Sample records for solid phase capture

  1. A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences

    PubMed Central

    Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L.

    2017-01-01

    An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. PMID:28628204

  2. Phase III gross solids removal devices pilot study, 2002-2005.

    DOT National Transportation Integrated Search

    2005-12-01

    The objective of the Phase III Gross Solids Removal Devices (GSRDs) Pilot study was to : evaluate the performance of non-proprietary devices that can capture gross solids and that can be : incorporated into existing highway drainage systems or implem...

  3. Phase IV gross solids removal devices pilot study, 2004-2005.

    DOT National Transportation Integrated Search

    2005-12-01

    The objective of the Phase IV Gross Solids Removal Device (GSRD) Pilot study was to evaluate : the performance of one non-proprietary device that can capture gross solids and that can be : incorporated into existing highway drainage systems or implem...

  4. ViriChip: a solid phase assay for detection and identification of viruses by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nettikadan, Saju R.; Johnson, James C.; Vengasandra, Srikanth G.; Muys, James; Henderson, Eric

    2004-03-01

    Bionanotechnology can be viewed as the integration of tools and concepts in nanotechnology with the attributes of biomolecules. We report here on an atomic force microscopy-immunosensor assay (AFMIA) that couples AFM with solid phase affinity capture of biological entities for the rapid detection and identification of group B coxsackievirus particles. Virus identification is based on type-specific immunocapture and the morphological properties of the captured viruses as obtained by the AFM. Representatives of the six group B coxsackieviruses have been specifically captured from 1 µl volumes of clarified cell lysates, body fluids and environmental samples. Concentration and kinetic profiles for capture indicate that detection is possible at 103 TCID50 µl-1 and the dynamic range of the assay spans three logs. The results demonstrate that the melding of a nanotechnological tool (AFM) with biotechnology (solid phase immunocapture of virus particles) can create a clinically relevant platform, useful for the detection and identification of enterovirus particles in a variety of samples.

  5. Isolation and recovery of selected polybrominated diphenyl ethers from human serum and sheep serum: coupling reversed-phase solid-phase disk extraction and liquid-liquid extraction techniques with a capillary gas chromatographic electron capture negative ion mass spectrometric determinative technique.

    PubMed

    Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.

  6. Multi-phase CFD modeling of solid sorbent carbon capture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, E. M.; DeCroix, D.; Breault, R.

    2013-07-01

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less

  7. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.

    2013-07-30

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less

  8. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, Charles R.; Ito, Takashi; Smith, Cassandra L.

    1996-01-01

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel.

  9. Computational designing and screening of solid materials for CO2capture

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua

    In this presentation, we will update our progress on computational designing and screening of solid materials for CO2 capture. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials have been proposed and validated at NETL. The advantage of this method is that it identifies the thermodynamic properties of the CO2 capture reaction as a function of temperature and pressure without any experimental input beyond crystallographic structural information of the solid phases involved. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to identify only those solid materials for which lower capture energy costs are expected at the desired working conditions. In addition, we present a simulation scheme to increase and decrease the turnover temperature (Tt) of solid capturing CO2 reaction by mixing other solids. Our results also show that some solid sorbents can serve as bi-functional materials: CO2 sorbent and CO oxidation catalyst. Such dual functionality could be used for removing both CO and CO2 after water-gas-shift to obtain pure H2.

  10. Computational Modeling of Mixed Solids for CO2 CaptureSorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2015-01-01

    Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of differentmore » classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.« less

  11. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, C.R.; Ito, Takashi; Smith, C.L.

    1996-01-09

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel. 6 figs.

  12. Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2012-11-02

    Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculatedmore » thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method to several different kinds of solid systems, we demonstrate that our methodology can predict the useful information to help developing CO{sub 2} capture Technologies.« less

  13. Thermodynamic Properties of CO{sub 2} Capture Reaction by Solid Sorbents: Theoretical Predictions and Experimental Validations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua; Luebke, David; Pennline, Henry

    2012-01-01

    It is generally accepted that current technologies for capturing CO{sub 2} are still too energy intensive. Hence, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculatedmore » thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. These CO{sub 2} sorbent candidates were further considered for experimental validations. In this presentation, we first introduce our screening methodology with validating by solid dataset of alkali and alkaline metal oxides, hydroxides and bicarbonates which thermodynamic properties are available. Then, by studying a series of lithium silicates, we found that by increasing the Li{sub 2}O/SiO{sub 2} ratio in the lithium silicates their corresponding turnover temperatures for CO{sub 2} capture reactions can be increased. Compared to anhydrous K{sub 2}CO{sub 3}, the dehydrated K{sub 2}CO{sub 3}1.5H{sub 2}O can only be applied for post-combustion CO{sub 2} capture technology at temperatures lower than its phase transition (to anhydrous phase) temperature, which depends on the CO{sub 2} pressure and the steam pressure with the best range being PH{sub 2}O≤1.0 bar. Above the phase-transition temperature, the sorbent will be regenerated into anhydrous K{sub 2}CO{sub 3}. Our theoretical investigations on Na-promoted MgO sorbents revealed that the sorption process takes place through formation of the Na{sub 2}Mg(CO{sub 3}){sub 2} double carbonate with better reaction kinetics over porous MgO, that of pure MgO sorbent. The experimental sorption tests also indicated that the Na-promoted MgO sorbent has high reactivity and capacity towards CO{sub 2} sorption and can be easily regenerated either through pressure or temperature swing processes.« less

  14. Antibody class capture assays for varicella-zoster virus.

    PubMed Central

    Forghani, B; Myoraku, C K; Dupuis, K W; Schmidt, N J

    1984-01-01

    Pooled monoclonal antibodies to varicella-zoster virus (VZV) were used as "detector" antibodies in a four-phase enzyme immunofluorescence assay for determination of immunoglobulin M (IgM), IgA, and IgG antibodies to VZV. Polyclonal antisera specific for heavy chains of human IgM, IgA, and IgG were employed as "capture" antibodies on the solid phase. The antibody class capture assay (ACCA) for VZV IgM antibody detected high titers of virus-specific IgM in all patients with varicella and in 5 of 10 zoster patients. VZV IgM antibody was not detected in patients with primary herpes simplex virus infections or in other individuals without active VZV infection, with one exception, a patient with encephalitis who had other serological findings compatible with a reactivated VZV infection. VZV-specific IgA and IgG antibody titers demonstrable by ACCA were compared with those measured by solid-phase indirect enzyme immunofluorescence assay (EIFA). VZV IgA antibody titers detected in patients with varicella and zoster were variable and could not be considered to be reliable markers of active VZV infection. IgA antibody titers detected by ACCA tended to be higher than those demonstrated by solid-phase indirect EIFA in varicella and zoster patients. VZV IgG antibody titers detected by ACCA in patients with varicella, and to a lesser extent in zoster patients, were as high as or higher than those demonstrated by solid-phase indirect EIFA. However, ACCA was totally insensitive in detecting VZV IgG antibody in individuals with past infections with VZV and would not be a suitable approach for determination of immunity status to VZV. PMID:6330163

  15. Analysis of trifluralin, methyl paraoxon, methyl parathion, fenvalerate and 2,4-D dimethylamine in pond water using solid-phase extraction

    USGS Publications Warehouse

    Swineford, D.M.; Belisle, A.A.

    1989-01-01

    A method was developed for the simultaneous extraction of trifluralin, methyl paraoxon, methyl parathion, fenvalerate, and 2,4-D dimethylamine salt in pond water using a solid-phase C18 column. After elution from the C18 column, the eluate was analyzed on a capillary gas chromatograph equipped with an electron-capture or flame photometric detector.

  16. A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry.

    PubMed

    Thaler, Florian; Valsasina, Barbara; Baldi, Rosario; Xie, Jin; Stewart, Albert; Isacchi, Antonella; Kalisz, Henryk M; Rusconi, Luisa

    2003-06-01

    beta-Elimination of the phosphate group on phosphoserine and phosphothreonine residues and addition of an alkyldithiol is a useful tool for analysis of the phosphorylation states of proteins and peptides. We have explored the influence of several conditions on the efficiency of this PO(4)(3-) elimination reaction upon addition of propanedithiol. In addition to the described influence of different bases, the solvent composition was also found to have a major effect on the yield of the reaction. In particular, an increase in the percentage of DMSO enhances the conversion rate, whereas a higher amount of protic polar solvents, such as water or isopropanol, induces the opposite effect. We have also developed a protocol for enrichment of the modified peptides, which is based on solid-phase covalent capture/release with a dithiopyridino-resin. The procedure for beta-elimination and isolation of phosphorylated peptides by solid-phase capture/release was developed with commercially available alpha-casein. Enriched peptide fragments were characterized by MALDI-TOF mass spectrometric analysis before and after alkylation with iodoacetamide, which allowed rapid confirmation of the purposely introduced thiol moiety. Sensitivity studies, carried out in order to determine the detection limit, demonstrated that samples could be detected even in the low picomolar range by mass spectrometry. The developed solid-phase enrichment procedure based on reversible covalent binding of the modified peptides is more effective and significantly simpler than methods based on the interaction between biotin and avidin, which require additional steps such as tagging the modified peptides and work-up of the samples prior to the affinity capture step.

  17. Phase-Change Aminopyridines as Carbon Dioxide Capture Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, Deepika; Page, Jordan P.; Bowden, Mark E.

    Carbon dioxide is the main atmospheric greenhouse gas released from industrial point sources. In order to mitigate adverse environmental effects of these emissions, carbon capture, storage and utilization is required. To this end, several CO2 capture technologies are being developed for application in carbon capture, which include aqueous amines and water-lean solvents. Herein we report new aminopyridine solvents with the potential for CO2 capture from coal-fired power plants. These four solvents 2-picolylamine, 3-picolylamine, 4-picolylamine and N’-(pyridin-4-ylmethyl)ethane-1,2-diamine are liquids that rapidly bind CO2 to form crystalline solids at standard room temperature and pressure. These solvents have displayed high CO2 capture capacitymore » (11 - 20 wt%) and can be regenerated at temperatures in the range of 120 - 150 C. The advantage of these primary aminopyridine solvents is that crystalline salt product can be separated, making it possible to regenerate only the CO2-rich solid ultimately resulting in reduced energy penalty.« less

  18. A three-dimensional phase field model for nanowire growth by the vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yanming; Ryu, Seunghwa; McIntyre, Paul C.; Cai, Wei

    2014-07-01

    We present a three-dimensional multi-phase field model for catalyzed nanowire (NW) growth by the vapor-liquid-solid (VLS) mechanism. The equation of motion contains both a Ginzburg-Landau term for deposition and a diffusion (Cahn-Hilliard) term for interface relaxation without deposition. Direct deposition from vapor to solid, which competes with NW crystal growth through the molten catalyst droplet, is suppressed by assigning a very small kinetic coefficient at the solid-vapor interface. The thermodynamic self-consistency of the model is demonstrated by its ability to reproduce the equilibrium contact angles at the VLS junction. The incorporation of orientation dependent gradient energy leads to faceting of the solid-liquid and solid-vapor interfaces. The model successfully captures the curved shape of the NW base and the Gibbs-Thomson effect on growth velocity.

  19. Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification.

    PubMed

    Sabaté Del Río, Jonathan; Steylaerts, Tim; Henry, Olivier Y F; Bienstman, Peter; Stakenborg, Tim; Van Roy, Wim; O'Sullivan, Ciara K

    2015-11-15

    In this work we present the use of a silicon-on-insulator (SOI) chip featuring an array of 64 optical ring resonators used as refractive index sensors for real-time and label-free DNA detection. Single ring functionalisation was achieved using a click reaction after precise nanolitre spotting of specific hexynyl-terminated DNA capture probes to link to an azido-silanised chip surface. To demonstrate detectability using the ring resonators and to optimise conditions for solid-phase amplification, hybridisation between short 25-mer single stranded DNA (ssDNA) fragments and a complementary capture probe immobilised on the surface of the ring resonators was carried out and detected through the shift in the resonant wavelength. Using the optimised conditions demonstrated via the solid-phase hybridisation, a 144-bp double stranded DNA (dsDNA) was then detected directly using recombinase and polymerase proteins through on-chip target amplification and solid-phase elongation of immobilised forward primers on specific rings, at a constant temperature of 37°C and in less than 60min, achieving a limit of detection of 7.8·10(-13)M (6·10(5) copies in 50µL). The use of an automatic liquid handler injection instrument connected to an integrated resealable chip interface (RCI) allowed programmable multiple injection protocols. Air plugs between different solutions were introduced to prevent intermixing and a proportional-integral-derivative (PID) temperature controller minimised temperature based drifts. Published by Elsevier B.V.

  20. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom ofmore » the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.« less

  1. Universal Features of the Fluid to Solid Transition for Attractive Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Cipelletti, L.; Prasad, V.; Dinsmore, A.; Segre, P. N.; Weitz, D. A.; Trappe, V.

    2002-01-01

    Attractive colloidal particles can exhibit a fluid to solid phase transition if the magnitude of the attractive interaction is sufficiently large, if the volume fraction is sufficiently high, and if the applied stress is sufficiently small. The nature of this fluid to solid transition is similar for many different colloid systems, and for many different forms of interaction. The jamming phase transition captures the common features of these fluid to solid translations, by unifying the behavior as a function of the particle volume fraction, the energy of interparticle attractions, and the applied stress. This paper describes the applicability of the jamming state diagram, and highlights those regions where the fluid to solid transition is still poorly understood. It also presents new data for gelation of colloidal particles with an attractive depletion interaction, providing more insight into the origin of the fluid to solid transition.

  2. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions

    NASA Astrophysics Data System (ADS)

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying

    2015-01-01

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 <= x <= 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.

  3. High-pressure/high-temperature polymorphs of energetic materials by first-principles simulations

    NASA Astrophysics Data System (ADS)

    Le, Nam; Schweigert, Igor

    2017-06-01

    Energetic molecular crystals exhibit complex phase diagrams that include solid-solid phase transitions, melting, and decomposition. Sorescu and Rice have recently demonstrated that first-principles molecular dynamics (MD) simulations based on dispersion-corrected density functional theory (DFT) can capture the α to γ phase transition in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on time scales of several picoseconds. Motivated by their work, we are using DFT-based MD to model the relative stability of solid phases in several molecular crystals. In this presentation, we report simulations of pentaerythritol tetranitrate (PETN) and 2,4,6-trinitrotoluene (TNT) under high pressures and temperatures and compare them with experimentally observed polymorphs. This work was supported by the U.S. Naval Research Laboratory via the National Research Council and by the Office of Naval Research through the U.S. Naval Research Laboratory.

  4. An Integrated, Low Temperature Process to Capture and Sequester Carbon Dioxide from Industrial Emissions

    NASA Astrophysics Data System (ADS)

    Wendlandt, R. F.; Foremski, J. J.

    2013-12-01

    Laboratory experiments show that it is possible to integrate (1) the chemistry of serpentine dissolution, (2) capture of CO2 gas from the combustion of natural gas and coal-fired power plants using aqueous amine-based solvents, (3) long-term CO2 sequestration via solid phase carbonate precipitation, and (4) capture solvent regeneration with acid recycling in a single, continuous process. In our process, magnesium is released from serpentine at 300°C via heat treatment with ammonium sulfate salts or at temperatures as low as 50°C via reaction with sulfuric acid. We have also demonstrated that various solid carbonate phases can be precipitated directly from aqueous amine-based (NH3, MEA, DMEA) CO2 capture solvent solutions at room temperature. Direct precipitation from the capture solvent enables regenerating CO2 capture solvent without the need for heat and without the need to compress the CO2 off gas. We propose that known low-temperature electrochemical methods can be integrated with this process to regenerate the aqueous amine capture solvent and recycle acid for dissolution of magnesium-bearing mineral feedstocks and magnesium release. Although the direct precipitation of magnesite at ambient conditions remains elusive, experimental results demonstrate that at temperatures ranging from 20°C to 60°C, either nesquehonite Mg(HCO3)(OH)●2H2O or a double salt with the formula [NH4]2Mg(CO3)2●4H2O or an amorphous magnesium carbonate precipitate directly from the capture solvent. These phases are less desirable for CO2 sequestration than magnesite because they potentially remove constituents (water, ammonia) from the reaction system, reducing the overall efficiency of the sequestration process. Accordingly, the integrated process can be accomplished with minimal energy consumption and loss of CO2 capture and acid solvents, and a net generation of 1 to 4 moles of H2O/6 moles of CO2 sequestered (depending on the solid carbonate precipitate and amount of produced H2 and O2 gas reacted to produce heat and water). Features of the integrated process include the following: 1) the four separate processes have compatible chemistry, enabling design of an integrated, continuous process scheme for CO2 capture and sequestration; 2) all 4 stages of the process can be conducted at ambient or slightly elevated temperatures; 3) precipitating carbonate directly from the capture solvent eliminates the need for costly CO2 gas compression; and 4) recycling the acid used for serpentine dissolution and the solvent used for CO2 capture reduces feed stock costs.

  5. Hierarchical calibration and validation of computational fluid dynamics models for solid sorbent-based carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Canhai; Xu, Zhijie; Pan, Wenxiao

    2016-01-01

    To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesianmore » calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.« less

  6. Thirtyfold multiplex genotyping of the p53 gene using solid phase capturable dideoxynucleotides and mass spectrometry.

    PubMed

    Kim, Sobin; Ulz, Michael E; Nguyen, Tuan; Li, Chi-Ming; Sato, Takaaki; Tycko, Benjamin; Ju, Jingyue

    2004-05-01

    A mass spectrometry (MS) based multiplex genotyping method using solid phase capturable (SPC) dideoxynucleotides and single base extension (SBE), named the SPC-SBE, has been developed for mutation detection. We report here the simultaneous genotyping of 30 potential point mutation sites in exons 5, 7, and 8 of the human p53 gene in one tube using the SPC-SBE method. The 30 mutation sites, including the most frequently mutated p53 codons, were chosen to explore the high multiplexing scope of the SPC-SBE method. Thirty primers specific to each potential mutation site were designed to yield SBE products with sufficient mass differences. This was achieved by tuning the mass of some primers using modified nucleotides. Genomic DNA was amplified by multiplex PCR to produce amplicons of the three p53 exons. The 30 primers were combined with the PCR products and biotinylated dideoxynucleotides for SBE to generate 3'-biotinylated extension DNA products. These products were then captured by streptavidin-coated magnetic beads, while the unextended primers and other components in the reaction were washed away. The pure extension DNA products were subsequently released from the solid phase and analyzed with MS. We simultaneously genotyped 30 potential mutation sites in the p53 gene from Wilms' tumor, head and neck tumor, and colorectal tumor. Both homozygous and heterozygous genotypes were accurately determined with digital resolution. This is the highest level of multiplex genotyping reported thus far using MS, indicating that the approach might be applicable to screening a repertoire of genotypes in candidate genes as potential disease markers.

  7. Solid phase extraction and metabolic profiling of exudates from living copepods

    PubMed Central

    Heuschele, Jan; Nylund, Göran M.; Pohnert, Georg; Pavia, Henrik; Bjærke, Oda; Pender-Healy, Larisa A.; Tiselius, Peter; Kiørboe, Thomas

    2016-01-01

    Copepods are ubiquitous in aquatic habitats. They exude bioactive compounds that mediate mate finding or induce defensive traits in prey organisms. However, little is known about the chemical nature of the copepod exometabolome that contributes to the chemical landscape in pelagic habitats. Here we describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds that constitute a specific chemical pattern either qualitatively or quantitatively indicating copepod presence. The majority of the compounds were present in both female and male exudates, but nine compounds were mainly or exclusively present in female exudates and hence potential pheromone candidates. Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms. PMID:26788422

  8. Criteria for the selection of a solid phase to be used in immunoassays.

    PubMed

    Delagneau, J F; Masseyeff, R

    1990-01-01

    Heterogeneous immunoassays are very sensitive and only limited in terms of performance by non specific binding. They require separation of free from bound fractions and concomitant use of a solid phase coated with an immunoreactive component (i.e. immunosorbent). The improvement of these key immunosorbents is crucial and involves a great deal of expertise and capabilities. Specifications differ according to procedure (e.g. capture or competitive assay). Each routinely used solid phase, such as polystyrene wells, porous membrane or dispersible microbeads, presents specific performance characteristics, advantages, and drawbacks. Among the tasks to be implemented are optimization of the spatial orientation of immunological reagents, selection of the surface neutral hydrophilic support, acceleration of reactions by increasing the reactive surface area of the supports, streamlining and simplification of procedural steps. These various aspects are abundantly described and emphasized here.

  9. A simple level set method for solving Stefan problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.; Merriman, B.; Osher, S.

    1997-07-15

    Discussed in this paper is an implicit finite difference scheme for solving a heat equation and a simple level set method for capturing the interface between solid and liquid phases which are used to solve Stefan problems.

  10. A study of room-temperature LixMn1.5Ni0.5O4 solid solutions

    PubMed Central

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying

    2015-01-01

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance. PMID:25619504

  11. A study of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions

    DOE PAGES

    Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; ...

    2015-01-26

    Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature Li xMn 1.5Ni 0.5O 4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of Li xMn 1.5Ni 0.5O 4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn 1.5Ni 0.5O 4 (Phase I), Li 0.5Mnmore » 1.5Ni 0.5O 4 (Phase II) and Mn 1.5Ni 0.5O 4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. In conclusion, the work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.« less

  12. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  13. Energy dissipation by submarine obstacles during landslide impact on reservoir - potentially avoiding catastrophic dam collapse

    NASA Astrophysics Data System (ADS)

    Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  14. Multiphase flow in geometrically simple fracture intersections

    USGS Publications Warehouse

    Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,

    2006-01-01

    A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

  15. Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix

    NASA Astrophysics Data System (ADS)

    Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.

  16. Bench Scale Process for Low Cost CO 2 Capture Using a Phase-Changing Absorbent: Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorf, Tiffany; Buddle, Stanlee; Caraher, Joel

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO 2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2-capture absorbent for post-combustion capture of CO 2 from coal-fired power plants. The U.S. Department of Energy’s goal for Transformational Carbon Capture Technologies is the development of technologies available for demonstration by 2025 that can capture 90% of emitted CO 2 with at least 95% CO 2 purity for less than $40/tonne of CO 2 captured. In the first budget period of the project,more » the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO 2 capture performance. In the second budget period of the project, individual bench-scale unit operations were tested to determine the performance of each of each unit. Solids production was demonstrated in dry simulated flue gas across a wide range of absorber operating conditions, with single stage CO 2 conversion rates up to 75mol%. Desorber operation was demonstrated in batch mode, resulting in desorption performance consistent with the equilibrium isotherms for GAP-0/CO 2 reaction. Important risks associated with gas humidity impact on solids consistency and desorber temperature impact on thermal degradation were explored, and adjustments to the bench-scale process were made to address those effects. Corrosion experiments were conducted to support selection of suitable materials of construction for the major unit operations in the process. The bench scale unit operations were assembled into a continuous system to support steady state system testing. In the third budget period of the project, continuous system testing was conducted, including closed-loop operation of the absorber and desober systems. Slurries of GAP-0/GAP-0 carbamate/water mixtures produced in the absorber were pumped successfully to the desorber unit, and regenerated solvent was returned to the absorber. A techno-economic analysis, EH&S risk assessment, and solvent manufacturability study were completed.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sehgal, Ray M.; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu; Ford, David M., E-mail: maroudas@ecs.umass.edu, E-mail: ford@ecs.umass.edu

    We have developed a coarse-grained description of the phase behavior of the isolated 38-atom Lennard-Jones cluster (LJ{sub 38}). The model captures both the solid-solid polymorphic transitions at low temperatures and the complex cluster breakup and melting transitions at higher temperatures. For this coarse model development, we employ the manifold learning technique of diffusion mapping. The outcome of the diffusion mapping analysis over a broad temperature range indicates that two order parameters are sufficient to describe the cluster's phase behavior; we have chosen two such appropriate order parameters that are metrics of condensation and overall crystallinity. In this well-justified coarse-variable space,more » we calculate the cluster's free energy landscape (FEL) as a function of temperature, employing Monte Carlo umbrella sampling. These FELs are used to quantify the phase behavior and onsets of phase transitions of the LJ{sub 38} cluster.« less

  18. Bench-scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha

    It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less

  19. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.

    PubMed

    Shin, Homin; Schweizer, Kenneth S

    2013-02-28

    We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.

  20. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review.

    PubMed

    Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han

    2017-01-01

    In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A SIMPLE AND FAST EXTRACTION METHOD FOR ORGANOCHLORINE PESTICIDES AND POLYCHLORINATED BIPHENYLS IN SMALL VOLUMES OF AVIAN SERUM

    EPA Science Inventory

    A solid-phase extraction (SPE) method was developed using 8 M urea to desorb and extract organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) from avian serum for analysis by capillary gas chromatography with electron capture detection (GC-ECD). The analytes were ...

  2. Recovery Act: Innovative CO 2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO 2 Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31

    The overall goal of this DOE Phase 2 project was to further develop and conduct pilot-scale and field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO 2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stabilitymore » in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO 2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO 2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.« less

  3. The Ice Line in Pre-Solar Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2012-01-01

    Protoplanetary disks contain abundant quantities of water molecules in both gas and solid phases. The distribution of these two phases in an evolving protoplanetary disk will have important consequences regarding water sequestration in planetary embryos. The boundary between gaseous and solid water is the "ice line" or "snow line" A simplified model that captures the complicated two-branched structure of the ice line is developed and compared with recent investigations. The effect of an evolving Sun is also included for the first time. This latter parameter could have important consequences regarding the thermodynamic state and the surface reaction environment for the time-dependent chemical reactions occurring during the 1- to 10-million-year lifetime of the pre-solar disk.

  4. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    PubMed

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.

  5. Study on biphasic material model and mechanical analysis of knee joint cartilage

    NASA Astrophysics Data System (ADS)

    Nakatani, A.; Sakashita, A.

    2008-02-01

    A material model of articular cartilage is formulated, and fundamental problems are analyzed. The soft tissue is assumed to comprise two phases: solid and fluid. The biphasic theory proposed by Spilker and Suh (1990) to deal with such materials is reviewed, and some new additional analyses are carried out on the basis of this theory. Assuming the elasticity for the solid phase and introducing the pressure, which is defined by the product of the volume change and penalty coefficient, it is shown that the viscoelastic property of the soft tissue can be reproduced. A preferable solution is obtained for the solid phase by using the reduction integral, even if a high-order interpolation function is used. However, the high-order element cannot satisfactorily capture the velocity distribution of fluids. The pressure distribution is studied by assuming the change in the surface characteristics of the cartilage tissue with the progress of osteoarthritis. The pressure is strongly related to the lubrication conditions, i.e., perfect lubrication, perfect adhesion, and partial adhesion.

  6. Method and apparatus for optimized sampling of volatilizable target substances

    DOEpatents

    Lindgren, Eric R.; Phelan, James M.

    2002-01-01

    An apparatus for capturing, from gases such as soil gas, target analytes. Target analytes may include emanations from explosive materials or from residues of explosive materials. The apparatus employs principles of sorption common to solid phase microextraction, and is best used in conjunction with analysis means such as a gas chromatograph. To sorb target analytes, the apparatus functions using various sorptive structures to capture target analyte. Depending upon the embodiment, those structures may include 1) a conventional solid-phase microextraction (SPME) fiber, 2) a SPME fiber suspended in a capillary tube (with means provided for moving gases through the capillary tube so that the gases come into close proximity to the suspended fiber), and 3) a capillary tube including an interior surface on which sorptive material (similar to that on the surface of a SPME fiber) is supported (along with means for moving gases through the capillary tube so that the gases come into close proximity to the sorptive material). In one disclosed embodiment, at least one such sorptive structure is associated with an enclosure including an opening in communication with the surface of a soil region potentially contaminated with buried explosive material such as unexploded ordnance. Emanations from explosive materials can pass into and accumulate in the enclosure where they are sorbed by the sorptive structures. Also disclosed is the use of heating means such as microwave horns to drive target analytes into the soil gas from solid and liquid phase components of the soil.

  7. Selective capture and rapid identification of Panax notoginseng metabolites in rat faeces by the integration of magnetic molecularly imprinted polymers and high-performance liquid chromatography coupled with orbitrap mass spectrometry.

    PubMed

    Cai, Qizhi; Yang, Zaiyue; Chen, Ning; Zhou, Xuemin; Hong, Junli

    2016-07-15

    In the present work, an advanced pretreatment method magnetic molecular imprinted polymers-dispersive solid phase extraction (MMIPs-DSPE) combined with the high sensitivity LTQ-Orbitrap mass spectrometry was applied to the complicated metabolites analysis of Traditional Chinese Medicines (TCMs) in complex matrices. The ginsenoside Rb1 magnetic molecular imprinted polymers (Rb1-MMIPs) were successfully synthesized for specific recognition and selective enrichment of Panax notoginseng saponin metabolites in rat faeces. The polymers were prepared by using Fe3O4@SiO2 as the supporting material, APTES as the functional monomer and TEOS as the cross-linker. The Rb1-MMIPs showed quick separation (10.8 emu/g), large adsorption capacity (636μmol/g), high selectivity and fast binding kinetics (25min). Dispersion solid-phase extraction using Rb1-MMIPs (Rb1-MMIPs-DSPE) integrated with LTQ-Orbitrap MS was applied to fish out and identify saponin metabolites from rat faeces, and totally 58 related compounds were detected within 20min, including 26 PPD-group and 32 PPT-group notoginsenoside metabolites. Parallel tests showed that Rb1-MMIPs-DSPE obtained the lowest matrix effects of 0.98-14.84% and captured the largest number of structural analogues compared with traditional pretreatment methods organic solvent extraction (OSE) and solid phase extraction (SPE). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hydraulic and Clean-in-Place Evaluations for a 12.5-cm Annular Centrifugal Contactor at INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; David H. Meikrantz; Nick R. Mann

    2008-09-01

    Hydraulic and Clean-in-Place Evaluations for a 12.5 cm Annular Centrifugal Contactor at the INL Troy G. Garn, Dave H. Meikrantz, Nick R. Mann, Jack D. Law, Terry A. Todd Idaho National Laboratory Commercially available, Annular Centrifugal Contactors (ACC) are currently being evaluated for processing dissolved nuclear fuel solutions to selectively partition integrated elements using solvent extraction technologies. These evaluations include hydraulic and clean-in-place (CIP) testing of a commercially available 12.5 cm unit. Data from these evaluations is used to support design of future nuclear fuel reprocessing facilities. Hydraulic testing provides contactor throughput performance data on two-phase systems for a widemore » range of operating conditions. Hydraulic testing results on a simple two-phase oil and water system followed by a 30 % Tributyl phosphate in N-dodecane / nitric acid pair are reported. Maximum total throughputs for this size contactor ranged from 20 to 32 liters per minute without significant other phase carryover. A relatively new contactor design enhancement providing Clean-in-Place capability for ACCs was also investigated. Spray nozzles installed into the central rotor shaft allow the rotor internals to be cleaned, offline. Testing of the solids capture of a diatomaceous earth/water slurry feed followed by CIP testing was performed. Solids capture efficiencies of >95% were observed for all tests and short cold water cleaning pulses proved successful at removing solids from the rotor.« less

  9. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agentsmore » to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.-S.; IGE Therapeutics, Inc., Cellular and Cancer Immunology, 6370 Lusk Boulevard, F109, San Diego, CA 92121; Yang Yongmin

    GFP-C{kappa} fusion protein was previously shown selectable on ribosome display platform with solid phase antibodies against GFP determinant [Y.-M. Yang, T.J. Barankiewicz, M. He, M. Taussig, S.-S. Chen, Selection of antigenic markers on a GFP-C{kappa} fusion scaffold with high sensitivity by eukaryotic ribosome display, Biochem. Biophys. Res. Commun. 359 (2007) 251-257]. Herein, we show that members of aptameric peptide library constructed within the site 6 and site 8/9 loops of GFP of the ribosome display construct are selectable upon binding to the solid phase IgE antigen. An input of 1.0 {mu}g of the dual site aptameric GFP library exhibiting amore » diversity of 7.5 x 10{sup 11} was transcribed, translated and incubated with solid phase IgE. RT-PCR products were amplified from mRNA of the aptamer-ribosome-mRNA (ARM) complex captured on the solid phase IgE. Clones of aptameric GFP were prepared from RT-PCR product of ARM complex following repetitive selection. Recombinant aptameric GFP proteins from the selected clones bind IgE coated on the 96-well plate, and the binding was abrogated by incubation with soluble human IgE but not human IgG. Selected aptameric GFP proteins also exhibit binding to three different sources of human IgE (IgE PS, BED, and JW8) but not irrelevant proteins. These observations indicate that appropriately selected aptameric GFP on a solid phase ligand by ribosome display may serve as an affinity reagent for blocking reactivity of a biological ligand.« less

  11. Dynamic modeling and control of a solid-sorbent CO{sub 2} capture process with two-stage bubbling fluidized bed adsorber reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modekurti, S.; Bhattacharyya, D.; Zitney, S.

    2012-01-01

    Solid-sorbent-based CO{sub 2} capture processes have strong potential for reducing the overall energy penalty for post-combustion capture from the flue gas of a conventional pulverized coal power plant. However, the commercial success of this technology is contingent upon it operating over a wide range of capture rates, transient events, malfunctions, and disturbances, as well as under uncertainties. To study these operational aspects, a dynamic model of a solid-sorbent-based CO{sub 2} capture process has been developed. In this work, a one-dimensional (1D), non-isothermal, dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor system with overflow-type weir configuration has been developedmore » in Aspen Custom Modeler (ACM). The physical and chemical properties of the sorbent used in this study are based on a sorbent (32D) developed at National Energy Technology Laboratory (NETL). Each BFB is divided into bubble, emulsion, and cloud-wake regions with the assumptions that the bubble region is free of solids while both gas and solid phases coexist in the emulsion and cloud-wake regions. The BFB dynamic model includes 1D partial differential equations (PDEs) for mass and energy balances, along with comprehensive reaction kinetics. In addition to the two BFB models, the adsorber-reactor system includes 1D PDE-based dynamic models of the downcomer and outlet hopper, as well as models of distributors, control valves, and other pressure-drop devices. Consistent boundary and initial conditions are considered for simulating the dynamic model. Equipment items are sized and appropriate heat transfer options, wherever needed, are provided. Finally, a valid pressure-flow network is developed and a lower-level control system is designed. Using ACM, the transient responses of various process variables such as flue gas and sorbent temperatures, overall CO{sub 2} capture, level of solids in the downcomer and hopper have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the flue gas. To maintain the overall CO{sub 2} capture at a desired level in face of the typical disturbances, two control strategies were considered–a proportional-integral-derivative (PID)-based feedback control strategy and a feedforward-augmented feedback control strategy. Dynamic simulation results show that both the strategies result in unacceptable overshoot/undershoot and a long settling time. To improve the control system performance, a linear model predictive controller (LMPC) is designed. In summary, the overall results illustrate how optimizing the operation and control of carbon capture systems can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come.« less

  12. Direct immersion-solid phase microextraction for the determination of chlorinated pesticide residues in tomatoes by gas chromatography with an electron capture detector.

    PubMed

    Mariani, Maurizio Boccacci; Giannetti, Vanessa; Testani, Elena; Ceccarelli, Valentina

    2013-01-01

    The use of pesticides in agriculture has grown dramatically over the last decades. Environmental exposure of humans to agrochemicals is common and results in both acute and chronic health effects. In this study, direct immersion-solid phase microextraction (SPME) was coupled with electron capture detection for trace determination of 19 chlorinated pesticides in tomato samples, using a 100 pm polydimethylsiloxane fiber. The experimental parameters extraction time, extraction temperature, stirring, and salting out were evaluated and optimized. The LODs ranged from 0.5 to 8 microg/kg, and the LOQs from 5 to 30 microg/kg. A linear response was confirmed by correlation coefficients ranging from 0.97 to 0.9985. The developed method was tested by analyzing real samples purchased within the network of Italian distribution. The samples were found to be free from detectable residues of the studied pesticides. SPME has been shown to be a fast extraction technique that has several advantages such as solvent-free extraction, simplicity, and compatibility with the chromatographic analytical system.

  13. Comparative study of different clean-up techniques for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with electron capture detection.

    PubMed

    Muhamad, Halimah; Zainudin, Badrul Hisyam; Abu Bakar, Nor Kartini

    2012-10-15

    Solid phase extraction (SPE) and dispersive solid-phase extraction (d-SPE) were compared and evaluated for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with an electron capture detector (GC-ECD). Several SPE sorbents such as graphitised carbon black (GCB), primary secondary amine (PSA), C(18), silica, and florisil were tested in order to minimise fat residues. The results show that mixed sorbents using GCB and PSA obtained cleaner extracts than a single GCB and PSA sorbents. The average recoveries obtained for each pesticide ranged between 81% and 114% at five fortification levels with the relative standard deviation of less than 7% in all cases. The limits of detection for these pesticides were ranged between 0.025 and 0.05 μg/g. The proposed method was applied successfully for the residue determination of both λ-cyhalothrin and cypermethrin in crude palm oil samples obtained from local mills throughout Malaysia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Discharge, Relaxation, and Charge Model for the Lithium Trivanadate Electrode: Reactions, Phase Change, and Transport

    DOE PAGES

    Brady, Nicholas W.; Zhang, Qing; Knehr, K. W.; ...

    2016-10-26

    The electrochemical behavior of lithium trivanadate (LiV 3O 8) during lithiation, delithiation, and voltage recovery experiments is simulated using a crystal-scale model that accounts for solid-state diffusion, charge-transfer kinetics, and phase transformations. The kinetic expression for phase change was modeled using an approach inspired by the Avrami formulation for nucleation and growth. Numerical results indicate that the solid-state diffusion coefficient of lithium in LiV 3O 8 is ~ 10 -13 cm 2 s -1 and the equilibrium compositions in the two phase region (~2.5 V) are Li 2.5V 3O 8:Li 4V 3O 8. Agreement between the simulated and experimental resultsmore » is excellent. Relative to the lithiation curves, the experimental delithiation curves show significantly less overpotential and at low levels of lithiation (end of charge). Simulations are only able to capture this result by assuming that the solid-state mass-transfer resistance is less during delithiation. The proposed rationale for this difference is that the (100) face is inactive during lithiation, but active during delithiation. Finally, by assuming non-instantaneous phase-change kinetics, estimates are made for the overpotential due to imperfect phase change (supersaturation).« less

  15. Primary secondary amine as a sorbent material in dispersive solid-phase extraction clean-up for the determination of indicator polychlorinated biphenyls in environmental water samples by gas chromatography with electron capture detection.

    PubMed

    Guo, Yuanming; Hu, Hongmei; Li, Tiejun; Xue, Lijian; Zhang, Xiaoning; Zhong, Zhi; Zhang, Yurong; Jin, Yanjian

    2017-08-01

    A simple, rapid, and novel method has been developed and validated for determination of seven indicator polychlorinated biphenyls in water samples by gas chromatography with electron capture detection. 1 L of water samples containing 30 g of anhydrous sodium sulfate was first liquid-liquid extracted with an automated Jipad-6XB vertical oscillator using n-hexane/dichloromethane (1:1, v/v). The concentrated extract was cleaned up by dispersive solid-phase extraction with 100 mg of primary secondary amine as sorbent material. The linearity of this method ranged from 1.25 to 100 μg/L, with regression coefficients ranging between 0.9994 and 0.9999. The limits of detection were in the ng/L level, ranging between 0.2 and 0.3 ng/L. The recoveries of seven spiked polychlorinated biphenyls with external calibration method at different concentration levels in tap water, lake water, and sea water were in the ranges of 85-112, 76-116, and 72-108%, respectively, and with relative standard deviations of 3.3-4.5, 3.4-5.6, and 3.1-4.8% (n = 5), respectively. The performance of the proposed method was compared with traditional liquid-liquid extraction and solid-phase extraction clean-up methods, and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of polychlorinated biphenyls in different water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Aptamer-functionalized Fe3 O4 magnetic nanoparticles as a solid-phase extraction adsorbent for the selective extraction of berberine from Cortex phellodendri.

    PubMed

    Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Zhang, Wen-Yan; Wu, Lin

    2017-07-01

    The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe 3 O 4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles, extraction time, temperature, pH value, Mg 2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe 3 O 4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Understanding Performance Limitations to Enable High Performance Magnesium-Ion Batteries

    DOE PAGES

    Kim, Sun Ung; Perdue, Brian; Apblett, Christopher A.; ...

    2016-05-18

    We developed a mathematical model in order to investigate the performance limiting factors of Mg-ion battery with a Chevrel phase (Mg xMo 6S 8) cathode and a Mg metal anode. Furthermore, the model was validated using experimental data from the literature [Cheng et al., Chem. Mater., 26, 4904 (2014)]. Two electrochemical reactions of the Chevrel phase with significantly different kinetics and solid diffusion were included in the porous electrode model, which captured the physics sufficiently well to generate charge curves of five rates (0.1C–2C) for two different particle sizes. Limitation analysis indicated that the solid diffusion and kinetics in themore » higher-voltage plateau limit the capacity and increase the overpotential in the Cheng et al.’s thin (20-μm) electrodes. The model reveals that the performance of the cells with reasonable thickness would also be subject to electrolyte-phase limitations. Finally, the simulation also suggested that the polarization losses on discharge will be lower than that on charge, because of the differences in the kinetics and solid diffusion between the two reactions of the Chevrel phase.« less

  18. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    DOEpatents

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  19. β-Na2TeO4: Phase Transition from an Orthorhombic to a Monoclinic Form. Reversible CO2 Capture.

    PubMed

    Galven, Cyrille; Pagnier, Thierry; Rosman, Noël; Le Berre, Françoise; Crosnier-Lopez, Marie-Pierre

    2018-06-18

    The present work concerns the tellurate Na 2 TeO 4 which has a 1D structure and could then present a CO 2 capture ability. It has been synthesized in a powder form via a solid-state reaction and structurally characterized by thermal X-ray diffraction experiments, Raman spectroscopy, and differential scanning calorimetry. The room temperature structure corresponds to the β-Na 2 TeO 4 orthorhombic form, and we show that it undergoes a reversible structural transition near 420 °C toward a monoclinic system. Ab initio computations were also performed on the room temperature structure, the Raman vibration modes calculated, and a normal mode attribution proposed. In agreement with our expectations, this sodium oxide is able to trap CO 2 by a two-step mechanism: Na + /H + exchange and carbonation of the released sodium as NaHCO 3 . This capture is reversible since CO 2 can be released upon heating by recombination of the mother phase.

  20. Measurement and Modeling of Ecosystem Risk and Recovery for In Situ Treatment of Contaminated Sediments

    DTIC Science & Technology

    2011-02-01

    µECD Gas chromatography - micro electron capture detector HPAH high molecular weight polyaromatic hydrocarbon HOC Hydrophobic organic compound IR...hydrocarbon PCB Polychlorinated biphenyl PE Polyethylene PED Polyethylene devices PFC Perfluorinated chemical POM Polyoxymethylene PRC...Performance reference compound RMSE Root Mean Squared Error SPME Solid Phase Micro Extraction SERDP Strategic Environmental Research and Development

  1. Method and apparatus for optimized sampling of volatilizable target substances

    DOEpatents

    Lindgren, Eric R.; Phelan, James M.

    2004-10-12

    An apparatus for capturing, from gases such as soil gas, target analytes. Target analytes may include emanations from explosive materials or from residues of explosive materials. The apparatus employs principles of sorption common to solid phase microextraction, and is best used in conjunction with analysis means such as a gas chromatograph. To sorb target analytes, the apparatus functions using various sorptive structures to capture target analyte. Depending upon the embodiment, those structures may include a capillary tube including an interior surface on which sorptive material (similar to that on the surface of a SPME fiber) is supported (along with means for moving gases through the capillary tube so that the gases come into close proximity to the sorptive material). In one disclosed embodiment, at least one such sorptive structure is associated with an enclosure including an opening in communication with the surface of a soil region potentially contaminated with buried explosive material such as unexploded ordnance. Emanations from explosive materials can pass into and accumulate in the enclosure where they are sorbed by the sorptive structures. Also disclosed is the use of heating means such as microwave horns to drive target analytes into the soil gas from solid and liquid phase components of the soil.

  2. Simultaneous determination of cyanogen chloride and cyanogen bromide in treated water at sub-microg/L levels by a new solid-phase microextraction-gas chromatographic-electron-capture detection method.

    PubMed

    Cancho, B; Ventur, F; Galceran, M

    2000-11-03

    A headspace solid-phase microextraction (HS-SPME) procedure has been developed and applied for the determination of cyanogen halides in treated water samples at microg/L concentrations. Several SPME coatings were tested, the divinylbenzene-Carboxen-polydimethylsiloxane fiber being the most appropriate coating. GC-electron-capture detection was used for separation and quantitation. Experimental parameters such as sample volume, addition of a salt, extraction time and desorption conditions were studied. The optimized method has an acceptable linearity, good precision, with RSD values <10% for both compounds, and it is sufficiently sensitive to detect ng/L levels. HS-SPME was compared with liquid-liquid microextraction (US Environmental Protection Agency Method 551.1) for the analysis of spiked ultrapure and granular activated carbon filtered water samples. There was good agreement between the results from both methods. Finally, the optimized procedure was applied to determine both compounds at the Barcelona water treatment plant (N.E. Spain). Cyanogen chloride in treated water was <1.0 microg/L and cyanogen bromide ranged from 3.2 to 6.4 microg/L.

  3. Solid-phase proximity ligation assays for individual or parallel protein analyses with readout via real-time PCR or sequencing.

    PubMed

    Nong, Rachel Yuan; Wu, Di; Yan, Junhong; Hammond, Maria; Gu, Gucci Jijuan; Kamali-Moghaddam, Masood; Landegren, Ulf; Darmanis, Spyros

    2013-06-01

    Solid-phase proximity ligation assays share properties with the classical sandwich immunoassays for protein detection. The proteins captured via antibodies on solid supports are, however, detected not by single antibodies with detectable functions, but by pairs of antibodies with attached DNA strands. Upon recognition by these sets of three antibodies, pairs of DNA strands brought in proximity are joined by ligation. The ligated reporter DNA strands are then detected via methods such as real-time PCR or next-generation sequencing (NGS). We describe how to construct assays that can offer improved detection specificity by virtue of recognition by three antibodies, as well as enhanced sensitivity owing to reduced background and amplified detection. Finally, we also illustrate how the assays can be applied for parallel detection of proteins, taking advantage of the oligonucleotide ligation step to avoid background problems that might arise with multiplexing. The protocol for the singleplex solid-phase proximity ligation assay takes ~5 h. The multiplex version of the assay takes 7-8 h depending on whether quantitative PCR (qPCR) or sequencing is used as the readout. The time for the sequencing-based protocol includes the library preparation but not the actual sequencing, as times may vary based on the choice of sequencing platform.

  4. Porous solid ion exchange wafer for immobilizing biomolecules

    DOEpatents

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  5. Light-Triggered CO2 Breathing Foam via Nonsurfactant High Internal Phase Emulsion.

