NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2018-04-01
Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.
Adsorption of the Three-phase Emulsion on Various Solid Surfaces.
Enomoto, Yasutaka; Imai, Yoko; Tajima, Kazuo
2017-07-01
The present study investigates the adsorption of the three-phase emulsion on various solid/water interfaces. Vesicles can be used as emulsifiers in the three-phase emulsions and act as an independent phase unlike the surfactant used in conventional emulsions; therefore, it is expected that the three-phase emulsion formed by the adhesion of vesicles to the oil/water interface will adsorb on various solid/water interfaces. The cationic three-phase emulsion was prepared to encourage emulsion adsorption on negatively charged solid substrates in water. The emulsifier polyoxyethylene-(10) hydrogenated castor oil was rendered cationic by mixing with the surfactant cetyltrimethylammonium bromide and then used to prepare the cationic three-phase emulsion of hexadecane-in-water. Three solid substrates (silicon, glass, and copper) were dipped in the cationic emulsion and the emulsion was found to adsorb on the solid substrates while maintaining its structure. The amount of hexadecane adsorbed on the various surfaces was investigated by gas chromatography and found to increase with increasing hexadecane concentration in the emulsion and eventually plateaued just like molecular adsorption. The maximum surface coverage of the emulsion on the substrates was approximately 80%. However, even the equivalent nonionic three-phase emulsion was found to adsorb on the three solid surfaces. This was attributed to a novel mechanism of irreversible adhesion via the van der Waals attractive force.
Hydrothermal carbonization of food waste for nutrient recovery and reuse.
Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D
2017-11-01
Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dan, Nily
2014-11-25
Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.
Effect of Process Parameter on Barium Titanate Stannate (BTS) Materials Sintered at Low Sintering
NASA Astrophysics Data System (ADS)
Shukla, Alok; Bajpai, P. K.
2011-11-01
Ba(Ti1-xSnx)O3 solid solutions with (x = 0.15, 0.20, 0.30 and 0.40) are synthesized using conventional solid state reaction method. Formation of solid solutions in the range 0 ≤ x ≤0.40 is confirmed using X-ray diffraction technique. Single phase solid solutions with homogeneous grain distribution are observed at relatively low sintering by controlling process parameters viz. sintering time. Composition at optimized temperature (1150 °C) sintered by varying the sintering time, stabilize in cubic perovskite phase. The % experimental density increase with increasing the time of sintering instead of increasing sintering temperature. The lattice parameter increases by increasing the tin composition in the material. This demonstrates that process parameter optimization can lead to single phase at relatively lower sintering-a major advantage for the materials used as capacitor element in MLCC.
Accelerated exploration of multi-principal element alloys with solid solution phases
Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C.
2015-01-01
Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge—how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs—that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction. PMID:25739749
Solid H2 in the interstellar medium
NASA Astrophysics Data System (ADS)
Füglistaler, A.; Pfenniger, D.
2018-06-01
Context. Condensation of H2 in the interstellar medium (ISM) has long been seen as a possibility, either by deposition on dust grains or thanks to a phase transition combined with self-gravity. H2 condensation might explain the observed low efficiency of star formation and might help to hide baryons in spiral galaxies. Aims: Our aim is to quantify the solid fraction of H2 in the ISM due to a phase transition including self-gravity for different densities and temperatures in order to use the results in more complex simulations of the ISM as subgrid physics. Methods: We used molecular dynamics simulations of fluids at different temperatures and densities to study the formation of solids. Once the simulations reached a steady state, we calculated the solid mass fraction, energy increase, and timescales. By determining the power laws measured over several orders of magnitude, we extrapolated to lower densities the higher density fluids that can be simulated with current computers. Results: The solid fraction and energy increase of fluids in a phase transition are above 0.1 and do not follow a power law. Fluids out of a phase transition are still forming a small amount of solids due to chance encounters of molecules. The solid mass fraction and energy increase of these fluids are linearly dependent on density and can easily be extrapolated. The timescale is below one second, the condensation can be considered instantaneous. Conclusions: The presence of solid H2 grains has important dynamic implications on the ISM as they may be the building blocks for larger solid bodies when gravity is included. We provide the solid mass fraction, energy increase, and timescales for high density fluids and extrapolation laws for lower densities.
NASA Astrophysics Data System (ADS)
Cassidy, Daniel H.; Irvine, Robert L.
1995-10-01
Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.
Phase diagram of two-dimensional hard ellipses.
Bautista-Carbajal, Gustavo; Odriozola, Gerardo
2014-05-28
We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios.
Behaviour of emerging contaminants in sewage sludge after anaerobic digestion.
Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F
2016-11-01
Nowadays, there is an increasing concern over the presence of contaminants in the aquatic environment, where they can be introduced from wastewater after their incomplete removal in the treatment plants. In this work, degradation of selected emerging pollutants in the aqueous and solid phases of sewage sludge has been investigated after anaerobic digestion using two different digesters: mesophilic and thermophilic. Initially, sludge samples were screened by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) for identification of emerging contaminants in the samples. In a second step, a target quantitative method based on LC coupled to tandem MS was applied for selected pollutants identified in the previous screening. The behaviour of the compounds under anaerobic conditions was studied estimating the degradation efficiency and distribution of compounds between both sludge phases. Irbesartan and benzoylecgonine seemed to be notably degraded in both phases of the sludge. Venlafaxine showed a significant concentration decrease in the aqueous phase in parallel to an increase in the solid phase. The majority of the compounds showed an increase of their concentrations in both phases after the digestion. Concentrations in the solid phase were commonly higher than in the aqueous for most contaminants, indicating that they were preferentially adsorbed onto the solid particles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gravitational Role in Liquid Phase Sintering
NASA Technical Reports Server (NTRS)
Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.
1998-01-01
To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.
Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A
2014-07-23
We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.
Influence of calcium on microbial reduction of solid phase uranium(VI).
Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming
2007-08-15
The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.
Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Reduced-Gravity
NASA Technical Reports Server (NTRS)
Goldmeer, Jeffrey Scott
1996-01-01
Extinction of a diffusion flame burning over horizontal PMMA (Polymethyl methacrylate) cylinders in low-gravity was examined experimentally and via numerical simulations. Low-gravity conditions were obtained using the NASA Lewis Research Center's reduced-gravity aircraft. The effects of velocity and pressure on the visible flame were examined. The flammability of the burning solid was examined as a function of pressure and the solid-phase centerline temperature. As the solid temperature increased, the extinction pressure decreased, and with a centerline temperature of 525 K, the flame was sustained to 0.1 atmospheres before extinguishing. The numerical simulation iteratively coupled a two-dimensional quasi-steady, gas-phase model with a transient solid-phase model which included conductive heat transfer and surface regression. This model employed an energy balance at the gas/solid interface that included the energy conducted by the gas-phase to the gas/solid interface, Arrhenius pyrolysis kinetics, surface radiation, and the energy conducted into the solid. The ratio of the solid and gas-phase conductive fluxes Phi was a boundary condition for the gas-phase model at the solid-surface. Initial simulations modeled conditions similar to the low-gravity experiments and predicted low-pressure extinction limits consistent with the experimental limits. Other simulations examined the effects of velocity, depressurization rate and Phi on extinction.
Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon
2014-11-26
We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.
Density-functional theory for fluid-solid and solid-solid phase transitions.
Bharadwaj, Atul S; Singh, Yashwant
2017-03-01
We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.
Solid-Solid Phase Transition Kinetics of FOX-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, A K; Weese, R K; Wang, R
Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. This paper will present our results for the phase changes of FOX-7 using DSC and HFC (Heat Flow Calorimetry). DSC thermal curves recorded at linear heating rates of 0.10, 0.35 and 1.0 C min{sup -1} show two endothermic peaks and two exothermic peaks. The two endothermic peaks represent solid-solid phase transitions, which have been observed in the literature at 114 C ({beta}-{gamma}) and 159 C ({gamma}-{delta}) by both DSC and XPD (X-ray powder diffraction) measurements. The first transitionmore » shifts from 114.5 to 115.8 C as the heating rate increases from 0.10 to 1.0 C min{sup -1}, while the second transition shifts from 158.5 to 160.4 C. Cyclical heating experiments show the endotherms and exotherms for a first heating through the {gamma} phase to the {delta} phase, a cooling and reversion to the {alpha} or {beta} phase, and a second heating to the {gamma} and {delta} phases. The data are interpreted using kinetic models with thermodynamic constraints.« less
360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2016-01-11
360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.
Keramati, H; Alidadi, H; Parvaresh, A R; Movahedian, H; Mahvi, A H
2008-10-01
The aim of this research was to sudy the reduction of pollution of vegetable oil manufacturing wastewater with DAF system. At first phase of this examination, the optimum dosage of the coagulants was determined. The coagulants that used in this study were Alum and Ferric Chloride. The second phase was flotation in this series of examinations, oil, COD, total solid, volatile solid, fixed solid and suspended solid measured in raw wastewater and the effluent of the DAF pilot. Optimum value of pH for alum and ferric chloride obtained 7.5 and 5.5, respectively. Optimum dosage for these obtained 30 and 32 mg L(-1) in this research. Mean removal for the parameters ofoil, COD, total solid, volatile solid, fixed solid and suspended solid obtained 75.85, 78.27, 77.32, 82.47, 73.52 and 85.53%, respectively. With pressure rising from 3 to 4 and 5 atm removing rate of COD, total solid, volatile solid, fixed solid parameters reduced, but oil and suspended solid have increase. In addition, following increase of flotation time up to 120 sec all of the measured parameters have increase in removing rate. Optimum A/S for removal of COD, total solid, volatile solid, fixed solid parameters obtained 0.001 and for oil and suspended solid obtained 0.0015.
Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace
NASA Astrophysics Data System (ADS)
Karim, Md. Rezwanul; Naser, Jamal
2017-06-01
Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.
Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant
NASA Astrophysics Data System (ADS)
Guerrero, Carlo L.; Perlado, Jose M.
2016-03-01
In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.
Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.
2007-06-27
The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reductionmore » of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.« less
Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.
Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M
1989-08-01
In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.
NASA Astrophysics Data System (ADS)
Matsuura, Hiroyuki; Hamano, Tasuku; Zhong, Ming; Gao, Xu; Yang, Xiao; Tsukihashi, Fumitaka
2014-09-01
An increase in the utilization efficiency of CaO, one of the major fluxing agents used in various steelmaking processes, is required to reduce the amount of discharged slag and energy consumption of the process. The authors have intensively focused on the development of innovative dephosphorization process by using so called "multi-phase flux" composed of solid and liquid phases. This article summarizes the research on the above topic done by the authors, in which the formation mechanisms of P2O5-containing phase during CaO or 2CaO·SiO2 dissolution into molten slag, the phase relationship between solid and liquid phases at equilibrium, and thermodynamic properties of P2O5-containing phase have been clarified. The reactions between solid CaO or 2CaO·SiO2 and molten CaO-FeO x -SiO2-P2O5 slag were observed by dipping solid specimen in the synthesized slag at 1573 K or 1673 K. The formation of the CaO-FeO layer and dual-phase layer of solid 2CaO·SiO2 and FeO x -rich liquid phase was observed around the interface from the solid CaO side toward the bulk slag phase side. Condensation of P2O5 into 2CaO·SiO2 phase as 2CaO·SiO2-3CaO·P2O5 solid solution was observed in both cases of CaO and 2CaO·SiO2 as solid specimens. Measurement of the phase relationship for the CaO-FeO x -SiO2-P2O5 system confirmed the condensation of P2O5 in solid phase at low oxygen partial pressure. The thermodynamics of 2CaO·SiO2-3CaO·P2O5 solid solution are to be clarified to quantitatively simulate the dephosphorization process, and the current results are also introduced. Based on the above results, the reduction of CaO consumption, the discharged slag curtailment, and energy-saving effects have been discussed.
Momeni, Kasra; Levitas, Valery I
2016-04-28
A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Hongliang; Zhou Wancheng; Luo Fa
The (1-x)(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-x(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (KNN-BST) solid solution has been synthesized by conventional solid-state sintering in order to search for the new lead-free relaxor ferroelectrics for high temperature applications. The phase structure, dielectric properties, and relaxor behavior of the (1-x)KNN-xBST solid solution are systematically investigated. The phase structure of the (1-x)KNN-xBST solid solution gradually changes from pure perovskite phase with an orthorhombic symmetry to the tetragonal symmetry, then to the pseudocubic phase, and to the cubic phase with increasing addition of BST. The 0.90KNN-0.10BST solid solution shows a broad dielectric peak with permittivity maximum near 2500 andmore » low dielectric loss (<4%) in the temperature range of 100-250 deg. C. The result indicates that this material may have great potential for a variety of high temperature applications. The diffuse phase transition and the temperature of the maximum dielectric permittivity shifting toward higher temperature with increasing frequency, which are two typical characteristics for relaxor ferroelectrics, are observed in the (1-x)KNN-xBST solid solution. The dielectric relaxor behavior obeys a modified Curie-Weiss law and a Vogel-Fulcher relationship. The relaxor nature is attributed to the appearance of polar nanoregions owing to the formation of randon fields including local electric fields and elastic fields. These results confirm that the KNN-based relaxor ferroelectrics can be regarded as an alternative direction for the development of high temperature lead-free relaxor ferroelectrics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morelock, Cody R.; Gallington, Leighanne C.; Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu
2015-02-15
With the goal of thermal expansion control, the synthesis and properties of Sc{sub 1−x}Al{sub x}F{sub 3} were investigated. The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. Solid solutions (x≤0.50) were characterized by synchrotron powder diffraction at ambient pressure between 100 and 900 K and at pressures <0.414 GPa while heating from 298 to 523 K. A phase transition from cubic to rhombohedral is observed. The transition temperature increases smoothly with Al{sup 3+} content, approaching 500 K at the solid solubility limit, and also upon compression at fixed Al{sup 3+} content. The slope of themore » pressure–temperature phase boundary is ∼0.5 K MPa{sup −1}, which is steep relative to that for most symmetry-lowering phase transitions in perovskites. The volume coefficient of thermal expansion (CTE) for the rhombohedral phase is strongly positive, but the cubic-phase CTE varies from negative (x<0.15) to near-zero (x=0.15) to positive (x>0.20) between ∼600 and 800 K. The cubic solid solutions elastically stiffen on heating, while Al{sup 3+} substitution causes softening at a given temperature. - Graphical abstract: The cubic-phase coefficient of thermal expansion for Sc{sub 1−x}Al{sub x}F{sub 3}(solubility limit ∼50% at ∼1340 K) becomes more positive with increased Al{sup 3+} substitution, but the average isothermal bulk modulus decreases (elastic softening). - Highlights: • The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. • The phase transition temperature of Sc{sub 1−x}Al{sub x}F{sub 3} increases smoothly with x. • The cubic-phase volume CTE varies from negative to positive with increasing x. • The cubic solid solutions elastically stiffen on heating. • Al{sup 3+} substitution causes softening at a given temperature.« less
Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3
NASA Astrophysics Data System (ADS)
Shimizu, Yuhei; Ueda, Kazushige
2016-10-01
Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.
A microstructure-based model for shape distortion during liquid phase sintering
NASA Astrophysics Data System (ADS)
Upadhyaya, Anish
Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.
Characterization of a water-solid interaction in a partially ordered system.
Chakravarty, Paroma; Lubach, Joseph W
2013-11-04
GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.
Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio
2016-04-21
We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.
Biofuel production utilizing a dual-phase cultivation system with filamentous cyanobacteria.
Aoki, Jinichi; Kawamata, Toru; Kodaka, Asuka; Minakawa, Masayuki; Imamura, Nobukazu; Tsuzuki, Mikio; Asayama, Munehiko
2018-04-17
Biomass yields and biofuel production were examined in a dual (solid and liquid)-phase cultivation system (DuPHA) with the unique filamentous cyanobacteria, Pseudanabaena sp. ABRG 5-3 and Limnothrix sp. SK1-2-1. Continuous circular cultivation was driven under the indoor closed (IC) or indoor opened (IO) conditions and provided biomass yields of approximately 8 to 27 g dry cell weight (DCW) floor m -2 d -1 . Alkanes of heptadecane (C 17 H 36 ) or pentadecane (C 15 H 32 ) as liquid biofuels were also recovered from the lower liquid-phase, in which cyanobacteria were dropped from the upper solid-phase and continuously cultivated with a small amount of medium. After the main cultivation in DuPHA, the upper solid-phase of a cotton cloth on which cyanobacteria grew was dried and directly subjected to a combustion test. This resulted in the thermal power (kJ s -1 ) of the cloth with microalgae increasing approximately 20 to 50% higher than that of the cloth only, suggesting a possibility of using the solid phase with microalgae as solid biofuel. Copyright © 2018. Published by Elsevier B.V.
