain stratigraphic solid waste samples for waste characterization, laying of horizontal methane and dewatering pipes, and preliminary methane flow studies. The waste characterization has highlighted the unusually high organic (especially yard waste) component of the solid waste dumped at Payatas. Waste characterization shows that a significant portion of the waste is plastics. Several cross-sections cut across the dump show that the side slopes of the dump are on the average steeper than the pre-dump slopes. The “bedrock” of the Payatas dump are conglomerate members of the Pleistocene volcaniclastic Guadualupe Formation. Studies are still to be done on the extent of pollution on surface and groundwater in the Payatas environs.
Zheng, Xiong; Wu, Lijuan; Chen, Yinguang; Su, Yinglong; Wan, Rui; Liu, Kun; Huang, Haining
2015-01-01
Anaerobic co-digestion of primary and excess sludge is regarded as an efficient way to reuse sludge organic matter to produce methane. In this study, short-term and long-term exposure experiments were conducted to investigate the possible effects of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) on methane production from anaerobic co-digestion of primary and excess sludge. The data showed that TiO2 NPs had no measurable impact on methane production, even at a high concentration (150 mg/g total suspended solids (TSS)). However, short-term (8 days) exposure to 30 or 150 mg/g-TSS of ZnO NPs significantly decreased methane production. More importantly, these negative effects of ZnO NPs on anaerobic sludge co-digestion were not alleviated by increasing the adaptation time to 105 days. Further studies indicated that the presence of ZnO NPs substantially decreased the abundance of methanogenic archaea, which reduced methane production. Meanwhile, the activities of some key enzymes involved in methane production, such as protease, acetate kinase, and coenzyme F420, were remarkably inhibited by the presence of ZnO NPs, which was also an important reason for the decreased methane production. These results provide a better understanding of the potential risks of TiO2 and ZnO NPs to methane production from anaerobic sludge co-digestion.
Pretreatment of Cottage Cheese to Enhance Biogas Production
Salgaonkar, Bhakti; Mutnuri, Srikanth
2014-01-01
This study evaluated the possibility of pretreating selected solid fraction of an anaerobic digester treating food waste to lower the hydraulic retention time and increase the methane production. The study investigated the effect of different pretreatments (thermal, chemical, thermochemical and enzymatic) for enhanced methane production from cottage cheese. The most effective pretreatments were thermal and enzymatic. Highest solubilisation of COD was observed in thermal pretreatment, followed by thermochemical. In single enzyme systems, lipase at low concentration gave significantly higher methane yield than for the experiments without enzyme additions. The highest lipase dosages decreased methane yield from cottage cheese. However, in case of protease enzyme an increase in concentration of the enzyme showed higher methane yield. In the case of mixed enzyme systems, pretreatment at 1 : 2 ratio of lipase : protease showed higher methane production in comparison with 1 : 1 and 2 : 1 ratios. Methane production potentials for different pretreatments were as follows: thermal 357 mL/g VS, chemical 293 mL/g VS, and thermochemical 441 mL/g VS. The average methane yield from single enzyme systems was 335 mL/g VS for lipase and 328 mL/g VS for protease. Methane potentials for mixed enzyme ratios were 330, 360, and 339 mL/g VS for 1 : 1, 1 : 2, and 2 : 1 lipase : protease, respectively. PMID:24995288
NASA Astrophysics Data System (ADS)
Wolfe, A. L.; Wikin, R. T.
2017-12-01
We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Over a 17-month study period, water samples were obtained from domestic water wells and monitoring wells located within the impacted area, and analyzed for 245 constituents, including organic compounds, nutrients, major and trace elements, dissolved gases, and isotopic tracers for carbon, sulfur, oxygen, and hydrogen. Multiple lines of evidence suggest that sulfate-dependent methane biodegradation, which involves the oxidation of methane (CH4) to carbon dioxide (CO2) using sulfate (SO42-) as the terminal electron acceptor, is occurring: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher molecular weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. Groundwater-methane attenuation is linked to the production of dissolved sulfide, and elevated dissolved sulfide concentrations represent an undesirable secondary water quality impact. The biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic, chromium, cobalt, nickel, and lead, likely due to the microbial production of hydrogen sulfide, which favors stabilization of metals in aquifer solids.
Ensiling of seaweed for a seaweed biofuel industry.
Herrmann, Christiane; FitzGerald, Jamie; O'Shea, Richard; Xia, Ao; O'Kiely, Pádraig; Murphy, Jerry D
2015-11-01
Effective biogas production from seaweed necessitates harvest at times of peak quality of biomass and low-loss preservation for year-around supply. Ensiling of five seaweed species and storage up to 90days was investigated as a method to preserve the methane yield potential. Adequate acidification by natural lactic acid fermentation was difficult due to low rapidly fermentable carbohydrate contents, high buffering capacities and low initial numbers of lactic acid bacteria. Nevertheless, products of silage fermentation increased methane yields by up to 28% and compensated for volatile solid losses during ensiling. Preservation of the original methane yield potential was achieved for four of five seaweed species, provided that silage effluent is collected and utilised. 10-28% of the ensiled biomass was released as effluent with methane yields of 218-423LNkg(-1) VS. If further optimised, ensiling represents an effective method of preservation crucial for an efficient seaweed biofuel industry. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, V.; Fannin, K.F.; Biljetina, R.
1986-07-01
The Institute of Gas Technology (IGT) conducted a comprehensive laboratory-scale research program to develop and optimize the anaerobic digestion process for producing methane from water hyacinth and sludge blends. This study focused on digester design and operating techniques, which gave improved methane yields and production rates over those observed using conventional digesters. The final digester concept and the operating experience was utilized to design and operate a large-scale experimentla test unit (ETU) at Walt Disney World, Florida. This paper describes the novel digester design, operating techniques, and the results obtained in the laboratory. The paper also discusses a kinetic modelmore » which predicts methane yield, methane production rate, and digester effluent solids as a function of retention time. This model was successfully utilized to predict the performance of the ETU. 15 refs., 6 figs., 6 tabs.« less
Direct use of methane in coal liquefaction
Sundaram, M.S.; Steinberg, M.
1985-06-19
This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.
Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.
Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter
2017-01-10
An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quinn, Jason C; Hanif, Asma; Sharvelle, Sybil; Bradley, Thomas H
2014-11-01
This study presents experimental measurements of the biochemical methane production for whole and lipid extracted Nannochloropsis salina. Results show whole microalgae produced 430 cm(3)-CH4 g-volatile solids(-1) (g-VS) (σ=60), 3 times more methane than was produced by the LEA, 140 cm(3)-CH4 g-VS(-1) (σ=30). Results illustrate current anaerobic modeling efforts in microalgae to biofuel assessments are not reflecting the impact of lipid removal. On a systems level, the overestimation of methane production is shown to positively skew the environmental impact of the microalgae to biofuels process. Discussion focuses on a comparison results to those of previous anaerobic digestion studies and quantifies the corresponding change in greenhouse gas emissions of the microalgae to biofuels process based on results from this study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mechanical instability of monocrystalline and polycrystalline methane hydrates
Wu, Jianyang; Ning, Fulong; Trinh, Thuat T.; Kjelstrup, Signe; Vlugt, Thijs J. H.; He, Jianying; Skallerud, Bjørn H.; Zhang, Zhiliang
2015-01-01
Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation and their grain-boundary structures have not yet been elucidated at the molecular level. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected crossover from strengthening to weakening in polycrystals. Upon uniaxial depressurisation, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilises the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insight not only into the metastable structures of grain boundaries, but also into unusual ductile flow with hydrate dissociation as observed during macroscopic compression experiments. PMID:26522051
Methane production by anaerobic digestion of Bermuda grass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klass, D.L.; Ghosh, S.
1979-01-01
Bermuda grass (Cynodon dactylon) is one of the high-yield warm-season grasses that has been suggested as a promising raw material for conversion to methane. Experimental work performed with laboratory digesters to study the anaerobic digestion of Coastal Bermuda grass harvested in Louisiana and having a C/N ratio of 24 is described. Methane yields of about 1.9 SCF/lb of volatile solids( VS) added were observed under conventional mesophilic high-rate conditions. When supplemental nitrogen additions were made, the yields increased up to 3.5 SCF/lb of VS added indicating that the nitrogen content of the grass examined was insufficient to sustain high-rate digestionmore » at the higher yield level. Thermophilic digestion with supplemental nitrogen additions afforded methane yields of about 2.7 SCF/lb VS added. Carbon and energy balances were calculated and the relative biodegradabilities of the organics were estimated.« less
Development of a carbon formation reactor for carbon dioxide reduction
NASA Technical Reports Server (NTRS)
Noyes, G.
1985-01-01
Applied research, engineering development, and performance evaluation were conducted on a process for formation of dense carbon by pyrolysis of methane. Experimental research showed that dense (0.7 to 1.6 g/cc bulk density and 1.6 to 2.2 g/cc solid density) carbon can be produced by methane pyrolysis in quartzwool-packed quartz tubes at temperatrues of 1100 to 1300 C. This result supports the condensation theory of pyrolytic carbon formation from gaseous hydrocarbons. A full-scale Breadboard Carbon Formation Reactor (CFR) was designed, fabricated, and tested at 1100 to 1200 C with 380 to 2280 sccm input flows of methane. Single-pass conversion of methane to carbon ranged from 60 to 100 percent, with 89 percent average conversion. Performance was projected for an Advanced Carbon Reactor Subsystem (ACRS) which indicated that the ACRS is a viable option for management of metabolic carbon on long-duration space missions.
NASA Astrophysics Data System (ADS)
Trisakti, B.; Irvan, Mahdalena; Taslim; Turmuzi, M.
2017-06-01
This study aimed to determine the effect of temperature on methanogenesis stage of conversion of palm oil mill effluent into biogas. Methanogenesis is the second stage of methanogenic anaerobic digestion. Improved performance of the methanogenesis process was determined by measuring the growth of microorganisms, degradation of organic materials, biogas production and composition. Initially, the suitable loading up was determined by varying the HRT 100, 40, 6, and 4.0 days in the continuous stirred tank reactor (CSTR) with mixing rate 100 rpm, pH 6.7-7.5 at room temperature. Next, effect of temperature on the process was determined by varying temperature at mesophilic range (30-42°C) and thermophilic range (43-55°C). Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Degradation of organic content i.e. VS decomposition and COD removal increased with the increasing of temperature. At mesophilic range, VS decomposition and COD removal were 51.56 ± 8.30 and 79.82 ± 6.03, respectively. Meanwhile at thermopilic range, VS decomposition and COD removal were 67.44 ± 3.59 and 79.16 ± 1.75, respectively. Biogas production and its methane content also increased with the increasing of temperature, but CO2 content also increased. Biogas production at mesophilic range was 31.77 ± 3.46 L/kg-ΔVS and methane content was 75 . Meanwhile, biogas production at thermopilic range was 37.03 ± 5.16 L/kg-ΔVS and methane content was 62.25 ± 5.50 .
Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Peng; Gatip, Richard; Yung, Matthew
The massive exploitation of shale gas in the past decade has boosted the production of natural gas and reduced its price dramatically. The methane activation and following conversion into more valuable fuels and chemicals have thus become more and more attractive, while the introduction of hydrocarbons to enhance the methane activation at mild conditions represents a promising approach. In the present work, the co-aromatization of methane with propylene has been studied at 400 °C. The presence of methane would increase the toluene to benzene ratio as well as the average carbon number of the formed liquid aromatic products compared tomore » its propylene alone counterpart. Among the gas products, the formations of C 3H 8, C 4H 8 and C 4H 10 also get promoted when methane is present. The incorporation of methane into the product molecules is also directly evidenced by the 1H, 2D and 13C NMR spectroscopy of the liquid products obtained from the reaction between propylene (or styrene) and isotope labelled methane. Hydrogen from methane would contribute a large portion of the hydrogen in the product molecules, while the benzylic and aromatic hydrogen sites are favored compared with those on the alkyl side chains. The activation of methane is also observed in the DRIFT spectra when deuterium enriched methane is engaged as the methane source and evidenced by the escalated exothermic feature when olefin aromatization takes place under methane environment. The excellent catalytic performance of Ag-Ga/ZSM-5 might be because of the better dispersion of Ag and Ga on the ZSM-5 surface and moderate amount of strong Brosted and Lewis surface acid sites. All the observations suggest that methane might be activated nonoxidatively and converted into aromatics if suitable catalyst is charged under the assistance of co-existing olefin. In conclusion, the reported synergetic effect could potentially lead to the more economic utilization of abundant natural gas and petrochemical intermediates.« less
Co-aromatization of olefin and methane over Ag-Ga/ZSM-5 catalyst at low temperature
He, Peng; Gatip, Richard; Yung, Matthew; ...
2017-04-22
The massive exploitation of shale gas in the past decade has boosted the production of natural gas and reduced its price dramatically. The methane activation and following conversion into more valuable fuels and chemicals have thus become more and more attractive, while the introduction of hydrocarbons to enhance the methane activation at mild conditions represents a promising approach. In the present work, the co-aromatization of methane with propylene has been studied at 400 °C. The presence of methane would increase the toluene to benzene ratio as well as the average carbon number of the formed liquid aromatic products compared tomore » its propylene alone counterpart. Among the gas products, the formations of C 3H 8, C 4H 8 and C 4H 10 also get promoted when methane is present. The incorporation of methane into the product molecules is also directly evidenced by the 1H, 2D and 13C NMR spectroscopy of the liquid products obtained from the reaction between propylene (or styrene) and isotope labelled methane. Hydrogen from methane would contribute a large portion of the hydrogen in the product molecules, while the benzylic and aromatic hydrogen sites are favored compared with those on the alkyl side chains. The activation of methane is also observed in the DRIFT spectra when deuterium enriched methane is engaged as the methane source and evidenced by the escalated exothermic feature when olefin aromatization takes place under methane environment. The excellent catalytic performance of Ag-Ga/ZSM-5 might be because of the better dispersion of Ag and Ga on the ZSM-5 surface and moderate amount of strong Brosted and Lewis surface acid sites. All the observations suggest that methane might be activated nonoxidatively and converted into aromatics if suitable catalyst is charged under the assistance of co-existing olefin. In conclusion, the reported synergetic effect could potentially lead to the more economic utilization of abundant natural gas and petrochemical intermediates.« less
Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process
DeGeorge, Charles W.
1981-01-01
In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.
Methane Decomposition and Carbon Growth on Y2O3, Yttria-Stabilized Zirconia, and ZrO2
2014-01-01
Carbon deposition following thermal methane decomposition under dry and steam reforming conditions has been studied on yttria-stabilized zirconia (YSZ), Y2O3, and ZrO2 by a range of different chemical, structural, and spectroscopic characterization techniques, including aberration-corrected electron microscopy, Raman spectroscopy, electric impedance spectroscopy, and volumetric adsorption techniques. Concordantly, all experimental techniques reveal the formation of a conducting layer of disordered nanocrystalline graphite covering the individual grains of the respective pure oxides after treatment in dry methane at temperatures T ≥ 1000 K. In addition, treatment under moist methane conditions causes additional formation of carbon-nanotube-like architectures by partial detachment of the graphite layers. All experiments show that during carbon growth, no substantial reduction of any of the oxides takes place. Our results, therefore, indicate that these pure oxides can act as efficient nonmetallic substrates for methane-induced growth of different carbon species with potentially important implications regarding their use in solid oxide fuel cells. Moreover, by comparing the three oxides, we could elucidate differences in the methane reactivities of the respective SOFC-relevant purely oxidic surfaces under typical SOFC operation conditions without the presence of metallic constituents. PMID:24587591
Co-digestion of cattle manure with food waste and sludge to increase biogas production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maranon, E., E-mail: emara@uniovi.es; Castrillon, L.; Quiroga, G.
2012-10-15
Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogasmore » yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.« less
Batch co-digestion of multi-component agro-wastes.
Misi, S N; Forster, C F
2001-10-01
In certain parts of the developing world conventional energy supplies such as electricity, gas, coal and petroleum by-products are either unavailable, too capital intensive to install, are unjustifiable due to low population densities in some semi-arid regions, or are simply unaffordable to the target population. In Zimbabwe, it has been assessed that only biomass energy can conveniently provide both lighting and space heating. Therefore, means of generating biogas from agricultural and other organic wastes, and to encourage their use is a policy which has been adopted by Zimbabwe's Department of Energy. In this study cattle slurry was mixed with a range of solid wastes and allowed to digest in 11 batch digesters. The mixtures which were used were selected on the basis of centroid design with the objective of determining whether there was either synergism or antagonism. Two trials were carried out, one based on cattle slurry, chicken manure (CM) and molasses (Mol), the other based on sheep and goat manure, chicken manure and surplus activated sludge. The criteria for judging the success of a co-digestion were volatile solids (VS) reduction, total methane production and methane yield. In the first trial, the analysis based on the methane yield showed that there was no antagonism and that the mixture of 30% cattle slurry/30% CM/40% Mol gave a synergistic effect. The analysis based on the VS destruction, however, did show that there was some very slight antagonism. In the second trial, the analysis based on the methane yield showed that there was both antagonism and synergism and that the synergism produced an extra 6.7% methane. The analysis based on the VS destruction also showed that there was both antagonism and synergism but that the effects were small.
Correlating methane production to microbiota in anaerobic digesters fed synthetic wastewater.
Venkiteshwaran, K; Milferstedt, K; Hamelin, J; Fujimoto, M; Johnson, M; Zitomer, D H
2017-03-01
A quantitative structure activity relationship (QSAR) between relative abundance values and digester methane production rate was developed. For this, 50 triplicate anaerobic digester sets (150 total digesters) were each seeded with different methanogenic biomass samples obtained from full-scale, engineered methanogenic systems. Although all digesters were operated identically for at least 5 solids retention times (SRTs), their quasi steady-state function varied significantly, with average daily methane production rates ranging from 0.09 ± 0.004 to 1 ± 0.05 L-CH 4 /L R -day (L R = Liter of reactor volume) (average ± standard deviation). Digester microbial community structure was analyzed using more than 4.1 million partial 16S rRNA gene sequences of Archaea and Bacteria. At the genus level, 1300 operational taxonomic units (OTUs) were observed across all digesters, whereas each digester contained 158 ± 27 OTUs. Digester function did not correlate with typical biomass descriptors such as volatile suspended solids (VSS) concentration, microbial richness, diversity or evenness indices. However, methane production rate did correlate notably with relative abundances of one Archaeal and nine Bacterial OTUs. These relative abundances were used as descriptors to develop a multiple linear regression (MLR) QSAR equation to predict methane production rates solely based on microbial community data. The model explained over 66% of the variance in the experimental data set based on 149 anaerobic digesters with a standard error of 0.12 L-CH 4 /L R -day. This study provides a framework to relate engineered process function and microbial community composition which can be further expanded to include different feed stocks and digester operating conditions in order to develop a more robust QSAR model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Production and condensation of organic gases in the atmosphere of Titan
NASA Technical Reports Server (NTRS)
Sagan, C.; Thompson, W. R.
1982-01-01
The rates and altitudes for the dissociation of atmospheric constituents on Titan are calculated for solar ultraviolet radiation, the solar wind, Saturn magnetospheric particles, the Saturn co-rotating plasma, and cosmic rays. Laboratory experiments show that a variety of simple gas phase organic molecules and more complex organic solids called tholins are produced by such irradiations of simulated Titanian atmospheres. Except for ultraviolet wavelengths longward of the methane photodissociation continuum, most dissociation events occur between about 3100 and 3600 km altitude, corresponding well to the region of EUV opacity detected by Voyager. For a wide variety of simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at about 2825 km. It is proposed that such condensates, beginning with CH4 at about 2615 km, comprise the principal mass of the Titan clouds. There is a distinct tendency for the atmosphere of Titan to act as a fractional distillation device, molecules of greater complexity condensing out at higher altitudes.
Jupiter's Northern Hemisphere in a Methane Band (Time Set 2)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 727 nanometers is moderately absorbed by atmospheric methane. This mosaic shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features.
North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoDoreau, M; Arbre, M; Popova, M; Rochette, Y; Martin, C
2018-03-01
The combination of linseed and nitrate is known to decrease enteric methane emission in dairy cows but few studies have been carried out in fattening cattle for animal liveweight gain, enteric methane emission, animal health and presence of residues in beef products. To address this gap, 16 young bulls received a control (C) diet between weaning at 9 months and 14 months, then were split into two groups of eight balanced on feed intake, BW gain and methane emission to receive either the C diet or a diet moderately supplemented with extruded linseed and calcium nitrate (LN) for 2 months before being slaughtered. On a dry matter (DM) basis, the C diet contained 70% baled grass silage and 30% concentrate mainly made of maize, wheat and rapeseed meal. In the LN diet, rapeseed meal and a fraction of cereals were replaced by 35% extruded linseed and 6% calcium nitrate; linseed fatty acids and nitrate supply in the LN diet were 1.9% and 1.0%, respectively. Methane emission was measured continuously using the GreenFeed system. Methaemoglobin was determined every week in peripheral blood from bulls receiving the LN diet. Nitrate and nitrite concentrations were determined in rumen, liver and tongue sampled at slaughter. Dry matter intake tended to be lower for LN diet (P=0.10). Body weight gain was lower for LN diet (P=0.01; 1.60 and 1.26 kg/day for C and LN diet, respectively). Daily methane emission was 9% lower (P<0.001) for LN than C diet (249 and 271 g/day, respectively) but methane yield did not differ between diets (24.1 and 23.2 g/kg DM intake for C and LN diet, respectively, P=0.34). Methaemoglobin was under the limit of detection (<2% of total haemoglobin) for most animals and was always lower than 5.6%, suggesting an absence of risk to animal health. Nitrite and nitrate concentrations in offal did not differ between C and LN diets. In conclusion, a moderate supply of linseed and nitrate in bull feed failed to decrease enteric methane yield and impaired bull liveweight gain but without adverse effects for animal health and food safety.
The Landfill Methane Outreach Program (LMOP) is collaborating with the Solid Waste Association of North America (SWANA) to organize a panel in conjunction with their upcoming 41st Annual Landfill Gas and Biogas Symposium in Denver, Colorado.
Nuclear spin relaxation of methane in solid xenon
NASA Astrophysics Data System (ADS)
Sugimoto, Takeru; Arakawa, Ichiro; Yamakawa, Koichiro
2018-03-01
Nuclear spin relaxation of methane in solid xenon has been studied by infrared spectroscopy. From the analysis of the temporal changes of the rovibrational peaks, the rates of the nuclear spin relaxation of I = 2 ← 1 correlated to the rotational relaxation of J = 0 ← 1 were obtained at temperatures of 5.1-11.5 K. On the basis of the temperature dependence of the relaxation rate, the activation energy of the indirect two-phonon process was determined to be 50 ± 6 K, which is in good agreement with the rotational transition energies of J = 2 ← 1 and J = 3 ← 1. Taking into account this result and the spin degeneracy, we argue that the lowest J = 3 level in which the I = 1 and I = 2 states are degenerate acts as the intermediate point of the indirect process.
Montalvo, S; Cahn, I; Borja, R; Huiliñir, C; Guerrero, L
2017-11-01
The influence of fly ash particle size on methane production and anaerobic biodegradability was evaluated. Assays with different fly ash particle sizes (0.8-2.36mm) at a concentration of 50mg/L were ran under mesophilic conditions. In anaerobic processes operating with fly ash, greater removal of both volatile total and suspended solids, chemical oxygen demand (total and soluble) was achieved, with an increase of methane production between 28% and 96% compared to the control reactors. The highest increase occurred at ash particles sizes of 1.0-1.4mm. The metal concentrations in the digestates obtained after anaerobic digestion of sewage sludge are far below those considered as limiting for the use of sludge in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Salminen, Esa A; Rintala, Jukka A
2002-07-01
We studied the effect of hydraulic retention time (HRT) and loading on anaerobic digestion of poultry slaughterhouse wastes, using semi-continuously fed, laboratory-scale digesters at 31 degrees C. The effect on process performance was highly significant: Anaerobic digestion appeared feasible with a loading of up to 0.8 kg volatile solids (VS)/m3 d and an HRT of 50-100 days. The specific methane yield was high, from 0.52 to 0.55 m3/kg VS(added). On the other hand, at a higher loading, in the range from 1.0 to 2.1 kg VS/m3 d, and a shorter HRT, in the range from 25 to 13 days, the process appeared inhibited and/or overloaded, as indicated by the accumulation of volatile fatty acids and long-chain fatty acids and the decline in the methane yield. However, the inhibition was reversible. The nitrogen in the feed, ca. 7.8% of total solids (TS), was organic nitrogen with little ammonia present, whereas in the digested material ammonia accounted for 52-67% (up to 3.8 g/l) of total nitrogen. The TS and VS removals amounted to 76% and 64%, respectively. Our results show that on a continuous basis under the studied conditions and with a loading of up to 0.8 kg VS/m3 d metric ton (wet weight) of the studied waste mixture could yield up to 140 m3 of methane.
Luste, Sami; Heinonen-Tanski, Helvi; Luostarinen, Sari
2012-01-01
Anaerobic co-digestion of a mixture of industrial animal by-products (ABP) from meat-processing in conjunction with dairy cattle slurry (mixed in a ratio of 1:3; w.w.) was evaluated at 35 °C focusing on methane production and stabilization. Three pre-treatments were applied (1) digestion with no pre-treatment (control), (2) ultrasound, and (3) thermal hygienization (70 °C, 60 min). Methane production potentials (MPP) of the untreated, ultrasound pre-treated and hygienized feed mixtures were 300, 340, and 360 m(3) CH(4)/t volatile solids (VS) added, as determined in the batch experiments. However, the specific methane productions (SMP) achieved in reactor experiments (hydraulic retention time HRT 21 d, organic loading rate OLR 3.0±0.1 kg VS/m(3) d) were 11±2% (untreated and ultrasound pre-treated) and 22±3% (hygienized) lower than the potentials. Ultrasound with the energy input of 1000 kJ/kg total solids (TS) and hygienization of the ready-made feed were the most suitable pre-treatment modes studied. Copyright © 2011 Elsevier Ltd. All rights reserved.
Life cycle assessment of four municipal solid waste management scenarios in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Jinglan, E-mail: hongjing@sdu.edu.c; Li Xiangzhi; Zhaojie Cui
2010-11-15
A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment wasmore » ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.« less
Molinuevo-Salces, Beatriz; Gómez, Xiomar; Morán, Antonio; García-González, Mari Cruz
2013-06-01
Anaerobic digestion of livestock wastes (swine manure (SM) and poultry litter (PL)) and vegetable processing wastes (VPW) mixtures was evaluated in terms of methane yield, volatile solids removal and lignocellulosic material degradation. Batch experiments were performed with 2% VS (volatile solids) to ensure complete conversion of TVFAs (total volatile fatty acids) and to avoid ammonia inhibition. Experimental methane yields obtained for the mixtures resulted in higher values than those obtained from the sum of the methane yields from the individual components. VPW addition to livestock wastes before anaerobic digestion also resulted in improved VS elimination. In SM-VPW co-digestions, CH4 yield increased from 111 to 244 mL CH4 g VS added(-1), and the percentage of VS removed increased from 50% to 86%. For PL-VPW co-digestions, the corresponding values were increased from 158 to 223 mL CH4 g VS added(-1) and from 70% to 92% VS removed. Hemicelluloses and more than 50% of cellulose were degraded during anaerobic digestion. Thermal analyses indicated that the stabilization of the wastes during anaerobic digestion resulted in significantly less energy being released by digestate samples than fresh samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
Supercritical/Solid Catalyst (SSC)
Ginosar, Daniel; Fox, Robert; Bright, Patricia
2018-05-23
INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.