    PubMed

    Zhang, Shiming; Wang, Dingguan; Pan, Qianhao; Gui, Qinyuan; Liao, Shenglong; Wang, Yapei

    2017-10-04

    Solid materials for CO 2 capture and storage have attracted enormous attention for gaseous separation, environmental protection, and climate governance. However, their preparation and recovery meet the problems of high energy and financial cost. Herein, a controllable CO 2 capture and storage process is accomplished in an emulsion-templated polymer foam, in which CO 2 is breathed-in under dark and breathed-out under light illumination. Such a process is likely to become a relay of natural CO 2 capture by plants that on the contrary breathe out CO 2 at night. Recyclable CO 2 capture at room temperature and release under light irradiation guarantee its convenient and cost-effective regeneration in industry. Furthermore, CO 2 mixed with CH 4 is successfully separated through this reversible breathing in and out system, which offers great promise for CO 2 enrichment and practical methane purification.

  6. Comparison between solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HFLPME) for determination of extractables from post-consumer recycled PET into food simulants.

    PubMed

    Oliveira, Éder Costa; Echegoyen, Yolanda; Cruz, Sandra Andrea; Nerin, Cristina

    2014-09-01

    Hollow fiber liquid phase microextraction (HFLPME) and solid phase microextraction (SPME) methods for pre-concentration of contaminants (toluene, benzophenone, tetracosane and chloroform) in food simulants were investigated. For HFLPME 1-heptanol, 2-octanone and dibutyl-ether were studied as extracting solvents. Analysis by gas chromatography coupled to mass spectrometry (GC-MS), flame ionization (GC-FID) and electron capture detectors (GC-ECD) were carried out. In addition, the methods were employed to evaluate the safety in use of a PET material after the recycling process (comprising washing, extrusion and solid state polymerization (SSP)) through extractability studies of the contaminants using 10% (v/v) ethanol in deionized water and 3% (w/v) acetic acid in deionized water as food simulants in different conditions: 10 days at 40°C and 2h at 70°C. The HFLPME preconcentration method provided increased sensitivity when compared to the SPME method and allowed to analyze concentration levels below 10 µg surrogate per kg food simulant. The results of the extractability studies showed considerable reductions after the extrusion and SSP processes and indicated the compliance with regulations for using recycled PET in contact with food. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Widening and diversifying the proteome capture by combinatorial peptide ligand libraries via Alcian Blue dye binding.

    PubMed

    Candiano, Giovanni; Santucci, Laura; Petretto, Andrea; Lavarello, Chiara; Inglese, Elvira; Bruschi, Maurizio; Ghiggeri, Gian Marco; Boschetti, Egisto; Righetti, Pier Giorgio

    2015-01-01

    Combinatorial peptide ligand libraries (CPLLs) tend to bind complex molecules such as dyes due to their aromatic, heterocyclic, hydrophobic, and ionic nature that may affect the protein capture specificity. In this experimental work Alcian Blue 8GX, a positively charged phthalocyanine dye well-known to bind to glycoproteins and to glucosaminoglycans, was adsorbed on a chemically modified CPLL solid phase, and the behavior of the resulting conjugate was then investigated. The control and dye-adsorbed beads were used to harvest the human urinary proteome at physiological pH, this resulting in a grand total of 1151 gene products identified after the capture. Although the Alcian Blue-modified CPLL incremented the total protein capture by 115 species, it particularly enriched some families among the harvested proteins, such as glycoproteins and nucleotide-binding proteins. This study teaches that it is possible, via the two combined harvest mechanisms, to drive the CPLL capture toward the enrichment of specific protein categories.

  8. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    PubMed

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  9. Development of a sensitive methodology for the analysis of chlorobenzenes in air by combination of solid-phase extraction and headspace solid-phase microextraction.

    PubMed

    Barro, Ruth; Ares, Sergio; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael

    2004-08-06

    In this study, a combination of solid-phase extraction (SPE) and solid-phase microextraction (SPME) has been used to determine chlorobenzenes in air. Analytes were sampled by pumping a known volume of air through a porous polymer (Tenax TA). Then, the adsorbent was transferred into a glass vial and SPME was performed. The quantification was carried out using gas chromatography (GC)-electron-capture detection or GC-MS. Several SPME coatings (100 microm poly(dimethylsiloxane) (PDMS), 75 microm Carboxen (CAR)-PDMS, 65 microm PDMS-divinylbenzene (DVB), 65 microm PDMS-DVB and 85 microm polyacrylate (PA) were evaluated, obtaining the highest responses with Carbowax (CW)- PDMS for the most volatile chlorobenzenes, and with PDMS-DVB or CW-DVB fibers for the semivolatile compounds. To optimize some other factors that could affect the SPME step, a factorial design was used. Kinetic studies of the SPME process were also performed. Concerning the SPE step, breakthrough was studied, showing that 2.5 m3 of air could be processed without losses of the most volatile compounds. The performance of the method was evaluated. External calibration, which does not require the complete sampling process, demonstrated to be suitable, obtaining good linearity (R2 > 0.99) for all chlorobenzenes. Recovery studies were performed at two concentration levels (4 and 40 ng/m3), obtaining quantitative recoveries (>80%). Limits of detection at the sub ng/m3 were achieved for all the target compounds.

  10. Dynamic interaction of two-phase debris flow with pyramidal defense structures: An optimal strategy to efficiently protecting the desired area

    NASA Astrophysics Data System (ADS)

    Kattel, Parameshwari; Kafle, Jeevan; Fischer, Jan-Thomas; Mergili, Martin; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    In this work we analyze the dynamic interaction of two phase debris flows with pyramidal obstacles. To simulate the dynamic interaction of two-phase debris flow (a mixture of solid particles and viscous fluid) with obstacles of different dimensions and orientations, we employ the general two-phase mass flow model (Pudasaini, 2012). The model consists of highly non-linear partial differential equations representing the mass and momentum conservations for both solid and fluid. Besides buoyancy, the model includes some dominant physical aspects of the debris flows such as generalized drag, virtual mass and non-Newtonian viscous stress as induced by the gradient of solid-volume-fraction. Simulations are performed with high-resolution numerical schemes to capture essential dynamics, including the strongly re-directed flow with multiple stream lines, mass arrest and debris-vacuum generation when the rapidly cascading debris mass suddenly encounters the obstacle. The solid and fluid phases show fundamentally different interactions with obstacles, flow spreading and dispersions, run-out dynamics, and deposition morphology. A forward-facing pyramid deflects the mass wider, and a rearward-facing pyramid arrests a portion of solid-mass at its front. Our basic study reveals that appropriately installed obstacles, their dimensions and orientations have a significant influence on the flow dynamics, material redistribution and redirection. The precise knowledge of the change in dynamics is of great importance for the optimal and effective protection of designated areas along the mountain slopes and the runout zones. Further important results are, that specific installations lead to redirect either solid, or fluid, or both, in the desired amounts and directions. The present method of the complex interactions of real two-phase mass flows with the obstacles may help us to construct defense structures and to design advanced and physics-based engineering solutions for the prevention and mitigation of natural hazards caused by geophysical mass flows. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  11. Solid-liquid like phase transition in a confined granular suspension

    NASA Astrophysics Data System (ADS)

    Sakai, Nariaki; Lechenault, Frederic; Adda Bedia, Mokhtar

    We present an experimental study of a liquid-solid like phase transition in a two-dimensional granular media. Particles are placed in a vertical Hele-Show cell filled with a denser solution of cesium-chloride. Thus, when the cell is rotated around its axis, hydrostatic pressure exerts a centripetal force on the particles which confines them towards the center. This force is in competition with gravity, thus by modifying the rotation rate, it is possible to transform continuously and reversibly the sample from a disordered loose state to an ordered packed state. The system presents many similarities with thermal systems at equilibrium like density and interface fluctuations, and the transition between the two phases goes through a coexistence state, where there is nucleation and growth of locally ordered domains which are captured by the correlation function of the hexatic order parameter. We discuss the possibility to extend the grand-canonical formalism to out-of equilibrium systems, in order to uncover a state equation between the density and the pressure in the medium.

  12. Device and method for enhanced collection and assay of chemicals with high surface area ceramic

    DOEpatents

    Addleman, Raymond S.; Li, Xiaohong Shari; Chouyyok, Wilaiwan; Cinson, Anthony D.; Bays, John T.; Wallace, Krys

    2016-02-16

    A method and device for enhanced capture of target analytes is disclosed. This invention relates to collection of chemicals for separations and analysis. More specifically, this invention relates to a solid phase microextraction (SPME) device having better capability for chemical collection and analysis. This includes better physical stability, capacity for chemical collection, flexible surface chemistry and high affinity for target analyte.

  13. Kinetic modeling on CO₂ capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed.

    PubMed

    Chang, E-E; Chen, Tse-Lun; Pan, Shu-Yuan; Chen, Yi-Hung; Chiang, Pen-Chi

    2013-09-15

    In this study, direct and indirect carbonation of basic oxygen furnace slag (BOFS) coupled with cold-rolling wastewater (CRW) was carried out via a rotating packed bed (RPB). The solid products were qualitatively characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and quantitatively analyzed with thermogravimetric analysis (TGA). The leachate was analyzed with inductively coupled plasma-optical emission spectroscopy (ICP-OES). The results indicate that the maximum achievable carbonation conversion (MACC) of BOFS was 90.7%, corresponding to a capture capacity of 0.277 g CO₂/g of BOFS, by direct carbonation with CRW under a rotation speed of 750 rpm at 30 °C for 20 min. In addition, CO₂ mass balance among the gas, liquid, and solid phases within an RPB was well-developed, with an error less than 10%, to confirm the actual CO₂ capture capacity of BOFS with precision and accuracy. Furthermore, a reaction kinetic model based on mass balance was established to determine the reaction rate constant for various liquid agents (CRW and pure water). It was concluded that co-utilization of alkaline wastes including BOFS and CRW via the RPB is a novel approach for both enhancing CO₂ capture capacity and reducing the environmental impacts of alkaline wastes. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The Effects of Tidal Dissipation on the Thermal Evolution of Triton

    NASA Astrophysics Data System (ADS)

    Gaeman, J.; Hier-Majumder, S.; Roberts, J. H.

    2009-12-01

    This work explores the coupled structural, thermal, and orbital evolution of Neptune's icy satellite, Triton. Recent geyser activity, ridge formation, and volatile transport, observed on Triton's surface, indicate possible activity within Triton's interior [1,2]. Triton is hypothesized to have been captured from an initially heliocentric orbit. During the circularization of Triton's orbit following its capture by Neptune, intense tidal heating likely contributed to the formation of a subsurface ocean [3]. Although the time of Triton's capture is not exactly known, it is likely that the event took place earlier in the history of our solar system, when the probability of binary capture was higher [4, 5]. This work examines the thermal evolution of Triton by employing a coupled tidal and two-phase thermal evolution model, for both an early and late capture scenario. Thermal evolution of a solid crust underlain by an H2O-NH3 mushy layer is driven by the evolution of tidal heating, as Triton's orbital eccentricity evolves following its capture. The governing equations for tidal heating are solved using the propagator matrix method [6, 7], while the governing equation for the coupled crust-multiphase layer thermal evolution were numerically solved using a finite volume discretization. The results indicate that the existence of a subsurface ocean is strongly dependent on ammonia content as larger concentrations of ammonia influence liquidus temperature and density contrast between solid and liquid phases [8]. Preliminary results indicate that an ocean likely exists for compositions containing a relatively high percentage of ammonia for both early and late capture of the satellite. In contrast, the subsurface ocean freezes completely for lower ammonia content. [1] Brown, R. H., Kirk, R. L. (1994). Journal of Geophysical Research 99, 1965-981. [2] Prockter, L. M., Nimmo, F., Pappalardo, R. T. (2005). Geophysical Research Letters 32, L14202. [3] Ross, M. N., Schubert, G. (1990). Geophysical Research Letters 17, 1749-752. [4] Agnor, C. B., Hamilton, D. P. (2006). Nature 441, 192-94. [5] Schenk, P. M., Zahnle, K. (2007). Icarus 192, 135-49. [6] Roberts, J. H., Nimmo, F. (2008). Icarus 194, 675-689. [7] Sabadini, R., Vermeersen, B., (2004). Global Dynamics of the Earth. Kluwer Academic Publishers. [8] Hogenboom, D. L., Kargel, J. S., Concolmagno, G. J., Holden, T. C., Lee, L., Buyyounouski, M. (1997). Icarus 128, 171-80.

  15. Numerical study of drop spreading on a flat surface

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Desjardins, Olivier

    2017-11-01

    In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.

  16. Ab initio thermodynamic approach to identify mixed solid sorbents for CO 2 capture technology

    DOE PAGES

    Duan, Yuhua

    2015-10-15

    Because the current technologies for capturing CO 2 are still too energy intensive, new materials must be developed that can capture CO 2 reversibly with acceptable energy costs. At a given CO 2 pressure, the turnover temperature (T t) of the reaction of an individual solid that can capture CO 2 is fixed. Such T t may be outside the operating temperature range (ΔT o) for a practical capture technology. To adjust T t to fit the practical ΔT o, in this study, three scenarios of mixing schemes are explored by combining thermodynamic database mining with first principles density functionalmore » theory and phonon lattice dynamics calculations. Our calculated results demonstrate that by mixing different types of solids, it’s possible to shift T t to the range of practical operating temperature conditions. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO 2 capture reactions by the mixed solids of interest, we were able to identify the mixing ratios of two or more solids to form new sorbent materials for which lower capture energy costs are expected at the desired pressure and temperature conditions.« less

  17. Latent heat of vehicular motion

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Berrier, Austin; Habibi, Mohammad; Boreyko, Jonathan

    2016-11-01

    We have used the thermodynamic concept of latent heat, where a system loses energy due to a solid-to-liquid phase transition, to study the flow of a group of vehicles moving from rest. During traffic flow, drivers keep a large distance from the car in front of them to ensure safe driving. When a group of cars comes to a stop, for example at a red light, drivers voluntarily induce a "phase transition" from this "liquid phase" to a close-packed "solid phase." This phase transition is motivated by the intuition that maximizing displacement before stopping will minimize the overall travel time. To test the effects of latent heat on flow efficiency, a drone captured the dynamics of cars flowing through an intersection on a Smart Road where the initial spacing between cars at the red light was systematically varied. By correlating the experimental results with the Optimal Velocity Model (OVM), we find that the convention of inducing phase transitions at intersections offers no benefit, as the lag time (latent heat) of resumed flow offsets the initial increase in displacement. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to maximize safety with no loss in flow efficiency.

  18. Capture-ELISA for serum IgM antibody to respiratory syncytial virus.

    PubMed Central

    Cevenini, R.; Donati, M.; Bertini, S.; Moroni, A.; Sambri, V.

    1986-01-01

    A four-component solid-phase capture enzyme immunoassay was set up to test for serum IgM antibody to respiratory syncytial (RS) virus and was compared with immunofluorescence assay (IFA). A total of 128 young children with acute respiratory infections were studied. Thirty-six were shown to be RS virus-positive by the detection of RS virus in nasopharyngeal secretions and 92 were RS virus-negative. A serum specimen was collected after admission to the hospital (days 0-4) and a further specimen was obtained during days 10-14. Out of 36 RS virus-positive patients, 28 (77.7%) were found to be positive for IgM by both capture-ELISA and IFA. Out of 92 RS virus-negative patients 5 (5.4%) were IgM-positive. Four false-positive results were obtained by IFA due to the presence of rheumatoid factor. The capture-ELISA was shown to be a reliable technique in detecting specific IgM antibody to RS virus. PMID:3540115

  19. Investigating gas-phase defect formation in late-stage solidification using a novel phase-field crystal alloy model

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Smith, Nathan; Provatas, Nikolas

    2017-09-01

    We study late-stage solidification and the associated formation of defects in alloy materials using a novel model based on the phase-field-crystal technique. It is shown that our model successfully captures several important physical phenomena that occur in the late stages of solidification, including solidification shrinkage, liquid cavitation and microsegregation, all in a single framework. By examining the interplay of solidification shrinkage and solute segregation, this model reveals that the formation of gas pore defects at the late stage of solidification can lead to nucleation of second phase solid particles due to solute enrichment in the eutectic liquid driven by gas-phase nucleation and growth. We also predict a modification of the Gulliver-Scheil equation in the presence of gas pockets in confined liquid pools.

  20. Quantitative study of the capture of silver nanoparticles by several kinds of soils.

    PubMed

    González-Fuenzalida, R A; Sanjuan-Navarro, L; Moliner-Martínez, Y; Campíns-Falcó, P

    2018-07-15

    The capacity of different soils to capture silver nanoparticles (AgNPs) by measuring changes of an AgNP intrinsic property such as the plasmon for the first time, was studied. In-tube solid-phase microextraction (IT-SPME) coupled on-line to capillary liquid chromatography (CapLC) with diode array detection (DAD) was employed for measuring the interactions between soil and in-contact AgNP dispersions. Its achieved LOD 9 pM assures quantitative retention measurements and selectivity for soil lixiviation was suitable. Electronic microscopy was employed for corroborating the entrapped Ag into the soils. Capture % of AgNPs was calculated in compost (>99%), mountain (>99%), orchard (15±1%) and urban (48±1%) soils. Also, the relation between some soil characteristics: solid organic matter (SOM), composition, pH, redox potential (Eh), electrical conductivity (EC) and size, and the retention of these metallic nanoparticles was studied. The results have also been estimated after sieving and the capture % of AgNPs was similar in the resulting fractions. AgNP adsorption on a given soil is mainly affected by its organic matter content for studied soils with higher SOM amounts (23-62%). However, for the soils with lower SOM amounts (4.6-8.3%) the role of HAs could prevent AgNP deposition onto soils. The proposed methodology can be utilized for quickly assessing the potential of a given soil considering its properties for capturing these nanoparticles, which can come at handy for their administration, characterization or remediation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Criticality in the Approach to Failure in Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Gueudré, Thomas; Rosso, Alberto; Wyart, Matthieu

    2015-10-01

    Failure of amorphous solids is fundamental to various phenomena, including landslides and earthquakes. Recent experiments indicate that highly plastic regions form elongated structures that are especially apparent near the maximal shear stress Σmax where failure occurs. This observation suggested that Σmax acts as a critical point where the length scale of those structures diverges, possibly causing macroscopic transient shear bands. Here, we argue instead that the entire solid phase (Σ <Σmax) is critical, that plasticity always involves system-spanning events, and that their magnitude diverges at Σmax independently of the presence of shear bands. We relate the statistics and fractal properties of these rearrangements to an exponent θ that captures the stability of the material, which is observed to vary continuously with stress, and we confirm our predictions in elastoplastic models.

  2. Development of Solid Ceramic Dosimeters for the Time-Integrative Passive Sampling of Volatile Organic Compounds in Waters.

    PubMed

    Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok

    2017-11-07

    Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.

  3. Bench Scale Process for Low Cost CO2 Capture Using a Phase-Changing Absorbent: Topical Report EH&S Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorf, Tiffany; Farnum, Rachel; Perry, Robert

    2016-05-11

    GE Global Research was contracted by the Department of Energy to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2 capture solvent (award number DEFE0013687). As part of this program, a technology EH&S assessment (Subtask 5.1) has been completed for a CO2 capture system for a 550 MW coal-fired power plant. The assessment focuses on two chemicals used in the process, the aminosilicone solvent, GAP-0, and dodecylbenzenesulfonic acid (DDBSA), the GAP-0 carbamate formed upon reaction of the GAP-0 with CO2, and two potential byproducts formed in the process, GAP-0/SOx salts and amine-terminated, urea-containing silicone (also referred tomore » as “ureas” in this report). The EH&S assessment identifies and estimates the magnitude of the potential air and water emissions and solid waste generated by the process and reviews the toxicological profiles of the chemicals associated with the process. Details regarding regulatory requirements, engineering controls, and storage and handling procedures are also provided in the following sections.« less

  4. A Preliminary Experimental Investigation of Wet Fine Erosion in Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Ya, H. H.; Luthfi, Haziq; Ngo, Nguyet-Tran; Hassan, Suhaimi; Pao, William

    2018-03-01

    Solid particles below 62 μm is classified as fine. In oil producing operation, the most commonly used downhole sand screen can only capture solid particles of 140 μm and above. Most predictive erosion model is limited to particle size of 100 μm with single phase flow assumption because it is commonly believed that erosion due to particles below 100 μm is insignificant and typically ignored by oil and gas consultants when proposing facilities design. The objective of this paper is to investigate the impact of fines particle on mild steel plate in two-phase flow at different collision angles. A two phase flow loop was set up. The average size of fine particle was 60 μm, mixed with water with sand to water ratio at 1:65 wt/wt. The mild steel plates were oriented at three different impact angles which are -30°, 30° and 90°, with respect to the horizon. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), surface roughness and Vickers micro hardness techniques were used to quantify the effects of fine particle on the exposed surface.

  5. Effects of viscoelasticity on drop impact and spreading on a solid surface

    NASA Astrophysics Data System (ADS)

    Izbassarov, Daulet; Muradoglu, Metin

    2016-06-01

    The effects of viscoelasticity on drop impact and spreading on a flat solid surface are studied computationally using a finite-difference-front-tracking method. The finitely extensible nonlinear elastic-Chilcott-Rallison model is used to account for the fluid viscoelasticity. It is found that viscoelasticity favors advancement of contact line during the spreading phase, leading to a slight increase in the maximum spreading, in agreement with experimental observations [Huh, Jung, Seo, and Lee, Microfluid. Nanofluid. 18, 1221 (2015), 10.1007/s10404-014-1518-4]. However, in contrast with the well-known antirebound effects of polymeric additives, the viscoelasticity is found to enhance the tendency of the drop rebound in the receding phase. These results suggest that the antirebound effects are mainly due to the polymer-induced modification of wetting properties of the substrate rather than the change in the material properties of the drop fluid. A model is proposed to test this hypothesis. It is found that the model results in good qualitative agreement with the experimental observations and the antirebound behavior can be captured by the modification of surface wetting properties in the receding phase.

  6. Comparisons of CTH simulations with measured wave profiles for simple flyer plate experiments

    DOE PAGES

    Thomas, S. A.; Veeser, L. R.; Turley, W. D.; ...

    2016-06-13

    We conducted detailed 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly used to design and analyze simple shock compression experiments. Such simple shock experiments also contain data where dynamic properties of materials are integrated together. We wished to assess how well the chosen computer hydrodynamic code could do at capturing both the simple parts of the experiments and the integral parts. We began with very simple shock experiments, in which we examined the effects of the equation of state and the compressional and tensile strength models. We increased complexity to include spallation in copper and iron and amore » solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations. For experiments with a window, the response of both the sample and the window are integrated together, providing a good test of the material models. While CTH physics models are not perfect and do not reproduce all experimental details well, we find the models are useful; the simulations are adequate for understanding much of the dynamic process and for planning experiments. However, higher complexity in the simulations, such as adding in spall, led to greater differences between simulation and experiment. Lastly, this comparison of simulation to experiment may help guide future development of hydrodynamics codes so that they better capture the underlying physics.« less

  7. Optimization of a sensitive method for the determination of nitro musk fragrances in waters by solid-phase microextraction and gas chromatography with micro electron capture detection using factorial experimental design.

    PubMed

    Polo, Maria; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael

    2007-08-01

    A solid-phase microextraction method (SPME) followed by gas chromatography with micro electron capture detection for determining trace levels of nitro musk fragrances in residual waters was optimized. Four nitro musks, musk xylene, musk moskene, musk tibetene and musk ketone, were selected for the optimization of the method. Factors affecting the extraction process were studied using a multivariate approach. Two extraction modes (direct SPME and headspace SPME) were tried at different extraction temperatures using two fiber coatings [Carboxen-polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane-divinylbenzene (PDMS/DVB)] selected among five commercial tested fibers. Sample agitation and the salting-out effect were also factors studied. The main effects and interactions between the factors were studied for all the target compounds. An extraction temperature of 100 degrees C and sampling the headspace over the sample, using either CAR/PDMS or PDMS/DVB as fiber coatings, were found to be the experimental conditions that led to a more effective extraction. High sensitivity, with detection limits in the low nanogram per liter range, and good linearity and repeatability were achieved for all nitro musks. Since the method proposed performed well for real samples, it was applied to different water samples, including wastewater and sewage, in which some of the target compounds (musk xylene and musk ketone) were detected and quantified.

  8. An amino-functionalized magnetic framework composite of type Fe3O4-NH2@MIL-101(Cr) for extraction of pyrethroids coupled with GC-ECD.

    PubMed

    He, Xi; Yang, Wei; Li, Sijia; Liu, Yu; Hu, Baichun; Wang, Ting; Hou, Xiaohong

    2018-01-24

    An amino-functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized using a solvothermal method. The material was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption, and magnetometry. The composite combines the advantages of amino-modified Fe 3 O 4 and MIL-101(Cr). The presence of amino groups facilitates the fairly specific adsorption of pyrethroids. The composite was employed as a sorbent for magnetic solid phase extraction of five pyrethroids from environmental water samples. Following desorption with acidified acetone, the pyrethroids were quantified by gas chromatography with electron capture detection. The detection limits for bifenthrin, fenpropathrin, λ-cyhalothrin, permethrin, and deltamethrin range from 5 to 9 pg·mL -1 . The method is rapid, accurate, and highly sensitive. The molecular interactions and free binding energies between MIL-101(Cr) and the five pyrethroids were calculated by means of molecular docking. Graphical abstract A novel functionalized magnetic framework composite of type Fe 3 O 4 -NH 2 @MIL-101(Cr) was synthesized. It was applied as a sorbent for magnetic solid phase extraction of pyrethroids prior to their quantitation by gas chromatography with electron capture detection. The molecular interactions of analytes and MIL-101(Cr) were studied.

  9. Ultrasound-assisted extraction and solid-phase extraction for the simultaneous determination of five amide herbicides in fish samples by gas chromatography with electron capture detection.

    PubMed

    Qu, Zhipeng; Bai, Xiuzhi; Zhang, Ting; Yang, Zhaoguang

    2017-03-01

    An efficient sample extraction and clean-up method was developed for simultaneous determination of five amide herbicides (alachlor, acetochlor, propisochlor, metazachlor, and butachlor) in fish samples. The protocol consisted of ultrasound-assisted solvent extraction and solid-phase extraction clean-up. In detail, aliquots of homogenized fish flesh were thoroughly mixed with 20 mL of n-hexane and then extracted with ultrasonication for 40 min. Each sample was centrifuged and the supernatant was collected for the subsequent clean-up. For the sample preparation, the above supernatant was processed with a C 18 column with 3 mL of dichloromethane/n-hexane (1:1, v/v) as the eluant. Then the samples were analyzed by gas chromatography with electron capture detection. The correlation coefficients of the five calibration curves were 0.9976-0.9998 (n = 3). The limits of detection (S/N = 3, n = 11) and limits of quantification (S/N = 10, n = 11) were 0.19-0.42 and 0.63-1.39 μg/kg, respectively. The recoveries of this method were 71.2-92.6% with good precision (<4.7% relative standard deviations, n = 6). The developed method was successfully applied to monitor the five amide herbicides in fish samples collected from different cities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. CO2 sorption on surface-modified carbonaceous support: Probing the influence of the carbon black microporosity and surface polarity

    NASA Astrophysics Data System (ADS)

    Gargiulo, Valentina; Alfè, Michela; Ammendola, Paola; Raganati, Federica; Chirone, Riccardo

    2016-01-01

    The use of solid sorbents is a convenient option in post-combustion CO2 capture strategies. Sorbents selection is a key point because the materials are required to be both low-cost and versatile in typical post-combustion conditions in order to guarantee an economically advantageous overall process. This work compares strategies to tailor the chemico-physical features of carbon black (CB) by surface-modification and/or coating with a CO2-sorbent phase. The influence of the CB microporosity, enhanced by chemical/thermal treatments, is also taken into account. Three CB surface modifications are performed and compared: (i) oxidation and functionalization with amino-groups, (ii) coating with iron oxides and (iii) impregnation with an ionic liquid (IL). The CO2 capture performance is evaluated on the basis of the breakthrough curves measured at atmospheric pressure and room temperature in a lab-scale fixed bed micro-reactor. Most of tested solids adsorb a CO2 amount significantly higher than a 13X zeolite and DARCO FGD (Norit) activated carbon (up to 4 times more in the best case). The sorbents bearing basic functionalities (amino-groups and IL) exhibit the highest CO2 sorption capacity. The use of a microporous carbonaceous support limits the accessibility of CO2 toward the adsorbing phase (IL or FM) lowering the number of accessible binding sites for CO2.

  11. Layered solid sorbents for carbon dioxide capture

    DOEpatents

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  12. Layered solid sorbents for carbon dioxide capture

    DOEpatents

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  13. Dancing drops over vibrating substrates

    NASA Astrophysics Data System (ADS)

    Borcia, Rodica; Borcia, Ion Dan; Helbig, Markus; Meier, Martin; Egbers, Christoph; Bestehorn, Michael

    2017-04-01

    We study the motion of a liquid drop on a solid plate simultaneously submitted to horizontal and vertical harmonic vibrations. The investigation is done via a phase field model earlier developed for describing static and dynamic contact angles. The density field is nearly constant in every bulk region (ρ = 1 in the liquid phase, ρ ≈ 0 in the vapor phase) and varies continuously from one phase to the other with a rapid but smooth variation across the interfaces. Complicated explicit boundary conditions along the interface are avoided and captured implicitly by gradient terms of ρ in the hydrodynamic basic equations. The contact angle θ is controlled through the density at the solid substrate ρ S , a free parameter varying between 0 and 1 [R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008)]. We emphasize the swaying and the spreading modes, earlier theoretically identified by Benilov and Billingham via a shallow-water model for drops climbing uphill along an inclined plane oscillating vertically [E.S. Benilov, J. Billingham, J. Fluid Mech. 674, 93 (2011)]. The numerical phase field simulations will be completed by experiments. Some ways to prevent the release of the dancing drops along a hydrophobic surface into the gas atmosphere are also discussed in this paper.

  14. CO.sub.2 separation from low-temperature flue gases

    DOEpatents

    Dilmore, Robert; Allen, Douglas; Soong, Yee; Hedges, Sheila

    2010-11-30

    Two methods are provide for the separation of carbon dioxide from the flue gases. The first method utilizes a phase-separating moiety dissolved in an aqueous solution of a basic moiety to capture carbon dioxide. The second method utilizes a phase-separating moiety as a suspended solid in an aqueous solution of a basic moiety to capture carbon dioxide. The first method takes advantage of the surface-independent nature of the CO.sub.2 absorption reactions in a homogeneous aqueous system. The second method also provides permanent sequestration of the carbon dioxide. Both methods incorporate the kinetic rate enhancements of amine-based scrubbing while eliminating the need to heat the entire amine solution (80% water) in order to regenerate and release CO.sub.2. Both methods also take advantage of the low-regeneration temperatures of CO.sub.2-bearing mineral systems such as Na.sub.2CO.sub.3/NaHCO.sub.3 and K.sub.2CO.sub.3/KHCO.sub.3.

  15. Visual and efficient immunosensor technique for advancing biomedical applications of quantum dots on Salmonella detection and isolation

    NASA Astrophysics Data System (ADS)

    Tang, Feng; Pang, Dai-Wen; Chen, Zhi; Shao, Jian-Bo; Xiong, Ling-Hong; Xiang, Yan-Ping; Xiong, Yan; Wu, Kai; Ai, Hong-Wu; Zhang, Hui; Zheng, Xiao-Li; Lv, Jing-Rui; Liu, Wei-Yong; Hu, Hong-Bing; Mei, Hong; Zhang, Zhen; Sun, Hong; Xiang, Yun; Sun, Zi-Yong

    2016-02-01

    It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here by applying fluorescent nanobioprobes on a specially-designed cellulose-based swab (a solid-phase enrichment system). The selective and chromogenic medium used on this swab can achieve the ultrasensitive amplification of target bacteria and form chromogenic colonies in situ based on a simple biochemical reaction. More importantly, because this swab can serve as an attachment site for the targeted pathogens to immobilize and immunologically capture nanobioprobes, our mAb-conjugated QD bioprobes were successfully applied on the solid-phase enrichment system to capture the fluorescence of targeted colonies under a designed excitation light instrument based on blue light-emitting diodes combined with stereomicroscopy or laser scanning confocal microscopy. Compared with the traditional methods using 4-7 days to isolate Salmonella from the bacterial mixture, this method took only 2 days to do this, and the process of initial screening and preliminary diagnosis can be completed in only one and a half days. Furthermore, the limit of detection can reach as low as 101 cells per mL Salmonella on the background of 105 cells per mL non-Salmonella (Escherichia coli, Proteus mirabilis or Citrobacter freundii, respectively) in experimental samples, and even in human anal ones. The visual and efficient immunosensor technique may be proved to be a favorable alternative for screening and isolating Salmonella in a large number of samples related to public health surveillance.It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here by applying fluorescent nanobioprobes on a specially-designed cellulose-based swab (a solid-phase enrichment system). The selective and chromogenic medium used on this swab can achieve the ultrasensitive amplification of target bacteria and form chromogenic colonies in situ based on a simple biochemical reaction. More importantly, because this swab can serve as an attachment site for the targeted pathogens to immobilize and immunologically capture nanobioprobes, our mAb-conjugated QD bioprobes were successfully applied on the solid-phase enrichment system to capture the fluorescence of targeted colonies under a designed excitation light instrument based on blue light-emitting diodes combined with stereomicroscopy or laser scanning confocal microscopy. Compared with the traditional methods using 4-7 days to isolate Salmonella from the bacterial mixture, this method took only 2 days to do this, and the process of initial screening and preliminary diagnosis can be completed in only one and a half days. Furthermore, the limit of detection can reach as low as 101 cells per mL Salmonella on the background of 105 cells per mL non-Salmonella (Escherichia coli, Proteus mirabilis or Citrobacter freundii, respectively) in experimental samples, and even in human anal ones. The visual and efficient immunosensor technique may be proved to be a favorable alternative for screening and isolating Salmonella in a large number of samples related to public health surveillance. Electronic supplementary information (ESI) available: One additional figure (Fig. S1), two additional tables (Tables S1 and S2) and additional information. See DOI: 10.1039/c5nr07424j

  16. An approach for drag correction based on the local heterogeneity for gas-solid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Wang, Limin; Rogers, William

    2016-09-22

    The drag models typically used for gas-solids interaction are mainly developed based on homogeneous systems of flow passing fixed particle assembly. It has been shown that the heterogeneous structures, i.e., clusters and bubbles in fluidized beds, need to be resolved to account for their effect in the numerical simulations. Since the heterogeneity is essentially captured through the local concentration gradient in the computational cells, this study proposes a simple approach to account for the non-uniformity of solids spatial distribution inside a computational cell and its effect on the interaction between gas and solid phases. Finally, to validate this approach, themore » predicted drag coefficient has been compared to the results from direct numerical simulations. In addition, the need to account for this type of heterogeneity is discussed for a periodic riser flow simulation with highly resolved numerical grids and the impact of the proposed correction for drag is demonstrated.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fei; Maier, T. A.; Scarola, V. W.

    The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But wemore » also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.« less

  18. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.

    PubMed

    Spilker, R L; de Almeida, E S; Donzelli, P S

    1992-01-01

    This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.

  19. The Goals and Status of SoLid Experiment

    NASA Astrophysics Data System (ADS)

    Park, Jaewon

    2016-09-01

    SoLid is a short baseline sterile neutrino oscillation search experiment using the BR2 compact core reactor in Belgium. Ruling out or confirming sterile neutrino is one of main interests in the neutrino physics field. Highly segmented scintillator cube detector with 6LiF:ZnS(Ag) neutron screen provides high purity neutron tagging by pulse shape discrimination (PSD), and capture position identification. These capabilities from this novel detector are critical to isolate neutrino interactions in a high background environment. The prototype detector (SM1) provides important feedback for validating the performance of the detector design. Recent results from SM1 will be presented. Construction of the SoLid Phase-1 detector is underway. The three-ton detector with three years running will allow us to reach the sterile neutrino exclusion limit of sin2 2 θ < 0 . 03 at Δm2 2eV2 at the 99% confidence level.

  20. Launching of the Shuttle Discovery and the STS 51-G mission

    NASA Image and Video Library

    1985-06-17

    51G-S-100 (17 June 1985) --- A low-angle 35mm tracking view of the Space Shuttle Discovery, its external tank and two solid rocket boosters speeding from the KSC launch facility to begin NASA STS 51-G. The camera has captured the diamond shock effect associated with the launch phase or orbiter vehicles. Inside the Discovery are seven crewmembers and a variety of payloads representing international interests. Liftoff for 51-G occurred at 7:33:043 a.m. (EDT), June 17, 1985.

  1. Modeling of Cluster-Induced Turbulence in Particle-Laden Channel Flow

    NASA Astrophysics Data System (ADS)

    Baker, Michael; Capecelatro, Jesse; Kong, Bo; Fox, Rodney; Desjardins, Olivier

    2017-11-01

    A phenomenon often observed in gas-solid flows is the formation of mesoscale clusters of particles due to the relative motion between the solid and fluid phases that is sustained through the dampening of collisional particle motion from interphase momentum coupling inside these clusters. The formation of such sustained clusters, leading to cluster-induced turbulence (CIT), can have a significant impact in industrial processes, particularly in regards to mixing, reaction progress, and heat transfer. Both Euler-Lagrange (EL) and Euler-Euler anisotropic Gaussian (EE-AG) approaches are used in this work to perform mesoscale simulations of CIT in fully developed gas-particle channel flow. The results from these simulations are applied in the development of a two-phase Reynolds-Averaged Navier-Stokes (RANS) model to capture the wall-normal flow characteristics in a less computationally expensive manner. Parameters such as mass loading, particle size, and gas velocity are varied to examine their respective impact on cluster formation and turbulence statistics. Acknowledging support from the NSF (AN:1437865).

  2. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE PAGES

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions,more » relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  3. Amine enriched solid sorbents for carbon dioxide capture

    DOEpatents

    Gray, McMahan L.; Soong, Yee; Champagne, Kenneth J.

    2003-04-15

    A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.

  4. A low-cost biosorbent-based coating for the highly sensitive determination of organochlorine pesticides by solid-phase microextraction and gas chromatography-electron capture detection.

    PubMed

    do Carmo, Sângela Nascimento; Merib, Josias; Dias, Adriana Neves; Stolberg, Joni; Budziak, Dilma; Carasek, Eduardo

    2017-11-24

    In this study, an environmentally friendly and low-cost biosorbent coating was evaluated, for the first time, as the extraction phase for solid-phase microextraction (SPME) supported on a nitinol alloy. The characterization of the new fiber was performed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The applicability of the biosorbent-based fiber in the determination of δ-hexachlorocyclohexane, aldrin, heptachlor epoxide, α-endosulfan, endrin and 4,4'-DDD in water samples was verified, with separation/detection by gas chromatography coupled to electron capture detection (GC-ECD). The influencing parameters (temperature, extraction time and ionic strength) were optimized simultaneously using a central composite design. The optimum conditions were: extraction time of 80min at 80°C and sodium chloride concentration of 15% (w/v). Satisfactory analytical performance was achieved with limits of detection (LOD) between 0.19 and 0.71ngL -1 and limits of quantification (LOQ) between 0.65 and 2.38ngL -1 . The relative recoveries for the analytes were determined using river and lake water samples spiked at different concentrations and ranged from 60% for α-endosulfan to 113% for δ-hexachlorocyclohexane, with relative standard deviations (RSD) lower than 21%. The fiber-to-fiber reproducibility (n=3) was also evaluated and the RSD was lower than 14%. The extraction efficiency obtained for the proposed biosorbent coating was compared to a commercially available DVB/Car/PDMS coating. The proposed fiber provided very promising results, including LODs at the level of parts per trillion and highly satisfactory thermal and mechanical stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assessment of Solid Sorbent Systems for Post-Combustion Carbon Dioxide Capture at Coal-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Glier, Justin C.

    In an effort to lower future CO2 emissions, a wide range of technologies are being developed to scrub CO2 from the flue gases of fossil fuel-based electric power and industrial plants. This thesis models one of several early-stage post-combustion CO2 capture technologies, solid sorbent-based CO2 capture process, and presents performance and cost estimates of this system on pulverized coal power plants. The spreadsheet-based software package Microsoft Excel was used in conjunction with AspenPlus modelling results and the Integrated Environmental Control Model to develop performance and cost estimates for the solid sorbent-based CO2 capture technology. A reduced order model also was created to facilitate comparisons among multiple design scenarios. Assumptions about plant financing and utilization, as well as uncertainties in heat transfer and material design that affect heat exchanger and reactor design were found to produce a wide range of cost estimates for solid sorbent-based systems. With uncertainties included, costs for a supercritical power plant with solid sorbent-based CO2 capture ranged from 167 to 533 per megawatt hour for a first-of-a-kind installation (with all costs in constant 2011 US dollars) based on a 90% confidence interval. The median cost was 209/MWh. Post-combustion solid sorbent-based CO2 capture technology is then evaluated in terms of the potential cost for a mature system based on historic experience as technologies are improved with sequential iterations of the currently available system. The range costs for a supercritical power plant with solid sorbent-based CO2 capture was found to be 118 to 189 per megawatt hour with a nominal value of 163 per megawatt hour given the expected range of technological improvement in the capital and operating costs and efficiency of the power plant after 100 GW of cumulative worldwide experience. These results suggest that the solid sorbent-based system will not be competitive with currently available liquid amine-systems in the absence of significant new improvements in solid sorbent properties and process system design to reduce the heat exchange surface area in the regenerator and cross-flow heat exchanger. Finally, the importance of these estimates for policy makers is discussed.

  6. Disordered Supersolids in the Extended Bose-Hubbard Model

    DOE PAGES

    Lin, Fei; Maier, T. A.; Scarola, V. W.

    2017-10-06

    The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But wemore » also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.« less

  7. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  8. SO 2-Resistant Immobilized Amine Sorbents for CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluri, Uma

    2014-01-01

    The solid amine sorbent for CO 2 capture process has advantages of simplicity and low operating cost compared to the MEA (monoethanolamine) process. Solid amine sorbents reported so far suffered from either low CO 2 capture capacity or low stability in the flue gas environment. This project is aimed at developing a SO 2-resistant solid amine sorbent for capturing CO 2 from coal–fired power plants with SCR/FGD which emits SO 2ranging from 15 to 30 ppm and NO ranging from 5 to 10 ppm. The amine sorbent we developed in a previous project degraded rapidly with 65% decrease in themore » initial capture capacity in presence of 1% SO 2. This amine sorbent was further modified by coating with polyethyleneglycol (PEG) to increase the SO 2-resistance. Polyethylene glycol (PEG) was found to decrease the SO 2-amine interaction, resulting in the decrease in the maximum SO desorption temperature (Tmax ) of amine sorbent. The PEG-coated amine sorbent exhibited higher stability with only 40% decrease in the initial capture capacity compared to un-coated amine sorbents. The cost of the solid amine sorbent developed in this project is estimated to be less than $7.00/lb; the sorbent exhibited CO 2 capture capacity more than 2.3 mmol/g. The results of this study provided the scientific basis for further development of SO 2-resistant sorbents.« less

  9. Functionalized metal-organic framework nanocomposites for dispersive solid phase extraction and enantioselective capture of chiral drug intermediates.

    PubMed

    Ma, Xue; Zhou, Xiaohua; Yu, Ajuan; Zhao, Wuduo; Zhang, Wenfen; Zhang, Shusheng; Wei, Linlin; Cook, Debra J; Roy, Anirban

    2018-02-16

    The facile preparation, characterization and application of a novel magnetic graphene oxide- metal organic framework [Zn 2 (d-Cam) 2 (4, 4'-bpy)] n (MGO-ZnCB) as a sorbent for fast, simple and enantioselective capture of chiral drug intermediates are presented in this paper. The MGO-ZnCB nanocomposite, developed by encapsulating MGO nanoparticles into the homochiral metal organic framework of ZnCB, can integrate the advantages from each component endowing the hybrids with improved synergystic effects. The enantioselective performance of MGO-ZnCB was evaluated by dispersive magnetic nanoparticle solid phase extraction (d-MNSPE) of 1, 1'-bi-2-naphthol (BN) and 2, 2'-furoin (Furoin) racemic solutions. Due to the excellent dispersive capability, high stability, relatively larger saturation magnetization and distinct enrichment capacity of MGO-ZnCB, the d-MNSPE method provids good enantioselective separation of these compounds with enantiomeric excess (ee) values as high as 74.8% and 57.4%, respectively. The entire process with BN or Furoin can be completed within 3 min or less. After washing with methanol, the host MGO-ZnCB can be easily recycled and reused six times without any apparent loss of performance. Furthermore, the adsorbed BN and Furoin in nanodomains of the MGO-ZnCB composite were directly investigated for the first time by atomic force microscopy-infrared (AFM-IR) technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Determination of acetanilide herbicides in cereal crops using accelerated solvent extraction, solid-phase extraction and gas chromatography-electron capture detector.

    PubMed

    Zhang, Yaping; Yang, Jun; Shi, Ronghua; Su, Qingde; Yao, Li; Li, Panpan

    2011-07-01

    A method was developed to determine eight acetanilide herbicides from cereal crops based on accelerated solvent extraction (ASE) and solid-phase extraction (SPE) followed by gas chromatography-electron capture detector (GC-ECD) analysis. During the ASE process, the effect of four parameters (temperature, static time, static cycles and solvent) on the extraction efficiency was considered and compared with shake-flask extraction method. After extraction with ASE, four SPE tubes (graphitic carbon black/primary secondary amine (GCB/PSA), GCB, Florisil and alumina-N) were assayed for comparison to obtain the best clean-up efficiency. The results show that GCB/PSA cartridge gave the best recoveries and cleanest chromatograms. The analytical process was validated by the analysis of spiked blank samples. Performance characteristics such as linearity, limit of detection (LOD), limit of quantitation (LOQ), precision and recovery were studied. At 0.05 mg/kg spiked level, recoveries and precision values for rice, wheat and maize were 82.3-115.8 and 1.1-13.6%, respectively. For all the herbicides, LOD and LOQ ranged from 0.8 to 1.7 μg/kg and from 2.4 to 5.3 μg/kg, respectively. The proposed analytical methodology was applied for the analysis of the targets in samples; only three herbicides, propyzamid, metolachlor and diflufenican, were detected in two samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal Adenocarcinoma.

    PubMed

    DuFort, Christopher C; DelGiorno, Kathleen E; Hingorani, Sunil R

    2016-06-01

    The microenvironment influences the pathogenesis of solid tumors and plays an outsized role in some. Our understanding of the stromal response to cancers, particularly pancreatic ductal adenocarcinoma, has evolved from that of host defense to tumor offense. We know that most, although not all, of the factors and processes in the microenvironment support tumor epithelial cells. This reappraisal of the roles of stromal elements has also revealed potential vulnerabilities and therapeutic opportunities to exploit. The high concentration in the stroma of the glycosaminoglycan hyaluronan, together with the large gel-fluid phase and pressures it generates, were recently identified as primary sources of treatment resistance in pancreas cancer. Whereas the relatively minor role of free interstitial fluid in the fluid mechanics and perfusion of tumors has been long appreciated, the less mobile, gel-fluid phase has been largely ignored for historical and technical reasons. The inability of classic methods of fluid pressure measurement to capture the gel-fluid phase, together with a dependence on xenograft and allograft systems that inaccurately model tumor vascular biology, has led to an undue emphasis on the role of free fluid in impeding perfusion and drug delivery and an almost complete oversight of the predominant role of the gel-fluid phase. We propose that a hyaluronan-rich, relatively immobile gel-fluid phase induces vascular collapse and hypoperfusion as a primary mechanism of treatment resistance in pancreas cancers. Similar properties may be operant in other solid tumors as well, so revisiting and characterizing fluid mechanics with modern techniques in other autochthonous cancers may be warranted. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. High-performance liquid chromatographic determination of ursodeoxycholic acid after solid phase extraction of blood serum and detection-oriented derivatization.