Moussa, Zeinab; Chebl, Mazhar; Patra, Digambara
2017-01-01
Stability of curcumin in neutral and alkaline buffer conditions has been a serious concern for its medicinal applications. We demonstrate that the stability of curucmin can be improved in 1,2-Dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. Curcumin strongly partition into liquid crystalline phase compared to solid gel phase of DSPC liposomes. Variation of fluorescence intensity of curcumin associated with liposomes with temperature successfully determines phase transition temperature of DSPC liposomes. However, at higher molar ratio curcumin can influence phase transition temperature by intercalating into deep hydrophobic layer of liposomes and facilitating fusion of two membrane phases. Rhamnolipids (RLs) are recently being applied for various biomedical applications. Here, we have explored new insight on intercalation of rhamnolipids with DSPC liposomes. Intercalation of rhamnolipids exceptionally increases partition of curcumin into solid gel phase of DSPC liposomes, whereas this increase is moderate in liquid crystalline phase. Fluorescence quenching study establishes that permeability and fluidity of the DSPC liposomes are enhanced in the presence of RLs. Membrane permeability and fluidity can be improved further by increasing the percentage of RLs in DSPC liposomes. The phase transition temperature of DSPC liposomes decreases with increase in percentage of RLs in DSPC liposomes by encouraging fusion between solid gel and liquid crystalline phases. Intercalation of RLs is found to further boost stability of drug, curcumin, in DSPC liposomes. Thus, mixing RLs with DSPC liposomes could potentially serve as a good candidate for drug delivery application. Copyright © 2016 Elsevier B.V. All rights reserved.
Phase Transition of H 2 in Subnanometer Pores Observed at 75 K
Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.; ...
2017-10-30
In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less
Phase Transition of H 2 in Subnanometer Pores Observed at 75 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.
In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less
NASA Astrophysics Data System (ADS)
Wirunchit, S.; Vittayakorn, N.
2008-07-01
The solid solution between the antiferroelectric (AFE) PbZrO3 (PZ) and the relaxor ferroelectric (FE) Pb(Ni1/3Nb2/3)O3 (PNN) was synthesized by the columbite precursor method. The crystal structure, phase transformations, and dielectric and thermal properties of (1-x )PZ-xPNN where x =0.00-0.30 were investigated. With these data, the FE phase diagram between PZ and PNN has been established. The crystal structure data obtained from X-ray diffraction indicate that the solid solution PZ-PNN, where x =0.00-0.30, successively transforms from orthorhombic to rhombohedral symmetry with an increase in the PNN concentration. The AFE phase→FE phase transition occurs in compositions of 0.00⩽x⩽0.08. The AFE →FE phase transition shifts to lower temperatures with higher compositions of x. The FE phase temperature range width increases with increased PNN. Apparently the replacement of the Zr4+ ion by Ni2+/Nb5+ ions decreases the driving force for an antiparallel shift of Pb2+ ions because they interrupt the translational symmetry and facilitates the appearance of a rhombohedral FE phase when the amount of PNN is higher than 8mol%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwamoto, Y.; Shin, S.G.; Matsubara, H.
The grain growth behavior of ceramic materials under the existence of a liquid phase was investigated for Si{sub 3}N{sub 4}-Y{sub 2}O{sub 3}-SiO{sub 2}, TiC-Ni, and WC-Co systems. The kinetics of grain growth behavior of these systems closely fitted to the cubic relation of d{sup 3} - d{sub 0}{sup 3} = Kt. The growth rate of {beta}-Si{sub 3}N{sub 4} grain was approximately one order of magnitude larger in length direction than that in width direction. The growth rate slightly increased with increasing liquid phase content in both these directions of the {beta}-Si{sub 3}N{sub 4} grain. TiC-Ni and WC-Co cermets had amore » peak in growth rate at a certain liquid phase content. The rate constant values of these systems were much smaller by a factor of 10{sup 3}{approximately}10{sup 5} compared to the theoretical values expected from the diffusion-controlled growth model. The experimental growth rates tended to decrease with increasing contiguity of the solid phase. The grain growth behavior of these systems could be explained by the mechanism resulting from the existence of contiguous boundaries of solid phase, which suppressed the movement of solid/liquid interfaces during liquid phase sintering.« less
Efficient Conservative Reformulation Schemes for Lithium Intercalation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urisanga, PC; Rife, D; De, S
Porous electrode theory coupled with transport and reaction mechanisms is a widely used technique to model Li-ion batteries employing an appropriate discretization or approximation for solid phase diffusion with electrode particles. One of the major difficulties in simulating Li-ion battery models is the need to account for solid phase diffusion in a second radial dimension r, which increases the computation time/cost to a great extent. Various methods that reduce the computational cost have been introduced to treat this phenomenon, but most of them do not guarantee mass conservation. The aim of this paper is to introduce an inherently mass conservingmore » yet computationally efficient method for solid phase diffusion based on Lobatto III A quadrature. This paper also presents coupling of the new solid phase reformulation scheme with a macro-homogeneous porous electrode theory based pseudo 20 model for Li-ion battery. (C) The Author(s) 2015. Published by ECS. All rights reserved.« less
On the formation of molecules and solid-state compounds from the AGB to the PN phases
NASA Astrophysics Data System (ADS)
García-Hernández, D. A.; Manchado, A.
2016-07-01
During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.
Wang, Chaoli; Hu, Xiaoling; Guan, Ping; Wu, Danfeng; Qian, Liwei; Li, Ji; Song, Renyuan
2015-01-01
The synthesis and performance of molecularly imprinted membranes (MIMs) as a solid phase extraction packing materials for the separation and purification of thymopentin from crude samples was described. In order to increase structural selectivity and imprinting efficiency, surface-initiated ATRP and ionic liquid (1-vinyl-3-ethyl acetate imidazolium chloride) were used to prepare molecularly imprinting membranes. The results demonstrated that solid phase extraction disks stuffed by MIMs with ionic liquids as functional monomer demonstrated high isolation and purification of performance to the thymopentin. The molecular recognition of thymopentin was analyzed by using molecular modeling software. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi
Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt.more » %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.« less
NASA Astrophysics Data System (ADS)
Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.
2017-12-01
An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.
Characterization and migration of oil and solids in oily sludge during centrifugation.
Wang, Jun; Han, Xu; Huang, Qunxing; Ma, Zengyi; Chi, Yong; Yan, Jianhua
2018-05-01
The migration behaviors of oil, water and solids in sludge during centrifugation were elaborated. Size distribution, surface topography and lypohydrophilic properties were studied in detail. The average size of solids was 61 μm in original sludge, 31 μm in upper layer and 235 μm in bottom layer. The result shows that solvent is essential to separate oil phase into molecular light and weight fractions during centrifugation. With solvent/oil ratio increases from 1:2, 1:1, 2:1 to 5:1, molecular weight in upper layer decreases from 1044, 1043, 1020 to 846 combined with that in bottom layer increases. A model was proposed to calculate the oil residue content in solid phases after sedimentation. The findings of this paper provide information for optimizing the oil recovery and clean treatment.
Khasanov, Kh T; Davranov, K; Rakhimov, M M
2015-01-01
We demonstrated that a change in the catalytic activity of fungal lipases synthesized by Rhizopus microsporus, Penicillium sp. and Oospora lactis and their ability to absorb on different sorbents depended on the nature of groups on the solid phase surface in the model systems water: lipid and water: solid phase. Thus, the stability of Penicillium sp. lipases increased 85% in the presence ofsorsilen or DEAE-cellulose, and 55% of their initial activity respectively was preserved. In the presence of silica gel and CM-cellulose, a decreased rate of lipid hydrolysis by Pseudomonas sp. enzymes was observed in water medium, and the hydrolysis rate increased by 2.4 and 1.5 times respectively in the presence of aminoaerosil and polykefamid. In an aqueous-alcohol medium, aminoaerosil and polykefamid decreased the rate of substrate hydrolysis by more than 30 times. The addition of aerosil to aqueous and aqueous-alcohol media resulted in an increase in the hydrolysis rate by 1.2-1.3 times. Sorsilen stabilized Penicillium sp. lipase activity at 40, 45, 50 and 55 degrees C. Either stabilization or inactivation of lipases was observed depending on the pH of the medium and the nature of chemical groups localized on the surface of solid phase. The synthetizing activity of lipases also changed depending on the conditions.
PHASE DIAGRAM FOR THE SYSTEM TITANIUM-TIN (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornilov, I.I.; Nartova, T.T.
1960-03-01
Differential thermal analysis, microstructural analyses, and determinations of hardness values and electric resistance were used to construct a diagram of state for the binary system Ti-Sn up to the composition of the compound Ti/sub 3/Sn (from 0 to 25 at.% Sn). Analyses of the thermograms showed that all conversions proceeding with the absorption of heat could be detected on the heating curves. Tin lowers the temperature of conversion of titunium with 5.0 at.% tin first to a minimum at 860 tained C which then increases to 890 tained C at higher tin contents. A peritectoid reaction ( alpha / submore » 2/ were ob ore resistant t + ) takes place with a conversion temperature at 890 tained C. A HF-HNO/sub 3/-glycerin etch showed a single-phase homogeneous structure of an alpha -solid solution with alloys containing up to 9 at.% Q. The amount of a second -phase increases with increasing tin content until a single-phase structure of a -solid solution of the compound Ti/sub 3/Sn is noted with alloys containing 23 to 25 at.% Sn. Alloys containing 8 to 22.5 at.% Sn undergo a peritectoid reaction, at a temperature of 890 tained C as shown by thermal analyses and by microstructural analyses of samples quenched frorn above and below the conversion temperature. A study of the microstructure of quenched alloys showed that the solubility of tin in ore resistant t -titanium increases from 8 at.% Sn at 890 tained C to 10.5 at.% Sn at 1100 tained C. X-ray analyses of annealed samples of alloy showed only the lines of an alpha solid solution for 5, 8, 9 at.% Sn, a -solid solution for 23 at.% Sn (close to the composition Ti/sub 3/Sn), and an alpha and mixed phase for a 15 at.% Sn. Vickers hardness numbers were determined with a diamond pyramid at a loading of 10 kg. The hardness increases smoothly with increasing tin content to a maximum at the saturation solubility of the tin in the alpha - or ore resistant t -solid solution. The hardness decreases smoothly with the appearance of the -phase until it attains a minimum at the composition of the compound Ti/sub 3/Sn. The specific electric resistance increases with an increase of tin in the solid solution of alpha -titanium. The rate of increase of the specific electric resistance decreases markedly with the appearance of the -phase. The electric resistance of an alloy with 14.3 at.% Sn was studied as a function of temperature from room temperature to 1100 tained C in special vacuum equipment. A sharp drop in electric resistance a; 890 tained C confirmed the existence of a peritectoid reaction in the system Ti-Sn. (TTT)« less
Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han
2017-01-01
In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Castillo, J. L.; Garcia-Ybarra, P. L.; Rosner, D. E.
1991-01-01
The stability of solid planar growth from a binary vapor phase with a condensing species dilute in a carrier gas is examined when the ratio of depositing to carrier species molecular mass is large and the main diffusive transport mechanism is thermal diffusion. It is shown that a deformation of the solid-gas interface induces a deformation of the gas phase isotherms that increases the thermal gradients and thereby the local mass deposition rate at the crests and reduces them at the valleys. The initial surface deformation is enhanced by the modified deposition rates in the absence of appreciable Fick/Brownian diffusion and interfacial energy effects.
Co-firing coal in municipal solid waste incinerators (MSWIs) has previously been reported to reduce PCDD/F emissions due to increasing the flue gas SO2 concentration due to the fossil fuel addition. The present study was focused on understanding the mechanism predomina...
Biological nitrate removal from water and wastewater by solid-phase denitrification process.
Wang, Jianlong; Chu, Libing
2016-11-01
Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hatke, Anthony; Engel, Lloyd; Liu, Yang; Shayegan, Mansour; Pfeiffer, Loren; West, Ken; Baldwin, Kirk
2015-03-01
The termination of the low Landau filling factor (ν) fractional quantum Hall series for a single layer two dimensional system results in the formation of a pinned Wigner solid for ν < 1 / 5. In a wide quantum well the system can support a bilayer state in which interlayer and intralayer interactions become comparable, which is measured in traditional transport as an insulating state for ν < 1 / 2. We perform microwave spectroscopic studies of this bilayer state and observe that this insulator exhibits a resonance, a signature of a solid phase. Additionally, we find that as we increase the density of the well at fixed ν this bilayer solid exhibits multiple sharp reductions in the resonance amplitude vs ν. This behavior is characteristic of multiple phase transitions, which remain hidden from dc transport measurements.
Yousuf, R; Abdul Ghani, S A; Abdul Khalid, N; Leong, C F
2018-04-01
'InTec Blood Grouping Test kit' using solid-phase technology is a new method which may be used at outdoor blood donation site or at bed side as an alternative to the conventional tile method in view of its stability at room temperature and fulfilled the criteria as point of care test. This study aimed to compare the efficiency of this solid phase method (InTec Blood Grouping Test Kit) with the conventional tile method in determining the ABO and RhD blood group of healthy donors. A total of 760 voluntary donors who attended the Blood Bank, Penang Hospital or offsite blood donation campaigns from April to May 2014 were recruited. The ABO and RhD blood groups were determined by the conventional tile method and the solid phase method, in which the tube method was used as the gold standard. For ABO blood grouping, the tile method has shown 100% concordance results with the gold standard tube method, whereas the solid-phase method only showed concordance result for 754/760 samples (99.2%). Therefore, for ABO grouping, tile method has 100% sensitivity and specificity while the solid phase method has slightly lower sensitivity of 97.7% but both with good specificity of 100%. For RhD grouping, both the tile and solid phase methods have grouped one RhD positive specimen as negative each, thus giving the sensitivity and specificity of 99.9% and 100% for both methods respectively. The 'InTec Blood Grouping Test Kit' is suitable for offsite usage because of its simplicity and user friendliness. However, further improvement in adding the internal quality control may increase the test sensitivity and validity of the test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marina, Olga A.; Pederson, Larry R.; Thomsen, Edwin C.
2010-10-15
The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650 to 850oC. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to ~100 ppm, above which losses were insensitive to HCl concentration. Cell voltage had no effect on poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation ofmore » new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas. Further, the presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel.« less
Singh, Abhishek; Bharati, Avanish; Frederiks, Pauline; Verkinderen, Olivier; Goderis, Bart; Cardinaels, Ruth; Moldenaers, Paula; Van Humbeeck, Jan; Van den Mooter, Guy
2016-06-06
Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.
Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas
2009-06-01
The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter content of 4.5% and 20.8% solid phase with a dry matter content of 19.3%. Dry matter, volatile solids and carbon, raw ash and phosphate--in relation to the mass--accumulated strongly in the solid phase. Nitrogen and ammonia nitrogen were slightly enriched in the solid phase. Only the potassium content decreased slightly in the solid phase.
NASA Astrophysics Data System (ADS)
Yang, W. M.; Chen, L. P.; Wang, X. J.
2016-02-01
High quality single domain YBCO bulk superconductors, 20 mm in diameter, have been fabricated using a new top seeded infiltration and growth method (called the RE + 011 TSIG method), with a new solid phase (Y2O3 + xBaCuO2) instead of the conventional Y2BaCuO5 solid phase, x = 0, 0.5, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0. The effects of different BaCuO2 contents x on the growth morphology, microstructure, and levitation force have been investigated. The results show that the levitation force of the YBCO bulks first increases and then decreases with increasing x, and reaches maximum levitation forces of about 49.2 N (77 K, 0.5 T, with the traditional liquid phase of YBa2Cu3O y + 3 BaCuO2 + 2 CuO) and 47 N (77.3 K, 0.5 T, with the new liquid phase of Y2O3 + 10 BaCuO2 + 6 CuO) when x = 1.2, which is much higher than that of the samples fabricated with the conventional solid phases (23 N). The average Y2BaCuO5 particle size is about 1 μm, which is much smaller than the 3.4 μm in the samples prepared with the conventional Y2BaCuO5 solid phase; this means that the flux pinning force of the sample can be improved by using the new solid phase. Based on this method, single domain YBCO bulks 40 mm, 59 mm, and 93 mm in diameter have also been fabricated using the TSIG process with the new solid phases (Y2O3 + 1.2BaCuO2). These results indicate that the new TSIG process developed by our lab is a very important and practical method for the fabrication of low cost, large size, and high quality single domain REBCO bulk superconductors.