Supercritical/Solid Catalyst (SSC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginosar, Daniel; Fox, Robert; Bright, Patricia
2010-05-28
INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.
Zhang, Yue; Lucier, Bryan E G; Fischer, Michael; Gan, Zhehong; Boyle, Paul D; Desveaux, Bligh; Huang, Yining
2018-03-25
Methane is a promising clean and inexpensive energy alternative to traditional fossil fuels, however, its low volumetric energy density at ambient conditions has made devising viable, efficient methane storage systems very challenging. Metal-organic frameworks (MOFs) are promising candidates for methane storage. In order to improve the methane storage capacity of MOFs, a better understanding of the methane adsorption, mobility, and host-guest interactions within MOFs must be realized. In this study, methane adsorption within α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , SIFSIX-3-Zn, and M-MOF-74 (M=Mg, Zn, Ni, Co) has been comprehensively examined. Single-crystal X-ray diffraction (SCXRD) experiments and DFT calculations of the methane adsorption locations were performed for α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , and SIFSIX-3-Zn. The SCXRD thermal ellipsoids indicate that methane possesses significant mobility at the adsorption sites in each system. 2 H solid-state NMR (SSNMR) experiments targeting deuterated CH 3 D guests in α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , SIFSIX-3-Zn, and MOF-74 yield an interesting finding: the 2 H SSNMR spectra of methane adsorbed in these MOFs are significantly influenced by the chemical shielding anisotropy in addition to the quadrupolar interaction. The chemical shielding anisotropy contribution is likely due mainly to the nuclear independent chemical shift effect on the MOF surfaces. In addition, the 2 H SSNMR results and DFT calculations strongly indicate that the methane adsorption strength is linked to the MOF pore size and that dispersive forces are responsible for the methane adsorption in these systems. This work lays a very promising foundation for future studies of methane adsorption locations and dynamics within adsorbent MOF materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal properties of methane gas hydrates
Waite, William F.
2007-01-01
Gas hydrates are crystalline solids in which molecules of a “guest” species occupy and stabilize cages formed by water molecules. Similar to ice in appearance (fig. 1), gas hydrates are stable at high pressures and temperatures above freezing (0°C). Methane is the most common naturally occurring hydrate guest species. Methane hydrates, also called simply “gas hydrates,” are extremely concentrated stores of methane and are found in shallow permafrost and continental margin sediments worldwide. Brought to sea-level conditions, methane hydrate breaks down and releases up to 160 times its own volume in methane gas. The methane stored in gas hydrates is of interest and concern to policy makers as a potential alternative energy resource and as a potent greenhouse gas that could be released from sediments to the atmosphere and ocean during global warming. In continental margin settings, methane release from gas hydrates also is a potential geohazard and could cause submarine landslides that endanger offshore infrastructure. Gas hydrate stability is sensitive to temperature changes. To understand methane release from gas hydrate, the U.S. Geological Survey (USGS) conducted a laboratory investigation of pure methane hydrate thermal properties at conditions relevant to accumulations of naturally occurring methane hydrate. Prior to this work, thermal properties for gas hydrates generally were measured on analog systems such as ice and non-methane hydrates or at temperatures below freezing; these conditions limit direct comparisons to methane hydrates in marine and permafrost sediment. Three thermal properties, defined succinctly by Briaud and Chaouch (1997), are estimated from the experiments described here: - Thermal conductivity, λ: if λ is high, heat travels easily through the material. - Thermal diffusivity, κ: if κ is high, it takes little time for the temperature to rise in the material. - Specific heat, cp: if cp is high, it takes a great deal of heat to raise the temperature of the material.
Herd, R M; Velazco, J I; Arthur, P F; Hegarty, R F
2016-11-01
The objective of the study was to evaluate associations among animal performance and methane emission traits under feedlot conditions and in respiration chambers in Angus cattle bred to vary in residual feed intake (RFI), which is a measure of feed efficiency. Fifty-nine cattle were tested for feedlot RFI, of which 41 had methane production recorded on an ad libitum grain-based ration in the feedlot, 59 on a restricted grain-based ration in respiration chambers, and 57 on a restricted roughage ration in respiration chambers. The cattle became older and heavier as they went through the different phases of the experiment, but their feed intake (expressed as DMI) and daily emission of enteric methane (methane production rate; MPR) did not increase proportionally, as feed offered was restricted in the respiration chamber tests. Methane emissions by individual animals relative to their DMI were calculated as methane yield (MY; MPR/DMI) and as 2 measures of residual methane production (RMP and RMP), which were calculated as the difference between measured MPR and that predicted from feed intake by 2 different equations. Within each test regime, MPR was positively correlated ( = 0.28 to 0.61) with DMI. Phenotypic correlations for MY, RMP, and RMP between the feedlot test and the restricted grain test ( = 0.40 to 0.43) and between the restricted grain test and the restricted roughage test were moderate ( = 0.36 to 0.41) and moderate to strong between the feedlot test and the restricted roughage test ( = 0.54 to 0.58). These results indicate that the rankings of animals for methane production relative to feed consumed are relatively stable over the 3 test phases. Feedlot feed conversion ratio and RFI were not correlated with MPR in the feedlot test and grain-based chamber test but were negatively correlated with MPR in the chamber roughage test ( = -0.31 and -0.37). Both were negatively correlated with MY and RMP in the feedlot test ( = -0.42 to -0.54) and subsequent chamber roughage test ( = -0.27 to -0.49). Midparent estimated breeding values for RFI tended to be negatively correlated with MY and RMP in the feedlot test ( = -0.27 and -0.27) and were negatively correlated with MY, RMP, and RMP in the chamber roughage test ( = -0.33 to -0.36). These results showed that in young growing cattle, lower RFI was associated with higher MY, RMP, and RMP but had no significant association with MPR.
Donoghue, K A; Bird-Gardiner, T; Arthur, P F; Herd, R M; Hegarty, R F
2016-04-01
Ruminants contribute 80% of the global livestock greenhouse gas (GHG) emissions mainly through the production of methane, a byproduct of enteric microbial fermentation primarily in the rumen. Hence, reducing enteric methane production is essential in any GHG emissions reduction strategy in livestock. Data on 1,046 young bulls and heifers from 2 performance-recording research herds of Angus cattle were analyzed to provide genetic and phenotypic variance and covariance estimates for methane emissions and production traits and to examine the interrelationships among these traits. The cattle were fed a roughage diet at 1.2 times their estimated maintenance energy requirements and measured for methane production rate (MPR) in open circuit respiration chambers for 48 h. Traits studied included DMI during the methane measurement period, MPR, and methane yield (MY; MPR/DMI), with means of 6.1 kg/d (SD 1.3), 132 g/d (SD 25), and 22.0 g/kg (SD 2.3) DMI, respectively. Four forms of residual methane production (RMP), which is a measure of actual minus predicted MPR, were evaluated. For the first 3 forms, predicted MPR was calculated using published equations. For the fourth (RMP), predicted MPR was obtained by regression of MPR on DMI. Growth and body composition traits evaluated were birth weight (BWT), weaning weight (WWT), yearling weight (YWT), final weight (FWT), and ultrasound measures of eye muscle area, rump fat depth, rib fat depth, and intramuscular fat. Heritability estimates were moderate for MPR (0.27 [SE 0.07]), MY (0.22 [SE 0.06]), and the RMP traits (0.19 [SE 0.06] for each), indicating that genetic improvement to reduce methane emissions is possible. The RMP traits and MY were strongly genetically correlated with each other (0.99 ± 0.01). The genetic correlation of MPR with MY as well as with the RMP traits was moderate (0.32 to 0.63). The genetic correlation between MPR and the growth traits (except BWT) was strong (0.79 to 0.86). These results indicate that selection for lower MPR may have undesired effect on animal productivity. On the other hand, MY and the RMPR were either not genetically correlated or weakly correlated with BWT, YWT, and FWT (-0.06 to 0.23) and body composition traits (-0.18 to 0.18). Therefore, selection for lower MY or RMPR would lead to lower MPR without impacting animal productivity. Where the use of a ratio trait (e.g., MY) is not desirable, selection on any of the forms of RMP would be an alternative.
Wang, Yaya; Li, Guoxue; Chi, Menghao; Sun, Yanbo; Zhang, Jiaxing; Jiang, Shixu; Cui, Zongjun
2018-02-01
This study investigated the performance of co-digesting cucumber residues, corn stover, and pig manure at different ratios. Microbial community structure was analyzed to elucidate functional microorganism contributing to methane production during co-digestion. Results show that mixing cucumber residues with pig manure and corn stover could significantly improved methane yields 1.27-3.46 times higher than mono-feedstock. The methane yields decreased with the cucumber residues increasing when the pig manure ratio was fixed at 4 and 3, and was opposite at ratio 5. The optimal mixture ratio was T2 with the highest methane yield (305.4 mL/g VS) and co-digestion performance index (1.97). The main microbiological community in T2 was bacteria of Firmicutes (44.6%), Bacteroidetes (32.5%), Synergistetes (3.8%) and archaea of Methanosaeta (37.1%), Methanospirillum (18.2%). The mixture ratios changed the microbial community structures. The adding proportion of cucumber residues changed the community composition of the archaea, especially the proportion of Methanosaeta. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Theresia, Martha; Priadi, Cindy Rianti
2017-03-01
The anaerobic digestion (AD) process from organic waste is often unstable due to the high concentration of Volatile Fatty Acids (VFAs). The purpose of this research was to determine/evaluate the production of methane using biochemical methane potential (BMP) test with two substrate combinations, consisted of organic waste and cow manure as buffer. BMP test conducted for 35 days at a temperature of ± 35°C by measuring the volume and concentration of biogas every week and testing the sample characteristics before and after the test. The result of the sample variation showed there was no significantly difference of methane volume in the 5th week except the variation of organic waste/cow manure: 12/1 to 3/1, but the sample with a ratio of 3/1 yielded the highest methane potential of 0,58 ± 0.015 (n = 3) LCH4/gr Volatile Solid. The addition of cow manure stabilized the condition of all variations during BMP test with VFAs/alkalinity <0.3 although Carbon/Nitogen ratio of each variation is <20.
Formulation of steam-methane reforming rate in Ni-YSZ porous anode of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Sugihara, Shinichi; Kawamura, Yusuke; Iwai, Hiroshi
2018-02-01
The steam-methane reforming reaction on a Ni-YSZ (yttria-stabilized zirconia) cermet was experimentally investigated under atmospheric pressure and in the temperature range from 650 to 750 °C. We examined the effects of the partial pressures of methane and steam in the supply gas on the reaction rate. The experiments were conducted with a low Ni contained Ni-YSZ cermet sheet of thickness 0.1 mm. Its porous microstructure and accompanied parameters were quantified using the FIB-SEM (focused ion beam scanning electron microscopy) technique. A power-law-type rate equation incorporating the reaction-rate-limiting conditions was obtained on the basis of the unit surface area of the Ni-pore contact surface in the cermet. The kinetics indicated a strong positive dependence on the methane partial pressure and a negative dependence on the steam partial pressure. The obtained rate equation successfully reproduced the experimental results for Ni-YSZ samples having different microstructures in the case of low methane consumption. The equation also reproduced the limiting-reaction behaviours at different temperatures.
Importance of storage time in mesophilic anaerobic digestion of food waste.
Lü, Fan; Xu, Xian; Shao, Liming; He, Pinjing
2016-07-01
Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1, 2, 3, 4, 5, 7, and 12days, and then fed into a methanogenic reactor for a biochemical methane potential (BMP) test lasting up to 60days. Relative to the methane production of food waste stored for 0-1day (285-308mL/g-added volatile solids (VSadded)), that after 2-4days and after 5-12days of storage increased to 418-530 and 618-696mL/g-VSadded, respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5-7days of storage of food waste in anaerobic digestion treatment plants. Copyright © 2016. Published by Elsevier B.V.
Enhancement of methane production from co-digestion of chicken manure with agricultural wastes.
Abouelenien, Fatma; Namba, Yuzaburo; Kosseva, Maria R; Nishio, Naomichi; Nakashimada, Yutaka
2014-05-01
The potential for methane production from semi-solid chicken manure (CM) and mixture of agricultural wastes (AWS) in a co-digestion process has been experimentally evaluated at thermophilic and mesophilic temperatures. To the best of author(')s knowledge, it is the first time that CM is co-digested with mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Two types of anaerobic digestion processes (AD process) were used, process 1 (P1) using fresh CM (FCM) and process 2 (P2) using treated CM (TCM), ammonia stripped CM, were conducted. Methane production in P1 was increased by 93% and 50% compared to control (no AWS added) with maximum methane production of 502 and 506 mL g(-1)VS obtained at 55°C and 35°C, respectively. Additionally, 42% increase in methane production was observed with maximum volume of 695 mL g(-1)VS comparing P2 test with P2 control under 55°C. Ammonia accumulation was reduced by 39% and 32% in P1 and P2 tests. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Feng; Hidaka, Taira; Sakurai, Kensuke; Tsumori, Jun
2014-08-01
The biodegradation of Quercus serrata chips was evaluated by anaerobic digestion under various steam explosion conditions. In continuous experiments, untreated chips (W₀) and chips steam-treated at less than 1.0 MPa (W₁) and 2.0 MPa (W₄) were co-digested with sewage sludge (S₁ and S₂) taken from two different wastewater treatment plants. The apparent methane yield of W₁ and W₄ co-digested with S₁ (thermophilic) was 261 dm(3)/kgVS (volatile solids) and 248 dm(3)/kgVS, respectively. The apparent methane yield of W₄ co-digested with S₂ was 258 dm(3)/kgVS (mesophilic) and 271 dm(3)/kgVS (thermophilic). Methane production was inhibited by W₀ due to components released during hydrolysis. The methane conversion ratio of pretreated chips obtained in batch experiments varied from 40.5% to 53.8% (mesophilic) and from 49.0% to 63.7% (thermophilic). The methane conversion ratio increased with decreasing acid-soluble lignin content in the chips. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhong, Weizhang; Chi, Lina; Luo, Yijing; Zhang, Zhongzhi; Zhang, Zhenjia; Wu, Wei-Min
2013-04-01
Anaerobic digestion of Taihu blue algae was tested in laboratory scale, continuous feed digesters (hydraulic retention time 10 days) at 35°C and various organic loading rates (OLR). The methane production and biomass digestion performed well at OLR below 4.00 gVSL(-1)d(-1) but deteriorated as OLR increased due to the increased ammonia concentration, causing inhibition mainly to acetate and propionate degradation. Supplementing corn straw as co-feedstock significantly improved the digestion performance. The optimal C/N ratio for the co-digestion was 20:1 at OLR of 6.00 gVSL(-1) d(-1). Methane yield of 234 mL CH4 gVS(-1) and methane productivity of 1404 mL CH4 L(-1) d(-1) were achieved with solid removal of 63%. Compared with the algae alone, the methane productivity was increased by 46% with less accumulation of ammonia and fatty acids. The reactor rate-limiting step was acetate and propionate degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin
2014-06-17
In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.
NASA Astrophysics Data System (ADS)
Vogler, Marcel; Horiuchi, Michio; Bessler, Wolfgang G.
A detailed computational model of a direct-flame solid oxide fuel cell (DFFC) is presented. The DFFC is based on a fuel-rich methane-air flame stabilized on a flat-flame burner and coupled to a solid oxide fuel cell (SOFC). The model consists of an elementary kinetic description of the premixed methane-air flame, a stagnation-point flow description of the coupled heat and mass transport within the gas phase, an elementary kinetic description of the electrochemistry, as well as heat, mass and charge transport within the SOFC. Simulated current-voltage characteristics show excellent agreement with experimental data published earlier (Kronemayer et al., 2007 [10]). The model-based analysis of loss processes reveals that ohmic resistance in the current collection wires dominates polarization losses, while electronic loss currents in the mixed conducting electrolyte have only little influence on the polarized cell. The model was used to propose an optimized cell design. Based on this analysis, power densities of above 200 mW cm -2 can be expected.
Chen, Sisi; Li, Ning; Dong, Bin; Zhao, Wentao; Dai, Lingling; Dai, Xiaohu
2018-01-15
Two lab-scale high solid anaerobic digesters fed with untreated sludge (R1) and thermally hydrolyzed sludge (R2) were operated to investigate the influence of thermal hydrolysis pretreatment (THP) on the degradation of individual macromolecular organic components (MOCs), as well as the functional and metabolic responses of microbes during anaerobic digestion (AD). The degradation of MOCs was improved by THP at different rates, in which improved degradation of proteins (by 49.0%) and hemicelluloses (by 25.0%) were the main factors contributing to the increase in volatile solids (VS) reduction. However, no enhancement of final degradation extent of MOCs was observed. With a more densified microbial population, R2 was also enriched in genes involved in amino acid and carbohydrate metabolism, reflected in the enhanced degradation of proteins and carbohydrates. After THP, the methanogenic pathway shifted from strict acetoclastic methanogenesis to acetoclastic/hydrogenotrophic methanogenesis, consistent with the enhanced methane production and the increase of methane content. Copyright © 2017 Elsevier B.V. All rights reserved.
Wan, Shungang; Sun, Lei; Douieb, Yaniv; Sun, Jian; Luo, Wensui
2013-10-01
The performance of municipal organic solid waste anaerobic digestion was investigated using a single-stage bioreactor, and the microbial community structures were characterized during the digestion. The results showed that the biogas and methane production rates were 592.4 and 370.1L/kg with volatile solid added at the ratio of 2:1:1 for food waste, wastepaper, and plastic based on dry weight. The methane volume concentration fluctuated between 44.3% and 75.4% at steady stage. Acetic acid, propionic acid, and butyric acid were the major volatile fatty acids produced during the digestion process. The anaerobic process was not inhibited by the accumulation of ammonia and free ammonia. The bacterial community was found to consist of at least 21 bands of bacteria and 12 bands of archaea at the steady state. All of the results indicated that the mixture of food waste, wastepaper, and plastic could be efficiently co-digested using the anaerobic digestion system. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kotowska, Martyna M.; Werner, Florian A.
2013-12-01
bromeliads are common epiphytic plants throughout neotropical forests that store significant amounts of water in phytotelmata (tanks) formed by highly modified leafs. Methanogenic archaea in these tanks have recently been identified as a significant source of atmospheric methane. We address the effects of environmental drivers (temperature, tank water content, sodium phosphate [P], and urea [N] addition) on methane production in anaerobically incubated bromeliad slurry and emissions from intact bromeliad tanks in montane Ecuador. N addition ≥ 1 mg g-1 had a significantly positive effect on headspace methane concentrations in incubation jars while P addition did not affect methane production at any dosage (≤ 1 mg g-1). Tank bromeliads (Tillandsia complanata) cultivated in situ showed significantly increased effluxes of methane in response to the addition of 26 mg N addition per tank but not to lower dosage of N or any dosage of P (≤ 5.2 mg plant-1). There was no significant interaction between N and P addition. The brevity of the stimulatory effect of N addition on plant methane effluxes (1-2 days) points at N competition by other microorganisms or bromeliads. Methane efflux from plants closely followed within-day temperature fluctuations over 24 h cycles, yet the dependency of temperature was not exponential as typical for terrestrial wetlands but instead linear. In simulated drought, methane emission from bromeliad tanks was maintained with minimum amounts of water and regained after a short lag phase of approximately 24 h. Our results suggest that methanogens in bromeliads are primarily limited by N and that direct effects of global change (increasing temperature and seasonality, remote fertilization) on bromeliad methane emissions are of moderate scale.
Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Mahieu, Koenraad; Chanton, Jeff
2011-05-15
Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions.more » These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.« less
Field test of methane fermentation system for treating swine wastes.
Kataoka, N; Suzuki, T; Ishida, K; Yamada, N; Kurata, N; Katayose, M; Honda, K
2002-01-01
A methane fermentation system for treating swine wastes was developed and successfully demonstrated in a field test plant (0.5 m3/d). The system was composed of a screw-press dehydrator, a methanogenic digester, a sludge separator, an oxidation ditch (OD) and composting equipment. A performance evaluation was carried out regarding physical pre-treatment using the screw-press dehydrator, methane fermentation for pre-treated slurry, and post-treatment for digested effluent by OD. Total solids (TS) and chemical oxygen demand (CODCr) removal by the screw-press pre-treatment were 38% and 22%, respectively. Properties of the screenings were as follows: water content 57%, ignition loss 93%, specific gravity 0.33. The pretreated strong slurry was digested under mesophilic conditions. Digestion gas (biogas) production rate was 25 m3/m3-slurry (NTP) and methane content of the biogas was 67%. CODCr removal of 65% with methane fermentation treatment of the slurry operating at 35 degrees C was observed. No inhibition of methane fermentation reaction occurred at the NH4(+)-N concentration of 3,000 mg/l or less during methane fermentation by the system. Mass balance from the present pilot-scale study showed that 1 m3 of mixture of excrement and urine of swine waste (TS 90 kg/m3) was biologically converted to 25 m3/m3-slurry (NTP) of biogas (methane content 67%), 100 kg of compost (water content 40%, ignition loss 75%), and 0.80 m3 of treated water (SS 30-70 mg/l).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qingyin; Zhang, Fengqi; Jarvis, Jack
The catalytic co-aromatization of methane and paraffin-rich raffinate oil was investigated along with hexane, heptane and octane as its model compounds over zinc and gallium modified ZSM-5 zeolite catalysts. The benzene, toluene and xylene (BTX) components derived from light alkane aromatization were highly promoted with the assistance of methane. The co-existence of Zn and Ga metal species has a positive effect on the formation of BTX components, whereas the individual metal loaded catalyst resulted in the production of heavy aromatics, suggesting that zinc and gallium have a synergistic effect on the formation of BTX under the methane environment. When concernedmore » with gaseous analysis, the introduced methane might interact with smaller intermediates and then transform into larger hydrocarbons. From the DRIFT observation, it was witnessed that the interaction between light alkane and methane occurred on the surface of the charged Zn-Ga/ZSM-5 catalyst. According to the comprehensive catalyst characterizations, the excellent catalytic performance may be closely associated with greatly dispersed metal species on the zeolite support, improved microporous characteristic, moderate Bronsted and increased Lewis acidic sites during the paraffin-rich liquid feedstock aromatization under methane environment. This research provides a promising pathway for the highly effective and profitable utilization of petrochemical resources and natural gas.« less
Li, Qingyin; Zhang, Fengqi; Jarvis, Jack; ...
2018-03-16
The catalytic co-aromatization of methane and paraffin-rich raffinate oil was investigated along with hexane, heptane and octane as its model compounds over zinc and gallium modified ZSM-5 zeolite catalysts. The benzene, toluene and xylene (BTX) components derived from light alkane aromatization were highly promoted with the assistance of methane. The co-existence of Zn and Ga metal species has a positive effect on the formation of BTX components, whereas the individual metal loaded catalyst resulted in the production of heavy aromatics, suggesting that zinc and gallium have a synergistic effect on the formation of BTX under the methane environment. When concernedmore » with gaseous analysis, the introduced methane might interact with smaller intermediates and then transform into larger hydrocarbons. From the DRIFT observation, it was witnessed that the interaction between light alkane and methane occurred on the surface of the charged Zn-Ga/ZSM-5 catalyst. According to the comprehensive catalyst characterizations, the excellent catalytic performance may be closely associated with greatly dispersed metal species on the zeolite support, improved microporous characteristic, moderate Bronsted and increased Lewis acidic sites during the paraffin-rich liquid feedstock aromatization under methane environment. This research provides a promising pathway for the highly effective and profitable utilization of petrochemical resources and natural gas.« less
Li, Ping; Zhou, Yong; Li, Haijin; Xu, Qinfeng; Meng, Xianguang; Meng, Xiangguang; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang
2015-01-14
An all-solid-state Z-scheme system array consisting of an Fe2V4O13 nanoribbon (NR)/reduced graphene oxide (RGO)/CdS nanoparticle grown on the stainless-steel mesh was rationally designed for photoconversion of gaseous CO2 into renewable hydrocarbon fuels (methane: CH4).
2011-12-01
burning of fossil fuels (e.g., oil , natural gas , coal), solid waste decay, and trees and wood products and also as a result of chemical reactions...to negative GHG effects. Methane. CH4 is a GHG that is emitted during the production and transport of coal, natural gas , and oil . Methane...the pump station (Facility 486); Control Room (Facility 487); and the oil -water separator (Facility 488). • Construction of a new Type III pump house
Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Li, Ting Shuai; Xu, Min; Gao, Chongxin; Wang, Baoqing; Liu, Xiyun; Li, Baihai; Wang, Wei Guo
2014-07-01
The electrochemical performance and long-term durability of a solid oxide fuel cell have been evaluated with a simulated coal syngas containing 2 ppm H2S as fuel. The resulting impedance spectra indicate that no observable power loss is caused by the addition of 2 ppm H2S, and the cell shows stability of nearly 500 h at 0.625 A cm-2. The composition of mixed gas is analyzed both at a current load of 0.625 A cm-2 and open circuit state. Hydrogen and carbon monoxide are directly consumed as fuels at the anode side, whereas methane stays unchanged during the operation. It seems the internal carbohydrate reforming and impurity poisoning interacts and weakens the poisoning effects. The oxidation of H2 and the water gas shift reaction take advantages over methane reforming at the cell operational conditions.
Effect of initial bulk density on high-solids anaerobic digestion of MSW: General mechanism.
Caicedo, Luis M; Wang, Hongtao; Lu, Wenjing; De Clercq, Djavan; Liu, Yanjun; Xu, Sai; Ni, Zhe
2017-06-01
Initial bulk density (IBD) is an important variable in anaerobic digestion since it defines and optimizes the treatment capacity of a system. This study reveals the mechanism on how IBD might affect anaerobic digestion of waste. Four different IBD values: D 1 (500-700kgm -3 ), D 2 (900-1000kgm -3 ), D 3 (1100-1200kgm -3 ) and D 4 (1200-1400kgm -3 ) were set and tested over a period of 90days in simulated landfill reactors. The main variables affected by the IBD are the methane generation, saturation degree, extraction of organic matter, and the total population of methanogens. The study identified that IBD >1000kgm -3 may have significant effect on methane generation, either prolonging the lag time or completely inhibiting the process. This study provides a new understanding of the anaerobic digestion process in saturated high-solids systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion.