    PubMed

    Nobilis, M; Pour, M; Kunes, J; Kopecký, J; Kvĕtina, J; Svoboda, Z; Sládková, K; Vortel, J

    2001-03-01

    Ursodeoxycholic acid (3 alpha,7 beta-dihydroxy-5 beta-cholanoic acid, UDCA) is a therapeutically applicable bile acid widely used for the dissolution of cholesterol-rich gallstones and in the treatment of chronic liver diseases associated with cholestasis. UDCA is more hydrophilic and less toxic than another therapeutically valuable bile acid, chenodeoxycholic acid (CDCA), the 7 alpha-epimer of UDCA. Procedures for sample preparation and HPLC determination of UDCA in blood serum were developed and validated. A higher homologue of UDCA containing an additional methylene group in the side chain was synthetized and used as an internal standard (IS). Serum samples with IS were diluted with a buffer (pH=7). The bile acids and IS were captured using solid phase extraction (C18 cartridges). The carboxylic group of the analytes was derivatized using 2-bromo-2'-acetonaphthone (a detection-oriented derivatization), and reaction mixtures were analyzed (HPLC with UV 245 nm detection; a 125--4 mm column containing Lichrospher 100 C18, 5 microm; mobile phase: acetonitrile--water, 6:4 (v/v)). Following validation, this method was used for pharmacokinetic studies of UDCA in humans.

  13. Investigation of nutrient feeding strategies in a countercurrent mixed-acid multi-staged fermentation: development of segregated-nitrogen model.

    PubMed

    Smith, Aaron D; Holtzapple, Mark T

    2010-12-01

    The MixAlco process is a biorefinery based on the production of carboxylic acids via mixed-culture fermentation. Nitrogen is essential for microbial growth and metabolism, and may exist in soluble (e.g., ammonia) or insoluble forms (e.g., cells). Understanding the dynamics of nitrogen flow in a countercurrent fermentation is necessary to develop control strategies to maximize performance. To estimate nitrogen concentration profiles in a four-stage fermentation train, a mass balance-based segregated-nitrogen model was developed, which uses separate balances for solid- and liquid-phase nitrogen with nitrogen reaction flux between phases assumed to be zero. Comparison of predictions with measured nitrogen profiles from five trains, each with a different nutrient contacting pattern, shows the segregated-nitrogen model captures basic behavior and is a reasonable tool for estimating nitrogen profiles. The segregated-nitrogen model may be used to (1) estimate optimal nitrogen loading patterns, (2) develop a reaction-based model, (3) understand influence of model inputs (e.g., operating parameters, feedstock properties, nutrient loading pattern) on the steady-state nitrogen profile, and (4) determine the direction of the nitrogen reaction flux between liquid and solid phases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Amorphous titania modified with boric acid for selective capture of glycoproteins.

    PubMed

    Jin, Shanxia; Liu, Liping; Zhou, Ping

    2018-05-22

    Amorphous titania was modified with boric acid, and the resulting material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction and X-ray photoelectron spectrometry. The new material, in contrast to conventional boronate affinity materials containing boronic acid ligands, bears boric acid groups. It is shown to exhibit high specificity for glycoproteins, and this was applied to design a method for solid phase extraction of glycoproteins as shown for ribonuclease B, horse radish peroxidase and ovalbumin. Glycoproteins were captured under slightly alkaline environment and released in acidic solutions. The glycoproteins extracted were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The binding capacities for ribonuclease B, horse radish peroxidase and ovalbumin typically are 9.3, 26.0 and 53.0 mg ∙ g -1 , respectively. The method was successfully applied to the selective enrichment of ovalbumin from egg white. Graphical abstract Schematic presentation of the capture of glycoproteins by amorphous titania modified with boric acid.

  15. Density functional theory studies on the electronic, structural, phonon dynamical and thermo-stability properties of bicarbonates MHCO3, M = Li, Na, K

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, J. Karl; Majzoub, Eric H.; Luebke, David R.

    2012-08-01

    The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M = Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy (FPH) calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the {{HCO}}_{3}^{-} groups in LiHCO3 and NaHCO3 form an infinite chain structure through O⋯H⋯O hydrogen bonds. In contrast, the {{HCO}}_{3}^{-} anions form dimers, ({{HCO}}_{3}^{-})_{2}, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical-transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0-900 K, the FPH and the entropies (S) of MHCO3 (M =Li, Na, K) systems vary as FPH(LiHCO3) > FPH(NaHCO3) > FPH(KHCO3) and S(KHCO3) > S(NaHCO3) > S(LiHCO3), respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

  16. High capacity immobilized amine sorbents

    DOEpatents

    Gray, McMahan L [Pittsburgh, PA; Champagne, Kenneth J [Fredericktown, PA; Soong, Yee [Monroeville, PA; Filburn, Thomas [Granby, CT

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  17. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOEpatents

    Greenwood, Margaret S [Richland, WA

    2008-07-08

    A system for determining property of multiphase fluids based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum exhibits peaks whose relative size depends on the properties of the various phases of the multiphase fluid. For example, for particles in a liquid, the peaks exhibit dependence on the particle size and the particle volume fraction. Where the exact relationship is know know a priori, data from different peaks of the same reflection spectrum or data from the peaks of different spectra obtained from different diffraction gratings can be used to resolve the size and volume fraction.

  18. Development of a solid-phase microextraction gas chromatography with microelectron-capture detection method for the determination of 5-bromo-5-nitro-1,3-dioxane in rinse-off cosmetics.

    PubMed

    Fernandez-Alvarez, Maria; Lamas, J Pablo; Sanchez-Prado, Lucia; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta

    2010-10-22

    5-Bromo-5-nitro-1,3-dioxane (bronidox) is a bromine-containing preservative often used in rinse-off cosmetics but also subjected to several restrictions according to the European Cosmetic Products Regulation. Thus, as a part of a quality control procedure, analytical methods for the determination of this compound in different types of cosmetics are required. In the present work, a solvent-free and simple methodology based on solid-phase microextraction (SPME) followed by gas chromatography with microelectron capture detection (GC-μECD) has been developed and validated for the determination of bronidox in cosmetic samples such as shampoos, body cleansers or facial exfoliants. As far as we know, this is the first application of SPME to this preservative. Negative matrix effects due to the complexity of the studied samples were reduced by dilution with ultrapure water. The influence of several factors on the SPME procedure such as fiber coating, extraction temperature, salt addition (NaCl) and sampling mode has been assessed by performing a 2(4)-factorial design. After optimization, the recommended procedure was established as follows: direct solid-phase microextraction (DSPME), using a PDMS/DVB coating, of 10 mL of diluted cosmetic with 20% NaCl, at room temperature, under stirring for 30 min. Using these suggested extraction conditions, linear calibration could be achieved, with limits of detection (LOD) and quantification (LOQ) well below the maximum authorized concentration (0.1%) established by the European legislation. Relative standard deviations (RSD) lower than 10% were obtained for both within a day and among days precision. The method was applied to diverse types of formulations spiked with bronidox at different concentration levels (0.008-0.10%); these samples were quantified by external calibration and satisfactory recoveries (≥ 70%) were obtained in all cases. Finally, the SPME-GC-μECD methodology was applied to the analysis of several cosmetics labeled or not as containing bronidox. The presence of this preservative in some of these samples was confirmed by GC-MS. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Ice Layer Spreading along a Solid Substrate during Solidification of Supercooled Water: Experiments and Modeling.

    PubMed

    Schremb, Markus; Campbell, James M; Christenson, Hugo K; Tropea, Cameron

    2017-05-16

    The thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling. In contrast to recent studies at moderate supercooling, in the case of metallic substrates only a weak influence of the substrate's thermal properties on the ice layer velocity is observed. Using the analytical solution of the two-phase Stefan problem, a semiempirical model for the ice layer velocity is developed. The experimental data are well described for all supercooling levels in the entire diffusion limited solidification regime. For higher supercooling, the model overestimates the freezing velocity due to kinetic effects during molecular attachment at the solid-liquid interface, which are not accounted for in the model. The experimental findings of the present work offer a new perspective on the design of anti-icing systems.

  20. Experimental reconstruction of the Berry curvature in a topological Bloch band

    NASA Astrophysics Data System (ADS)

    Weitenberg, Christof; Flaeschner, Nick; Rem, Benno; Tarnowski, Matthias; Vogel, Dominik; Luehmann, Dirk-Soeren; Sengstock, Klaus

    2016-05-01

    Topological properties lie at the heart of many fascinating phenomena in solid state systems such as quantum Hall systems or Chern insulators. The topology can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Employing fermionic ultracold atoms in a hexagonal optical lattice, we engineer the Berry curvature of the Bloch bands using resonant driving and measure it with full momentum resolution. Our results pave the way to explore intriguing phases of matter with interactions in topological band structures.

  1. Phase separation and the formation of the pyrenoid, a carbon-fixing organelle

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Freeman Rosenzweig, Elizabeth; Mackinder, Luke; Jonikas, Martin; Wingreen, Ned S.

    In the chloroplasts of most algae, the carbon-fixing enzyme Rubisco is concentrated in a non-membrane-bound structure called the pyrenoid, which enables more efficient carbon capture than that of most land plants. In contrast to the long-held assumptions of the field, the pyrenoid matrix is not a solid crystal, but behaves as a phase-separated, liquid-like organelle. In this system, the linker protein EPYC1 is thought to form multivalent specific bonds with Rubisco, and the formation of the pyrenoid occurs via the phase separation of these two associating proteins. Through analytical and numerical studies, we determine a phase diagram for this system. We also show how the length of the linker protein can affect the formation and dissolution of the pyrenoid in an unexpected manner. This new view of the pyrenoid matrix provides important insights into the structure, regulation, and inheritance of pyrenoid. More broadly, our findings give insights into fundamental principles of the architecture and inheritance of liquid-phase organelles.

  2. A variational approach to multi-phase motion of gas, liquid and solid based on the level set method

    NASA Astrophysics Data System (ADS)

    Yokoi, Kensuke

    2009-07-01

    We propose a simple and robust numerical algorithm to deal with multi-phase motion of gas, liquid and solid based on the level set method [S. Osher, J.A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988) 12; M. Sussman, P. Smereka, S. Osher, A level set approach for capturing solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146; J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999; S. Osher, R. Fedkiw, Level Set Methods and Dynamics Implicit Surface, Applied Mathematical Sciences, vol. 153, Springer, 2003]. In Eulerian framework, to simulate interaction between a moving solid object and an interfacial flow, we need to define at least two functions (level set functions) to distinguish three materials. In such simulations, in general two functions overlap and/or disagree due to numerical errors such as numerical diffusion. In this paper, we resolved the problem using the idea of the active contour model [M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321; V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, International Journal of Computer Vision 22 (1997) 61; G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001; R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer-Verlag, 2003] introduced in the field of image processing.

  3. Mechanics of adsorption-deformation coupling in porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yida

    2018-05-01

    This work extends Coussy's macroscale theory for porous materials interacting with adsorptive fluid mixtures. The solid-fluid interface is treated as an independent phase that obeys its own mass, momentum and energy balance laws. As a result, a surface strain energy term appears in the free energy balance equation of the solid phase, which further introduces the so-called adsorption stress in the constitutive equations of the porous skeleton. This establishes a fundamental link between the adsorption characteristics of the solid-fluid interface and the mechanical response of the porous media. The thermodynamic framework is quite general in that it recovers the coupled conduction laws, Gibbs isotherm and the Shuttleworth's equation for surface stress, and imposes no constraints on the magnitude of deformation and the functional form of the adsorption isotherms. A rich variety of coupling between adsorption and deformation is recovered as a result of combining different poroelastic models (isotropic vs. anisotropic, linear vs. nonlinear) and adsorption models (unary vs. mixture adsorption, uncoupled vs. stretch-dependent adsorption). These predictions are discussed against the backdrop of recent experimental data on coal swelling subjected to CO2 and CO2sbnd CH4 injections, showing the capability and versatility of the theory in capturing adsorption-induced deformation of porous materials.

  4. Assessing the performance of the random phase approximation for exchange and superexchange coupling constants in magnetic crystalline solids

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas

    2017-09-01

    The random phase approximation (RPA) for total energies has previously been shown to provide a qualitatively correct description of static correlation in molecular systems, where density functional theory (DFT) with local functionals are bound to fail. This immediately poses the question of whether the RPA is also able to capture the correct physics of strongly correlated solids such as Mott insulators. Due to strong electron localization, magnetic interactions in such systems are dominated by superexchange, which in the simplest picture can be regarded as the analog of static correlation for molecules. In this paper, we investigate the performance of the RPA for evaluating both superexchange and direct exchange interactions in the magnetic solids NiO, MnO, Na3Cu2SbO6,Sr2CuO3,Sr2CuTeO6 , and a monolayer of CrI3, which were chosen to represent a broad variety of magnetic interactions. It is found that the RPA can accurately correct the large errors introduced by Hartree-Fock, independent of the input orbitals used for the perturbative expansion. However, in most cases, accuracies similar to RPA can be obtained with DFT+U, which is significantly simpler from a computational point of view.

  5. Polymer-encapsulated carbon capture liquids that tolerate precipitation of solids for increased capacity

    DOEpatents

    Aines, Roger D; Bourcier, William L; Spadaccini, Christopher M; Stolaroff, Joshuah K

    2015-02-03

    A system for carbon dioxide capture from flue gas and other industrial gas sources utilizes microcapsules with very thin polymer shells. The contents of the microcapsules can be liquids or mixtures of liquids and solids. The microcapsules are exposed to the flue gas and other industrial gas and take up carbon dioxide from the flue gas and other industrial gas and eventual precipitate solids in the capsule.

  6. Automated Online Solid-Phase Derivatization for Sensitive Quantification of Endogenous S-Nitrosoglutathione and Rapid Capture of Other Low-Molecular-Mass S-Nitrosothiols.

    PubMed

    Wang, Xin; Garcia, Carlos T; Gong, Guanyu; Wishnok, John S; Tannenbaum, Steven R

    2018-02-06

    S-Nitrosothiols (RSNOs) constitute a circulating endogenous reservoir of nitric oxide and have important biological activities. In this study, an online coupling of solid-phase derivatization (SPD) with liquid chromatography-mass spectrometry (LC-MS) was developed and applied in the analysis of low-molecular-mass RSNOs. A derivatizing-reagent-modified polymer monolithic column was prepared and adapted for online SPD-LC-MS. Analytes from the LC autosampler flowed through the monolithic column for derivatization and then directly into the LC-MS for analysis. This integration of the online derivatization, LC separation, and MS detection facilitated system automation, allowing rapid, laborsaving, and sensitive detection of RSNOs. S-Nitrosoglutathione (GSNO) was quantified using this automated online method with good linearity (R 2 = 0.9994); the limit of detection was 0.015 nM. The online SPD-LC-MS method has been used to determine GSNO levels in mouse samples, 138 ± 13.2 nM of endogenous GSNO was detected in mouse plasma. Besides, the GSNO concentrations in liver (64.8 ± 11.3 pmol/mg protein), kidney (47.2 ± 6.1 pmol/mg protein), heart (8.9 ± 1.8 pmol/mg protein), muscle (1.9 ± 0.3 pmol/mg protein), hippocampus (5.3 ± 0.9 pmol/mg protein), striatum (6.7 ± 0.6 pmol/mg protein), cerebellum (31.4 ± 6.5 pmol/mg protein), and cortex (47.9 ± 4.6 pmol/mg protein) were also successfully quantified. When the derivatization was performed within 8 min, followed by LC-MS detection, samples could be rapidly analyzed compared with the offline manual method. Other low-molecular-mass RSNOs, such as S-nitrosocysteine and S-nitrosocysteinylglycine, were captured by rapid precursor-ion scanning, showing that the proposed method is a potentially powerful tool for capture, identification, and quantification of RSNOs in biological samples.

  7. Barium Tagging for nEXO

    NASA Astrophysics Data System (ADS)

    Fudenberg, Daniel; Brunner, Thomas; Varentsov, Victor; Devoe, Ralph; Dilling, Jens; Gratta, Giorgio; nEXO Collaboration

    2015-10-01

    nEXO is a next-generation experiment designed to search for 0 νββ -decay of Xe-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the neutrino to be a Majorana particle In order to greatly reduce background contributions to this search, the collaboration is developing several ``barium tagging'' techniques to recover and identify the decay daughter, Ba-136. ``Tagging'' may be available for a 2nd phase of nEXO and will push the sensitivity beyond the inverted neutrino-mass hierarchy. Tagging methods in testing for this phase include Ba-ion capture on a probe with identification by resonance ionization laser spectroscopy, and Ba capture in solid xenon on a cold probe with identification by fluorescence. In addition, Ba tagging for a gas-phase detector, appropriate for a later stage, is being tested. Here efficient ion extraction from heavy carrier gases is key. Detailed gas-dynamic and ion transport calculations have been performed to optimize for ion extraction. An apparatus to extract Ba ions from up to 10 bar xenon gas into vacuum using an RF-only funnel has been constructed and demonstrates extraction of ions from noble gases. We will present this system's status along with results of this R&D program.

  8. Determination of polychlorinated biphenyls in ocean water and bovine milk using crosslinked polymeric ionic liquid sorbent coatings by solid-phase microextraction.

    PubMed

    Joshi, Manishkumar D; Ho, Tien D; Cole, William T S; Anderson, Jared L

    2014-01-01

    Crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were employed in the extraction of 21 polychlorinated biphenyls (PCBs) from ocean water and bovine milk using solid-phase microextraction (SPME). The extraction temperature, time, and concentration of sodium chloride added to the matrix were optimized in order to determine the best extraction conditions for the extraction of PCBs. The analytical performance of the crosslinked PIL-based SPME fibers was compared with a commercial 7 µm polydimethylsiloxane (PDMS) fiber using gas chromatography (GC) employing an electron capture detector (ECD) and mass spectrometric detection (MS). Higher sensitivities for PCBs were achieved using PIL-based fibers when compared to PDMS fiber due to the incorporation of benzyl moieties into the PIL structures. The limits of detection (LOD) for all PCBs were determined to be in the low ng L(-1) range using the three studied coatings. Recovery studies were performed for PCBs in ocean water and bovine milk to validate the applicability of the current SPME method. © 2013 Published by Elsevier B.V.

  9. Boron nitride nanotubes as novel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Zhao, Rusong; Zhi, Chunyi; Wu, Chiman Lawrence

    2014-09-01

    Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol-gel technique were used as sorbent for solid-phase microextraction. Five polycyclic aromatic hydrocarbons with different numbers of aromatic rings were selected as target analysts. Gas chromatography coupled with tandem mass spectrometry was used for detection and quantitative determination. Under optimized conditions, the experimental results show a wide range of linearity (1 to 1,000 ng L(-1)), less than 10.1 % repeatability of relative standard deviation, and low detection limits (0.08 to 0.39 ng L(-1)). In addition, the fabricated fiber offered good thermal and chemical stability. The proposed method was successfully applied for the analysis of real water samples, and satisfactory results were obtained with relative recoveries ranging from 80.2 to 116.8 %. The results demonstrated that BNNTs could be used as sorbent for the analysis of environmental pollutants at trace levels.

  10. Electrodeposited polyaniline as a fiber coating for solid-phase microextraction of organochlorine pesticides from water.

    PubMed

    Li, Xiang; Zhong, Ming; Chen, Jianmin

    2008-08-01

    The study on the performance of polyaniline as a fiber coating for solid-phase microextraction (SPME) purposes has been reported. Polyaniline coatings were directly electrodeposited on the surface of a stainless steel wire and applied for the extraction of some organochlorine pesticides (OCPs) from water samples. Analyses were performed using GC-electron capture detection (GC-ECD). The results obtained show that polyaniline fiber coating is suitable for the successful extraction of organochlorine compounds. This behavior is most probably due to the porous surface structure of polyaniline film, which provides large surface areas and allowed for high extraction efficiency. Experimental parameters such as adsorption and desorption conditions were studied and optimized. The optimized method has an acceptable linearity, with a concentration range of 1-5000 ng/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 12 and 17%, respectively. High environmental resistance and lower cost are among the advantages of polyaniline fibers over commercially available SPME fibers. The developed method was applied to the analysis of real water samples from Yangtse River and Tianmu Lake.

  11. The NETL MFiX Suite of multiphase flow models: A brief review and recent applications of MFiX-TFM to fossil energy technologies

    DOE PAGES

    Li, Tingwen; Rogers, William A.; Syamlal, Madhava; ...

    2016-07-29

    Here, the MFiX suite of multiphase computational fluid dynamics (CFD) codes is being developed at U.S. Department of Energy's National Energy Technology Laboratory (NETL). It includes several different approaches to multiphase simulation: MFiX-TFM, a two-fluid (Eulerian–Eulerian) model; MFiX-DEM, an Eulerian fluid model with a Lagrangian Discrete Element Model for the solids phase; and MFiX-PIC, Eulerian fluid model with Lagrangian particle ‘parcels’ representing particle groups. These models are undergoing continuous development and application, with verification, validation, and uncertainty quantification (VV&UQ) as integrated activities. After a brief summary of recent progress in the verification, validation and uncertainty quantification (VV&UQ), this article highlightsmore » two recent accomplishments in the application of MFiX-TFM to fossil energy technology development. First, recent application of MFiX to the pilot-scale KBR TRIG™ Transport Gasifier located at DOE's National Carbon Capture Center (NCCC) is described. Gasifier performance over a range of operating conditions was modeled and compared to NCCC operational data to validate the ability of the model to predict parametric behavior. Second, comparison of code predictions at a detailed fundamental scale is presented studying solid sorbents for the post-combustion capture of CO 2 from flue gas. Specifically designed NETL experiments are being used to validate hydrodynamics and chemical kinetics for the sorbent-based carbon capture process.« less

  12. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  13. Numerical study of radiative heat transfer and effects of thermal boundary conditions on CLC fuel reactor

    NASA Astrophysics Data System (ADS)

    Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.

    2018-02-01

    Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.

  14. Immunoassay for wheat processing quality: utilization of a sandwich assay incorporating an immobilized single-chain fragment.

    PubMed

    Hill, A S; Giersch, T M; Loh, C S; Skerritt, J H

    1999-10-01

    A single-chain fragment (scFv) was engineered from a monoclonal antibody to high molecular weight glutenin subunits (HMW-GS), wheat flour polypeptides that play a major role in determining the mixing- and extension strength-related properties of dough and its subsequent baking performance. The scFv was expressed in a thioredoxin mutant Escherichia coli strain that allows disulfide bond formation in the cytoplasm and incorporated into a diagnostic test for wheat quality. Although the scFv lacks the more highly conserved antibody constant regions usually involved with immobilization, it was able to be directly immobilized to a polystyrene microwell solid phase without chemical or covalent modification of the protein or solid phase and utilized as a capture antibody in a double-antibody (two-site) immunoassay. In the sandwich assay, increasing HMW-GS concentrations produced increasing assay color, and highly significant correlations were obtained between optical densities obtained in the ELISA using the scFv and the content of large glutenin polymers in flours as well as measures of dough strength as measured by resistance to dough extension in rheological testing. The assay using the scFv was able to be carried out at lower flour sample extract dilutions than that required for a similar assay utilizing a monoclonal capture antibody. This research shows that engineered antibody fragments can be utilized to provide superior assay performance in two-site ELISAs over monoclonal antibodies and is the first application of an engineered antibody to the analysis of food processing quality.

  15. Neuro-genetic multioptimization of the determination of polychlorinated biphenyl congeners in human milk by headspace solid phase microextraction coupled to gas chromatography with electron capture detection.

    PubMed

    Kowalski, Cláudia Hoffmann; da Silva, Gilmare Antônia; Poppi, Ronei Jesus; Godoy, Helena Teixeira; Augusto, Fabio

    2007-02-28

    Polychlorinated biphenyls (PCB) can eventually contaminate breast milk, which is a serious issue to the newborn due to their high vulnerability. Solid phase microextraction (SPME) can be a very convenient technique for their isolation and pre-concentration prior chromatographic analysis. Here, a simultaneous multioptimization strategy based on a neuro-genetic approach was applied to a headspace SPME method for determination of 12 PCB in human milk. Gas chromatography with electron capture detection (ECD) was adopted for the separation and detection of the analytes. Experiments according to a Doehlert design were carried out with varied extraction time and temperature, media ionic strength and concentration of the methanol (co-solvent). To find the best model that simultaneously correlate all PCB peak areas and SPME extraction conditions, a multivariate calibration method based on a Bayesian Neural Network (BNN) was applied. The net output from the neural network was used as input in a genetic algorithm (GA) optimization operation (neuro-genetic approach). The GA pointed out that the best values of the overall SPME operational conditions were the saturation of the media with NaCl, extraction temperature of 95 degrees C, extraction time of 60 min and addition of 5% (v/v) methanol to the media. These optimized parameters resulted in the decrease of the detection limits and increase on the sensitivity for all tested analytes, showing that the use of neuro-genetic approach can be a promising way for optimization of SPME methods.

  16. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties.

    PubMed

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-31

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this "liquid wire" and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  17. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties

    NASA Astrophysics Data System (ADS)

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  18. Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeam

    PubMed Central

    Li, Zejun; Wu, Jiajing; Hu, Zhenpeng; Lin, Yue; Chen, Qi; Guo, Yuqiao; Liu, Yuhua; Zhao, Yingcheng; Peng, Jing; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2017-01-01

    In correlated systems, intermediate states usually appear transiently across phase transitions even at the femtosecond scale. It therefore remains an open question how to determine these intermediate states—a critical issue for understanding the origin of their correlated behaviour. Here we report a surface coordination route to successfully stabilize and directly image an intermediate state in the metal-insulator transition of vanadium dioxide. As a prototype metal-insulator transition material, we capture an unusual metal-like monoclinic phase at room temperature that has long been predicted. Coordinate bonding of L-ascorbic acid molecules with vanadium dioxide nanobeams induces charge-carrier density reorganization and stabilizes metallic monoclinic vanadium dioxide, unravelling orbital-selective Mott correlation for gap opening of the vanadium dioxide metal–insulator transition. Our study contributes to completing phase-evolution pathways in the metal-insulator transition process, and we anticipate that coordination chemistry may be a powerful tool for engineering properties of low-dimensional correlated solids. PMID:28613281

  19. In vivo microsampling to capture the elusive exposome

    NASA Astrophysics Data System (ADS)

    Bessonneau, Vincent; Ings, Jennifer; McMaster, Mark; Smith, Richard; Bragg, Leslie; Servos, Mark; Pawliszyn, Janusz

    2017-03-01

    Loss and/or degradation of small molecules during sampling, sample transportation and storage can adversely impact biological interpretation of metabolomics data. In this study, we performed in vivo sampling using solid-phase microextraction (SPME) in combination with non-targeted liquid chromatography and high-resolution tandem mass spectrometry (LC-MS/MS) to capture the fish tissue exposome using molecular networking analysis, and the results were contrasted with molecular differences obtained with ex vivo SPME sampling. Based on 494 MS/MS spectra comparisons, we demonstrated that in vivo SPME sampling provided better extraction and stabilization of highly reactive molecules, such as 1-oleoyl-sn-glycero-3-phosphocholine and 1-palmitoleoyl-glycero-3-phosphocholine, from fish tissue samples. This sampling approach, that minimizes sample handling and preparation, offers the opportunity to perform longitudinal monitoring of the exposome in biological systems and improve the reliability of exposure-measurement in exposome-wide association studies.

  20. In vivo microsampling to capture the elusive exposome

    PubMed Central

    Bessonneau, Vincent; Ings, Jennifer; McMaster, Mark; Smith, Richard; Bragg, Leslie; Servos, Mark; Pawliszyn, Janusz

    2017-01-01

    Loss and/or degradation of small molecules during sampling, sample transportation and storage can adversely impact biological interpretation of metabolomics data. In this study, we performed in vivo sampling using solid-phase microextraction (SPME) in combination with non-targeted liquid chromatography and high-resolution tandem mass spectrometry (LC-MS/MS) to capture the fish tissue exposome using molecular networking analysis, and the results were contrasted with molecular differences obtained with ex vivo SPME sampling. Based on 494 MS/MS spectra comparisons, we demonstrated that in vivo SPME sampling provided better extraction and stabilization of highly reactive molecules, such as 1-oleoyl-sn-glycero-3-phosphocholine and 1-palmitoleoyl-glycero-3-phosphocholine, from fish tissue samples. This sampling approach, that minimizes sample handling and preparation, offers the opportunity to perform longitudinal monitoring of the exposome in biological systems and improve the reliability of exposure-measurement in exposome-wide association studies. PMID:28266605

  1. Modeling of circulating fluised beds for post-combustion carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.; Shadle, L.; Miller, D.

    2011-01-01

    A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.

  2. Experimental reconstruction of the Berry curvature in a Floquet Bloch band

    NASA Astrophysics Data System (ADS)

    Fläschner, N.; Rem, B. S.; Tarnowski, M.; Vogel, D.; Lühmann, D.-S.; Sengstock, K.; Weitenberg, C.

    2016-05-01

    Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved measurement of the ensuing Berry curvature. Our results pave the way to explore intriguing phases of matter with interactions in topological band structures.

  3. Flying MOFs: polyamine-containing fluidized MOF/SiO 2 hybrid materials for CO 2 capture from post-combustion flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luz, Ignacio; Soukri, Mustapha; Lail, Marty

    Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.

  4. Flying MOFs: polyamine-containing fluidized MOF/SiO 2 hybrid materials for CO 2 capture from post-combustion flue gas

    DOE PAGES

    Luz, Ignacio; Soukri, Mustapha; Lail, Marty

    2018-01-01

    Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.

  5. Development of solid - based paper strips for rapid diagnosis of Pseudorabies infection.

    PubMed

    Joon Tam, Yew; Mohd Lila, Mohd Azmi; Bahaman, Abdul Rani

    2004-12-01

    Pseudorabies (Aujeszky's disease) is an economically significant disease of swine known to cause central nervous disorders, respiratory disease, reproductive failure and mortality in infected pigs. In attempts to eradicate the disease from becoming endemic, early detection is important to prevent further economic losses and to allow for detection and removal of infected pigs in domestic herds. Thus, a rapid and sensitive technique is necessary for the detection of the virus. For rapid and simple examination, an immuno - chromatographic lateral - flow assay system based on immunologic recognition of specific pseudorabies virus antigen was developed by utilising, as signal generator, colloidal gold conjugated to secondary antibody to detect primary or sample antibody in the sera of pseudorabies infected animals. The pseudorabies virus used as a capture antigen in the test strip was first cultivated in VERO cell culture and then purified by sucrose gradient separation to produce the viral protein concentration of 3.8 mg/ml. The standard pseudorabies antigens reacted well with the hyperimmune serum (HIS). The antibody detection system is basically composed of colloidal gold - labelled antibodies fixed on a conjugate pad, and the complementary pseudorabies antigen immobilised onto a nitrocellulose membrane forming capture zone. If the target antibody is present in a specimen, the colloidal gold-labelled antibody will form a complex with the antibody sample. Subsequently, the formed complex will migrate to the capture zone and is then bound to the solid phase via antigen - antibody interaction. As a result, a signal marker is generated by the accumulation of colloidal gold for detection confirmation. The results obtained demonstrated that the optimum combination of pseudorabies antigen needed as the capture reagent and gold conjugate as secondary antibody recognition marker was at a concentration of 0.38mg/ml and at 1:10 dilution factor respectively. The sensitivity of the solid - based test strip towards pseudorabies antibodies was high with a detection limit of 1 to 10,000 - dilution factor. The specificity of the assay was 100% with no cross - reaction being observed with other sera or antibodies. Accurate reading time needed for confirmation of the assay can be completed in 5 min with a whole blood sample of 25 microl. The colloidal gold - labelled antibody is stable at room temperature for 6 months or more (data not shown). Findings from this study indicated that the solid - based test strip assay system provided high sensitivity and specificity for the detection of pseudorabies at low levels of antibody concentration. The assay was rapid, simple, cheap, and does not require any sophisticated equipment. Thus, the solid based test strip will be a useful serological screening technique or for rapid diagnosis of an infectious disease in target populations of animals characterised by heterogeneous antibody responses.

  6. Adapting phase-switch Monte Carlo method for flexible organic molecules

    NASA Astrophysics Data System (ADS)

    Bridgwater, Sally; Quigley, David

    2014-03-01

    The role of cholesterol in lipid bilayers has been widely studied via molecular simulation, however, there has been relatively little work on crystalline cholesterol in biological environments. Recent work has linked the crystallisation of cholesterol in the body with heart attacks and strokes. Any attempt to model this process will require new models and advanced sampling methods to capture and quantify the subtle polymorphism of solid cholesterol, in which two crystalline phases are separated by a phase transition close to body temperature. To this end, we have adapted phase-switch Monte Carlo for use with flexible molecules, to calculate the free energy between crystal polymorphs to a high degree of accuracy. The method samples an order parameter , which divides a displacement space for the N molecules, into regions energetically favourable for each polymorph; which is traversed using biased Monte Carlo. Results for a simple model of butane will be presented, demonstrating that conformational flexibility can be correctly incorporated within a phase-switching scheme. Extension to a coarse grained model of cholesterol and the resulting free energies will be discussed.

  7. A Liquid Phase Affinity Capture Assay Using Magnetic Beads to Study Protein-Protein Interaction: The Poliovirus-Nanobody Example

    PubMed Central

    Schotte, Lise; Rombaut, Bart; Thys, Bert

    2012-01-01

    In this article, a simple, quantitative, liquid phase affinity capture assay is presented. Provided that one protein can be tagged and another protein labeled, this method can be implemented for the investigation of protein-protein interactions. It is based on one hand on the recognition of the tagged protein by cobalt coated magnetic beads and on the other hand on the interaction between the tagged protein and a second specific protein that is labeled. First, the labeled and tagged proteins are mixed and incubated at room temperature. The magnetic beads, that recognize the tag, are added and the bound fraction of labeled protein is separated from the unbound fraction using magnets. The amount of labeled protein that is captured can be determined in an indirect way by measuring the signal of the labeled protein remained in the unbound fraction. The described liquid phase affinity assay is extremely useful when conformational conversion sensitive proteins are assayed. The development and application of the assay is demonstrated for the interaction between poliovirus and poliovirus recognizing nanobodies1. Since poliovirus is sensitive to conformational conversion2 when attached to a solid surface (unpublished results), the use of ELISA is limited and a liquid phase based system should therefore be preferred. An example of a liquid phase based system often used in polioresearch3,4 is the micro protein A-immunoprecipitation test5. Even though this test has proven its applicability, it requires an Fc-structure, which is absent in the nanobodies6,7. However, as another opportunity, these interesting and stable single-domain antibodies8 can be easily engineered with different tags. The widely used (His)6-tag shows affinity for bivalent ions such as nickel or cobalt, which can on their turn be easily coated on magnetic beads. We therefore developed this simple quantitative affinity capture assay based on cobalt coated magnetic beads. Poliovirus was labeled with 35S to enable unhindered interaction with the nanobodies and to make a quantitative detection feasible. The method is easy to perform and can be established with a low cost, which is further supported by the possibility of effectively regenerating the magnetic beads. PMID:22688388

  8. Phosphopeptide Enrichment by Covalent Chromatography after Derivatization of Protein Digests Immobilized on Reversed-Phase Supports

    PubMed Central

    Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue

    2013-01-01

    A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O-GlcNAc)-modified counterparts. Solid-phase enzymatic dephosphorylation proved to be a viable tool to condition O-GlcNAcylated peptide in mixtures with phosphopeptides for selective affinity purification. Acetylation, as an integral step of the sample-preparation method, precluded reduction in recovery of the thiolation substrate caused by intrapeptide lysine-dehydroalanine cross-link formation. The solid-phase analytical platform provides robustness and simplicity of operation using equipment readily available in most biological laboratories and is expected to accommodate additional chemistries to expand the scope of solid-phase serial derivatization for protein structural characterization. PMID:23997662

  9. Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: origins, current status and discussion.

    PubMed

    Brammer, Lee

    2017-10-13

    The role of the closing lecture in a Faraday Discussion is to summarise the contributions made to the Discussion over the course of the meeting and in so doing capture the main themes that have arisen. This article is based upon my Closing Remarks Lecture at the 203 rd Faraday Discussion meeting on Halogen Bonding in Supramolecular and Solid State Chemistry, held in Ottawa, Canada, on 10-12 th July, 2017. The Discussion included papers on fundamentals and applications of halogen bonding in the solid state and solution phase. Analogous interactions involving main group elements outside group 17 were also examined. In the closing lecture and in this article these contributions have been grouped into the four themes: (a) fundamentals, (b) beyond the halogen bond, (c) characterisation, and (d) applications. The lecture and paper also include a short reflection on past work that has a bearing on the Discussion.

  10. Method development for the analysis of organophosphate and pyrethroid insecticides at low parts per trillion levels in water.

    PubMed

    Wang, Dongli; Weston, Donald P; Lydy, Michael J

    2009-06-15

    In the current study, organophosphate and pyrethroid insecticides including diazinon, chlorpyrifos, bifenthrin, fenpropathrin, permethrin, lambda-cyhalothrin, cyfluthrin, cypermethrin, esfenvalerate and deltamethrin were analyzed in laboratory and field-collected water samples. Water samples were extracted and analyzed by gas chromatography/electron capture detector (GC/ECD) and gas chromatography/nitrogen-phosphorous detector (GC/NPD). Comparison of results from liquid-liquid extraction and subsequent normal phase solid-phase extraction cleanup (LLE-NPSPE), and reversed phase solid-phase extraction (RPSPE) showed that LLE-NPSPE was the better choice to extract trace amounts of pesticides from water. Pesticide recoveries from four spiked water samples using LLE-NPSPE ranged from 63.2 to 148.8% at four spiking concentrations. Method detection limits were 0.72-1.69 ng/L using four different water sources. The stability of the target pesticides in lake water was investigated at 4 degrees C for 1h, 1d, 4d, and 7d under three conditions: (1) water samples only; (2) with 20 mL hexane used as a keeper solvent; and (3) with acidification to pH 2 with HCl. Results showed that water storage without treatment resulted in slow degradation of some pesticides with storage time, storage using water acidification led to significant degradation and loss of diazinon and chlorpyrifos, while water storage with hexane as a keeper solvent showed good stability for all of the target pesticides over the 7d storage period.

  11. Simultaneous analysis of organochlorine pesticides and polychlorinated biphenyls in air samples by using accelerated solvent extraction (ASE) and solid-phase micro-extraction (SPME) coupled to gas chromatography dual electron capture detection.

    PubMed

    Mokbel, Haifaa; Al Dine, Enaam Jamal; Elmoll, Ahmad; Liaud, Céline; Millet, Maurice

    2016-04-01

    An analytical method associating accelerated solvent extraction (ASE) and solid-phase micro-extraction (SPME) in immersion mode combined with gas chromatography dual electrons capture detectors (SPME-GC-2ECD) has been developed and studied for the simultaneous determination of 19 organochlorine pesticides (OCPs) and 22 polychlorinated biphenyls (PCBs) in air samples (active and XAD-2 passive samplers). Samples were extracted with ASE with acetonitrile using the following conditions: temperature, 150 °C; pressure, 1500 psi; static, 15 min; cycles, 3; purge, 300 s; flush, 100 %. Extracts were reduced to 1 mL, and 500 μL of this extract, filled with deionised water, was subject to SPME extraction. Experimental results indicated that the proposed method attained the best extraction efficiency under the optimised conditions: extraction of PCB-OCP mixture using 100-μm PDMS fibre at 80 °C for 40 min with no addition of salt. The performance of the proposed ASE-SPME-GC-2ECD methodology with respect to linearity, limit of quantification and detection was evaluated by spiking of XAD-2 resin with target compounds. The regression coefficient (R (2)) of most compounds was found to be high of 0.99. limits of detection (LODs) are between 0.02 and 4.90 ng m(-3), and limits of quantification (LOQs) are between 0.05 and 9.12 ng m(-3) and between 0.2 and 49 ng/sampler and 0.52 and 91 ng/sampler, respectively, for XAD-2 passive samplers. Finally, a developed procedure was applied to determine selected PCBs and OCPs in the atmosphere.

  12. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  13. Solid-phase microextraction coupled to gas chromatography for the determination of 2,3-dimethyl-2,3-dinitrobutane as a marking agent for explosives.

    PubMed

    Li, Xiujuan; Zeng, Zhaorui; Zeng, Yi

    2007-06-15

    This paper investigates the detection of 2,3-dimethyl-2,3-dinitrobutane (DMNB), a marking agent in explosives, by gas chromatography (GC) with electron capture detection using solid-phase microextraction (SPME) as a sample preparation technique. The 25,27-dihydroxy-26,28-oxy (2',7'-dioxo-3',6'-diazaoctyl) oxy-p-tert-butylcalix[4]arene/hydroxy-terminated silicone oil coated fiber was highly sensitive to trap DMNB from ammonium nitrate matrix. The analysis was performed by extracting 2g of explosives for 30s at room temperature and then immediately introducing into the heated GC injector for 1min of thermal desorption. The method showed good linearity in the range from 0.01 to 1.0mug/g. The relative standard deviations for these extractions were <8%. The calculated limit of detection for DMNB (S/N=3) was 4.43x10(-4)mug/g, which illustrates that the proposed systems are suitable for explosive detection at trace level. This is the first report of an SPME-GC system shown to extract marking agent in explosives for subsequent detection in a simple, rapid, sensitive, and inexpensive manner.

  14. Determination of organochlorine pesticide and polychlorinated biphenyl residues in fatty fish by tandem solid-phase extraction cleanup.

    PubMed

    Schenck, F J; Calderon, L; Podhorniak, L V

    1996-01-01

    A rapid, multiresidue solid-phase extraction (SPE) technique for determination of organochlorine pesticide and polychlorinated biphenyl (PCB) residues in nonfatty fish was modified for use with fatty fish. In the modified procedures, samples are extracted with acetonitrile, and the extract is cleaned up with both C18 and Florisil SPE columns. Residues are determined by gas chromatography with electron capture detection. The original method was modified for use with fatty fish by reducing the amount of tissue extracted and by using an improved Florisil SPE cleanup. Recovery data are presented for 24 fortified organochlorine pesticide residues (0.12 ppm) and 3 fortified PCB residues (0.80 ppm) from flounder, bluefish, and shad samples, which contained 0.8, 5.4, and 22.6% fat, respectively. For the 3 types of fish, recoveries of 23 of 24 fortified organochlorine pesticide residues ranged from 55 to 129%, and recoveries of 3 fortified PCB residues ranged from 55 to 104%. There were no significant differences in recovery based on fish species and/or fat content for the majority of residues studied. This SPE method and the official AOAC method yielded comparable results for fish containing incurred organochlorine residues.

  15. Multivariate optimization of the factors influencing the solid-phase microextraction of pyrethroid pesticides in water.

    PubMed

    Casas, Vanessa; Llompart, Maria; García-Jares, Carmen; Cela, Rafael; Dagnac, Thierry

    2006-08-18

    A method based on solid-phase microextraction (SPME) and gas chromatography with micro-electron capture detection (GC-microECD) has been optimized for the analysis of pyrethroids in water samples. The influence of parameters such as temperature, fibre coating, salting-out effect and sampling mode on the extraction efficiency has been studied by means of a mix-level factorial design, which allowed the study of main effects as well as two factor interactions. Finally, a method based on direct SPME at 50 degrees C, using polydimethylsiloxane fibre is proposed. The method showed good linearity (R2>0.995) and repeatability (RSD

  16. Ionic liquid-mediated molecularly imprinted solid-phase extraction coupled with gas chromatography-electron capture detector for rapid screening of dicofol in vegetables.

    PubMed

    Yan, Hongyuan; Sun, Ning; Han, Yehong; Yang, Chen; Wang, Mingyu; Wu, Ruijun

    2013-09-13

    New ionic liquid-mediated molecularly imprinted polymers (IL-MIPs) were prepared by precipitation polymerization using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM(+)PF6(-)) as the auxiliary solvent, α-chloro-DDT as the dummy template, and they were successfully applied as the sorbents of solid-phase extraction (SPE) for rapid screening of dicofol from cabbage, tomato, and carrot samples. The IL-MIPs were characterized by FTIR, FE-SEM, static adsorption and chromatographic evaluation, and the results revealed that the IL-MIPs had higher adsorption capacity and selectivity to dicofol in aqueous solution than that of ionic liquid-mediated non-imprinted polymers (IL-NIPs) and non-imprinted polymers (NIPs). Under the optimized conditions, the IL-MIPs-SPE-GC method offered good linearity (0.4-40.0ngg(-1), r(2)=0.9995) and the average recoveries of dicofol at three spiked levels were in a range of 84.6-104.1% (n=3) with RSD≤7.6%. The proposed method obviously improved the selectivity and purification effect, and eliminated the effect of template leakage on dicofol quantitative analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection.

    PubMed

    Wu, Mingxue; Chen, Gang; Liu, Ping; Zhou, Weihong; Jia, Qiong

    2016-01-07

    A novel hybrid material incorporating porous aromatic frameworks and an ionic liquid, 1-(triethoxy silyl)propyl-3-aminopropyl imidazole hexafluorophosphate, was prepared as solid-phase microextraction coating and employed for the extraction of organochlorine pesticides. Combining the advantages of porous aromatic frameworks and an ionic liquid, the fiber exhibited a high adsorption capacity for organochlorine pesticides. Under optimized experimental conditions, enhancement factors of 247-1696 were obtained with good linearity in the range of 1-500 μg L(-1). The detection limits and quantification limits were determined to be in the range of 0.11-0.29 μg L(-1) and 0.35-0.93 μg L(-1). The relative standard deviations for six replicates of organochlorine pesticides were in the range of 4.4%-7.2% and 5.7%-10.1% for one fiber and fiber-to-fiber, respectively. By coupling with a gas chromatography-electron capture detector, the novel fiber was successfully used for the determination of organochlorine pesticides in juice and milk samples with recoveries of 76.1%-121.3%.

  18. [Determination of three phenoxyalkanoic acid herbicides in blood using gas chromatography coupled with solid-phase extraction and derivatization].

    PubMed

    Xin, Guobin; Tan, Jiayi; Yao, Lijuan; Zhu, Yu; Jiang, Zhaolin; Song, Hui

    2008-01-01

    A method for the determination of three phenoxyalkanoic acid herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 2-(2,4-dichlorophenoxy)-propanoic acid (2,4-DP), and 4-chloro-2-methylphenoxy-acetic acid (MCPA), in blood was developed. The blood sample was diluted with 0.1 mol/L hydrochloric acid, and extracted by solid-phase extraction using porous resin GDX401 as adsorbent and ethyl ether as eluent. The extract was esterified with dichloropropanol in the presence of sulfuric acid as catalyst. The derivatives were analysed by gas chromatography with electron-capture detection. The detection limits of 2,4-D, 2,4-DP and MCPA were 20, 8 and 40 ng/mL, respectively. In quantitative analysis, 2,4-dichlorophenylacetic acid was used as an internal standard. The linear relationships and recoveries were satisfactory. The derivatization of the three herbicides with methanol, ethanol, n-propanol, n-butanol, and trifluoroethanol were also studied, and the analytical methods of these derivatization were compared with that of dichloropropanol as esterifying agent. The method is sensitive enough for the examination of the poison samples in actual.