Physico-Chemical Properties and Phase Behaviour of Pyrrolidinium-Based Ionic Liquids
Domańska, Urszula
2010-01-01
A review of the relevant literature on 1-alkyl-1-methylpyrrolidinium-based ionic liquids has been presented. The phase diagrams for the binary systems of {1-ethyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate) [EMPYR][CF3SO3] + water, or + 1-butanol} and for the binary systems of {1-propyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate) [PMPYR][CF3SO3] + water, or + an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol)} have been determined at atmospheric pressure using a dynamic method. The influence of alcohol chain length was discussed for the [PMPYR][CF3SO3]. A systematic decrease in the solubility was observed with an increase of the alkyl chain length of an alcohol. (Solid + liquid) phase equilibria with complete miscibility in the liquid phase region were observed for the systems involving water and alcohols. The solubility of the ionic liquid increases as the alkyl chain length on the pyrrolidinium cation increases. The correlation of the experimental data has been carried out using the Wilson, UNIQUAC and the NRTL equations. The phase diagrams reported here have been compared to the systems published earlier with the 1-alkyl-1-methylpyrrolidinium-based ionic liquids. The influence of the cation and anion on the phase behaviour has been discussed. The basic thermal properties of pure ILs, i.e., melting temperature and the enthalpy of fusion, the solid-solid phase transition temperature and enthalpy have been measured using a differential scanning microcalorimetry technique. PMID:20480044
Streibel, T; Nordsieck, H; Neuer-Etscheidt, K; Schnelle-Kreis, J; Zimmermann, R
2007-04-01
On-line detectable indicator parameters in the flue gas of municipal solid waste incinerators (MSWI) such as chlorinated benzenes (PCBz) are well known surrogate compounds for gas-phase PCDD/PCDF concentration. In the here presented work derivation of indicators is broadened to the detection of fly and boiler ash fractions with increased PCDD/PCDF content. Subsequently these fractions could be subject to further treatment such as recirculation in the combustion chamber to destroy their PCDD/PCDF and other organic pollutants' content. Aim of this work was to detect suitable on-line detectable indicator parameters in the gas phase, which are well correlated to PCDD/PCDF concentration in the solid residues. For this, solid residues and gas-phase samples were taken at three MSWI plants in Bavaria. Analysis of the ash content from different plants yielded a broad variation range of PCDD/PCDF concentrations especially after disturbed combustion conditions. Even during normal operation conditions significantly increased PCDD/PCDF concentrations may occur after unanticipated disturbances. Statistical evaluation of gas phase and ash measurements was carried out by means of principal component analysis, uni- and multivariate correlation analysis. Surprisingly, well known indicators for gas-phase PCDD/PCDF concentration such as polychlorinated benzenes and phenols proved to be insufficiently correlated to PCDD/PCDF content of the solid residues. Moreover, no single parameter alone was found appropriate to describe the PCDD/PCDF content of fly and boiler ashes. On the other hand, multivariate fitting of three or four parameters yielded convenient correlation coefficients of at least r=0.8 for every investigated case. Thereby, comprehension of plant operation parameters such as temperatures and air flow alongside concentrations of inorganic compounds in the gas phase (HCl, CO, SO2, NOx) gave the best results. However, the suitable set of parameters suited best for estimation of PCDD/PCDF concentration in solid residues has to be derived anew for each individual plant and type of ash.
Hirano, Masanori; Ito, Takaharu
2006-12-01
New anatase-type titania solid solutions co-doped with niobium and aluminum (Til-2xNbxAIlxO2 (X = 0 -0.20)) were synthesized as nanoparticles from precursor solutions of TiOSO4, NbCl5, and Al(NO3)3 under mild hydrothermal conditions at 180 degrees C for 5 h using the hydrolysis of urea. The lattice parameters a0 and c0 of anatase slightly and gradually increased, when the content of niobium and aluminum increased from X = 0 to 0.20. The crystallite size of anatase increased from 12 to 28 nm with increasing the value of X from 0 to 0.20. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution in the dark or under UV-light irradiation. The adsorptivity of TiO2 was improved by the formation of anatase-type Til-2xNbxAlxO2 solid solutions. The photocatalytic activity of anatase-type Til-2xNbxAlxO2 solid solutions was superior to that of commercially available anatase-type pure TiO2 (ST-01) and anatase-type pure TiO2 hydrothermally prepared. The new anatase phase of Til-2xNbxAlxO2 (X = 0-0.20) solid solutions existed stably up to 850 0C during heat treatment in air. In comparison with hydrothermal pure TiO2, the starting temperature of anatase-to-rutile phase transformation was delayed by the formation of Ti1-2xNbxAlxO, (X = 0-0.20) solid solutions, although its completing temperature was accelerated.
Viscoelasticity of nano-alumina dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rand, B.; Fries, R.
1996-06-01
The flow and viscoelastic properties of electrostatically stabilized nano-alumina dispersions have been studied as a function of ionic strength and volume fraction of solids. At low ionic strength the suspensions were deflocculated and showed a transition from viscous to elastic behavior as the solid content increased associated with the onset of double layer interpenetration. The phase transition was progressively shifted to higher solids fractions with increasing ionic strength. At higher ionic strength, above the critical coagulation concentration, the suspensions formed attractive networks characterized by high elasticity. Two independent methods of estimating the effective radius of electrostatically stabilized {open_quotes}soft{close_quotes} particles, a{submore » eff}, are presented based on phase angle data and a modified Dougherty-Krieger equation. The results suggest that a{sub eff} is not constant for a given system but changes with both solids fraction and ionic strength.« less
Glass-liquid phase separation in highly supersaturated aqueous solutions of telaprevir.
Mosquera-Giraldo, Laura I; Taylor, Lynne S
2015-02-02
Amorphous solid dispersions are of great current interest because they can improve the delivery of poorly water-soluble compounds. It has been recently noted that the highly supersaturated solutions generated by dissolution of some ASDs can undergo a phase transition to a colloidal, disordered, drug-rich phase when the concentration exceeds the "amorphous solubility" of the drug. The purpose of this study was to investigate the phase behavior of supersaturated solutions of telaprevir, which is formulated as an amorphous solid dispersion in the commercial product. Different analytical techniques including proton nuclear magnetic resonance spectroscopy (NMR), ultraviolet spectroscopy (UV), fluorescence spectroscopy and flux measurements were used to evaluate the properties of aqueous supersaturated solutions of telaprevir. It was found that highly supersaturated solutions of telaprevir underwent glass-liquid phase separation (GLPS) when the concentration exceeded 90 μg/mL, forming a water-saturated colloidal, amorphous drug-rich phase with a glass transition temperature of 52 °C. From flux measurements, it was observed that the "free" drug concentration reached a maximum at the concentration where GLPS occurred, and did not increase further as the concentration was increased. This phase behavior, which results in a precipitate and a metastable equilibrium between a supersaturated solution and a drug-rich phase, is obviously important in the context of evaluating amorphous solid dispersion formulations and their crystallization routes.
Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Li, Shuai; Zhang, Yi
Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less
Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte
Zhu, Jinlong; Li, Shuai; Zhang, Yi; ...
2016-09-07
Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less
NASA Astrophysics Data System (ADS)
Bera, Ganesh; Reddy, V. R.; Rambabu, P.; Mal, P.; Das, Pradip; Mohapatra, N.; Padmaja, G.; Turpu, G. R.
2017-09-01
Phase diagram of FeVO4-CrVO4 solid solutions pertinent with structural and magnetic phases is presented with unambiguous experimental evidences. Solid solutions Fe1-xCrxVO4 (0 ≤ x ≤ 1.0) were synthesized through the standard solid state route and studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectra of X-rays, Raman spectroscopy, d.c. magnetization, and 57Fe Mössbauer spectroscopic studies. FeVO4 and CrVO4 were found to be in triclinic (P-1 space group) and orthorhombic structures (Cmcm space group), respectively. Cr incorporation into the FeVO4 lattice leads to the emergence of a new monoclinic phase dissimilar to the both end members of the solid solutions. In Fe1-xCrxVO4 up to x = 0.10, no discernible changes in the triclinic structure were found. A new structural monoclinic phase (C2/m space group) emerges within the triclinic phase at x = 0.125, and with the increase in Cr content, it gets stabilized with clear single phase signatures in the range of x = 0.175-0.25 as evidenced by the Rietveld analysis of the structures. Beyond x = 0.33, orthorhombic phase similar to CrVO4 (Cmcm space group) emerges and coexists with a monoclinic structure up to x = 0.85, which finally tends to stabilize in the range of x = 0.90-1.00. The Raman spectroscopic studies also confirm the structural transition. FeVO4 Raman spectra show the modes related to three nonequivalent V ions in the triclinic structure, where up to 42 Raman modes are observed in the present study. With the stabilization of structures having higher symmetry, the number of Raman modes decreases and the modes related to symmetry inequivalent sites collate into singular modes from the doublet structure. A systematic crossover from two magnetic transitions in FeVO4, at 21.5 K and 15.4 K to single magnetic transition in CrVO4, at 71 K (antiferromagnetic transition), is observed in magnetization studies. The intermediate solid solution with x = 0.15 shows two magnetic transitions, whereas in the compound with x = 0.33 one of the magnetic transitions disappears. 57Fe Mössbauer spectroscopic studies show a finger print evidence for disappearance of non-equivalent sites of Fe as the structure changes from Triclinic-Monoclinic-Orthorhombic phases with the increasing Cr content in Fe1-xCrxVO4. Comprehensive studies related to the structural changes in Fe1-xCrxVO4 solid solutions lead us to detailed phase diagrams which shall be characteristic for room temperature structural and temperature dependent magnetic transitions in these solid solutions, respectively.
Study of Ti 4+ substitution in ZrW 2O 8 negative thermal expansion materials
NASA Astrophysics Data System (ADS)
De Buysser, Klaartje; Van Driessche, Isabel; Putte, Bart Vande; Schaubroeck, Joseph; Hoste, Serge
2007-08-01
Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2-WO 3-ZrO 2 mixtures revealed the formation of Zr 1-xTi xW 2O 8 solid solutions. A noticeable decrease in unit cell parameter ' a' and in the order-disorder transition temperature could be seen in the case of Zr 1-xTi xW 2O 8 solid solutions. Studies performed on other ZrW 2O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry.
Thermal conductivity of solid monohydroxyl alcohols in polyamorphous states
NASA Astrophysics Data System (ADS)
Krivchikov, A. I.; Korolyuk, O. A.; Sharapova, I. V.
2012-01-01
New measurements of the thermal conductivity of solid ethyl alcohol C2H5OH in the interval from 2 K to the melting temperature are presented. An annealing effect in the thermal conductivity of the orientationally ordered phase of the alcohol has been observed over a wide range of temperatures. This phase was obtained as a result of an irreversible first-order phase transition from an orientationally disordered crystal with a cubic structure at T = 109 K. The thermal conductivity was observed to increase as the monoclinic lattice changed from a less stable phase to a more stable one. The growth may be due to the improved quality of the completely ordered crystal. A comparative analysis of the temperature dependences of the thermal conductivity κ(T) is made for the solid monohydroxyl alcohols CH3OH, C2H5OH, С2D5OD, C3H7OH, and C4H9OH in their disordered orientational and structural states. At low temperatures the thermal conductivity of the series of monohydroxyl structural glasses of the alcohols increases linearly with the mass of the alcohol molecule.
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2013-12-20
Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, W.J.
The state and solubility of cadmium in waste-treated soils was investigated. Three sets of experiments were designed to elucidate solid phase control of soil solution cadmium. First, the soil solution composition of two soils amended with either sludge or metal contaminated mulch was examined to determine the presence of anions capable of precipitating or co-precipitating cadmium. Results indicated that no known pure solid phases of cadmium developed but that high concentrations of phosphate, sulfate and carbonate apparently influenced cadmium solubility. Secondly, three soils were amended with 10 ug of cadmium as cadmium acetate/g of soil. Three different levels of glycerophosphate,more » cysteine and acetate were added to the soils and incubated at constant temperature and water content in order to release phosphate, sulfate and alkalinity under conditions conducive for homogeneous precipitation. Another set of treatments was prepared in the same fashion with an additional amendment of calcium carbonate to raise soil pH's to 7.0. In the presence of sulfate, cadmium solubility increased with no apparent solid phase formation. The addition of calcium carbonate shifted solid phase control to either calcium carbonate or calcium sulfate. The generation of alkalinity by acetate addition produced solid phase calcium carbonate which in turn controlled cadmium solubility through chemisorption of cadmium on calcite surfaces. In the presence of monobasic calcium phosphate, cadmium was interfacially adsorbed. In the presence of dibasic calcium phosphate, however, cadmium was homogeneously precipitated in the host crystal suggesting possible solid solution.« less
Long-term TNT sorption and bound residue formation in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hundal, L.S.; Shea, P.J.; Comfort, S.D.
1997-05-01
Soils surrounding former munitions production facilities are highly contaminated with 2,4,6-trinitrotoluene (TNT). Long-term availability and fate of TNT and its transformation products must be understood to predict environmental impact and develop appropriate remediation strategies. Sorption and transport in surface soil containing solid-phase TNT are particularly critical, since nonlinear sorption isotherms indicate greater TNT availability for transport at high concentrations. Our objectives were to determine long-term sorption and bound residue formation in surface and subsurface Sharpsburg soil (Typic Argiudoll). Prolonged equilibration of {sup 14}C-TNT with the soil revealed a gradual increase in amount sorbed and formation of unextractable (bound) {sup 14}Cmore » residues. The presence of solid-phase TNT did not initially affect the amount of {sup 14}C sorbed during a 168-d equilibration. After 168d, 93% of the added {sup 14}C was sorbed by uncontaminated soil, while 79% was sorbed by soil containing solid-phase TNT. In the absence of solid phase, pools of readily available (extractable with 3 mM CaCl{sub 2}) and potentially available (CH{sub 3}CN-extractable) sorbed TNT decreased rapidly with time and coincided with increased {sup 14}C in soil organic matter. More {sup 14}C was found in fulvic acid than in the humic acid fraction when no solid-phase TNT was present. After sequential extractions, including strong alkali and acid, 32 to 40% of the sorbed {sup 14}C was irreversibly bound (unextractable) in Sharpsburg surface and subsurface soil. Results provide strong evidence for humification of TNT in soil. This process may represent a significant route for detoxification in the soil-water environment. 58 refs., 6 figs., 3 tabs.« less
Kumar, Ashwini; Gaurav; Malik, Ashok Kumar; Tewary, Dhananjay Kumar; Singh, Baldev
2008-03-03
Solid phase microextraction (SPME) is an innovative, solvent free technology that is fast, economical and versatile. SPME is a fiber coated with a liquid (polymer), a solid (sorbent) or a combination of both. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings or adsorption in the case of solid coatings. The SPME fiber is then transferred with the help of a syringe like device into the analytical instrument for desorption and analysis of the target analytes. The sol-gel process provides a versatile method to prepare size, shape and charge selective materials of high purity and homogeneity by means of preparation techniques different from the traditional ones, for the chemical analysis. This review is on the current state of the art and future trends in the developments of solid phase microextraction (SPME) fibers using sol-gel method. To achieve more selective determination of different compound classes, the variety of different coating material for SPME fibers has increased. Further developments in SPME as a highly efficient extraction technique, will greatly depend on new breakthroughs in the area of new coating material developments for the SPME fibers. In sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. This approach is efficient in integrating the advantageous properties of organic and inorganic material systems and thereby increasing and improving the extraction selectivity of the produced amalgam organic-inorganic stationary phases. This review is mainly focused on recent advanced developments in the design, synthesis, characterisation, properties and application of sol-gel in preparation of coatings for the SPME fibers.
Amezcua-Allieri, M A; Rodríguez-Vázquez, R
2006-03-01
To study the impact of fungal bioremediation of phenanthrene on trace cadmium solid-solution fluxes and solution phase concentration. The bioremediation of phenanthrene in soils was performed using the fungus Penicillium frequentans. Metal behaviour was evaluated by the techniques of diffusive gradient in thin-films (DGT) and filtration. Fluxes of cadmium (Cd) show a significant (P < 0.002) increase after the start of bioremediation, indicating that the bioremediation process itself releases significant amount of Cd into solution from the soil solid-phase. Unlike DGT devices, the solution concentration from filtration shows a clear bimodal distribution. We postulate that the initial action of the fungi is most likely to breakdown the surface of the solid phase to smaller, 'solution-phase' material (<0.45 microm) leading to a peak in Cd concentration in solution. Phenanthrene removal from soils by bioremediation ironically results in the mobilization of another toxic pollutant (Cd). Bioremediation of organic pollutants in contaminated soil will likely lead to large increases in the mobilization of toxic metals, increasing metal bio-uptake and incorporation into the wider food chain. Bioremediation strategies need to account for this behaviour and further research is required both to understand the generality of this behaviour and the operative mechanisms.
Solid-solid collapse transition in a two dimensional model molecular system.
Singh, Rakesh S; Bagchi, Biman
2013-11-21
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.
Solid-solid collapse transition in a two dimensional model molecular system
NASA Astrophysics Data System (ADS)
Singh, Rakesh S.; Bagchi, Biman
2013-11-01
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.