Nielsen, H B; Heiske, S
2011-01-01
In the present study we tested four macroalgae species--harvested in Denmark--for their suitability of bioconversion to methane. In batch experiments (53 degrees C) methane yields varied from 132 ml g volatile solids(-1) (VS) for Gracillaria vermiculophylla, 152 mi gVS(-1) for Ulva lactuca, 166 ml g VS(-1) for Chaetomorpha linum and 340 ml g VS(-1) for Saccharina latissima following 34 days of incubation. With an organic content of 21.1% (1.5-2.8 times higher than the other algae) S. latissima seems very suitable for anaerobic digestion. However, the methane yields of U. lactuca, G. vermiculophylla and C. linum could be increased with 68%, 11% and 17%, respectively, by pretreatment with maceration. U. lactuca is often observed during 'green tides' in Europe and has a high cultivation potential at Nordic conditions. Therefore, U. lactuca was selected for further investigation and co-digested with cattle manure in a lab-scale continuously stirred tank reactor. A 48% increase in methane production rate of the reactor was observed when the concentration of U. lactuca in the feedstock was 40% (VS basis). Increasing the concentration to 50% had no further effect on the methane production, which limits the application of this algae at Danish centralized biogas plant.
Methane production and hydrolysis kinetics in the anaerobic degradation of wastewater screenings.
Cadavid-Rodríguez, L S; Horan, N
2013-01-01
Anaerobic biodegradability and hydrolysis rates of wastewater screenings were determined using the biochemical methane potential test at 37 °C. The extent and rate of screenings conversion to methane of this complex and particulate substrate were investigated and since two stages of hydrolysis were identified, corresponding to the different types of materials in screenings, a linear and non-linear model was used. No accumulation of intermediary products was observed and so it was possible to use the methane production rate and a linear model to estimate the hydrolysis rate in the first phase of hydrolysis. The measured values of 0.061-0.127 d(-1) are in the range reported for other comparable organic wastes. It was also observed that the inoculum-to-substrate ratio has a large impact on methane production rate of screenings. The difference in biodegradation rates from the materials in screenings and the overall hydrolysis could be represented by the modified Gompertz non-linear model which was able to describe the methane production rate of screenings with a high confidence. Screenings were found to have 52% biodegradability on average and this shows the potential for volatile solids destruction. A two-stage process with an improved hydrolysis rate is proposed to ensure that the full potential of the material is exploited.
Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.
Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain
2017-03-01
Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.
Ren, Jingzheng
2018-01-01
Anaerobic digestion process has been recognized as a promising way for waste treatment and energy recovery in a sustainable way. Modelling of anaerobic digestion system is significantly important for effectively and accurately controlling, adjusting, and predicting the system for higher methane yield. The GM(1,N) approach which does not need the mechanism or a large number of samples was employed to model the anaerobic digestion system to predict methane yield. In order to illustrate the proposed model, an illustrative case about anaerobic digestion of municipal solid waste for methane yield was studied, and the results demonstrate that GM(1,N) model can effectively simulate anaerobic digestion system at the cases of poor information with less computational expense. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methane Post-Processing for Oxygen Loop Closure
NASA Technical Reports Server (NTRS)
Greenwood, Zachary W.; Abney, Morgan B.; Miller, Lee
2016-01-01
State-of-the-art United States Atmospheric Revitalization carbon dioxide (CO2) reduction is based on the Sabatier reaction process, which recovers approximately 50% of the oxygen (O2) from crew metabolic CO2. Oxygen recovery from carbon dioxide is constrained by the limited availability of reactant hydrogen. Post-processing of methane to recover hydrogen with the Umpqua Research Company Plasma Pyrolysis Assembly (PPA) has the potential to further close the Atmospheric Revitalization oxygen loop. The PPA decomposes methane into hydrogen and hydrocarbons, predominantly acetylene, and a small amount of solid carbon. The hydrogen must then be purified before it can be recycled for additional oxygen recovery. Long duration testing and evaluation of a four crew-member sized PPA and a discussion of hydrogen recycling system architectures are presented.
Methane in Sediments From Three Tropical, Coastal Lagoons on the Yucatan Peninsula, Mexico
NASA Astrophysics Data System (ADS)
Young, B.; Paytan, A.; Miller, L.; Herrera-Silveira, J.
2002-12-01
Tropical wetlands are significant sources of methane (CH4) to the atmosphere, and the majority of research on methane flux and cycling in the tropics has been conducted in fresh-water wetlands and lakes. However, several previous studies have shown that tropical coastal ecosystems can produce significant methane flux to the atmosphere despite the presence of moderate to marine salinities. Information regarding methane cycling within the sediments is crucial to understanding how natural and anthropogenic changes may influence these systems. We measured methane concentrations in sediments from two tropical coastal lagoons during different seasons, as well as in a third, heavily polluted, lagoon (Terminos) during the rainy season. These three lagoons, Celestun, Chelem, and Terminos, have similar vegetation, seasonal temperature and rainfall patterns, and substrate geology, but very different levels of ground water discharge and pollution. Methane concentrations in Celestun and Terminos lagoon showed high spatial variability(> 0.001 to 5 mmol kg-1 wet sediment), while sediments in Chelem Lagoon, which has near marine salinities and little sewage discharge, showed much lower variability of methane concentrations. Methane concentrations in Celestun sediments displayed two predominant patterns: some profiles contained a peak in methane concentration (1 to 2 mmole methane kg-1 wet sediment) between 5 and 15 cm below the surface while the other sediment profiles instead displayed a steady or monotonic increase in methane concentration with depth to approximately 0.025-0.080 mmol kg-1 at 10-15cm below surface followed by stable methane concentrations to the bottom of the cores (20-45 cm below the surface). A subsurface peak in methane concentrations was also found in some locations in Chelem, however, the concentrations were much lower than those measured in Celestun. Previous studies have shown that sewage pollution may drastically increase methane production in tropical coastal ecosystems. Laboratory experiments using sediment from the upper 20 cm in Celestun lagoon resulted in high rates of biogenic production of methane from the addition of trimethylamine, hydrogen, and, while additions of formate and acetate stimulated methane production to a lesser extent. This indicates that methane production in these sediments may be highly responsive to natural or anthropogenic changes in substrate availability. By synthesizing laboratory data and extensive field measurements from the lagoons, we hope to shed light on the factors controlling methane cycling in these sediments, and to better estimate methane flux to the atmosphere from these ecosystems.
Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.
Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo
2010-09-09
Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.
Effect of alkaline pretreatment on anaerobic digestion of olive mill solid waste.
Pellera, Frantseska-Maria; Santori, Sofia; Pomi, Raffaella; Polettini, Alessandra; Gidarakos, Evangelos
2016-12-01
The present study evaluates the influence of alkaline (NaOH) pretreatment on anaerobic digestion of olive pomace. Batch hydrolysis experiments with different NaOH dosages, process durations and temperatures were conducted, in which the variation of olive pomace solubilization in the liquid phase was investigated. The effect of pretreatment on anaerobic digestion was studied through biochemical methane potential assays. The results demonstrated the effectiveness of the NaOH pretreatment in improving olive pomace solubilization as well as its biodegradability. Maximum specific methane yields were achieved at different NaOH dosages depending on the pretreatment temperature. Consequently, it was concluded that the two operating parameters of the pretreatment stage (NaOH dosage and temperature) may exert a joint effect on substrate biodegradability and methane yields. The highest methane yield (242NmLCH 4 /gVS) was obtained for the material pretreated at 90°C, at a dosage of 1mmol/gVS (4% of VS). Copyright © 2016 Elsevier Ltd. All rights reserved.
Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon
2013-10-01
An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stabilization of Quinapril by Incorporating Hydrogen Bonding Interactions
Roy, B. N.; Singh, G. P.; Godbole, H. M.; Nehate, S. P.
2009-01-01
In the present study stability of various known solvates of quinapril hydrochloride has been compared with nitromethane solvate. Nitromethane solvate was found to be more stable compared to other known solvates. Single crystal X-ray diffraction analysis of quinapril nitromethane solvate shows intermolecular hydrogen bonding between quinapril molecule and nitromethane. Stabilization of quinapril by forming strong hydrogen bonding network as in case of co-crystals was further studied by forming co-crystal with tris(hydroxymethyl)amino methane. Quinapril free base forms a stable salt with tris(hydroxymethyl)amino methane not reported earlier. Quinapril tris(hydroxymethyl)amino methane salt found to be stable even at 80° for 72 h i.e. hardly any formation of diketopiperazine and diacid impurity. As expected single crystal X-ray diffraction analysis reveals tris(hydroxymethyl)amino methane salt of quinapril shows complex hydrogen bonding network between the two entities along with ionic bond. The properties of this stable salt - stable in solid as well as solution phase, might lead to an alternate highly stable formulation. PMID:20502545
Optimizing the thermophilic hydrolysis of grass silage in a two-phase anaerobic digestion system.
Orozco, A M; Nizami, A S; Murphy, J D; Groom, E
2013-09-01
Thermophilic hydrolysis of grass silage (GS) at 55 °C with organic loading rates (OLRs) of 6.5, 5, 2.5 and 1.0 kg VS m(-3) days(-1) and hydraulic retention times (HRT) of 10, 6, 4 and 2 days were evaluated in 12 glass bioreactors side by side. The hydrolytic process was measured by variation in pH, volatile solids (VS), VS destruction, soluble chemical oxygen demand (sCOD), hydrolysis and acidification yields. Biological methane potential (BMP) assays were carried out to measure the upper limit for methane production of grass silage with different hydrolytic pretreatments at mesophilic temperature (37 °C). The optimum methane yield of 368 LN CH4 kg(-1) VS was obtained at an OLR of 1 kg VS m(-3)days(-1) and a HRT of 4 days, showing an increase of 30% in the methane potential in comparison to non-hydrolysed GS. Copyright © 2013 Elsevier Ltd. All rights reserved.
Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayono, Satoto E.; Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe; Winter, Josef, E-mail: josef.winter@iba.uka.d
2010-10-15
A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated atmore » an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.« less
Hollmann, M; Powers, W J; Fogiel, A C; Liesman, J S; Bello, N M; Beede, D K
2012-05-01
To determine if dietary medium-chain fatty acids (FA; C(8) to C(14)) may mitigate enteric methane emissions, 24 cows were blocked by body size (n=2) and randomly assigned to 1 sequence of dietary treatments. Diets were fed for 35 d each in 2 consecutive periods. Diets differed in concentrations of coconut oil (CNO; ~75% medium-chain FA): 0.0 (control) or 1.3, 2.7, or 3.3% CNO, dry matter basis. The control diet contained 50% forage (74% from corn silage), 16.5% crude protein (60% from rumen-degradable protein), 34% neutral detergent fiber (NDF; 71% from forage), and 28% starch, dry matter basis. Data and sample collections were from d 29 to 35 in environmentally controlled rooms to measure methane (CH(4)) production. Methane emitted was computed from the difference in concentrations of inlet and outlet air and flux as measured 8 times per day. Control cows emitted 464 g of CH(4)/d, consumed 22.9 kg of DM/d, and produced 34.8 kg of solids-corrected milk/d and 1.3 kg of milk fat/d. Treatment with 1.3, 2.7, or 3.3% dietary CNO reduced CH(4) (449, 291, and 253 g/d, respectively), but concomitantly depressed dry matter intake (21.4, 17.9, and 16.2 kg/d, respectively), solids-corrected milk yield (36.3, 28.4, and 26.8 kg/d, respectively), and milk fat yield (1.4, 0.9, and 0.9 kg/d, respectively). The amount of NDF digested in the total tract decreased with increased dietary CNO concentrations; thus, CH(4) emitted per unit of NDF digested rose from 118 to 128, 153, and 166 g/kg across CNO treatments. Dietary CNO did not significantly affect apparent digestibility of CP but increased apparent starch digestibility from 92 to 95%. No FA C(10) or shorter were detected in feces, and apparent digestibility decreased with increasing FA chain length. Coconut oil concentrations of 2.7 or 3.3% decreased yields of milk FA
Anaerobic Digestion in a Flooded Densified Leachbed
NASA Technical Reports Server (NTRS)
Chynoweth, David P.; Teixeira, Arthur A.; Owens, John M.; Haley, Patrick J.
2009-01-01
A document discusses the adaptation of a patented biomass-digesting process, denoted sequential batch anaerobic composting (SEBAC), to recycling of wastes aboard a spacecraft. In SEBAC, high-solids-content biomass wastes are converted into methane, carbon dioxide, and compost.
NASA Astrophysics Data System (ADS)
Potter, Elyn G.; Bebout, Brad M.; Kelley, Cheryl A.
2009-05-01
The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC δ13C values ranged from -6.7 to -13.5%, and DIC δ13C values ranged from -1.4 to -9.6%. These values were similar to previously reported values. The δ13C values of methane ranged from -49.6 to -74.1%; the methane most enriched in 13C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.
Methane sources in Hong Kong - identification by mobile measurement and isotopic analysis
NASA Astrophysics Data System (ADS)
Fisher, Rebecca; Brownlow, Rebecca; Lowry, David; Lanoisellé, Mathias; Nisbet, Euan
2017-04-01
Hong Kong (22.4°N, 114.1°E) has a wide variety of natural and anthropogenic sources of methane within a small densely populated area (1106 km2, population ˜7.3 million). These include emissions from important source categories that have previously been poorly studied in tropical regions such as agriculture and wetlands. According to inventories (EDGAR v.4.2) anthropogenic methane emissions are mainly from solid waste disposal, wastewater disposal and fugitive leaks from oil and gas. Methane mole fraction was mapped out across Hong Kong during a mobile measurement campaign in July 2016. This technique allows rapid detection of the locations of large methane emissions which may focus targets for efforts to reduce emissions. Methane is mostly emitted from large point sources, with highest concentrations measured close to active landfill sites, sewage works and a gas processing plant. Air samples were collected close to sources (landfills, sewage works, gas processing plant, wetland, rice, traffic, cows and water buffalo) and analysed by mass spectrometry to determine the δ13C isotopic signatures to extend the database of δ13C isotopic signatures of methane from tropical regions. Isotopic signatures of methane sources in Hong Kong range from -70 ‰ (cows) to -37 ‰ (gas processing). Regular sampling of air for methane mole fraction and δ13C has recently begun at the Swire Institute of Marine Science, situated at Cape d'Aguilar in the southeast of Hong Kong Island. This station receives air from important source regions: southerly marine air from the South China Sea in summer and northerly continental air in winter and measurements will allow an integrated assessment of emissions from the wider region.
Knapp, Charles W.; Fowle, David A.; Kulczycki, Ezra; Roberts, Jennifer A.; Graham, David W.
2007-01-01
Methane is a major greenhouse gas linked to global warming; however, patterns of in situ methane oxidation by methane-oxidizing bacteria (methanotrophs), nature's main biological mechanism for methane suppression, are often inconsistent with laboratory predictions. For example, one would expect a strong relationship between methanotroph ecology and Cu level because methanotrophs require Cu to sustain particulate methane monooxygenase (pMMO), the most efficient enzyme for methane oxidation. However, no correlation has been observed in nature, which is surprising because methane monooxygenase (MMO) gene expression has been unequivocally linked to Cu availability. Here we provide a fundamental explanation for this lack of correlation. We propose that MMO expression in nature is largely controlled by solid-phase Cu geochemistry and the relative ability of Cu acquisition systems in methanotrophs, such as methanobactins (mb), to obtain Cu from mineral sources. To test this hypothesis, RT-PCR expression assays were developed for Methylosinus trichosporium OB3b (which produces mb) to quantify pMMO, soluble MMO (the alternate MMO expressed when Cu is “unavailable”), and 16S-rRNA gene expression under progressively more stringent Cu supply conditions. When Cu was provided as CuCl2, pMMO transcript levels increased significantly consistent with laboratory work. However, when Cu was provided as Cu-doped iron oxide, pMMO transcript levels increased only when mb was also present. Finally, when Cu was provided as Cu-doped borosilicate glass, pMMO transcription patterns varied depending on the ambient mb:Cu supply ratio. Cu geochemistry clearly influences MMO expression in terrestrial systems, and, as such, local Cu mineralogy might provide an explanation for methane oxidation patterns in the natural environment. PMID:17615240
Effects of cattle husbandry on abundance and activity of methanogenic archaea in upland soils.
Radl, Viviane; Gattinger, Andreas; Chronáková, Alica; Nemcová, Anna; Cuhel, Jiri; Simek, Miloslav; Munch, Jean Charles; Schloter, Michael; Elhottová, Dana
2007-09-01
In the present study, we tested the hypothesis that animal treading associated with a high input of organic matter would favour methanogenesis in soils used as overwintering pasture. Hence, methane emissions and methanogen populations were examined at sections with different degree of cattle impact in a Farm in South Bohemia, Czech Republic. In spring, methane emission positively corresponded to the gradient of animal impact. Applying phospholipid etherlipid analysis, the highest archaeal biomass was found in section severe impact (SI), followed by moderate impact (MI) and no impact. The same trend was observed for the methanogens as showed by real-time quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes. The detection of monounsaturated isoprenoid side chain hydrocarbons (i20:1) indicated the presence of acetoclastic methanogens in the cattle-impacted sites. This result was corroborated by the phylogenetic analysis of mcrA gene sequences obtained from section SI, which showed that 33% of the analysed clones belonged to the genus Methanosarcina. The majority of the sequenced clones (41%) showed close affiliations with uncultured rumen archaeons. This leads to the assumption that a substantial part of the methanogenic community in plot SI derived from the grazing cattle itself. Compared to the spring sampling, in autumn, a significant reduction in archaeal biomass and number of copies of mcrA genes was observed mainly for section MI. It can be concluded that after 5 months without cattle impact, the severely impact section maintained its methane production potential, whereas the methane production potential under moderate impact returned to background values.
NASA Astrophysics Data System (ADS)
Shaffer, Gary; Fernández Villanueva, Esteban; Rondanelli, Roberto; Olaf Pepke Pedersen, Jens; Malskær Olsen, Steffen; Huber, Matthew
2017-11-01
Geological records reveal a number of ancient, large and rapid negative excursions of the carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth system over a short duration. These injections may have forced strong global warming events, sometimes accompanied by mass extinctions such as the Triassic-Jurassic and end-Permian extinctions 201 and 252 million years ago, respectively. In many cases, evidence points to methane as the dominant form of injected carbon, whether as thermogenic methane formed by magma intrusions through overlying carbon-rich sediment or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth system models for addressing such events should include a comprehensive treatment of methane cycling but such a treatment has often been lacking. Here we implement methane cycling in the Danish Center for Earth System Science (DCESS) model, a simplified but well-tested Earth system model of intermediate complexity. We use a generic methane input function that allows variation in input type, size, timescale and ocean-atmosphere partition. To be able to treat such massive inputs more correctly, we extend the model to deal with ocean suboxic/anoxic conditions and with radiative forcing and methane lifetimes appropriate for high atmospheric methane concentrations. With this new model version, we carried out an extensive set of simulations for methane inputs of various sizes, timescales and ocean-atmosphere partitions to probe model behavior. We find that larger methane inputs over shorter timescales with more methane dissolving in the ocean lead to ever-increasing ocean anoxia with consequences for ocean life and global carbon cycling. Greater methane input directly to the atmosphere leads to more warming and, for example, greater carbon dioxide release from land soils. Analysis of synthetic sediment cores from the simulations provides guidelines for the interpretation of real sediment cores spanning the warming events. With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, timescales and locations of methane injections driving specific, observed deep-time, global warming events.
Experimental co-digestion of corn stalk and vermicompost to improve biogas production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Guangyin; Zheng Zheng, E-mail: zzhenghj@fudan.edu.c; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433
2010-10-15
Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 {+-} 13.87 mL/g TS{sub added} was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% withmore » the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42-58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 {+-} 11.01 mL/g TS{sub added} and methane yield of 259.35 {+-} 13.85 mL/g TS{sub added} were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.« less
Methane production by anaerobic digestion of Bermuda grass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klass, D.L.; Ghosh, S.
1981-01-01
Bermuda grass (Cynodon dactylon) is one of the high-yield warm-season grasses that has been suggested as a promising raw material for conversion to methane. Experimental work performed with laboratory digesters to study the anaerobic digestion of Coastal Bermuda grass harvested in Louisiana and having a C/N ratio of 24 is described. Methane yields of about 1.9 SCF/lb of volatile solids (VS) added were observed under conventional mesophilic high-rate conditions. When supplemental nitrogen additions were made, the methane yields increased. This observation along with the compositional data compiled on the grass used in this work indicated that the nitrogen content ofmore » the unsupplemented grass was insufficient to sustain high-rate digestion at the higher yield level. However, as the C/N ratio was reduced by addition of ammonium chloride, the methane yield continually increased up to 3.5 SCF/lb added at the lowest C/N ratio examined (6.3) even after relatively high concentrations of ammonium nitrogen were measured in the effluent. It appears that the added nutrient had a stimulatory effect on methane production above the point where nitrogen was not limiting. Thermophilic digestion with supplemental nitrogen additions afforded methane yields of about 2.7 SCF/lb VS added. Carbon and energy balances were calculated and the relative biodegradabilities of the organics were estimated. It was concluded from this work that Coastal Bermuda grass can be converted to high-methane gas under conventional anaerobic digestion conditions. The performance of the particular lot of grass studied was substantially improved by supplemental nitrogen additions. (Refs. 12).« less
Borowski, Sebastian; Boniecki, Paweł; Kubacki, Przemysław; Czyżowska, Agata
2018-04-01
In this study, the anaerobic mesophilic co-digestion of food waste (FW) with municipal sewage sludge (MSS) and slaughterhouse waste (SHW) was undertaken in 3-dm 3 laboratory reactors as well as in 50-dm 3 reactors operated in semi-continuous conditions. The highest methane yield of around 0.63 m 3 CH 4 /kgVS fed was achieved for the mixture of FW and SHW treated in the laboratory digester operated at solids retention time (SRT) of 30 days, whereas the co-digestion of FW with MSS under similar operating conditions produced 0.46 m 3 of methane from 1 kgVS fed . No significant differences between methane yields from laboratory digesters and large-scale reactors were reported. The conditioning tests with the digestates from reactor experiments revealed the highest efficiency of inorganic coagulants among all investigated chemicals, which applied in a dose of 10 g/kg allowed to reduce capiliary suction time (CST) of the digestate below 20 s. The combined conditioning with coagulants and bentonite did not further reduce the CST value but improved the quality of the digestate supernatant. In particular, the concentrations of suspended solids, COD as well as metals in the supernatant were considerably lowered. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Aydın, Özgür; Nakajima, Hironori; Kitahara, Tatsumi
2015-10-01
Addressing the fuel distribution and endothermic cooling by the internal reforming, we have measured longitudinal current/temperature variations by ;Electrode-segmentation; in a microtubular solid oxide fuel cell operated with syngas (50% pre-reformed methane) and equivalent H2/N2 (100% conversion of syngas to H2) at three different flow rates. Regardless of the syngas flow rates, currents and temperatures show irregular fluctuations with varying amplitudes from upstream to downstream segment. Analysis of the fluctuations suggests that the methane steam reforming reaction is highly affected by the H2 partial pressure. Current-voltage curves plotted for the syngas and equivalent H2/N2 flow rates reveal that the fuel depletion is enhanced toward the downstream during the syngas operation, resulting in a larger performance degradation. All the segments exhibit temperature drops with the syngas flow compared with the equivalent H2/N2 flow due to the endothermic cooling by the methane steam reforming reaction. Despite the drops, the segment temperatures remain above the furnace temperature; besides, the maximum temperature difference along the cell diminishes. The MSR reaction rate does not consistently increase with the decreasing gas inlet velocity (increasing residence time on the catalyst); which we ascribe to the dominating impact of the local temperatures.
Santos, Lívia Caroline Dos; Adarme, Oscar Fernando Herrera; Baêta, Bruno Eduardo Lobo; Gurgel, Leandro Vinícius Alves; Aquino, Sérgio Francisco de
2018-05-21
Ozone pretreatment of coffee husks (CH) was evaluated to generate hydrolysates for biogas production and to preserve cellulose of the solid phase for 2G ethanol production. Pretreatment variables included liquid-to-solid ratio (LSR), pH and specific applied ozone load (SAOL). Considering single-stage anaerobic digestion (AD), the highest methane production (36 NmL CH 4 /g CH) was achieved with the hydrolysate generated in the experiment using LSR 10 mL/g, pH 11 and SAOL 18.5 mg O 3 /g CH, leading to 0.064 kJ/g CH energy recovery. Due to the presence of toxic compounds in the hydrolysate, the addition of powdered activated carbon (4 g/L) to the reactor enhanced biogas production, leading to 86 NmL CH 4 /g CH yield and 0.58 kJ/g CH energy recovery. When two-stage AD was applied, methane production resulted in 49 NmL CH 4 /g CH, with additional 19 NmL H 2 /g CH production, resulting in a net 0.26 kJ/g CH energy recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Anaerobic digestion as a waste disposal option for American Samoa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, C
1993-01-01
Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.
Santalla, Estela; Córdoba, Verónica; Blanco, Gabriel
2013-08-01
The objective of this work was the application of 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for the estimation of methane and nitrous oxide emissions from the waste sector in Argentina as a preliminary exercise for greenhouse gas (GHG) inventory development and to compare with previous inventories based on 1996 IPCC Guidelines. Emissions projections to 2030 were evaluated under two scenarios--business as usual (BAU), and mitigation--and the calculations were done by using the ad hoc developed IPCC software. According to local activity data, in the business-as-usual scenario, methane emissions from solid waste disposal will increase by 73% by 2030 with respect to the emissions of year 2000. In the mitigation scenario, based on the recorded trend of methane captured in landfills, a decrease of 50% from the BAU scenario should be achieved by 2030. In the BAU scenario, GHG emissions from domestic wastewater will increase 63% from 2000 to 2030. Methane emissions from industrial wastewater, calculated from activity data of dairy, swine, slaughterhouse, citric, sugar, and wine sectors, will increase by 58% from 2000 to 2030 while methane emissions from domestic will increase 74% in the same period. Results show that GHG emissions calculated from 2006 IPCC Guidelines resulted in lower levels than those reported in previous national inventories for solid waste disposal and domestic wastewater categories, while levels were 18% higher for industrial wastewater. The implementation of the 2006 IPCC Guidelines for National Greenhouse Inventories is now considering by the UNFCCC for non-Annex I countries in order to enhance the compilation of inventories based on comparable good practice methods. This work constitutes the first GHG emissions estimation from the waste sector of Argentina applying the 2006 IPCC Guidelines and the ad doc developed software. It will contribute to identifying the main differences between the models applied in the estimation of methane emissions on the key categories of waste emission sources and to comparing results with previous inventories based on 1996 IPCC Guidelines.
Dai, Xiaohu; Hu, Chongliang; Zhang, Dong; Chen, Yinguang
2017-11-01
The biogas generated from anaerobic digestion (AD) also includes undesirable by-product such as hydrogen sulfide (H 2 S), which must be removed before the biogas can be used as a clean energy source. Therefore, it is necessary to find an appropriate strategy to simultaneously enhance the methane yield and reduce H 2 S production. An efficient strategy-pretreating sludge at pH 10 for 8d and adjusting the system at neutral pH to produce methane for 20d-is reported for the synchronous enhancement of methane production and reduction of H 2 S production during AD. The experimental results showed that the cumulative methane yield was 861.2±6.1mL/g volatile solids (VS) of sludge pretreated at pH 10 in semi-continuous stirred anaerobic reactors for 84d, an increase of 49.6% over the yield in the control. Meanwhile, the cumulative production of H 2 S was 144.1×10 -4 mL/g VS, 54.2% lower than that in the control. Copyright © 2017 Elsevier Ltd. All rights reserved.