  19. An adsorption of carbon dioxide on activated carbon controlled by temperature swing adsorption

    NASA Astrophysics Data System (ADS)

    Tomas, Korinek; Karel, Frana

    2017-09-01

    This work deals with a method of capturing carbon dioxide (CO2) in indoor air. Temperature Swing Adsorption (TSA) on solid adsorbent was chosen for CO2 capture. Commercial activated carbon (AC) in form of extruded pellets was used as a solid adsorbent. There was constructed a simple device to testing effectiveness of CO2 capture in a fixed bed with AC. The TSA cycle was also simulated using the open-source software OpenFOAM. There was a good agreement between results obtained from numerical simulations and experimental data for adsorption process.

  20. Supported inhibitor for fishing lipases in complex biological media and mass spectrometry identification.

    PubMed

    Delorme, Vincent; Raux, Brigitt; Puppo, Rémy; Leclaire, Julien; Cavalier, Jean-François; Marc, Sylvain; Kamarajugadda, Pavan-Kumar; Buono, Gérard; Fotiadu, Frédéric; Canaan, Stéphane; Carrière, Frédéric

    2014-12-01

    A synthetic phosphonate inhibitor designed for lipase inhibition but displaying a broader range of activity was covalently immobilized on a solid support to generate a function-directed tool targeting serine hydrolases. To achieve this goal, straightforward and reliable analytical techniques were developed, allowing the monitoring of the solid support's chemical functionalization, enzyme capture processes and physisorption artifacts. This grafted inhibitor was tested on pure lipases and serine proteases from various origins, and assayed for the selective capture of lipases from several complex biological extracts. The direct identification of captured enzymes by mass spectrometry brought the proof of concept on the efficiency of this supported covalent inhibitor. The features and limitations of this "enzyme-fishing" proteomic tool provide new insight on solid-liquid inhibition process. Copyright © 2014. Published by Elsevier B.V.

  1. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions.

    PubMed

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From this solid basis, connectivity studies of the human sexual response have begun to add a deeper understanding of the brain network function and structure involved. The study of "sexual" brain connectivity is still very young. Yet, by approaching the brain as a connected organ, the essence of brain function is captured much more accurately, increasing the likelihood of finding useful biomarkers and targets for intervention in sexual dysfunction.

  2. Methane generation from waste materials

    DOEpatents

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  3. A phase field model for segregation and precipitation induced by irradiation in alloys

    NASA Astrophysics Data System (ADS)

    Badillo, A.; Bellon, P.; Averback, R. S.

    2015-04-01

    A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni-Si and Al-Zn undersaturated solid solutions subjected to irradiation.

  4. Dual phase high-temperature membranes for CO2 separation - performance assessment in post- and pre-combustion processes.

    PubMed

    Anantharaman, Rahul; Peters, Thijs; Xing, Wen; Fontaine, Marie-Laure; Bredesen, Rune

    2016-10-20

    Dual phase membranes are highly CO 2 -selective membranes with an operating temperature above 400 °C. The focus of this work is to quantify the potential of dual phase membranes in pre- and post-combustion CO 2 capture processes. The process evaluations show that the dual phase membranes integrated with an NGCC power plant for CO 2 capture are not competitive with the MEA process for post-combustion capture. However, dual phase membrane concepts outperform the reference Selexol technology for pre-combustion CO 2 capture in an IGCC process. The two processes evaluated in this work, post-combustion NGCC and pre-combustion IGCC, represent extremes in CO 2 partial pressure fed to the separation unit. Based on the evaluations it is expected that dual phase membranes could be competitive for post-combustion capture from a pulverized coal fired power plant (PCC) and pre-combustion capture from an Integrated Reforming Cycle (IRCC).

  5. Modified sedimentation-dispersion model for solids in a three-phase slurry column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.N.; Ruether, J.A.; Shah, Y.T.

    1986-03-01

    Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less

  6. Bench Scale Process for Low Cost CO 2 Capture Using a PhaseChanging Absorbent: Techno-Economic Analysis Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miebach, Barbara; McDuffie, Dwayne; Spiry, Irina

    The objective of this project is to design and build a bench-scale process for a novel phase-changing CO 2 capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO 2 capture absorbent for post-combustion capture of CO 2 from coal-fired power plants with 90% capture efficiency and 95% CO 2 purity at a cost of $40/tonne of CO 2 captured by 2025 and a cost of <$10/tonne of CO 2 captured by 2035. This report presents system and economic analysis for a process that uses a phase changing aminosilicone solvent to remove COmore » 2 from pulverized coal (PC) power plant flue gas. The aminosilicone solvent is a pure 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (GAP-0). Performance of the phase-changing aminosilicone technology is compared to that of a conventional carbon capture system using aqueous monoethanolamine (MEA). This analysis demonstrates that the aminosilicone process has significant advantages relative to an MEA-based system. The first-year CO 2 removal cost for the phase-changing CO 2 capture process is $52.1/tonne, compared to $66.4/tonne for the aqueous amine process. The phase-changing CO 2 capture process is less costly than MEA because of advantageous solvent properties that include higher working capacity, lower corrosivity, lower vapor pressure, and lower heat capacity. The phase-changing aminosilicone process has approximately 32% lower equipment capital cost compared to that of the aqueous amine process. However, this solvent is susceptible to thermal degradation at CSTR desorber operating temperatures, which could add as much as $88/tonne to the CO 2 capture cost associated with solvent makeup. Future work is focused on mitigating this critical risk by developing an advanced low-temperature desorber that can deliver comparable desorption performance and significantly reduced thermal degradation rate.« less

  7. Solid-phase microextraction with temperature-programmed desorption for the analysis of iodination disinfection byproducts.

    PubMed

    Frazey, P A; Barkley, R M; Sievers, R E

    1998-02-01

    An analytical approach for the determination of chlorination and iodination disinfection byproducts based on solid-phase microextraction (SPME) was developed. Solid-phase microextraction presents a simple, rapid, sensitive, and solvent-free approach to sample preparation in which analytes in either air or water matrixes are extracted into the polymeric coating of an optical fiber. Analytes are subsequently thermally desorbed in the injection port of a gas chromatograph for separation, detection, and quantitation. Thermal degradation of iodoform was observed during desorption from a polyacrylate fiber in initial GC/MS and GC/ECD experiments. Experiments were designed to determine SPME conditions that would allow quantification without significant degradation of analytes. Isothermal and temperature-programmed thermal desorptions were evaluated for efficacy in transferring analytes with wide-ranging volatilities and thermal stabilities into chromatographic analysis columns. A temperature-programmed desorption (TPD) (120-200 degrees C at 5 degrees C/min with an on-column injection port or 150-200 degrees C at 25 degrees C/min with a split/splitless injection port) was able to efficiently remove analytes with wide-ranging volatilities without causing thermal degradation. The SPME-TPD method was linear over 2-3 orders of magnitude with an electron capture detector and detection limits were in the submicrogram per liter range. Precision and detection limits for selected trihalomethanes were comparable to those of EPA method 551. Extraction efficiencies were not affected by the presence of 10 mg/L soap, 15 mg/L sodium iodide, and 6000 mg/L sodium thiosulfate. The SPME-TPD technique was applied to the determination of iodination disinfection byproducts from individual precursor compounds using GC/MS and to the quantitation of iodoform at trace levels in a water recycle system using GC/ECD.

  8. Substrate-Independent Epitaxial Growth of the Metal-Organic Framework MOF-508a.

    PubMed

    Wilson, M; Barrientos-Palomo, S N; Stevens, P C; Mitchell, N L; Oswald, G; Nagaraja, C M; Badyal, J P S

    2018-01-31

    Plasmachemical deposition is a substrate-independent method for the conformal surface functionalization of solid substrates. Structurally well-defined pulsed plasma deposited poly(1-allylimidazole) layers provide surface imidazole linker groups for the directed liquid-phase epitaxial (layer-by-layer) growth of metal-organic frameworks (MOFs) at room temperature. For the case of microporous [Zn (benzene-1,4-dicarboxylate)-(4,4'-bipyridine) 0.5 ] (MOF-508), the MOF-508a polymorph containing two interpenetrating crystal lattice frameworks undergoes orientated Volmer-Weber growth and displays CO 2 gas capture behavior at atmospheric concentrations in proportion to the number of epitaxially grown MOF-508 layers.

  9. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models

    DOE PAGES

    Das, Sumanta; Yang, Pu; Singh, Sudhanshu S.; ...

    2015-09-02

    Microstructural and micromechanical investigation of a fly ash-based geopolymer using: (i) synchrotron x-ray tomography (XRT) to determine the volume fraction and tortuosity of pores that are influential in fluid transport, (ii) mercury intrusion porosimetry (MIP) to capture the volume fraction of smaller pores, (iii) scanning electron microscopy (SEM) combined with multi-label thresholding to identify and characterize the solid phases in the microstructure, and (iv) nanoindentation to determine the component phase elastic properties using statistical deconvolution, is reported in this paper. The phase volume fractions and elastic properties are used in multi-step mean field homogenization (Mori- Tanaka and double inclusion) modelsmore » to determine the homogenized macroscale elastic modulus of the composite. The homogenized elastic moduli are in good agreement with the flexural elastic modulus determined on macroscale paste beams. As a result, the combined use of microstructural and micromechanical characterization tools at multiple scales provides valuable information towards the material design of fly ash geopolymers.« less

  10. A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.

    2015-11-01

    In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme

  11. Reactions of Microsolvated Organic Compounds at Ambient Surfaces: Droplet Velocity, Charge State, and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Badu-Tawiah, Abraham K.; Campbell, Dahlia I.; Cooks, R. Graham

    2012-06-01

    The exposure of charged microdroplets containing organic ions to solid-phase reagents at ambient surfaces results in heterogeneous ion/surface reactions. The electrosprayed droplets were driven pneumatically in ambient air and then electrically directed onto a surface coated with reagent. Using this reactive soft landing approach, acid-catalyzed Girard condensation was achieved at an ambient surface by directing droplets containing Girard T ions onto a dry keto-steroid. The charged droplet/surface reaction was much more efficient than the corresponding bulk solution-phase reaction performed on the same scale. The increase in product yield is ascribed to solvent evaporation, which causes moderate pH values in the starting droplet to reach extreme values and increases reagent concentrations. Comparisons are made with an experiment in which the droplets were pneumatically accelerated onto the ambient surface (reactive desorption electrospray ionization, DESI). The same reaction products were observed but differences in spatial distribution were seen associated with the "splash" of the high velocity DESI droplets. In a third type of experiment, the reactions of charged droplets with vapor phase reagents were examined by allowing electrosprayed droplets containing a reagent to intercept the headspace vapor of an analyte. Deposition onto a collector surface and mass analysis showed that samples in the vapor phase were captured by the electrospray droplets, and that instantaneous derivatization of the captured sample is possible in the open air. The systems examined under this condition included the derivatization of cortisone vapor with Girard T and that of 4-phenylpyridine N-oxide and 2-phenylacetophenone vapors with ethanolamine.

  12. Field trials of solid triple lure (trimedlure, methyl eugenol, raspberry ketone, and DDVP) dispensers for detection and male annihilation of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Souder, Steven K; Mackey, Bruce; Cook, Peter; Morse, Joseph G; Stark, John D

    2012-10-01

    Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers and Mallet CMR (ceralure, ME, RK, benzyl acetate) wafers impregnated with DDVP (2,2-dichlorovinyl dimethyl phosphate) insecticide were measured in traps as potential detection and male annihilation technique (MAT) devices. Comparisons were made with 1) liquid lure and insecticide formulations, 2) solid cones and plugs with an insecticidal strip, and 3) solid single and double lure wafers with DDVP for captures of Mediterranean fruit fly, Ceratitis capitata (Wiedemann); oriental fruit fly, Bactrocera dorsalis Hendel; and melon fly, B. cucurbitae Coquillett. Bucket and Jackson traps were tested in a coffee plantation near Eleele, Kauai Island, HI (trials at high populations) and avocado orchards near Kona, HI Island, HI (trials at low populations). Captures of all three species with Mallet TMR were not different from Mallet CMR; therefore, subsequent experiments did not include Mallet CMR because of higher production costs. In MAT trials near Eleele, HI captures in AWPM traps with Mallet TMR wafers were equal to any other solid lure (single or double) except the Mallet ME wafer. In survey trials near Kona, captures of C. capitata, B. cucurbitae, and B. dorsalis with Mallet TMR wafers were equal to those for the standard TML, ME, and C-L traps used in FL and CA. A solid Mallet TMR wafer is safer, more convenient to handle, and may be used in place of several individual lure and trap systems, potentially reducing costs of large survey and detection programs in Florida and California, and MAT programs in Hawaii.

  13. Measuring the Nonuniform Evaporation Dynamics of Sprayed Sessile Microdroplets with Quantitative Phase Imaging.

    PubMed

    Edwards, Chris; Arbabi, Amir; Bhaduri, Basanta; Wang, Xiaozhen; Ganti, Raman; Yunker, Peter J; Yodh, Arjun G; Popescu, Gabriel; Goddard, Lynford L

    2015-10-13

    We demonstrate real-time quantitative phase imaging as a new optical approach for measuring the evaporation dynamics of sessile microdroplets. Quantitative phase images of various droplets were captured during evaporation. The images enabled us to generate time-resolved three-dimensional topographic profiles of droplet shape with nanometer accuracy and, without any assumptions about droplet geometry, to directly measure important physical parameters that characterize surface wetting processes. Specifically, the time-dependent variation of the droplet height, volume, contact radius, contact angle distribution along the droplet's perimeter, and mass flux density for two different surface preparations are reported. The studies clearly demonstrate three phases of evaporation reported previously: pinned, depinned, and drying modes; the studies also reveal instances of partial pinning. Finally, the apparatus is employed to investigate the cooperative evaporation of the sprayed droplets. We observe and explain the neighbor-induced reduction in evaporation rate, that is, as compared to predictions for isolated droplets. In the future, the new experimental methods should stimulate the exploration of colloidal particle dynamics on the gas-liquid-solid interface.

  14. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  15. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-emore » project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.« less

  16. Clean-in-Place and Reliability Testing of a Commercial 12.5-cm Annular Centrifugal Contactor at the INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. G. Garn; D. H. Meikrantz

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitatesmore » brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.« less

  17. Clean-in-Place and Reliability Testing of a Commercial 12.5 cm Annular Centrifugal Contactor at the INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. G. Garn; D. H. Meikrantz

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitatesmore » brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.« less

  18. Nanolayered Features of Collagen-like Peptides

    NASA Technical Reports Server (NTRS)

    Valluzzi, Regina; Bini, Elisabetta; Haas, Terry; Cebe, Peggy; Kaplan, David L.

    2003-01-01

    We have been investigating collagen-like model oligopeptides as molecular bases for complex ordered biomimetic materials. The collagen-like molecules incorporate aspects of native collagen sequence and secondary structure. Designed modifications to native primary and secondary structure have been incorporated to control the nanostructure and microstructure of the collagen-like materials produced. We find that the collagen-like molecules form a number of lyotropic rod liquid crystalline phases, which because of their strong temperature dependence in the liquid state can also be viewed as solvent intercalated thermotropic liquid crystals. The liquid crystalline phases formed by the molecules can be captured in the solid state by drying off solvent, resulting in solid nanopatterned (chemically and physically) thermally stable (to greater than 100 C) materials. Designed sequences which stabilize smectic phases have allowed a variety of nanoscale multilayered biopolymeric materials to be developed. Preliminary investigations suggest that chemical patterns running perpendicular to the smectic layer plane can be functionalized and used to localize a variety of organic, inorganic, and organometallic moieties in very simple multilayered nanocomposites. The phase behavior of collagen-like oligopeptide materials is described, emphasizing the correlation between mesophase, molecular orientation, and chemical patterning at the microscale and nanoscale. In many cases, the textures observed for smectic and hexatic phase collagens are remarkably similar to the complex (and not fully understood) helicoids observed in biological collagen-based tissues. Comparisons between biological morphologies and collagen model liquid crystalline (and solidified materials) textures may help us understand the molecular features which impart order and function to the extracellular matrix and to collagen-based mineralized tissues. Initial studies have utilized synthetic collagen-like peptides while future work will also focus on similar sequences generated via genetic engineering methods.

  19. Materials and processes for the effective capture and immobilization of radioiodine: A review

    DOE PAGES

    Riley, Brian J.; Vienna, John D.; Strachan, Denis M.; ...

    2015-12-02

    In this study, the immobilization of radioiodine produced from reprocessing used nuclear fuel is a growing priority for research and development of nuclear waste forms. This review provides a comprehensive summary of the current issues surrounding processing and containment of 129I, the isotope of greatest concern due to its long half-life of 1.6 × 10 7 y and potential incorporation into the human body. Strategies for disposal of radioiodine, captured by both wet scrubbing and solid sorbents, are discussed, as well as potential iodine waste streams for insertion into an immobilization process. Next, consideration of direct disposal of salts, incorporationmore » into glasses, ceramics, cements, and other phases is discussed. The bulk of the review is devoted to an assessment of various sorbents for iodine and of waste forms described in the literature, particularly inorganic minerals, ceramics, and glasses. This review also contains recommendations for future research needed to address radioiodine immobilization materials and processes.« less

  20. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.

    PubMed

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  1. Using volatile organic compounds to enhance atrazine biodegradation in a biobed system.

    PubMed

    Tortella, G R; Rubilar, O; Stenström, J; Cea, M; Briceño, G; Quiroz, A; Diez, M C; Parra, L

    2013-09-01

    The effect of the terpenes α-pinene, eucalyptol, and limonene, individually and as mixtures, on atrazine (ATZ) biodegradation and on biological activity in a biobed biomixture was evaluated. Additionally, terpenes emitted from the biomixture were captured using solid-phase microextraction. Terpenes added individually at relatively low concentrations (50 μg kg(-1)) significantly enhanced ATZ degradation and biological activity during the first incubation days. No significant effect on ATZ degradation was found from adding the terpene mixture, and, interestingly, an inhibitory effect on phenoloxidase activity was found during the first 20 days of incubation when mixed terpenes were present at 100 μg kg(-1). Capturing terpenes demonstrated that during the first hour of incubation a significant fraction of the terpenes was volatilized. These results are the first to demonstrate the feasibility of using terpenes to enhance the degradation of a pesticide. However, successive applications of terpenes or the addition of materials that slowly release terpenes could sustain the ATZ degradation enhancement.

  2. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parag Kulkarni; Jie Guan; Raul Subia

    In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOEmore » NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No. DE-FC26-00NT40974). The report focuses on the major accomplishments and lessons learned in analyzing the risks of the novel UFP technology during Phase II of the DOE program.« less

  3. Process and Material Design for Micro-Encapsulated Ionic Liquids in Post-Combustion CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Bo; Brennecke, Joan F; McCready, Mark

    Aprotic Heterocyclic Anion (AHA) Ionic Liquids (ILs) have been identified as promising new solvents for post-combustion carbon capture due to their high CO 2 uptake and the high tenability 1,2 of their binding energy with CO 2. Some of these compounds change phase (solid to liquid) on absorption of CO 2; these Phase Change ILs (PCILs)3 offer the additional advantage that part of the heat needed to desorb the CO2 from the absorbent is provided by the heat of fusion as the PCIL solidifies upon release of CO 2. However, the relatively high viscosity of AHA ILs and the occurrencemore » of a phase change in PCILs present challenges for conventional absorption equipment. To overcome these challenges we are pursuing the use of new technology to micro-encapsulate the AHA ILs and PCILs. Our partners at Lawrence Livermore National Laboratory have successfully demonstrated this technology in the application of post-combustion carbon capture with sodium and potassium carbonate solutions,4 and have recently shown the feasibility of micro-encapsulation of an AHA IL for carbon capture.5 The large effective surface area and high CO 2 permeability of the micro-capsules is expected to offset the drawback of the high IL viscosity and to provide for a more efficient and cost-effective mass transfer operation involving AHA ILs and PCILs. These opportunities, however, present us with both process and materials design questions. For example, what is the target CO 2 absorption strength (enthalpy of chemical absorption) for the tunable AHA IL? What is the target for micro-capsule diameter in order to obtain a high mass transfer rate and good fluidization performance? What are the appropriate temperatures and pressures for the absorber and stripper? In order to address these and other questions, we have developed a rate-based model of a post-combustion CO 2 capture process using micro-encapsulated ILs. As a performance baseline, we have also developed a rate-based model of a standard packed bed absorber using an un-encapsulated AHA IL absorbent. Using such models we can determine optimal CO 2 capture performance and investigate the sensitivity of the optimum with respect to the key thermo-physical and transport properties of the IL (e.g., CO 2 binding energy, viscosity, etc.) and the micro-capsules (e.g. diameter, CO 2 permeability, etc.). Results of these process and material design studies will be presented, and the performance of this novel micro-encapsulation technology will be assessed.« less

  4. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    PubMed Central

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; McDowell, Matthew T.; Yu, Jie; Larson, David M.; Borys, Nicholas J.; Abelyan, Christine; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le; Shaner, Matthew R.; Spurgeon, Joshua; Houle, Frances A.; Persson, Kristin A.; Sharp, Ian D.

    2016-01-01

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability. PMID:27377305

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wareing, Christopher J.; School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT; Fairweather, Michael

    Predicting the correct multi-phase fluid flow behaviour during the discharge process in the near-field of sonic CO{sub 2} jets is of particular importance in assessing the risks associated with transport aspects of carbon capture and storage schemes, given the very different hazard profiles of CO{sub 2} in the gaseous and solid states. In this paper, we apply our state-of-the-art mathematical model implemented in an efficient computational method to available data. Compared to previous applications, an improved equation of state is used. We also compare to all the available data, rather than just subsets as previously, and demonstrate both the improvedmore » performance of the fluid flow model and the variation between the available datasets. The condensed phase fraction at the vent, puncture or rupture release point is revealed to be of key importance in understanding the near-field dispersion of sonic CO{sub 2}.« less

  6. A Stillinger-Weber Potential for InGaN

    DOE PAGES

    Zhou, X. W.; Jones, R. E.

    2017-09-27

    Reducing defects in InGaN films deposited on GaN substrates has been critical to fill the “green” gap for solid-state lighting applications. To enable researchers to use molecular dynamics vapor deposition simulations to explores ways to reduce defects in InGaN films, we have developed and characterized a Stillinger-Weber potential for InGaN. We show that this potential reproduces the experimental atomic volume, cohesive energy, and bulk modulus of the equilibrium wurtzite / zinc-blende phases of both InN and GaN. Most importantly, the potential captures the stability of the correct phase of InGaN compounds against a variety of other elemental, alloy, and compoundmore » configurations. Lastly, this is validated by the potential’s ability to predict crystalline growth of stoichiometric wurtzite and zinc-blende In xGa 1-xN compounds during vapor deposition simulations where adatoms are randomly injected to the growth surface.« less

  7. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...

  8. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...

  9. On the Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Durisen, Richard H.

    2010-11-01

    We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamic simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity in the disk, while the latter are allowed to respond to gas drag forces, with the back reaction on the gas taken into account. To explore the maximum effects of gas-solid interactions, we first consider 10 cm size particles. We then compare these results to a simulation with 1 km size particles, which explores the low-drag regime. We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) temporary clumps can concentrate tens of M ⊕ of solids in very localized regions before clump disruption; (3) the formation of permanent clumps, even in the outer disk, is dependent on the grain-size distribution, i.e., the opacity; (4) nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) the solid distribution may affect the fragmentation process; (6) proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2 collapse phase; (7) spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and (8) large solids can form spiral arms that are offset from the gaseous spiral arms. We conclude that planet embryo formation can be strongly affected by the growth of solids during the earliest stages of disk accretion.

  10. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    NASA Astrophysics Data System (ADS)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  11. On the high fidelity simulation of chemical explosions and their interaction with solid particle clouds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik

    The flow field behind chemical explosions in multiphase environments is investigated using a robust, state-of-the-art simulation strategy that accounts for the thermodynamics, gas dynamics and fluid mechanics of relevance to the problem. Focus is laid on the investigation of blast wave propagation, growth of hydrodynamic instabilities behind explosive blasts, the mixing aspects behind explosions, the effects of afterburn and its quantification, and the role played by solid particles in these phenomena. In particular, the confluence and interplay of these different physical phenomena are explored from a fundamental perspective, and applied to the problem of chemical explosions. A solid phase solver suited for the study of high-speed, two-phase flows has been developed and validated. This solver accounts for the inter-phase mass, momentum and energy transfer through empirical laws, and ensures two-way coupling between the two phases, viz. solid particles and gas. For dense flow fields, i.e., when the solid volume fraction becomes non-negligible (˜60%), the finite volume method with a Godunov type shock-capturing scheme requires modifications to account for volume fraction gradients during the computation of cell interface gas fluxes. To this end, the simulation methodology is extended with the formulation of an Eulerian gas, Lagrangian solid approach, thereby ensuring that the so developed two-phase simulation strategy can be applied for both flow conditions, dilute and dense alike. Moreover, under dense loading conditions the solid particles inevitably collide, which is accounted for in the current research effort with the use of an empirical collision/contact model from literature. Furthermore, the post-detonation flow field consists of gases under extreme temperature and pressure conditions, necessitating the use of real gas equations of state in the multiphase model. This overall simulation strategy is then extended to the investigation of chemical explosions in multiphase environments, with emphasis on the study of hydrodynamic instability growth, mixing, afterburn effects ensuing from the process, particle ignition and combustion (if reactive), dispersion, and their interaction with the vortices in the mixing layer. The post-detonation behavior of heterogeneous explosives is addressed by using three parts to the investigation. In the first part, only one-dimensional effects are considered, with the goal to assess the presently developed dense two-phase formulation. The total deliverable impulsive loading from heterogeneous explosive charges containing inert steel particles is estimated for a suite of operating parameters and compared, and it is demonstrated that heterogeneous explosive charges deliver a higher near-field impulse than homogeneous explosive charges containing the same mass of the high explosive. In the second part, three-dimensional effects such as hydrodynamic instabilities are accounted for, with the focus on characterizing the mixing layer ensuing from the detonation of heterogeneous explosive charges containing inert steel particles. It is shown that particles introduce significant amounts of hydrodynamic instabilities in the mixing layer, resulting in additional physical phenomena that play a prominent role in the flow features. In particular, the fluctuation intensities, fireball size and growth rates are augmented for heterogeneous explosions vis-a-vis homogeneous explosions, thereby demonstrating that solid particles enhance the perturbation intensities in the flow. In the third part of the investigation of heterogeneous explosions, dense, aluminized explosions are considered, and the particles are observed to burn in two phases, with an initial quenching due to the rarefaction wave, and a final quenching outside the fireball. Due to faster response time scales, smaller particles are observed to heat and accelerate more during early times, and also cool and decelerate more at late times, compared to counterpart larger particle sizes. Furthermore, the average particle velocities at late times are observed to be independent of the initial solid volume fraction in the explosive charge, as the particles eventually reach an equilibrium with the local gas. These studies have provided some crucial insights to the flow physics of dense, aluminized explosives. (Abstract shortened by UMI.)

  12. Diffusive sampling of methylene chloride with solid phase microextraction.

    PubMed

    Chen, Cheng-Yao; Hsiech, Chunming; Lin, Jia-Ming

    2006-12-29

    This study examined the characteristics of a solid phase microextraction (SPME) assembly as a passive sampler to determine the short-term exposure level (STEL) of methylene chloride. Two types of SPME fibers and six sampling-related factors were chosen and nested in an L(18) Taguchi's orthogonal array. Samples were thermally desorpted and analyzed by gas chromatograph equipped with an electron capture detector (GC/ECD). The use of 85-mum Carboxen/polydimethylsiloxane (Car/PDMS) fibers resulted in greater adsorbed mass, which was highly correlated with the product of concentration and sampling time (r>0.99, p<0.0001), than 85-microm polyacrylate fibers. The sampling rate (SR) of the 85-microm Carboxen/polydimethylsiloxane fibers was not significantly affected by variations in relative humidity (0-80%) and coexistent toluene (none to 100 ppm). Variance of sampling rate was predominantly attributed to the diffusive path length (86.4%) and sampling time (5.7%). With diffusive paths of 3, 10 and 15 mm, the sampling rates of 85-microm Carboxen/polydimethylsiloxane fibers for methylene chloride were 1.4 x 10(-2), 7.7 x 10(-3) and 5.1 x1 0(-3)mL min(-1), respectively. The measured sampling rates were greater than the theoretical values, and decreased with increment of sampling time until they came to constant.

  13. Solid-phase microfibers based on polyethylene glycol modified single-walled carbon nanotubes for the determination of chlorinated organic carriers in textiles.

    PubMed

    Zhang, Wei-Ya; Sun, Yin; Wang, Cheng-Ming; Wu, Cai-Ying

    2011-09-01

    Based on polyethylene glycol modified single-walled carbon nanotubes, a novel sol-gel fiber coating was prepared and applied to the headspace microextraction of chlorinated organic carriers (COCs) in textiles by gas chromatography-electron capture detection. The preparation of polyethylene glycol modified single-walled carbon nanotubes and the sol-gel fiber coating process was stated and confirmed by infrared spectra, Raman spectroscopy, and scanning electron microscopy. Several parameters affecting headspace microextraction, including extraction temperature, extraction time, salting-out effect, and desorption time, were optimized by detecting 11 COCs in simulative sweat samples. Compared with the commercial solid-phase microextraction fibers, the sol-gel polyethylene glycol modified single-walled carbon nanotubes fiber showed higher extraction efficiency, better thermal stability, and longer life span. The method detection limits for COCs were in the range from 0.02 to 7.5 ng L(-1) (S/N = 3). The linearity of the developed method varied from 0.001 to 50 μg L(-1) for all analytes, with coefficients of correlation greater than 0.974. The developed method was successfully applied to the analysis of trace COCs in textiles, the recoveries of the analytes indicated that the developed method was considerably useful for the determination of COCs in ecological textile samples.

  14. Comprehensive Study of Volatile Compounds in Two Australian Rosé Wines: Aroma Extract Dilution Analysis (AEDA) of Extracts Prepared Using Solvent-Assisted Flavor Evaporation (SAFE) or Headspace Solid-Phase Extraction (HS-SPE).

    PubMed

    Wang, Jiaming; Gambetta, Joanna M; Jeffery, David W

    2016-05-18

    Two rosé wines, representing a tropical and a fruity/floral style, were chosen from a previous study for further exploration by aroma extract dilution analysis (AEDA) and quantitative analysis. Volatiles were extracted using either liquid-liquid extraction (LLE) followed by solvent-assisted flavor evaporation (SAFE) or a recently developed dynamic headspace (HS) sampling method utilizing solid-phase extraction (SPE) cartridges. AEDA was conducted using gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and a total of 51 aroma compounds with a flavor dilution (FD) factor ≥3 were detected. Quantitative analysis of 92 volatiles was undertaken in both wines for calculation of odor activity values. The fruity and floral wine style was mostly driven by 2-phenylethanol, β-damascenone, and a range of esters, whereas 3-SHA and several volatile acids were seen as essential for the tropical style. When extraction methods were compared, HS-SPE was as efficient as SAFE for extracting most esters and higher alcohols, which were associated with fruity and floral characters, but it was difficult to capture volatiles with greater polarity or higher boiling point that may still be important to perceived wine aroma.

  15. A cellular automata model for avascular solid tumor growth under the effect of therapy

    NASA Astrophysics Data System (ADS)

    Reis, E. A.; Santos, L. B. L.; Pinho, S. T. R.

    2009-04-01

    Tumor growth has long been a target of investigation within the context of mathematical and computer modeling. The objective of this study is to propose and analyze a two-dimensional stochastic cellular automata model to describe avascular solid tumor growth, taking into account both the competition between cancer cells and normal cells for nutrients and/or space and a time-dependent proliferation of cancer cells. Gompertzian growth, characteristic of some tumors, is described and some of the features of the time-spatial pattern of solid tumors, such as compact morphology with irregular borders, are captured. The parameter space is studied in order to analyze the occurrence of necrosis and the response to therapy. Our findings suggest that transitions exist between necrotic and non-necrotic phases (no-therapy cases), and between the states of cure and non-cure (therapy cases). To analyze cure, the control and order parameters are, respectively, the highest probability of cancer cell proliferation and the probability of the therapeutic effect on cancer cells. With respect to patterns, it is possible to observe the inner necrotic core and the effect of the therapy destroying the tumor from its outer borders inwards.

  16. The solid surface combustion experiment aboard the USML-1 mission

    NASA Technical Reports Server (NTRS)

    Altenkirch, Robert A.; Sacksteder, Kurt; Bhattacharjee, Subrata; Ramachandra, Prashant A.; Tang, Lin; Wolverton, M. Katherine

    1994-01-01

    AA Experimental results from the five experiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. An experiment was conducted aboard STS-50/USML-1 in the solid Surface Combustion Experiment (SSCE) hardware for flame spread over a thin cellulosic fuel in a quiescent oxidizer of 35% oxygen/65% nitrogen at 1.0 atm. pressure in microgravity. The USML-1 test was the fourth of five planned experiments for thin fuels, one performed during each of five Space Shuttle Orbiter flights. Data that were gathered include gas- and solid-phase temperatures and motion picture flame images. Observations of the flame are described and compared to theoretical predictions from steady and unsteady models that include flame radiation from CO2 and H2O. Experimental results from the five esperiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. The brightness of the flame and the visible soot radiation also increase with increasing spread rate. Steady-state numerical predictions of temperature and spread rate and flame structure trends compare well with experimental results near the flame's leading edge while gradual flame evolution is captured through the unsteady model.

  17. Apparatus for silicon nitride precursor solids recovery

    DOEpatents

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1995-04-04

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  18. Method for silicon nitride precursor solids recovery

    DOEpatents

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1992-12-15

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  19. On The Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Durisen, R. H.

    2011-01-01

    We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamics simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity, while the latter are allowed to respond to gas drag forces. To explore the maximum effects of gas-solid interactions, we first consider 10cm-size particles. We then compare these results to a simulation with 1km-size particles, which explores the low-drag regime.We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) that temporary clumps can concentrate tens of M⊕ of solids in very localized regions before clump disruption; (3) that the formation of permanent clumps, even in the outer disk, is dependent on the opacity; (4) that nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) that the solid distribution may affect the fragmentation process; (6) that proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2 collapse phase; (7) that spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and, (8) that large solids can form spiral arms that are offset from the gaseous spiral arms. ACB's support was provided in part under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. RHD was supported by NASA Origins of Solar Systems grant NNX08AK36G.

  20. Multi-residue method for the analysis of 85 current-use and legacy pesticides in bed and suspended sediments

    USGS Publications Warehouse

    Smalling, K.L.; Kuivila, K.M.

    2008-01-01

    A multi-residue method was developed for the simultaneous determination of 85 current-use and legacy organochlorine pesticides in a single sediment sample. After microwave-assisted extraction, clean-up of samples was optimized using gel permeation chromatography and either stacked carbon and alumina solid-phase extraction cartridges or a deactivated Florisil column. Analytes were determined by gas chromatography with ion-trap mass spectrometry and electron capture detection. Method detection limits ranged from 0.6 to 8.9 ??g/kg dry weight. Bed and suspended sediments from a variety of locations were analyzed to validate the method and 29 pesticides, including at least 1 from every class, were detected.

  1. Seasonal multiphase equilibria in the atmospheres of Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.

    2017-12-01

    At the extremely low temperatures in Titan's upper troposphere and on Pluto's surface, the atmospheres as a whole are subject to freeze into solid solutions, not pure ices. The presence of the solid phases introduces conditions with rich phase equilibria upon seasonal changes, even if the temperature undergoes only small changes. For the first time, the profile of atmospheric methane in Titan's troposphere will be reproduced complete with the solid solutions. This means that the freezing point, i.e. the altitude where the first solid phase appears, is determined. The seasonal change will also be evaluated both at the equator and the northern polar region. For Pluto, also for the first time, the seasonal solid-vapor equilibria will be evaluated. The fate of the two solid phases, the methane-rich and carbon-monoxide-rich solid solutions, will be analyzed upon temperature and pressure changes. Such investigations are enabled by the development of a molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, which includes solid solutions in its phase-equilibria calculations. The atmospheres of Titan and Pluto are modeled as ternary gas mixtures: nitrogen-methane-ethane and nitrogen-methane-carbon monoxide, respectively. Calculations using CRYOCHEM can provide us with compositions not only in two-phase equilibria, but also that in three-phase equilibria. Densities of all phases involved will also be calculated. For Titan, density inversion between liquid and solid phases will be identified and presented. In the inversion, the density of solid phase is less than that in the liquid phase. The method and results of this work will be useful for further investigations and modeling on the atmospheres of Titan, Pluto, and other bodies with similar conditions in the Solar System and beyond.

  2. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames.

    PubMed

    Singh, Ajay V; Gollner, Michael J

    2016-06-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.

  3. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames

    PubMed Central

    Singh, Ajay V.; Gollner, Michael J.

    2016-01-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827

  4. Materials research for passive solar systems: Solid-state phase-change materials

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  5. Benzocaine polymorphism: pressure-temperature phase diagram involving forms II and III.

    PubMed

    Gana, Inès; Barrio, Maria; Do, Bernard; Tamarit, Josep-Lluís; Céolin, René; Rietveld, Ivo B

    2013-11-18

    Understanding the phase behavior of an active pharmaceutical ingredient in a drug formulation is required to avoid the occurrence of sudden phase changes resulting in decrease of bioavailability in a marketed product. Benzocaine is known to possess three crystalline polymorphs, but their stability hierarchy has so far not been determined. A topological method and direct calorimetric measurements under pressure have been used to construct the topological pressure-temperature diagram of the phase relationships between the solid phases II and III, the liquid, and the vapor phase. In the process, the transition temperature between solid phases III and II and its enthalpy change have been determined. Solid phase II, which has the highest melting point, is the more stable phase under ambient conditions in this phase diagram. Surprisingly, solid phase I has not been observed during the study, even though the scarce literature data on its thermal behavior appear to indicate that it might be the most stable one of the three solid phases. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The global phase diagram of the Gay-Berne model

    NASA Astrophysics Data System (ADS)

    de Miguel, Enrique; Vega, Carlos

    2002-10-01

    The phase diagram of the Gay-Berne model with anisotropy parameters κ=3, κ'=5 has been evaluated by means of computer simulations. For a number of temperatures, NPT simulations were performed for the solid phase leading to the determination of the free energy of the solid at a reference density. Using the equation of state and free energies of the isotropic and nematic phases available in the existing literature the fluid-solid equilibrium was calculated for the temperatures selected. Taking these fluid-solid equilibrium results as the starting points, the fluid-solid equilibrium curve was determined for a wide range of temperatures using Gibbs-Duhem integration. At high temperatures the sequence of phases encountered on compression is isotropic to nematic, and then nematic to solid. For reduced temperatures below T=0.85 the sequence is from the isotropic phase directly to the solid state. In view of this we locate the isotropic-nematic-solid triple point at TINS=0.85. The present results suggest that the high-density phase designated smectic B in previous simulations of the model is in fact a molecular solid and not a smectic liquid crystal. It seems that no thermodynamically stable smectic phase appears for the Gay-Berne model with the choice of parameters used in this work. We locate the vapor-isotropic liquid-solid triple point at a temperature TVIS=0.445. Considering that the critical temperatures is Tc=0.473, the Gay-Berne model used in this work presents vapor-liquid separation over a rather narrow range of temperatures. It is suggested that the strong lateral attractive interactions present in the Gay-Berne model stabilizes the layers found in the solid phase. The large stability of the solid phase, particularly at low temperatures, would explain the unexpectedly small liquid range observed in the vapor-liquid region.

  7. Dramatic Increase in the Signal and Sensitivity of Detection via Self-Assembly of Branched DNA

    PubMed Central

    Kim, Kyung-Tae; Chae, Chi-Bom

    2011-01-01

    In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA. PMID:21870112

  8. Distribution of Captured Planetesimals in Circumplanetary Gas Disks and Implications for Accretion of Regular Satellites

    NASA Astrophysics Data System (ADS)

    Suetsugu, Ryo; Ohtsuki, Keiji

    2017-04-01

    Regular satellites of giant planets are formed by accretion of solid bodies in circumplanetary disks. Planetesimals that are moving on heliocentric orbits and are sufficiently large to be decoupled from the flow of the protoplanetary gas disk can be captured by gas drag from the circumplanetary disk. In the present work, we examine the distribution of captured planetesimals in circumplanetary disks using orbital integrations. We find that the number of captured planetesimals reaches an equilibrium state as a balance between continuous capture and orbital decay into the planet. The number of planetesimals captured into retrograde orbits is much smaller than that into prograde orbits, because the former experience a strong headwind and spiral into the planet rapidly. We find that the surface number density of planetesimals at the current radial location of regular satellites can be significantly enhanced by gas drag capture, depending on the velocity dispersions of the planetesimals and the width of the gap in the protoplanetary disk. Using a simple model, we examine the ratio of the surface densities of dust and captured planetesimals in the circumplanetary disk and find that solid material at the current location of regular satellites can be dominated by captured planetesimals when the velocity dispersion of those planetesimals is rather small and a wide gap is not formed in the protoplanetary disk. In this case, captured planetesimals in such a region can grow by mutual collision before spiraling into the planet and would contribute to the growth of regular satellites.

  9. Formation Of the Giant Planets By Concurrent Accretion Of Solids And Gas

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Hubickyj, Olenka; Bodenheimer, Peter; Lissauer, Jack J.; Podolak, Morris; Greenzweig, Yuval; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    New numerical simulations of the formation of the giant planets are presented, in which for the first time both the gas and planetesimal accretion rates are calculated in a self-consistent, interactive fashion. The simulations combine three elements: 1) three-body accretion cross-sections of solids onto an isolated planetary embryo, 2) a stellar evolution code for the planet's gaseous envelope, and 3) a planetesimal dissolution code within the envelope, used to evaluate the planet's effective capture radius and the energy deposition profile of accreted material. Major assumptions include: The planet is embedded in a disk of gas and small planetesimals with locally uniform initial surface mass density, and planetesimals are not allowed to migrate into or out of the planet's feeding zone. All simulations are characterized by three major phases. During the first phase, the planet's mass consists primarily of solid material. The planetesimal accretion rate, which dominates that of gas, rapidly increases owing to runaway accretion, then decreases as the planet's feeding zone is depleted. During the second phase, both solid and gas accretion rates are small and nearly independent of time. The third phase, marked by runaway gas accretion, starts when the solid and gas masses are about equal. It is engendered by a strong positive feedback on the gas accretion rates, driven by the rapid contraction of the gaseous envelope and the rapid expansion of the outer boundary, which depends on the planet's total mass. The overall evolutionary time scale is generally determined by the length of the second phase. The actual rates at which the giant planets accreted small planetesimals is probably intermediate between the constant rates assumed in most previous studies and the highly variable rates that we have used. Within the context, of the adopted model of planetesimal accretion, the joint constraints of the time scale for dissipation of the solar nebula and the current high-Z masses of the giant planets lead to estimates of the initial surface density (sigma(sub init)) of planetesimals in the outer region of the solar nebula. The results show sigma(sub init) approx. = 10 g/sq cm near Jupiter's orbit and that sigma(sub init) proportional to alpha(sup -2), where alpha is the distance from the Sun. These values are a factor of 3 - 4 times as high as that of the "minimum mass" solar nebula at Jupiter's distance and a factor of 2 - 3 times as high it Saturn's distance. Our estimates for the formation time of Jupiter and Saturn are 1 - 10 million years while those for Uranus fall in the range of 2 - 16 million years. These estimates follow from the properties of our Solar System and do not necessarily apply to giant planets in other planetary systems.

  10. Method of altering the effective bulk density of solid material and the resulting product

    DOEpatents

    Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.

    1983-01-01

    A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.

  11. Phase behavior of charged colloids on spherical surfaces

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.

  12. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOEpatents

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  13. Multi-pulse shadowgraphic RGB illumination and detection for flow tracking

    NASA Astrophysics Data System (ADS)

    Menser, Jan; Schneider, Florian; Dreier, Thomas; Kaiser, Sebastian A.

    2018-06-01

    This work demonstrates the application of a multi-color LED and a consumer color camera for visualizing phase boundaries in two-phase flows, in particular for particle tracking velocimetry. The LED emits a sequence of short light pulses, red, green, then blue (RGB), and through its color-filter array, the camera captures all three pulses on a single RGB frame. In a backlit configuration, liquid droplets appear as shadows in each color channel. Color reversal and color cross-talk correction yield a series of three frozen-flow images that can be used for further analysis, e.g., determining the droplet velocity by particle tracking. Three example flows are presented, solid particles suspended in water, the penetrating front of a gasoline direct-injection spray, and the liquid break-up region of an "air-assisted" nozzle. Because of the shadowgraphic arrangement, long path lengths through scattering media lower image contrast, while visualization of phase boundaries with high resolution is a strength of this method. Apart from a pulse-and-delay generator, the overall system cost is very low.

  14. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  15. Innovative nano-layered solid sorbents for CO2 capture.

    PubMed

    Li, Bingyun; Jiang, Bingbing; Fauth, Daniel J; Gray, McMahan L; Pennline, Henry W; Richards, George A

    2011-02-14

    Nano-layered sorbents for CO(2) capture, for the first time, were developed using layer-by-layer nanoassembly. A CO(2)-adsorbing polymer and a strong polyelectrolyte were alternately immobilized within porous particles. The developed sorbents had fast CO(2) adsorption and desorption properties and their CO(2) capture capacity increased with increasing nano-layers of the CO(2)-adsorbing polymer.

  16. In matrix derivatization of trichloroethylene metabolites in human plasma with methyl chloroformate and their determination by solid-phase microextraction-gas chromatography-electron capture detector.

    PubMed

    Mudiam, Mohana Krishna Reddy; Jain, Rajeev; Varshney, Meenu; Ch, Ratnasekhar; Chauhan, Abhishek; Goyal, Sudhir Kumar; Khan, Haider A; Murthy, R C

    2013-04-15

    Trichloroethylene (TCE) is a common industrial chemical that has been widely used as metal degreaser and for many industrial purposes. In humans, TCE is metabolized into dichloroacetic acid (DCA), trichloroacetic acid (TCA) and trichloroethanol (TCOH). A simple and rapid method has been developed for the quantitative determination of TCE metabolites. The procedure involves the in situ derivatization of TCE metabolites with methyl chloroformate (MCF) directly in diluted plasma samples followed by extraction and analysis with solid-phase microextraction (SPME) coupled to gas chromatography-electron capture detector (GC-ECD). Factors which can influence the efficiency of derivatization such as amount of MCF and pyridine (PYR), ratio of water/methanol were optimized. The factors which can affect the extraction efficiencies of SPME were screened using 2(7-4) Placket-Burman Design (PBD). A central composite design (CCD) was then applied to further optimize the most significant factors for optimum SPME extraction. The optimum factors for the SPME extraction were found to be 562.5mg of NaCl, pH at 1 and an extraction time of 22 min. Recoveries and detection limits of all three analytes in plasma were found to be in the range of 92.69-97.55% and 0.036-0.068 μg mL(-1) of plasma, respectively. The correlation coefficients were found to be in the range of 0.990-0.995. The intra- and inter-day precisions for TCE metabolites were found to be in the range of 2.37-4.81% and 5.13-7.61%, respectively. The major advantage of this method is that MCF derivatization allows conversion of TCE metabolites into their methyl esters in very short time (≤30 s) at room temperature directly in the plasma samples, thus makes it a solventless analysis. The method developed was successfully applied to the plasma samples of humans exposed to TCE. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection.