Doerr, Nora A; Ptacek, Carol J; Blowes, David W
2005-06-01
The Nickel Rim aquifer has been impacted for five decades by a metal-rich plume generated from the Nickel Rim mine tailings impoundment. Metals released by the oxidation of pyrrhotite in the unsaturated zone of the tailings migrate into the downgradient aquifer, affecting both the groundwater and the aquifer solids. A reactive barrier has been installed in the aquifer to remove sulfate and metals from the groundwater. The effect of the reactive barrier on metal concentrations in the aquifer solids has not previously been studied. In this study, a series of selective extraction procedures was applied to cores of aquifer sediment, to ascertain the distribution of metals among various solid phases present in the aquifer. Extraction results were combined with groundwater chemistry, geochemical modelling and solid-phase microanalyses, to assess the potential mobility of metals under changing geochemical conditions. Reactions within the reactive barrier caused an increase in the solid-phase carbonate content downgradient from the barrier. The concentrations of poorly crystalline, oxidized phases of Mn and Fe, as well as concentrations of Cr(III) associated with oxidized Fe, and poorly crystalline Zn, are lower downgradient from the barrier, whereas total solid-phase metal concentrations remain constant. Iron and Mn accumulate as oxidized, easily extractable forms in a peat layer overlying the aquifer. Although these oxides may buffer reducing plumes, they also have the potential to release metals to the groundwater, should a reduced condition be imposed on the aquifer by remedial actions.
Studies in Three Phase Gas-Liquid Fluidised Systems
NASA Astrophysics Data System (ADS)
Awofisayo, Joyce Ololade
1992-01-01
Available from UMI in association with The British Library. The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid -solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with "true" three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties.
Optical absorbances of Gd3Ga5O12 single crystals under shock compression to 211 GPa
NASA Astrophysics Data System (ADS)
Liu, Q. C.; Zhou, X. M.; Luo, S. N.
2017-04-01
Shock-induced opacity in Gd3Ga5O12 (GGG) single crystals is investigated by transmission/emission measurements at 16 wavelengths (400-800 nm), as well as complementary particle velocity measurements at 1550 nm, in the pressure range of 47-211 GPa. Optical transmission spectra through the shocked samples are measured with a in-situ, shock-generated light source, and the resultant extinction coefficients of different wavelengths and shock pressures obtained. As shock strength increases, the optical opacity of the shocked GGG increases and peaks at 75 GPa (the transparent-opaque transition), drops at 75-100 GPa (the opaque-transparent transition), and then increases again. The transparency recovery coincides with a solid-solid phase transition. The microstructure changes associated with the solid-solid phase transition and plastic deformation most likely cause the loss and recovery of transparency. GGG can be useful as a high pressure window for laser velocimetry (1550 nm) or optical pyrometry (400-800 nm) in the ranges of 100-140 GPa and 80-120 GPa, respectively.
NASA Astrophysics Data System (ADS)
Frehner, Marcel; Schmalholz, Stefan M.; Podladchikov, Yuri
2009-02-01
A 1-D model is presented that couples the microscale oscillations of non-wetting fluid blobs in a partially saturated poroelastic medium with the macroscale wave propagation through the elastic skeleton. The fluid oscillations are caused by surface tension forces that act as the restoring forces driving the oscillations. The oscillations are described mathematically with the equation for a linear oscillator and the wave propagation is described with the 1-D elastic wave equation. Coupling is done using Hamilton's variational principle for continuous systems. The resulting linear system of two partial differential equations is solved numerically with explicit finite differences. Numerical simulations are used to analyse the effect of solids exhibiting internal oscillations, and consequently a resonance frequency, on seismic waves propagating through such media. The phase velocity dispersion relation shows a higher phase velocity in the high-frequency limit and a lower phase velocity in the low-frequency limit. At the resonance frequency a singularity in the dispersion relation occurs. Seismic waves can initiate oscillations of the fluid by transferring energy from solid to fluid at the resonance frequency. Due to this transfer, the spectral amplitude of the solid particle velocity decreases at the resonance frequency. After initiation, the oscillatory movement of the fluid continuously transfers energy at the resonance frequency back to the solid. Therefore, the spectral amplitude of the solid particle velocity is increased at the resonance frequency. Once initiated, fluid oscillations decrease in amplitude with increasing time. Consequently, the spectral peak of the solid particle velocity at the resonance frequency decreases with time.
NASA Astrophysics Data System (ADS)
Barnes, R. G.; Han, J.-W.; Torgeson, D. R.; Baker, D. B.; Conradi, M. S.; Norberg, R. E.
1995-02-01
We report the results of measurements of the proton (1H) spin-lattice relaxation rate R1 at high temperatures (to ~1400 K) in the hcp (α) solid-solution phases of the Sc-H, Y-H, and Lu-H systems, and of R1(45Sc) in Sc-H and Sc-D solid solutions. The latter measurements show unambiguous evidence of an anomalous increase at ~1000 K, whereas R1(1H) shows no such increase at any temperature. This behavior of R1(1H) contrasts with that in the bcc V-H, etc., solid solutions where anomalous relaxation occurs below ~1000 K, and in all investigated metal dihydride phases, MH2-x. The anomalous R1(1H) behavior in α-VHx, α-NbHx, etc., may be understood in terms of fast spin relaxation in the H2 gas in equilibrium with the solid, mediated by fast gas-solid exchange of hydrogen. However, in the present systems, α-ScHx, α-YHx, etc., the H2 gas pressure in equilibrium with the hcp systems is extremely low, resulting in negligible H2 concentration in the gas phase, and consequently a negligible contribution to R1(1H). In contrast, some of the present measurements indicate that the R1(45Sc) anomaly does result from the hydrogen content of the metal, but the mechanism remains unexplained.
Modified sedimentation-dispersion model for solids in a three-phase slurry column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.N.; Ruether, J.A.; Shah, Y.T.
1986-03-01
Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less
Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.
Shin, Homin; Schweizer, Kenneth S
2013-02-28
We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2016-08-07
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.
A solid-phase glycosyltransferase assay for high-throughput screening in drug discovery research.
Donovan, R S; Datti, A; Baek, M G; Wu, Q; Sas, I J; Korczak, B; Berger, E G; Roy, R; Dennis, J W
1999-10-01
Glycosyltransferases mediate changes in glycosylation patterns which, in turn, may affect the function of glycoproteins and/or glycolipids and, further downstream, processes of development, differentiation, transformation and cell-cell recognition. Such enzymes, therefore, represent valid targets for drug discovery. We have developed a solid-phase glycosyltransferase assay for use in a robotic high-throughput format. Carbohydrate acceptors coupled covalently to polyacrylamide are coated onto 96-well plastic plates. The glycosyltransferase reaction is performed with recombinant enzymes and radiolabeled sugar-nucleotide donor at 37 degrees C, followed by washing, addition of scintillation counting fluid, and measurement of radioactivity using a 96-well beta-counter. Glycopolymer construction and coating of the plastic plates, enzyme and substrate concentrations, and linearity with time were optimized using recombinant Core 2 beta1-6-N-acetylglucosaminyltransferase (Core 2 GlcNAc-T). This enzyme catalyzes a rate-limiting reaction for expression of polylactosamine and the selectin ligand sialyl-Lewis(x) in O-glycans. A glycopolymer acceptor for beta1-6-N-acetylglucosaminyltransferase V was also designed and shown to be effective in the solid-phase assay. In a high-throughput screen of a microbial extract library, the coefficient of variance for positive controls was 9.4%, and high concordance for hit validation was observed between the Core 2 GlcNAc-T solid-phase assay and a standard solution-phase assay. The solid-phase assay format, which can be adapted for a variety of glycosyltransferase enzymes, allowed a 5-6 fold increase in throughput compared to the corresponding solution-phase assay.
NASA Astrophysics Data System (ADS)
Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.
2015-01-01
Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.
Microstructure and property of directionally solidified Ni-Si hypereutectic alloy
NASA Astrophysics Data System (ADS)
Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi
2016-03-01
This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.
Terahertz vibrational modes of the rigid crystal phase of succinonitrile.
Nickel, Daniel V; Delaney, Sean P; Bian, Hongtao; Zheng, Junrong; Korter, Timothy M; Mittleman, Daniel M
2014-04-03
Succinonitrile (N ≡ C-CH2-CH2-C ≡ N), an orientationally disordered molecular plastic crystal at room temperature, exhibits rich phase behavior including a solid-solid phase transition at 238 K. In cooling through this phase transition, the high-temperature rotational disorder of the plastic crystal phase is frozen out, forming a rigid crystal that is both spatially and orientationally ordered. Using temperature-dependent terahertz time-domain spectroscopy, we characterize the vibrational modes of this low-temperature crystalline phase for frequencies from 0.3 to 2.7 THz and temperatures ranging from 20 to 220 K. Vibrational modes are observed at 1.122 and 2.33 THz at 90 K. These modes are assigned by solid-state density functional theory simulations, corresponding respectively to the translation and rotation of the molecules along and about their crystallographic c-axis. In addition, we observe a suppression of the phonon modes as the concentration of dopants, in this case a lithium salt (LiTFSI), increases, indicating the importance of doping-induced disorder in these ionic conductors.
Gel phase in hydrated calcium dipicolinate
NASA Astrophysics Data System (ADS)
Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Krishnamoorthy, Aravind; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2017-11-01
The mineralization of dipicolinic acid (DPA) molecules in bacterial spore cores with Ca2+ ions to form Ca-DPA is critical to the wet-heat resistance of spores. This resistance to "wet-heat" also depends on the physical properties of water and DPA in the hydrated Ca-DPA-rich protoplasm. Using reactive molecular dynamics simulations, we have determined the phase diagram of hydrated Ca-DPA as a function of temperature and water concentration, which shows the existence of a gel phase along with distinct solid-gel and gel-liquid phase transitions. Simulations reveal monotonically decreasing solid-gel-liquid transition temperatures with increasing hydration, which explains the experimental trend of wet-heat resistance of bacterial spores. Our observation of different phases of water also reconciles previous conflicting experimental findings on the state of water in bacterial spores. Further comparison with an unmineralized hydrated DPA system allows us to quantify the importance of Ca mineralization in decreasing diffusivity and increasing the heat resistance of the spore.
Synthesis and characterization of vanadiumoxidecatalysts supported on copper orthophosphates
NASA Astrophysics Data System (ADS)
Ouchabi, M.; Baalala, M.; Elaissi, A.; Loulidi, I.; Bensitel, M.
2017-03-01
Synthesis of a pure copper orthophosphate (CuP) prepared by Coprecipitation, and CuP modified by impregnation of vanadium (2-12 wt % of V2O5) have been carried out. The solids obtained were investigated as synthesized or after calcination by various physico-chemical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR), Thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The results revealed that the solids V/CuP consisted of copper orthophosphate Cu3(PO4)2 as major phases, together with V2O5 as minor phase. The diffraction lines of V2O5 increase by increasing the vanadium content.
Solid state phase change materials for thermal energy storage in passive solar heated buildings
NASA Astrophysics Data System (ADS)
Benson, D. K.; Christensen, C.
1983-11-01
A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.
Surface charge-induced EDL interaction on the contact angle of surface nanobubbles.
Jing, Dalei; Li, Dayong; Pan, Yunlu; Bhushan, Bharat
2016-11-01
The contact angle (CA) of surface nanobubbles is believed to affect the stability of nanobubbles and fluid drag in micro/nanofluidic systems. The CA of nanobubbles is dependent on size and is believed to be affected by the surface charge-induced electrical double layer (EDL). However, neither of these of attributes are well understood. In this paper, by introducing an EDL-induced electrostatic wetting tension, a theoretical model is first established to study the effect of EDLs formed near the solid-liquid interface and the liquid-nanobubble interface on the gas phase CA of nanobubbles. The size-dependence of this EDL interaction is studied as well. Next, by using atomic force microscopy (AFM), the effect of the EDL on nanobubbles' gas phase CA is studied with variable electrical potential at the solid-liquid interface, which is adjusted by an applied voltage. Both the theoretical and the experimental results show that the EDLs formed near the solid-liquid interface and the liquid-nanobubble interface lead to a reduction of gas phase CA of the surface nanobubbles because of an electrostatic wetting tension on the nanobubble due to the attractive electrostatic interaction between the liquid and nanobubble within the EDL, which is in the nanobubbles' outward direction. An EDL with a larger zeta potential magnitude leads to a larger gas phase CA reduction. Furthermore, the effect of EDL on the nanobubbles' gas phase CA shows a significant size-dependence considering the size dependence of the electrostatic wetting tension. The gas phase CA reduction due to the EDL decreases with increasing nanobubble height and increases with the nanobubble's increasing curvature radius, indicating that a surface charge-induced EDL could possibly explain the size dependence of the gas phase CA of nanobubbles.
Solid polymer electrolyte (SPE) fuel cell technology program, phase 2/2A. [testing and evaluations
NASA Technical Reports Server (NTRS)
1976-01-01
Test evaluations were performed on a fabricated single solid polymer electrolyte cell unit. The cell operated at increased current density and at higher performance levels. This improved performance was obtained through a combination of increased temperature, increased reactant pressures, improved activation techniques and improved thermal control over the baseline cell configuration. The cell demonstrated a higher acid content membrane which resulted in increased performance. Reduced catalyst loading and low cost membrane development showed encouraging results.
Criteria for the selection of a solid phase to be used in immunoassays.
Delagneau, J F; Masseyeff, R
1990-01-01
Heterogeneous immunoassays are very sensitive and only limited in terms of performance by non specific binding. They require separation of free from bound fractions and concomitant use of a solid phase coated with an immunoreactive component (i.e. immunosorbent). The improvement of these key immunosorbents is crucial and involves a great deal of expertise and capabilities. Specifications differ according to procedure (e.g. capture or competitive assay). Each routinely used solid phase, such as polystyrene wells, porous membrane or dispersible microbeads, presents specific performance characteristics, advantages, and drawbacks. Among the tasks to be implemented are optimization of the spatial orientation of immunological reagents, selection of the surface neutral hydrophilic support, acceleration of reactions by increasing the reactive surface area of the supports, streamlining and simplification of procedural steps. These various aspects are abundantly described and emphasized here.
A CFD model for biomass combustion in a packed bed furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karim, Md. Rezwanul; Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704; Ovi, Ifat Rabbil Qudrat
Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is themore » most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.« less
NASA Astrophysics Data System (ADS)
Ritter, Nils C.; Sowa, Roman; Schauer, Jan C.; Gruber, Daniel; Goehler, Thomas; Rettig, Ralf; Povoden-Karadeniz, Erwin; Koerner, Carolin; Singer, Robert F.
2018-06-01
We prepared 41 different superalloy compositions by an arc melting, casting, and heat treatment process. Alloy solid solution strengthening elements were added in graded amounts, and we measured the solidus, liquidus, and γ'-solvus temperatures of the samples by DSC. The γ'-phase fraction increased as the W, Mo, and Re contents were increased, and W showed the most pronounced effect. Ru decreased the γ'-phase fraction. Melting temperatures (i.e., solidus and liquidus) were increased by addition of Re, W, and Ru (the effect increased in that order). Addition of Mo decreased the melting temperature. W was effective as a strengthening element because it acted as a solid solution strengthener and increased the fraction of fine γ'-precipitates, thus improving precipitation strengthening. Experimentally determined values were compared with calculated values based on the CALPHAD software tools Thermo-Calc (databases: TTNI8 and TCNI6) and MatCalc (database ME-NI). The ME-NI database, which was specially adapted to the present investigation, showed good agreement. TTNI8 also showed good results. The TCNI6 database is suitable for computational design of complex nickel-based superalloys. However, a large deviation remained between the experiment results and calculations based on this database. It also erroneously predicted γ'-phase separations and failed to describe the Ru-effect on transition temperatures.
Transient Numerical Modeling of Catalytic Channels
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the first case. Finally, the results show that different initial surface-species distribution leads to different steady-states under certain conditions. These results demonstrate the utility of a lumped two-phase model of a transient catalytic combustor with detailed chemistry.
A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.
Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin
2018-02-14
Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.
NASA Astrophysics Data System (ADS)
Tavakkoli, M.; Kharrat, R.; Masihi, M.; Ghazanfari, M. H.; Fadaei, S.
2012-12-01
Thermodynamic modeling is known as a promising tool for phase behavior modeling of asphaltene precipitation under different conditions such as pressure depletion and CO2 injection. In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, while the oil and gas phases are modeled with an equation of state. The PR-EOS was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on an improved solid model has been developed and used for predicting asphaltene precipitation data for one of Iranian heavy crudes, under pressure depletion and CO2 injection conditions. A significant improvement has been observed in predicting the asphaltene precipitation data under gas injection conditions. Especially for the maximum value of asphaltene precipitation and for the trend of the curve after the peak point, good agreement was observed. For gas injection conditions, comparison of the thermodynamic micellization model and the improved solid model showed that the thermodynamic micellization model cannot predict the maximum of precipitation as well as the improved solid model. The non-isothermal improved solid model has been used for predicting asphaltene precipitation data under pressure depletion conditions. The pressure depletion tests were done at different levels of temperature and pressure, and the parameters of a non-isothermal model were tuned using three onset pressures at three different temperatures for the considered crude. The results showed that the model is highly sensitive to the amount of solid molar volume along with the interaction coefficient parameter between the asphaltene component and light hydrocarbon components. Using a non-isothermal improved solid model, the asphaltene phase envelope was developed. It has been revealed that at high temperatures, an increase in the temperature results in a lower amount of asphaltene precipitation and also it causes the convergence of lower and upper boundaries of the asphaltene phase envelope. This work illustrates successful application of a non-isothermal improved solid model for developing the asphaltene phase envelope of heavy crude which can be helpful for monitoring and controlling of asphaltene precipitation through the wellbore and surface facilities during heavy oil production.
Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study
NASA Astrophysics Data System (ADS)
Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei
2016-08-01
Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.
Collina, Elena; Lasagni, Marina; Pitea, Demetrio; Franzetti, Andrea; Di Gennaro, Patrizia; Bestetti, Giuseppina
2007-09-01
Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition.
Wang, H B; Wang, Q; Dong, C; Yuan, L; Xu, F; Sun, L X
2008-03-19
This paper analyzes the characteristics of alloy compositions with large hydrogen storage capacities in Laves phase-related body-centered cubic (bcc) solid solution alloy systems using the cluster line approach. Since a dense-packed icosahedral cluster A(6)B(7) characterizes the local structure of AB(2) Laves phases, in an A-B-C ternary system, such as Ti-Cr (Mn, Fe)-V, where A-B forms AB(2) Laves phases while A-C and B-C tend to form solid solutions, a cluster line A(6)B(7)-C is constructed by linking A(6)B(7) to C. The alloy compositions with large hydrogen storage capacities are generally located near this line and are approximately expressed with the cluster-plus-glue-atom model. The cluster line alloys (Ti(6)Cr(7))(100-x)V(x) (x = 2.5-70 at.%) exhibit different structures and hence different hydrogen storage capacities with increasing V content. The alloys (Ti(6)Cr(7))(95)V(5) and Ti(30)Cr(40)V(30) with bcc solid solution structure satisfy the cluster-plus-glue-atom model.
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, YinBo; Wang, FengChao, E-mail: wangfc@ustc.edu.cn; Wu, HengAn
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates thatmore » the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the “buckling failure” of the square-ice-nanotube columns, which is dominated by the lateral pressure.« less
Solid-phase reductive amination for glycomic analysis.
Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George
2017-04-15
Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.
Crystalline-gel-molten phase transitions of water in calcium dipicolinate (Ca-DPA)
NASA Astrophysics Data System (ADS)
Tiwari, Subodh; Mishra, Ankit; Sheng, Chunyang; Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya
The heat resistance of bacterial spores directly correlates to the protoplast dehydration and presence of dipicolinic acid (DPA) and its associated metal salts at the core. Bacteria's structural integrity in moist heat conferred by high concentration of DPA and calcium DPA salts depends on the properties are additional water molecules and temperature. In our reactive MD simulations, we characterize different possible phases and the transport properties of water molecules. We observed solid-gel and gel-liquid phase transitions of the hydrated Ca-DPA system. These simulations reveal monotonically decreasing solid-gel-liquid transition temperatures with increasing cell hydration, reflecting the experimental trend of moist-heat resistance of bacterial spores. We also observed that the calcification of bacterial spores further increases the transition temperatures. This research is supported by DTRA Grant No. HDTRA1-14-1-0074.
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...
40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...
Schutyser, M A I; Briels, W J; Boom, R M; Rinzema, A
2004-05-20
The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors. Copyright 2004 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zeen; Hu, Rui; Zhang, Tiebang, E-mail: tiebang
The microstructure and solidification behavior of high Nb containing TiAl alloys with the composition of Ti-46Al-8Nb-xC (x = 0.1, 0.7, 1.4, 2.5 at.%) prepared by arc-melting method have been investigated in this work. The results give evidence that the addition of carbon changes the solidification behavior from solidification via the β phase to the peritectic solidification. And carbon in solid solution enriches in the α{sub 2} phase and increases the microhardness. As the carbon content increases to 1.4 at.%, plate-shape morphology carbides Ti{sub 2}AlC (H phase) precipitate from the TiAl matrix which leads to the refinement microstructure. By aging atmore » 1173 K for 24 h after quenching treatment, fine needle-like and granular shape Ti{sub 3}AlC (P phase) carbides are observed in the matrix of Ti-46Al-8Nb-2.5C alloy, which distribute along the lamellar structure or around the plate-shape Ti{sub 2}AlC. Transmission electron microscope observation shows that the Ti{sub 3}AlC carbides precipitate at dislocations. The phase transformation in-situ observations indicate that the Ti{sub 2}AlC carbides partly precipitate during the solid state phase transformation process. - Highlights: •Carbon changes the solidification behavior from β phase to peritectic solidification. •Dislocations in solution treated γ phase act as nucleation sites of Ti{sub 3}AlC precipitations. •Ti{sub 3}AlC precipitates as fine needle-like or granular shape in the solution treated matrix. •Ti{sub 2}AlC carbides precipitate during the solid state phase transformation process.« less
Dhillon, Jaapna; Lee, Janice Y; Mattes, Richard D
2017-11-01
The purpose of the study was to examine the role of the cephalic phase insulin response (CPIR) following exposure to nutritive and low-calorie sweeteners in solid and beverage form in overweight and obese adults. In addition, the role of learning on the CPIR to nutritive and low-calorie sweetener exposure was tested. Sixty-four overweight and obese adults (age: 18-50years, BMI: 24-37kg/m 2 , body fat percentage>25% for men and >32% for women) were sham-fed (at 2-minute intervals for 14min) a randomly assigned test load comprised of a nutritive (sucrose) or low-calorie sweetener (sucralose) in beverage or solid form in phase 1 of the study. A 2-3ml blood sample was collected before and 2, 6, 10, 14, 61, 91 and 121min after oral exposure for serum insulin and glucose analysis. During phase 2, participants underwent a 2-week training period to facilitate associative learning between the sensory properties of test loads and their post-ingestive effects. In phase 3, participants were retested for their cephalic phase responses as in phase 1. Participants were classified as responders if they demonstrated a positive insulin response (rise of serum insulin above baseline i.e. Δ insulin) 2min post-stimulus in phase 1. Among responders exposed to the same sweetener in Phases 1 and 3, the proportion of participants that displayed a rise of insulin with oral exposure to sucralose was significantly greater when the stimulus was in the solid form compared to the beverage form. Sucralose and sucrose exposure elicited similarly significant increases in serum insulin 2min after exposure and significant decreases after 2min in responders in both food forms. The solid food form elicited greater CPIR over 2, 6 and 10min than the beverage form. There was no effect of learning on insulin responses after training. The results indicate the presence of a significant CPIR in a subset of individuals with overweight or obesity after oral exposure to sucralose, especially when present in solid food form. Future studies must confirm the reliability of this response. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2018-05-01
In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).
Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W
2006-05-25
We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not change the PT thermodynamics or kinetics appreciably for the first and the second PT beta <--> delta cycles, as predicted by theory; (f) beta <--> delta PTs start at a very small driving force (in contrast to all known solid-solid transformations with large transformation strain), that is, elastic energy and athermal interface friction must be negligible; (g) beta --> alpha and alpha --> beta PTs, which are thermodynamically possible in the temperature range 382.4 < theta < 430 K and below 382.4 K, respectively, do not occur.
Influence of Sn doping in BaSnxTi1-xO3 ceramics on microstructural and dielectric properties
NASA Astrophysics Data System (ADS)
Ansari, Mohd. Azaj; Sreenivas, K.
2018-05-01
BaSnxTi1-x O3 solid solutions with varying Sn content (x = 0.00, 0.05, 0.15, 0.25) prepared by solid state reaction method have been studied for their structural and dielectric properties. X-ray diffraction and Raman spectroscopic analysis show composition induced modifications in the crystallographic structure, and with increasing Sn content the structure changes from tetragonal to cubic structure. The tetragonal distortion decreases with increasing Sn, and the structure becomes purely cubic for x =0.25. Changes in the structure are reflected in the temperature dependent dielectric properties. For increasing Sn content the peak dielectric constant is found to increase and the phase transition temperature (Tc) decreases to lower temperature. The purely cubic structure with x=0.25 shows a diffused phased transition.
Yuliandra, Yori; Zaini, Erizal; Syofyan, Syofyan; Pratiwi, Wenny; Putri, Lidiya Novita; Pratiwi, Yuti Sahra; Arifin, Helmi
2018-06-04
Ibuprofen is classified as a BCS class II drug which has low solubility and high permeability. We conducted the formation of the cocrystalline phase of ibuprofen with coformer nicotinamide to increase its solubility. The purpose of this study was to characterize the solid state of cocrystalline phase of ibuprofen-nicotinamide, determine the solubility, and evaluate its in vivo analgesic activity. The cocrystal of ibuprofen-nicotinamide was prepared by a slow evaporation method. The solid-state characterization was conducted by powder X-ray diffraction (PXRD) analysis, differential thermal analysis (DTA), and scanning electron microscopy (SEM). To investigate the in vivo analgesic activity, 28 male Swiss-Webster mice were injected with acetic acid 0.5% following oral administration of intact ibuprofen, physical mixture, and its cocrystalline phase with nicotinamide (equivalent to 26 mg/kg ibuprofen). The number of writhes was counted, and pain inhibition was calculated. All data were analyzed with one-way ANOVA followed by Duncan's Multiple Range Test (95% confidence interval). The results revealed that a new cocrystalline phase was successfully formed. The solubility testing showed that the cocrystal formation enhanced the solubility significantly as compared with the physical mixture and intact ibuprofen. A significant increase in the analgesic activity of cocrystal ibuprofen-nicotinamide was also confirmed.
PCE DNAPL degradation using ferrous iron solid mixture (ISM).
Lee, Hong-Kyun; Do, Si-Hyun; Batchelor, Bill; Jo, Young-Hoon; Kong, Sung-Ho
2009-08-01
Ferrous iron solid mixture (ISM) containing Fe(II), Fe(III), and Cl was synthesized for degradation of tetrachloroethene (PCE) as a dense non-aqueous phase liquid (DNAPL), and an extraction procedure was developed to measure concentrations of PCE in both the aqueous and non-aqueous phases. This procedure included adding methanol along with hexane in order to achieve the high extraction efficiency, particularly when solids were present. When PCE was present as DNAPL, dechlorination of PCE was observed to decrease linearly with respect to the total PCE concentration (aqueous and non-aqueous phases) and the concentration of PCE in the aqueous phase was observed to be approximately constant. In the absence of DNAPL, the rate of PCE degradation was observed to be the first-order with respect to the concentration in the aqueous phase. A kinetic model was developed to describe these observations and it was able to fit experimental data well. Increasing the concentration of Fe(II) in ISM increased the values of rate constants, while increasing the concentration of PCE DNAPL did not affect the value of the rate constant. The reactivity of ISM for PCE dechlorination might be close to that of Friedel's salt, and the accumulation of trichloroethylene (TCE) might imply the lower reactivity of ISM for degradation of TCE or the necessity of large amount of Fe(II) in ISM. TCE (the major chlorinated intermediate), ethene (the major non-chlorinated compound), acetylene and ethane were detected, which implied that both hydrogenolysis and beta-elimination were pathways of PCE DNAPL degradation on ISM.
Solid-liquid phase equilibria in the ternary system (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K
NASA Astrophysics Data System (ADS)
Wang, Shi-qiang; Guo, Ya-fei; Yang, Jian-sen; Deng, Tian-long
2015-12-01
Experimental studies on the solubilities and physicochemical properties including density, refractive index and pH value in the ternary systems (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K were determined with the method of isothermal dissolution equilibrium. Based on the experimental results, the phase diagrams and their corresponding physicochemical properties versus composition diagram in the system were plotted. In the phase diagrams of the ternary system at 288.15 and 298.15 K, there are one eutectic point and two crystallization regions corresponding to lithium metaborate octahydrate (LiBO2 · 8H2O) and lithium carbonate (Li2CO3), respectively. This system at both temperatures belongs to hydrate type I, and neither double salt nor solid solution was found. A comparison of the phase diagrams for this ternary system at 288.15 and 298.15 K shows that the solid phase numbers and exist minerals are the same, and the area of crystallization region of Li2CO3 is increased obviously with the increasing temperature while that of LiBO2 · 8H2O is decreased. The physicochemical properties (density, pH value and refractive index) of the solutions of the ternary system at two temperatures changes regularly with the increasing lithium carbonate concentration. The calculated values of density and refractive index using empirical equations of the ternary system are in good agreement with the experimental values.
Development of advanced high strength tantalum base alloys. Part 1: Screening investigation
NASA Technical Reports Server (NTRS)
Buckman, R. W., Jr.
1971-01-01
Five experimental tantalum alloy compositions containing 13-18% W+Re+Hf solid solution solute additions with dispersed phase strengthening achieved by carbon or nitrogen additions were prepared as 1.4 inch diameter ingot processed to 3/8 inch diameter rod and evaluated. Elevated temperature tensile and creep strength increased monotonically with increasing solute content. Room temperature elongation decreased for 20% to less than 2% as the solute content was increased above 16%. Phase identification indicated that the precipitating phase in the carbide containing alloys was Ta2C.
Bonifacio, Riza Gabriela; Nam, Go-Un; Eom, In-Yong; Hong, Yong-Seok
2017-11-07
Time-integrative passive sampling of volatile organic compounds (VOCs) in water can now be accomplished using a solid ceramic dosimeter. A nonporous ceramic, which excludes the permeation of water, allowing only gas-phase diffusion of VOCs into the resin inside the dosimeter, effectively captured the VOCs. The mass accumulation of 11 VOCs linearly increased with time over a wide range of aqueous-phase concentrations (16.9 to 1100 μg L -1 ), and the linearity was dependent upon the Henry's constant (H). The average diffusivity of the VOCs in the solid ceramic was 1.46 × 10 -10 m 2 s -1 at 25 °C, which was 4 orders of magnitude lower than that in air (8.09 × 10 -6 m 2 s -1 ). This value was 60% greater than that in the water-permeable porous ceramic (0.92 × 10 -10 m 2 s -1 ), suggesting that its mass accumulation could be more effective than that of porous ceramic dosimeters. The mass accumulation of the VOCs in the solid ceramic dosimeter increased in the presence of salt (≥0.1 M) and with increasing temperature (4 to 40 °C) but varied only slightly with dissolved organic matter concentration. The solid ceramic dosimeter was suitable for the field testing and measurement of time-weighted average concentrations of VOC-contaminated waters.
Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S
2017-06-01
Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH 4 kgVS fed -1 for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussa, C.; El Sayah, Z.; Chajewski, G.
The phase relations within the U-Al-Ge ternary system were studied for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. The identification of the phases, their composition ranges and stability were determined by x-ray powder diffraction, scanning electron microscopy coupled to energy dispersive spectroscopy and differential thermal analysis. The tie-lines and the solubility domains were determined for the U-Ge and U-Al binaries, the UAl{sub 3}-UGe{sub 3} solid-solution and for the unique ternary intermediate phase U{sub 3}Al{sub 2−x}Ge{sub 3+x}. The experimental isopleth section of the pseudo-binary UAl{sub 3}-UGe{submore » 3} reveals an isomorphous solid solution based on the Cu{sub 3}Au-type below the solidus. The U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution extends for −0.1≤x≤1.35 and −0.2≤x≤1.5 at 673 K and 1173 K respectively. It crystallizes in the I-centered tetragonal symmetry. The reciprocal lattice of several compositions of the U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution was examined by electron diffraction at room temperature, revealing the presence of a c-glide plane. Their crystal structure was refined by single crystal x-ray diffraction suggesting an isomorphous solid solution best described with the non-centrosymmetric space group I4cm in the paramagnetic domain. The magnetic measurements confirm the ferromagnetic ordering of the solid solution U{sub 3}Al{sub 2−x}Ge{sub 3+x} with an increase of Tc with the Al content. The thermal variation of the specific heat bear out the magnetic transitions with some delocalized character of the uranium 5f electrons. - Graphical abstract: The phase relations within the U-Al-Ge ternary system were experimentally assessed for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. A complete UAl{sub 3}-UGe{sub 3} solid-solution based on the Cu{sub 3}Au-type forms below the solidus. A unique ternary phase showing a large homogeneity domain, U{sub 3}Al{sub 2−x}Ge{sub 3+x} for −0.1≤x≤1.35 and −0.2≤x≤1.5 at 673 K and 1173 K respectively has been evidenced. It is best described with the non-centrosymmetric space group I4cm above room temperature. A linear increase of the ferromagnetic ordering is observed with the Al content. - Highlights: • Isothermal sections of the U-Al-Ge system were investigated for 673 K and 1173 K. • An isomorphous solid-solution UAl{sub 3}-UGe{sub 3} forms for the whole composition range. • U{sub 3}Al{sub 2−x}Ge{sub 3+x} the unique ternary phase to form exists for a large homogeneity domain. • U{sub 3}Al{sub 2−x}Ge{sub 3+x} is best described in I4cm space group above room temperature. • The ferromagnetic transition of U{sub 3}Al{sub 2−x}Ge{sub 3+x} linearly increases with the Al content.« less
Seasonal multiphase equilibria in the atmospheres of Titan and Pluto
NASA Astrophysics Data System (ADS)
Tan, S. P.; Kargel, J. S.