Agyeman, Fred O; Tao, Wendong
2014-01-15
This study was to comprehensively evaluate the effects of food waste particle size on co-digestion of food waste and dairy manure at organic loading rates increased stepwise from 0.67 to 3 g/L/d of volatile solids (VS). Three anaerobic digesters were fed semi-continuously with equal VS amounts of food waste and dairy manure. Food waste was ground to 2.5 mm (fine), 4 mm (medium), and 8 mm (coarse) for the three digesters, respectively. Methane production rate and specific methane yield were significantly higher in the digester with fine food waste. Digestate dewaterability was improved significantly by reducing food waste particle size. Specific methane yield was highest at the organic loading rate of 2g VS/L/d, being 0.63, 0.56, and 0.47 L CH4/g VS with fine, medium, and coarse food waste, respectively. Methane production rate was highest (1.40-1.53 L CH4/L/d) at the organic loading rate of 3 g VS/L/d. The energy used to grind food waste was minor compared with the heating value of the methane produced. Copyright © 2013 Elsevier Ltd. All rights reserved.
Feng, L Y; Yang, L Q; Zhang, L X; Chen, H L; Chen, J
2013-01-01
Sludge with low organic content always results in an unsatisfactory performance, even failure of anaerobic digestion. The alkaline pretreatment effect on anaerobic digestion of sludge with low organic content has seldom been studied although it gives many benefits for sludge with high organic content. In this study the influence of alkaline pretreatment (pH 10, an effective alkaline pH) on the solubilization and methane production from waste activated sludge (WAS) with low organic content was investigated. Results from biochemical methane potential (BMP) experiments showed that anaerobic biodegradability of WAS was greatly improved by alkaline pretreatment at pH 10. Methane production from the current WAS under conditions of pretreatment time 4 h and digestion time 15 d was 139.6 mL/g VS (volatile solids), much higher than that from the unpretreated WAS with digestion time of 20 d (75.2 mL/g VS). Also, the solubilization of WAS was significantly accelerated by alkaline pretreatment. Mechanism exploration indicated that the general activities of anaerobic microorganisms, specific activities of key enzymes and the amounts of methanogens were enhanced by alkaline pretreatment at pH 10, showing good agreement with methane production.
Methane Production by Microbial Mats Under Low Sulfate Concentrations
NASA Technical Reports Server (NTRS)
Bebout, Brad M.; Hoehler, Tori M.; Thamdrup, Bo; Albert, Dan; Carpenter, Steven P.; Hogan, Mary; Turk, Kendra; DesMarais, David J.
2003-01-01
Cyanobacterial mats collected in hypersaline salterns were incubated in a greenhouse under low sulfate concentrations ([SO4]) and examined for their primary productivity and emissions of methane and other major carbon species. Atmospheric greenhouse warming by gases such as carbon dioxide and methane must have been greater during the Archean than today in order to account for a record of moderate to warm paleoclemates, despite a less luminous early sun. It has been suggested that decreased levels of oxygen and sulfate in Archean oceans could have significantly stimulated microbial methanogenesis relative to present marine rates, with a resultant increase in the relative importance of methane in maintaining the early greenhouse. We maintained modern microbial mats, models of ancient coastal marine communities, in artificial brine mixtures containing both modern [SO4=] (ca. 70 mM) and "Archean" [SO4] (less than 0.2 mM). At low [SO4], primary production in the mats was essentially unaffected, while rates of sulfate reduction decreased by a factor of three, and methane fluxes increased by up to ten-fold. However, remineralization by methanogenesis still amounted to less than 0.4 % of the total carbon released by the mats. The relatively low efficiency of conversion of photosynthate to methane is suggested to reflect the particular geometry and chemical microenvironment of hypersaline cyanobacterial mats. Therefore, such mats w-ere probably relatively weak net sources of methane throughout their 3.5 Ga history, even during periods of low- environmental levels oxygen and sulfate.
Alqaralleh, Rania Mona; Kennedy, Kevin; Delatolla, Robert; Sartaj, Majid
2016-12-01
Renewable energy and clean environment are two crucial requirements for our modern world. Low cost, energy production and limited environmental impact make anaerobic digestion (AD) a promising technology for stabilizing organic waste and in particular, sewage waste. The anaerobic co-digestion of thickened waste activated sludge (TWAS) and sewage treatment plant trapped fat, oil and grease (FOG) using different FOG-TWAS mixtures (20, 40, 60 and 80% of FOG based on total volatile solids (TVS)) were investigated in this study using both thermophilic (55 ± 1 °C) and two stages hyper-thermophilic/thermophilic (70 ± 1 °C and 55 ± 1 °C) anaerobic co-digestion. The hyper-thermophilic co-digestion approach as a part of the co-digestion process has been shown to be very useful in improving the methane production. During hyper-thermophilic biochemical methane potential (BMP) assay testing the sample with 60% FOG (based on TVS) has been shown to significantly increase the maximum methane production to 673.1 ± 14.0 ml of methane as compared to 316.4 ± 14.3 ml of methane for the control sample. This represents a 112.7% increase in methane production compared to the control sample considered in this paper. These results signify the importance of hyper-thermophilic digestion to the co-digestion of TWAS-FOG field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique
2015-01-01
Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10 % to 30 %, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal depends on the molecule type and on the solid matter removal. But, as PAH elimination is similar whether the solid substrate is degraded into VFA or into methane, it seems that the fermentative communities are responsible for their elimination. PMID:25874750
Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique
2015-01-01
Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal depends on the molecule type and on the solid matter removal. But, as PAH elimination is similar whether the solid substrate is degraded into VFA or into methane, it seems that the fermentative communities are responsible for their elimination.
Baccot, Camille; Pallier, Virginie; Feuillade-Cathalifaud, Geneviève
2017-05-01
Many data on anaerobic digestion (AD) and co-digestion of municipal solid waste leachate (MSWL) are already available in literature. They mainly deal with its performances to decrease the chemical oxygen demand (COD) of MSWL and no information is given on the impact of the specific characteristics of the dissolved organic matter (DOM) in leachate on these performances. DOM in leachate evolves towards more aromatic and hydrophobic compounds during landfilling with increasing specific ultra-violet absorbance index (SUVA) and hydrophobic character. However, according to the humification stages, this DOM would not present the same aptitude for AD. This research thus focused on (i) optimizing a biochemical methane potential (BMP) test applied to MSWL by using the Taguchi method and (ii) evaluating the impact of the hydrophobic character of the DOM in leachate on the BMP of MSWL to finally define the humification degree more suitable for AD. Hydrophobic-like (HPO ∗ ) and transphilic-like (TPH ∗ ) compounds extracted from leachate by a fractionation protocol were tested because of their high content in MSWL during acetogenesis and methanogenesis steps. After 275days of AD, the content in hydrophobic compounds and the SUVA indexes increased in the digestates. Moreover, even if the biogas and methane productions were not significantly different during the whole tests (4072±350mLgDOC -1 and 2370±95mLgDOC -1 respectively), the volume of biogas produced directly correlated with the TPH ∗ fraction content in the initial digestates. On the contrary, the methane percentage in biogas was anti-correlated with the hydrophilic-like compounds content. The hydrophobic-like molecules seem thus not to be directly involved in the methanogenic step, however they promote the increase of the methane percent in the biogas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oxygen-Promoted Methane Activation on Copper
Niu, Tianchao; Jiang, Zhao; Zhu, Yaguang; ...
2017-11-01
The role of oxygen in the activation of C–H bonds in methane on clean and oxygen-precovered Cu(111) and Cu 2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and “moderate pressures” was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C–H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole–dipole attraction of O–H and Cu–CH 3 species. Furthermore, the C–H bond activation barriersmore » on Cu 2O(111) surfaces are large due to the weak stabilization of H and CH 3 fragments.« less
Oxygen-Promoted Methane Activation on Copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Tianchao; Jiang, Zhao; Zhu, Yaguang
The role of oxygen in the activation of C–H bonds in methane on clean and oxygen-precovered Cu(111) and Cu 2O(111) surfaces was studied with combined in situ near-ambient-pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy. Activation of methane at 300 K and “moderate pressures” was only observed on oxygen-precovered Cu(111) surfaces. Density functional theory calculations reveal that the lowest activation energy barrier of C–H on Cu(111) in the presence of chemisorbed oxygen is related to a two-active-site, four-centered mechanism, which stabilizes the required transition-state intermediate by dipole–dipole attraction of O–H and Cu–CH 3 species. Furthermore, the C–H bond activation barriersmore » on Cu 2O(111) surfaces are large due to the weak stabilization of H and CH 3 fragments.« less
López, Iván; Borzacconi, Liliana
2010-10-01
A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.
Schievano, Andrea; Sciarria, Tommy Pepè; Gao, Yong Chang; Scaglia, Barbara; Salati, Silvia; Zanardo, Marina; Quiao, Wei; Dong, Renjie; Adani, Fabrizio
2016-10-01
This work describes how dark fermentation (DF), anaerobic digestion (AD) and microbial fuel cells (MFC) and solid-liquid separation can be integrated to co-produce valuable biochemicals (hydrogen and methane), bioelectricity and biofertilizers. Two integrated systems (System 1: AD+MFC, and System 2: DF+AD+MFC) are described and compared to a traditional one-stage AD system in converting a mixture (COD=124±8.1gO2kg(-1)Fresh Matter) of swine manure and rice bran. System 1 gave a biomethane yield of 182 LCH4kg(-1)COD-added, while System 2 gave L yields of bio-hydrogen and bio-methane of 27.3±7.2LH2kg(-1)COD-added and 154±14LCH4kg(-1)COD-added, respectively. A solid-liquid separation (SLS) step was applied to the digested slurry, giving solid and liquid fractions. The liquid fraction was treated via the MFC-steps, showing power densities of 12-13Wm(-3) (500Ω) and average bioelectricity yields of 39.8Whkg(-1)COD to 54.2Whkg(-1)COD. Copyright © 2016 Elsevier Ltd. All rights reserved.
CVF spectrophotometry of Pluto - Correlation of composition with albedo. [circularly variable filter
NASA Technical Reports Server (NTRS)
Marcialis, Robert L.; Lebofsky, Larry A.
1991-01-01
The present time-resolved, 0.96-2.65-micron spectrophotometry for the Pluto-Charon system indicates night-to-night variations in the depths of the methane absorptions such that the bands' equivalent width is near minimum light. The interpretation of these data in terms of a depletion of methane in dark regions of the planet, relative to bright ones, is consistent with the Buie and Fink (1987) observations. The near-IR spectrum of Pluto seems to be dominated by surface frost. It is suggested that the dark equatorial regions of Pluto are redder than those of moderate albedo.
Suwannoppadol, Suwat; Ho, Goen; Cord-Ruwisch, Ralf
2012-12-01
Sodium toxicity is a common problem causing inhibition of anaerobic digestion, and digesters treating highly concentrated wastes, such as food and municipal solid waste, and concentrated animal manure, are likely to suffer from partial or complete inhibition of methane-producing consortia, including methanogens. When grass clippings were added at the onset of anaerobic digestion of acetate containing a sodium concentration of 7.8 gNa(+)/L, a total methane production about 8L/L was obtained, whereas no methane was produced in the absence of grass leaves. In an attempt to narrow down which components of grass leaves caused decrease of sodium toxicity, different hypotheses were tested. Results revealed that betaine could be a significant compound in grass leaves causing reduction to sodium inhibition. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Zhengcai; Walsh, Matthew R; Guo, Guang-Jun
2015-04-14
The results of six high-precision constant energy molecular dynamics (MD) simulations initiated from methane-water systems equilibrated at 80 MPa and 250 K indicate that methane hydrates can nucleate via multiple pathways. Five trajectories nucleate to an amorphous solid. One trajectory nucleates to a structure-I hydrate template with long-range order which spans the simulation box across periodic boundaries despite the presence of several defects. While experimental and simulation data for hydrate nucleation with different time- and length-scales suggest that there may exist multiple pathways for nucleation, including metastable intermediates and the direct formation of the globally-stable phase, this work provides the most compelling evidence that direct formation to the globally stable crystalline phase is one of the multiple pathways available for hydrate nucleation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, Rangaraj; Torrijos, Michel, E-mail: michel.torrijos@supagro.inra.fr; Sousbie, Philippe
Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatilemore » solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the deficit in methane production in the TPMR attributed to COD loss due to biomass synthesis and adsorption of hard COD onto the flocs. These results including the complicated operational procedure of the two-phase process and the economic factors suggested that the single-phase process could be the preferred system for FVW.« less
Investigation of the Methane Hydrate Formation by Cavitation Jet
NASA Astrophysics Data System (ADS)
Morita, H.; Nagao, J.
2015-12-01
Methane hydrate (hereafter called "MH") is crystalline solid compound consisting of hydrogen-bonded water molecules forming cages and methane gas molecules enclosed in the cage. When using MH as an energy resource, MH is dissociated to methane gas and water and collect only the methane gas. The optimum MH production method was the "depressurization method". Here, the production of MH means dissociating MH in the geologic layers and collecting the resultant methane gas by production systems. In the production of MH by depressurization method, MH regeneration was consider to important problem for the flow assurance of MH production system. Therefore, it is necessary to clarify the effect of flow phenomena in the pipeline on hydrate regeneration. Cavitation is one of the flow phenomena which was considered a cause of MH regeneration. Large quantity of microbubbles are produced by cavitation in a moment, therefore, it is considered to promote MH formation. In order to verify the possible of MH regeneration by cavitation, it is necessary to detailed understanding the condition of MH formation by cavitation. As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on MH formation using by cavitation. The primary objective of this study is to demonstrate the formation MH by using cavitation in the various temperature and pressure condition, and to clarify the condition of MH formation by using observation results.
Micronutrient dynamics after thermal pretreatment of olive mill solid waste.
Almansa, Ana R; Rodriguez-Galan, Monica; Borja, Rafael; Fermoso, Fernando G
2015-09-01
This study investigated metal dynamics, and their bioavailability, before and after thermal pretreatment of olive mill solid waste (OMSW), using a sequential metal extraction scheme. The 11.5% increase of cobalt in the most available fraction after the pretreatment coupled to the increase of methane production rate have been a good indicator that the OMSW anaerobic digestion might be metal limited due to the lack of cobalt. Copyright © 2015 Elsevier Ltd. All rights reserved.
Economic and environmental benefits of landfill gas utilisation in Oman.
Abushammala, Mohammed Fm; Qazi, Wajeeha A; Azam, Mohammed-Hasham; Mehmood, Umais A; Al-Mufragi, Ghithaa A; Alrawahi, Noor-Alhuda
2016-08-01
Municipal solid waste disposed in landfill sites decomposes under anaerobic conditions and produces so-called landfill-gas, which contains 30%-40% of carbon dioxide (CO2) and 50%-60% of methane (CH4). Methane has the potential of causing global warming 25 times more than CO2 Therefore, migration of landfill-gas from landfills to the surrounding environment can potentially affect human life and environment. Thus, this research aims to determine municipal solid waste generation in Oman over the years 1971-2030, to quantify annual CH4 emissions inventory that resulted from this waste over the same period of time, and to determine the economic and environmental benefits of capturing the CH4 gas for energy production. It is found that cumulative municipal solid waste landfilled in Oman reaches 3089 Giga gram (Gg) in the year 2030, of which approximately 85 Gg of CH4 emissions are produced in the year 2030. The study also found that capturing CH4 emissions between the years 2016 and 2030 could attract revenues of up to US$333 million and US$291 million from the carbon reduction and electricity generation, simultaneously. It is concluded that CH4 emissions from solid waste in Oman increases enormously with time, and capture of this gas for energy production could provide a sustainable waste management solution in Oman. © The Author(s) 2016.
Translating landfill methane generation parameters among first-order decay models.
Krause, Max J; Chickering, Giles W; Townsend, Timothy G
2016-11-01
Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.
NASA Astrophysics Data System (ADS)
Treat, C. C.; Turetsky, M.; Harden, J.; McGuire, A.
2006-12-01
Peatlands cover only 3-5 % of the world's land surface but store 30 % of the world's soil carbon (C) pool. Peatlands currently are thought to function globally as a net sink for atmospheric CO2, sequestering approximately 76 Tg (1012 g) C yr-1. However, peatlands also function as a net source of atmospheric CH4. Approximately 25% of the 270 Tg CH4 yr-1 emitted from natural sources are emitted from northern wetlands. Methane production (methanogenesis) and consumption (methane oxidation) in peatlands are sensitive to both fluctuations in soil moisture and temperature. Boreal regions already are experiencing rapid changes in climate, including longer and drier growing seasons and the degradation of permafrost. Changes in peat environments in response to these climate changes could have significant implications for CH4 emissions to the atmosphere, and thus the radiative forcing of high latitude regions. In 2005, we initiated a large scale in situ climate experiment in a moderately rich fen near the Bonanza Creek LTER site in central Alaska (APEX: www.apex.msu.edu). The goal of our project is to understand vegetation and C cycling processes under altered water table and soil thermal regimes. We established three water table plots (control, raised, lowered), each about 120 m2 in area, using drainage ditches to lower the water table by 5-10 cm and solar powered pumps to raise the water table by about 5-15 cm. Within each water table plot, we constructed replicate open top chambers (OTCs) to passively increase surface temperatures by about 1 ° C. We used static chambers and gas chromatography to quantify methane fluxes at each water table x soil warming plot through the growing seasons of 2005 and 2006. Additionally, we quantified seasonal CH4 fluxes along an adjacent moisture gradient that included four distinct soil moisture and vegetation zones, including a moderately rich fen (APEX site), an emergent macrophyte marsh, a shrubby permafrost fen, and a black spruce permafrost forest. Our results thus far show that methane fluxes varied by a warming x water table interaction across our experimental treatments (Proc Mixed SAS Repeated Measures ANOVA; F2,8=4.07; p=0.05), with the largest methane fluxes in the warm, wet peatland plots and the lowest methane fluxes in the unwarmed, dry peatland plots. Sites along the moisture gradient transitioned from methane sources in the rich fen site (APEX plots) to small sinks of CH4 in the permafrost forest under drying soil moisture conditions. Our soil climate manipulations allow us to quantify interactions among biogeophysical variables that control CH4 emissions from peatlands. Our coupled experimental and gradient based measurements allow us to explore controls on microbial populations and methane emissions across a wider range of terrestrial boreal environments. This work so far shows that methane cycling in interior Alaskan ecosystems is extremely sensitive to soil climate conditions, and that the fate of methane emissions from high latitudes will be affected primarily by changes in precipitation and soil drainage that control water table position in peatlands and permafrost ecosystems.
In situ Low-temperature Pair Distribution Function (PDF) Analysis of CH4 and CO2 Hydrates
NASA Astrophysics Data System (ADS)
Cladek, B.; Everett, M.; McDonnell, M.; Tucker, M.; Keffer, D.; Rawn, C.
2017-12-01
Gas hydrates occur in ocean floor and sub-surface permafrost deposits and are stable at moderate to high pressures and low temperatures. They are a clathrate structure composed of hydrogen bonded water cages that accommodate a wide variety of guest molecules. CO2 and CH4 hydrates both crystallize as the cubic sI hydrate and can form a solid solution. Natural gas hydrates are interesting as a potential methane source and for CO2 sequestration. Long-range diffraction studies on gas hydrates give valuable structural information but do not provide a detailed understanding of the disordered gas molecule interactions with the host lattice. In-situ low temperature total scattering experiments combined with pair distribution function (PDF) analysis are used to investigate the gas molecule motions and guest-cage interactions. CO2 and methane hydrates exhibit different decomposition behavior, and CO2 hydrate has a smaller lattice parameter despite it being a relatively larger molecule. Total scattering studies characterizing both the short- and long-range order simultaneously help to elucidate the structural source of these phenomena. Low temperature neutron total scattering data were collected using the Nanoscale Ordered MAterials Diffractometer (NOMAD) beamline at the Spallation Neutron Source (SNS) on CO2 and CH4 hydrates synthesized with D2O. Guest molecule motion within cages and interactions between gases and cages are investigated through the hydrate stability and decomposition regions. Data were collected from 2-80 K at a pressure of 55 mbar on CO2 and CH4 hydrates, and from 80-270 K at 25 bar on CH4 hydrate. The hydrate systems were modeled with classical molecular dynamic (MD) simulations to provide an analysis of the total energy into guest-guest, guest-host and host-host contributions. Combined Reitveld and Reverse Monte Carlo (RMC) structure refinement were used to fit models of the data. This combined modeling and simulation characterizes the effects of CO2 and CH4 as guest molecules on the structure and decomposition of gas hydrates. Structure and thermodynamic studies will provide a more comprehensive understanding of CO2-CH4 solid solutions, exchange kinetics, and implications on hydrate structure.
Thermal regulation of methane hydrate dissociation: Implications for gas production models
Circone, S.; Kirby, S.H.; Stern, L.A.
2005-01-01
Thermal self-regulation of methane hydrate dissociation at pressure, temperature conditions along phase boundaries, illustrated by experiment in this report, is a significant effect with potential relevance to gas production from gas hydrate. In surroundings maintained at temperatures above the ice melting point, the temperature in the vicinity of dissociating methane hydrate will decrease because heat flow is insufficient to balance the heat absorbed by the endothermic reaction: CH4??nH2O (s) = CH4 (g) + nH2O (l). Temperature decreases until either all of the hydrate dissociates or a phase boundary is reached. At pressures above the quadruple point, the temperature-limiting phase boundary is that of the dissociation reaction itself. At lower pressures, the minimum temperature is limited by the H2O solid/liquid boundary. This change in the temperature-limiting phase boundary constrains the pressure, temperature conditions of the quadruple point for the CH4-H2O system to 2.55 ?? 0.02 MPa and 272.85 ?? 0.03 K. At pressures below the quadruple point, hydrate dissociation proceeds as the liquid H2O produced by dissociation freezes. In the laboratory experiments, dissociation is not impeded by the formation of ice byproduct per se; instead rates are proportional to the heat flow from the surroundings. This is in contrast to the extremely slow dissociation rates observed when surrounding temperatures are below the H2O solid/liquid boundary, where no liquid water is present. This "anomalous" or "self" preservation behavior, most pronounced near 268 K, cannot be accessed when surrounding temperatures are above the H2O solid/liquid boundary. ?? 2005 American Chemical Society.
Aerial monitoring in active mud volcano by UAV technique
NASA Astrophysics Data System (ADS)
Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo
2016-04-01
UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.
Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane
NASA Astrophysics Data System (ADS)
He, Ruixuan; Echeverri, Mauricio; Kyu, Thein
2014-03-01
With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.
Anaerobic digestion potential of urban organic waste: a case study in Malmö.
Davidsson, Asa; Jansen, Jes la Cour; Appelqvist, Björn; Gruvberger, Christopher; Hallmer, Martin
2007-04-01
A study of existing organic waste types in Malmö, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge digesters at the wastewater treatment plant, the yearly energy production from methane could be expected to increase from 24 to 43 GWh.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doan, Hieu A.; Li, Zhanyong; Farha, Omar K.
In this study, the prospect of using copper oxide nanoclusters grown by atomic layer deposition on a porphyrin support for selective oxidation of methane to methanol was examined by means of density functional theory (DFT) calculations. Ab initio thermodynamic analysis indicates that an active site in the form of Cu(μ-O)Cu can be stabilized by activation in O2 at 465K. Furthermore, a moderate methane activation energy barrier (Ea=54kJ/mol) is predicted, and the hydrogen abstraction activity of the active site could be attributed to the radical character of the bridging oxygen. Methanol extraction in this system is limited by a thermodynamic barriermore » to desorption of ΔG=57kJ/mol at 473K; however, desorption can be facilitated by the addition of water in a “stepped conversion” process. Overall, our results indicate similar activity between porphyrin-supported copper oxide nanoclusters and existing Cu-exchanged zeolites and provide a computational proof-of-concept for utilizing functionalized organic linkers in metal-organic frameworks (MOFs) for selective oxidation of methane to methanol.« less
Doan, Hieu A.; Li, Zhanyong; Farha, Omar K.; ...
2018-04-08
In this study, the prospect of using copper oxide nanoclusters grown by atomic layer deposition on a porphyrin support for selective oxidation of methane to methanol was examined by means of density functional theory (DFT) calculations. Ab initio thermodynamic analysis indicates that an active site in the form of Cu(μ-O)Cu can be stabilized by activation in O2 at 465K. Furthermore, a moderate methane activation energy barrier (Ea=54kJ/mol) is predicted, and the hydrogen abstraction activity of the active site could be attributed to the radical character of the bridging oxygen. Methanol extraction in this system is limited by a thermodynamic barriermore » to desorption of ΔG=57kJ/mol at 473K; however, desorption can be facilitated by the addition of water in a “stepped conversion” process. Overall, our results indicate similar activity between porphyrin-supported copper oxide nanoclusters and existing Cu-exchanged zeolites and provide a computational proof-of-concept for utilizing functionalized organic linkers in metal-organic frameworks (MOFs) for selective oxidation of methane to methanol.« less
Martian dust storms as a possible sink of atmospheric methane
NASA Astrophysics Data System (ADS)
Farrell, W. M.; Delory, G. T.; Atreya, S. K.
2006-11-01
Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.
Alibardi, Luca; Cossu, Raffaello
2015-02-01
The composition of the Organic Fraction of Municipal Solid Waste (OFMSW) strongly depends on the place and time of collection for a specific municipality or area. Moreover synthetic food waste or organic waste from cafeterias and restaurants may not be representative of the overall OFMSW received at treatment facilities for source-separated waste. This work is aimed at evaluating the composition variability of OFMSW, the potential productions of hydrogen and methane from specific organic waste fractions typically present in MSW and the effects of waste composition on overall hydrogen and methane yields. The organic waste fractions considered in the study were: bread-pasta, vegetables, fruits, meat-fish-cheese and undersieve 20mm. Composition analyses were conducted on samples of OFMSW that were source segregated at household level. Batch tests for hydrogen and methane productions were carried out under mesophilic conditions on selected fractions and OFMSW samples. Results indicated that the highest production of hydrogen was achieved by the bread-pasta fraction while the lowest productions were measured for the meat-fish-cheese fraction. The results indicated that the content of these two fractions in organic waste had a direct influence on the hydrogen production potentials of OFMSW. The higher the content of bread-pasta fraction, the higher the hydrogen yields were while the contrary was observed for the meat-fish-cheese fraction. The definition of waste composition therefore represents fundamental information to be reported in scientific literature to allow data comparison. The variability of OFMSW and its effects on hydrogen potentials might also represents a problematic issue in the management of pilot or full-scale plants for the production of hydrogen by dark fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pilot-scale testing of a leachbed for anaerobic digestion of livestock residues on-farm.
Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S
2016-04-01
A leachbed is a relatively simple anaerobic digester suitable for high-solids residues and on-farm applications. However, performance characteristics and optimal configuration of leachbeds are not well-understood. In this study, two 200 L pilot-scale leachbeds fed with spent straw bedding from pigs/swine (methane potential, B0 = 195-218 L CH4 kg(-1) VS fed) were used to assess the effects of leachate recirculation mode (trickling vs. flood-and-drain) on the digestion performance. Results showed comparable substrate solubilisation extents (30-45% of total chemical oxygen demand fed) and methane conversion (50% of the B0) for the trickling and flood-and-drain modes, indicating that digestion performance was insensitive to the mode of leachate flow. However, the flood-and-drain leachbed mobilised more particulates into the leachate than the trickling leachbed, an undesirable outcome, because these particulates were mostly non-biodegradable. Inoculation with solid residues from a previous leachbed (inoculum-to-substrate ratio of 0.22 on a VS basis) hastened the leachbed start-up, but methane recovery remained at 50% of the B0 regardless of the leachate recirculation mode. Post-digestion testing indicated that the leachbeds may have been limited by microbial activity/inhibition. The high residual methane potential of leachate from the trickling (residual Bo = 732 ± 7 L CH4 kg(-1) VS fed) and flood-and-drain leachbeds (582 ± 8 L CH4 kg(-1) VS fed) indicated an opportunity for further processing of leachate via a separate methanogenic step. Overall, a trickling leachbed appeared to be more favourable than the flood-and-drain leachbed for treating spent bedding at farm-scale due to easier operation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Iwasaki, Masahiro; Umetsu, Kazutaka
2016-01-01
Abstract Methane production from co‐digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (Pm)/g volatile solids added followed by SM in both A and B. This Pm of SMWM10 in A and B was statistically non‐significant (P > 0.05). More than 96% of cefazolin‐resistant bacteria and 100% of multi‐drug‐resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. PMID:27169788
Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies
Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B.; Kumar, Pushpendra; Laik, Sukumar
2016-01-01
Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter. PMID:26869357
Lu, H.; Lorenson, T.D.; Moudrakovski, I.L.; Ripmeester, J.A.; Collett, T.S.; Hunter, R.B.; Ratcliffe, C.I.
2011-01-01
Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean ??13C=-48.6??? and ??D=-248??? for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage. ?? 2010 Elsevier Ltd.
Utilization of vegetable dumplings waste from industrial production by anaerobic digestion
NASA Astrophysics Data System (ADS)
Pilarska, Agnieszka A.; Pilarski, Krzysztof; Ryniecki, Antoni; Tomaszyk, Kamila; Dach, Jacek; Wolna-Maruwka, Agnieszka
2017-01-01
This paper provides the analysis of results of biogas and methane yield for vegetable dumplings waste: dough with fat, vegetable waste, and sludge from the clarifier. Anaerobic digestion of food waste used in the experiments was stable after combining the substrates with a digested pulp composed of maize silage and liquid manure (as inoculum), at suitable ratios. The study was carried out in a laboratory scale using anaerobic batch reactors, at controlled (mesophilic) temperature and pH conditions. The authors present the chemical reactions accompanying biodegradation of the substrates and indicate the chemical compounds which may lead to acidification during the anaerobic digestion. An anaerobic digestion process carried out with the use of a dough-and-fat mixture provided the highest biogas and methane yields. The following yields were obtained in terms of fresh matter: 242.89 m3 Mg-1 for methane and 384.38 m3 Mg-1 for biogas, and in terms of volatile solids: 450.73 m3 Mg-1 for methane and 742.40 m3 Mg-1 for biogas. Vegetables and sludge from the clarifier (as fresh matter) provided much lower yields.
NASA Astrophysics Data System (ADS)
Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.
2015-12-01
Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.
Liquid hydrogen production via hydrogen sulfide methane reformation
NASA Astrophysics Data System (ADS)
Huang, Cunping; T-Raissi, Ali
Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.
Vitale Brovarone, Alberto; Martinez, Isabelle; Elmaleh, Agnès; Compagnoni, Roberto; Chaduteau, Carine; Ferraris, Cristiano; Esteve, Imène
2017-01-01
Alteration of ultramafic rocks plays a major role in the production of hydrocarbons and organic compounds via abiotic processes on Earth and beyond and contributes to the redistribution of C between solid and fluid reservoirs over geological cycles. Abiotic methanogenesis in ultramafic rocks is well documented at shallow conditions, whereas natural evidence at greater depths is scarce. Here we provide evidence for intense high-pressure abiotic methanogenesis by reduction of subducted ophicarbonates. Protracted (≥0.5–1 Ma), probably episodic infiltration of reduced fluids in the ophicarbonates and methanogenesis occurred from at least ∼40 km depth to ∼15–20 km depth. Textural, petrological and isotopic data indicate that methane reached saturation triggering the precipitation of graphitic C accompanied by dissolution of the precursor antigorite. Continuous infiltration of external reducing fluids caused additional methane production by interaction with the newly formed graphite. Alteration of high-pressure carbonate-bearing ultramafic rocks may represent an important source of abiotic methane, with strong implications for the mobility of deep C reservoirs. PMID:28223715
Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G
2016-07-01
Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh
2015-06-01
In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R. Scott; May, Robert A.; Kay, Bruce D.
2016-03-03
The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from grapheme covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multi- layer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do notmore » align (for coverages < 2 ML). The non-alignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.« less
Smith, R Scott; May, R Alan; Kay, Bruce D
2016-03-03
The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from graphene-covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature-programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multilayer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The nonalignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.
2010-11-30
The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibitmore » a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.« less
Qiang, Hong; Lang, Dong-Li; Li, Yu-You
2012-01-01
The effect of trace metals on the mesophilic methane fermentation of high-solid food waste was investigated using both batch and continuous experiments. The continuous experiment was conducted by using a CSTR-type reactor with three run. During the first run, the HRT of the reactor was stepwise decreased from 100 days to 30 days. From operation day 50, the reactor efficiency deteriorated due to the lack of trace metals. The batch experiment showed that iron, cobalt, and nickel combinations had a significant effect on food waste. According to the results of the batch experiment, a combination of iron, cobalt, and nickel was added into the CSTR reactor by two different methods at run II, and III. Based on experimental results and theoretical calculations, the most suitable values of Fe/COD, Co/COD, and Ni/COD in the substrate were identified as 200, 6.0, and 5.7 mg/kg COD, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Martín Juárez, Judit; Riol Pastor, Elena; Fernández Sevilla, José M; Muñoz Torre, Raúl; García-Encina, Pedro A; Bolado Rodríguez, Silvia
2018-06-01
Methane production from pretreated and raw mixed microalgae biomass grown in pig manure was evaluated. Acid and basic pretreatments provided the highest volatile solids solubilisation (up to 81%) followed by alkaline-peroxide and ultrasounds (23%). Bead milling and steam explosion remarkably increased the methane production rate, although the highest yield (377 mL CH 4 /g SV) was achieved by alkali pretreatment. Nevertheless, some pretreatments inhibited biogas production and resulted in lag phases of 7-9 days. Hence, experiments using only the pretreated solid phase were performed, which resulted in a decrease in the lag phase to 2-3 days for the alkali pretreatment and slightly increased biomass biodegradability of few samples. The limiting step during the BMP test (hydrolysis or microbial inhibition) for each pretreatment was elucidated using the goodness of fitting to a first order or a Gompertz model. Finally, the use of digestate as biofertilizer was evaluated applying a biorefinery concept. Copyright © 2018 Elsevier Ltd. All rights reserved.
Internal reforming of methane in solid oxide fuel cell systems
NASA Astrophysics Data System (ADS)
Peters, R.; Dahl, R.; Klüttgen, U.; Palm, C.; Stolten, D.
Internal reforming is an attractive option offering a significant cost reduction, higher efficiencies and faster load response of a solid oxide fuel cell (SOFC) power plant. However, complete internal reforming may lead to several problems which can be avoided with partial pre-reforming of natural gas. In order to achieve high total plant efficiency associated with low energy consumption and low investment costs, a process concept has been developed based on all the components of the SOFC system. In the case of anode gas recycling an internal steam circuit exists. This has the advantage that there is no need for an external steam generator and the steam concentration in the anode gas is reduced. However, anode gas recycling has to be proven by experiments in a pre-reformer and for internal reforming. The addition of carbon dioxide clearly shows a decrease in catalyst activity, while for temperatures higher than 1000 K hydrogen leads to an increase of the measured methane conversion rates.
Treatment of domestic wastewater with an anaerobic ceramic membrane bioreactor (AnCMBR).
Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong
2015-01-01
In this study, a ceramic membrane with a pore size of 80 nm was incorporated into an anaerobic membrane bioreactor for excellent stability and integrity. Chemical oxygen demand (COD) removal efficiencies by biodegradation reached 78.6 ± 6.0% with mixed liquor suspended solids (MLSS) of 12.8 ± 1.2 g/L. Even though the total methane generated was 0.3 ± 0.03 L/g CODutilized, around 67.4% of it dissolved in permeate and was lost beyond collection. As a result, dissolved methane was 2.7 times of the theoretical saturating concentration calculated from Henry's law. When transmembrane pressure (TMP) of the ceramic membrane reached 30 kPa after 25.3 d, 95.2% of the total resistance was attributed to the cake layer, which made it the major contributor to membrane fouling. Compared to the mixed liquor, cake layer was rich in colloids and soluble products that could bind the solids to form a dense cake layer. The Methanosarcinaceae family preferred to attach to the ceramic membranes.
Katsimpouras, Constantinos; Zacharopoulou, Maria; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul; Topakas, Evangelos
2017-11-01
The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H 2 SO 4 , and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H 2 SO 4 . Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wei, Wei; Zhou, Xu; Xie, Guo-Jun; Duan, Haoran; Wang, Qilin
2017-10-01
This study proposed a novel free ammonia (FA, i.e., NH 3 ) pretreatment technology to enhance anaerobic methane production from primary sludge for the first time. The solubilization of primary sludge was substantially enhanced following 24 h FA pretreatment (250-680 mg NH 3 -N/L), by which the release of soluble chemical oxygen demand (SCOD) (i.e., 0.4 mg SCOD/mg VS added; VS: volatile solids) was approximately 10 times as much as that without pretreatment (i.e., 0.03 mg SCOD/mg VS added). Then, biochemical methane potential (BMP) tests demonstrated that FA pretreatment of 250-680 mg NH 3 -N/L was capable of enhancing anaerobic methane production while the digestion time was more than 7 days. Model based analysis indicated that the improved anaerobic methane production was due to an increased biochemical methane potential (B 0 ) of 8-17% (i.e., from 331 to 357-387 L CH 4 /kg VS added), with the highest B 0 achieved at 420 mg NH 3 -N/L pretreatment. However, FA pretreatment of 250-680 mg NH 3 -N/L decreased hydrolysis rate (k) by 24-38% compared with control (i.e., from 0.29 d -1 to 0.18-0.22 d -1 ), which explained the lower methane production over the first 7 days' digestion period. Economic analysis and environmental evaluation demonstrated that FA pretreatment technology was environmentally friendly and economically favorable. Biotechnol. Bioeng. 2017;114: 2245-2252. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Biomass-derived carbon composites for enrichment of dilute methane from underground coal mines.
Bae, Jun-Seok; Jin, Yonggang; Huynh, Chi; Su, Shi
2018-07-01
Ventilation air methane (VAM), which is the main source of greenhouse gas emissions from coal mines, has been a great challenge to deal with due to its huge flow rates and dilute methane levels (typically 0.3-1.0 vol%) with almost 100% humidity. As part of our continuous endeavor to further improve the methane adsorption capacity of carbon composites, this paper presents new carbon composites derived from macadamia nut shells (MNSs) and incorporated with carbon nanotubes (CNTs). These new carbon composites were fabricated in a honeycomb monolithic structure to tolerate dusty environment and to minimize pressure drop. This paper demonstrates the importance of biomass particle size distributions when formed in a composite and methane adsorption capacities at low pressures relevant to VAM levels. The selectivity of methane over nitrogen was about 10.4 at each relevant partial pressure, which was much greater than that (6.5) obtained conventionally (at very low pressures), suggesting that capturing methane in the presence of pre-adsorbed nitrogen would be a practical option. The equilibrium and dynamic performance of biomass-derived carbon composites were enhanced by 30 and 84%, respectively, compared to those of our previous carbon fiber composites. In addition, the presence of moisture in ventilation air resulted in a negligible effect on the dynamic VAM capture performance of the carbon composites, suggesting that our carbon composites have a great potential for site applications at coal mines because the cost and performance of solid adsorbents are critical factors to consider. Copyright © 2018 Elsevier Ltd. All rights reserved.
Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise
2016-09-01
Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liang, Yue-Gan; Li, Xiu-Juan; Zhang, Jin; Zhang, Li-Gan; Cheng, Beijiu
2017-05-01
Low methane production and high levels of heavy metal in pig slurries limit the feasibility of anaerobic digestion of pig manure. In this study, changes in the methane production and bioavailability of heavy metals in the anaerobic digestion of diluted pig manure were evaluated using single and combined action of microscale zero-valence iron (ZVI) and magnetite. After 30 days of anaerobic digestion, the methane yield ranged from 246.9 to 334.5 mL/g VS added, which increased by 20-26% in the group added with microscale ZVI and/or magnetite relative to that in the control group. Results of the first-order kinetic model revealed that addition of microscale ZVI and/or magnetite increased the biogas production potential, rather than the biogas production rate constant. These treatments also changed the distribution of chemical fractions for heavy metal. The addition of ZVI decreased the bioavailability of Cu and Zn in the solid digested residues. Moreover, a better performance was observed in the combined action of microscale ZVI and magnetite, and the ZVI anaerobic corrosion end-product, magnetite, might help enhance methane production through direct interspecies electron transfer in ZVI-anaerobic digestion process.
Employing response surface methodology (RSM) to improve methane production from cotton stalk.
Zhang, Han; Khalid, Habiba; Li, Wanwu; He, Yanfeng; Liu, Guangqing; Chen, Chang
2018-03-01
China is the largest cotton producer with the cotton output accounting for 25% of the total world's cotton production. A large quantity of cotton stalk (CS) waste is generated which is burned and causes environmental and ecological problems. This study investigated the anaerobic digestibility of CS by focusing on improving the methane yield by applying central composite design of response surface methodology (RSM). The purpose of this study was to determine the best level of factors to optimize the desired output of methane production from CS. Thus, it was necessary to describe the relationship of many individual variables with one or more response values for the effective utilization of CS. The influences of feed to inoculum (F/I) ratio and organic loading (OL) on methane production were investigated. Results showed that the experimental methane yield (EMY) and volatile solid (VS) removal were calculated to be 70.22 mL/gVS and 14.33% at F/I ratio of 0.79 and organic loading of 25.61 gVS/L, respectively. Characteristics of final effluent showed that the anaerobic system was stable. This research laid a foundation for future application of CS to alleviate the problems of waste pollution and energy output.
Titan and habitable planets around M-dwarfs.
Lunine, Jonathan I
2010-01-01
The Cassini-Huygens mission discovered an active "hydrologic cycle" on Saturn's giant moon Titan, in which methane takes the place of water. Shrouded by a dense nitrogen-methane atmosphere, Titan's surface is blanketed in the equatorial regions by dunes composed of solid organics, sculpted by wind and fluvial erosion, and dotted at the poles with lakes and seas of liquid methane and ethane. The underlying crust is almost certainly water ice, possibly in the form of gas hydrates (clathrate hydrates) dominated by methane as the included species. The processes that work the surface of Titan resemble in their overall balance no other moon in the solar system; instead, they are most like that of the Earth. The presence of methane in place of water, however, means that in any particular planetary system, a body like Titan will always be outside the orbit of an Earth-type planet. Around M-dwarfs, planets with a Titan-like climate will sit at 1 AU--a far more stable environment than the approximately 0.1 AU where Earth-like planets sit. However, an observable Titan-like exoplanet might have to be much larger than Titan itself to be observable, increasing the ratio of heat contributed to the surface atmosphere system from internal (geologic) processes versus photons from the parent star.
NASA Astrophysics Data System (ADS)
Valderrama, Gustavo; Kiennemann, Alain; Goldwasser, Mireya R.
La 1- xSr xNi 0.4Co 0.6O 3 and La 0.8Sr 0.2Ni 1- yCo yO 3 solid solutions with perovskite-type structure were synthesized by the sol-gel resin method and used as catalytic precursors in the dry reforming of methane with CO 2 to syngas, between 873 and 1073 K at atmospheric pressure under continuous flow of reactant gases with CH 4/CO 2 = 1 ratio. These quaternary oxides were characterized by X-ray diffraction (XRD), BET specific surface area and temperature-programmed reduction (TPR) techniques. XRD analyses of the more intense diffraction peaks and cell parameter measurements showed formation of La-Sr-Ni-Co-O solid solutions with La 0.9Sr 0.1CoO 3 and/or La 0.9Sr 0.1NiO 3 as the main crystallographic phases present on the solids depending on the degree of substitution. TPR analyses showed that Sr doping decreases the temperature of reduction via formation of intermediary species producing Ni 0, Co 0 with particle sizes in the range of nanometers over the SrO and La 2O 3 phases. These metallic nano particles highly dispersed in the solid matrix are responsible for the high activity shown during the reaction and avoid carbon formation. The presence of Sr in doping quantities also promotes the secondary reactions of carbon formation and water-gas shift in a very small extension during the dry reforming reaction.
Novel diode laser-based sensors for gas sensing applications
NASA Technical Reports Server (NTRS)
Tittel, F. K.; Lancaster, D. G.; Richter, D.
2000-01-01
The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.
Methane production from kitchen waste using Escherichia coli.
Jayalakshmi, S; Joseph, Kurian; Sukumaran, V
2007-04-01
Escherichia coli (E. coli) strain isolated from biogas plant sludge was examined for its ability to enhance biogas from kitchen waste during solid phase anaerobic digestion. The laboratory experiments were conducted for total solid concentrations of 20% and 22%. Kitchen waste was characterized for physico-chemical parameters and laboratory experiments were conducted with and without E. coli strain. It was found that the reactor with E. coli produced 17% more biogas than the reactors that are operated without E. coli strain.
NASA Astrophysics Data System (ADS)
Zhokh, Alexey A.; Strizhak, Peter E.
2018-07-01
H-ZSM-5/alumina catalyst pellet was prepared using extrusion method. The as-prepared mesoporous material was characterized using nitrogen adsorption, IR, XRD, and TEM methods. Transport of methane and methanol in the obtained H-ZSM-5/alumina extruded grain was studied. We demonstrate that the methanol transport may be described by the time-fractional diffusion equation in a fairly good manner. The measured value of the fractional order of the time-fractional derivative reveals the fast super-diffusive regime of the methanol transport in the mesoporous solid. Contrary, the methane transport has been found to follow a standard diffusion and described by the second Fick's law. These findings show that mass transfer kinetics is characterized by the order of the temporal derivative. The latter is a unique property of the individual porous media and the diffusing agent.
NASA Astrophysics Data System (ADS)
Zhokh, Alexey A.; Strizhak, Peter E.
2018-01-01
H-ZSM-5/alumina catalyst pellet was prepared using extrusion method. The as-prepared mesoporous material was characterized using nitrogen adsorption, IR, XRD, and TEM methods. Transport of methane and methanol in the obtained H-ZSM-5/alumina extruded grain was studied. We demonstrate that the methanol transport may be described by the time-fractional diffusion equation in a fairly good manner. The measured value of the fractional order of the time-fractional derivative reveals the fast super-diffusive regime of the methanol transport in the mesoporous solid. Contrary, the methane transport has been found to follow a standard diffusion and described by the second Fick's law. These findings show that mass transfer kinetics is characterized by the order of the temporal derivative. The latter is a unique property of the individual porous media and the diffusing agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detering, B.A.; Kong, P.C.; Thomas, C.P.
This paper describes the experimental demonstration of a process for direct conversion of methane to acetylene in a thermal plasma. The process utilizes a thermal plasma to dissociate methane and form an equilibrium mixture of acetylene followed by a supersonic expansion of the hot gas to preserve the produced acetylene in high yield. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogen which persists throughout the expansion process. The presence of atomic hydrogen shifts the equilibrium composition by inhibiting complete pyrolysis of methane and acetylene to solid carbon. This process has the potential to reducemore » the cost of producing acetylene from natural gas. Acetylene and hydrogen produced by this process could be used directly as industrial gases, building blocks for synthesis of industrial chemicals, or oligomerized to long chain liquid hydrocarbons for use as fuels. This process produces hydrogen and ultrafine carbon black in addition to acetylene.« less
Biochemical methane potential (BMP) of artichoke waste: the inoculum effect.
Fabbri, Andrea; Serranti, Silvia; Bonifazi, Giuseppe
2014-03-01
The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.
Biological Pretreatment of Chicken Feather and Biogas Production from Total Broth.
Patinvoh, Regina J; Feuk-Lagerstedt, Elisabeth; Lundin, Magnus; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J
2016-12-01
Chicken feathers are available in large quantities around the world causing environmental challenges. The feathers are composed of keratin that is a recalcitrant protein and is hard to degrade. In this work, chicken feathers were aerobically pretreated for 2-8 days at total solid concentrations of 5, 10, and 20 % by Bacillus sp. C 4 , a bacterium that produces both α- and β-keratinases. Then, the liquid fraction (feather hydrolysate) as well as the total broth (liquid and solid fraction of pretreated feathers) was used as substrates for biogas production using anaerobic sludge or bacteria granules as inoculum. The biological pretreatment of feather waste was productive; about 75 % of feather was converted to soluble crude protein after 8 days of degradation at initial feather concentration of 5 %. Bacteria granules performed better during anaerobic digestion of untreated feathers, resulting in approximately two times more methane yield (i.e., 199 mlCH 4 /gVS compared to 105 mlCH 4 /gVS when sludge was used). Pretreatment improved methane yield by 292 and 105 % when sludge and granules were used on the hydrolysate. Bacteria granules worked effectively on the total broth, yielded 445 mlCH 4 /gVS methane, which is 124 % more than that obtained with the same type of inoculum from untreated feather.
NASA Astrophysics Data System (ADS)
Yan, Ning; Zanna, Sandrine; Klein, Lorena H.; Roushanafshar, Milad; Amirkhiz, Babak S.; Zeng, Yimin; Rothenberg, Gadi; Marcus, Philippe; Luo, Jing-Li
2017-03-01
The ideal solid oxide fuel cells (SOFCs) can be powered by readily available hydrocarbon fuels containing impurities. While this is commonly recognized as a key advantage of SOFC, it also, together with the elevated operating temperature, becomes the main barrier impeding the in-situ or operando investigations of the anode surface chemistry. Here, using a well-designed quenching experiment, we managed to characterize the near-surface structure of La0.4Sr0.6TiO3+δ (LST) anode in SOFCs fuelled by H2S-containing methane. This new method enabled us to clearly observe the surface amorphization and sulfidation of LST under simulated SOFC operating conditions. The ∼1 nm-thick two dimensional sulfur-adsorbed layer was on top of the disordered LST, containing -S, -SH and elemental sulfur species. In SOFC test, such "poisoned" anode showed increased performances: a ten-fold enhanced power density enhancement (up to 30 mW cm-2) and an improved open circuit voltage (from 0.69 V to 1.17 V). Moreover, its anodic polarization resistance in methane decreased to 21.53 Ω cm2, a difference of 95% compared with the sulfur-free anode. Control experiments confirmed that once the adsorbed sulfur species were removed electrochemically, methane conversion slowed down simultaneously till full stop.
Indoor air pollution from solid biomass fuels combustion in rural agricultural area of Tibet, China.
Gao, X; Yu, Q; Gu, Q; Chen, Y; Ding, K; Zhu, J; Chen, L
2009-06-01
In this study, we are trying to investigate the indoor air pollution and to estimate the residents' pollution exposure reduction of energy altering in rural Tibet. Daily PM(2.5) monitoring was conducted in indoor microenvironments like kitchen, living-room, bedroom, and yard in rural Tibet from December 2006 to March 2007. For kitchen air pollution, impact of two fuel types, methane and solid biomass fuels (SBFs), were compared. Questionnaire survey on the domestic energy pattern and residents' daily activity pattern was performed in Zha-nang County. Daily average PM(2.5) concentrations in kitchen, living-room, bedroom, and yard were 134.91 microg/m(3) (mean, n = 45, 95%CI 84.02, 185.80), 103.61 microg/m(3) (mean, n = 21, 95%CI 85.77, 121.45), 76.13 microg/m(3) (mean, n = 18, 95%CI 57.22, 95.04), and 78.33 microg/m(3) (mean, n = 34, 95%CI 60.00, 96.65) respectively. Using SBFs in kitchen resulted in higher indoor pollution than using methane. PM(2.5) concentrations in kitchen with dung cake, fuel wood and methane use were 117.41 microg/m(3) (mean, n = 18, 95%CI 71.03, 163.79), 271.11 microg/m(3) (mean, n = 12, 95%CI 104.74, 437.48), and 46.96 microg/m(3) (mean, n = 15, 95%CI 28.10, 65.82) respectively. Family income has significant influence on cooking energy choice, while the lack of commercial energy supply affects the energy choice for heating more. The effects of two countermeasures to improve indoor air quality were estimated in this research. One is to replace SBFs by clean energy like methane, the other is to separate the cooking place from other rooms and by applying these countermeasures, residents' exposure to particulate matters would reduce by 25-50% (methane) or 20-30% (separation) compared to the present situation. Indoor air pollution caused by solid biomass fuels is one of the most important burdens of disease in the developing countries, which attracts the attention of environment and public health researchers, as well as policy makers. This paper gives a pilot research on the indoor air pollution and estimated the effects of some intervention policies in Tibet of China, where the living habits of the residents are quite different from other parts of the world. This work would be an important supply to the indoor air pollution studies, and would be helpful in policy making.
Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A
2009-05-01
The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.
Geochemistry and Organic Chemistry on the Surface of Titan
NASA Technical Reports Server (NTRS)
Lunine, J. I.; Beauchamp, P.; Beauchamp, J.; Dougherty, D.; Welch, C.; Raulin, F.; Shapiro, R.; Smith, M.
2001-01-01
Titan's atmosphere produces a wealth of organic products from methane and nitrogen. These products, deposited on the surface in liquid and solid form, may interact with surface ices and energy sources to produce compounds of exobiological interest. Additional information is contained in the original extended abstract.
USERS MANUAL: LANDFILL GAS EMISSIONS MODEL - VERSION 2.0
The document is a user's guide for a computer model, Version 2.0 of the Landfill Gas Emissions Model (LandGEM), for estimating air pollution emissions from municipal solid waste (MSW) landfills. The model can be used to estimate emission rates for methane, carbon dioxide, nonmet...
A COMPLETE DISPOSAL-RECYCLE SCHEME FOR AGRICULTURAL SOLID WASTES
This investigation applied the anaerobic process to the production of methane gas and a stabilized sludge from cow manure and farm clippings in laboratory pilot plants as well as a full-scale (2,000 gal.) digester system. The quantity and quality of gas produced, the biochemical ...