    PubMed

    Wang, Jun-Xia; Jiang, Dong-Qing; Gu, Zhi-Yuan; Yan, Xiu-Ping

    2006-12-22

    Determination of polybrominated diphenyl ethers (PBDEs) in environmental samples has raised great concerns due to the widespread use of PBDEs and their potential risk to humans. Solid-phase microextraction (SPME) is a fast, simple, cost-effective, and green sample preparation technique and is widely used for environmental analysis, but reports on the application of SPME for determination of PBDEs are very limited, and only a few publications dealing with commercial SPME fibers are available for extraction of PBDEs. Herein, we report a novel SPME method using multiwalled carbon nanotubes (MWCNTs) as the SPME fiber coating for gas chromatography with electron-capture detection (GC-ECD) of PBDEs in environmental samples. The MWCNTs coating gave much higher enhancement factors (616-1756) than poly (5% dibenzene-95% dimethylsiloxane) coating (139-384) and activated carbon coating (193-423). Thirty-minute extraction of 10 mL of sample solution using the MWCNTs coated fiber for GC-ECD determination yielded the limits of detection of 3.6-8.6 ng L(-1) and exhibited good linearity of the calibration functions (r(2)>0.995). The precision (RSD%, n=4) for peak area and retention time at the 500 ng L(-1) level was 6.9-8.8% and 0.6-0.9%, respectively. The developed method was successfully applied for the analysis of real samples including local river water, wastewater, and milk samples. The recovery of the PBDEs at 500 ng L(-1) spiked in these samples ranged from 90 to 119%. No PBDEs were detected in the river water and skimmed milk samples, whereas in the wastewater sample, 134-215 ng L(-1) of PBDEs were found. The PBDEs were detected in all whole fat milk samples, ranging from 13 to 484 ng L(-1). In a semiskimmed milk sample, only BDE-47 was found at 21 ng L(-1).

  18. Components of reward-driven attentional capture.

    PubMed

    Sha, Li Z; Jiang, Yuhong V

    2016-02-01

    Recent research reported that task-irrelevant colors captured attention if these colors previously served as search targets and received high monetary reward. We showed that both monetary reward and value-independent mechanisms influenced selective attention. Participants searched for two potential target colors among distractor colors in the training phase. Subsequently, they searched for a shape singleton in a testing phase. Experiment 1 found that participants were slower in the testing phase if a distractor of a previous target color was present rather than absent. Such slowing was observed even when no monetary reward was used during training. Experiment 2 associated monetary rewards with the target colors during the training phase. Participants were faster finding the target associated with higher monetary reward. However, reward training did not yield value-dependent attentional capture in the testing phase. Attentional capture by the previous target colors was not significantly greater for the previously high-reward color than the previously low or no-reward color. These findings revealed both the power and limitations of monetary reward on attention. Although monetary reward can increase attentional priority for the high-reward target during training, subsequent attentional capture effects may not be reward-based, but reflect, in part, attentional capture by previous targets.

  19. Precipitation in Al–Mg solid solution prepared by solidification under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie, J.C., E-mail: jiejc@dlut.edu.cn; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001; Wang, H.W.

    2014-01-15

    The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solutionmore » appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.« less

  20. Estimating the population size and colony boundary of subterranean termites by using the density functions of directionally averaged capture probability.

    PubMed

    Su, Nan-Yao; Lee, Sang-Hee

    2008-04-01

    Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.

  1. Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John

    Capturing carbon dioxide (CO2) and injecting it into deep underground formations for storage (carbon capture and underground storage, or CCUS) is one way of reducing anthropogenic CO2 emissions. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Understanding the mechanisms and parameters that can contribute to leakage of the CO2 and the ultimate impact on shallow water aquifers that overliemore » injection formations is an important step in evaluating the efficacy and risks associated with long-term CO2 storage. Three students were supported on the grant Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration. These three students each examined a different aspect of simulation and risk assessment related to carbon dioxide sequestration and the potential impacts of CO2 leakage. Two performed numerical simulation studies, one to assess leakage rates as a function of fault and deep reservoir parameters and one to develop a method for quantitative risk assessment in the event of a CO2 leak and subsequent changes in groundwater chemistry. A third student performed an experimental evaluation of the potential for metal release from sandstone aquifers under simulated leakage conditions. This study has resulted in two student first-authored published papers {Siirila, 2012 #560}{Kirsch, 2014 #770} and one currently in preparation {Menke, In prep. #809}.« less

  2. Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in NaY zeolite for CO2 capture

    PubMed Central

    Yu, Yinghao; Mai, Jingzhang; Wang, Lefu; Li, Xuehui; Jiang, Zheng; Wang, Furong

    2014-01-01

    CO2 capture on solid materials possesses significant advantages on the operation cost, process for large-scale CO2 capture and storage (CCS) that stimulates great interest in exploring high-performance solid CO2 adsorbents. A ship-in-a-bottle strategy was successfully developed to prepare the [APMIM]Br@NaY host–guest system in which an amine-functionalized ionic liquid (IL), 1-aminopropyl-3-methylimidazolium bromide ([APMIM]Br), was in-situ encapsulated in the NaY supercages. The genuine host-guest systems were thoroughly characterized and tested in CO2 capture from simulated flue gas. It was evidenced the encapsulated ILs are more stable than the bulk ILs. These host–guest systems exhibited superb overall CO2 capture capacity up to 4.94 mmol g−1 and the chemically adsorbed CO2 achieved 1.85 mmol g−1 depending on the [APMIM]Br loading amount. The chemisorbed CO2 can be desorbed rapidly by flushing with N2 gas at 50°C. The optimized [APMIM]Br@NaY system remains its original CO2 capture capacity in multiple cycling tests under prolonged harsh adsorption-desorption conditions. The excellent physicochemical properties and the CO2 capture performance of the host-guest systems offer them great promise for the future practice in the industrial CO2 capture. PMID:25104324

  3. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less

  4. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  5. Doping Li and K into Na2ZrO3 Sorbent to Improve Its CO2 Capture Capability

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua

    Carbon dioxide is one of the major combustion products which once released into the air can contribute to global climate change. Solid sorbents have been reported in several previous studies to be promising candidates for CO2 sorbent applications due to their high CO2 absorption capacities at moderate working temperatures. However, at a given CO2 pressure, the turnover temperature (Tt) of an individual solid capture CO2 reaction is fixed and may be outside the operating temperature range (ΔTo) for a particularly capture technology. In order to shift such Tt for a solid into the range of ΔTo, its corresponding thermodynamic property must be changed by changing its structure by reacting (mixing) with other materials or doping with other elements. As an example, by combining thermodynamic database searching with ab initio thermodynamics calculations, in this work, we explored the Li- and K-doping effects on the Tt shifts of Na2ZrO3 at different doping levels. The obtained results showed that compared to pure Na2ZrO3, the Li- and K-doped mixtures Na2-αMαZrO3 (M =Li, K) have lower Tt and higher CO2 capture capacities.

  6. Solid-solid phase change thermal storage application to space-suit battery pack

    NASA Astrophysics Data System (ADS)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  7. Advancing dynamic and thermodynamic modelling of magma oceans

    NASA Astrophysics Data System (ADS)

    Bower, Dan; Wolf, Aaron; Sanan, Patrick; Tackley, Paul

    2017-04-01

    The techniques for modelling low melt-fraction dynamics in planetary interiors are well-established by supplementing the Stokes equations with Darcy's Law. But modelling high-melt fraction phenomena, relevant to the earliest phase of magma ocean cooling, necessitates parameterisations to capture the dynamics of turbulent flow that are otherwise unresolvable in numerical models. Furthermore, it requires knowledge about the material properties of both solid and melt mantle phases, the latter of which are poorly described by typical equations of state. To address these challenges, we present (1) a new interior evolution model that, in a single formulation, captures both solid and melt dynamics and hence charts the complete cooling trajectory of a planetary mantle, and (2) a physical and intuitive extension of a "Hard Sphere" liquid equation of state (EOS) to describe silicate melt properties for the pressure-temperature (P-T) range of Earth's mantle. Together, these two advancements provide a comprehensive and versatile modelling framework for probing the far-reaching consequences of magma ocean cooling and crystallisation for Earth and other rocky planets. The interior evolution model accounts for heat transfer by conduction, convection, latent heat, and gravitational separation. It uses the finite volume method to ensure energy conservation at each time-step and accesses advanced time integration algorithms by interfacing with PETSc. This ensures it accurately and efficiently computes the dynamics throughout the magma ocean, including within the ultra-thin thermal boundary layers (< 2 cm thickness) at the core-mantle boundary and surface. PETSc also enables our code to support a parallel implementation and quad-precision calculations for future modelling capabilities. The thermodynamics of mantle melting are represented using a pseudo-one-component model, which retains the simplicity of a standard one-component model while introducing a finite temperature interval for melting (important for multi-component systems). Our new high P-T liquid EOS accurately captures the energetics and physical properties of the partially molten system whilst retaining the largest number of familiar EOS parameters. We demonstrate the power of our integrated dynamic and EOS model by exploring two crystallisation scenarios for Earth that are dictated by the coincidence of the liquid adiabat and melting curve. Experiments on melting of primitive chondrite composition predict that crystallisation occurs from the "bottom-up", whereas molecular dynamics simulations of MgSiO3 perovskite suggest crystallisation occurs from the "middle-out". In each case, we evaluate the lifetime of the magma ocean using our model and find that in both scenarios, initial cooling is rapid and the rheological transition (boundary between melt- and solid-like behaviour) is reached within a few kyrs. During this stage efficient mixing prevents the establishment of thermal and chemical heterogeneity, so it may be challenging to locate a signature of the earliest phase of magma ocean evolution. At the rheological transition, cooling is governed by gravitational separation and viscous creep, and even in the absence of iron partitioning our models predict long-lasting (> 500 Myr) melt at the base of the mantle.

  8. Energy and Resource Saving of Steelmaking Process: Utilization of Innovative Multi-phase Flux During Dephosphorization Process

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroyuki; Hamano, Tasuku; Zhong, Ming; Gao, Xu; Yang, Xiao; Tsukihashi, Fumitaka

    2014-09-01

    An increase in the utilization efficiency of CaO, one of the major fluxing agents used in various steelmaking processes, is required to reduce the amount of discharged slag and energy consumption of the process. The authors have intensively focused on the development of innovative dephosphorization process by using so called "multi-phase flux" composed of solid and liquid phases. This article summarizes the research on the above topic done by the authors, in which the formation mechanisms of P2O5-containing phase during CaO or 2CaO·SiO2 dissolution into molten slag, the phase relationship between solid and liquid phases at equilibrium, and thermodynamic properties of P2O5-containing phase have been clarified. The reactions between solid CaO or 2CaO·SiO2 and molten CaO-FeO x -SiO2-P2O5 slag were observed by dipping solid specimen in the synthesized slag at 1573 K or 1673 K. The formation of the CaO-FeO layer and dual-phase layer of solid 2CaO·SiO2 and FeO x -rich liquid phase was observed around the interface from the solid CaO side toward the bulk slag phase side. Condensation of P2O5 into 2CaO·SiO2 phase as 2CaO·SiO2-3CaO·P2O5 solid solution was observed in both cases of CaO and 2CaO·SiO2 as solid specimens. Measurement of the phase relationship for the CaO-FeO x -SiO2-P2O5 system confirmed the condensation of P2O5 in solid phase at low oxygen partial pressure. The thermodynamics of 2CaO·SiO2-3CaO·P2O5 solid solution are to be clarified to quantitatively simulate the dephosphorization process, and the current results are also introduced. Based on the above results, the reduction of CaO consumption, the discharged slag curtailment, and energy-saving effects have been discussed.

  9. Formulation and validation of a computational model for a dilute biomass slurry undergoing rotational mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprague, Michael A.; Stickel, Jonathan J.; Sitaraman, Hariswaran

    In this paper we develop a computational model for the mixing and transport of a dilute biomass slurry. The objective was to create a sufficiently simple and efficient model for biomass transport that can be coupled with reaction models for the study of conversion of cellulosic biomass into fermentable sugars. Our target system is 5%-by-mass ..alpha..-cellulose, which is our proxy for more complex lignocellulosic biomass. In the authors' previous work, an experimental investigation with ..alpha..-cellulose under two vane-mixer configurations showed a bifurcation between a settling regime, for which settling effects dominate, and a suspended regime, for which solids are mostlymore » suspended. Here, a mixed-fluid model was chosen, for which the model for the mixture-velocity field is the incompressible Navier-Stokes equations under the Boussinesq approximation for buoyancy. Solids transport includes solids motion due to diffusion, settling, advection, and shear. Comparison of simulated and experimental results show good agreement in the suspended regime, and in capturing the bifurcation rate. While the model captured well the distribution of solids in the settling regime, the model was incapable of capturing the high torque values seen in experiments with vanishing mixer rotation rate.« less

  10. Electron capture into large-l Rydberg states of multiply charged ions escaping from solid surfaces

    NASA Astrophysics Data System (ADS)

    Nedeljković, N.; Nedeljković, Lj.; Mirković, M.

    2003-07-01

    We have investigated the electron capture into large-l Rydberg states of multiply charged ionic projectiles (e.g., the core charges Z=6, 7, and 8) escaping solid surfaces with intermediate velocities (v≈1 a.u.) in the normal emergence geometry. A model of the nonresonant electron capture from the solid conduction band into the moving large angular-momentum Rydberg states of the ions is developed through a generalization of our results obtained previously for the low-l cases (l=0, 1, and 2). The model is based on the two-wave-function dynamics of the Demkov-Ostrovskii type. The electron exchange process is described by a mixed flux through a moving plane (“Firsov plane”), placed between the solid surface and the ionic projectile. Due to low eccentricities of the large-l Rydberg systems, the mixed flux must be evaluated through the whole Firsov plane. It is for this purpose that a suitable asymptotic method is developed. For intermediate ionic velocities and for all relevant values of the principal quantum number n≈Z, the population probability Pnl is obtained as a nonlinear l distribution. The theoretical predictions concerning the ions S VI, Cl VII, and Ar VIII are compared with the available results of the beam-foil experiments.

  11. Formulation and validation of a computational model for a dilute biomass slurry undergoing rotational mixing

    DOE PAGES

    Sprague, Michael A.; Stickel, Jonathan J.; Sitaraman, Hariswaran; ...

    2018-02-17

    In this paper we develop a computational model for the mixing and transport of a dilute biomass slurry. The objective was to create a sufficiently simple and efficient model for biomass transport that can be coupled with reaction models for the study of conversion of cellulosic biomass into fermentable sugars. Our target system is 5%-by-mass ..alpha..-cellulose, which is our proxy for more complex lignocellulosic biomass. In the authors' previous work, an experimental investigation with ..alpha..-cellulose under two vane-mixer configurations showed a bifurcation between a settling regime, for which settling effects dominate, and a suspended regime, for which solids are mostlymore » suspended. Here, a mixed-fluid model was chosen, for which the model for the mixture-velocity field is the incompressible Navier-Stokes equations under the Boussinesq approximation for buoyancy. Solids transport includes solids motion due to diffusion, settling, advection, and shear. Comparison of simulated and experimental results show good agreement in the suspended regime, and in capturing the bifurcation rate. While the model captured well the distribution of solids in the settling regime, the model was incapable of capturing the high torque values seen in experiments with vanishing mixer rotation rate.« less

  12. Crystallization process

    DOEpatents

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  13. LLNL compiled first pages ordered by ascending B&R code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, G; Kumar, M; Tobin, J

    We aim to develop a fundamental understanding of materials dynamics (from {micro}s to ns) in systems where the required combination of spatial and temporal resolution can only be reached by the dynamic transmission electron microscope (DTEM). In this regime, the DTEM is capable of studying complex transient phenomena with several orders of magnitude time resolution advantage over any existing in-situ TEM. Using the unique in situ capabilities and the nanosecond time resolution of the DTEM, we seek to study complex transient phenomena associated with rapid processes in materials, such as active sites on nanoscale catalysts and the atomic level mechanismsmore » and microstructural features for nucleation and growth associated with phase transformations in materials, specifically in martensite formation and crystallization reactions from the amorphous phase. We also will study the transient phase evolution in rapid solid-state reactions, such as those occurring in reactive multilayer foils (RMLF). Program Impact: The LLNL DTEM possesses unique capabilities for capturing time resolved images and diffraction patterns of rapidly evolving materials microstructure under strongly driven conditions. No other instrument in the world can capture images with <10 nm spatial resolution of interesting irreversible materials processes such as phase transformations, plasticity, or morphology changes with 15 ns time resolution. The development of this innovative capability requires the continuing collaboration of laser scientists, electron microscopists, and materials scientists experienced in time resolved observations of materials that exist with particularly relevant backgrounds at LLNL. The research team has made observations of materials processes that are possible by no other method, such as the rapid crystallization of thin film NiTi that identified a change in mechanism at high heating rates as compared to isothermal anneals through changes in nucleation and growth rates of the crystalline phase. The project is designed to reveal these fundamental processes and mechanisms in rapid microstructure evolution that form the foundation of understanding that is an integral part of the DOE-BES mission.« less

  14. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles.

    PubMed

    Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A

    2014-07-23

    We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.

  15. Radiative Hydrodynamics and the Formation of Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.

    2009-05-01

    Gas giant planets undoubtedly form from the orbiting gas and dust disks commonly observed around young stars, and there are two principal mechanisms proposed for how this may occur. The core accretion plus gas capture model argues that a solid core forms first and then accretes gas from the surrounding disk once the core becomes massive enough (about 10 Earth masses). The gas accumulation process is comparatively slow but becomes hydrodynamic at later times. The disk instability model alternatively suggests that gas giant planet formation is initiated by gas-phase gravitational instabilities (GIs) that fragment protoplanetary disks into bound gaseous protoplanets rapidly, on disk orbit period time scales. Solid cores then form more slowly by accretion of solid planetesimals and settling. The overall formation time scales for these two mechanisms can differ by orders of magnitude. Both involve multidimensional hydrodynamic flows at some phase, late in the process for core accretion and early on for disk instability. The ability of cores to accrete gas and the ability of GIs to produce bound clumps depend on how rapidly gas can lose energy by radiation. This regulatory process, while important for controlling the time scale for core accretion plus gas capture, turns out to be absolutely critical for disk instability to work at all. For this reason, I will focus in my talk on the use of radiation hydrodynamics simulations to determine whether and where disk instability can actually form gas giant planets in disks. Results remain controversial, but simulations by several different research groups support analytic arguments that disk instability leading to fragmentation probably cannot occur in disks around Sun-like stars at orbit radii of 10's of Earth-Sun distances or less. On the other hand, very recent simulations suggest that very young, rapidly accreting disks with much larger radii (100's of times the Sun-Earth distance) can indeed readily fragment by disk instability into super-Jupiters and brown dwarfs. It is possible that there are two distinct modes of gas giant planet formation in Nature which operate at different times and in different regions of disks around young stars. The application of more radiative hydrodynamics codes with better numerical techniques could play an important role in future theoretical developments.

  16. Solidification and solid-state transformation sciences in metals additive manufacturing

    DOE PAGES

    Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...

    2017-02-11

    Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.

  17. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    PubMed

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage could be enhanced significantly with the use of organic solvent as a device rinse after breath sampling to collect the non-aqueous fraction as opposed to neat breath condensate sample. Here, we show the detected ranges of compounds in each case and provide a practical guide for methodology selection for optimal detection of specific compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Bead mediated separation of microparticles in droplets.

    PubMed

    Wang, Sida; Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A

    2017-01-01

    Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead's solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield.

  19. Bead mediated separation of microparticles in droplets

    PubMed Central

    Sung, Ki-Joo; Lin, Xiaoxia Nina; Burns, Mark A.

    2017-01-01

    Exchange of components such as particles and cells in droplets is important and highly desired in droplet microfluidic assays, and many current technologies use electrical or magnetic fields to accomplish this process. Bead-based microfluidic techniques offer an alternative approach that uses the bead’s solid surface to immobilize targets like particles or biological material. In this paper, we demonstrate a bead-based technique for exchanging droplet content by separating fluorescent microparticles in a microfluidic device. The device uses posts to filter surface-functionalized beads from a droplet and re-capture the filtered beads in a new droplet. With post spacing of 7 μm, beads above 10 μm had 100% capture efficiency. We demonstrate the efficacy of this system using targeted particles that bind onto the functionalized beads and are, therefore, transferred from one solution to another in the device. Binding capacity tests performed in the bulk phase showed an average binding capacity of 5 particles to each bead. The microfluidic device successfully separated the targeted particles from the non-targeted particles with up to 98% purity and 100% yield. PMID:28282412

  20. QUANTITATIVE MASS SPECTROMETRIC ANALYSIS OF GLYCOPROTEINS COMBINED WITH ENRICHMENT METHODS

    PubMed Central

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:148–165, 2015. PMID:24889823

  1. A Smoluchowski model of crystallization dynamics of small colloidal clusters

    NASA Astrophysics Data System (ADS)

    Beltran-Villegas, Daniel J.; Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.; Bevan, Michael A.

    2011-10-01

    We investigate the dynamics of colloidal crystallization in a 32-particle system at a fixed value of interparticle depletion attraction that produces coexisting fluid and solid phases. Free energy landscapes (FELs) and diffusivity landscapes (DLs) are obtained as coefficients of 1D Smoluchowski equations using as order parameters either the radius of gyration or the average crystallinity. FELs and DLs are estimated by fitting the Smoluchowski equations to Brownian dynamics (BD) simulations using either linear fits to locally initiated trajectories or global fits to unbiased trajectories using Bayesian inference. The resulting FELs are compared to Monte Carlo Umbrella Sampling results. The accuracy of the FELs and DLs for modeling colloidal crystallization dynamics is evaluated by comparing mean first-passage times from BD simulations with analytical predictions using the FEL and DL models. While the 1D models accurately capture dynamics near the free energy minimum fluid and crystal configurations, predictions near the transition region are not quantitatively accurate. A preliminary investigation of ensemble averaged 2D order parameter trajectories suggests that 2D models are required to capture crystallization dynamics in the transition region.

  2. Reconciling the Orbital and Physical Properties of the Martian Moons

    NASA Astrophysics Data System (ADS)

    Ronnet, T.; Vernazza, P.; Mousis, O.; Brugger, B.; Beck, P.; Devouard, B.; Witasse, O.; Cipriani, F.

    2016-09-01

    The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) are able to reconcile their orbital and physical properties. Here we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present-day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and physical properties, alleviating the need to invoke an unlikely capture scenario to explain their physical properties.

  3. On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection.

    PubMed

    Kongsuphol, Patthara; Liu, Yunxiao; Ramadan, Qasem

    2016-10-01

    Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.

  4. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells

    NASA Astrophysics Data System (ADS)

    Hatke, A. T.; Liu, Yang; Magill, B. A.; Moon, B. H.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2014-06-01

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  5. Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Reduced-Gravity

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey Scott

    1996-01-01

    Extinction of a diffusion flame burning over horizontal PMMA (Polymethyl methacrylate) cylinders in low-gravity was examined experimentally and via numerical simulations. Low-gravity conditions were obtained using the NASA Lewis Research Center's reduced-gravity aircraft. The effects of velocity and pressure on the visible flame were examined. The flammability of the burning solid was examined as a function of pressure and the solid-phase centerline temperature. As the solid temperature increased, the extinction pressure decreased, and with a centerline temperature of 525 K, the flame was sustained to 0.1 atmospheres before extinguishing. The numerical simulation iteratively coupled a two-dimensional quasi-steady, gas-phase model with a transient solid-phase model which included conductive heat transfer and surface regression. This model employed an energy balance at the gas/solid interface that included the energy conducted by the gas-phase to the gas/solid interface, Arrhenius pyrolysis kinetics, surface radiation, and the energy conducted into the solid. The ratio of the solid and gas-phase conductive fluxes Phi was a boundary condition for the gas-phase model at the solid-surface. Initial simulations modeled conditions similar to the low-gravity experiments and predicted low-pressure extinction limits consistent with the experimental limits. Other simulations examined the effects of velocity, depressurization rate and Phi on extinction.

  6. SOLID-LIQUID PHASE TRANSFER CATALYZED SYNTHESIS OF CINNAMYL ACETATE-KINETICS AND ANALYSIS OF FACTORS AFFECTING THE REACTION IN A BATCH REACTOR

    EPA Science Inventory

    The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...

  7. Boron nitride nanowires synthesis via a simple chemical vapor deposition at 1200 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd

    2015-04-24

    A very simple chemical vapor deposition technique is used to synthesize high quality boron nitride nanowires at 1200 °C within a short growth duration of 30 min. FESEM micrograph shows that the as-synthesized boron nitride nanowires have a clear wire like morphology with diameter in the range of ∼20 to 150 nm. HR-TEM confirmed the wire-like structure of boron nitride nanowires, whereas XPS and Raman spectroscopy are used to find out the elemental composition and phase of the synthesized material. The synthesized boron nitride nanowires have potential applications as a sensing element in solid state neutron detector, neutron capture therapy and microelectronicmore » devices with uniform electronic properties.« less

  8. Time-dependent chemo-electro-mechanical behavior of hydrogel-based structures

    NASA Astrophysics Data System (ADS)

    Leichsenring, Peter; Wallmersperger, Thomas

    2018-03-01

    Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.

  9. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    NASA Astrophysics Data System (ADS)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  10. Robust aptamer sol-gel solid phase microextraction of very polar adenosine from human plasma.

    PubMed

    Mu, Li; Hu, Xiangang; Wen, Jianping; Zhou, Qixing

    2013-03-01

    Conventional solid phase microextraction (SPME) has a limited capacity to extract very polar analytes, such as adenosine. To solve this problem, aptamer conjugating sol-gel methodology was coupled with an SPME fiber. According to the authors' knowledge, this is the first reported use of aptamer SPME. The fiber of aptamer sol-gel SPME with a mesoporous structure has high porosity, large surface area, and small water contact angle. Rather than employing direct entrapment, covalent immobilization was the dominant method of aptamer loading in sol-gel. Aptamer sol-gel fiber captured a specified analyte from among the analog molecules, thereby, exhibiting an excellent selective property. Compared with commercial SPME fibers, this aptamer fiber was suitable for extracting adenosine, presenting an extraction efficiency higher than 20-fold. The values of repeatability and reproducibility expressed by relative standard deviation were low (9.4%). Interestingly, the sol-gel network enhanced the resistance of aptamer SPME to both nuclease and nonspecific proteins. Furthermore, the aptamer sol-gel fiber was applied in human plasma with LOQ 1.5 μg/L, which is an acceptable level. This fiber also demonstrates durability and regeneration over 20-cycles without significant loss of efficiency. Given the various targets (from metal ions to biomacromolecules and cells) of aptamers, this methodology will extend the multi-domain applications of SPME. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Synthesis of molecularly imprinted polymers using acrylamide-β-cyclodextrin as a cofunctional monomer for the specific capture of tea saponins from the defatted cake extract of Camellia oleifera.

    PubMed

    Guo, Huiqin; Xiong, Jingjing; Ma, Wentian; Wu, Minghuo; Yan, Liushui; Li, Kexin; Liu, Yu

    2016-11-01

    Molecularly imprinted polymers were synthesized using mixed tea saponins as a template and acrylamide-β-cyclodextrin as a cofunctional monomer for the specific binding and purification of tea saponins from the defatted cake extract of Camellia oleifera. The adsorption properties of the prepared polymers were systematically evaluated including adsorption kinetics, adsorption isotherms, and selective recognition characteristics. It showed that the adsorption kinetics followed the pseudo first-order kinetic model (R 2 = 0.995) with an equilibrium time of 3 h, adsorption isotherm data fitted well with the Langmuir-Freundlich model (R 2 = 0.984) with an adsorption capacity of 14.23 mg/g. The relative selectivity coefficient (k´) in the presence of the analogues glycyrrhizic acid and glycyrrhetinic acid were 1.16 and 17.21, respectively. The performance of the molecularly imprinted polymers as solid-phase extraction materials was investigated and the results indicated that using acrylamide-β-cyclodextrin as a cofunctional monomer improved both the adsorption capacity and active sites stability of the imprinted polymers. The solid-phase extraction using the polymers as packing materials was subsequently applied for the separation of tea saponins in raw C. oleifera press extract, and targets were obtained with a purity reaching 89%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determination of polychlorinated biphenyls in transformer oil using various adsorbents for solid phase extraction.

    PubMed

    Na, Yun-Cheol; Kim, Kang-Jin; Hong, Jongki; Seo, Jung-Ju

    2008-08-01

    Various adsorbents for a solid phase extraction (SPE) method were used to study their ability to separate PCBs from transformer oil to rapidly determine their sub-ppm concentration in the transformer oil. Approximately 90% of the transformer oil could be removed from the PCBs by using a hydrophilic-lipophilic balanced copolymer (HLB) adsorbent, but the recovery of deca-chlorobiphenyl (deca-CB) used as a surrogate was only 24.5% due to lose during this cleanup process. The use of a silica adsorbent gave good results with 89.9% recovery of the deca-CB. The recovery of Aroclor 1242 and 1260 were 95.4 and 90.3% on silica, and 98.9 and 83.5% on HLB, respectively. Acid treatment was an essential step in removing the ambiguous interference peaks to help identify the PCBs. A decreased sensitivity of the electron capture detection (ECD) for PCBs was observed due to the presence of the remaining trace oil after the workup procedure. This loss in sensitivity was allowed for by using tetrachloroxylene as an internal standard, and this was found to be reliable for the criteria of quality control by employing an experiment in which LCS was spiked with 2mg/l of Aroclor 1260 and analyzed each day over a 25 day period. The MDL for the analytical method established in this study is 0.05 mg/l.

  13. Enantioselective determination of the organochlorine pesticide bromocyclen in spiked fish tissue using solid-phase microextraction coupled to gas chromatography with ECD and ICP-MS detection.

    PubMed

    Fidalgo-Used, Natalia; Montes-Bayón, Maria; Blanco-González, Elisa; Sanz-Medel, Alfredo

    2008-05-15

    A method for enantioselective determination of bromocyclen enantiomers in fish tissue has been developed. The enantiomers were resolved by capillary gas chromatography (GC) using a commercial chiral column (CP-Chirasil-Dex CB) and a temperature program from 50 degrees C (held for 1 min), raised to 140 degrees C at 40 degrees C min(-1) and then raised at 0.2 degrees C min(-1) to 155 degrees C. This enantioselective gas chromatographic separation was combined with a clean-up/enrichment procedure based on solid-phase microextraction (SPME). Under SPME optimized conditions, precision, linearity range and detection limits of the developed SPME-enantioselective GC procedure were evaluated and compared using two different detection systems: a classical electron-capture detection (ECD) and an element specific detection using inductively coupled plasma mass spectrometry (ICP-MS). The SPME-GC-ECD method exhibited an excellent sensitivity, with detection limits of 0.2 ng L(-1) for each enantiomer of bromocyclen. Although ICP-MS offered poorer detection limits (7 ng L(-1) as Br, equivalent to 36 ng L(-1) of each enantiomer) than conventional ECD detector, it proved to be clearly superior in terms of selectivity. The relative potential and performance of the two compared methods for real-life analysis has been illustrated by the determination of enantiomers of bromocyclen in spiked tissue extracts of trout.

  14. Theory of amorphous ices.

    PubMed

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  15. In situ studies of materials for high temperature CO2 capture and storage.

    PubMed

    Dunstan, Matthew T; Maugeri, Serena A; Liu, Wen; Tucker, Matthew G; Taiwo, Oluwadamilola O; Gonzalez, Belen; Allan, Phoebe K; Gaultois, Michael W; Shearing, Paul R; Keen, David A; Phillips, Anthony E; Dove, Martin T; Scott, Stuart A; Dennis, John S; Grey, Clare P

    2016-10-20

    Carbon capture and storage (CCS) offers a possible solution to curb the CO 2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO 2 capture, such as the CaO-CaCO 3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions.

  16. Numerical Simulation on Hydrodynamics and Combustion in a Circulating Fluidized Bed under O2/CO2 and Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.

    Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub

    Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.

  18. Isotopic Ratios Measured in the Dust of Comet 67P/Churyumov-Gerasimenko Using Rosetta/COSIMA

    NASA Astrophysics Data System (ADS)

    Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O.; Merouane, S.

    2017-12-01

    The COSIMA instrument aboard the Rosetta orbiter captured dust from the coma of comet 67P/Churyumov-Gerasimenko on metal targets. The dust was then imaged, and some of it was subjected to Time of Flight Secondary Ion Mass Spectrometry, yielding information on the dust composition. Isotopic ratios for species such as oxygen and sulfur have been measured for a number of COSIMA dust particles and these measurements are presented in this talk. Isotopic ratios for several species have been measured for a number of comets, but with the exception of the Stardust results, these have been measurements in the gas phase. The measurements presented here are from the solid phase, most probably from silicate or carbonaceous material. The isotopic ratios measured in the dust are compared to the measurements in the gas, to values measured in the insoluble organic matter of meteorites, and to the values measured in interplanetary dust particles and Antarctic micrometeorites.

  19. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes

    DOE PAGES

    Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; ...

    2016-07-05

    Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates thatmore » photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.« less

  20. Frontiers of Theoretical Research on Shape Memory Alloys: A General Overview

    NASA Astrophysics Data System (ADS)

    Chowdhury, Piyas

    2018-03-01

    In this concise review, general aspects of modeling shape memory alloys (SMAs) are recounted. Different approaches are discussed under four general categories, namely, (a) macro-phenomenological, (b) micromechanical, (c) molecular dynamics, and (d) first principles models. Macro-phenomenological theories, stemming from empirical formulations depicting continuum elastic, plastic, and phase transformation, are primarily of engineering interest, whereby the performance of SMA-made components is investigated. Micromechanical endeavors are generally geared towards understanding microstructural phenomena within continuum mechanics such as the accommodation of straining due to phase change as well as role of precipitates. By contrast, molecular dynamics, being a more recently emerging computational technique, concerns attributes of discrete lattice structures, and thus captures SMA deformation mechanism by means of empirically reconstructing interatomic bonding forces. Finally, ab initio theories utilize quantum mechanical framework to peek into atomistic foundation of deformation, and can pave the way for studying the role of solid-sate effects. With specific examples, this paper provides concise descriptions of each category along with their relative merits and emphases.

  1. A trans-phase granular continuum relation and its use in simulation

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Dunatunga, Sachith; Askari, Hesam

    The ability to model a large granular system as a continuum would offer tremendous benefits in computation time compared to discrete particle methods. However, two infamous problems arise in the pursuit of this vision: (i) the constitutive relation for granular materials is still unclear and hotly debated, and (ii) a model and corresponding numerical method must wear ``many hats'' as, in general circumstances, it must be able to capture and accurately represent the material as it crosses through its collisional, dense-flowing, and solid-like states. Here we present a minimal trans-phase model, merging an elastic response beneath a fictional yield criterion, a mu(I) rheology for liquid-like flow above the static yield criterion, and a disconnection rule to model separation of the grains into a low-temperature gas. We simulate our model with a meshless method (in high strain/mixing cases) and the finite-element method. It is able to match experimental data in many geometries, including collapsing columns, impact on granular beds, draining silos, and granular drag problems.

  2. Studying topology and dynamical phase transitions with ultracold quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved state tomography from which we obtain the Berry curvature and Chern number. Furthermore, we study the time-evolution of the many-body wavefunction after a sudden quench of the lattce parameters and observe the appearance, movement, and annihilation of vortices in reciprocal space. We identify their number as a dynamical topological order parameter, which suddenly changes its value at critical times. Our measurements constitute the first observation of a so called dynamical topological phase transition`, which we show to be a fruitful concept for the understanding of quantum dynamics far from equilibrium

  3. Phase relations in the system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    USGS Publications Warehouse

    Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.

    1992-01-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.

  4. Phase diagram of two-dimensional hard ellipses.

    PubMed

    Bautista-Carbajal, Gustavo; Odriozola, Gerardo

    2014-05-28

    We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.

  5. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  6. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  7. Low Temperature Synthesized H2Ti3O7 Nanotubes with a High CO2 Adsorption Property by Amine Modification.

    PubMed

    Ota, Misaki; Hirota, Yuichiro; Uchida, Yoshiaki; Sakamoto, Yasuhiro; Nishiyama, Norikazu

    2018-06-12

    Carbon dioxide (CO 2 ) capture and storage (CCS) technologies have been attracting attention in terms of tackling with global warming. To date, various CO 2 capture technologies including solvents, membranes, cryogenics, and solid adsorbents have been proposed. Currently, a liquid adsorption method for CO 2 using amine solution (monoethanolamine) has been practically used. However, this liquid phase CO 2 adsorption process requires heat regeneration, and it can cause many problems such as corrosion of equipment and degradation of the solution. Meanwhile, solid adsorption methods using porous materials are more advantageous over the liquid method at these points. In this context, we here evaluated if hydrogen titanate (H 2 Ti 3 O 7 ) nanotubes and the surface modification effectively capture CO 2 . For this aim, we first developed a facile synthesis method of H 2 Ti 3 O 7 nanotubes different from any conventional methods. Briefly, they were converted from the precursors-amorphous TiO 2 nanoparticles at room temperature (25 °C). We then determined the outer and the inner diameters of the H 2 Ti 3 O 7 nanotubes as 3.0 and 0.7 nm, respectively. It revealed that both values were much smaller than the reported ones; thus the specific surface area showed the highest value (735 m 2 /g). Next, the outer surface of H 2 Ti 3 O 7 nanotubes was modified using ethylenediamine to examine if CO 2 adsorption capacity increases. The ethylendiamine-modified H 2 Ti 3 O 7 nanotubes showed a higher CO 2 adsorption capacity (50 cm 3 /g at 0 °C, 100 kPa). We finally concluded that the higher CO 2 adsorption capacity could be explained, not only by the high specific surface area of the nanotubes but also by tripartite hydrogen bonding interactions among amines, CO 2 , and OH groups on the surface of H 2 Ti 3 O 7 .

  8. Time-Dependent Simulations of the Formation and Evolution of Disk-Accreted Atmospheres Around Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Stoekl, Alexander; Dorfi, Ernst

    2014-05-01

    In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual formation of a gas planet.

  9. Solid electrolyte-electrode system for an electrochemical cell

    DOEpatents

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.

    1995-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.

  10. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    PubMed

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Adsorption of the Three-phase Emulsion on Various Solid Surfaces.

    PubMed

    Enomoto, Yasutaka; Imai, Yoko; Tajima, Kazuo

    2017-07-01

    The present study investigates the adsorption of the three-phase emulsion on various solid/water interfaces. Vesicles can be used as emulsifiers in the three-phase emulsions and act as an independent phase unlike the surfactant used in conventional emulsions; therefore, it is expected that the three-phase emulsion formed by the adhesion of vesicles to the oil/water interface will adsorb on various solid/water interfaces. The cationic three-phase emulsion was prepared to encourage emulsion adsorption on negatively charged solid substrates in water. The emulsifier polyoxyethylene-(10) hydrogenated castor oil was rendered cationic by mixing with the surfactant cetyltrimethylammonium bromide and then used to prepare the cationic three-phase emulsion of hexadecane-in-water. Three solid substrates (silicon, glass, and copper) were dipped in the cationic emulsion and the emulsion was found to adsorb on the solid substrates while maintaining its structure. The amount of hexadecane adsorbed on the various surfaces was investigated by gas chromatography and found to increase with increasing hexadecane concentration in the emulsion and eventually plateaued just like molecular adsorption. The maximum surface coverage of the emulsion on the substrates was approximately 80%. However, even the equivalent nonionic three-phase emulsion was found to adsorb on the three solid surfaces. This was attributed to a novel mechanism of irreversible adhesion via the van der Waals attractive force.

  12. Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates

    ERIC Educational Resources Information Center

    Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter

    2007-01-01

    A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…

  13. Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.

    PubMed

    Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M

    1989-08-01

    In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.

  14. Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bisesto, F.; Botton, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Ferrario, M.; Galletti, M.; Henis, Z.; Petrarca, M.; Schleifer, E.; Zigler, A.

    2016-10-01

    Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our ’snapshots’ capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators.

  15. Selective Solid-liquid Extraction and Liquid-liquid Extraction of Lithium Chloride using Strapped Calix[4]pyrroles

    DOE PAGES

    He, Qing; Williams, Neil J.; Oh, Ju; ...

    2018-05-25

    LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less

  16. Selective Solid-liquid Extraction and Liquid-liquid Extraction of Lithium Chloride using Strapped Calix[4]pyrroles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Qing; Williams, Neil J.; Oh, Ju

    LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less

  17. Evaluation of Solid Sorbents as a Retrofit Technology for CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrom, Sharon

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO 2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO 2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO 2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbentmore » CO 2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO 2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO 2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO 2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was primarily the result of sorbent circulation limitations at operating temperatures combined with pre-loading of the sorbent with CO 2 prior to entering the adsorber. Specifically, CO 2-rich gas was utilized to convey sorbent from the regenerator to the adsorber. This gas was nominally 45°C below the regenerator temperature during testing. ADA’s post-combustion capture system with modifications to overcome pilot constraints, in conjunction with incorporating a sorbent with CO 2 working capacity of 15 g CO 2/100 g sorbent and a contact time of 10 to 15 minutes or less with flue gas could provide significant cost and performance benefits when compared to an MEA system.« less

  18. Theory of amorphous ices

    PubMed Central

    Limmer, David T.; Chandler, David

    2014-01-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957

  19. Electron drift in a large scale solid xenon

    DOE PAGES

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  20. Grain Floatation During Equiaxed Solidification of an Al-Cu Alloy in a Side-Cooled Cavity: Part II—Numerical Studies

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Walker, Mike J.; Sundarraj, Suresh; Dutta, Pradip

    2011-08-01

    In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.

  1. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    EPA Science Inventory


    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  2. Solid phase pegylation of hemoglobin.

    PubMed

    Suo, Xiaoyan; Zheng, Chunyang; Yu, Pengzhan; Lu, Xiuling; Ma, Guanghui; Su, Zhiguo

    2009-01-01

    A solid phase conjugation process was developed for attachment of polyethylene glycol to hemoglobin molecule. Bovine hemoglobin was loaded onto an ion exchange chromatography column and adsorbed by the solid medium. Succinimidyl carbonate mPEG was introduced in the mobile phase after the adsorption. Pegylation took place between the hemoglobin on the solid phase, and the pegylation reagent in the liquid phase. A further elution was carried out to separate the pegylated and the unpegylated protein. Analysis by HPSEC, SDS-PAGE, and MALLS demonstrated that the fractions eluted from the solid phase contained well-defined components. Pegylated hemoglobin with one PEG chain was obtained with the yield of 75%, in comparison to the yield of 30% in the liquid phase pegylation. The P(50) values of the mono-pegylated hemoglobin, prepared with SC-mPEG 5 kDa, 10 kDa and 20 kDa, were 19.97, 20.23 and 20.54 mmHg, which were much closer to the value of red blood cells than that of pegylated hemoglobin prepared with the conventional method.

  3. Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxing; Lu, Dongping; Bowden, Mark

    Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less

  4. Stellar neutron sources and s-process in massive stars

    NASA Astrophysics Data System (ADS)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and the energy of the particles enabling the reconstruction of the kinematics at the target. The focal plane energy calibration allowed for the study of 26 Mg levels from Ex = 7.69 - 12.06 MeV in the (alpha; alpha0) measurement and Ex = 7.36 - 11.32 MeV in the (6Li,d) measurement. Six levels (Ex = 10717 (9) keV , 10822 (10) keV, 10951 (21) keV, 11085 (8) keV, 11167 (8) keV and 11317 (18) keV) were observed above the alpha-threshold in the region of interest (10.61 - 11.32 MeV). The Ex = 10717 keV had a negligible contribution to the alpha-capture rates. The Ex = 10951, 11167 and 11317 keV exhibited pronounced alpha-cluster structure and hence, dominated the alpha-capture rates. The Ex = 11167 keV had the most appreciable impact on the (alpha; gamma ) rate increasing it by 2 orders of magnitude above Longland et al. [58] and Bisterzo et al. [8] rates and by a factor of 3 above NACRE [2] rate. Hence, the recommended 22Ne(alpha,n) + 22Ne(alpha; ) rates, from the present work, strongly favour the reduction of s-process over-abundances associated with massive stars as well as AGB stars of intermediate initial mass. Also, the uncertainty range corresponding to the present rates suggest the need for a more refined measurement of the associated resonance parameters.

  5. Engineered glass seals for solid-oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry

    2017-02-07

    A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.

  6. Solid electrolyte-electrode system for an electrochemical cell

    DOEpatents

    Tuller, H.L.; Kramer, S.A.; Spears, M.A.

    1995-04-04

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.

  7. An Efficient Analysis Methodology for Fluted-Core Composite Structures

    NASA Technical Reports Server (NTRS)

    Oremont, Leonard; Schultz, Marc R.

    2012-01-01

    The primary loading condition in launch-vehicle barrel sections is axial compression, and it is therefore important to understand the compression behavior of any structures, structural concepts, and materials considered in launch-vehicle designs. This understanding will necessarily come from a combination of test and analysis. However, certain potentially beneficial structures and structural concepts do not lend themselves to commonly used simplified analysis methods, and therefore innovative analysis methodologies must be developed if these structures and structural concepts are to be considered. This paper discusses such an analysis technique for the fluted-core sandwich composite structural concept. The presented technique is based on commercially available finite-element codes, and uses shell elements to capture behavior that would normally require solid elements to capture the detailed mechanical response of the structure. The shell thicknesses and offsets using this analysis technique are parameterized, and the parameters are adjusted through a heuristic procedure until this model matches the mechanical behavior of a more detailed shell-and-solid model. Additionally, the detailed shell-and-solid model can be strategically placed in a larger, global shell-only model to capture important local behavior. Comparisons between shell-only models, experiments, and more detailed shell-and-solid models show excellent agreement. The discussed analysis methodology, though only discussed in the context of fluted-core composites, is widely applicable to other concepts.

  8. Economic and environmental benefits of landfill gas utilisation in Oman.

    PubMed

    Abushammala, Mohammed Fm; Qazi, Wajeeha A; Azam, Mohammed-Hasham; Mehmood, Umais A; Al-Mufragi, Ghithaa A; Alrawahi, Noor-Alhuda

    2016-08-01

    Municipal solid waste disposed in landfill sites decomposes under anaerobic conditions and produces so-called landfill-gas, which contains 30%-40% of carbon dioxide (CO2) and 50%-60% of methane (CH4). Methane has the potential of causing global warming 25 times more than CO2 Therefore, migration of landfill-gas from landfills to the surrounding environment can potentially affect human life and environment. Thus, this research aims to determine municipal solid waste generation in Oman over the years 1971-2030, to quantify annual CH4 emissions inventory that resulted from this waste over the same period of time, and to determine the economic and environmental benefits of capturing the CH4 gas for energy production. It is found that cumulative municipal solid waste landfilled in Oman reaches 3089 Giga gram (Gg) in the year 2030, of which approximately 85 Gg of CH4 emissions are produced in the year 2030. The study also found that capturing CH4 emissions between the years 2016 and 2030 could attract revenues of up to US$333 million and US$291 million from the carbon reduction and electricity generation, simultaneously. It is concluded that CH4 emissions from solid waste in Oman increases enormously with time, and capture of this gas for energy production could provide a sustainable waste management solution in Oman. © The Author(s) 2016.