2017-12-01
At the extremely low temperatures in Titan's upper troposphere and on Pluto's surface, the atmospheres as a whole are subject to freeze into solid solutions, not pure ices. The presence of the solid phases introduces conditions with rich phase equilibria upon seasonal changes, even if the temperature undergoes only small changes. For the first time, the profile of atmospheric methane in Titan's troposphere will be reproduced complete with the solid solutions. This means that the freezing point, i.e. the altitude where the first solid phase appears, is determined. The seasonal change will also be evaluated both at the equator and the northern polar region. For Pluto, also for the first time, the seasonal solid-vapor equilibria will be evaluated. The fate of the two solid phases, the methane-rich and carbon-monoxide-rich solid solutions, will be analyzed upon temperature and pressure changes. Such investigations are enabled by the development of a molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, which includes solid solutions in its phase-equilibria calculations. The atmospheres of Titan and Pluto are modeled as ternary gas mixtures: nitrogen-methane-ethane and nitrogen-methane-carbon monoxide, respectively. Calculations using CRYOCHEM can provide us with compositions not only in two-phase equilibria, but also that in three-phase equilibria. Densities of all phases involved will also be calculated. For Titan, density inversion between liquid and solid phases will be identified and presented. In the inversion, the density of solid phase is less than that in the liquid phase. The method and results of this work will be useful for further investigations and modeling on the atmospheres of Titan, Pluto, and other bodies with similar conditions in the Solar System and beyond.
Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys
Eshed, Eyal; Larianovsky, Natalya; Kovalevsky, Alexey; Popov, Vladimir; Gorbachev, Igor; Popov, Vladimir; Katz-Demyanetz, Alexander
2018-01-01
Refractory-based high entropy alloys (HEAs) of the 2nd-generation type are new intensively-studied materials with a high potential for structural high-temperature applications. This paper presents investigation results on microstructural evolution and phase formation in as-cast and subsequently heat-treated HEAs at various temperature-time regimes. Microstructural examination was performed by means of scanning electron microscopy (SEM) combined with the energy dispersive spectroscopy (EDS) mode of electron probe microanalysis (EPMA) and qualitative X-ray diffraction (XRD). The primary evolutionary trend observed was the tendency of Zr to gradually segregate as the temperature rises, while all the other elements eventually dissolve in the BCC solid solution phase once the onset of Laves phase complex decomposition is reached. The performed thermodynamic modelling was based on the Calculation of Phase Diagrams method (CALPHAD). The BCC A2 solid solution phase is predicted by the model to contain increasing amounts of Cr as the temperature rises, which is in perfect agreement with the actual results obtained by SEM. However, the model was not able to predict the existence of the Zr-rich phase or the tendency of Zr to segregate and form its own solid solution—most likely as a result of the Zr segregation trend not being an equilibrium phenomenon. PMID:29360763
Materials research for passive solar systems: Solid-state phase-change materials
NASA Astrophysics Data System (ADS)
Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.
1985-03-01
A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.
Benzocaine polymorphism: pressure-temperature phase diagram involving forms II and III.
Gana, Inès; Barrio, Maria; Do, Bernard; Tamarit, Josep-Lluís; Céolin, René; Rietveld, Ivo B
2013-11-18
Understanding the phase behavior of an active pharmaceutical ingredient in a drug formulation is required to avoid the occurrence of sudden phase changes resulting in decrease of bioavailability in a marketed product. Benzocaine is known to possess three crystalline polymorphs, but their stability hierarchy has so far not been determined. A topological method and direct calorimetric measurements under pressure have been used to construct the topological pressure-temperature diagram of the phase relationships between the solid phases II and III, the liquid, and the vapor phase. In the process, the transition temperature between solid phases III and II and its enthalpy change have been determined. Solid phase II, which has the highest melting point, is the more stable phase under ambient conditions in this phase diagram. Surprisingly, solid phase I has not been observed during the study, even though the scarce literature data on its thermal behavior appear to indicate that it might be the most stable one of the three solid phases. Copyright © 2013 Elsevier B.V. All rights reserved.
Ma, Youlong; Teng, Feiyue; Libera, Matthew
2018-06-05
Solid-phase oligonucleotide amplification is of interest because of possible applications to next-generation sequencing, multiplexed microarray-based detection, and cell-free synthetic biology. Its efficiency is, however, less than that of traditional liquid-phase amplification involving unconstrained primers and enzymes, and understanding how to optimize the solid-phase amplification process remains challenging. Here, we demonstrate the concept of solid-phase nucleic acid sequence-based amplification (SP-NASBA) and use it to study the effect of tethering density on amplification efficiency. SP-NASBA involves two enzymes, avian myeloblastosis virus reverse transcriptase (AMV-RT) and RNase H, to convert tethered forward and reverse primers into tethered double-stranded DNA (ds-DNA) bridges from which RNA - amplicons can be generated by a third enzyme, T7 RNA polymerase. We create microgels on silicon surfaces using electron-beam patterning of thin-film blends of hydroxyl-terminated and biotin-terminated poly(ethylene glycol) (PEG-OH, PEG-B). The tethering density is linearly related to the PEG-B concentration, and biotinylated primers and molecular beacon detection probes are tethered to streptavidin-activated microgels. While SP-NASBA is very efficient at low tethering densities, the efficiency decreases dramatically with increasing tethering density due to three effects: (a) a reduced hybridization efficiency of tethered molecular beacon detection probes; (b) a decrease in T7 RNA polymerase efficiency; (c) inhibition of T7 RNA polymerase activity by AMV-RT.
The global phase diagram of the Gay-Berne model
NASA Astrophysics Data System (ADS)
de Miguel, Enrique; Vega, Carlos
2002-10-01
The phase diagram of the Gay-Berne model with anisotropy parameters κ=3, κ'=5 has been evaluated by means of computer simulations. For a number of temperatures, NPT simulations were performed for the solid phase leading to the determination of the free energy of the solid at a reference density. Using the equation of state and free energies of the isotropic and nematic phases available in the existing literature the fluid-solid equilibrium was calculated for the temperatures selected. Taking these fluid-solid equilibrium results as the starting points, the fluid-solid equilibrium curve was determined for a wide range of temperatures using Gibbs-Duhem integration. At high temperatures the sequence of phases encountered on compression is isotropic to nematic, and then nematic to solid. For reduced temperatures below T=0.85 the sequence is from the isotropic phase directly to the solid state. In view of this we locate the isotropic-nematic-solid triple point at TINS=0.85. The present results suggest that the high-density phase designated smectic B in previous simulations of the model is in fact a molecular solid and not a smectic liquid crystal. It seems that no thermodynamically stable smectic phase appears for the Gay-Berne model with the choice of parameters used in this work. We locate the vapor-isotropic liquid-solid triple point at a temperature TVIS=0.445. Considering that the critical temperatures is Tc=0.473, the Gay-Berne model used in this work presents vapor-liquid separation over a rather narrow range of temperatures. It is suggested that the strong lateral attractive interactions present in the Gay-Berne model stabilizes the layers found in the solid phase. The large stability of the solid phase, particularly at low temperatures, would explain the unexpectedly small liquid range observed in the vapor-liquid region.
New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach
NASA Astrophysics Data System (ADS)
Bowman, M. M.; Sanclements, M.; McKnight, D. M.
2017-12-01
Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase fluorescence, which provide new insights into fluorescence studies in terrestrial systems.
Thermodynamics of water intrusion in nanoporous hydrophobic solids.
Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel; Demachy, Isabelle; Boutin, Anne; Patarin, Joël; Fuchs, Alain H
2008-08-28
We report a joint experimental and molecular simulation study of water intrusion in silicalite-1 and ferrerite zeolites. The main conclusion of this study is that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional. In the extreme confinement situation (ferrierite zeolite), condensation takes place through a continuous transition, which is explained by a shift of both the first-order transition line and the critical point with increasing confinement. The present findings are at odds with the common belief that conventional phase transitions cannot take place in microporous solids such as zeolites. The most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations. We believe that these findings are very general for hydrophobic solids, i.e. for both nonwetting as well as wetting water-solid interface systems.
Paranhos Gazineu, Maria Helena; de Araújo, Andressa Arruda; Brandão, Yana Batista; Hazin, Clovis Abrahão; de O Godoy, José Marcos
2005-01-01
Scales and sludge generated during oil extraction and production can contain uranium, thorium, radium and other natural radionuclides, which can cause exposure of maintenance personnel. This work shows how the oil content can influence the results of measurements of radionuclide concentration in scale and sludge. Samples were taken from a PETROBRAS unit in Northeast Brazil. They were collected directly from the inner surface of water pipes or from barrels stored in the waste storage area of the E&P unit. The oil was separated from the solids with a Soxhlet extractor by using aguarras at 90+/-5 degrees C as solvent. Concentrations of 226Ra and 228Ra in the samples were determined before and after oil extraction by using an HPGe gamma spectrometric system. The results showed an increase in the radionuclide concentration in the solid (dry) phase, indicating that the above radionuclides concentrate mostly in the solid material.
Macrosegregation and nucleation in undercooled Pb-Sn alloys
NASA Technical Reports Server (NTRS)
Degroh, Henry C., III
1989-01-01
A technique resulting in large undercoolings in bulk samples (23g) of lead-tin alloys was developed. Samples of Pb-12.5 wt percent Sn, Pb-61 wt percent Sn, and Pb-77 wt percent Sn were processed with undercoolings ranging from 4 to 34 K and with cooling rates varying between 0.04 and 4 K/sec. The nucleation behavior of the Pb-Sn system was found to be nonreciprocal. The solid Sn phase effectively nucleated the Pb phase of the eutectic; however, large undercoolings developed in Sn-rich eutectic liquid in the presence of the solid Pb phase. This phenomenon is believed to be mainly the result of differences in interfacial energies between solid Sn-eutectic liquid, and solid Pb-eutectic liquid rather than lattice misfit between Pb and Sn. Large amounts of segregation developed in the highly undercooled eutectic ingots. This macrosegregation was found to increase as undercooling increases. Macrosegregation in these undercooled eutectic alloys was found to be primarily due to a sink/float mechanism and the nucleation behavior of the alloy. Lead-rich dendrites are the primary phase in the undercooled eutectic system. These dendrites grow rapidly into the undercooled bath and soon break apart due to recalescence and Sn enrichment of the liquid. These fragmented Pb dendrites are then free to settle to the bottom portion of the ingot causing the macrosegregation observed in this study. A eutectic Pb-Sn alloy undercooled 20 K and cooled at 4 K/sec had a composition of about Pb-72 wt percent Sn at the top and 55 percent Sn at the bottom.
Macrosegregation and nucleation in undercooled Pb-Sn alloys
NASA Technical Reports Server (NTRS)
Degroh, Henry C., III
1989-01-01
A novel technique resulting in large undercoolings in bulk samples (23 g) of lead-tin alloys was developed. Samples of Pb-12.5 wt percent Sn, Pb-61.9 wt.% Sn, and Pb-77 wt.% Sn were processed with undercoolings ranging from 4 to 34 K and with cooling rates varying between 0.04 and 4 K/s. The nucleation behavior of the Pb-Sn system was found to be nonreciprocal. The solid Sn phase effectively nucleated the Pb phase of the eutectic; however, large undercoolings developed in Sn-rich eutectic liquid in the presence of the solid Pb phase. This phenomenon is believed to be mainly the result of differences in interfacial energies between solid Sn-eutectic liquid, and solid Pb-eutectic liquid rather than lattice misfit between Pb and Sn. Large amounts of segregation developed in the highly undercooled eutectic ingots. This macrosegregation was found to increase as undercooling increases. Macrosegregation in these undercooled eutectic alloys was found to be primarily due to a sink/float mechanism and the nucleation behavior of the alloy. Lead-rich dendrites are the primary phase in the undercooled eutectic system. These dendrites grow rapidly into the undercooled bath and soon break apart due to recalescence and Sn enrichment of the liquid. These fragmented Pb dendrites are then free to settle to the bottom portion of the ingot causing the macrosegregation observed in this study. A eutectic Pb-Sn alloy undercooled 20 K and cooled at 4 K/s had a composition of about Pb-72 wt.% Sn at the top and 55% Sn at the bottom.
Phase transformations in the reaction cell of TiNi-based sintered systems
NASA Astrophysics Data System (ADS)
Artyukhova, Nadezhda; Anikeev, Sergey; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kaftaranova, Maria; Kang, Ji-Hoon; Kim, Ji-Soon
2018-05-01
The present work addresses the structural-phase state changes of porous TiNi-based compounds fabricated by reaction sintering (RS) of Ti and Ni powders with Co, Mo, and no additives introduced. The study also emphasizes the features of a reaction cell (RC) during the transition from the solid- to liquid-phase sintering. Mechanisms of phase transformations occurring in the solid phase, involving the low-melting Ti2Ni phase within the RC, have been highlighted. Also, the intermediate Ti2Ni phase had a crucial role to provide both the required RS behavior and modified phase composition of RS samples, and besides, it is found to be responsible for the near-equiatomic TiNi saturation of the melt. Both cobalt and molybdenum additives are shown to cause additional structuring of the transition zone (TZ) at the Ti2Ni‑TiNi interface and broadening of this zone. The impact of Co and Mo on the Ti2Ni phase is evident through fissuring of this phase layer, which is referred to solidified stresses increased in the layer due to post-alloying defects in the structure.
Phase formation and UV luminescence of Gd{sup 3+} doped perovskite-type YScO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Yuhei; Ueda, Kazushige, E-mail: kueda@che.kyutech.ac.jp
Synthesis of pure and Gd{sup 3+}doped perovskite-type YScO{sub 3} was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd{sup 3+} doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phasemore » at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO{sub 3} formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO{sub 3}. Because Gd{sup 3+} ions were also dissolved into the single C-type phase in Gd{sup 3+} doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase. - Graphical abstract: A pure perovskite-type YScO{sub 3} phase was successfully synthesized by a polymerized complex (PC) method. The perovskite-type YScO{sub 3} was generated through a solid solution of C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} with drastic change of morphology. The PC method enabled a preparation of the single phase of the perovskite-type YScO{sub 3} at lower temperature and in shorter heating time. Gd{sup 3+} doped perovskite-type YScO{sub 3} was found to show a strong sharp UV emission at 314 nm. - Highlights: • Pure YScO{sub 3} phase was successfully synthesized by polymerized complex (PC) method. • Pure perovskite-type YScO{sub 3} phase was generated from pure C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} one. • YScO{sub 3} was obtained at lower temperature and in shorter heating time by PC method. • Perovskite-type YScO{sub 3}:Gd{sup 3+} was found to show strong sharp UV emission at 314 nm.« less
Davarani, Saied Saeed Hosseiny; Nojavan, Saeed; Asadi, Roghayeh; Banitaba, Mohammad Hossein
2013-07-01
In this study, a platinum wire coated with poly(3,4-ethylenedioxythiophen) was used as an electro-assisted solid-phase microextraction fiber for the quantification of tricyclic antidepressant drugs in biological samples by coupling to GC employing a flame ionization detector. In this study, an electric field increased the extraction rate and recovery. The fiber used as a solid phase was synthesized by the electropolymerization of 3,4-ethylenedioxythiophen monomers onto a platinum wire. The ability of this fiber to extract imipramine, desipramine, and clomipramine by using the electro-assisted solid-phase microextraction technique was evaluated. The effect of various parameters that influence the extraction efficiency, which include solution temperature, extraction time, stirring rate, ionic strength, time and temperature of desorption, and thickness of the fiber, was optimized. Under optimized conditions, the linear ranges and regression coefficients of calibration curves were in the range of 0.5-250 and 0.990-0.998 ng/mL, respectively. Detection limits were in the range of 0.15-0.45 ng/mL. Finally, this method was applied to the determination of drugs in urine and wastewater samples and recoveries were 4.8-108.9%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee
2016-09-01
In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal Convection in a Creeping Solid With Melting/Freezing Interfaces at Either or Both Boundaries
NASA Astrophysics Data System (ADS)
Labrosse, S.; Morison, A.; Deguen, R.; Alboussiere, T.; Tackley, P. J.; Agrusta, R.
2017-12-01
Thermal convection in the solid mantles of the Earth, other terrestrial planets and icy satellites sets in while it is still crystallising from a liquid layer (see abstract by Morison et al, this conference). The existence of an ocean (water or magma) either or both below and above the solid mantle modifies the conditions applying at the boundary since matter can flow through it by changing phase. Adapting the boundary conditions developed for the dynamics of the inner core by Deguen et al (GJI 2013) to the plane layer and the spherical shell, we solve the linear stability problem and obtain weakly non-linear solutions as well as direct numerical solutions in both geometries, with a liquid-solid phase change at either or both boundaries. The phase change boundary condition is controlled by a dimensionless number, Φ , which when small, allows easy flow through the boundary while the classical non-penetrating boundary condition is recovered for large values. If both boundaries have a phase change, the preferred wavelength of the flow is large, i.e. λ ∝Φ -1/2 in a plane layer and degree 1 in a spherical shell, and the critical Rayleigh number is of order Φ . The heat transfer efficiency, as measured by the dependence of the Nusselt number on the Rayleigh number also increases indefinitely for decreasing values of Φ . If only one boundary has a phase change condition, the critical wavelength is increased by about a factor 2 and the critical Rayleigh number is decreased by about a factor 4. The dynamics is controlled entirely by the boundary layer opposite to the phase change interface and the geometry of the flow. This model provides a natural explanation for the emergence of degree 1 convection in thin ice layers and implies a style of early mantle dynamics on Earth very different from what is classically envisioned.