Biological Production of Methane from Lunar Mission Solid Waste: An Initial Feasibility Assessment
NASA Astrophysics Data System (ADS)
Strayer, Richard; Garland, Jay; Janine, Captain
A preliminary assessment was made of the potential for biological production of methane from solid waste generated during an early planetary base mission to the moon. This analysis includes: 1) estimation of the amount of biodegradable solid waste generated, 2) background on the potential biodegradability of plastics given their significance in solid wastes, and 3) calculation of potential methane production from the estimate of biodegradable waste. The completed analysis will also include the feasibility of biological methane production costs associated with the biological processing of the solid waste. NASA workshops and Advanced Life Support documentation have estimated the projected amount of solid wastes generated for specific space missions. From one workshop, waste estimates were made for a 180 day transit mission to Mars. The amount of plastic packaging material was not specified, but our visual examination of trash returned from stocktickerSTS missions indicated a large percentage would be plastic film. This plastic, which is not biodegradable, would amount to 1.526 kgdw crew-1 d-1 or 6.10 kgdw d-1 for a crew of 4. Over a mission of 10 days this would amount to 61 kgdw of plastics and for an 180 day lunar surface habitation it would be nearly 1100 kgdw . Approx. 24 % of this waste estimate would be biodegradable (human fecal waste, food waste, and paper), but if plastic packaging was replaced with biodegradable plastic, then 91% would be biodegradable. Plastics are man-made long chain polymeric molecules, and can be divided into two main groups; thermoplastics and thermoset plastics. Thermoplastics comprise over 90% of total plastic use in the placecountry-regionUnited States and are derived from polymerization of olefins via breakage of the double bond and subsequent formation of additional carbon to carbon bonds. The resulting sole-carbon chain polymers are highly resistant to biodegradation and hydrolytic cleavage. Common thermoplastics include low density polyethylene (packaging, bags), high density polyethylene (bottles, containers, pipes), polystyrene (tanks, containers), polypropylene (tanks, containers), and polyvinylchloride (pipes, containers). Thermoset plastics are formed by the condensation of alcohols or amines to form polyesters or polyamides, and are typically solidified after heating. As opposed to the linear structure of thermoplastic, thermoset plastics have a cross-linked structure which results in higher strength. The most common thermoset plastic is polyurethane which is used for coatings, insulation, paints, and packing. Given both the concerns over pollution reduction and energy conservation, significant efforts are underway on Earth to evaluate biodegradable plastics made from renewable feedstocks; the following summarizes the current state of these efforts. Production of biodegradable plastics involves either the introduction of biodegradable or photo-oxidizable components into the polymer chain or the use of biodegradable polymers themselves. The first approach is based on the observation that polyolefins of low molecular weight (<500 Da) are biodegradable. Insertion of structures susceptible to either photoor chemical degradation within the overall polyolefins chain (which are of 4 - 28 kDa molecular weight), can produce segments sufficiently small to be assimilated and degraded by microorganisms. Biodegradable polymers based strictly on nonpetroleum, biologically-based material have been developed, including some which are used to make currently marketed products. Polyhydroxyalkanoates (PHAs) are polyesters which are accumulated as carbon storage materials by microorganisms under nutrient limiting conditions. MirelTM , a "bioplastic" based on stocktickerPHA produced from microbial fermentation of sugars or oils from vegetables crops, is being produced by TellesTM . The company markets MirelTM bioplastics for use in molding, coatings, films, adhesives, and fibers. Another type of bioplastic is based on polylactic acid, or stocktickerPLA. Starch, typically from corn, is fermented by bacteria to yield lactic acid which is then used to synthesize the stocktickerPLA polymer. stocktickerPLA can be degraded via a combination of abiotic hydrolysis and microbial degradation. NatureWorks LLC markets stocktickerPLA-based plastics (NatureWorks R , IngeoTM ) for a variety of applications, including high-value films, rigid thermoformed food and beverage containers, coated papers and boards and other packaging applications. This review suggests that biodegradable plastics may be feasible for use on near-term lunar missions. Biodegradable plastics products are commercially available, and cost, the main limitation to terrestrial use, is not an issue for the small-scale, specialty use by NASA. If the plastic content of the lunar mission solid waste stream is biodegradable, then a potential yield of methane from the waste can be estimated. Investigators at the placePlaceTypeUniversity of PlaceNameFlorida have reported on a three-stage anaerobic composting system for treatment of solid wastes expected in an Advanced Life Support System for space surface habitation. Their system, a sequential batch anaerobic composter (SEBAC) has been demonstrated for a variety of terrestrial solid wastes. Results for methane production rate from a simulated stocktickerALS solid waste of inedible rice crop debris, paper, and simulated feces averaged 0.30 L CH4 per gdw volatile solids (VS, i.e., organic matter) added. If we extrapolate from their results and assume that the VS in space mission solid waste is 100% biodegradable, then a potential for 620 LCH4 crew-1 d-1 might be obtained with a comparable SEBAC. For a crew of four, 2480 LCH4 d-1 (or 110.7 molesCH4 d-1 , 1772 gCH4 d-1 , or 3.90 lbCH4 d-1 )., would be produced. Over a 180 day surface habitation, this generation rate would yield a total of 446,000 LCH4 (319 kgCH4 , 702 lbCH4 ). The next step in this effort is to estimate the costs of biological processing system required to convert the solid waste steam to methane. We will employ equivalent system mass (ESM) analysis to define the costs of the system in terms of energy, mass, and manpower required for processing, allowing for a better estimation of the net benefit of this in situ resource utilization approach.
NASA Astrophysics Data System (ADS)
Lay, E.; Metcalfe, C.; Kesler, O.
2012-11-01
The Solution Precursor Plasma Spray (SPPS) process was successfully used to deposit cermet coatings that exhibit fine microstructures with high surface area. MgO addition in Ni-YSZ and Ni-SDC cermets results in (Ni,Mg)O solid solution formation, and nickel particles after reduction are finer than in coatings without magnesia. The influence of MgO on the chemical stability of cermets in anodic operating conditions is discussed. It was found that a sufficient amount of magnesia addition (Ni0.9(MgO)0.1) helps to reduce carbon deposition in dry methane.
Oxidation of coal-water slurry feed to hydrogasifier
Lee, Bernard S.
1976-01-01
An aqueous coal slurry is preheated, subjected to partial oxidation and vaporization by injection of high pressure oxygen and is introduced into a top section of a hydrogasifier in direct contact with hot methane-containing effluent gases where vaporization of the slurry is completed. The resulting solids are reacted in the hydrogasifier and the combined gases and vapors are withdrawn and subjected to purification and methanation to provide pipeline gas. The amount of oxygen injected into the slurry is controlled to provide the proper thermal balance whereby all of the water in the slurry can be evaporated in contact with the hot effluent gases from the hydrogasifier.
Monlau, Florian; Aemig, Quentin; Barakat, Abdellatif; Steyer, Jean-Philippe; Carrère, Hélène
2013-01-01
The use of lignocellulosic residues such as sunflower stalks (SS) for the production of bioenergy such as methane is a promising alternative to fossil fuels. However, their recalcitrant structure justifies the use of pretreatment to enhance the accessibility of holocelluloses and their further conversion into methane. First, different conditions of alkaline pretreatment (i.e. duration and NaOH concentration (g/100 g TS) at a fixed temperature of 55 degrees C) were tested to enhance the methane potential of the stalks of the Serin sunflower (193 mL of methane per gram of volatile solids (VS)). The greatest improvement to the methane potential (262 mL CH4 g(-1) VS) was observed at 55 degrees C, 24 h, 4 g NaOH/100 g TS. Fourier Transform Infrared spectra highlighted an accumulation of lignin in the digestate and the degradation of holocelluloses during the anaerobic process, both for pretreated and untreated SS. In a second stage, this optimum condition for alkaline pretreatment (55 degrees C, 24 h, 4 g NaOH/100 g TS) was applied to the stalks of three other varieties of sunflower. Alkaline pretreatment was effective in the delignification of the stalks of the different sunflower varieties, with lignin reduction varying from 23.3% to 36.3% VS. This reduction of lignin was concomitant with the enhancement of methane potential as compared to that of raw SS, with an increase ranging from 29% to 44% for the different SS.
Kastner, M.; Kvenvolden, K.A.; Lorenson, T.D.
1998-01-01
Although the presence of extensive gas hydrate on the Cascadia margin, offshore from the western U.S. and Canada, has been inferred from marine seismic records and pore water chemistry, solid gas hydrate has only been found at one location. At Ocean Drilling Program (ODP) Site 892, offshore from central Oregon, gas hydrate was recovered close to the sediment - water interface at 2-19 m below the seafloor, (mbsf) at 670 m water depth. The gas hydrate occurs as elongated platy crystals or crystal aggregates, mostly disseminated irregularly, with higher concentrations occurring in discrete zones, thin layers, and/or veinlets parallel or oblique to the bedding. A 2-to 3-cm thick massive gas hydrate layer, parallel to bedding, was recovered at ???17 mbsf. Gas from a sample of this layer was composed of both CH4 and H2S. This sample is the first mixed-gas hydrate of CH4-H2S documented in ODP; it also contains ethane and minor amounts of CO2. Measured temperature of the recovered core ranged from 2 to - 18??C and are 6 to 8 degrees lower than in-situ temperatures. These temperature anomalies were caused by the partial dissociation of the CH4-H2S hydrate during recovery without a pressure core sampler. During this dissociation, toxic levels of H2S (??34S, +27.4???) were released. The ??13C values of the CH4 in the gas hydrate, -64.5 to -67.5???(PDB), together with ??D values of - 197 to - 199???(SMOW) indicate a primarily microbial source for the CH4. The ??18O value of the hydrate H2O is +2.9???(SMOW), comparable with the experimental fractionation factor for sea-ice. The unusual composition (CH4-H2S) and depth distribution (2-19 mbsf) of this gas hydrate indicate mixing between a methane-rich fluid with a pore fluid enriched in sulfide; at this site the former is advecting along an inclined fault into the active sulfate reduction zone. The facts that the CH4-H2S hydrate is primarily confined to the present day active sulfate reduction zone (2-19 mbsf), and that from here down to the BSR depth (19-68 mbsf) the gas hydrate inferred to exist is a ???99% CH4 hydrate, suggest that the mixing of CH4 and H2S is a geologically young process. Because the existence of a mixed CH4-H2S hydrate is indicative of moderate to intense advection of a methane-rich fluid into a near surface active sulfate reduction zone, technically active (faulted) margins with organic-rich sediments and moderate to high sedimentation rates are the most likely regions of occurrence. The extension of such a mixed hydrate below the sulfate reduction zone should reflect the time-span of methane advection into the sulfate reduction zone. ?? 1998 Elsevier Science B.V. All rights reserved.
Jupiter's Equatorial Region in the Two Methane Bands (Time set 2)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaics of an equatorial 'hotspot' on Jupiter at 727 nanometers (top) and 889 nanometers (bottom). The mosaics cover an area of 34,000 kilometers by 11,000 kilometers. The darker region near the center of each mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance.
Light at 727 nanometers (nm) is moderately absorbed by atmospheric methane. This mosaic shows the features of Jupiter's main visible cloud deck and upper tropospheric haze, with higher features enhanced in brightness over lower features. Light at 889 nm is strongly absorbed by atmospheric methane. This mosaic shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms. Together images at these wavelengths provide a three dimensional view of the cloud layers in Jupiter's atmosphere.North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoXu, Fuqing; Shi, Jian; Lv, Wen; Yu, Zhongtang; Li, Yebo
2013-01-01
Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5L/kg VS(feed), while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6L/kg VS(feed). The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3g CaCO(3)/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nielfa, A; Cano, R; Pérez, A; Fdez-Polanco, M
2015-03-01
Solid wastes from industrial, commercial and community activities are of growing concern as the total volume of waste produced continues to increase. The knowledge of the specific composition and characteristics of the waste is an important tool in the correct development of the anaerobic digestion process. The problems derived from the anaerobic digestion of sole substrates with high lipid, carbohydrate or protein content lead to the co-digestion of these substrates with another disposed waste, such as sewage sludge. The kinetic of the anaerobic digestion is especially difficult to explain adequately, although some mathematical models are able to represent the main aspects of a biological system, thus improving understanding of the parameters involved in the process. The aim of this work is to evaluate the experimental biochemical methane potential on the co-digestion of sewage sludge with different solid wastes (grease; spent grain and cow manure) through the implementation of four kinetic models. The co-digestion of grease waste and mixed sludge obtained the best improvements from the sole substrates, with additional positive synergistic effects. The Gompertz model fits the experimental biochemical methane potential to an accuracy of 99%, showing a correlation between the percentage of lipid in the substrates and co-digestions and the period of lag phase. © The Author(s) 2015.
Odedina, Mary Jesuyemi; Charnnok, Boonya; Saritpongteeraka, Kanyarat; Chaiprapat, Sumate
2017-10-01
Methane production potential of tropical fruit wastes, namely lady-finger banana peel, rambutan waste and longan waste were compared using BMP assay and stoichiometric modified Buswell and Mueller equation. Methane yields based on volatile solid (VS) were in the order of ground banana peel, chopped banana peel, chopped longan waste, and chopped rambutan waste (330.6, 268.3, 234.6 and 193.2 mLCH 4 /gVS) that corresponded to their calculated biodegradability. In continuous operations of banana peel digestion at feed concentrations based on total solid (TS) 1-2%, mesophilic single stage digester run at 20-day hydraulic retention time (20-day HRT) failed at 2%TS, but successfully recovered at 1.5%TS. Pre-hydrolysis thermophilic reactor (4-d HRT) was placed as pre-treatment to mesophilic reactor (20-d HRT). Higher biogas (with an evolution of H 2 ) and energy yields were obtained and greater system stability was achieved over the single stage digestion, particularly at higher solid feedstock. The best performance of two stage digestion was 68.5% VS destruction and energy yield of 2510.9kJ/kgVS added at a feed concentration of 2%TS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution of composition of dairy manure supernatant in a controlled dung pit.
Rico, C; García, H; Rico, J L; Fernández, J; Renedo, J
2009-12-01
Anaerobic conversion of dairy manure into biogas is an attractive way of managing this waste. It is well known that the hydrolysis of large molecules into small, directly biodegradable ones is the rate limiting step of the overall anaerobic process. The present work studies the development of the hydrolytic and acidogenic stages of dairy manure with different solid concentrations (40, 60 and 80 g VS/L) at ambient temperature (20 degrees C). The purpose was to determine the operational conditions that provide a liquid fraction with a high soluble chemical oxygen demand (COD) and a high volatile fatty acids (VFA) content in manure before the methanogenic stage starts up. At 20 degrees C, the evolution of the studied parameters showed that, in a controlled plug-flow dung pit, the hydrolytic and acidogenic stages progressed moderately in a continuous way during the 25 days that the experimentation lasted, whereas no methanization was observed. Supernatant COD and VFA concentrations increased 30% and 107%, respectively, for the 60 g VS/L samples. Manure was also operated at 35 degrees C with a similar increase in supernatant COD but a higher increase in VFA, 154%. For both operational temperatures, the predominant VFAs were, in this order, acetic, propionic and butyric acids. During the operation at 35 degrees C, the methanogenic stage started between days 20 and 25 for the samples with lower solids content, i.e. 40 and 60 g VS/L.
40 CFR 258.23 - Explosive gases control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Explosive gases control. 258.23... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.23 Explosive gases control. (a) Owners or... facility does not exceed 25 percent of the lower explosive limit for methane in facility structures...
40 CFR 258.23 - Explosive gases control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Explosive gases control. 258.23... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.23 Explosive gases control. (a) Owners or... facility does not exceed 25 percent of the lower explosive limit for methane in facility structures...
40 CFR 258.23 - Explosive gases control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Explosive gases control. 258.23 Section... MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.23 Explosive gases control. (a) Owners or operators... does not exceed 25 percent of the lower explosive limit for methane in facility structures (excluding...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., turbine, internal combustion engine, or any other combustion unit used to destroy or oxidize methane... GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills § 98.348 Definitions. Except as specified in this section, all terms used in this subpart have the same meaning given in the Clean Air Act and subpart A of...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., turbine, internal combustion engine, or any other combustion unit used to destroy or oxidize methane... GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills § 98.348 Definitions. Except as specified in this section, all terms used in this subpart have the same meaning given in the Clean Air Act and subpart A of...
An Introduction to Mars ISPP Technologies
NASA Technical Reports Server (NTRS)
Lueck, Dale E.
2003-01-01
This viewgraph presentation provides information on potential In Situ Propellant Production (ISPP) technologies for Mars. The presentation discusses Sabatier reactors, water electrolysis, the advantages of methane fuel, oxygen production, PEM cell electrolyzers, zirconia solid electrolyte cells, reverse water gas shift (RWGS), molten carbonate electrolysis, liquid CO2, and ionic liquids.
Methane fluxes above the Hainich forest by True Eddy Accumulation and Eddy Covariance
NASA Astrophysics Data System (ADS)
Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander
2016-04-01
Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True Eddy Accumulation (TEA, closed-path laser spectroscopy), and eddy covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The current study is likely the first application of True Eddy Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path eddy covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True Eddy Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True Eddy Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path eddy covariance. The open-path eddy covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path eddy covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude, based on preliminary evidence, that the Hainich forest acted as a moderate net sink for methane during the investigation. This supports earlier findings from chamber measurements at the Hainich forest site and is similar to findings from other forest sites. Our observations will be continued through 2016 and beyond to provide longer-term methane flux time series spanning entire seasons. However, the current data set already provides a basis for further consolidating methods of measurements and analysis of turbulent methane fluxes using eddy covariance and true eddy accumulation.
False Color Mosaic of Jupiter's Belt-Zone Boundary
NASA Technical Reports Server (NTRS)
1997-01-01
False-color mosaic of a belt-zone boundary near Jupiter's equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. Light at each of Galileo's three near-infrared wavelengths is displayed here mapped to the visible colors red, green, and blue. Light at 886 nanometers, strongly absorbed by atmospheric methane and scattered from clouds high in the atmosphere, is shown in red. Light at 732 nanometers, moderately absorbed by atmospheric methane, is shown in green. Light at 757 nanometers, scattered mostly from Jupiter's lower visible cloud deck, is shown in blue. The lower cloud deck appears bluish white, while the higher layer appears pinkish. The holes in the upper layer and their relationships to features in the lower cloud deck can be studied in the lower half of the mosaic. Galileo is the first spacecraft to image different layers in Jupiter's atmosphere.
North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoJupiter's Equatorial Region in a Methane band (Time set 1)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's equatorial region at 727 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. Light at 727 nm is moderately absorbed by atmospheric methane. This image shows the features of Jupiter's main visible cloud deck and upper tropospheric haze, with higher features enhanced in brightness over lower features. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.
North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoJupiter's Equatorial Region in a Methane band (Time set 4)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's equatorial region at 727 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. Light at 727 nm is moderately absorbed by atmospheric methane. This image shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.
North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoJupiter's Northern Hemisphere in a Methane Band (Time Set 3)
NASA Technical Reports Server (NTRS)
1997-01-01
Mosaic of Jupiter's northern hemisphere between 10 and 50 degrees latitude. Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the color and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including large white ovals, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two interacting vortices in the upper half of the mosaic is about 3500 kilometers. Light at 727 nanometers is moderately absorbed by atmospheric methane. This mosaic shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features.
North is at the top. The images are projected on a sphere, with features being foreshortened towards the north. The planetary limb runs along the right edge of the mosaic. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on April 3, 1997, at a range of 1.4 million kilometers by the Solid State Imaging system (CCD) on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoMatrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids
2011-07-01
Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6
Wuchter, Cornelia; Banning, Erin; Mincer, Tracy J.; Drenzek, Nicholas J.; Coolen, Marco J. L.
2013-01-01
The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation. PMID:24367357
Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia.
Eggleton, P; Homathevi, R; Jones, D T; MacDonald, J A; Jeeva, D; Bignell, D E; Davies, R G; Maryati, M
1999-11-29
A synthesis is presented of sampling work conducted under a UK government-funded Darwin Initiative grant undertaken predominantly within the Danum Valley Conservation Area (DVCA), Sabah, East Malaysia. The project concerned the assemblage structure, gas physiology and landscape gas fluxes of termites in pristine and two ages of secondary, dipterocarp forest. The DVCA termite fauna is typical of the Sunda region, dominated by Termes-group soil-feeders and Nasutitermitinae. Selective logging appears to have relatively little effect on termite assemblages, although soil-feeding termites may be moderately affected by this level of disturbance. Species composition changes, but to a small extent when considered against the background level of compositional differences within the Sunda region. Physiologically the assemblage is very like others that have been studied, although there are some species that do not fit on the expected body size-metabolic rate curve. As elsewhere, soil-feeders and soil-wood interface-feeders tend to produce more methane. As with the termite assemblage characteristics, gross gas and energy fluxes do not differ significantly between logged and unlogged sites. Although gross methane fluxes are high, all the soils at DVCA were methane sinks, suggesting that methane oxidation by methanotrophic bacteria was a more important process than methane production by gut archaea. This implies that methane production by termites in South-East Asia is not contributing significantly to the observed increase in levels of methane production worldwide. Biomass density, species richness, clade complement and energy flow were much lower at DVCA than at a directly comparable site in southern Cameroon. This is probably due to the different biogeographical histories of the areas.
A model for methane production in anaerobic digestion of swine wastewater.
Yang, Hongnan; Deng, Liangwei; Liu, Gangjin; Yang, Di; Liu, Yi; Chen, Ziai
2016-10-01
A study was conducted using a laboratory-scale anaerobic sequencing batch digester to investigate the quantitative influence of organic loading rates (OLRs) on the methane production rate during digestion of swine wastewater at temperatures between 15 °C and 35 °C. The volumetric production rate of methane (Rp) at different OLRs and temperatures was obtained. The maximum volumetric methane production rates (Rpmax) were 0.136, 0.796, 1.294, 1.527 and 1.952 LCH4 L(-1) d(-1) at corresponding organic loading rates of 1.2, 3.6, 5.6, 5.6 and 7.2 g volatile solids L(-1) d(-1), respectively, which occurred at 15, 20, 25, 30 and 35 °C, respectively. A new model was developed to describe the quantitative relationship between Rp and OLR. In addition to the maximum volumetric methane production rate (Rpmax) and the half-saturation constant (KLR) commonly used in previous models such as the modified Stover-Kincannon model and Deng model, the new model introduced a new index (KD) that denoted the speed of volumetric methane production rate approaching the maximum as a function of temperature. The new model more satisfactorily described the influence of OLR on the rate of methane production than other models as confirmed by higher determination coefficients (R(2)) (0.9717-0.9900) and lower bias between the experimental and predicted data in terms of the root mean square error and the Akaike Information Criterion. Data from other published research also validated the applicability and generality of the new kinetic model to different types of wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Free ammonia pre-treatment of secondary sludge significantly increases anaerobic methane production.
Wei, Wei; Zhou, Xu; Wang, Dongbo; Sun, Jing; Wang, Qilin
2017-07-01
Energy recovery in the form of methane from sludge/wastewater is restricted by the poor and slow biodegradability of secondary sludge. An innovative pre-treatment technology using free ammonia (FA, i.e. NH 3 ) was proposed in this study to increase anaerobic methane production. The solubilisation of secondary sludge was significantly increased after FA pre-treatment at up to 680 mg NH 3 -N/L for 1 day, under which the solubilisation (i.e. 0.4 mg SCOD/mg VS; SCOD: soluble chemical oxygen demand; VS: volatile solids) was >10 times higher than that without FA pre-treatment (i.e. 0.03 mg SCOD/mg VS). Biochemical methane potential assays showed that FA pre-treatment at above 250 mg NH 3 -N/L is effective in improving anaerobic methane production. The highest improvement in biochemical methane potential (B 0 ) and hydrolysis rate (k) was achieved at FA concentrations of 420-680 mg NH 3 -N/L, and was determined as approximately 22% (from 160 to 195 L CH 4 /kg VS added) and 140% (from 0.22 to 0.53 d -1 ) compared to the secondary sludge without pre-treatment. More analysis revealed that the FA induced improvement in B 0 and k could be attributed to the rapidly biodegradable substances rather than the slowly biodegradable substances. Economic and environmental analyses showed that the FA-based technology is economically favourable and environmentally friendly. Since this FA technology aims to use the wastewater treatment plants (WWTPs) waste (i.e. anaerobic digestion liquor) to enhance methane production from the WWTPs, it will set an example for the paradigm shift of the WWTPs from 'linear economy' to 'circular economy'. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seismic reflections identify finite differences in gas hydrate resources
Dillon, William P.; Max, M.
1999-01-01
Gas hydrate is a gas-bearing, ice-like crystalline solid. The substance's build ing blocks consist of a gas molecule (generally methane) sur-rounded by a cage of water molecules. The total amount of methane in hydrate in the world is immense - the most recent speculative estimate centers on values of 21x1015 cu meters. Thus, it may represent a future energy resource. This estimate was presented by Keith Kvenvolden at the International Symposium on Methane Hydrates, Resources in the Near Future, sponsor ed by Japanese National Oil Company (Tokyo, October, 1998).But, as with any natural resource, there is a need to find naturally occurring concentrations in order to effectively extract gas. We need to answer four basic questions:Do methane hydrate concentrations suitable for methane extraction exist?How can we recognize these concentrations?Where are concentrations located?What processes control methane hydrate concentrations?Gas hydrate occurs naturally at the pressure/ temperature/chemical conditions that are present within ocean floor sediments at water depths greater than about 500 meters. The gas hydrate stability zone (GHSZ) extends from the sea bottom downward to a depth where the natural increase in temperature causes the hydrate to melt (dissociate), even though the downward pressure increase is working to increase gas hydrate stability.Thus, the base of the GHSZ tends to parallel the seafloor at any given water depth (pressure), because the sub-seafloor isotherms (depths of constant temperature) generally parallel the seafloor. The layer at which gas hydrate is stable commonly extends from the sea floor to several hundred meters below it. The gas in most gas hydrates is methane, generated by bacteria in the sediments. In some cases, it can be higher carbon-number, thermogenic hydrocarbon gases that rise from greater depths.
Geochemistry of a naturally occurring massive marine gas hydrate
Kvenvolden, K.A.; Claypool, G.E.; Threlkeld, C.N.; Dendy, Sloan E.
1984-01-01
During Deep Sea Drilling Project (DSDP) Leg 84 a core 1 m long and 6 cm in diameter of massive gas hydrate was unexpectedly recovered at Site 570 in upper slope sediment of the Middle America Trench offshore of Guatemala. This core contained only 5-7% sediment, the remainder being the solid hydrate composed of gas and water. Samples of the gas hydrate were decomposed under controlled conditions in a closed container maintained at 4??C. Gas pressure increased and asymptotically approached the equilibrium decomposition pressure for an ideal methane hydrate, CH4.5-3/4H2O, of 3930 kPa and approached to this pressure after each time gas was released, until the gas hydrate was completely decomposed. The gas evolved during hydrate decomposition was 99.4% methane, ???0.2% ethane, and ???0.4% CO2. Hydrocarbons from propane to heptane were also present, but in concentrations of less than 100 p.p.m. The carbon-isotopic composition of methane was -41 to -44 permil(( 0 00), relative to PDB standard. The observed volumetric methane/water ratio was 64 or 67, which indicates that before it was stored and analyzed, the gas hydrate probably had lost methane. The sample material used in the experiments was likely a mixture of methane hydrate and water ice. Formation of this massive gas hydrate probably involved the following processes: (i) upward migration of gas and its accumulation in a zone where conditions favored the growth of gas hydrates, (ii) continued, unusually rapid biological generation of methane, and (iii) release of gas from water solution as pressure decreased due to sea level lowering and tectonic uplift. ?? 1984.