  9. Rapid determination of the volatile components in tobacco by ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction with gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang

    2016-03-01

    An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with the standard wall function model might be the best approach, by which, the simulation data seems to be closest to the experimental results.

  11. Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li

    2014-12-01

    In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.

  12. Irrigation potential of suspended solids and nutrients from tailwater recovery systems

    USDA-ARS?s Scientific Manuscript database

    Within the Lower Mississippi Alluvial Valley (Mississippi Delta), best management practices (BMP) are being utilized to mitigate nutrient loading from agricultural landscapes to downstream waters. This study was conducted to determine the potential to use solids, P and N captured by tailwater recove...

  13. Estimating production and consumption of solid reactive Fe phases in marine sediments from concentration profiles

    EPA Science Inventory

    1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...

  14. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    PubMed

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  15. Plasma sprayed manganese-cobalt spinel coatings: Process sensitivity on phase, electrical and protective performance

    NASA Astrophysics Data System (ADS)

    Han, Su Jung; Pala, Zdenek; Sampath, Sanjay

    2016-02-01

    Manganese cobalt spinel (Mn1.5Co1.5O4, MCO) coatings are prepared by the air plasma spray (APS) process to examine their efficacy in serving as protective coatings from Cr-poisoning of the cathode side in intermediate temperature-solid oxide fuel cells (IT-SOFCs). These complex oxides are susceptible to process induced stoichiometric and phase changes which affect their functional performance. To critically examine these effects, MCO coatings are produced with deliberate modifications to the spray process parameters to explore relationship among process conditions, microstructure and functional properties. The resultant interplay among particle thermal and kinetic energies are captured through process maps, which serve to characterize the parametric effects on properties. The results show significant changes to the chemistry and phase composition of the deposited material resulting from preferential evaporation of oxygen. Post deposition annealing recovers oxygen in the coatings and allows partial recovery of the spinel phase, which is confirmed through thermo-gravimetric analysis (TGA)/differential scanning calorimetry (DSC), X-ray Diffraction (XRD), and magnetic hysteresis measurements. In addition, coatings with high density after sintering show excellent electrical conductivity of 40 S cm-1 at 800 °C while simultaneously providing requisite protection characteristics against Cr-poisoning. This study provides a framework for optimal evaluation of MCO coatings in intermediate temperature SOFCs.

  16. Modulated structure and molecular dissociation of solid chlorine at high pressures

    NASA Astrophysics Data System (ADS)

    Li, Peifang; Gao, Guoying; Ma, Yanming

    2012-08-01

    Among diatomic molecular halogen solids, high pressure structures of solid chlorine (Cl2) remain elusive and least studied. We here report first-principles structural search on solid Cl2 at high pressures through our developed particle-swarm optimization algorithm. We successfully reproduced the known molecular Cmca phase (phase I) at low pressure and found that it remains stable up to a high pressure 142 GPa. At 150 GPa, our structural searches identified several energetically competitive, structurally similar, and modulated structures. Analysis of the structural results and their similarity with those in solid Br2 and I2, it was suggested that solid Cl2 adopts an incommensurate modulated structure with a modulation wave close to 2/7 in a narrow pressure range 142-157 GPa. Eventually, our simulations at >157 GPa were able to predict the molecular dissociation of solid Cl2 into monatomic phases having body centered orthorhombic (bco) and face-centered cubic (fcc) structures, respectively. One unique monatomic structural feature of solid Cl2 is the absence of intermediate body centered tetragonal (bct) structure during the bco → fcc transition, which however has been observed or theoretically predicted in solid Br2 and I2. Electron-phonon coupling calculations revealed that solid Cl2 becomes superconductors within bco and fcc phases possessing a highest superconducting temperature of 13.03 K at 380 GPa. We further probed the molecular Cmca → incommensurate phase transition mechanism and found that the softening of the Ag vibrational (rotational) Raman mode in the Cmca phase might be the driving force to initiate the transition.

  17. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGES

    An, Zhinan; Jia, Haoling; Wu, Yueying; ...

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  18. Science of Nanofluidics and Energy Conversion

    NASA Astrophysics Data System (ADS)

    Xu, Baoxing

    The emerging subject of nanofluidics, where solids and fluids interact closely at the nanoscale, has exhibited radically different from their macroscopic counterparts (and sometimes counterintuitive), and yet relatively less explored. On the other hand, the resulting unique properties may contribute to a number of innovative functions with fascinating applications. Among various exciting potential applications, an important and ever expanding one is to provide alternative solutions to energy conversion with high efficiency, including energy absorption, actuation and harvesting. In this dissertation, we first report a novel protection mechanism of energy capture through which an intensive impact or blast energy can be effectively mitigated based on a nonwetting liquid-nanoporous material system. The captured energy is stored in nanopores in the form of potential energy of intercalated water molecules for a while, and not necessarily converted to other forms of energy (e.g. heat). At unloading stage, the captured energy will be released gradually due to the hydrophobic inner surfaces of nanopores through the diffusion of water molecules out of nanopores, thus making this system reusable. Several key controlling factors including impacting velocity, nanopore size, nanopore structure, and liquid phase have been investigated on the capacity of energy capture. The molecular mechanism is elucidated through the study of water molecular distributions inside nanpores. These molecular dynamic (MD) findings are quantitatively verified by a parallel blast experiment on a zeolite/water system. During the transport of confined liquid molecules, the friction resistance exerted by solid atoms of nanopores to liquid molecules will dissipate part of energy, and is highly dependent of temperature of liquid molecules and wall morphology of nanopores. Using MD simulations, the effects of temperature and wall roughness on the transport resistance of water molecules inside nanopores are investigated in Chapter 3. The effective shear stress and nominal viscosity that dominate the nanofluidic transport resistance are extracted and coupled with the nanopore size, transport rate, and liquid property. The molecular-level mechanisms are revealed through the study of the density profile and hydrogen bonding of confined liquid molecules. A parallel experiment on a nanoporous carbon-liquid system is carried out and qualitatively verifies MD findings. Motived by the well-known thermo- and electro-capillary effect, Chapter 4 and Chapter 5 present a conceptual design of thermal and electric actuation system by adjusting the relative hydrophobicity of a liquid-nanoporous system through a thermal and electric field, respectively. The thermally and electrically dependent infiltration behaviors of liquids into nanopores are analyzed by using MD simulations. The fundamental molecular characteristics, including the density profile, contact angle, and surface tension of the confined liquid molecules, are examined to reveal underlying mechanisms. The energy density, power density, and efficiency of both thermal and electric actuation systems are explored and their variations with pore size, solid phase, and liquid phase are evaluated. Thermally and electrically controlled infiltration experiments on a zeolite-water /electrolyte solution system are performed accordingly to qualitatively validate these findings. These energy actuation systems can also become high density thermal or electric storage devices with proper designs. Energy harvesting by the flow of a hydrochloric acid-water solution through a nanopore is explored using atomistic simulations in the last chapter. Through ion configurations near the pore wall, an averaged ion drifting velocity is determined, and the induced voltage along the axial direction is obtained as a function of key material parameters, including the applied flow rate, environmental temperature, solution concentration and nanopore size. The molecular mechanism of ion hopping and motion is revealed. This study shed light on harvesting wasted thermal and mechanical energy from ambient environmental sources such as wasted heat in power plants. Nanofluidics is a novel and thriving research area, whose couplings with other disciplines such as material, mechanical, physical, chemical, electrical engineering are open.

  19. Method for making an electrochemical cell

    DOEpatents

    Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.; Pal, Uday B.

    1996-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.

  20. Pressure induced solid-solid reconstructive phase transition in LiGa O2 dominated by elastic strain

    NASA Astrophysics Data System (ADS)

    Hu, Qiwei; Yan, Xiaozhi; Lei, Li; Wang, Qiming; Feng, Leihao; Qi, Lei; Zhang, Leilei; Peng, Fang; Ohfuji, Hiroaki; He, Duanwei

    2018-01-01

    Pressure induced solid-solid reconstructive phase transitions for graphite-diamond, and wurtzite-rocksalt in GaN and AlN occur at significantly higher pressure than expected from equilibrium coexistence and their transition paths are always inconsistent with each other. These indicate that the underlying nucleation and growth mechanism in the solid-solid reconstructive phase transitions are poorly understood. Here, we propose an elastic-strain dominated mechanism in a reconstructive phase transition, β -LiGa O2 to γ -LiGa O2 , based on in situ high-pressure angle dispersive x-ray diffraction and single-crystal Raman scattering. This mechanism suggests that the pressure induced solid-solid reconstructive phase transition is neither purely diffusionless nor purely diffusive, as conventionally assumed, but a combination. The large elastic strains are accumulated, with the coherent nucleation, in the early stage of the transition. The elastic strains along the 〈100 〉 and 〈001 〉 directions are too large to be relaxed by the shear stress, so an intermediate structure emerges reducing the elastic strains and making the transition energetically favorable. At higher pressures, when the elastic strains become small enough to be relaxed, the phase transition to γ -LiGa O2 begins and the coherent nucleation is substituted with a semicoherent one with Li and Ga atoms disordered.

  1. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    PubMed

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina

    2016-08-15

    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effects of groundwater withdrawals from the Hurricane Fault zone on discharge of saline water from Pah Tempe Springs, Washington County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.

    2018-04-10

    Pah Tempe Springs, located in Washington County, Utah, contribute about 95,000 tons of dissolved solids annually along a 1,500-foot gaining reach of the Virgin River. The river gains more than 10 cubic feet per second along the reach as thermal, saline springwater discharges from dozens of orifices located along the riverbed and above the river on both banks. The spring complex discharges from fractured Permian Toroweap Limestone where the river crosses the north-south trending Hurricane Fault. The Bureau of Reclamation Colorado River Basin Salinity Control Program is evaluating the feasibility of capturing and desalinizing the discharge of Pah Tempe Springs to improve downstream water quality in the Virgin River. The most viable plan, identified by the Bureau of Reclamation in early studies, is to capture spring discharge by pumping thermal groundwater from within the Hurricane Fault footwall damage zone and to treat this water prior to returning it to the river.Three multiple-day interference tests were conducted between November 2013 and November 2014, wherein thermal groundwater was pumped from fractured carbonate rock in the fault damage zone at rates of up to 7 cubic feet per second. Pumping periods for these tests lasted approximately 66, 74, and 67 hours, respectively, and the tests occurred with controlled streamflows of approximately 2.0, 3.5, and 24.5 cubic feet per second, respectively, in the Virgin River upstream from the springs reach. Specific conductance, water temperature, and discharge were monitored continuously in the river (upstream and downstream of the springs reach) at selected individual springs, and in the pumping discharge during each of the tests. Water levels were monitored in three observation wells screened in the thermal system. Periodic stream and groundwater samples were analyzed for dissolved-solids concentration and the stable isotopes of oxygen and hydrogen. Additional discrete measurements of field parameters (specific conductance, water temperature, pH, and discharge) were made at up to 26 sites along the springs reach. These data demonstrate the interaction between the saline, thermal groundwater system and the Virgin River, and provide estimates of reductions in dissolved-solids loads to the river.The interference tests show that pumping thermal groundwater from the shallow carbonate aquifer adjacent to the springs is effective at capturing high dissolved-solids loads discharging from Pah Tempe Springs before they enter the Virgin River. Discharge measurements made in the Virgin River downstream of the springs reach show that streamflow is reduced by approximately the amount pumped, indicating that complete capture of thermal discharge is possible. During the February 2014 test, the dissolved-solids load removed by pumping (190 tons per day) was approximately equal to the dissolved-solids load reduction observed in the river below the springs reach, indicating near 100-percent efficient capture of spring-sourced dissolved solids. However, an observed decrease in temperature and specific conductance of the pumping discharge during the high-flow test in November 2014 showed that capture of the cool, fresh river water can occur and is more likely at a higher stage in the Virgin River.

  3. Carbon capture test unit design and development using amine-based solid sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, Ronald W.; Spenik, James L.; Shadle, Lawrence J.

    This study presents the design and development of a reactor system and the subsequent modifications to evaluate an integrated process to scrub carbon dioxide (CO 2) from synthetic flue gas using amine based solid sorbents. The paper presents the initial system design and then discusses the various changes implemented to address the change in sorbent from a 180 μm Geldart group B material to a 115 μm Geldart group A material as well as issues discovered during experimental trials where the major obstacle in system operation was the ability to maintain a constant circulation of a solid sorbent stemming frommore » this change in sorbent material. The system primarily consisted of four fluid beds, through which an amine impregnated solid sorbent was circulated and adsorption, pre-heat, regeneration, and cooling processes occurred. Instrumentation was assembled to characterize thermal, hydrodynamic, and gas adsorption performance in this integrated unit. A series of shakedown tests were performed and the configuration altered to meet the needs of the sorbent performance and achieve desired target capture efficiencies. Finally, methods were identified, tested, and applied to continuously monitor critical operating parameters including solids circulation rate, adsorbed and desorbed CO 2, solids inventories, and pressures.« less

  4. The study of the burning possibilities of solid combustibles in the determined conditions for complete usage of caloric [energy] and ashes resulted

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voina, N.I.; Barca, F.; Mogos, D.

    1995-12-31

    In modern combustors, 95--98% of the organic mass of a solid combustible is converted into caloric energy; 2--4% remain in the fly ash captured in electrofilters and hydraulically removed in most cases. The 2--4% unburned materials in fly ash, together with the water from being hydraulically transported, make it difficult for the use of the fly ash for metal extraction or as a binder in the materials industry. This work presents the research results of a study in which the burning process was modified to result in fly ash without carbon content and fly ash removal by dry capture. Laboratorymore » fluidized-bed combustion of lignite with and without addition of limestone for sulfur capture was used to generate ashes for further study. The ashes were studied for their use as binders and as a cement substitute.« less

  5. Hydrodynamic capture of microswimmers into sphere-bound orbits.

    PubMed

    Takagi, Daisuke; Palacci, Jérémie; Braunschweig, Adam B; Shelley, Michael J; Zhang, Jun

    2014-03-21

    Self-propelled particles can exhibit surprising non-equilibrium behaviors, and how they interact with obstacles or boundaries remains an important open problem. Here we show that chemically propelled micro-rods can be captured, with little change in their speed, into close orbits around solid spheres resting on or near a horizontal plane. We show that this interaction between sphere and particle is short-range, occurring even for spheres smaller than the particle length, and for a variety of sphere materials. We consider a simple model, based on lubrication theory, of a force- and torque-free swimmer driven by a surface slip (the phoretic propulsion mechanism) and moving near a solid surface. The model demonstrates capture, or movement towards the surface, and yields speeds independent of distance. This study reveals the crucial aspects of activity–driven interactions of self-propelled particles with passive objects, and brings into question the use of colloidal tracers as probes of active matter.

  6. The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.

    ERIC Educational Resources Information Center

    Long, Gary J.; Leighly, H. P., Jr.

    1982-01-01

    Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)

  7. Data Needs for Stellar Atmosphere and Spectrum Modeling

    NASA Technical Reports Server (NTRS)

    Short, C. I.

    2006-01-01

    The main data need for stellar atmosphere and spectrum modeling remains atomic and molecular transition data, particularly energy levels and transition cross-sections. We emphasize that data is needed for bound-free (b - f) as well as bound-bound (b - b), and collisional as well as radiative transitions. Data is now needed for polyatomic molecules as well as atoms, ions, and diatomic molecules. In addition, data for the formation of, and extinction due to, liquid and solid phase dust grains is needed. A prioritization of species and data types is presented, and gives emphasis to Fe group elements, and elements important for the investigation of nucleosynthesis and Galactic chemical evolution, such as the -elements and n-capture elements. Special data needs for topical problems in the modeling of cool stars and brown dwarfs are described.

  8. An Investigation into the Polymorphism and Crystallization of Levetiracetam and the Stability of its Solid Form.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui

    2015-12-01

    Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Building of Equations of State with Numerous Phase Transitions — Application to Bismuth

    NASA Astrophysics Data System (ADS)

    Heuzé, Olivier

    2006-07-01

    We propose an algorithm to build complete equation of state EOS including several solid/solid or solid/liquid phase transitions. Each phase has its own EOS and independent parameters. The phase diagram is deduced from the thermodynamic equilibrium assumption. Until now, such an approach was used in simple cases and limited to 2 or 3 phases. We have applied it in the general case to bismuth for which up to 13 phases have been identified. This study shows the great influence of binary mixtures and triple points properties in released isentropes after shock waves.

  10. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  11. Density-functional theory for fluid-solid and solid-solid phase transitions.

    PubMed

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  12. Bogolon-mediated electron capture by impurities in hybrid Bose-Fermi systems

    NASA Astrophysics Data System (ADS)

    Boev, M. V.; Kovalev, V. M.; Savenko, I. G.

    2018-04-01

    We investigate the processes of electron capture by a Coulomb impurity center residing in a hybrid system consisting of spatially separated two-dimensional layers of electron and Bose-condensed dipolar exciton gases coupled via the Coulomb forces. We calculate the probability of the electron capture accompanied by the emission of a single Bogoliubov excitation (bogolon), similar to regular phonon-mediated scattering in solids. Furthermore, we study the electron capture mediated by the emission of a pair of bogolons in a single capture event and show that these processes not only should be treated in the same order of the perturbation theory, but also they give a more important contribution than single-bogolon-mediated capture, in contrast with regular phonon scattering.

  13. Two-phase anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.

    PubMed

    Majhi, Bijoy Kumar; Jash, Tushar

    2016-12-01

    Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m 3 kg -1 VS, at OLR of 1.11-1.585kgm -3 d -1 , were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    PubMed

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the product crystallinity of solid phase transition. The new knowledge on the kinetics of pseudomartensitic transition complements the theory of diffusionless solid phase transition.

  15. Thermodynamic Investigation of the Effect of Interface Curvature on the Solid-Liquid Equilibrium and Eutectic Point of Binary Mixtures.

    PubMed

    Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W

    2017-10-12

    Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.

  16. Suppressing the cellular breakdown in silicon supersaturated with titanium

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Prucnal, S.; Hübner, R.; Yuan, Ye; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2016-06-01

    Hyper doping Si with up to 6 at.% Ti in solid solution was performed by ion implantation followed by pulsed laser annealing and flash lamp annealing. In both cases, the implanted Si layer can be well recrystallized by liquid phase epitaxy and solid phase epitaxy, respectively. Cross-sectional transmission electron microscopy of Ti-implanted Si after liquid phase epitaxy shows the so-called growth interface breakdown or cellular breakdown owing to the occurrence of constitutional supercooling in the melt. The appearance of cellular breakdown prevents further recrystallization. However, the out-diffusion and cellular breakdown can be effectively suppressed by solid phase epitaxy during flash lamp annealing due to the high velocity of amorphous-crystalline interface and the low diffusion velocity for Ti in the solid phase.

  17. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data basedmore » on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.« less

  18. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism.

    PubMed

    Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A

    2014-11-12

    Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.

  19. Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials.

    PubMed

    Dan, Nily

    2014-11-25

    Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.

  20. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiulu; Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan; Liu, Zhongli

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of themore » longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.« less

  1. Communication: phase transitions, criticality, and three-phase coexistence in constrained cell models.

    PubMed

    Nayhouse, Michael; Kwon, Joseph Sang-Il; Orkoulas, G

    2012-05-28

    In simulation studies of fluid-solid transitions, the solid phase is usually modeled as a constrained system in which each particle is confined to move in a single Wigner-Seitz cell. The constrained cell model has been used in the determination of fluid-solid coexistence via thermodynamic integration and other techniques. In the present work, the phase diagram of such a constrained system of Lennard-Jones particles is determined from constant-pressure simulations. The pressure-density isotherms exhibit inflection points which are interpreted as the mechanical stability limit of the solid phase. The phase diagram of the constrained system contains a critical and a triple point. The temperature and pressure at the critical and the triple point are both higher than those of the unconstrained system due to the reduction in the entropy caused by the single occupancy constraint.

  2. Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials

    NASA Astrophysics Data System (ADS)

    Missonnier, Marc; Heuzé, Olivier

    2006-07-01

    When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.

  3. Optimization of the β-Elimination/Michael Addition Chemistry on Reversed-Phase Supports for Mass Spectrometry Analysis of O-Linked Protein Modifications

    PubMed Central

    Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue

    2013-01-01

    We previously adapted the β-elimination/Michael addition chemistry to solid-phase derivatization on reversed-phase supports, and demonstrated the utility of this reaction format to prepare phosphoseryl peptides in unfractionated protein digests for mass spectrometric identification and facile phosphorylation-site determination. Here, we have expanded the use of this technique to β-N-acetylglucosamine peptides, modified at serine/threonine, phosphothreonyl peptides, and phosphoseryl/phosphothreonyl peptides, followed in sequence by proline. The consecutive β-elimination with Michael addition was adapted to optimize the solid-phase reaction conditions for throughput and completeness of derivatization. The analyte remained intact during derivatization and was recovered efficiently from the silica-based, reversed-phase support with minimal sample loss. The general use of the solid-phase approach for enzymatic dephosphorylation was demonstrated with phosphoseryl and phosphothreonyl peptides and was used as an orthogonal method to confirm the identity of phosphopeptides in proteolytic mixtures. The solid-phase approach proved highly suitable to prepare substrates from low-level amounts of protein digests for phosphorylation-site determination by chemical-targeted proteolysis. The solid-phase protocol provides for a simple, robust, and efficient tool to prepare samples for phosphopeptide identification in MALDI mass maps of unfractionated protein digests, using standard equipment available in most biological laboratories. The use of a solid-phase analytical platform is expected to be readily expanded to prepare digest from O-glycosylated- and O-sulfonated proteins for mass spectrometry-based structural characterization. PMID:23997661

  4. Equations of State and Phase Diagrams of Ammonia

    ERIC Educational Resources Information Center

    Glasser, Leslie

    2009-01-01

    We present equations of state relating the phases and a three-dimensional phase diagram for ammonia with its solid, liquid, and vapor phases, based on fitted authentic experimental data and including recent information on the high-pressure solid phases. This presentation follows similar articles on carbon dioxide and water published in this…

  5. Molecular orientation of organic thin films on dielectric solid substrates: a phase-sensitive vibrational SFG study.

    PubMed

    Ge, Aimin; Peng, Qiling; Qiao, Lin; Yepuri, Nageshwar R; Darwish, Tamim A; Matsusaki, Michiya; Akashi, Mitsuru; Ye, Shen

    2015-07-21

    Broadband phase-sensitive vibrational sum frequency generation (SFG) spectroscopy was utilized to study the molecular orientation of molecules adsorbed on dielectric solid substrates. A gold thin film was employed to generate a SFG signal as a local oscillator (LO). To simplify the phase measurement, a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) was used as a standard sample for phase correction of the phase-sensitive SFG measurements on the solid/air interface. It was demonstrated that the absolute orientation of molecules in the LB films on a fused quartz surface can be clearly distinguished by phase-sensitive SFG measurement. In addition, the observation on the SAM of d35-OTS reveals that the two C-H stretching modes for α-CH2 group are in opposite phase. Furthermore, by using the present phase-sensitive SFG setup, the orientation flipping of water molecules on positively and negatively charged solid/liquid interface can be distinguished.

  6. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  7. Multi-residue analysis of 26 organochlorine pesticides in Alpinia oxyphylla by GC-ECD after solid phase extraction and acid cleanup.

    PubMed

    Zhao, Xiangsheng; Zhou, Yakui; Kong, Weijun; Gong, Bao; Chen, Deli; Wei, Jianhe; Yang, Meihua

    2016-04-01

    A simple and effective multi-residue method was developed and validated for the analysis of 26 organochlorine pesticide residues in Alpinia oxyphylla by a gas chromatography with an electron capture detector (GC-ECD). The target pesticides were extracted by sonication and cleaned up with florisil solid phase extraction and sulphuric acid. Some crucial parameters, including extraction solvent and time, sorbent type, elute solvent and concentration of sulphuric acid were optimized to improve the performance of sample preparation procedure. The optimized method gave high sensitivity with detection limit ranging from 0.1 to 2.0μg/kg. Matrix-matched calibration was employed for the quantification, and a wide linear range (from 1.0 to 1000μg/kg) with r(2) values ranging from 0.9971 to 0.9998 was obtained. For the majority of the tested pesticides, the average recoveries were in acceptable range (between 70% and 110%) with relative standard deviation values below 15.0%. Matrix effect was evaluated for target compounds through the study of ratio of peak area obtained in the solvent and blank matrix. The proposed method was applied to simultaneously analyze 26 pesticides in 55 batches of Alpinia oxyphylla samples. 3 samples were found to be positive with four pesticides (α-BHC, quintozene, trans-chlordane and op'-DDD), which were confirmed by gas chromatography-mass spectrometry (GC-MS) in selective ion monitoring (SIM) mode. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium(III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing.

    PubMed

    Näreoja, Tuomas; Rosenholm, Jessica M; Lamminmäki, Urpo; Hänninen, Pekka E

    2017-05-01

    Thyrotropin or thyroid-stimulating hormone (TSH) is used as a marker for thyroid function. More precise and more sensitive immunoassays are needed to facilitate continuous monitoring of thyroid dysfunctions and to assess the efficacy of the selected therapy and dosage of medication. Moreover, most thyroid diseases are autoimmune diseases making TSH assays very prone to immunoassay interferences due to autoantibodies in the sample matrix. We have developed a super-sensitive TSH immunoassay utilizing nanoparticle labels with a detection limit of 60 nU L -1 in preprocessed serum samples by reducing nonspecific binding. The developed preprocessing step by affinity purification removed interfering compounds and improved the recovery of spiked TSH from serum. The sensitivity enhancement was achieved by stabilization of the protein corona of the nanoparticle bioconjugates and a spot-coated configuration of the active solid-phase that reduced sedimentation of the nanoparticle bioconjugates and their contact time with antibody-coated solid phase, thus making use of the higher association rate of specific binding due to high avidity nanoparticle bioconjugates. Graphical Abstract We were able to decrease the lowest limit of detection and increase sensitivity of TSH immunoassay using Eu(III)-nanoparticles. The improvement was achieved by decreasing binding time of nanoparticle bioconjugates by small capture area and fast circular rotation. Also, we applied a step to stabilize protein corona of the nanoparticles and a serum-preprocessing step with a structurally related antibody.

  9. Evaluation of eggshell membrane-based bio-adsorbent for solid-phase extraction of linear alkylbenzene sulfonates coupled with high-performance liquid chromatography.

    PubMed

    Wang, Weidong; Chen, Bo; Huang, Yuming; Cao, Jia

    2010-09-03

    The potential of eggshell membrane (ESM) as a novel solid-phase extraction bio-adsorbent was investigated in the present study. The ESM with a unique structure of intricate lattice network showed a predominant ability to capture linear alkylbenzene sulfonates (LAS) as a model of organic pollutants by the hydrophobic interactions between ESM and LAS molecular at pH very close to the isoelectric point of ESM, which was similar to the most widely used trapping mechanism for SPE. Under the optimal conditions, the breakthrough capacities of the ESM packed cartridge for C10-C13 LAS homologues were found to be 30, 53, 50, and 43microgg(-1), respectively. On the basis of high-performance liquid chromatography separation and UV detection of LAS homologues, the proposed system could respond down to 0.027ngmL(-1) of LAS with a linear calibration range from 0.2 to 100ngmL(-1), showing a good LAS enrichment ability of eggshell membrane biomaterial with high sensitivity, and could be successfully used for the detection of residual LAS in environmental water samples. The reproducibility among columns was satisfactory (RSD among columns is less than 10%). A comparison study with ESM, C8 and C18 as adsorbents for LAS demonstrated that ESM-based bio-adsorbent was advantageous over C8 and C18, the widely used traditional adsorbents. 2010 Elsevier B.V. All rights reserved.

  10. IgE to penicillins with different specificities can be identified by a multiepitope macromolecule: Bihaptenic penicillin structures and IgE specificities.

    PubMed

    Ariza, A; Barrionuevo, E; Mayorga, C; Montañez, M I; Perez-Inestrosa, E; Ruiz-Sánchez, A; Rodríguez-Guéant, R M; Fernández, T D; Guéant, J L; Torres, M J; Blanca, M

    2014-04-01

    Quantitation of specific IgE by immunoassay is a recommended in vitro test for the diagnosis of immediate hypersensitivity reactions to betalactams (BLs), particularly when skin test results are negative. IgE antibodies that recognize the common nuclear structure of all BLs or the specific side chain structure can be mainly distinguished by immunoassays. The aim of this study was to develop an immunoassay system to detect IgE antibodies with different specificities. Cellulose discs conjugated with benzylpenicillin (BP), amoxicillin (AX) or both drugs, with poly-l-lysine (PLL) as carrier molecule, were used as solid phases in the radioallergosorbent test (RAST). Direct and inhibition radioimmunoassay studies were made to verify the structures recognized by serum IgE antibodies from penicillin-allergic patients. Our results indicated that the addition of both haptens did not decrease the capacity to capture IgE when serum specific to either BP or AX was used, at least in terms of sensitivity. In addition, the inclusion of two haptens improved significantly the levels of IgE detection in patients who recognized both BP and AX. Therefore, the use of a solid phase with a carrier molecule conjugated with two determinants (AX and BP) is helpful to recognize IgE antibodies against either of these determinants and is useful for screening sera with different specificities. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. TESTING SOLIDS SETTING APPARATUSES FOR DESIGN AND OPERATION OF WET-WEATHER FLOW SOLIDS-LIQUID SEPARATION PROCESSES

    EPA Science Inventory

    This study was a side-by-side comparison of two settling evaluation methods: one traditional and one new. The project investigated whether these column tests were capable of capturing or representing the rapidly settling particles present in wet-weather flows (WWF). The report r...

  12. A Dendrimer-based Immunosensor for Improved Capture and Detection of Tumor Necrosis Factor-α Cytokine

    PubMed Central

    Bosnjakovic, Admira; Mishra, Manoj K.; Han, Hye Jung; Romero, Roberto; Kannan, Rangaramanujam M.

    2012-01-01

    A dendrimer-based sandwich type enzyme-linked immunosorbent assay (ELISA) was developed for the improved detection of recombinant human tumor necrosis factor-alpha (TNF-α) for early diagnosis of perinatal diseases. Hydroxyl-terminated generation four poly(amidoamine) dendrimer (G4-OH) was used for the development of a solid phase bio-sensing platform. The surface of the ELISA plate was modified with polyethylene-glycol (PEG) and thiol-functionalized G4-OH was immobilized on the PEG-functionalized plate. A capture antibody was oxidized and covalently immobilized onto the dendrimer-modified ELISA plate, which provides favorable orientation for the antigen binding sites towards the analyte. The dendrimer-modified plate showed enhanced sensitivity, and the detection limit for TNF-α was found to be 0.48 pg mL−1, which is significantly better than the commercially available ELISA kit. The selectivity of the dendrimer-modified ELISA plate was further evaluated with a mixture of cytokines, which showed results for similar to that of TNF-α alone. The modified plate provides a greater opportunity for the detection of a wide range of cytokines and biomarkers. PMID:22365129

  13. Highly Efficient Release of Glycopeptides from Hydrazide Beads by Hydroxylamine Assisted PNGase F Deglycosylation for N-Glycoproteome Analysis.

    PubMed

    Huang, Junfeng; Wan, Hao; Yao, Yating; Li, Jinan; Cheng, Kai; Mao, Jiawei; Chen, Jin; Wang, Yan; Qin, Hongqiang; Zhang, Weibing; Ye, Mingliang; Zou, Hanfa

    2015-10-20

    Selective enrichment of glycopeptides from complex sample followed by cleavage of N-glycans by PNGase F to expose an easily detectable mark on the former glycosylation sites has become the popular protocol for comprehensive glycoproteome analysis. On account of the high enrichment specificity, hydrazide chemistry based solid-phase extraction of N-linked glycopeptides technique has sparked numerous interests. However, the enzymatic release of glycopeptides captured by hydrazide beads through direct incubation of the beads with PNGase F is not efficient due to the inherent steric hindrance effect. In this study, we developed a hydroxylamine assisted PNGase F deglycosylation (HAPD) method using the hydroxylamine to release glycopeptides captured on the hydrazide beads through the cleavage of hydrazone bonds by transamination followed with the PNGase F deglycosylation of the released glycopeptides in the free solution. Because of the homogeneous condition for the deglycosylation, the recovery of deglycosylated peptides (deglycopeptides) was improved significantly. It was found that 27% more N-glycosylation sites were identified by the HAPD strategy compared with the conventional method. Moreover, the ratio of identified N-terminal glycosylated peptides was improved over 5-fold.

  14. Numerical Computation of Flame Spread over a Thin Solid in Forced Concurrent Flow with Gas-phase Radiation

    NASA Technical Reports Server (NTRS)

    Jiang, Ching-Biau; T'ien, James S.

    1994-01-01

    Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.

  15. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    NASA Astrophysics Data System (ADS)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  16. Development of a solid-phase microextraction gas chromatography with microelectron-capture detection method for a multiresidue analysis of pesticides in bovine milk.

    PubMed

    Fernandez-Alvarez, Maria; Llompart, Maria; Lamas, J Pablo; Lores, Marta; Garcia-Jares, Carmen; Cela, Rafael; Dagnac, Thierry

    2008-06-09

    A simple and rapid method based on solid-phase microextraction (SPME) technique followed by gas chromatography with microelectron-capture detection (GC-microECD) was developed for the simultaneous determination of more than 30 pesticides (pyrethroids and organochlorinated among others) in milk. To our knowledge, this is the first application of SPME for the determination of pyrethroid pesticides in milk. Negative matrix effects due to the complexity and lipophility of the studied matrix were reduced by diluting the sample with distilled water. A 2(5-1) fractional factorial design was performed to assess the influence of several factors (type of fiber coating, sampling mode, stirring, extraction temperature, and addition of sodium chloride) on the SPME procedure and to determine the optimal extraction conditions. After optimization of all the significant variables and interactions, the recommended procedure was established as follows: DSPME (using a polydimethylsiloxane (PDMS)/divinylbenzene (DVB) coating) of 1 mL of milk sample diluted with Milli-Q water (1:10 dilution ratio), at 100 degrees C, under stirring for 30 min. The proposed method showed good linearity and high sensitivity, with limits of detection (LOD) at the sub-ng mL(-1) level. Within a day and among days precisions were also evaluated (R.S.D.<15%). One of the most important attainments of this work was the use of external calibration with milk-matched standards to quantify the levels of the target analytes. The method was tested with liquid and powdered milk samples with different fat contents covering the whole commercial range. The efficiency of the extraction process was studied at several analyte concentration levels obtaining high recoveries (>80% in most cases) for different types of full-fat milks. The optimized procedure was validated with powdered milk certified reference material, which was quantified using external calibration and standard addition protocols. Finally, the DSPME-GC-microECD methodology was applied to the analysis of milk samples collected in farms of dairy cattle from NW Spain.

  17. Water Capture Device Signal Integration Board

    NASA Technical Reports Server (NTRS)

    Chamberlin, Kathryn J.; Hartnett, Andrew J.

    2018-01-01

    I am a junior in electrical engineering at Arizona State University, and this is my second internship at Johnson Space Center. I am an intern in the Command and Data Handling Branch of Avionics Division (EV2), my previous internship was also in EV2. During my previous internship I was assigned to the Water Capture Device payload, where I designed a prototype circuit board for the electronics system of the payload. For this internship, I have come back to the Water Capture Device project to further the work on the electronics design I completed previously. The Water Capture Device is an experimental payload to test the functionality of two different phase separators aboard the International Space Station (ISS). A phase separator sits downstream of a condensing heat exchanger (CHX) and separates the water from the air particles for environmental control on the ISS. With changing CHX technology, new phase separators are required. The goal of the project is to develop a test bed for the two phase separators to determine the best solution.

  18. Fragment capture device

    DOEpatents

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  19. Thermomechanical behavior of shape memory elastomeric composites

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Luo, Xiaofan; Rodriguez, Erika D.; Zhang, Xiao; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry

    2012-01-01

    Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, or irradiation. Most thermally activated SMPs use the macromolecular chain mobility change around the glass transition temperature ( Tg) to achieve the shape memory (SM) effects. During this process, the stiffness of the material typically changes by three orders of magnitude. Recently, a composite materials approach was developed to achieve thermally activated shape memory effect where the material exhibits elastomeric response in both the temporary and the recovered configurations. These shape memory elastomeric composites (SMECs) consist of an elastomeric matrix reinforced by a semicrystalline polymer fiber network. The matrix provides background rubber elasticity while the fiber network can transform between solid crystals and melt phases over the operative temperature range. As such it serves as a reversible "switching phase" that enables shape fixing and recovery. Shape memory elastomeric composites provide a new paradigm for the development of a wide array of active polymer composites that utilize the melt-crystal transition to achieve the shape memory effect. This potentially allows for material systems with much simpler chemistries than most shape memory polymers and thus can facilitate more rapid material development and insertion. It is therefore important to understand the thermomechanical behavior and to develop corresponding material models. In this paper, a 3D finite-deformation constitutive modeling framework was developed to describe the thermomechanical behavior of SMEC. The model is phenomenological, although inspired by micromechanical considerations of load transfer between the matrix and fiber phases of a composite system. It treats the matrix as an elastomer and the fibers as a complex solid that itself is an aggregate of melt and crystal phases that evolve from one to the other during a temperature change. As such, the composite consists of an elastomer reinforced by a soft liquid at high temperature and a stiff solid at low temperature. The model includes a kinetic description of the non-isothermal crystallization and melting of the fibers during a temperature change. As the fibers transform from melt to crystal during cooling it is assumed that new crystals are formed in an undeformed state, which requires careful tracking of the kinematics of the evolving phases which comes at a significant computational cost. In order to improve the computational efficiency, an effective phase model (EPM) is adopted to treat the evolving crystal phases as an effective medium. A suite of careful thermomechanical experiments with a SMEC was carried out to calibrate various model parameters, and then to demonstrate the ability of the model to accurately capture the shape memory behavior of the SMEC system during complex thermomechanical loading scenarios. The model also identifies the effects of microstructural design parameters such as the fiber volume fraction.

  20. Stormwater solids removal characteristics of a catch basin insert using geotextile.

    PubMed

    Alam, Md Zahanggir; Anwar, A H M Faisal; Heitz, Anna

    2018-03-15

    Suspended solids in urban runoff have multiple adverse environmental impacts and create a wide range of water quality problems in receiving water bodies. Geotextile filtration systems inserted within catch basins have the potential to mitigate these effects, through flow attenuation and pollutant removal. This study modelled a catch basin in a column and assessed the hydraulic and solids removal characteristics of a new type of non-woven geotextile (NWG1) in the capture of solids from stormwater runoff. The new geotextile was compared with two others readily available on the market (NWG2, NWG3). Synthetic stormwater containing TSS (200mg/L) was used with two particle size distributions of 0-180μm (P1; D 50 :106μm) and 0-300μm (P2; D 50 :150μm). The results revealed that the desired stormwater TSS concentration (<30mg/L; ANZECC, 2000) could be achieved with a short ripening process (e.g., 1-2kg/m 2 of suspended solids loading) for trials using the larger particle size distribution (P2). In addition, 36% more suspended solids were captured in trials using the soil with the larger range of particle sizes (P2) than for the soil with smaller particle sizes (P1). Geotextile fibre pattern appeared to have a significant influence on the TSS removal capacity. The NWG1 has higher permittivity than NWG3 but similar to NWG2. NWG1 could capture overall more TSS (which also resulted in earlier clogging) than NWG2 and NWG3 because of the special fibre structure of NWG1. The experimental data shows that these geotextiles may start to clog when the hydraulic conductivity reaches below 1.36×10 -5 m/s. The overall hydraulic performances of geotextiles showed that the NWG1 has better potential for use in CBIs because of its higher strength and multiple reuse capability. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Simultaneous estimation of liquid and solid gastric emptying using radiolabelled egg and water in supine normal subjects.

    PubMed

    Kris, M G; Yeh, S D; Gralla, R J; Young, C W

    1986-01-01

    To develop an additional method for the measurement of gastric emptying in supine subjects, 10 normal subjects were given a test meal containing 99Tc-labelled scrambled egg as the "solid" phase marker and 111In in tapwater as the marker for the "liquid" phase. The mean time for emptying 50% of the "solid" phase (t1/2) was 85 min and 29 min for the "liquid" phase. Three individuals were restudied with a mean difference between the two determinations of 10.8% for the "solid" phase and 6.5% for the "liquid" phase. Twenty-six additional studies attempted have been successfully completed in symptomatic patients with advanced cancer. This method provides a simple and reproducible procedure for the determination of gastric emptying that yields results similar to those reported for other test meals and can be used in debilitated patients.

  2. Thermal shock resistance ceramic insulator

    DOEpatents

    Morgan, Chester S.; Johnson, William R.

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  3. Characterization of the Solid-Phase Behavior of n-Nonylammonium Tetrachlorocuprate by Fourier Transform Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ning, Guo

    1995-06-01

    The solid-phase behavior of [n-C9H19NH3]2CuCl4 was investigated by infrared spectroscopy. The nature of the three solid phases (phase I, phase II, and phase III) is discussed. A temperature-dependent study of infrared spectra provides evidence for the occurrence of structural phase transitions related to the dynamics of the alkyl chains and -NH3 polar heads. The phase transition at Tc1 (22°C) arises from variation in the interaction and packing structure of the chain. The phase transition at Tc2 (34°C) is related to variation in partial conformational order-disorder at the intramolecular level. The GTG or GTG‧ and small concentration of TG structures near the CH3 group are generated in phase III (above 38°C).

  4. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  5. Phase considerations in the gas/particle partitioning of organic amines in the atmosphere

    NASA Astrophysics Data System (ADS)

    Pankow, James F.

    2015-12-01

    Amines in the atmosphere are of interest because of their likely role in new particle formation, and because of anthropogenic emissions of amines at post-combustion carbon capture (PCCC) facilities. A conceptual framework for considering the partitioning of a monobasic amine (Am = unprotonated, ;free-base form;) from the gas phase to atmospheric particulate matter (PM) is presented for cases when the PM may be composed of multiple liquid phases. Three types of liquid phases are considered as being individually or simultaneously possible for absorptive uptake of atmospheric amines: w) a mostly water phase; α) a mostly (by mass) organic phase that has at least some polarity (e.g., predominantly secondary organic aerosol (SOA), may contain significant water on a mole fraction basis); and β) a mostly organic phase that is less polar than an α phase (e.g., predominantly primary organic aerosol (POA), containing little water). That one or more salts may contain the aminium ion AmH+ (formed by protonation of Am) is subject to the fact that the trace levels of individual amines in the atmosphere make formation of a pure solid such as AmHHSO4(s) exceedingly unlikely: when solid salts of AmH+ are indeed present, by far the most likely form is as a solid solution, e.g., (NH4+)1-y(AmH+)y HSO4(s)- where y << 1. Neglecting dissolution in solid salts, and considering only partitioning to liquid phases, the overall gas/particle partitioning constant is Kp,tot(m3μg-1) = cp,tot /cg = ∑θfθ Kp,fbθ αfb θ. The quantity cp,tot (μg μg-1) is the total Am concentration (Am + AmH+) in the PM as summed over all phases using the index θ (= w, α, β); cg is the gas-phase concentration of Am; fθ is the mass fraction of the total PM that is the θ phase; Kp,fbθ is the gas/particle partitioning constant for the free-base (Am) form to the θ phase; and 0 < αfbθ < 1 is the fraction of the amine in the θ phase that is in the free-base form. To date, most treatments of the partitioning of amines to PM have only considered contributions to Kp,tot from absorption into a mostly water phase, according to the term fw Kp,fbw/αfbw. However, unless the PM contains little or no organic-phase material, the α and/or β terms are likely to also be relevant. The Am form of a low MW amine will in general have reasonable affinities for both α and β type phases, so in general Kp,fbw, Kp,fbα, and Kp,fbβ will all be roughly similar in magnitude. And, with significant water uptake into an α phase certain to occur at moderate to high RH values, solvation of ions will often be possible in an α phase. This will assist protonation of Am to AmH+ (as is known to occur for nicotine in tobacco smoke PM). The overall result is that to a first approximation, αfbw and αfbα can be similar in magnitude, making Kp,fbα/αfbα likely to be generally comparable to Kp,fbw/αfbw. In a β phase, ion solvation will not be as good, so that for acidic aerosol αfbβ will generally be closer to one than the other two αfb values, making Kp,fbβ/αfbβ smaller than both Kp,fbw/αfbw and Kp,fbα/αfbα. Overall, modeling of amine behavior in the atmosphere should include consideration of partitioning into organic PM. Unfortunately, this will be more difficult than water-phase only modeling because prediction of αfb values in multiphase PM will be greatly complicated by the needs to: 1) have estimated values of acidity constants in mostly organic phases of variable composition; and 2) allow distribution of chemicals over multiple liquid phases.

  6. Solid-liquid critical behavior of water in nanopores.

    PubMed

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-07

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.

  7. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.

    PubMed

    Malgarinos, Ilias; Nikolopoulos, Nikolaos; Marengo, Marco; Antonini, Carlo; Gavaises, Manolis

    2014-10-01

    In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact angles. These angles are required in order to define the wetting properties of liquid phases when interacting with a solid surface. The physical model is implemented as a source term in the momentum equation of a Navier-Stokes CFD flow solver as an "adhesion-like" force which acts at the triple-phase contact line as a result of capillary interactions between the liquid drop and the solid substrate. The numerical simulations capture the liquid-air interface movement by considering the volume of fluid (VOF) method and utilizing an automatic local grid refinement technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously minimize numerical diffusion of the interface. The proposed model is validated against previously reported experimental data of normal impingement of water droplets on dry surfaces at room temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both for hydrophilic (θadv=10°-70°) and hydrophobic (θadv=105°-120°) surfaces, has been examined. Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact angle; the latter is found in reasonable agreement against available experimental measurements. It is thus concluded that theimplementation of this model is an effective approach for overcoming the need of a pre-defined dynamic contact angle law, frequently adopted as an approximate boundary condition for such simulations. Clearly, this model is mostly influential during the spreading phase for the cases of low We number impacts (We<˜80) since for high impact velocities, inertia dominates significantly over capillary forces in the initial phase of spreading. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms.

    PubMed

    Domene, Xavier; Alcañiz, Josep M; Andrés, Pilar

    2008-02-01

    Development of methodologies to assess the safety of reusing polluted organic wastes in soil is a priority in Europe. In this study, and coupled with chemical analysis, seven organic wastes were subjected to different aquatic and soil bioassays. Tests were carried out with solid-phase waste and three different waste eluates (water, methanol, and dichloromethane). Solid-phase assays were indicated as the most suitable for waste testing not only in terms of relevance for real situations, but also because toxicity in eluates was generally not representative of the chronic effects in solid-phase. No general correlations were found between toxicity and waste pollutant burden, neither in solid-phase nor in eluate assays, showing the inability of chemical methods to predict the ecotoxicological risks of wastes. On the contrary, several physicochemical parameters reflecting the degree of low organic matter stability in wastes were the main contributors to the acute toxicity seen in collembolans and daphnids.

  9. Solid-Phase Radioimmunoassay of Total and Influenza-Specific Immunoglobulin G

    PubMed Central

    Daugharty, Harry; Warfield, Donna T.; Davis, Marianne L.