A two-phase restricted equilibrium model for combustion of metalized solid propellants
NASA Technical Reports Server (NTRS)
Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.
1992-01-01
An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.
Liu, Dongming; Li, Mingxiao; Xi, Beidou; Zhao, Yue; Wei, Zimin; Song, Caihong; Zhu, Chaowei
2015-01-01
Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase. PMID:25989417
Light yield and energy resolution studies for SoLid phase 1
NASA Astrophysics Data System (ADS)
Boursette, Delphine;
2017-09-01
The SoLid experiment is searching for sterile neutrinos at a nuclear research reactor. It looks for inverse beta decays (producing a positron and a neutron in delayed coincidence) with a very segmented detector made of thousands of scintillating cubes. SoLid has a very innovative hybrid technology with two different scintillators which have different light emissions: polyvynil-toluene cubes (PVT) to detect the positrons and 6LiF:ZnS sheets on two faces of each PVT cube to detect the neutrons. It allows us to do an efficient pulse shape analysis to identify the signals from neutrons and positrons. The 288 kg detector prototype (SM1) took data in 2015. It demonstrated the detection principle and background rejection efficiency. The construction of SoLid phase I (˜ 1.5 t) has now started. To improve the energy resolution of SoLid phase I, we have tried to increase the light yield studying separately the two scintillators: PVT and ZnS. A test bench has been built to fully characterize and improve the neutron detection with the ZnS using an AmBe source. To study the positron light yield on the PVT, we have built another test bench with a 207Bi source. We have improved the design of the cubes, their wrapping or the type and the configuration of the fibers. We managed to increase the PVT light yield by about 66 % and improve the resolution of the positron energy on the test bench from 21 % to 16 % at 1 MeV.
Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng
2013-12-01
The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH2PO4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH2PO4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH2PO4 ratio might be explained by the existence of the weak phase KH2PO4. However, the low value of compressive strength with the higher MgO-to-KH2PO4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH2PO4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH2PO4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. © 2013.
Precipitation in Al–Mg solid solution prepared by solidification under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie, J.C., E-mail: jiejc@dlut.edu.cn; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001; Wang, H.W.
2014-01-15
The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solutionmore » appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.« less
Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank
2013-07-21
The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.
NASA Astrophysics Data System (ADS)
Yu, Shicheng; Mertens, Andreas; Gao, Xin; Gunduz, Deniz Cihan; Schierholz, Roland; Benning, Svenja; Hausen, Florian; Mertens, Josef; Kungl, Hans; Tempel, Hermann; Eichel, Rüdiger-A.
2016-09-01
A ceramic solid-state electrolyte of lithium aluminum titanium phosphate with the composition of Li1.3Al0.3Ti1.7(PO4)3 (LATP) was synthesized by a sol-gel method using a pre-dissolved Ti-source. The annealed LATP powders were subsequently processed in a binder-free dry forming method and sintered under air for the pellet preparation. Phase purity, density, microstructure as well as ionic conductivity of the specimen were characterized. The highest density (2.77gṡcm-3) with an ionic conductivity of 1.88×10-4 Sṡcm-1 (at 30∘C) was reached at a sintering temperature of 1100∘C. Conductivity of LATP ceramic electrolyte is believed to be significantly affected by both, the AlPO4 secondary phase content and the ceramic electrolyte microstructure. It has been found that with increasing sintering temperature, the secondary-phase content of AlPO4 increased. For sintering temperatures above 1000∘C, the secondary phase has only a minor impact, and the ionic conductivity is predominantly determined by the microstructure of the pellet, i.e. the correlation between density, porosity and particle size. In that respect, it has been demonstrated, that the conductivity increases with increasing particle size in this temperature range and density.
Chen, Xin; Shu, Jiapei; Chen, Qing
2017-04-24
Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.
Study on microstructure and strengthening mechanism of AZ91-Y magnesium alloy
NASA Astrophysics Data System (ADS)
Cai, Huisheng; Guo, Feng; Su, Juan; Liu, Liang; Chen, Baodong
2018-03-01
AZ91-Y magnesium alloy with different thicknesses were prepared by die casting process. The main existence forms of Y in alloy and the effects of Y on microstructure and mechanical properties of alloy were studied, the main reason for the change of mechanical properties and fracture mechanism were analyzed. The results show that, yttrium exists mainly in the forms of Al2Y phase and trace solid solution in α-Mg. Yttrium can refine the grain of α-Mg, reduce the amount of eutectic β-Mg17Al12 phase and promote its discrete distribution. The room temperature tensile strength and elongation of alloy increased first and then decreased with the increase of Y content. The designed alloys containing 0.6% Y (measured containing 0.63% Y) have better mechanical properties. The change of mechanical properties of alloy is a comprehensive reflection of the effect of solid solution, grain refinement and second phase. The cracking of Al2Y phase and β-Mg17Al12 phase and crack propagation through Al2Y phase and β-Mg17Al12 phase are the main fracture mechanism of magnesium alloy containing yttrium. The cooling rate does not change the trend of the influence of Y, but affects the degree of influence of Y.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, J.; Cease, H.; Jaskierny, W. F.
2014-10-23
We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less
Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T
2001-12-01
The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.
Solid-solid phase change thermal storage application to space-suit battery pack
NASA Astrophysics Data System (ADS)
Son, Chang H.; Morehouse, Jeffrey H.
1989-01-01
High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mock, D.M.; DuBois, D.B.
1986-03-01
Interest in accurate measurement of biotin concentrations in plasma and urine has been stimulated by recent advances in the understanding of biotin-responsive inborn errors of metabolism and by several reports describing acquired biotin deficiency during parenteral alimentation. This paper presents a biotin assay utilizing radiolabeled avidin in a sequential, solid-phase method; the assay has increased sensitivity compared to previous methods (greater than or equal to 10 fmol/tube), correlates with expected trends in biotin concentrations in blood and urine in a rat model of biotin deficiency, and can utilize commercially available radiolabeled avidin.
NASA Astrophysics Data System (ADS)
Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana
2016-12-01
The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34-80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics.
Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana
2016-01-01
The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34–80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics. PMID:28000704
In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation
NASA Astrophysics Data System (ADS)
Zheng, Jun; Zhou, Wei
2018-04-01
Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2011-05-17
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.« less
Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey
1986-01-01
An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.
Lin, Zhenkun; Cheng, Wenjing; Li, Yanyan; Liu, Zhiren; Chen, Xiangping; Huang, Changjiang
2012-03-30
Leakage of the residual template molecules is one of the biggest challenges for application of molecularly imprinted polymer (MIP) in solid-phase extraction (SPE). In this study, bisphenol F (BPF) was adopted as a dummy template to prepare MIP of bisphenol A (BPA) with a superparamagnetic core-shell nanoparticle as the supporter, aiming to avoid residual template leakage and to increase the efficiency of SPE. Characterization and test of the obtained products (called mag-DMIP beads) revealed that these novel nanoparticles not only had excellent magnetic property but also displayed high selectivity to the target molecule BPA. As mag-DMIP beads were adopted as the adsorbents of solid-phase extraction for detecting BPA in real water samples, the recoveries of spiked samples ranged from 84.7% to 93.8% with the limit of detection of 2.50 pg mL(-1), revealing that mag-DMIP beads were efficient SPE adsorbents. Copyright © 2012 Elsevier B.V. All rights reserved.
Lloyd, T L; Perschy, T B; Gooding, A E; Tomlinson, J J
1992-01-01
A fully automated assay for the analysis of ranitidine in serum and plasma, with and without an internal standard, was validated. It utilizes robotic solid phase extraction with on-line high performance liquid chromatographic (HPLC) analysis. The ruggedness of the assay was demonstrated over a three-year period. A Zymark Py Technology II robotic system was used for serial processing from initial aspiration of samples from original collection containers, to final direct injection onto the on-line HPLC system. Automated serial processing with on-line analysis provided uniform sample history and increased productivity by freeing the chemist to analyse data and perform other tasks. The solid phase extraction efficiency was 94% throughout the assay range of 10-250 ng/mL. The coefficients of variation for within- and between-day quality control samples ranged from 1 to 6% and 1 to 5%, respectively. Mean accuracy for between-day standards and quality control results ranged from 97 to 102% of the respective theoretical concentrations.
Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo
2009-07-07
This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.
Re Effects on Phase Stability and Mechanical Properties of MoSS+Mo3Si+Mo5SiB2 alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Bei, Hongbin; George, Easo P
2013-01-01
Because of their high melting points and good oxidation resistance Mo-Si-B alloys are of interest as potential ultrahigh-temperature structural materials. But their major drawbacks are poor ductility and fracture toughness at room temperature. Since alloying with Re has been suggested as a possible solution, we investigate here the effects of Re additions on the microstructure and mechanical properties of a ternary alloy with the composition Mo-12.5Si-8.5B (at.%). This alloy has a three-phase microstructure consisting of Mo solid-solution (MoSS), Mo3Si, and Mo5SiB2 and our results show that up to 8.4 at.% Re can be added to it without changing its microstructuremore » or forming any brittle phase at 1600 C. Three-point bend tests using chevron-notched specimens showed that Re did not improve fracture toughness of the three-phase alloy. Nanoindentation performed on the MoSS phase in the three-phase alloy showed that Re increases Young s modulus, but does not lower hardness as in some Mo solid solution alloys. Based on our thermodynamic calculations and microstructural analyses, the lack of a Re softening effect is attributed to the increased Si levels in the Re-containing MoSS phase since Si is known to increase its hardness. This lack of softening is possibly why there is no Re-induced improvement in fracture toughness.« less
Solidification and solid-state transformation sciences in metals additive manufacturing
Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...
2017-02-11
Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.
Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.
Prakash, B Shri; Varma, K B R
2008-11-01
Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples.
Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells
NASA Astrophysics Data System (ADS)
Hatke, A. T.; Liu, Yang; Magill, B. A.; Moon, B. H.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.
2014-06-01
In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.
Multiphase Dynamics of Magma Oceans
NASA Astrophysics Data System (ADS)
Boukaré, Charles-Edouard; Ricard, Yanick; Parmentier, Edgar M.
2017-04-01
Since the earliest study of the Apollo lunar samples, the magma ocean hypothesis has received increasing consideration for explaining the early evolution of terrestrial planets. Giant impacts seem to be able to melt significantly large planets at the end of their accretion. The evolution of the resulting magma ocean would set the initial conditions (thermal and compositionnal structure) for subsequent long-term solid-state planet dynamics. However, magma ocean dynamics remains poorly understood. The major challenge relies on understanding interactions between the physical properties of materials (e.g., viscosity (at liquid or solid state), buoyancy) and the complex dynamics of an extremely vigorously convecting system. Such complexities might be neglected in cases where liquidus/adiabat interactions and density stratification leads to stable situations. However, interesting possibilities arise when exploring magma ocean dynamics in other regime. In the case of the Earth, recent studies have shown that the liquidus might intersect the adiabat at mid-mantle depth and/or that solids might be buoyant at deep mantle conditions. These results require the consideration of more sophisticated scenarios. For instance, how does bottom-up crystallization look with buoyant crystals? To understand this complex dynamics, we develop a multiphase phase numerical code that can handle simultaneously phase change, the convection in each phase and in the slurry, as well as the compaction or decompaction of the two phases. Although our code can only run in a limited parameter range (Rayleigh number, viscosity contrast between phases, Prandlt number), it provides a rich dynamics that illustrates what could have happened. For a given liquidus/adiabat configuration and density contrast between melt and solid, we explore magma ocean scenarios by varying the relative timescales of three first order processes: solid-liquid separation, thermo-chemical convective motions and magma ocean cooling.
Superprotonic solid acids: Structure, properties, and applications
NASA Astrophysics Data System (ADS)
Boysen, Dane Andrew
In this work, the structure and properties of superprotonic MH nXO4-type solid acids (where M = monovalent cation, X = S, Se, P, As, and n = 1, 2) have been investigated and, for the first time, applied in fuel cell devices. Several MH nXO4-type solid acids are known to undergo a "superprotonic" solid-state phase transition upon heating, in which the proton conductivity increases by several orders of magnitude and takes on values of ˜10 -2O-1cm-1. The presence of superprotonic conductivity in fully hydrogen bonded solid acids, such as CsH2PO4, has long been disputed. In these investigations, through the use of pressure, the unequivocal identification of superprotonic behavior in both RbH2PO4 and CsH2PO 4 has been demonstrated, whereas for chemically analogous compounds with smaller cations, such as KH2PO4 and NaH2PO 4, superprotonic conductivity was notably absent. Such observations have led to the adoption of radius ratio rules, in an attempt to identify a critical ion size effect on the presence of superprotonic conductivity in solid acids. It has been found that, while ionic size does play a prominent role in the presence of superprotonic behavior in solid acids, equally important are the effects of ionic and hydrogen bonding. Next, the properties of superprotonic phase transition have been investigated from a thermodynamic standpoint. With contributions from this work, a formulation has been developed that accounts for the entropy resulting from both the disordering of both hydrogen bonds and oxy-anion librations in the superprotonic phase of solid acids. This formulation, fundamentally derived from Linus Pauling's entropy rules for ice, accurately accounts for the change in entropy through a superprotonic phase transition. Lastly, the first proof-of-priniciple fuel cells based upon solid acid electrolytes have been demonstrated. Initial results based upon a sulfate electrolyte, CsHSO4, demonstrated the viability of solid acids, but poor chemical stability under the highly reducing H2 gas environment of the fuel cell anode. Later experiments employing a CsH2PO4 electrolyte proved quite successful. The results of these solid acid-based fuel cell measurements suggest solid acids could serve as an alternative to current state-of-the-art fuel cell electrolytes.
Blanc, Frédérique; Salaun, Pierre Y; Couturier, Olivier; Querellou, Solène; Le Duc-Pennec, Alexandra; Mougin-Degraef, Marie; Bizais, Yves; Legendre, Jean M
2005-11-01
The reliability of solid phase gastric emptying measurements by scintigraphy requires a marker that remains within the solid component of the test meal, and which is not degraded by the gastric juice throughout the scintigraphic procedure. In Europe, foods are most often labelled with 99mTc rhenium sulfide macrocolloid (RSMC) but this solid phase marker was withdrawn from the market in January 2004. To test other potential solid phase markers and to compare them to the reference marker RSMC. These markers were rhenium sulfide nanocolloid (RSNC), tin fluoride colloid (TFC), phytates and two albumins (Alb and AlbC). All were radiolabelled with 99mTc. After quality control, each 99mTc marker was incorporated into the albumin of one egg. Then, egg white and yolk were mixed together, and a well-cooked omelette was prepared. Aliquots of the omelette were incubated with an acidic solution of pepsin at 37 degrees C which mimicked gastric juice. Unbound radioactivity in the supernatant fraction was measured at various times up to 3 h. The radiochemical purity was > 95% for all radiopharmaceuticals. During the in-vitro incubation, the percentage of 99mTc labelled colloids released from the omelette increased continuously: after 3 h, 5% for TFC and RSMC, 8% for phytates, and > 9% for the two albumins and RSNC. Considering quality controls and release of 99mTc during in-vitro incubation of the omelette, TFC showed the same behaviour as the reference marker RSMC. Thus, TFC seems to be the best candidate to replace RSMC for the radiolabelling of the solid phase of the gastric emptying test meal.
The use of solid-liquid phase transfer catalysis has an advantage of carrying out reaction between two immiscible substrates, one in solid phase and the other in liquid phase, with high selectivity and at relatively low temperatures. In this study we investigated the synthesis ci...
NASA Astrophysics Data System (ADS)
Kornphom, Chittakorn; Laowanidwatana, Artid; Bongkarn, Theerachai
2017-03-01
In this work, a new binary 94 wt%[Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 + 0.10 wt% of La2O3]-6 wt% [(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3] [BNKLLT-6 wt% BCTZ] ceramic was fabricated by the solid-state combustion technique and glycine was used as the fuel. The effect of sintering temperature in the range of 1075-1175 °C for 2 h on phase evolution, microstructure and electrical properties was investigated. The phase formation exhibited a coexistence structure between rhombohedral and tetragonal at low sintering temperature. As the sintering temperature increased, the phase formation changed to pseudo-cubic phase. The average grain size of the ceramics was increased with the increasing sintering temperature. Density, ɛr, ɛSA and TFA of BNKLLT-6 wt% BCTZ ceramics increased while the TSA decreased when the sintering temperature increased up to 1125 °C, while after this temperature the opposite trends occurred. At a sintering temperature of 1125 °C, the BNKLLT-6 wt% BCTZ sample showed the highest theoretical density (95.8%), maximum dielectric constant ɛSA (5278), highest d33 (227 pC/N) and fair ferroelectric properties (Pr = 24.5 µC/cm2 and Ec = 15.45 kV/cm).