Catalytic aromatization of methane.
Spivey, James J; Hutchings, Graham
2014-02-07
Recent developments in natural gas production technology have led to lower prices for methane and renewed interest in converting methane to higher value products. Processes such as those based on syngas from methane reforming are being investigated. Another option is methane aromatization, which produces benzene and hydrogen: 6CH4(g) → C6H6(g) + 9H2(g) ΔG°(r) = +433 kJ mol(-1) ΔH°(r) = +531 kJ mol(-1). Thermodynamic calculations for this reaction show that benzene formation is insignificant below ∼600 °C, and that the formation of solid carbon [C(s)] is thermodynamically favored at temperatures above ∼300 °C. Benzene formation is insignificant at all temperatures up to 1000 °C when C(s) is included in the calculation of equilibrium composition. Interestingly, the thermodynamic limitation on benzene formation can be minimized by the addition of alkanes/alkenes to the methane feed. By far the most widely studied catalysts for this reaction are Mo/HZSM-5 and Mo/MCM-22. Benzene selectivities are generally between 60 and 80% at methane conversions of ∼10%, corresponding to net benzene yields of less than 10%. Major byproducts include lower molecular weight hydrocarbons and higher molecular weight substituted aromatics. However, carbon formation is inevitable, but the experimental findings show this can be kinetically limited by the use of H2 or oxidants in the feed, including CO2 or steam. A number of reactor configurations involving regeneration of the carbon-containing catalyst have been developed with the goal of minimizing the cost of regeneration of the catalyst once deactivated by carbon deposition. In this tutorial review we discuss the thermodynamics of this process, the catalysts used and the potential reactor configurations that can be applied.
de la Torre, Andrea; Metivier, Aisha; Chu, Frances; Laurens, Lieve M L; Beck, David A C; Pienkos, Philip T; Lidstrom, Mary E; Kalyuzhnaya, Marina G
2015-11-25
Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration. A stoichiometric flux balance model of Methylomicrobium buryatense strain 5G(B1) was constructed and used for evaluating metabolic engineering strategies for biofuels and chemical production with a methanotrophic bacterium as the catalytic platform. The initial metabolic reconstruction was based on whole-genome predictions. Each metabolic step was manually verified, gapfilled, and modified in accordance with genome-wide expression data. The final model incorporates a total of 841 reactions (in 167 metabolic pathways). Of these, up to 400 reactions were recruited to produce 118 intracellular metabolites. The flux balance simulations suggest that only the transfer of electrons from methanol oxidation to methane oxidation steps can support measured growth and methane/oxygen consumption parameters, while the scenario employing NADH as a possible source of electrons for particulate methane monooxygenase cannot. Direct coupling between methane oxidation and methanol oxidation accounts for most of the membrane-associated methane monooxygenase activity. However the best fit to experimental results is achieved only after assuming that the efficiency of direct coupling depends on growth conditions and additional NADH input (about 0.1-0.2 mol of incremental NADH per one mol of methane oxidized). The additional input is proposed to cover loss of electrons through inefficiency and to sustain methane oxidation at perturbations or support uphill electron transfer. Finally, the model was used for testing the carbon conversion efficiency of different pathways for C1-utilization, including different variants of the ribulose monophosphate pathway and the serine cycle. We demonstrate that the metabolic model can provide an effective tool for predicting metabolic parameters for different nutrients and genetic perturbations, and as such, should be valuable for metabolic engineering of the central metabolism of M. buryatense strains.
Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens
NASA Astrophysics Data System (ADS)
Valentine, David L.; Chidthaisong, Amnat; Rice, Andrew; Reeburgh, William S.; Tyler, Stanley C.
2004-04-01
A series of laboratory studies were conducted to increase understanding of stable carbon (13C/12C) and hydrogen (D/H) isotope fractionation arising from methanogenesis by moderately thermophilic acetate- and hydrogen-consuming methanogens. Studies of the aceticlastic reaction were conducted with two closely related strains of Methanosaeta thermophila. Results demonstrate a carbon isotope fractionation of only 7‰ (α = 1.007) between the methyl position of acetate and the resulting methane. Methane formed by this process is enriched in 13C when compared with other natural sources of methane; the magnitude of this isotope effect raises the possibility that methane produced at elevated temperature by the aceticlastic reaction could be mistaken for thermogenic methane based on carbon isotopic content. Studies of H2/CO2 methanogenesis were conducted with Methanothermobacter marburgensis. The fractionation of carbon isotopes between CO2 and CH4 was found to range from 22 to 58‰ (1.023 ≤ α ≤ 1.064). Greater fractionation was associated with low levels of molecular hydrogen and steady-state metabolism. The fractionation of hydrogen isotopes between source H2O and CH4 was found to range from 127 to 275‰ (1.16 ≤ α ≤ 1.43). Fractionation was dependent on growth phase with greater fractionation associated with later growth stages. The maximum observed fractionation factor was 1.43, independent of the δD-H2 supplied to the culture. Fractionation was positively correlated with temperature and/or metabolic rate. Results demonstrate significant variability in both hydrogen and carbon isotope fractionation during methanogenesis from H2/CO2. The relatively small fractionation associated with deuterium during H2/CO2 methanogenesis provides an explanation for the relatively enriched deuterium content of biogenic natural gas originating from a variety of thermal environments. Results from these experiments are used to develop a hypothesis that differential reversibility in the enzymatic steps of the H2/CO2 pathway gives rise to variability in the observed carbon isotope fractionation. Results are further used to constrain the overall efficiency of electron consumption by way of the hydrogenase system in M. marburgensis, which is calculated to be less than 55%.
Potential application of biodrying to treat solid waste
NASA Astrophysics Data System (ADS)
Zaman, Badrus; Oktiawan, Wiharyanto; Hadiwidodo, Mochtar; Sutrisno, Endro; Purwono; Wardana, Irawan Wisnu
2018-02-01
The generation of solid waste around the world creates problems if not properly managed. The method of processing solid waste by burning or landfill is currently not optimal. The availability of land where the final processing (TPA) is critical, looking for a new TPA alternative will be difficult and expensive, especially in big cities. The processing of solid waste using bio drying technology has the potential to produce renewable energy and prevention of climate change. Solid waste processing products can serve as Refuse Derived Fuel (RDF), reduce water content of solid waste, meningkatkan kualitas lindi and increase the amount of recycled solid waste that is not completely separated from home. Biodrying technology is capable of enhancing the partial disintegration and hydrolysis of macromolecule organic compounds (such as C-Organic, cellulose, hemicellulose, lignin, total nitrogen). The application of biodrying has the potential to reduce greenhouse gas emissions such as carbon dioxide (CO2), methane (CH4), and dinitrooksida (N2O). These gases cause global warming.
2013-01-01
Background A solid-state anaerobic digestion method is used to produce biogas from various solid wastes in China but the efficiency of methane production requires constant improvement. The diversity and abundance of relevant microorganisms play important roles in methanogenesis of biomass. The next-generation high-throughput pyrosequencing platform (Roche/454 GS FLX Titanium) provides a powerful tool for the discovery of novel microbes within the biogas-generating microbial communities. Results To improve the power of our metagenomic analysis, we first evaluated five different protocols for extracting total DNA from biogas-producing mesophilic solid-state fermentation materials and then chose two high-quality protocols for a full-scale analysis. The characterization of both sequencing reads and assembled contigs revealed that the most prevalent microbes of the fermentation materials are derived from Clostridiales (Firmicutes), which contribute to degrading both protein and cellulose. Other important bacterial species for decomposing fat and carbohydrate are Bacilli, Gammaproteobacteria, and Bacteroidetes (belonging to Firmicutes, Proteobacteria, and Bacteroidetes, respectively). The dominant bacterial species are from six genera: Clostridium, Aminobacterium, Psychrobacter, Anaerococcus, Syntrophomonas, and Bacteroides. Among them, abundant Psychrobacter species, which produce low temperature-adaptive lipases, and Anaerococcus species, which have weak fermentation capabilities, were identified for the first time in biogas fermentation. Archaea, represented by genera Methanosarcina, Methanosaeta and Methanoculleus of Euryarchaeota, constitute only a small fraction of the entire microbial community. The most abundant archaeal species include Methanosarcina barkeri fusaro, Methanoculleus marisnigri JR1, and Methanosaeta theromphila, and all are involved in both acetotrophic and hydrogenotrophic methanogenesis. Conclusions The identification of new bacterial genera and species involved in biogas production provides insights into novel designs of solid-state fermentation under mesophilic or low-temperature conditions. PMID:23320936
Beneragama, Nilmini; Iwasaki, Masahiro; Umetsu, Kazutaka
2017-02-01
Methane production from co-digestion of dairy manure and waste milk, milk from cows treated with antibiotics for mastitis, was tested in a 2 × 4 factorial design. Four different waste milk percentages (w/w): 0% (SM), 10% (SMWM10), 20% (SMWM20) and 30% (SMWM30), were tested with two slurry percentages (w/w): 50% (A) and 25% (B) and the rest being manure at 55°C for 12 days in batch digesters. The results analyzed using a Gompertz model showed SMWM10 produced the highest methane production potential (P m )/g volatile solids added followed by SM in both A and B. This P m of SMWM10 in A and B was statistically non-significant (P > 0.05). More than 96% of cefazolin-resistant bacteria and 100% of multi-drug-resistant bacteria reductions were observed in all the treatments. Inclusion of waste milk at 10% in single stage digester enhances the methane production from dairy manure and could offer added benefit of waste milk treatment and disposal. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.
Arelli, Vijayalakshmi; Begum, Sameena; Anupoju, Gangagni Rao; Kuruti, Kranti; S, Shailaja
2018-04-01
The objective of the present study is to assess the impact of TS concentration, substrate mixing ratio (co digestion) and thermal pretreatment on biogas production, methane yield, VS reduction (%) and quality of biomanure through dry anaerobic digestion (DAD) of food waste (FW) and cattle manure (CM). Results divulged that the optimum methane yield and biomanure of 0.18 and 0.21 m 3 CH 4 /(kg VS reduced) and 3.15 and 2.8 kg/kg waste was obtained from FW at TS of 25% and 30% at an HRT of 41 and 31 days respectively whereas it was 0.32 and 0.43 m 3 CH 4 /(kg VS reduced) and 2.2 and 1.15 kg/kg waste from pretreated FW at an HRT of 16 and 20 days correspondingly. Improvement of methane from 62 to 81% was obtained due to thermal pretreatment. The highest nutrient recovery in terms of N, P, K was found to be 5.14, 2.6 and 3.2 respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds
Vincent, Warwick F.; Comte, Jérôme; Matveev, Alex; Lovejoy, Connie
2017-01-01
Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic. PMID:29182670
Effect of magnetite powder on anaerobic co-digestion of pig manure and wheat straw.
Wang, Yanzi; Ren, Guangxin; Zhang, Tong; Zou, Shuzhen; Mao, Chunlan; Wang, Xiaojiao
2017-08-01
This study investigated the effects of different amounts of magnetite powder (i.e., 0g, 1.5g, 3g, 4.5g, 6g) on the anaerobic co-digestion of pig manure (PM) and wheat straw (WS). The variations in pH, alkalinity, cellulase activity (CEA), dehydrogenase activity (DHA) and methane production, were analyzed by phases. Correlation of the activities of the two enzymes with methane production was also analyzed, and the Gompertz model was used to evaluate the efficiency of anaerobic digestion (AD) with the addition of magnetite powder. The results showed that magnetite powder had significant effects on the anaerobic co-digestion of PM and WS. The maximum total methane production with the addition of 3g of magnetite powder was 195mL/g total solids (TS), an increase of 72.1%. The CEA and DHA increased with magnetite powder in the ranges of 1.5-4.5g, 1.5-6g, respectively, while the methane production showed a better correlation with DHA than with CEA. Using the Gompertz model, the efficiency of AD was optimal when adding 3g magnetite powder, with higher methane production potential (206mL/g TS), shorter lag-phase time (14.9d) and shorter AD period (44d). Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Ruirui; Duan, Na; Zhang, Yuanhui; Liu, Zhidan; Li, Baoming; Zhang, Dongming; Dong, Taili
2017-10-01
Anaerobic digestion (AD) is a promising alternative for livestock manure management. This paper presents the experimental results obtained through a batch experiment by using chicken manure (CM) and microalgae Chlorella sp. as co-substrates. The effect of co-digestion was evaluated by varying CM to Chlorella sp. ratios (0:10, 2:8, 4:6, 6:4, 8:2, 10: 0 based on the volatile solids (VS)). The major objective of this study is to evaluate the feasibility and synergistic impact of co-digestion of CM and Chlorella sp. Enhanced 14.20% and 76.86% methane production than CM and Chlorella sp. mono-digestion respectively was achieved in co-digestion at the ratio 8:2. In addition, the co-digestion at the ratio 8:2 showed significantly higher methane yield than the weighted average of the individual substrates' specific methane yield (WSMY), indicating strong synergy effect. The Illumina Miseq sequencing analysis showed that the AD process suppressed the acetoclastic methanogenesis Methanosaeta content; but partly enhanced hydrogenotrophic methanogenesis Methanosarcina, Methanospirillum and Methanobacterium, which was responsible for the methane production. The pre-treated microalgae was then introduced at the optimal ratio 8:2 to estimate the effect of pre-treatment of microalgae on AD process. However, the pre-treatment exhibited no positive effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Caramiello, C; Lancellotti, I; Righi, F; Tatàno, F; Taurino, R; Barbieri, L
2013-01-01
A combined experimental evaluation of methane production (obtained by anaerobic digestion) and detailed digestate characterization (with physical-chemical, thermo-gravimetric and mineralogical approaches) was conducted on two organic substrates, which are specific to Italy (at regional and national levels). One of the substrates was grape seeds, which have an agricultural origin, whereas the other substrate was vegetable-tanned leather dust, which has an industrial origin. Under the assumed experimental conditions of the performed lab-scale test series, the grape seed substrate exhibited a resulting net methane production of 175.0 NmL g volatile solids (VS)(-1); hence, it can be considered as a potential energy source via anaerobic digestion. Conversely, the net methane production obtained from the anaerobic digestion of the vegetable-tanned leather dust substrate was limited to 16.1 NmL gVS(-1). A detailed characterization of the obtained digestates showed that there were both nitrogen-containing compounds and complex organic compounds present in the digestate that was obtained from the mixture of leather dust and inoculum. As a general perspective of this experimental study, the application of diversified characterization analyzes could facilitate (1) a better understanding of the main properties of the obtained digestates to evaluate their potential valorization, and (2) a combination of the digestate characteristics with the corresponding methane productions to comprehensively evaluate the bioconversion process.
De la Cruz, Florentino B; Barlaz, Morton A
2010-06-15
The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, k(lab), for the major biodegradable MSW components were used to derive field-scale decay rates (k(field)) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04 yr(-1), k(field) was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029 yr(-1), for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard waste and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.
Comparison of Field Measurements to Methane Emissions ...
Due to both technical and economic limitations, estimates of methane emissions from landfills rely primarily on models. While models are easy to implement, there is uncertainty due to the use of parameters that are difficult to validate. The objective of this research was to compare modeled emissions using several greenhouse gas (GHG) emissions reporting protocols including: (1) Intergovernmental Panel on Climate Change (IPCC); (2) U.S. Environmental Protection Agency Greenhouse Gas Reporting Program (EPA GHGRP); (3) California Air Resources Board (CARB); (4) Solid Waste Industry for Climate Solutions (SWICS); and (5) an industry model from the Dutch waste company Afvalzorg, with measured data collected over 3 calendar years from a young landfill with no gas collection system. By working with whole landfill measurements of fugitive methane emissions and methane oxidation, the collection efficiency could be set to zero, thus eliminating one source of parameter uncertainty. The models consistently overestimated annual methane emissions by a factor ranging from 4 – 32.Varying input parameters over reasonable ranges reduced this range to 1.3 - 8. Waste age at the studied landfill was less than four years and the results suggest the need for measurements at additional landfills to evaluate the accuracy of the tested models to young landfills. This is a submission to a peer reviewed journal. The paper discusses landfill emission measurements and models for a new la
Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds.
Crevecoeur, Sophie; Vincent, Warwick F; Comte, Jérôme; Matveev, Alex; Lovejoy, Connie
2017-01-01
Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic.
Bioconversion of water hyacinth-Coastal Bermuda grass-MSW-sludge blends to methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S.; Henry, M.P.; Klass, D.L.
1979-01-01
Continuous operation of a biomethanation plant could be acheved more readily if mixtures of biomass and organic wastes could be utilized as feedstock. The research reported in this paper was directed to a laboratory evaluation of a blend of terrestrial and aquatic biomass with organic wastes as an anaerobic digester feed. Specifically, a blend of water hyacinth, Coastal Bermuda grass, the combustible fraction of municipal solid waste, and a small quantity of sludge was digested under standard, high-rate mesophilic conditions. Good methane production was achieved without the addition of external nutrients. As expected, biodegradabilities in decreasing order were hemicellulose, cellulose,more » crude protein, and lignin. The digester effluent was easily dewatered by filtration without chemical conditioning. Pretreatment of the feed slurry with 3 wt % sodium hydroxide solution under ambient conditions improved methane yield about 20% over that of the fresh untreated feed. A kinetic analysis of the experimental data indicated that hydrolysis or acidification was the rate limiting step of digestion of the biomass-waste blend. It was concluded from this work that biomass-waste blends of the type studied in this work can sustain anaerobic digestion under conventional conditions for long periods with little difficulty. Substantial improvements in methane yield should be possible, however, by use of advanced digestion techniques because methane recovery efficiencies in this work ranged up to about 46%.« less
Solid-phase equilibria on Pluto's surface
NASA Astrophysics Data System (ADS)
Tan, Sugata P.; Kargel, Jeffrey S.
2018-03-01
Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebler, A.R.
1980-02-26
A gaseous mixture of oxygen and fuel (Combustibles) is supplied to first and second electrodes disposed on opposite surfaces of an oxygen ion conductive solid electrolyte member wherein the electrodes are composed of different materials each exhibiting a different catalytic action on the gaseous mixture at a given temperature. The difference in oxygen potentials established at the respective electrodes as a result of the dissimilar catalytic action produces oxygen ion conductivity in the solid electrolyte cell which produces an electrical signal the magnitude of which is indicative of the combustible present in the mixture, I.E., methane, hydrogen, carbon monoxide, etc.
Carbothermal Processing of Lunar Regolith Using Methane
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Hegde, U.; Gokoglu, S.
2009-01-01
The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. Among various candidate processes, the modeling of oxygen production by hydrogen reduction, molten salt electrolysis, and carbothermal processing are presently being pursued. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source such as a laser beam or a concentrated solar heat flux, so that a small zone of molten regolith is established. The molten zone is surrounded by solid regolith particles that are poor conductors of heat. A continuous flow of methane is maintained over the molten regolith zone. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. Oxygen is produced subsequently by (catalytically) processing the carbon monoxide downstream. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide.
Carbothermal Processing of Lunar Regolith Using Methane
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Hegde, U.; Gokoglu, S.
2008-01-01
The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. Among various candidate processes, the modeling of oxygen production by hydrogen reduction, molten salt electrolysis, and carbothermal processing are presently being pursued. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source such as a laser beam or a concentrated solar heat flux, so that a small zone of molten regolith is established. The molten zone is surrounded by solid regolith particles that are poor conductors of heat. A continuous flow of methane is maintained over the molten regolith zone. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. Oxygen is produced subsequently by (catalytically) processing the carbon monoxide downstream. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide.
De la Rubia, M A; Villamil, J A; Rodriguez, J J; Borja, R; Mohedano, A F
2018-06-01
In the present study, the influence of substrate pre-treatment (grinding and sieving) on batch anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) was first assessed, then followed by co-digestion experiments with the liquid fraction from hydrothermal carbonization (LFHTC) of dewatered sewage sludge (DSS). The methane yield of batch anaerobic digestion after grinding and sieving (20 mm diameter) the OFMSW was considerably higher (453 mL CH 4 STP g -1 VS added ) than that of untreated OFMSW (285 mL CH 4 STP g -1 VS added ). The modified Gompertz model adequately predicted process performance. The maximum methane production rate, R m , for ground and sieved OFMSW was 2.4 times higher than that of untreated OFMSW. The anaerobic co-digestion of different mixtures of OFMSW and LFHTC of DSS did not increase the methane yield above that of the anaerobic digestion of OFMSW alone, and no synergistic effects were observed. However, the co-digestion of both wastes at a ratio of 75% OFMSW-25% LFHTC provides a practical waste management option. The experimental results were adequately fitted to a first-order kinetic model showing a kinetic constant virtually independent of the percentage of LFHTC (0.52-0.56 d -1 ) and decreasing slightly for 100% LFHTC (0.44 d -1 ). Copyright © 2018 Elsevier Ltd. All rights reserved.
Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma
Cozzarelli, Isabelle M.; Böhlke, John Karl; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.
2011-01-01
Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz
Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in bothmore » single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.« less
Performance Simulations for a Spaceborne Methane Lidar Mission
NASA Technical Reports Server (NTRS)
Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.
2014-01-01
Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.
Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin
2013-01-01
Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.
NASA Technical Reports Server (NTRS)
Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno
2016-01-01
Northern peatlands are an important source for greenhouse gases but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43-year time series of pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multi-decadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 through 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Delta C-14 with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.
Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno
2016-01-01
Northern peatlands are an important source for greenhouse gases, but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43 year time series of the pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multidecadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 to 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Δ14C with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.
Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming
2015-10-20
Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.
The formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) has been shown to occur from the combustion products of fuels as complex as municipal solid waste and as relatively simple as a methane flame. PCDD/F emissions from flame carbon in th...
Pyrolysis kinetics and combustion of thin wood using advanced cone calorimetry test method
Mark A. Dietenberger
2011-01-01
Mechanistic pyrolysis kinetics analysis of extractives, holocellulose, and lignin in solid wood over entire heating regime was possible using specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for thin specimen with tiny thermocouples, methane ring burner with stainless steel mesh above cone...
Lin, Yunqin; Ge, Xumeng; Li, Yebo
2014-10-01
Spent mushroom substrate (SMS) is a biomass waste generated from mushroom production. About 5 kg of SMS is generated for every kg of mushroom produced. In this study, solid state anaerobic digestion (SS-AD) of SMS, wheat straw, yard trimmings, and their mixtures was investigated at different feedstock to effluent ratios. SMS was found to be highly degradable, which resulted in inhibition of SS-AD due to volatile fatty acid (VFA) accumulation and a decrease in pH. This issue was addressed by co-digestion of SMS with either yard trimmings or wheat straw. SS-AD of SMS/yard trimmings achieved a cumulative methane yield of 194 L/kg VS, which was 16 and 2 times higher than that from SMS and yard trimmings, respectively. SS-AD of SMS/wheat straw obtained a cumulative methane yield of 269 L/kg VS, which was 23 times as high as that from SMS and comparable to that from wheat straw. Copyright © 2014 Elsevier Ltd. All rights reserved.
Anaerobic co-digestion of coffee husks and microalgal biomass after thermal hydrolysis.
Passos, Fabiana; Cordeiro, Paulo Henrique Miranda; Baeta, Bruno Eduardo Lobo; de Aquino, Sergio Francisco; Perez-Elvira, Sara Isabel
2018-04-01
Residual coffee husks after seed processing may be better profited if bioconverted into energy through anaerobic digestion. This process may be improved by implementing a pretreatment step and by co-digesting the coffee husks with a more liquid biomass. In this context, this study aimed at evaluating the anaerobic co-digestion of coffee husks with microalgal biomass. For this, both substrates were pretreated separately and in a mixture for attaining 15% of total solids (TS), which was demonstrated to be the minimum solid content for pretreatment of coffee husks. The results showed that the anaerobic co-digestion presented a synergistic effect, leading to 17% higher methane yield compared to the theoretical value of both substrates biodegraded separately. Furthermore, thermal hydrolysis pretreatment increased coffee husks anaerobic biodegradability. For co-digestion trials, the highest values were reached for pretreatment at 120 °C for 60 min, which led to 196 mLCH 4 /gVS and maximum methane production rate of 0.38 d -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Srivastava, V.J.; Isaacson, H.R.
1987-01-01
The Institute of Gas Technology has been operating a 1200-gallon, anaerobic solids-concentrating digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida. This digester development work is part of a larger effort sponsored by the Gas Research Institute to provide an effective community waste treatment and energy recovery concept for smaller communities. As a result, an economically attractive, water hyacinth-based wastewater treatment system was developed that includes the digestion of water hyacinth and sludge to methane. A further extension of the community waste treatment concept is to include agricultural wastes in the energy recovery scheme. Therefore, duringmore » 1986 a test program was initiated to obtain data on the digestion of sorghum in the solids concentrating digester. Performance data was collected at both mesophilic and thermophilic operating conditions at total organic loading rates of 0.25 and 0.5 pounds per cubic foot of digester volume per day, respectively. Excellent methane yields were obtained during twelve months of stable and uninterrupted operation. This paper summarizes the performance data obtained on sorghum in this digester. 7 refs., 6 figs., 6 tabs.« less
Aboudi, Kaoutar; Álvarez-Gallego, Carlos José; Romero-García, Luis Isidoro
2015-10-01
Anaerobic co-digestion of dried pellet of exhausted sugar beet cossettes (ESBC-DP) with pig manure (PM) was investigated in a semi-continuous stirred tank reactor (SSTR) under mesophilic conditions. Seven hydraulic retention times (HRT) from 20 to 5 days were tested with the aim to evaluate the methane productivities and volatile solids (VS) removal. The corresponding organic loading rates (OLR) ranged from 4.2 to 12.8 gVS/L(reactor) d. The findings revealed that highest system efficiency was achieved at an OLR of 11.2 gVS/L(reactor) d (6 days-HRT) with a methane production rate (MPR) and volatile solids (VS) reduction of 2.91 LCH4/L(reactor) d and 57.5%, respectively. The HRT of 5 days was found critical for the studied process, which leads to volatile fatty acids (VFA) accumulation and sharp drop in pH. However, the increase of HRT permits the recovery of system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neumann, Patricio; Barriga, Felipe; Álvarez, Claudia; González, Zenón; Vidal, Gladys
2018-03-15
The aim of this study was to evaluate the performance and digestate quality of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment. Both stages of pre-treatment contributed to chemical oxygen demand (COD) solubilization, with an overall factor of 11.4 ± 2.2%. Pre-treatment led to 19.1, 24.0 and 29.9% increased methane yields at 30, 15 and 7.5 days solid retention times (SRT), respectively, without affecting process stability or accumulation of intermediates. Pre-treatment decreased up to 4.2% water recovery from the digestate, but SRT was a more relevant factor controlling dewatering. Advanced digestion showed 2.4-3.1 and 1.5 logarithmic removals of coliforms and coliphages, respectively, and up to a 58% increase in the concentration of inorganics in the digestate solids compared to conventional digestion. The COD balance of the process showed that the observed increase in methane production was proportional to the pre-treatment solubilization efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shi, Xiao-Shuang; Yu, Jun-Hong; Yin, Hua; Hu, Shu-Min; Huang, Shu-Xia
2017-01-01
Three semicontinuous continuous stirred-tank reactors (CSTR) operating at mesophilic conditions (35°C) were used to investigate the effect of hydraulic retention time (HRT) on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs. PMID:28589134
Vavilin, Vasily A; Qu, Xian; Mazéas, Laurent; Lemunier, Melanie; Duquennoi, Christian; He, Pinjing; Bouchez, Theodore
2008-11-01
Taking into account isotope (13)C value a mathematical model was developed to describe the dynamics of methanogenic population during mesophilic anaerobic digestion of putrescible solid waste and waste imitating Chinese municipal solid waste. Three groups of methanogens were considered in the model including unified hydrogenotrophic methanogens and two aceticlastic methanogens Methanosaeta sp. and Methanosarcina sp. It was assumed that Methanosaeta sp. and Methanosarcina sp. are inhibited by high volatile fatty acids concentration. The total organic and inorganic carbon concentrations, methane production, methane and carbon dioxide partial pressures as well as the isotope (13)C incorporation in PSW and CMSW were used for the model calibration and validation. The model showed that in spite of the high initial biomass concentration of Methanosaeta sp. Methanosarcina sp. became the dominant aceticlastic methanogens in the system. This prediction was confirmed by FISH. It is concluded that Methanosarcina sp. forming multicellular aggregates may resist to inhibition by volatile fatty acids (VFAs) because a slow diffusion rate of the acids limits the VFA concentrations inside the Methanosarcina sp. aggregates.
Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo
2016-09-01
Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (p<0.05) increased cumulative methane yield (by 63%) over that of untreated biomass (217L/kgVS). LHW pretreatment obtained negative net electrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hensgen, Frank; Bühle, Lutz; Donnison, Iain; Heinsoo, Katrin; Wachendorf, Michael
2014-02-01
Twelve European habitat types were investigated to determine the influence of the IFBB technique (integrated generation of biogas and solid fuel from biomass) on the fate of organic compounds and energy yields of semi-natural grassland biomass. Concentration of organic compounds in silage and IFBB press cake (PC), mass flows within that system and methane yields of IFBB press fluids (PF) were determined. The gross energy yield of the IFBB technique was calculated in comparison to hay combustion (HC) and whole crop digestion (WCD). The IFBB treatment increased fibre and organic matter (OM) concentrations and lowered non-fibre carbohydrates and crude protein concentrations. The PF was highly digestible irrespective of habitat types, showing mean methane yields between 312.1 and 405.0 LN CH4 kg(-1) VS. Gross energy yields for the IFBB system (9.75-30.19MWh ha(-1)) were in the range of HC, outperformed WCD and were influenced by the habitat type. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evolution of microorganisms in thermophilic-dry anaerobic digestion.
Montero, B; Garcia-Morales, J L; Sales, D; Solera, R
2008-05-01
Microbial population dynamics were studied during the start-up and stabilization periods in thermophilic-dry anaerobic digestion at lab-scale. The experimental protocol was defined to quantify Eubacteria and Archaea using Fluorescent in situ hybridization (FISH) in a continuously stirred tank reactor (CSTR), without recycling solids. The reactor was subjected to a programme of steady-state operation over a range of the retention times from 40 to 25 days, with an organic loading rate between 4.42 and 7.50 kg volatile solid/m3/day. Changes in microbial concentrations were linked to traditional performance parameters such as biogas production and VS removal. The relations of Eubacteria:Archaea and H2-utilising methanogens:acetate-utilising methanogens were 88:12 and 11:1, respectively, during start-up stage. Hydrogenotrophic methanogens, although important in the initial phase of the reactor start-up, were displaced by acetoclastic methanogens at steady-state, thus their relation were 7:32, respectively. The methane yield coefficient, the methane content in the biogas and VS removal were stabilized around 0.30 LCH4/gCOD, 50% and 80%, respectively. Methanogenic population correlated well with performance measurements.
Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation.
Da Silva, C; Astals, S; Peces, M; Campos, J L; Guerrero, L
2018-01-01
Biochemical methane potential (BMP) test is a key analytical technique to assess the implementation and optimisation of anaerobic biotechnologies. However, this technique is characterised by long testing times (from 20 to >100days), which is not suitable for waste utilities, consulting companies or plants operators whose decision-making processes cannot be held for such a long time. This study develops a statistically robust mathematical strategy using sensitivity functions for early prediction of BMP first-order model parameters, i.e. methane yield (B 0 ) and kinetic constant rate (k). The minimum testing time for early parameter estimation showed a potential correlation with the k value, where (i) slowly biodegradable substrates (k≤0.1d -1 ) have a minimum testing times of ≥15days, (ii) moderately biodegradable substrates (0.1
Anaerobic degradation of renewable biomass for production of methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajoka, M.I.; Tabassum, R.; Malik, K.A.
1996-12-31
Anaerobic degradation of renewable biomass namely kallar grass (KG) (Leptochloafusca L. Kunth), Atriplex sp, wheat straw, cotton stalk, cotton lint and molasses was carried out at 37{degrees}C in a 15 litre fermentor, using laboratory enriched co-culture of fermentative, acetogenic and methanogenic organisms. Maximum reduction of volatile solids (VS) was from causticized KG, and cotton lint, followed by causticized wheat straw and Atriplex sp. followed by causticized wheat straw and Atriplex sp. Maximum production of methane was obtained from NaOH-pretreated KG with a process product yield (Y{sub p/s}) of 0.9 m{sup 3}/kg VS with a volumetric productivity (Q{sub p}) of 4.24more » L/day after 19 days of fermentation. Maximum methane content in the gas mixture was 96% with average of 78.6{+-}21.6. The Y{sub p/s} in 1000 litre digestor was 0.7 m{sup 3}/kg VS from a 3% suspension of uncaustisized kallar grass.« less
Hydrogen and carbon nanotube production via catalytic decomposition of methane
NASA Astrophysics Data System (ADS)
Deniz, Cansu; Karatepe, Nilgün
2013-09-01
The future energy demand is expected to increase significantly due to an increasing world population and demands for higher standards of living and better air quality. Hydrogen is considered as an energy carrier because of its high conversion efficiency and low pollutant emissions. It can be produced from various sources and transformed into electricity and other energy forms with a low pollution. The catalytic decomposition of hydrocarbon has been seen as a really useful method for production of pure hydrogen and for the environmental concern. The objective of this study was to assess the impact of catalyst composition and processing parameters on COx-free hydrogen production and to produce an available solid form of co-product carbon as carbon nanotubes via catalytic decomposition of methane. The optimum experimental conditions for methane decomposition have been investigated. Fe, Co and Ni are used as catalysts (nano materials) over different substrates as SiO2 and MgO to produce hydrogen at optimum temperatures.
Molinuevo-Salces, Beatriz; Ahring, Birgitte K; Uellendahl, Hinrich
2015-02-01
This study investigates the effect of catch crops as co-substrate on manure-based anaerobic digestion. Batch experiments were carried out for two catch crops, namely Italian ryegrass (IR) and oil seed radish (OSR), in co-digestion with manure. Methane yields in the range of 271-558 and 216-361 ml CH4/g volatile solids (VS) were obtained for OSR and IR in co-digestion, respectively. OSR co-digestion was chosen for semi-continuous reactor experiments. The addition of 50 % of OSR to manure (on VS basis) in semi-continuous anaerobic digestion resulted in a methane yield of 348 ml CH4/g VS, an improvement of 1.46 times compared to manure alone. Adaptation to OSR was observed, and no ammonia or volatile fatty acid-mediated inhibition was detected. The results prove that it is feasible to use catch crops as co-substrate for manure-based biogas production, obtaining a stable process with significantly higher methane yields than that of manure alone.
Mesophilic co-digestion of palm oil mill effluent and empty fruit bunches.
Kim, Sang-Hyoun; Choi, Seon-Mi; Ju, Hyun-Jun; Jung, Jin-Young
2013-01-01
The palm oil mill industry generates palm oil mill effluent (POME) and empty fruit bunches (EFB) as by-products. This study reports the mesophilic co-digestion of POME with EFB. The biochemical methane potential (BMP) of POME and EFB was 0.397 L CH4/g volatile solids (VS) and 0.264 L CH4/g VS, respectively. In a series of batch tests at various EFB to POME ratios, the maximum methane production rate was achieved at an EFB:POME ratio of 0.25-0.31:1. Performance data from lab-scale digesters confirmed the positive synergism by the addition of EFB to POME, which was attributed to the balanced chemical composition, for example the chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio. The EFB addition enhanced the acceptable organic loading rate, methane production, COD removal, and microbial activity. The mesophilic co-digestion of POME and EFB promises to be a viable recycling method to alleviate pollution problems and recover renewable energy in the palm oil mill industry.
Mesophilic-hydrothermal-thermophilic (M-H-T) digestion of green corn straw.
Li, Dong; Wang, Qingjing; Li, Jiang; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Mei, Zili; Liu, Xiaofeng
2016-02-01
Mesophilic-hydrothermal (80-160 °C, 30 min)-thermophilic (M-H-T) digestion and control tests of mesophilic (M), thermophilic (T), hydrothermal-mesophilic (H-M), and mesophilic-thermophilic digestion (M-T) of green corn straw were conducted for a 20-day fermentation period. The results indicate that M-H-T is an efficient method to improve methane production. A maximum methane yield of 371.74 mL/g volatile solid was obtained by the M (3 days)-H (140 °C)-T (17 days) process, which was 20.44%, 16.55%, 31.44%, and 14.31% higher than the yields of the M, T, 140-M, and M-T processes. The enhanced methane production was attributed to (1) the improved hemicellulose degradation and lignin disorganization; (2) prevention of the degradation of soluble sugar, easily hydrolyzed hemicellulose and cellulose into furfural and methylfurfural; and (3) lack of formation of Maillard reaction products during initial hydrothermal treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Methane potential from municipal biowaste: Insights from six communities in Maharashtra, India.
Breitenmoser, Lena; Dhar, Hiya; Gross, Thomas; Bakre, Milan; Huesch, Ragini; Hugi, Christoph; Wintgens, Thomas; Kumar, Rakesh; Kumar, Sunil
2018-04-01
Anaerobic digestion (AD) of biowaste can generate biogas with methane (CH 4 ) as energy source and contribute to sustainable municipal solid waste management in India. Characteristic municipal biowastes sampled seasonally from household, fruit and vegetable market and agricultural waste collection points in villages, towns and cities in Maharashtra were analysed to assess the potential as substrate for AD. The mean biochemical methane potential (BMP, at 37 °C) across seasons and community sizes was between 200-260, 175-240 and 101-286 NL CH4 kg vs -1 for household, market and agricultural biowaste, respectively. CH 4 yields were comparable in villages, towns and cities. Seasonal variations in CH 4 yields were observed for market and agricultural biowaste with highest values during pre-monsoon season. Results underpin that municipal biowaste is a suitable substrate for AD in India. However, low purity of available biowaste resulted in lower CH 4 yields compared to recent studies using source-segregated biowaste. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae.
El-Mashad, Hamed M
2013-03-01
Anaerobic batch digestion of four feedstocks was conducted at 35 and 50 °C: switchgrass; Spirulina platensis algae; and two mixtures of both switchgrass and S. platensis. Mixture 1 was composed of 87% switchgrass (based on volatile solids) and 13% S. platensis. Mixture 2 was composed of 67% switchgrass and 33% S. platensis. The kinetics of methane production from these feedstocks was studied using four first order models: exponential, Gompertz, Fitzhugh, and Cone. The methane yields after 40days of digestion at 35 °C were 355, 127, 143 and 198 ml/g VS, respectively for S. platensis, switchgrass, and Mixtures 1 and 2, while the yields at 50 °C were 358, 167, 198, and 236 ml/g VS, respectively. Based on Akaike's information criterion, the Cone model best described the experimental data. The Cone model was validated with experimental data collected from the digestion of a third mixture that was composed of 83% switchgrass and 17% S. platensis. Published by Elsevier Ltd.
Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan
Sotin, Christophe; Jaumann, R.; Buratti, B.J.; Brown, R.H.; Clark, R.N.; Soderblom, L.A.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Lemouelic, S.; Rodriguez, S.; Stephan, K.; Scholz, C.K.
2005-01-01
Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N 2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10 years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure ???30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.
Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan.
Sotin, C; Jaumann, R; Buratti, B J; Brown, R H; Clark, R N; Soderblom, L A; Baines, K H; Bellucci, G; Bibring, J-P; Capaccioni, F; Cerroni, P; Combes, M; Coradini, A; Cruikshank, D P; Drossart, P; Formisano, V; Langevin, Y; Matson, D L; McCord, T B; Nelson, R M; Nicholson, P D; Sicardy, B; LeMouelic, S; Rodriguez, S; Stephan, K; Scholz, C K
2005-06-09
Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10(7) years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure approximately 30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.
Troutman, Sandra M.; Stanley, Richard G.
2003-01-01
This publication includes two maps (at 1:2,500,000 scale) and a pamphlet that describe sedimentary basins, surface thermal maturity, and 95 reported occurrences of petroleum in natural seeps, wells, and rock outcrops in central Alaska. No commercial petroleum production has been obtained from central Alaska, in contrast to the prolific deposits of oil and gas that have been found and developed in northern Alaska and the Cook Inlet region. Nevertheless, confirmed indications of petroleum in central Alaska include (1) natural seeps of methane gas on the Yukon Delta; (2) occurrences of methane gas in wells in the Bethel, Kotzebue, Nenana, Northway, and Yukon Flats basins; (3) oil and methane gas in seeps and wells in Norton Sound; (4) small quantities of liquid and solid hydrocarbons associated with mercury ore in the Kuskokwim Mountains; (5) oil shale and numerous occurrences of bitumen in the Kandik area; and (6) tasmanite, a form of oil shale, in the uplands north of Yukon Flats.
Chapman, Melinda J.; Gurley, Laura N.; Fitzgerald, Sharon A.
2014-01-01
Records were obtained for 305 wells and 1 spring in northwestern Lee and southeastern Chatham counties, North Carolina. Well depths ranged from 26 to 720 feet and yields ranged from 0.25 to 100 gallons per minute. A subset of 56 wells and 1 spring were sampled for baseline groundwaterquality constituents including the following: major ions; dissolved metals; nutrients; dissolved gases (including methane); volatile and semivolatile organic compounds; glycols; isotopes of strontium, radium, methane (if sufficient concentration), and water; and dissolved organic and inorganic carbon. Dissolved methane gas concentrations were low, ranging from less than 0.00007 (lowest reporting level) to 0.48 milligrams per liter. Concentrations of nitrate, boron, iron, manganese, sulfate, chloride, total dissolved solids, and measurements of pH exceeded federal and state drinking water standards in a few samples. Iron and manganese concentrations exceeded the secondary (aesthetic) drinking water standard in approximately 35 to 37 percent of the samples.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Meyer, Marit E.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary
2015-01-01
The ISS presently recovers oxygen from crew respiration via a Carbon Dioxide Reduction Assembly (CRA) that utilizes the Sabatier chemical process to reduce captured carbon dioxide to methane (CH4) and water. In order to recover more of the hydrogen from the methane and increase oxygen recovery, NASA Marshall Space Flight Center (MSFC) is investigating a technology, plasma pyrolysis, to convert the methane to acetylene. The Plasma Pyrolysis Assembly (or PPA), achieves 90% or greater conversion efficiency, but a small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. In this work, we present the experimental results of an initial characterization of the carbon particulates in the PPA exit gas stream. We also present several potential options to remove these carbon particulates via carbon traps and filters to minimize resupply mass and required downtime for regeneration.
Biogas energy production from tropical biomass wastes by anaerobic digestion.
Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo
2014-10-01
Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Batch anaerobic digestion of synthetic military base food waste and cardboard mixtures.
Asato, Caitlin M; Gonzalez-Estrella, Jorge; Jerke, Amber C; Bang, Sookie S; Stone, James J; Gilcrease, Patrick C
2016-09-01
Austere US military bases typically dispose of solid wastes, including large fractions of food waste (FW) and corrugated cardboard (CCB), by open dumping, landfilling, or burning. Anaerobic digestion (AD) offers an opportunity to reduce pollution and recover useful energy. This study aimed to evaluate the rates and yields of AD for FW-CCB mixtures. Batch AD was analyzed at substrate concentrations of 1-50g total chemical oxygen demand (COD)L(-1) using response surface methodology. At low concentrations, higher proportions of FW were correlated with faster specific methanogenic activities and greater final methane yields; however, concentrations of FW ⩾18.75gCODL(-1) caused inhibition. Digestion of mixtures with ⩾75% CCB occurred slowly but achieved methane yields >70%. Greater shifts in microbial communities were observed at higher substrate concentrations. Statistical models of methane yield and specific methanogenic activity indicated that FW and CCB exhibited no considerable interactions as substrates for AD. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, T.; Lin, J. F.; Gu, J. T.; Polito, P. J.; O'Connell, J.; Flemings, P. B.
2017-12-01
We used Raman spectroscopy to monitor methane hydrates transforming from structure II to structure I at the pore scale as a function of space and time. It is well documented that structure I hydrate is the thermodynamically stable phase for pure methane hydrate (<100 MPa, < 20 °C), but due to kinetic limitation, initial methane hydrate formation produces a mixture of structure I and structure II hydrates. We observed that the structure transformation originated around the porous medium grains and over time slowly migrated into the pore space. We synthesized methane hydrates in spherical glass beads (210-297 µm in diameter) in a pressure cell with a sapphire window to integrate optical observations with Raman measurements. We injected CH4 vapor into the cell and supplied only deionized water thereafter to maintain a constant pressure of 14.6 MPa at 3.5 °C, with 14.5 °C subcooling. We used Raman spectroscopy to map the methane hydrates in pore spaces at 5-25 µm resolution, in order to monitor the occupancy ratio of CH4 in large cages to CH4 in small cages, by their Raman peak intensity ratio, i.e., I( 2905 cm-1)/I( 2915 cm-1). We identified 3 stages of hydrate formation at the pore scale: (1) after the initial hydrate formation, Raman mapping revealed that the occupancy ratio ranged from 0.5 to 3, indicating a mixture of structure I and II hydrates; (2) within 1 week, we observed that all structure I hydrates occurred on the glass bead surfaces and structure II hydrates occupied the pore spaces; (3) over the following 2 weeks, structure II hydrates gradually recrystallized into structure I hydrates from glass bead surfaces towards the pore space. These results imply that (1) due to kinetics, the formation of methane hydrate in porous media is more complex than previously thought, and (2) the bulk physical and chemical properties of laboratory-synthesized methane hydrates in porous media may drift over time, as methane hydrates recrystallize from a metastable phase (structure II) to the thermodynamically stable phase (structure I).
Ye, Yulin; Zamalloa, Carlos; Lin, Hongjian; Yan, Mi; Schmidt, David; Hu, Bo
2015-01-01
The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.
Cassini/Huygens Investigations of Titan's Methane Cycle
NASA Astrophysics Data System (ADS)
Griffith, C. A.; Penteado, P.
2008-12-01
In Titan's atmosphere, the second most abundant constituent, methane, exists as a gas, liquid and solid, and cycles between the atmosphere and surface. Similar to Earth's hydrological cycle, Titan sports clouds, rain, and lakes. Yet, Titan's cycle differs dramatically from its terrestrial counterpart, and reveals the workings of weather in an atmosphere that is ten times thicker than Earth's atmosphere, that is two orders of magnitude less illuminated, and that involves a different condensable. Measurements of Titan's troposphere, where the methane cycle plays out, are limited largely to spectral images of Titan's clouds, several temperature profiles by Voyager, Huygens and Cassini, recent Keck spectra of the surface methane humidity, and one vertical profile of Titan's methane abundance, measured on a summer afternoon in Titan's tropical atmosphere by the Huygens probe. The salient features of Titan's methane cycle are distinctly alien: clouds have predominated the northern and southern polar atmospheres; the one humidity profile precisely matches the profile (of cartoonish simplicity) used in pre-Cassini models, and surface features correlate with latitude. Data of Titan's troposphere are analyzed with thermodynamic and radiative transfer calculations, and synthesized with other studies of Titan's stratosphere and surface, to investigate the workings of Titan's methane cycle. At the end of Cassini's nominal mission, we find that Titan's weather, climate and surface-to-atmosphere exchange of volatiles vastly differs from the manifestation of these processes on Earth, largely as a result of different basic characteristics of these planetary bodies. The talk ends with a comparison between Titan and Earth's tropospheres, their fundamental properties, the energetics of their condensible cycles, their weather and climates. References: Griffith C.A. et al. Titan's Tropical Storms in an Evolving Atmosphere. Ap.J. In Press (2008). Griffith C.A. Storms, Polar Deposits, and the Methane Cycle in Titan's Atmosphere. Phil. Trans. Royal Society A. In Press (2008). Penteado, P.F. & C.A. Griffith Ground-based measurements of the methane distribution on Titan. In Preparation for submission to Icarus Griffith C.A. et al. Evidence for a Polar Ethane Cloud on Titan, Science, 313, 1620 (2006). Griffith C.A. et al. The Evolution of Titan's Mid-Latitude Clouds, Science, 310, 474 (2005).
Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A
2006-10-01
In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering methane composition (average 63.09%) and COD removal (average 90.60%), slight differences were found among these three reactors.
Bench-Scale Evaluation of the Genifuel Hydrothermal Processing Technology for Wastewater Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.
Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbonmore » balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. Subsequent hydrotreating (i.e., upgrading) of the biocrude produced from primary sludge and digested solids resulted in a product with comparable physical and chemical properties to petroleum crude oil. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the output of HTL tests with primary sludge, secondary sludge, and digested solids, respectively. Siloxane concentrations in the CHG product gas were below the detection limit and well below fuel input composition limits set by several engine manufacturers. Relative to that of the sludge feeds, the HTL-CHG process resulted in a reduction in chemical oxygen demand (COD) of greater than 99.9% and a reduction in residual solids for disposal of 94-99%. The test results, as a whole, support further long term testing in a larger scale integrated system that is representative of what would be installed at a water resource recovery facility (WRRF) in order to fully assess the technical and economic viability of this technology for wastewater sludge treatment.« less
A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications.
Wang, Shanmin; Ge, Hui; Sun, Shouli; Zhang, Jianzhong; Liu, Fangming; Wen, Xiaodong; Yu, Xiaohui; Wang, Liping; Zhang, Yi; Xu, Hongwu; Neuefeind, Joerg C; Qin, Zhangfeng; Chen, Changfeng; Jin, Changqin; Li, Yongwang; He, Duanwei; Zhao, Yusheng
2015-04-15
Nitrogen-rich transition-metal nitrides hold great promise to be the next-generation catalysts for clean and renewable energy applications. However, incorporation of nitrogen into the crystalline lattices of transition metals is thermodynamically unfavorable at atmospheric pressure; most of the known transition metal nitrides are nitrogen-deficient with molar ratios of N:metal less than a unity. In this work, we have formulated a high-pressure route for the synthesis of a nitrogen-rich molybdenum nitride through a solid-state ion-exchange reaction. The newly discovered nitride, 3R-MoN2, adopts a rhombohedral R3m structure, isotypic with MoS2. This new nitride exhibits catalytic activities that are three times more active than the traditional catalyst MoS2 for the hydrodesulfurization of dibenzothiophene and more than twice as high in the selectivity to hydrogenation. The nitride is also catalytically active in sour methanation of syngas with >80% CO and H2 conversion at 723 K. Our formulated route for the synthesis of 3R-MoN2 is at a moderate pressure of 3.5 GPa and, thus, is feasible for industrial-scale catalyst production.
Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon
2014-01-01
In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chae, K J; Jang, Am; Yim, S K; Kim, In S
2008-01-01
In order to obtain basic design criteria for anaerobic digesters of swine manure, the effects of different digesting temperatures, temperature shocks and feed loads, on the biogas yields and methane content were evaluated. The digester temperatures were set at 25, 30 and 35 degrees C, with four feed loads of 5%, 10%, 20% and 40% (feed volume/digester volume). At a temperature of 30 degrees C, the methane yield was reduced by only 3% compared to 35 degrees C, while a 17.4% reduction was observed when the digestion was performed at 25 degrees C. Ultimate methane yields of 327, 389 and 403 mL CH(4)/g VS(added) were obtained at 25, 30 and 35 degrees C, respectively; with moderate feed loads from 5% to 20% (V/V). From the elemental analysis of swine manure, the theoretical biogas and methane yields at standard temperature and pressure were 1.12L biogas/g VS(destroyed) and 0.724 L CH(4)/g VS(destroyed), respectively. Also, the methane content increased with increasing digestion temperatures, but only to a small degree. Temperature shocks from 35 to 30 degrees C and again from 30 to 32 degrees C led to a decrease in the biogas production rate, but it rapidly resumed the value of the control reactor. In addition, no lasting damage was observed for the digestion performance, once it had recovered.
Pyrolysis kinetics and combustion of thin wood by an advanced cone caorimetry test method
Mark Dietenberger
2012-01-01
Pyrolysis kinetics analysis of extractives, holocellulose, and lignin in the solid redwood over the entire heating regime was possible by specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for the thin specimen with tiny thermocouples, the methane ring burner with stainless-steel mesh above...
Search for methane isotope fractionation due to Rayleigh distillation on Titan
NASA Astrophysics Data System (ADS)
Ádámkovics, Máté; Mitchell, Jonathan L.
2016-09-01
We search for meridional variation in the abundance of CH3D relative to CH4 on Titan using near-IR spectra obtained with NIRSPAO at Keck, which have a photon-limited signal-to-noise ratio of ∼50. Our observations can rule out a larger than 10% variation in the column of CH3D below 50 km. The preferential condensation of the heavy isotopologues will fractionate methane by reducing CH3D in the remaining vapor, and therefore these observations place limits on the amount of condensation that occurs in the troposphere. While previous estimates of CH3D fractionation on Titan have estimated an upper limit of -6‰, assuming a solid condensate, we consider more recent laboratory data for the equilibrium fractionation over liquid methane, and use a Rayleigh distillation model to calculate fractionation in an ascending parcel of air that is following a moist adiabat. We find that deep, precipitating convection can enhance the fractionation of the remaining methane vapor by -10 to -40‰, depending on the final temperature of the rising parcel. By relating fractionation of our reference parcel model to the pressure level where the moist adiabat achieves the required temperature, we argue that the measured methane fractionation constrains the outflow level for a deep convective event. Observations with a factor of at least 4-6 times larger signal-to-noise are required to detect this amount of fractionation, depending on the altitude range over which the outflow from deep convection occurs.