    1972-01-01

    An antigen-antibody system of polystyrene tubes coated with immunoglobulin antibody was used for quantitating immunoglobulins. A similar radioimmunoassay method was adapted for a viral antigen-antibody system. The viral system can be used for quantitating viruses and for measuring virus-specific antibodies by reacting with 125iodine-labeled anti-immunoglobulin G (IgG). Optimal conditions for coating the solid phase, specificity of the immune reaction, and other kinetics and sensitivities of the assay method were investigated. Comparison of direct and indirect methods of assaying for immunoglobulins or viral antibody indicates that the indirect method is more sensitive and can quantitate a minimum of 0.037 μg of IgG per ml. Results of solid-phase radioimmunoassay for influenza antibody correlate well with hemagglutinin antibody titers but not with complement-fixing antibody titers. Radioimmunoassay results for influenza antibody by solid phase are likewise in agreement with results by the carrier precipitate radioimmunoassay method. The simplicity, reproducibility, and versatility of the solid-phase procedure make it diagnostically useful. PMID:5062884

  10. Solid-State Nanopore.

    PubMed

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-20

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  11. Solid-State Nanopore

    NASA Astrophysics Data System (ADS)

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-01

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  12. Molecular Simulation of the Free Energy for the Accurate Determination of Phase Transition Properties of Molecular Solids

    NASA Astrophysics Data System (ADS)

    Sellers, Michael; Lisal, Martin; Brennan, John

    2015-06-01

    Investigating the ability of a molecular model to accurately represent a real material is crucial to model development and use. When the model simulates materials in extreme conditions, one such property worth evaluating is the phase transition point. However, phase transitions are often overlooked or approximated because of difficulty or inaccuracy when simulating them. Techniques such as super-heating or super-squeezing a material to induce a phase change suffer from inherent timescale limitations leading to ``over-driving,'' and dual-phase simulations require many long-time runs to seek out what frequently results in an inexact location of phase-coexistence. We present a compilation of methods for the determination of solid-solid and solid-liquid phase transition points through the accurate calculation of the chemical potential. The methods are applied to the Smith-Bharadwaj atomistic potential's representation of cyclotrimethylene trinitramine (RDX) to accurately determine its melting point (Tm) and the alpha to gamma solid phase transition pressure. We also determine Tm for a coarse-grain model of RDX, and compare its value to experiment and atomistic counterpart. All methods are employed via the LAMMPS simulator, resulting in 60-70 simulations that total 30-50 ns. Approved for public release. Distribution is unlimited.

  13. Phase transition thermodynamics of bisphenols.

    PubMed

    Costa, José C S; Dávalos, Juan Z; Santos, Luís M N B F

    2014-10-16

    Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.

  14. Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography: Environmental Analysis

    DTIC Science & Technology

    2006-01-01

    ENVIRONMENTAL ANALYSIS Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography Howard T. Mayfield Air Force Research...Abstract: Current methods for the analysis of explosives in soils utilize time consuming sample preparation workups and extractions. The method detection...chromatography/mass spectrometry to provide a con- venient and sensitive analysis method for explosives in soil. Keywords: Explosives, TNT, solid phase

  15. Binary Solid-Liquid Phase Equilibria

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    1978-01-01

    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  16. Role of lattice distortion on diffuse phase transition temperatures in Bi0.5Na0.5TiO3-BaTiO3 [BNBTO] solid solutions

    NASA Astrophysics Data System (ADS)

    Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan

    2018-04-01

    Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.

  17. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.

  18. Flexible Electrostatic Technologies for Capture and Handling, Phase 1

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas

    2015-01-01

    Fundamental to many of NASA's in-space transportation missions is the capture and handling of various objects and vehicles in various orbits for servicing, debris disposal, sample retrieval, and assembly without the benefit of sufficient grapple fixtures and docking ports. To perform similar material handling tasks on Earth, pincher grippers, suction grippers, or magnetic chucks are used, but are unable to reliably grip aluminum and composite spacecraft, insulation, radiators, solar arrays, or extra-terrestrial objects in the vacuum of outer space without dedicated handles in the right places. The electronic Flexible Electrostatic Technologies for space Capture and Handling (FETCH) will enable reliable and compliant gripping (soft dock) of practically any object in various orbits or surfaces without dedicated mechanical features, very low impact capture, and built-in proximity sensing without any conventional actuators. Originally developed to handle semiconductor and glass wafers during vacuum chamber processing without contamination, the normal rigid wafer handling chucks are replaced with thin metal foil segments laminated in flexible insulation driven by commercial off-the-shelf solid state, high-voltage power supplies. Preliminary testing in NASA Marshall Space Flight Center's (MSFC's) Flat Floor Robotics Lab demonstrated compliant alignment and gripping with a full-sized, 150-lb microsat mockup and translation before a clean release with a flip of a switch. The flexible electrostatic gripper pads can be adapted to various space applications with different sizes, shapes, and foil electrode layouts even with openings through the gripper pads for addition of guidance sensors or injection of permanent adhesives. With gripping forces estimated between 0.5 and 2.5 lb/in2 or 70-300 lb/ft2 of surface contact, the FETCH can turn on and off rapidly and repeatedly to enable sample handling, soft docking, in-space assembly, precision relocation, and surface translation for accurate anchoring.

  19. Oxidatively-Stable Linear Poly(propylenimine)-Containing Adsorbents for CO2 Capture from Ultra-Dilute Streams.

    PubMed

    Pang, Simon H; Lively, Ryan P; Jones, Christopher W

    2018-05-29

    Aminopolymer-based solid sorbents have been widely investigated for CO2 capture from dilute streams such as flue gas or ambient air. However, the oxidative stability of the most well-studied aminopolymer, poly(ethylenimine) (PEI), is limited, causing it to lose its CO2 capture capacity after exposure to oxygen at elevated temperatures. Here we demonstrate the use of linear poly(propylenimine) (PPI), synthesized via a simple cationic ring-opening polymerization, as a more oxidatively-stable alternative to PEI with high CO2 capacity and amine efficiency. The performance of linear PPI/SBA-15 composites is investigated over a range of CO2 capture conditions (CO2 partial pressure, adsorption temperature) to examine the trade-off between adsorption capacity and sorption site accessibility, which may be expected to be more limited in linear polymers relative to the prototypical hyperbranched PEI. Linear PPI/SBA-15 composites are more efficient at CO2 capture and retain 65-83% of their CO2 capacity after exposure to a harsh oxidative treatment, compared to 20-40% retention for linear PEI. Additionally, we demonstrate long-term stability of linear PPI sorbents over 50 adsorption/desorption cycles with no loss in performance. Combined with other strategies for improving oxidative stability and adsorption kinetics, linear PPI may play a role as a component of stable, solid adsorbents in commercial applications for CO2 capture. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Comparison of the solid-phase fragment condensation and phase-change approaches in the synthesis of salmon I calcitonin.

    PubMed

    Gatos, D; Tzavara, C

    2001-02-01

    Salmon I calcitonin was synthesized using both phase-change and conventional solid-phase fragment condensation (SPFC) approaches, utilizing the Rink amide linker (Fmoc-amido-2,4-dimethoxybenzyl-4-phenoxyacetic acid) combined with 2-chlorotrityl resin and the Fmoc/tBu(Trt)-based protection scheme. Phase-change synthesis, performed by the selective detachment of the fully protected C-terminal 22-mer peptide-linker from the resin and subsequent condensation in solution with the N-terminal 1-10 fragment, gave a product of slightly less purity (85 vs. 92%) than the corresponding synthesis on the solid-phase. In both cases salmon I calcitonin was easily obtained in high purity.

  1. Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization

    NASA Astrophysics Data System (ADS)

    Morency, C.

    2017-12-01

    Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Open-Label, Multicenter, Phase 1/2 Study of Tazemetostat (EZH2 Histone Methyl Transferase [HMT] Inhibitor) as a Single Agent in Subjects With Adv. Solid Tumors or With B-cell Lymphomas and Tazemetostat in Combination With Prednisolone in Subjects With DLBCL

    ClinicalTrials.gov

    2018-05-31

    B-cell Lymphomas (Phase 1); Advanced Solid Tumors (Phase 1); Diffuse Large B-cell Lymphoma (Phase 2); Follicular Lymphoma (Phase 2); Transformed Follicular Lymphoma; Primary Mediastinal Large B-Cell Lymphoma

  3. Weathering and Chemical Degradation of Methyl Eugenol and Raspberry Ketone Solid Dispensers for Detection, Monitoring, and Male Annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Souder, Steven K; Nkomo, Eddie; Cook, Peter J; Mackey, Bruce; Stark, John D

    2015-08-01

    Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in area-wide pest management bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), are pests. Captures of B. dorsalis with fresh wafers in Jackson and bucket traps were significantly higher on the basis of ME concentration (Mallet ME [56%] > Mallet MR [31.2%] > Mallet MC [23.1%]). Captures of B. cucurbitae with fresh wafers in Jackson and bucket traps were not different regardless of concentration of RK (Mallet BR [20.1%] = Mallet MR [18.3%] = Mallet MC [15.9%]). Captures of B. dorsalis with fresh wafers, compared with weathered wafers, were significantly different after week 12; captures of B. cucurbitae were not significantly different after 16 wk. Chemical analyses revealed presence of RK in dispensers in constant amounts throughout the 16-wk trial. Degradation of both ME and DDVP over time was predicted with a high level of confidence by nonlinear asymptotic exponential decay curves. Results provide supportive data to deploy solid ME and RK wafers (with DDVP) in fruit fly traps for detection programs, as is the current practice with solid TML dispensers placed in Jackson traps. Wafers with ME and RK might be used in place of two separate traps for detection of both ME and RK responding fruit flies and could potentially reduce cost of materials and labor by 50%. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  4. Finite Element Simulation of Solid Rocket Booster Separation Motors During Motor Firing

    NASA Technical Reports Server (NTRS)

    Yu. Weiping; Crane, Debora J.

    2007-01-01

    One of the toughest challenges facing Solid Rocket Booster (SRB) engineers is to ensure that any design changes made to the Shuttle-Derived Booster Separation Motors (BSM) for future space exploration vehicles is able to withstand the increasingly hostile motor firing environment without cracking its critical component - the graphite throat. This paper presents a critical analysis methodology and techniques for assessing effects of BSM design changes with great accuracy and precision. For current Space Shuttle operation, the motor firing occurs at SRB separation - approximately 125 seconds after Shuttle launch at an altitude of about 28 miles. The motor operation event lasts about two seconds, however, the surface temperature of the graphite throat increases approximately 3400 F in less than one second with a corresponding increase in surface pressure of approximately 2200 pounds per square inch (psi) in less than one-tenth of a second. To capture this process fully and accurately, a two-phase sequentially coupled thermal-mechanical finite element approach was developed. This method allows the time- and location-dependent pressure fields to interact with the spatial-temporal thermal fields throughout the operation. The material properties of graphite throat are orthotropic and temperature-dependent. The analysis involves preload and multiple body contacts.

  5. Initiation of the Worthington jet on the droplet impact

    NASA Astrophysics Data System (ADS)

    Yamamoto, Ken; Motosuke, Masahiro; Ogata, Satoshi

    2018-02-01

    The deformation of liquid droplets upon impact induces Worthington jets for a certain range of impact velocities. Although the growth of such a jet and its tip velocity are predicted from cases similar to droplet impact, the mechanism behind jet formation is yet to be understood. The present study uses high-speed visualization of droplet impact on a superhydrophobic surface to understand jet initiation in terms of the collapse of an air cavity. Water droplets with diameters of 2.0 and 3.0 mm are generated with the droplet Weber number varying from 2 to 20. The jet velocity is measured from the captured images, from which the maximum velocity is found to be We ˜ 7. The jet velocity at We ˜ 7 is approximately 15 times greater than the impact velocity. Moreover, surface waves are generated upon impact with the solid surface, and they induce an oscillation of the droplet cap as they propagate from the solid-liquid contact line to the top portion of the droplet. Furthermore, we find that the phase of the oscillation is related to the Weber number and greatly influences the jet velocity because it determines the initial conditions for jet generation.

  6. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less

  7. A Coupling Analysis Approach to Capture Unexpected Behaviors in Ares 1

    NASA Astrophysics Data System (ADS)

    Kis, David

    Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process. Preliminary corrections ensure no unanticipated behaviors arise during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can effect solid rocket motors in adverse ways. Within the Ares 1 rocket, unexpected vibrations deemed potentially harmful to future crew were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. This research proposes the use of a coupling strength analysis during the design and development phase to identify potential unanticipated behaviors such as thrust oscillation. Once these behaviors and couplings are identified then a value function, based on research in Value Driven Design, is proposed to evaluate mitigation strategies and their impact on system value. The results from this study showcase a strong coupling interaction from structural displacement back onto the fluid flow of the Ares 1 that was previously deemed inconsequential. These findings show that the use of a coupling strength analysis can aid engineers and managers in identifying unanticipated behaviors and then rank order their importance based on the impact they have on value.

  8. The major volume /density/ of solid oxygen in equilibrium with vapor

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1979-01-01

    Data from the literature on the molar volume of solid oxygen have been compiled and critically analyzed. A correlated and thermodynamically consistent set of molar volumes, including the volume changes at the various solid phase transitions, is presented. Evidence for the existence of a delta-solid phase is reviewed. Uncertainties in the data and in the recommended set of values are discussed.

  9. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    NASA Astrophysics Data System (ADS)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  10. A novel mechanical model for phase-separation in debris flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.

    2015-04-01

    Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  11. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    PubMed

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Hydrothermal carbonization of food waste for nutrient recovery and reuse.

    PubMed

    Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D

    2017-11-01

    Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of proximal vagotomy and Roux-en-Y diversion on gastric emptying kinetics in asymptomatic patients.

    PubMed

    Urbain, J L; Penninckx, F; Siegel, J A; Vandenborre, P; Van Cutsem, E; Vandenmaegdenbergh, V; De Roo, M

    1990-10-01

    The role of the distal stomach in gastric emptying was studied. Ten patients with proximal gastric vagotomy (PV) and 10 age-matched patients with Roux-en-Y gastro-jejunostomy (R-Y) were compared with 10 healthy controls. Gastric emptying of solids and liquids was determined by the use of Tc-99m SC scrambled eggs and In-111 DTPA. In PV, gastric emptying of both solids and liquids was delayed; the prolongation with solids was mainly accounted for by an abnormal lag phase. In R-Y patients, no lag phase was observed, and the solid emptying curve pattern was characterized by early rapid emptying followed by very slow emptying. Both the solid and liquid phases were prolonged. The lag phase is affected by proximal vagotomy and is mainly determined by the distal stomach, which appears to be essential for normal emptying.

  14. Phase Behavior of Binary Mixture of Heptaethylene Glycol Decyl Ether and Water: Formation of Phase Compound in Solid Phase

    PubMed

    Nibu; Suemori; Inoue

    1997-07-01

    Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to construct and characterize the phase diagram for a binary mixture of heptaethylene glycol decyl ether (C10 E7 ) and water in the temperature range from -60 to 80°C. Plots of the endothermic peak temperatures obtained by DSC measurements against compositions provided eutectic solid-liquid phase boundaries with a eutectic composition of 34 wt% of H2 O. On the other hand, heat of fusion per unit weight of the mixture changed discretely at the composition corresponding to the "eutectic" composition. Furthermore, the IR spectra obtained for the mixture in the solid phase were well reproduced as a superposition of those for the mixture of 34 wt% H2 O and pure components but were not reproduced by superimposing the spectra obtained for the solid surfactant and ice. These observations indicate that a solid phase compound is formed between C10 E7 and water with a stoichiometry of 1:14 and that the compound and pure components exist as separate phases, rather than the phases separating into surfactant and ice, which would be expected if the C10 E7 /water mixture formed a true eutectic mixture system. It is estimated from the composition corresponding to the phase compounds that two molecules of water per oxyethylene unit are bound to hydrophilic polyoxyethylene chain of C10 E7 to form a hydrated compound.

  15. Limit on the radiative neutrinoless double electron capture of ^{36}Ar from GERDA Phase I

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-12-01

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of ^{36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array ( Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of ^{36}Ar was established: T_{1/2} > 3.6 × 10^{21} years at 90% CI.

  16. Limit on the radiative neutrinoless double electron capture of 36Ar from GERDA Phase I

    DOE PAGES

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; ...

    2016-11-28

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. Here, a search for neutrinoless double electron capture of 36Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array (Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of 36 Ar was established: T 1/2 > 3.6 × 10 21 years at 90% CI.

  17. Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid ChromatographyTime-of-Flight Mass Spectrometry

    DTIC Science & Technology

    2016-04-01

    QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID-PHASE EXTRACTION ULTRA-PERFORMANCE...TITLE AND SUBTITLE Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid Chromatography... food matrices. The mixed-mode cation exchange (MCX) sorbent and Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods were used for

  18. Quantifying intermediate-frequency heterogeneities of SOFC electrodes using X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epting, William K.; Mansley, Zachary; Menasche, David B.

    2017-03-03

    The electrodes in solid oxide fuel cells (SOFCs) consist of three phases interconnected in three dimensions. The volume needed to describe quantitatively such microstructures depends on several lengths scales, which are functions of materials properties and fabrication methods. This work focuses on quantifying the volume needed to represent “intermediate frequency” heterogeneities in electrodes of a commercial SOFC using X-ray computed tomography (CT) over two different length scales. Electrode volumes of 150 x 150 x 9 μm 3 were extracted from a synchrotron-based micro-CT data set, with 13 μm 3 voxels. 13.6 x 19.8 x 19.4 μm 3 of the cathodemore » and 26.3 x 24.8 x 15.7 μm 3 of the anode were extracted from laboratory nano-CT data sets, both with 65 3 nm 3 voxels. After comparing the variation across sub-regions for the greyscale values from the micro-CT, and for the phase fractions and triple phase boundary densities from the nano-CT, it was found that the sub-region length scales needed to yield statistically similar average values were an order of magnitude larger than those expected to capture the “high frequency” heterogeneity related to the discrete nature of the three phases in electrodes. In conclusion, the challenge of quantifying such electrodes using available experimental methods is discussed.« less

  19. Demonstration of Advanced CO 2 Capture Process Improvements for Coal-Fired Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, John

    This document summarizes the activities of Cooperative Agreement DE-FE0026590, “Demonstration of Advanced CO 2 Capture Process Improvements for Coal-Fired Flue Gas” during the performance period of October 1, 2015 through May 31, 2017. This project was funded by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). Southern Company Services, Inc. (SCS) was the prime contractor and co-funder of the project. Mitsubishi Heavy Industries America (MHIA) and AECOM were project team members. The overall project objective was to improve costs, energy requirements, and performance of an existing amine-based CO 2 capture process. This will occur via improvements inmore » three areas: 1. Reboiler design – The first objective of the program was to demonstrate performance of an integrated stripper/reboiler (termed Built-in Reboiler, or BIR) to reduce footprint, capital costs, and integration issues of the current technology. 2. Particulate management – The second objective was to carry out a Particulate Matter Management (PMM) test. This has the potential to reduce operating costs and capital costs due to the reduced or eliminated need for mechanical filtration. 3. Solvent – The third objective was to carry out a new solvent test plan (referred to as NSL) to demonstrate a new solvent (termed New Solvent A), which is expected to reduce regeneration steam. The bulk price is also expected to be lower than KS-1, which is the current solvent used in this process. NSL testing would include baseline testing, optimization, long term testing, solvent reclamation testing, and final inspection. These combine to form the Advanced Carbon Capture (ACC) technology. Much of this work will be applicable to generic solvent processes, especially in regards to improved reboiler design, and focused to meet or exceed the DOE’s overall carbon capture performance goals of 90% CO 2 capture rate with 95% CO 2 purity at a cost of $40/tonne of CO 2 by 2025 and at a cost of electricity (COE) 30% less than baseline CO 2 capture approaches by 2030. This project was divided into two phases. Phase 1 is the planning phase, and Phase 2 is the construction, operations, testing, and analysis phase. A down select occurred after Phase 1. Phase 1 activities were carried out during this reporting period, and therefore, Phase 1 activities are solely considered in this report. The project was not selected for Phase 2 funding.« less

  20. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.

    PubMed

    Jongedijk, Esmer; Cankar, Katarina; Ranzijn, Jorn; van der Krol, Sander; Bouwmeester, Harro; Beekwilder, Jules

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028 mg/l (+)-limonene and 0.060 mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12 mg/l (+)-limonene and 0.49 mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation.

    PubMed

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy

    2016-11-30

    Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

  2. Analytical methodologies based on LC-MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-01-01

    In this work, two analytical methodologies based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were developed for quantification of emerging pollutants identified in sewage sludge after a previous wide-scope screening. The target list included 13 emerging contaminants (EC): thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-aminoantipyrine (4-AA), 4-acetyl aminoantipyrine (4-AAA), 4-formyl aminoantipyrine (4-FAA), venlafaxine and benzoylecgonine. The aqueous and solid phases of the sewage sludge were analyzed making use of Solid-Phase Extraction (SPE) and UltraSonic Extraction (USE) for sample treatment, respectively. The methods were validated at three concentration levels: 0.2, 2 and 20 μg L(-1) for the aqueous phase, and 50, 500 and 2000 μg kg(-1) for the solid phase of the sludge. In general, the method was satisfactorily validated, showing good recoveries (70-120%) and precision (RSD < 20%). Regarding the limit of quantification (LOQ), it was below 0.1 μg L(-1) in the aqueous phase and below 50 μg kg(-1) in the solid phase for the majority of the analytes. The method applicability was tested by analysis of samples from a wider study on degradation of emerging pollutants in sewage sludge under anaerobic digestion. The key benefits of these methodologies are: • SPE and USE are appropriate sample procedures to extract selected emerging contaminants from the aqueous phase of the sewage sludge and the solid residue. • LC-MS/MS is highly suitable for determining emerging contaminants in both sludge phases. • Up to our knowledge, the main metabolites of dipyrone had not been studied before in sewage sludge.

  3. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    NASA Astrophysics Data System (ADS)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  4. Quantitative tomographic measurements of opaque multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less

  5. Biofuel production utilizing a dual-phase cultivation system with filamentous cyanobacteria.

    PubMed

    Aoki, Jinichi; Kawamata, Toru; Kodaka, Asuka; Minakawa, Masayuki; Imamura, Nobukazu; Tsuzuki, Mikio; Asayama, Munehiko

    2018-04-17

    Biomass yields and biofuel production were examined in a dual (solid and liquid)-phase cultivation system (DuPHA) with the unique filamentous cyanobacteria, Pseudanabaena sp. ABRG 5-3 and Limnothrix sp. SK1-2-1. Continuous circular cultivation was driven under the indoor closed (IC) or indoor opened (IO) conditions and provided biomass yields of approximately 8 to 27 g dry cell weight (DCW) floor m -2 d -1 . Alkanes of heptadecane (C 17 H 36 ) or pentadecane (C 15 H 32 ) as liquid biofuels were also recovered from the lower liquid-phase, in which cyanobacteria were dropped from the upper solid-phase and continuously cultivated with a small amount of medium. After the main cultivation in DuPHA, the upper solid-phase of a cotton cloth on which cyanobacteria grew was dried and directly subjected to a combustion test. This resulted in the thermal power (kJ s -1 ) of the cloth with microalgae increasing approximately 20 to 50% higher than that of the cloth only, suggesting a possibility of using the solid phase with microalgae as solid biofuel. Copyright © 2018. Published by Elsevier B.V.

  6. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    PubMed

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    PubMed

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  8. Further insight into the mechanism of heavy metals partitioning in stormwater runoff.

    PubMed

    Djukić, Aleksandar; Lekić, Branislava; Rajaković-Ognjanović, Vladana; Veljović, Djordje; Vulić, Tatjana; Djolić, Maja; Naunovic, Zorana; Despotović, Jovan; Prodanović, Dušan

    2016-03-01

    Various particles and materials, including pollutants, deposited on urban surfaces are washed off by stormwater runoff during rain events. The interactions between the solid and dissolved compounds in stormwater runoff are phenomena of importance for the selection and improvement of optimal stormwater management practices aimed at minimizing pollutant input to receiving waters. The objective of this research was to further investigate the mechanisms responsible for the partitioning of heavy metals (HM) between the solid and liquid phases in urban stormwater runoff. The research involved the collection of samples from urban asphalt surfaces, chemical characterization of the bulk liquid samples, solids separation, particle size distribution fractionation and chemical and physico-chemical characterization of the solid phase particles. The results revealed that a negligible fraction of HM was present in the liquid phase (less than 3% by weight), while there was a strong correlation between the total content of heavy metals and total suspended solids. Examinations of surface morphology and mineralogy revealed that the solid phase particles consist predominantly of natural macroporous materials: alpha quartz (80%), magnetite (11.4%) and silicon diphosphate (8.9%). These materials have a low surface area and do not have significant adsorptive capacity. These materials have a low surface area and do not have significant adsorptive capacity. The presence of HM on the surface of solid particles was not confirmed by scanning electron microscopy and energy dispersive X-ray microanalyses. These findings, along with the results of the liquid phase sample characterization, indicate that the partitioning of HM between the liquid and solid phases in the analyzed samples may be attributed to precipitation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.

    1998-09-08

    A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.

  10. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.

    1998-01-01

    A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.

  11. Fragment capture device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point ofmore » the solid fragment is located within a cavity at least partially enclosed by the array of bars.« less

  12. The concept of quasi-tissue-equivalent nanodosimeter based on the glow peak 5a/5 in LiF:Mg,Ti (TLD-100).

    PubMed

    Oster, L; Horowitz, Y S; Biderman, S; Haddad, J

    2003-12-01

    We demonstrate the viability of the concept of using existing molecular nanostructures in thermoluminescent solid-state materials as solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated trapping and luminescent centres pairs in the thermoluminescence of LiF:Mg,Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of double-strand breaks to single-strand breaks for low energy He ions.

  13. Study on ABO and RhD blood grouping: Comparison between conventional tile method and a new solid phase method (InTec Blood Grouping Test Kit).

    PubMed

    Yousuf, R; Abdul Ghani, S A; Abdul Khalid, N; Leong, C F

    2018-04-01

    'InTec Blood Grouping Test kit' using solid-phase technology is a new method which may be used at outdoor blood donation site or at bed side as an alternative to the conventional tile method in view of its stability at room temperature and fulfilled the criteria as point of care test. This study aimed to compare the efficiency of this solid phase method (InTec Blood Grouping Test Kit) with the conventional tile method in determining the ABO and RhD blood group of healthy donors. A total of 760 voluntary donors who attended the Blood Bank, Penang Hospital or offsite blood donation campaigns from April to May 2014 were recruited. The ABO and RhD blood groups were determined by the conventional tile method and the solid phase method, in which the tube method was used as the gold standard. For ABO blood grouping, the tile method has shown 100% concordance results with the gold standard tube method, whereas the solid-phase method only showed concordance result for 754/760 samples (99.2%). Therefore, for ABO grouping, tile method has 100% sensitivity and specificity while the solid phase method has slightly lower sensitivity of 97.7% but both with good specificity of 100%. For RhD grouping, both the tile and solid phase methods have grouped one RhD positive specimen as negative each, thus giving the sensitivity and specificity of 99.9% and 100% for both methods respectively. The 'InTec Blood Grouping Test Kit' is suitable for offsite usage because of its simplicity and user friendliness. However, further improvement in adding the internal quality control may increase the test sensitivity and validity of the test results.

  14. Optical character recognition of camera-captured images based on phase features

    NASA Astrophysics Data System (ADS)

    Diaz-Escobar, Julia; Kober, Vitaly

    2015-09-01

    Nowadays most of digital information is obtained using mobile devices specially smartphones. In particular, it brings the opportunity for optical character recognition in camera-captured images. For this reason many recognition applications have been recently developed such as recognition of license plates, business cards, receipts and street signal; document classification, augmented reality, language translator and so on. Camera-captured images are usually affected by geometric distortions, nonuniform illumination, shadow, noise, which make difficult the recognition task with existing systems. It is well known that the Fourier phase contains a lot of important information regardless of the Fourier magnitude. So, in this work we propose a phase-based recognition system exploiting phase-congruency features for illumination/scale invariance. The performance of the proposed system is tested in terms of miss classifications and false alarms with the help of computer simulation.

  15. Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples.

    PubMed

    Baggiani, C; Giovannoli, C; Anfossi, L; Tozzi, C

    2001-12-14

    A molecularly imprinted polymer (MIP) was synthesized using the herbicide 2,4,5-trichlorophenoxyacetic acid as a template, 4-vinylpyridine as an interacting monomer, ethylendimethacrylate as a cross-linker and a methanol-water mixture as a porogen. The binding properties and the selectivity of the polymer towards the template were investigated by frontal and zonal liquid chromatography. The polymer was used as a solid-phase extraction material for the clean-up of the template molecule and some related herbicides (2,4-dichlorophenoxyacetic acid, fenoprop, dichlorprop) from river water samples at a concentration level of ng/ml with quantitative recoveries comparable with those obtained with a traditional C18 reversed-phase column when analyzed by capillary electrophoresis. The results obtained show that the MIP-based approach to the solid-phase extraction is comparable with the more traditional solid-phase extraction with C18 reversed-phase columns in terms of recovery, but it is superior in terms of sample clean-up.

  16. Reward and attentional control in visual search.

    PubMed

    Yantis, Steven; Anderson, Brian A; Wampler, Emma K; Laurent, Patryk A

    2012-01-01

    It has long been known that the control of attention in visual search depends both on voluntary, top-down deployment according to context-specific goals, and on involuntary, stimulus-driven capture based on the physical conspicuity of perceptual objects. Recent evidence suggests that pairing target stimuli with reward can modulate the voluntary deployment of attention, but there is little evidence that reward modulates the involuntary deployment of attention to task-irrelevant distractors. We report several experiments that investigate the role of reward learning on attentional control. Each experiment involved a training phase and a test phase. In the training phase, different colors were associated with different amounts of monetary reward. In the test phase, color was not task-relevant and participants searched for a shape singleton; in most experiments no reward was delivered in the test phase. We first show that attentional capture by physically salient distractors is magnified by a previous association with reward. In subsequent experiments we demonstrate that physically inconspicuous stimuli previously associated with reward capture attention persistently during extinction--even several days after training. Furthermore, vulnerability to attentional capture by high-value stimuli is negatively correlated across individuals with working memory capacity and positively correlated with trait impulsivity. An analysis of intertrial effects reveals that value-driven attentional capture is spatially specific. Finally, when reward is delivered at test contingent on the task-relevant shape feature, recent reward history modulates value-driven attentional capture by the irrelevant color feature. The influence of learned value on attention may provide a useful model of clinical syndromes characterized by similar failures of cognitive control, including addiction, attention-deficit/hyperactivity disorder, and obesity.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doug Cathro

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas andmore » Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.« less

  18. Reward and Attentional Control in Visual Search

    PubMed Central

    Anderson, Brian A.; Wampler, Emma K.; Laurent, Patryk A.

    2015-01-01

    It has long been known that the control of attention in visual search depends both on voluntary, top-down deployment according to context-specific goals, and on involuntary, stimulus-driven capture based on the physical conspicuity of perceptual objects. Recent evidence suggests that pairing target stimuli with reward can modulate the voluntary deployment of attention, but there is little evidence that reward modulates the involuntary deployment of attention to task-irrelevant distractors. We report several experiments that investigate the role of reward learning on attentional control. Each experiment involved a training phase and a test phase. In the training phase, different colors were associated with different amounts of monetary reward. In the test phase, color was not task-relevant and participants searched for a shape singleton; in most experiments no reward was delivered in the test phase. We first show that attentional capture by physically salient distractors is magnified by a previous association with reward. In subsequent experiments we demonstrate that physically inconspicuous stimuli previously associated with reward capture attention persistently during extinction—even several days after training. Furthermore, vulnerability to attentional capture by high-value stimuli is negatively correlated across individuals with working memory capacity and positively correlated with trait impulsivity. An analysis of intertrial effects reveals that value-driven attentional capture is spatially specific. Finally, when reward is delivered at test contingent on the task-relevant shape feature, recent reward history modulates value-driven attentional capture by the irrelevant color feature. The influence of learned value on attention may provide a useful model of clinical syndromes characterized by similar failures of cognitive control, including addiction, attention-deficit/hyperactivity disorder, and obesity. PMID:23437631

  19. Numerical study of gravity effects on phase separation in a swirl chamber.

    PubMed

    Hsiao, Chao-Tsung; Ma, Jingsen; Chahine, Georges L

    2016-01-01

    The effects of gravity on a phase separator are studied numerically using an Eulerian/Lagrangian two-phase flow approach. The separator utilizes high intensity swirl to separate bubbles from the liquid. The two-phase flow enters tangentially a cylindrical swirl chamber and rotate around the cylinder axis. On earth, as the bubbles are captured by the vortex formed inside the swirl chamber due to the centripetal force, they also experience the buoyancy force due to gravity. In a reduced or zero gravity environment buoyancy is reduced or inexistent and capture of the bubbles by the vortex is modified. The present numerical simulations enable study of the relative importance of the acceleration of gravity on the bubble capture by the swirl flow in the separator. In absence of gravity, the bubbles get stratified depending on their sizes, with the larger bubbles entering the core region earlier than the smaller ones. However, in presence of gravity, stratification is more complex as the two acceleration fields - due to gravity and to rotation - compete or combine during the bubble capture.

  20. Encapsulated Solid-Liquid Phase Change Nanoparticles as Thermal Barcodes for Highly Sensitive Detections of Multiple Lung Cancer Biomarkers

    DTIC Science & Technology

    2012-10-01

    5e. TASK NUMBER LC90061 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...transduction mechanism based on solid- liquid phase change nanoparticles works for the detection of multiple proteins. A series of metal and alloy...early stage. With the support from DOD-LCRP, we have proved the new signal transduction mechanism based on solid-liquid phase change nanoparticles works

  1. A methodology for modeling surface effects on stiff and soft solids

    NASA Astrophysics Data System (ADS)

    He, Jin; Park, Harold S.

    2017-09-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  2. A methodology for modeling surface effects on stiff and soft solids

    NASA Astrophysics Data System (ADS)

    He, Jin; Park, Harold S.

    2018-06-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  3. A possible mechanism for the capture of microparticles by the earth and other planets of the solar system. [planetary gravitation effects on cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Dibenedetto, F.

    1973-01-01

    By application of Lyttleton's theory for the formation of comets, it is shown that a possible mechanism for the origin and formation of a concentration of cosmic particles around the earth and the other planets of the solar system exists. In the vicinity of the neutral point, where the velocity of colliding particles is not greater than 6 km/s, it is found that if the solid particles after collision must remain in a solid state, there can be no possibility of accretion for Mercury, Mars, and the Moon, where the maximum value of the distance of the center of the planet to the asymptotic trajectory is less than the radius of the planet. On the other hand, the capture radii of microparticles in solid form varies from a minimum of 2.95 planetary radii for Venus and 3.47 for the Earth, to about 986 for Jupiter.

  4. A review on solid phase extraction of actinides and lanthanides with amide based extractants.

    PubMed

    Ansari, Seraj A; Mohapatra, Prasanta K

    2017-05-26

    Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A separate phase drag model and a surrogate approximation for simulation of the steam assisted gravity drainage (SAGD) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian

    General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less

  6. A separate phase drag model and a surrogate approximation for simulation of the steam assisted gravity drainage (SAGD) process

    DOE PAGES

    Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian; ...

    2016-01-01

    General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less

  7. Quantitative ionspray liquid chromatographic/tandem mass spectrometric determination of reserpine in equine plasma.

    PubMed

    Anderson, M A; Wachs, T; Henion, J D

    1997-02-01

    A method based on ionspray liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of reserpine in equine plasma. A comparison was made of the isolation of reserpine from plasma by liquid-liquid extraction and by solid-phase extraction. A structural analog, rescinnamine, was used as the internal standard. The reconstituted extracts were analyzed by ionspray LC/MS/MS in the selected reaction monitoring (SRM) mode. The calibration graph for reserpine extracted from equine plasma obtained using liquid-liquid extraction was linear from 10 to 5000 pg ml-1 and that using solid-phase extraction from 100 to 5000 pg ml-1. The lower level of quantitation (LLQ) using liquid-liquid and solid-phase extraction was 50 and 200 pg ml-1, respectively. The lower level of detection for reserpine by LC/MS/MS was 10 pg ml-1. The intra-assay accuracy did not exceed 13% for liquid-liquid and 12% for solid-phase extraction. The recoveries for the LLQ were 68% for liquid-liquid and 58% for solid-phase extraction.

  8. Recent Approaches Toward Solid Phase Synthesis of β-Lactams

    NASA Astrophysics Data System (ADS)

    Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb

    Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.

  9. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    NASA Astrophysics Data System (ADS)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire

    2017-09-01

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH3OH), binary (H2O:CH3OH, CH3OH:NH3), and ternary ice analogs (H2O:CH3OH:NH3) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.

  10. Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements

    NASA Astrophysics Data System (ADS)

    Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun

    2016-11-01

    It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.

  11. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  12. Melting of Simple Solids and the Elementary Excitations of the Communal Entropy

    NASA Astrophysics Data System (ADS)

    Bongiorno, Angelo

    2010-03-01

    The melting phase transition of simple solids is addressed through the use of atomistic computer simulations. Three transition metals (Ni, Au, and Pt) and a semiconductor (Si) are considered in this study. Iso-enthalpic molecular dynamics simulations are used to compute caloric curves across the solid-to-liquid phase transition of a periodic crystalline system, to construct the free energy function of the solid and liquid phases, and thus to derive the thermodynamical limit of the melting point, latent heat and entropy of fusion of the material. The computational strategy used in this study yields accurate estimates of melting parameters, it consents to determine the superheating and supercooling temperature limits, and it gives access to the atomistic mechanisms mediating the melting process. In particular, it is found that the melting phase transition in simple solids is driven by exchange steps involving a few atoms and preserving the crystalline structure. These self-diffusion phenomena correspond to the elementary excitations of the communal entropy and, as their rate depends on the local material cohesivity, they mediate both the homogeneous and non-homogeneous melting process in simple solids.

  13. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device.

    PubMed

    Galletti, Giuseppe; Sung, Matthew S; Vahdat, Linda T; Shah, Manish A; Santana, Steven M; Altavilla, Giuseppe; Kirby, Brian J; Giannakakou, Paraskevi

    2014-01-07

    Circulating tumor cells (CTCs) have emerged as a reliable source of tumor cells, and their concentration has prognostic implications. CTC capture offers real-time access to cancer tissue without the need of an invasive biopsy, while their phenotypic and molecular interrogation can provide insight into the biological changes of the tumor that occur during treatment. The majority of the CTC capture methods are based on EpCAM expression as a surface marker of tumor-derived cells. However, EpCAM protein expression levels can be significantly down regulated during cancer progression as a consequence of the process of epithelial to mesenchymal transition. In this paper, we describe a novel HER2 (Human Epidermal Receptor 2)-based microfluidic device for the isolation of CTCs from peripheral blood of patients with HER2-expressing solid tumors. We selected HER2 as an alternative to EpCAM as the receptor is biologically and therapeutically relevant in several solid tumors, like breast cancer (BC), where it is overexpressed in 30% of the patients and expressed in 90%, and gastric cancer (GC), in which HER2 presence is identified in more than 60% of the cases. We tested the performance of various anti HER2 antibodies in a panel of nine different BC cell lines with varying HER2 protein expression levels, using immunoblotting, confocal microscopy, live cells imaging and flow cytometry analyses. The antibody associated with the highest capture efficiency and sensitivity for HER2 expressing cells on the microfluidic device was the one that performed best in live cells imaging and flow cytometry assays as opposed to the fixed cell analyses, suggesting that recognition of the native conformation of the HER2 extracellular epitope on living cells was essential for specificity and sensitivity of CTC capture. Next, we tested the performance of the HER2 microfluidic device using blood from metastatic breast and gastric cancer patients. The HER2 microfluidic device exhibited CTC capture in 9/9 blood samples. Thus, the described HER2-based microfluidic device can be considered as a valid clinically relevant method for CTC capture in HER2 expressing solid cancers.

  14. [Determination of lead in edible salt with solid-phase extraction and GFAAS].

    PubMed

    Zhao, Xin; Zhou, Shuang; Ma, Lan; Yang, Dajin

    2013-01-01

    Establishing a method for determination of lead in salt with solid-phase extraction and GFAAS. Salt sample was diluted to a certain volume directly with ammonium acetate, then the sample solution was filtered through the solid phase extraction column which has been pre-activated. Lead ions were retained, and the sodium chloride matrix was removed. After elution, the collected lead ions was determined by graphite furnace atomic absorption spectrometry in 257.4 nm. This method can be used effectively to wipe off the sodium chloride in matrix. The limit of detection was 0.7 microg/kg and the limit of quantification was 2 microg/kg. Solid phase extraction technique can be used effectively to reduce the interference in matrix and improves the accuracy and reproducibility of detection.

  15. Self-healing liquid/solid state battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.

    A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrodemore » includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.« less

  16. Studies in Three Phase Gas-Liquid Fluidised Systems

    NASA Astrophysics Data System (ADS)

    Awofisayo, Joyce Ololade

    1992-01-01

    Available from UMI in association with The British Library. The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid -solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with "true" three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties.

  17. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  18. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electronmore » microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al3Mg2 phase.« less

  19. Visual accommodation and active pursuit of prey underwater in a plunge-diving bird: the Australasian gannet

    PubMed Central

    Machovsky-Capuska, Gabriel E.; Howland, Howard C.; Raubenheimer, David; Vaughn-Hirshorn, Robin; Würsig, Bernd; Hauber, Mark E.; Katzir, Gadi

    2012-01-01

    Australasian gannets (Morus serrator), like many other seabird species, locate pelagic prey from the air and perform rapid plunge dives for their capture. Prey are captured underwater either in the momentum (M) phase of the dive while descending through the water column, or the wing flapping (WF) phase while moving, using the wings for propulsion. Detection of prey from the air is clearly visually guided, but it remains unknown whether plunge diving birds also use vision in the underwater phase of the dive. Here we address the question of whether gannets are capable of visually accommodating in the transition from aerial to aquatic vision, and analyse underwater video footage for evidence that gannets use vision in the aquatic phases of hunting. Photokeratometry and infrared video photorefraction revealed that, immediately upon submergence of the head, gannet eyes accommodate and overcome the loss of greater than 45 D (dioptres) of corneal refractive power which occurs in the transition between air and water. Analyses of underwater video showed the highest prey capture rates during WF phase when gannets actively pursue individual fish, a behaviour that very likely involves visual guidance, following the transition after the plunge dive's M phase. This is to our knowledge the first demonstration of the capacity for visual accommodation underwater in a plunge diving bird while capturing submerged prey detected from the air. PMID:22874749

  20. On the Development of Spray Submodels Based on Droplet Size Moments

    NASA Astrophysics Data System (ADS)

    Beck, J. C.; Watkins, A. P.

    2002-11-01

    Hitherto, all polydisperse spray models have been based on discretising the liquid flow field into groups of equally sized droplets. The authors have recently developed a spray model that captures the full polydisperse nature of the spray flow without using droplet size classes (Beck, 2000, Ph.D thesis, UMIST; Beck and Watkins, 2001, Proc. R. Soc. London A). The parameters used to describe the distribution of droplet sizes are the moments of the droplet size distribution function. Transport equations are written for the two moments which represent the liquid mass and surface area, and two more moments representing the sum of drop radii and droplet number are approximated via use of a presumed distribution function, which is allowed to vary in space and time. The velocities to be used in the two transport equations are obtained by defining moment-average quantities and constructing further transport equations for the relevant moment-average velocities. An equation for the energy of the liquid phase and standard gas phase equations, including a k-ɛ turbulence model, are also solved. All the equations are solved in an Eulerian framework using the finite-volume approach, and the phases are coupled through source terms. Effects such as interphase drag, droplet breakup, and droplet-droplet collisions are also captured through the use of source terms. The development of the submodels to describe these effects is the subject of this paper. All the source terms for the hydrodynamics of the spray are derived in this paper in terms of the four moments of the droplet size distribution in order to find the net effect on the whole spray flow field. The development of similar submodels to describe heat and mass transfer effects between the phases is the subject of a further paper (Beck and Watkins, 2001, J. Heat Fluid Flow). The model has been applied to a wide variety of different sprays, including high-pressure diesel sprays, wide-angle solid-cone water sprays, hollow-cone spray s, and evaporating sprays. The comparisons of the results with experimental data show that the model performs well. The interphase drag model, along with the model for the turbulent dispersion of the liquid, produces excellent agreement in the spray penetration results, and the moment-average velocity approach gives good radial distributions of droplet size, showing the capability of the model to predict polydisperse behaviour. Good submodel performance results in droplet breakup, collisions, and evaporation effects (see (Beck and Watkins, 2001, J. Heat Fluid Flow)) also being captured successfully.

  1. Investigation on thixojoining to produce hybrid components with intermetallic phase

    NASA Astrophysics Data System (ADS)

    Seyboldt, Christoph; Liewald, Mathias

    2018-05-01

    Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.

  2. Enthalpy-based multiple-relaxation-time lattice Boltzmann method for solid-liquid phase-change heat transfer in metal foams.

    PubMed

    Liu, Qing; He, Ya-Ling; Li, Qing

    2017-08-01

    In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.

  3. Development and Validation of HPLC Method for Determination of Crocetin, a constituent of Saffron, in Human Serum Samples.

    PubMed

    Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein

    2013-01-01

    The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.

  4. Development and Validation of HPLC Method for Determination of Crocetin, a constituent of Saffron, in Human Serum Samples

    PubMed Central

    Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein

    2013-01-01

    Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292

  5. Fabrication of single domain GdBCO bulk superconductors by a new modified TSIG technique

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Zhi, X.; Chen, S. L.; Wang, M.; Li, J. W.; Ma, J.; Chao, X. X.

    2014-01-01

    Single domain GdBCO bulk superconductors have been fabricated with new and traditional solid phases by a top seeded infiltration and growth (TSIG) process technique. In the conventional TSIG process, three types of powders, such as Gd2BaCuO5, GdBa2Cu3O7-x and Ba3Cu5O8, must be prepared, but in our new modified TSIG technique, only BaCuO2 powders are required during the fabrication of the single domain GdBCO bulk superconductors. The solid phase used in the conventional process is Gd2BaCuO5 instead of the solid phase (Gd2O3 + BaCuO2) utilized in the new process. The liquid phase used in the conventional process is a mixture of (GdBa2Cu3O7-x + Ba3Cu5O8), and the liquid phase in the new process is a mixture of (Gd2O3 + 10BaCuO2 + 6CuO). Single domain GdBCO bulk superconductors have been fabricated with the new solid and liquid phases. The levitation force of the GdBCO bulk samples fabricated by the new solid phase is 28 N, which is slightly higher than that of the samples fabricated using the conventional solid phases (26 N). The microstructure and the levitation force of the samples indicate that this new method can greatly simplify the fabrication process, introduce nanometer-sized flux centers, improve the levitation force and working efficiency, and greatly reduce the cost of fabrication of single domain GdBCO bulk superconductors by the TSIG process.

  6. Enthalpy-based multiple-relaxation-time lattice Boltzmann method for solid-liquid phase-change heat transfer in metal foams

    NASA Astrophysics Data System (ADS)

    Liu, Qing; He, Ya-Ling; Li, Qing

    2017-08-01

    In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.

  7. Vortex-homogenized matrix solid-phase dispersion for the extraction of short chain chlorinated paraffins from indoor dust samples.

    PubMed

    Chen, Yu-Hsuan; Chang, Chia-Yu; Ding, Wang-Hsien

    2016-11-11

    A simple and effective method for determining short chain chlorinated paraffins (SCCPs) in indoor dust is presented. The method employed a modified vortex-homogenized matrix solid-phase dispersion (VH-MSPD) prior to its detection by gas chromatography - electron-capture negative-ion mass spectrometry (GC-ECNI-MS) operating in the selected-ion-monitoring (SIM) mode. Under the best extraction conditions, 0.1-g of dust sample was dispersed with 0.1-g of silica gel by using vortex (2min) instead of using a mortar and pestle (3min). After that step, the blend was transferred to a glass column containing 3-g acidic silica gel, 2-g basic silica gel, and 2-g of deactivated silica gel, used as clean-up co-sorbents. Then, target analytes were eluted with 5mL of n-hexane/dichloromethane (2:1, v/v) mixture. The extract was evaporated to dryness under a gentle stream of nitrogen. The residue was then re-dissolved in n-hexane (10μL), and subjected to GC-ECNI-MS analysis. The limits of quantitation (LOQs) ranged from 0.06 to 0.25μg/g for each SCCP congener. Precision was less than 7% for both intra- and inter-day analysis. Trueness was above 89%, which was calculated by mean extraction recovery. The VH-MSPD combined with GC-ECNI-MS was successfully applied to quantitatively detect SCCPs from various indoor dust samples, and the concentrations ranged from 1.2 to 31.2μg/g. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Simple, rapid and green one-step strategy to synthesis of graphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for square-wave voltammetric detection of methyl parathion.

    PubMed

    Liu, Yan; Yang, Shanli; Niu, Weifen

    2013-08-01

    Simple, rapid, green and one-step electrodeposition strategy was first proposed to synthesis of graphene/carbon nanotubes/chitosan (GR/CNTs/CS) hybrid. The one-step electrodeposition approach for the construction of GR-based hybrid is green environmentally, which would not involve the chemical reduction of graphene oxide (GO) and therefore result in no further contamination. The whole procedure is simple and needs only several minutes. Combining the advantages of GR (large surface area, high conductivity and good adsorption ability), CNTs (high surface area, high enrichment capability and good adsorption ability) and CS (good adsorption and excellent film-forming ability), the obtained GR/CNTs/CS composite could be highly efficient to capture organophosphate pesticides (OPs) and used as solid phase extraction (SPE). The GR/CNTs/CS sensor is used for enzymeless detection of OPs, using methyl parathion (MP) as a model analyte. Significant redox response of MP on GR/CNTs/CS sensor is proved. The linear range is wide from 2.0ngmL(-1) to 500ngmL(-1), with a detection limit of 0.5ngmL(-1). Detection limit of the proposed sensor is much lower than those enzyme-based sensors and many other enzymeless sensors. Moreover, the proposed sensor exhibits high reproducibility, long-time storage stability and satisfactory anti-interference ability. This work provides a green and one-step route for the preparation of GR-based hybrid, and also offers a new promising protocol for OPs analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Investigation of Phase Transition-Based Tethered Systems for Small Body Sample Capture

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Scharf, Daniel; Mukherjee, Rudranarayan

    2009-01-01

    This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and possible return to Earth. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.

  10. Modeling and Testing of Phase Transition-Based Deployable Systems for Small Body Sample Capture

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Keim, Jason; Mukherjee, Rudranarayan

    2009-01-01

    This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and return. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.

  11. The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content

    NASA Astrophysics Data System (ADS)

    Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari

    2017-07-01

    Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.

  12. Stochastic Simulation of Lagrangian Particle Transport in Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Sun, Guangyuan

    This dissertation presents the development and validation of the One Dimensional Turbulence (ODT) multiphase model in the Lagrangian reference frame. ODT is a stochastic model that captures the full range of length and time scales and provides statistical information on fine-scale turbulent-particle mixing and transport at low computational cost. The flow evolution is governed by a deterministic solution of the viscous processes and a stochastic representation of advection through stochastic domain mapping processes. The three algorithms for Lagrangian particle transport are presented within the context of the ODT approach. The Type-I and -C models consider the particle-eddy interaction as instantaneous and continuous change of the particle position and velocity, respectively. The Type-IC model combines the features of the Type-I and -C models. The models are applied to the multi-phase flows in the homogeneous decaying turbulence and turbulent round jet. Particle dispersion, dispersion coefficients, and velocity statistics are predicted and compared with experimental data. The models accurately reproduces the experimental data sets and capture particle inertial effects and trajectory crossing effect. A new adjustable particle parameter is introduced into the ODT model, and sensitivity analysis is performed to facilitate parameter estimation and selection. A novel algorithm of the two-way momentum coupling between the particle and carrier phases is developed in the ODT multiphase model. Momentum exchange between the phases is accounted for through particle source terms in the viscous diffusion. The source term is implemented in eddy events through a new kernel transformation and an iterative procedure is required for eddy selection. This model is applied to a particle-laden turbulent jet flow, and simulation results are compared with experimental measurements. The effect of particle addition on the velocities of the gas phase is investigated. The development of particle velocity and particle number distribution are illustrated. The simulation results indicate that the model qualitatively captures the turbulent modulation with the presence of difference particle classes with different solid loadings. The model is then extended to simulate temperature evolution of the particles in a nonisothermal hot jet, in which heat transfer between the particles and gas is considered. The flow is bounded by a wall on the one side of the domain. The simulations are performed over a range of particle inertia and thermal relaxation time scales and different initial particle locations. The present study investigates the post-blast-phase mixing between the particles, the environment that is intended to heat them up, and the ambient environment that dilutes the jet flow. The results indicate that the model can qualitatively predict the important particle statistics in jet flame.

  13. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  14. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    PubMed

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  15. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    PubMed

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The analysis of magnesium oxide hydration in three-phase reaction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xiaojia; Guo, Lin; Chen, Chen

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phasemore » system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.« less

  17. "Phase capture" in amblyopia: the influence function for sampled shape.

    PubMed

    Levi, Dennis M; Li, Roger W; Klein, Stanley A

    2005-06-01

    This study was concerned with what stimulus information humans with amblyopia use to judge the shape of simple objects. We used a string of four Gabor patches to define a contour. A fifth, center patch served as the test pattern. The observers' task was to judge the location of the test pattern relative to the contour. The contour was either a straight line, or an arc with positive or negative curvature. We asked whether phase shifts in the inner or outer pairs of patches distributed along the contour influence the perceived shape. That is, we measured the phase shift influence function. Our results, consistent with previous studies, show that amblyopes are imprecise in shape discrimination, showing elevated thresholds for both lines and curves. We found that amblyopes often make much larger perceptual errors (biases) than do normal observers in the absence of phase shifts. These errors tend to be largest for curved shapes and at large separations. In normal observers, shifting the phase of inner patches of the string by 0.25 cycle results in almost complete phase capture (attraction) at the smallest separation (2 lambda), and the capture effect falls off rapidly with separation. A 0.25 cycle shift of the outer pair of patches has a much smaller effect, in the opposite direction (repulsion). While several amblyopic observers showed reduced capture by the phase of the inner patches, to our surprise, several of the amblyopes were sensitive to the phase of the outer patches. We used linear multiple regression to determine the weights of all cues to the task: the carrier phase of the inner patches, carrier phase of the outer patches and the envelope of the outer patches. Compared to normal observers, some amblyopes show a weaker influence of the phase of the inner patches, and a stronger influence of both the phase and envelope of the outer patches. We speculate that this may be a consequence of abnormal "crowding" of the inner patches by the outer ones.

  18. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    NASA Astrophysics Data System (ADS)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  19. Preparation of l-phenylalanine-imprinted solid-phase extraction sorbent by Pickering emulsion polymerization and the selective enrichment of l-phenylalanine from human urine.

    PubMed

    Li, Ji; Hu, Xiaoling; Guan, Ping; Zhang, Xiaoyan; Qian, Liwei; Zhang, Nan; Du, Chunbao; Song, Renyuan

    2016-05-01

    A novel l-phenylalanine molecularly imprinted solid-phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion-pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid-phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l-phenylalanine. Under the optimized conditions of the procedure, an analytical method for l-phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse-phase silica gel, the obtained molecularly imprinted polymer as an solid-phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L(-1) ) for the isolation of l-phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion-pair dummy template imprinting is effective for preparing selective solid-phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  1. CCCT - NCTN Steering Committees - Pediatric and Adolescent Tumor

    Cancer.gov

    The Pediatric and Adolescent Solid Tumor Steering Committee addresses the design, prioritization and evaluation of concepts for large phase 2 and phase 3 clinical trials in extracranial solid tumors of children and youth.

  2. A novel approach to model the transient behavior of solid-oxide fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Menon, Vikram; Janardhanan, Vinod M.; Tischer, Steffen; Deutschmann, Olaf

    2012-09-01

    This paper presents a novel approach to model the transient behavior of solid-oxide fuel cell (SOFC) stacks in two and three dimensions. A hierarchical model is developed by decoupling the temperature of the solid phase from the fluid phase. The solution of the temperature field is considered as an elliptic problem, while each channel within the stack is modeled as a marching problem. This paper presents the numerical model and cluster algorithm for coupling between the solid phase and fluid phase. For demonstration purposes, results are presented for a stack operated on pre-reformed hydrocarbon fuel. Transient response to load changes is studied by introducing step changes in cell potential and current. Furthermore, the effect of boundary conditions and stack materials on response time and internal temperature distribution is investigated.

  3. 360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.

    PubMed

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-11

    360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, D.W.

    The generation of industrial solid wastes containing leachable species of environmental concern is a problem for developing and developed nations alike. These materials arise from direct processing of mineral ores, from production of metals and minerals, from manufacturing operations, and from air and water pollution treatment processes. The general characteristics that make these wastes intractable is that their content of hazardous species is not easily liberated from the waste yet is not bound so tightly that they are safe for landfill disposal or industrial use. The approach taken in this work is a thermal treatment that separates the inorganic contaminantsmore » from the wastes. The objective is to provide recovery and reuse of both the residual solids and liberated contaminants. The results from operating this technique using two very different types of waste are described. The reasons that the process will work for a wide variety of wastes are explored. By using the knowledge of the thermodynamic stability of the phases found from the characterization analyses, a thermal regime was found that allowed separation of the contaminants without capturing the matrix materials. Bench scale studies were carried out using a tube furnace. Samples of the wastes were heated in crucible boats from 750 to 1150{degrees}C in the presence of various chlorinating agents. The offgas contained 90{sup +}% of the targeted contaminants despite their complex matrix form. The residue was free of contamination. As a result of the efficient concentrating mechanism of the process, the contaminants in the offgas solids are attractive for reuse in metallurgical industries. As an additional benefit, the organic contaminants of the residues were eliminated. Dioxin traces in the solids before treatment were absent after treatment. 15 refs., 4 figs., 4 tabs.« less

  5. Breakage mechanics for granular materials in surface-reactive environments

    NASA Astrophysics Data System (ADS)

    Zhang, Yida; Buscarnera, Giuseppe

    2018-03-01

    It is known that the crushing behaviour of granular materials is sensitive to the state of the fluids occupying the pore space. Here, a thermomechanical theory is developed to link such macroscopic observations with the physico-chemical processes operating at the microcracks of individual grains. The theory relies on the hypothesis that subcritical fracture propagation at intra-particle scale is the controlling mechanism for the rate-dependent, water-sensitive compression of granular specimens. First, the fracture of uniaxially compressed particles in surface-reactive environments is studied in light of irreversible thermodynamics. Such analysis recovers the Gibbs adsorption isotherm as a central component linking the reduction of the fracture toughness of a solid to the increase of vapour concentration. The same methodology is then extended to assemblies immersed in wet air, for which solid-fluid interfaces have been treated as a separate phase. It is shown that this choice brings the solid surface energy into the dissipation equations of the granular matrix, thus providing a pathway to (i) integrate the Gibbs isotherm with the continuum description of particle assemblies and (ii) reproduce the reduction of their yield strength in presence of high relative humidity. The rate-effects involved in the propagation of cracks and the evolution of breakage have been recovered by considering non-homogenous dissipation potentials associated with the creation of surface area at both scales. It is shown that the proposed model captures satisfactorily the compression response of different types of granular materials subjected to varying relative humidity. This result was achieved simply by using parameters based on the actual adsorption characteristics of the constituting minerals. The theory therefore provides a physically sound and thermodynamically consistent framework to study the behaviour of granular solids in surface-reactive environments.

  6. Phase Relations in Ternary Systems in the Subsolidus Region: Methods to Formulate Solid Solution Equations and to Find Particular Compositions

    ERIC Educational Resources Information Center

    Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.

    2017-01-01

    A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…

  7. Heterogeneous fuel for hybrid rocket

    NASA Technical Reports Server (NTRS)

    Stickler, David B. (Inventor)

    1996-01-01

    Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Steven; Envergex, Srivats; Browers, Bruce

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development ofmore » process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.« less

  9. Capturing the lost phosphorus.

    PubMed

    Rittmann, Bruce E; Mayer, Brooke; Westerhoff, Paul; Edwards, Mark

    2011-08-01

    Minable phosphorus (P) reserves are being depleted and will need to be replaced by recovering P that currently is lost from the agricultural system, causing water-quality problems. The largest two flows of lost P are in agricultural runoff and erosion (∼46% of mined P globally) and animal wastes (∼40%). These flows are quite distinct. Runoff has a very high volumetric flow rate, but a low P concentration; animal wastes have low flow rates, but a high P concentration together with a high concentration of organic material. Recovering the lost P in animal wastes is technically and economically more tractable, and it is the focus for this review of promising P-capture technologies. P capture requires that organic P be transformed into inorganic P (phosphate). For high-strength animal wastes, P release can be accomplished in tandem with anaerobic treatment that converts the energy value in the organic matter to CH(4), H(2), or electricity. Once present as phosphate, the P can be captured in a reusable form by four approaches. Most well developed is precipitation as magnesium or calcium solids. Less developed, but promising are adsorption to iron-based adsorbents, ion exchange to phosphate-selective solids, and uptake by photosynthetic microorganisms or P-selective proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Simulation of fluidized bed coal combustors

    NASA Technical Reports Server (NTRS)

    Rajan, R.

    1979-01-01

    The many deficiencies of previous work on simulation of fluidized bed combustion (FBC) processes are presented. An attempt is made to reduce these deficiencies, and to formulate a comprehensive FBC model taking into account the following elements: (1) devolatilization of coal and the subsequent combustion of volatiles and residual char; (2) sulfur dioxide capture by limestone; (3) NOx release and reduction of NOx by char; (4) attrition and elutriation of char and limestone; (5) bubble hydrodynamics; (6) solids mixing; (7) heat transfer between gas and solid, and solid and heat exchange surfaces; and (8) freeboard reactions.

  11. Liquid?solid helium interface: some conceptual questions

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2003-12-01

    I raise, and discuss qualitatively, some conceptual issues concerning the interface between the crystalline solid and superfluid liquid phases of 4He emphasizing, in particular, the fact that the ground-state wave functions of the two phases are prima facie qualitatively quite different, in that the superfluid liquid phase possesses off-diagonal long-range order (ODLRO), while the crystalline solid does not. The fact that the statics and dynamics of the interface do not appear to be particularly sensitive to the presence of ODLRO in the liquid is tentatively explained by the fact that because of a subtlety associated with the Bose statistics obeyed by the atoms, the solid and liquid wave functions are not locally very different.

  12. Continuum-Kinetic Models and Numerical Methods for Multiphase Applications

    NASA Astrophysics Data System (ADS)

    Nault, Isaac Michael

    This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.

  13. Interrogating Bronchoalveolar Lavage Samples via Exclusion-Based Analyte Extraction.

    PubMed

    Tokar, Jacob J; Warrick, Jay W; Guckenberger, David J; Sperger, Jamie M; Lang, Joshua M; Ferguson, J Scott; Beebe, David J

    2017-06-01

    Although average survival rates for lung cancer have improved, earlier and better diagnosis remains a priority. One promising approach to assisting earlier and safer diagnosis of lung lesions is bronchoalveolar lavage (BAL), which provides a sample of lung tissue as well as proteins and immune cells from the vicinity of the lesion, yet diagnostic sensitivity remains a challenge. Reproducible isolation of lung epithelia and multianalyte extraction have the potential to improve diagnostic sensitivity and provide new information for developing personalized therapeutic approaches. We present the use of a recently developed exclusion-based, solid-phase-extraction technique called SLIDE (Sliding Lid for Immobilized Droplet Extraction) to facilitate analysis of BAL samples. We developed a SLIDE protocol for lung epithelial cell extraction and biomarker staining of patient BALs, testing both EpCAM and Trop2 as capture antigens. We characterized captured cells using TTF1 and p40 as immunostaining biomarkers of adenocarcinoma and squamous cell carcinoma, respectively. We achieved up to 90% (EpCAM) and 84% (Trop2) extraction efficiency of representative tumor cell lines. We then used the platform to process two patient BAL samples in parallel within the same sample plate to demonstrate feasibility and observed that Trop2-based extraction potentially extracts more target cells than EpCAM-based extraction.

  14. Use of green coating (cork) in solid-phase microextraction for the determination of organochlorine pesticides in water by gas chromatography-electron capture detection.

    PubMed

    Neves Dias, Adriana; Simão, Vanessa; Merib, Josias; Carasek, Eduardo

    2015-03-01

    A novel method for the determination of organochlorine pesticides in water samples with extraction using cork fiber and analysis by gas chromatography with electron capture detector was developed. Also, the procedure to extract these pesticides with DVB/Car/PDMS fiber was optimized. The optimization of the variables involved in the extraction of organochlorine pesticides using the aforementioned fibers was carried out by multivariate design. The optimum extraction conditions were sample temperature 75 °C, extraction time 60 min and sodium chloride concentration 10% for the cork fiber and sample temperature 50 °C and extraction time 60 min (without salt) for the DVB/Car/PDMS fiber. The quantification limits for the two fibers varied between 1.0 and 10.0 ng L(-1). The linear correlation coefficients were >0.98 for both fibers. The method applied with the use of the cork fiber provided recovery values between 60.3 and 112.7 and RSD≤25.5 (n=3). The extraction efficiency values for the cork and DVB/Car/PDMS fibers were similar. The results show that cork is a promising alternative as a coating for SPME. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. On the roles of solid wall in the thermal analysis of micro heat pipes

    NASA Astrophysics Data System (ADS)

    Hung, Yew Mun

    Micro heat pipe is a small-scale passive heat transfer device of very high thermal conductance that uses phase change and circulation of its working fluid to transfer thermal energy. Different from conventional heat pipe, a micro heat pipe does not contain any wick structure. In this thesis, a one-dimensional, steady-state mathematical model of a single triangular micro heat pipe is developed, with the main purpose of establishing a series of analytical studies on the roles of the solid wall of micro heat pipes in conjunction with the characterization of the thermal performance under the effects of various design and operational parameters. The energy equation of the solid wall is solved analytically to obtain the temperature distribution. The liquid phase is coupled with the solid wall through the continuity of heat flux at their interface, and the continuity, momentum and energy equations of the liquid and vapour phases, together with the Young-Laplace equation for capillary pressure, are solve numerically to yield the heat and fluid flow characteristics of the micro heat pipe. By coupling this mathematical model with the phase-change interfacial resistance model, the relationships for the axial temperature distributions of the liquid and vapour phases throughout the longitudinal direction of a micro heat pipe are also formulated. Four major aspects associated with the operational performance of micro heat pipes are discussed. Firstly, the investigation of the effects of axial conduction in the solid wall reveals that the presence of the solid wall induces change in the phase-change heat transport of the working fluid besides facilitating axial heat conduction in the solid wall. The analysis also highlights the effects of the thickness and thermal conductivity of the solid wall on the axial temperature distribution of solid wall, in the wake of the effects of the axial heat conduction induced on the phase-change heat transport of the working fluid. Secondly, analysis on thermal performance and physical phenomena of an overloaded micro heat pipes incorporating the effects of axial conduction in the solid wall is carried out. The thermal effects of the solid material are investigated and it is observed that the behaviour of the solid wall temperature distribution varies drastically as the applied heat load exceeds the heat transport capacity. The abrupt change in the temperature profile of an overloaded micro heat pipe is of considerable practical significance in which the occurrence of dryout can be identified by physically measuring the solid wall temperatures along the axial direction. Thirdly, by taking into account the axial conduction in the solid wall, the effect of gravity on the thermal performance of an inclined micro heat pipe is explored. Attributed to the occurrence of dryout, an abrupt temperature rise is observed at the evaporator end when the micro heat pipe is negatively inclined. Therefore, the orientation of a micro heat pipe can be determined by physically measuring the solid wall temperature. Lastly, by coupling the heat transfer model of phase-change phenomena at the liquid-vapour interface, the model with axial conduction in the solid wall of the micro heat pipe is extended to predict the axial liquid and vapour temperature distributions of the working fluid, which is useful for the verification of certain assumptions made in the derivation of the mathematical model besides for analyzing the heat transfer characteristics of the evaporation process.

  16. Solid-state harmonics beyond the atomic limit.

    PubMed

    Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A

    2016-06-23

    Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

  17. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    PubMed

    Momeni, Kasra; Levitas, Valery I

    2016-04-28

    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.

  18. Kinetics of microbial reduction of Solid phase U(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming; Dohnalkova, Alice; Fredrickson, James K

    2006-10-15

    Sodium boltwoodite (NaUO2SiO3OH x 1.5 H2O) was used to assess the kinetics of microbial reduction of solid-phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads in a nongrowth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid-phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid-phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intragrain uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated that microbial reduction of solid-phase U(VI) is controlled by coupled biological, chemical, and physical processes.

  19. Two-dimensional ice mapping of molecular cores

    NASA Astrophysics Data System (ADS)

    Noble, J. A.; Fraser, H. J.; Pontoppidan, K. M.; Craigon, A. M.

    2017-06-01

    We present maps of the column densities of H2O, CO2 and CO ices towards the molecular cores B 35A, DC 274.2-00.4, BHR 59 and DC 300.7-01.0. These ice maps, probing spatial distances in molecular cores as low as 2200 au, challenge the traditional hypothesis that the denser the region observed, the more ice is present, providing evidence that the relationships between solid molecular species are more varied than the generic picture we often adopt to model gas-grain chemical processes and explain feedback between solid phase processes and gas phase abundances. We present the first combined solid-gas maps of a single molecular species, based upon observations of both CO ice and gas phase C18O towards B 35A, a star-forming dense core in Orion. We conclude that molecular species in the solid phase are powerful tracers of 'small-scale' chemical diversity, prior to the onset of star formation. With a component analysis approach, we can probe the solid phase chemistry of a region at a level of detail greater than that provided by statistical analyses or generic conclusions drawn from single pointing line-of-sight observations alone.

  20. Dual-phase Cr-Ta alloys for structural applications

    DOEpatents

    Liu, Chain T.; Brady, Michael P.; Zhu, Jiahong; Tortorelli, Peter F.

    2001-01-01

    Dual phase alloys of chromium containing 2 to 11 atomic percent tantalum with minor amounts of Mo, Cr, Ti, Y, La, Cr, Si and Ge are disclosed. These alloys contain two phases including Laves phase and Cr-rich solid solution in either eutectic structures or dispersed Laves phase particles in the Cr-rich solid solution matrix. The alloys have superior mechanical properties at high temperature and good oxidation resistance when heated to above 1000.degree. C. in air.

  1. Modelling Phase Transition Phenomena in Fluids

    DTIC Science & Technology

    2015-07-01

    Sublimation line r @@I Triple point ? Vapourisation liner @@I Critical point -Fusion line Solid Liquid Gas Figure 1: Schematic of a phase diagram means that the...velocity field can be set zero, and only the balance of energy constitutes the Stefan model. In contrast to this the liquid - gas phase transitions...defined by requiring that the phase-transition line is crossed in a direction from solid to liquid or from liquid to gas (vapour) phases. The term T∗ δs is

  2. Characterisation of chamomile volatiles by simultaneous distillation solid-phase extraction in comparison to hydrodistillation and simultaneous distillation extraction.

    PubMed

    Krüger, Hans

    2010-05-01

    A new method for complete separation of steam-volatile organic compounds is described using the example of chamomile flowers. This method is based on the direct combination of hydrodistillation and solid-phase extraction in a circulation apparatus. In contrast to hydrodistillation and simultaneous distillation extraction (SDE), an RP-18 solid phase as adsorptive material is used rather than a water-insoluble solvent. Therefore, a prompt and complete fixation of all volatiles takes place, and the circulation of water-soluble bisabololoxides as well as water-soluble and thermolabile en-yne-spiroethers is inhibited. This so-called simultaneous distillation solid-phase extraction (SD-SPE) provides extracts that better characterise the real composition of the vapour phase, as well as the composition of inhalation vapours, than do SDE extracts or essential oils obtained by hydrodistillation. The data indicate that during inhalation therapy with chamomile, the bisabololoxides and spiroethers are more strongly involved in the inhaling activity than so far assumed. Georg Thieme Verlag KG Stuttgart New York.

  3. Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium.

    PubMed

    Garejev, N; Jukna, V; Tamošauskas, G; Veličkė, M; Šuminas, R; Couairon, A; Dubietis, A

    2016-07-25

    We report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail.

  4. Band connectivity for topological quantum chemistry: Band structures as a graph theory problem

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.

  5. Improving Sorbents for Glycerol Capture in Biodiesel Refinement

    PubMed Central

    Johnson, Brandy J.; Melde, Brian J.; Moore, Martin H.; Malanoski, Anthony P.; Taft, Jenna R.

    2017-01-01

    Biodiesel is produced by transesterification of animal fat, vegetable oil, or waste cooking oil with alcohol. After production costs, the economic viability of biodiesel is dependent on what steps are necessary to remove impurities following synthesis and the effectiveness of quality control analysis. Solid-phase extraction offers a potentially advantageous approach in biodiesel processing applications. Nanoporous scaffolds were investigated for adsorption of glycerol, a side product of biodiesel synthesis that is detrimental to engine combustion when present. Materials were synthesized with varying pore wall composition, including ethane and diethylbenzene bridging groups, and sulfonated to promote hydrogen bonding interactions with glycerol. Materials bearing sulfonate groups throughout the scaffold walls as well as those post-synthetically grafted onto the surfaces show notably superior performance for uptake of glycerol. The sorbents are effective when used in biodiesel mixtures, removing greater than 90% of glycerol from a biodiesel preparation. PMID:28773042

  6. Improving Sorbents for Glycerol Capture in Biodiesel Refinement.

    PubMed

    Johnson, Brandy J; Melde, Brian J; Moore, Martin H; Malanoski, Anthony P; Taft, Jenna R

    2017-06-21

    Biodiesel is produced by transesterification of animal fat, vegetable oil, or waste cooking oil with alcohol. After production costs, the economic viability of biodiesel is dependent on what steps are necessary to remove impurities following synthesis and the effectiveness of quality control analysis. Solid-phase extraction offers a potentially advantageous approach in biodiesel processing applications. Nanoporous scaffolds were investigated for adsorption of glycerol, a side product of biodiesel synthesis that is detrimental to engine combustion when present. Materials were synthesized with varying pore wall composition, including ethane and diethylbenzene bridging groups, and sulfonated to promote hydrogen bonding interactions with glycerol. Materials bearing sulfonate groups throughout the scaffold walls as well as those post-synthetically grafted onto the surfaces show notably superior performance for uptake of glycerol. The sorbents are effective when used in biodiesel mixtures, removing greater than 90% of glycerol from a biodiesel preparation.

  7. Silicon nitride equation of state

    NASA Astrophysics Data System (ADS)

    Brown, Robert C.; Swaminathan, Pazhayannur K.

    2017-01-01

    This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.

  8. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low-saturation ganglia, while diffusion within the DNAPL should be considered for larger NAPL pools. These results offer important insights to the monitoring and interpretation of bioremediation strategies employed within DNAPL source zones.

  9. High temperature lubricating process

    DOEpatents

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  10. High temperature lubricating process

    DOEpatents

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  11. Solid-Solid Phase Transition Kinetics of FOX-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A K; Weese, R K; Wang, R

    Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. This paper will present our results for the phase changes of FOX-7 using DSC and HFC (Heat Flow Calorimetry). DSC thermal curves recorded at linear heating rates of 0.10, 0.35 and 1.0 C min{sup -1} show two endothermic peaks and two exothermic peaks. The two endothermic peaks represent solid-solid phase transitions, which have been observed in the literature at 114 C ({beta}-{gamma}) and 159 C ({gamma}-{delta}) by both DSC and XPD (X-ray powder diffraction) measurements. The first transitionmore » shifts from 114.5 to 115.8 C as the heating rate increases from 0.10 to 1.0 C min{sup -1}, while the second transition shifts from 158.5 to 160.4 C. Cyclical heating experiments show the endotherms and exotherms for a first heating through the {gamma} phase to the {delta} phase, a cooling and reversion to the {alpha} or {beta} phase, and a second heating to the {gamma} and {delta} phases. The data are interpreted using kinetic models with thermodynamic constraints.« less

  12. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin

    2017-09-10

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compoundsmore » in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.« less

  13. Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Choi, Su-Jin; Ahn, Sang-il; Sim, Eun-Sup

    2014-03-01

    In this work, the preliminary analysis on both the tracking schedule and measurements characteristics for the spacecraft on the phase of lunar transfer and capture is performed. To analyze both the tracking schedule and measurements characteristics, lunar transfer and capture phases¡¯ optimized trajectories are directly adapted from former research, and eleven ground tracking facilities (three Deep Space Network sties, seven Near Earth Network sites, one Daejeon site) are assumed to support the mission. Under these conceptual mission scenarios, detailed tracking schedules and expected measurement characteristics during critical maneuvers (Trans Lunar Injection, Lunar Orbit Insertion and Apoapsis Adjustment Maneuver), especially for the Deajeon station, are successfully analyzed. The orders of predicted measurements' variances during lunar capture phase according to critical maneuvers are found to be within the order of mm/s for the range and micro-deg/s for the angular measurements rates which are in good agreement with the recommended values of typical measurement modeling accuracies for Deep Space Networks. Although preliminary navigation accuracy guidelines are provided through this work, it is expected to give more practical insights into preparing the Korea's future lunar mission, especially for developing flight dynamics subsystem.

  14. Solid Surface Combustion Experiment

    NASA Image and Video Library

    1994-09-12

    STS064-10-011 (12 Sept. 1994) --- The Solid Surface Combustion Experiment (SSCE), designed to supply information on flame spread over solid fuel surfaces in the reduced-gravity environment of space, is pictured during flight day four operations. The middeck experiment measured the rate of spreading, the solid-phase temperature, and the gas-phase temperature of flames spreading over rectangular fuel beds. STS-64 marked the seventh trip into space for the Lewis Research Center experiment. Photo credit: NASA or National Aeronautics and Space Administration

  15. p-Adic solid-on-solid model on a Cayley tree

    NASA Astrophysics Data System (ADS)

    Khakimov, O. N.

    2017-12-01

    We consider a p-adic solid-on-solid ( SOS) model with a nearest-neighbor coupling, m+1 spins, and a coupling constant J ∈ Q p on a Cayley tree. We find conditions under which a phase transition does not occur in the model. We show that if p | m + 1 for some J, then a phase transition occurs. Moreover, we formulate a criterion for the boundedness of p-adic Gibbs measures for the ( m+1)- state SOS model.

  16. A contribution to the knowledge of HMX decomposition and application of results. [at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Kraeutle, K. J.

    1980-01-01

    The decomposition of cyclotramethylenetetranitramine (HMX) in the solid and liquid phase was studied by isothermal and nonisothermal heating at atmospheric pressure. Decomposition rates of solid HMX changed with sample size and gaseous environment. Kinetic parameters were obtained from weight loss measurements in the temperature range 229 C - 269 C. These tests also yielded highly porous solid residues. Qualitative aspects of solid and liquid phase decomposition of HMX with additives were also investigated in isothermal and nonisothermal tests.

  17. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    PubMed

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  18. Silicate and Carbonatite Melts in the Mantle: Adding CO2 to the pMELTS Thermodynamic Model of Silicate Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Antoshechkina, P. M.; Shorttle, O.

    2016-12-01

    The current rhyolite-MELTS algorithm includes a mixed H2O-CO2 vapor phase, and a self-consistent speciation model for CO2 and CaCO3 in the silicate liquid (Ghiorso & Gualda 2012; 2015). Although intended primarily to model crustal differentiation and degassing, GG15 captures much of the experimentally-observed melting behavior of CO2-rich mafic lithologies, including generation of small-degree carbonatite melts, a miscibility gap between carbonatite and silicate liquids at low P and a smooth transition to a single carbonated-silicate melt at high P (e.g. Dasgupta et al. 2007). However, solid and liquid carbonate phases were not used in calibration of GG15, and it is suitable only for P < 3 GPa. We present a preliminary model, based on pMELTS (Ghiorso et al. 2002), for melting of nominally-anhydrous carbonated peridotite and pyroxenite. In Antoshechkina et al. (2015; and references therein) we developed a scheme for calibration of molar volumes that directly interfaces with a MySQL database, adapted from LEPR (Hirschmann et al. 2008). Here, we further extend our database, e.g. to include multiple carbonate phases, and combine the calibration scheme with the libalphaMELTS interface to the rhyolite-MELTS, pMELTS, and H2O-CO2 fluid thermodynamic models (see magmasource.caltech.edu/alphamelts). We use a Monte-Carlo type calibration approach to fit the observed phases and compositions, though stop short of a fully Bayesian formulation. The CO2-fluid experimental database has been updated to include more recent and higher P studies, adding approximately 40 pure fluid plus liquid constraints that conform to the selection criteria used in GG15. To further expand the database, we plan to use some or all of: solid carbonate-bearing experiments; coexisting silicate and carbonatite liquids; phase-present, and phase-absent constraints. As a first approximation, we include four carbonate phases: pure calcite and aragonite, and binary solutions for dolomite-ankerite and magnesite-siderite. Following GG15, we have adopted the CO2 fluid model of Duan & Zhang (2006) and added CO2 and CaCO3 species to the pMELTS liquid model. A key question that we hope to address during calibration is whether a Na2CO3 liquid species is justified instead of, or in addition to, CaCO3 for the range over which pMELTS is calibrated (1 < P < 4 GPa).

  19. Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate.

    PubMed

    Jin, Liyu; Nairn, Kate M; Forsyth, Craig M; Seeber, Aaron J; MacFarlane, Douglas R; Howlett, Patrick C; Forsyth, Maria; Pringle, Jennifer M

    2012-06-13

    Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P(1,2,2,4)][PF(6)]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid-solid phase transitions and a highly "plastic" and conductive final solid phase in which the conductivity reaches 10(-3) S cm(-1). The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the (1)H, (19)F, and (31)P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P(1,2,2,4)][PF(6)]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.

  20. Stirring-controlled solidified floating solid-liquid drop microextraction as a new solid phase-enhanced liquid-phase microextraction method by exploiting magnetic carbon nanotube-nickel hybrid.

    PubMed

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad

    2017-01-25

    A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Workshop Report: Fundamental Reactions in Solid Propellant Combustion

    DTIC Science & Technology

    1979-05-01

    combustion conditions. 6. What effect might a pressure-induced phase transition to a polymorph other than 6- HMX have on the pressure slope break during...pure HMX as well. Nevertheless, it is recommended that the high pressure polymorphs of HMX and RDX be determined. It was also felt that there...plateau burning phenomena E. Solid phase, surface, gas phase reactions F. Phase transitions : melting, vaporization, polymorphs G. Flame

  2. Quick connect coupling

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Webbon, Bruce (Inventor)

    1995-01-01

    A cooling apparatus includes a container filled with a quantity of coolant fluid initially cooled to a solid phase, a cooling loop disposed between a heat load and the container, a pump for circulating a quantity of the same type of coolant fluid in a liquid phase through the cooling loop, and a pair of couplings for communicating the liquid phase coolant fluid into the container in a direct interface with the solid phase coolant fluid.

  3. Deuterium and carbon-13 NMR of the solid polymorphism of benzenehexoyl hexa-n-hexanoate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lifshitz, E.; Goldfarb,, D.; Vega, S.

    Deuterium and carbon-13 NMR of specifically labeled benzenehexoyl hexa-n-hexanoate in the various solid-state phases are reported. The spectra exhibit dynamic line shapes which change discontinuously at the phase transitions. The results are interpreted in terms of sequential melting of the side chains on going from the low-temperature solid phases IV, III, etc., toward the liquid. In phase IV the molecules are very nearly static, except for fast rotation of the methyl groups about their C/sub 3/ axes. The results in phase III were quantitatively interpreted in terms of a two-site isomerization process involving simultaneous rotation by 95/sup 0/ about C/submore » 1/-C/sub 2/ and transition from gtg to g'g't (or equivalently g'tg' to ggt) for the rest of the chain. The specific rate of this reaction at 0/sup 0/C is approx. 10/sup 5/s/sup -1/. In phase II additional chain isomerization processes set-in which were, however, not analyzed quantitatively. Further motional modes, involving reorientation of whole chains about their C/sup ar/-O bonds, appear on going to phase I. In all solid phases the benzene ring remains static.« less

  4. Silicon Nitride Equation of State

    NASA Astrophysics Data System (ADS)

    Swaminathan, Pazhayannur; Brown, Robert

    2015-06-01

    This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.

  5. A microstructure-based model for shape distortion during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.

  6. EVALUATION OF SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF HYDROPHILIC COMPOUNDS

    EPA Science Inventory

    Two commercially available solid phase microextractions (SPME) fibers, polyacrylate and carboxem/polydimethylsiloxane (PDMS), were evaluated for their ability to extract hydrophilic compounds from drinking water. Conditions, such as desorption time, desorption temperature, sample...

  7. SOLID PROPELLANT COMBUSTION MECHANISM STUDIES.

    DTIC Science & Technology

    SOLID ROCKET PROPELLANTS, BURNING RATE), LOW PRESSURE, COMBUSTION PRODUCTS, QUENCHING, THERMAL CONDUCTIVITY, KINETIC THEORY, SURFACE PROPERTIES, PHASE STUDIES, SOLIDS, GASES, PYROLYSIS, MATHEMATICAL ANALYSIS.

  8. Efficient Conservative Reformulation Schemes for Lithium Intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urisanga, PC; Rife, D; De, S

    Porous electrode theory coupled with transport and reaction mechanisms is a widely used technique to model Li-ion batteries employing an appropriate discretization or approximation for solid phase diffusion with electrode particles. One of the major difficulties in simulating Li-ion battery models is the need to account for solid phase diffusion in a second radial dimension r, which increases the computation time/cost to a great extent. Various methods that reduce the computational cost have been introduced to treat this phenomenon, but most of them do not guarantee mass conservation. The aim of this paper is to introduce an inherently mass conservingmore » yet computationally efficient method for solid phase diffusion based on Lobatto III A quadrature. This paper also presents coupling of the new solid phase reformulation scheme with a macro-homogeneous porous electrode theory based pseudo 20 model for Li-ion battery. (C) The Author(s) 2015. Published by ECS. All rights reserved.« less

  9. Gravitational Role in Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.

    1998-01-01

    To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.

  10. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  11. A quantitative study of factors influencing lamellar eutectic morphology during solidification

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F. S.

    1981-01-01

    The factors that influence the shape of the solid-liquid interface of a lamellar binary eutectic alloy are evaluated. Alloys of carbon tetrabromide and hexachloroethane which serve as a transparent analogue of lamellar metallic eutectics are used. The observed interface shapes are analyzed by computer-aided methods. The solid-liquid interfacial free energies of each of the individual phases comprising the eutectic system are measured as a function of composition using a 'grain boundary groove' technique. The solid-liquid interfacial free energy of the two phases are evaluated directly from the eutectic interface. The phase diagram for the system, the heat of fusion as a function of composition, and the density as a function of composition are measured. The shape of the eutectic interface is controlled mainly by the solid-liquid and solid-solid interfacial free energy relationships at the interface and by the temperature gradient present, rather than by interlamellar diffusion in the liquid at the interface, over the range of growth rates studied.

  12. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  13. Study of the solid-state amorphization of (GaSb){sub 1-x}Ge{sub x} semiconductors by real-time neutron diffraction and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.

    2011-12-15

    The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.

  14. Application of Berry's Phase to the Effective Mass of Bloch Electrons

    ERIC Educational Resources Information Center

    Rave, M. J.; Kerr, W. C.

    2010-01-01

    Berry's phase, although well known since 1984, has received little attention among textbook authors of solid state physics. We attempt to address this lack by showing how the presence of the Berry's phase significantly changes a standard concept (effective mass) found in most solid state texts. Specifically, we show that the presence of a non-zero…

  15. Mapping coexistence lines via free-energy extrapolation: application to order-disorder phase transitions of hard-core mixtures.

    PubMed

    Escobedo, Fernando A

    2014-03-07

    In this work, a variant of the Gibbs-Duhem integration (GDI) method is proposed to trace phase coexistence lines that combines some of the advantages of the original GDI methods such as robustness in handling large system sizes, with the ability of histogram-based methods (but without using histograms) to estimate free-energies and hence avoid the need of on-the-fly corrector schemes. This is done by fitting to an appropriate polynomial function not the coexistence curve itself (as in GDI schemes) but the underlying free-energy function of each phase. The availability of a free-energy model allows the post-processing of the simulated data to obtain improved estimates of the coexistence line. The proposed method is used to elucidate the phase behavior for two non-trivial hard-core mixtures: a binary blend of spheres and cubes and a system of size-polydisperse cubes. The relative size of the spheres and cubes in the first mixture is chosen such that the resulting eutectic pressure-composition phase diagram is nearly symmetric in that the maximum solubility of cubes in the sphere-rich solid (∼20%) is comparable to the maximum solubility of spheres in the cube-rich solid. In the polydisperse cube system, the solid-liquid coexistence line is mapped out for an imposed Gaussian activity distribution, which produces near-Gaussian particle-size distributions in each phase. A terminal polydispersity of 11.3% is found, beyond which the cubic solid phase would not be stable, and near which significant size fractionation between the solid and isotropic phases is predicted.

  16. Thermophysical Parameters of Organic PCM Coconut Oil from T-History Method and Its Potential as Thermal Energy Storage in Indonesia

    NASA Astrophysics Data System (ADS)

    Silalahi, Alfriska O.; Sukmawati, Nissa; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2017-07-01

    The thermophysical parameters of organic phase change material (PCM) of coconut oil (co_oil) have been studied by analyzing the temperature vs time data during liquid-solid phase transition (solidification process) based on T-history method, adopting the original version and its modified form to extract the values of mean specific heats of the solid and liquid co_oil and the heat of fusion related to phase transition of co_oil. We found that the liquid-solid phase transition occurs rather gradually, which might be due to the fact that co_oil consists of many kinds of fatty acids with the largest amount of lauric acid (about 50%), with relatively small supercooling degree. For this reason, the end of phase transition region become smeared out, although the inflection point in the temperature derivative is clearly observed signifying the drastic temperature variation between the phase transition and solid phase periods. The data have led to the values of mean specific heat of the solid and liquid co_oil that are comparable to the pure lauric acid, while the value for heat of fusion is resemble to those of the DSC result, both from references data. The advantage of co_oil as the potential sensible and latent TES for room-temperature conditioning application in Indonesia is discussed in terms of its rather broad working temperature range due to its mixture composition characteristic.

  17. Phase equilibrium modeling for high temperature metallization on GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Chung, M. A.; Davison, J. E.; Smith, S. R.

    1991-01-01

    Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.

  18. Dense Carbon Monoxide to 160 GPa: Stepwise Polymerization to Two-Dimensional Layered Solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Young-Jay; Kim, Minseob; Lim, Jinhyuk

    Carbon monoxide (CO) is the first molecular system found to transform into a nonmolecular “polymeric” solid above 5.5 GPa, yet been studied beyond 10 GPa. Here, we show a series of pressure-induced phase transformations in CO to 160 GPa: from a molecular solid to a highly colored, low-density polymeric phase I to translucent, high-density phase II to transparent, layered phase III. The properties of these phases are consistent with those expected from recently predicted 1D P2 1/m, 3D I2 12 12 1, and 2D Cmcm structures, respectively. Thus, the present results advocate a stepwise polymerization of CO triple bonds tomore » ultimately a 2D singly bonded layer structure with an enhanced ionic character.« less

  19. Manifestation of hopping conductivity and granularity within phase diagrams of LaO1-x F x BiS2, Sr1-x La x FBiS2 and related BiS2-based compounds

    NASA Astrophysics Data System (ADS)

    Arouca, R.; Silva Neto, M. B.; Chaves, C. M.; Nagao, M.; Watauchi, S.; Tanaka, I.; ElMassalami, M.

    2017-09-01

    Layered BiS 2 -based series, such as LaO 1-x F x BiS 2 and Sr 1-x La x FBiS 2 , offer ideal examples for studying normal and superconducting phase diagram of a solid solution that evolves from a nonmagnetic band-insulator parent. We constructed typical x-T phase diagrams of these systems based on events occurring in thermal evolution of their electrical resistivity, ρ(x, T) . Overall evolution of these diagrams can be rationalized in terms of (i) Mott-Efros-Shklovskii scenario which, within the semiconducting x regime (x_MIT = Mott metal-insulator transition), describes the doping influence on the thermally activated hopping conductivity. (ii) A granular metal (superconductor) scenario which, within x_MIT< x < x_solubility , describes the evolution of normal and superconducting properties in terms of conductance g, Coulomb charging energy E c and Josephson coupling J; their joint influence is usually captured within a g-\\frac{gE_c}{J}-T phase diagram. Based on analysis of the granular character of ρ(x, T) , we converted the x-T diagrams into projected g - T diagrams which, being fundamental, allow a better understanding of evolution of various granular-related properties (in particular the hallmarks of normal-state \\partialρ/\\partial T<0 feature and superconductor-insulator transition) and how such properties are influenced by x, pressure or heat treatment.

  20. Fluid dynamics of the 1997 Boxing Day volcanic blast on Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, T.; Clarke, A. B.; Neri, A.; Voight, B.; Widiwijayanti, C.

    2008-03-01

    Directed volcanic blasts are powerful explosions with a significant laterally directed component, which can generate devastating, high-energy pyroclastic density currents (PDCs). Such blasts are an important class of eruptive phenomena, but quantified understanding of their dynamics and effects is still incomplete. Here we use 2-D and 3-D multiparticle thermofluid dynamic flow codes to examine a powerful volcanic blast that occurred on Montserrat in December 1997. On the basis of the simulations, we divide the blast into three phases: an initial burst phase that lasts roughly 5 s and involves rapid expansion of the gas-pyroclast mixture, a gravitational collapse phase that occurs when the erupted material fails to mix with sufficient air to form a buoyant column and thus collapses asymmetrically, and a PDC phase that is dominated by motion parallel to the ground surface and is influenced by topography. We vary key input parameters such as total gas energy and total solid mass to understand their influence on simulations, and we compare the simulations with independent field observations of damage and deposits, demonstrating that the models generally capture important large-scale features of the natural phenomenon. We also examine the 2-D and 3-D model results to estimate the flow Mach number and conclude that the range of damage sustained at villages on Montserrat can be reasonably explained by the spatial and temporal distribution of the dynamic pressure associated with subsonic PDCs.

Top