Kinetic model of excess activated sludge thermohydrolysis.
Imbierowicz, Mirosław; Chacuk, Andrzej
2012-11-01
Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Interfacial Tension in the CaO-Al2O3-SiO2-(MgO) Liquid Slag-Solid Oxide Systems
NASA Astrophysics Data System (ADS)
Abdeyazdan, Hamed; Monaghan, Brian J.; Longbottom, Raymond J.; Rhamdhani, M. Akbar; Dogan, Neslihan; Chapman, Michael W.
2017-08-01
Interfacial phenomenon is critical in metal processing and refining. While it is known to be important, there are little data available for key oxide systems in the literature. In this study, the interfacial tension ( σ LS) of liquid slag on solid oxides (alumina, spinel, and calcium aluminate), for a range of slags in the CaO-Al2O3-SiO2-(MgO) system at 1773 K (1500 °C), has been evaluated. The results show that basic ladle-type slags exhibit lower σ LS with oxide phases examined compared to that of acid tundish-type slags. Also, within the slag types (acid and base), σ LS was observed to decrease with increasing slag basicity. A correlation between σ LS and slag structure was observed, i.e., σ LS was found to decrease linearly with increasing of slag optical basicity (Λ) and decrease logarithmically with decreasing of slag viscosity from acid to base slags. This indicated a higher σ LS as the ions in the slag become larger and more complex. Through a work of adhesion ( W) analysis, it was shown that basic ladle slags with lower σ LS result in a greater W, i.e., form a stronger bond with the solid oxide phases examined. This indicates that all other factors being equal, the efficiency of inclusion removal from steel of inclusions of similar phase to these solid oxides would be greater.
Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects
NASA Astrophysics Data System (ADS)
Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Kone, E. H.; Narbona-Reina, G.
2016-12-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. By comparing quantitatively the results of simulation and laboratory experiments on submerged granular flows, we show that our model contains the basic ingredients making it possible to reproduce the interaction between the granular and fluid phases through the change in pore fluid pressure. In particular, we analyse the different time scales in the model and their role in granular/fluid flow dynamics. References[1] R. Delannay, A. Valance, A. Mangeney, O. Roche, P. Richard, J. Phys. D: Appl. Phys., in press (2016). [2] F. Bouchut, E. D. Fernández-Nieto, A. Mangeney, G. Narbona-Reina, J. Fluid Mech., 801, 166-221 (2016). [3] R. Jackson, Cambridges Monographs on Mechanics (2000).
Fitriani, Lili; Haqi, Alianshar; Zaini, Erizal
2016-01-01
The aim of this research is to prepare and characterize solid dispersion of efavirenz - polyvinylpyrrolidone (PVP) K-30 by freeze drying to increase its solubility. Solid dispersion of efavirenz - PVP K-30 was prepared by solvent evaporation method with ratio 2:1, 1:1, and 1:2 and dried using a freeze dryer. Characterizations were done by scanning electron microscopy (SEM), powder X-ray diffraction analysis, differential thermal analysis (DTA), and Fourier transform infrared (FT-IR) spectroscopy. Solubility test was carried out in CO2-free distilled water, and efavirenz assay was conducted using high-performance liquid chromatography with acetonitrile:acetic acid (80:20) as the mobile phases. Powder X-ray diffractogram showed a decrease in the peak intensity, which indicated the crystalline altered to amorphous phase. DTA thermal analysis showed a decrease in the melting point of the solid dispersion compared to intact efavirenz. SEM results indicated the changes in the morphology of the crystal into an amorphous form compared to pure components. FT-IR spectroscopy analysis showed a shift wavenumber of the spectrum efavirenz and PVP K-30. The solubility of solid dispersion at ratio 2:1, 1:1, and 1:2 was 6.777 μg/mL, 6.936 μg/mL, and 14,672 μg/mL, respectively, whereas the solubility of intact efavirenz was 0.250 μg/mL. In conclusion, the solubility of solid dispersion increased significantly (P < 0.05).
Application of solid-phase extraction to agar-supported fermentation.
Le Goff, Géraldine; Adelin, Emilie; Cortial, Sylvie; Servy, Claudine; Ouazzani, Jamal
2013-09-01
Agar-supported fermentation (Ag-SF), a variant of solid-state fermentation, has recently been improved by the development of a dedicated 2 m(2) scale pilot facility, Platotex. We investigated the application of solid-phase extraction (SPE) to Ag-SF in order to increase yields and minimize the contamination of the extracts with agar constituents. The selection of the appropriate resin was conducted on liquid-state fermentation and Diaion HP-20 exhibited the highest recovery yield and selectivity for the metabolites of the model fungal strains Phomopsis sp. and Fusarium sp. SPE applied to Ag-SF resulted in a particular compartmentalization of the culture. The mycelium that requires oxygen to grow migrates to the top layer and formed a thick biofilm. The resin beads intercalate between the agar surface and the mycelium layer, and trap directly the compounds secreted by the mycelium through a "solid-solid extraction" (SSE) process. The resin/mycelium layer is easily recovered by scraping the surface and the target metabolites extracted by methanol. Ag-SF associated to SSE represents an ideal compromise for the production of bioactive secondary metabolites with limited economic and environmental impact.
Limmer, David T; Chandler, David
2014-07-01
We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.
An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor
NASA Astrophysics Data System (ADS)
Yijing, Yin
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub
Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.
Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.
1992-01-01
The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.
Plutonium partitioning in three-phase systems with water, granite grains, and different colloids.
Xie, Jinchuan; Lin, Jianfeng; Zhou, Xiaohua; Li, Mei; Zhou, Guoqing
2014-01-01
Low-solubility contaminants with high affinity for colloid surfaces may form colloid-associated species. The mobile characteristics of this species are, however, ignored by the traditional sorption/distribution experiments in which colloidal species contributed to the immobile fraction of the contaminants retained on the solids as a result of centrifugation or ultrafiltration procedures. The mobility of the contaminants in subsurface environments might be underestimated accordingly. Our results show that colloidal species of (239)Pu in three-phase systems remained the highest percentages in comparison to both the dissolved species and the immobile species retained on the granite grains (solid phase), although the relative fraction of these three species depended on the colloid types. The real solid/liquid distribution coefficients (K s/d) experimentally determined were generally smaller than the traditional K s/d (i.e., the K s+c/d in this study) by ~1,000 mL/g for the three-phase systems with the mineral colloids (granite particle, soil colloid, or kaolinite colloid). For the humic acid system, the traditional K s/d was 140 mL/g, whereas the real K s/d was approximately zero. The deviations from the real solid/liquid K s/d were caused by the artificially increased immobile fraction of Pu. One has to be cautious in using K s/d-based transport models to predict the fate and transport of Pu in the environment.
The distribution and adsorption behavior of aliphatic amines in marine and lacustrine sediments
NASA Astrophysics Data System (ADS)
Wang, Xu-chen; Lee, Cindy
1990-10-01
The methylated amines—monomethyl-, dimethyl-, and trimethyl amine (MMA, DMA, TMA)—are commonly found in aquatic environments, apparently as a result of decomposition processes. Adsorption of these amines to clay minerals and organic matter significantly influences their distribution in sediments. Laboratory measurements using 14C-radiolabelled amines and application of a linear partitioning model resulted in calculated adsorption coefficients of 2.4-4.7 (MMA), 3.3 (DMA), and 3.3-4.1 (TMA). Further studies showed that adsorption of amines is influenced by salinity of the porewaters, and clay mineral and organic matter content of the sediment solid phase. Concentrations of monomethyl- and dimethyl amine were measured in the porewaters and the solid phase of sediment samples collected from Flax Pond and Lake Ronkonkoma (NY), Long Island Sound, and the coastal Peru upwelling area. These two amines were present in all sediments investigated. A clear seasonal increase in the solid-phase concentration of MMA and DMA in Flax Pond sediments was likely related to the annual senescence of salt marsh grasses, either directly as a source of these compounds or indirectly by providing additional exchange capacity to the sediments. The distribution of amines in the solid and dissolved phases observed in all sediments investigated suggests that the distribution of these compounds results from a balance among production, decomposition, and adsorption processes.
Olofson, Andrea M; Chandler, Rachael M; Marx-Wood, Cynthia R; Babcock, Craig A; Dunbar, Nancy M
2017-11-01
Automated solid-phase antibody screening uses red blood cell (RBC) membranes immobilised on polystyrene test wells to detect RBC specific antibodies. Despite its time-saving and labour-saving benefits, this method produces a higher rate of nonspecific reactivity compared with manual screening. Solid-phase panreactivity (SPP) is characterised by panreactivity (ie, all test cells reacting) in solid-phase testing accompanied by a negative autocontrol and a lack of reactivity when the same screening cells are tested in tube. The mechanisms underlying SPP and its clinical significance remain unclear. The goals of this study were to describe the prevalence of SPP at our institution and determine the alloimmunisation and transfusion reaction rates within this population. Data were collected on all patients undergoing type and screen testing over a 6-year period. Study patients undergoing subsequent transfusion were evaluated for reported transfusion reactions and development of new alloantibodies. Of the 76 051 patients studied, 0.7% demonstrated SPP of which 11% developed new alloantibodies. The transfusion reaction reporting rate among patients with SPP was 2%. Our data suggest that patients with SPP have higher rates of reported transfusion reactions and alloantibody development compared with those without SPP. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
ERIC Educational Resources Information Center
Xu, Xinhua; Wang, Xiaogang; Wu, Meifen
2014-01-01
The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…
Roberts, Deborah D; Pollien, Philippe; Watzke, Brigitte
2003-01-01
The purpose of this work was to study two key parameters of the lipid phase that influence flavor release-lipid level and lipid type-and to relate the results to a mass balance partition coefficient-based mathematical model. Release of 10 volatile compounds from milk-based emulsions at 10, 25, and 50 degrees C was monitored by 1-min headspace sampling with a solid-phase microextraction fiber, followed by GC-MS analysis. As compared to the observations for milk fat, changing to a lipophilic lipid (medium-chain triglycerides, MCT) and adding a monoglyceride-based surfactant did not influence the volatiles release. However, increasing the solid fat content was found to increase the release. At 25 degrees C, and even more so at 10 degrees C, concurrent with an increase in their solid fat content, hydrogenated palm fat emulsions showed increased flavor release over that observed for emulsions made with coconut oil, coconut oil with surfactant, milk fat, and MCT. However, at 50 degrees C, when hydrogenated palm fat emulsions had zero solid fat content, there was no difference in flavor release from that observed for milk fat emulsions. Varying milk fat at nine levels between 0 and 4.5% showed a systematic dependence of the release on the lipid level, dependent on compound lipophilicity. Close correlations were found between the experimental and model predictions with lipid level and percent liquid lipid as variables.
Martín Juárez, Judit; Riol Pastor, Elena; Fernández Sevilla, José M; Muñoz Torre, Raúl; García-Encina, Pedro A; Bolado Rodríguez, Silvia
2018-06-01
Methane production from pretreated and raw mixed microalgae biomass grown in pig manure was evaluated. Acid and basic pretreatments provided the highest volatile solids solubilisation (up to 81%) followed by alkaline-peroxide and ultrasounds (23%). Bead milling and steam explosion remarkably increased the methane production rate, although the highest yield (377 mL CH 4 /g SV) was achieved by alkali pretreatment. Nevertheless, some pretreatments inhibited biogas production and resulted in lag phases of 7-9 days. Hence, experiments using only the pretreated solid phase were performed, which resulted in a decrease in the lag phase to 2-3 days for the alkali pretreatment and slightly increased biomass biodegradability of few samples. The limiting step during the BMP test (hydrolysis or microbial inhibition) for each pretreatment was elucidated using the goodness of fitting to a first order or a Gompertz model. Finally, the use of digestate as biofertilizer was evaluated applying a biorefinery concept. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cermets and method for making same
Aaron, W. Scott; Kinser, Donald L.; Quinby, Thomas C.
1983-01-01
The present invention is directed to a method for making a wide variety of general-purpose cermets and for radioactive waste disposal from ceramic powders prepared from urea-dispersed solutions containing various metal values. The powders are formed into a compact and subjected to a rapid temperature increase in a reducing atmosphere. During this reduction, one or more of the more readily reducible oxides in the compact is reduced to a selected substoichiometric state at a temperature below the eutectic phase for that particular oxide or oxides and then raised to a temperature greater than the eutectic temperature to provide a liquid phase in the compact prior to the reduction of the liquid phase forming oxide to solid metal. This liquid phase forms at a temperature below the melting temperature of the metal and bonds together the remaining particulates in the cermet to form a solid polycrystalline cermet.
Disorder-induced localization in crystalline phase-change materials.
Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M
2011-03-01
Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.
Preparation and characterization of novel anion phase change heat storage materials.
Hong, Wei; Lil, Qingshan; Sun, Jing; Di, Youbo; Zhao, Zhou; Yu, Wei'an; Qu, Yuan; Jiao, TiFeng; Wang, Guowei; Xing, Guangzhong
2013-10-01
In this paper, polyurethane phase change material was successfully prepared with TDI with BDO for hard segments and PEG for soft segments. Moreover, based on this the solid-solid phase change material, A-PCM1030 which can release anions was prepared with the successful addition of anion additives A1030 for the first time. Then the test of the above material was conducted utilizing FT-IR, DSC, TEM, WAXD and Air Ion Detector. The Results indicated that the polyurethane phase change material possesses excellent thermal stability since there was no appearance of liquid leakage and phase separation after 50 times warming-cooling thermal cycles. It also presented reversibility on absorbing and releasing heat. In addition, adding a little A1030 can increase the thermal stability and reduce phase transition temperatures, as well as reduce the undercooling of the polyurethane phase change material. In addition, the anion test results suggested that the supreme amount of anion released by A-PCM1030 could reach 2510 anions/cm3 under dynamic conditions, which is beneficial for human health.
Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state
NASA Astrophysics Data System (ADS)
Datta, M. K.; Pabi, S. K.; Murty, B. S.
2000-06-01
Solid state reactions induced by mechanical alloying (MA) of elemental blends of Ni and Si have been studied over the entire composition range of the Ni-Si system. A monotonous increase of the lattice parameter of the Ni rich solid solution, Ni(Si), is observed with refinement of crystallite size. Nanocrystalline phase/phase mixtures of Ni(Si), Ni(Si)+Ni31Si12, Ni31Si12+Ni2Si, Ni2Si+NiSi and NiSi+Si, have been obtained during MA, over the composition ranges of 0-10, 10-28, 28-33, 33-50, and >50 at. % Si, respectively. The results clearly suggest that only congruent melting phases, Ni31Si12, Ni2Si, and NiSi form, while the formation of noncongruent melting phases, Ni3Si, Ni3Si2, and NiSi2, is bypassed in the nanocrystalline state. The phase formation during MA has been discussed based on thermodynamic arguments. The predicted phase fields obtained from effective free energy calculations are quite consistent with those obtained during MA.
NASA Astrophysics Data System (ADS)
Sun, Jiaxing; Liu, Lei; Xu, Liang; Wang, Yuanyuan; Wu, Zhijun; Hu, Min; Shi, Zongbo; Li, Yongjie; Zhang, Xiaoye; Chen, Jianmin; Li, Weijun
2018-01-01
Ammonium sulfate (AS) and ammonium nitrate (AN) are key components of urban fine particles. Both field and model studies showed that heterogeneous reactions of SO2, NO2, and NH3 on wet aerosols accelerated the haze formation in northern China. However, little is known on phase transitions of AS-AN containing haze particles. Here hygroscopic properties of laboratory-generated AS-AN particles and individual particles collected during haze events in an urban site were investigated using an individual particle hygroscopicity system. AS-AN particles showed a two-stage deliquescence at mutual deliquescence relative humidity (MDRH) and full deliquescence relative humidity (DRH) and three physical states: solid before MDRH, solid-aqueous between MDRH and DRH, and aqueous after DRH. During hydration, urban haze particles displayed a solid core and aqueous shell at RH = 60-80% and aqueous phase at RH > 80%. Most particles were in aqueous phase at RH > 50% during dehydration. Our results show that AS content in individual particles determines their DRH and AN content determines their MDRH. AN content increase can reduce MDRH, which indicates occurrence of aqueous shell at lower RH. The humidity-dependent phase transitions of nitrate-abundant urban particles are important to provide reactive surfaces of secondary aerosol formation in the polluted air.
Buffière, P; Dooms, M; Hattou, S; Benbelkacem, H
2018-07-01
The role of the hydrolytic stage in high solids temperature phased anaerobic digestion was investigated with a mixture of cattle slurry and maize silage with variable ratios (100, 70 and 30% volatile solids coming from cattle slurry). It was incubated for 48 h at 37, 55, 65 and 72 °C. Soluble chemical oxygen demand and biochemical methane potential were measured at 0, 24 and 48 h. Higher temperatures improved the amount of solubilized COD, which confirmed previously reported results. Nevertheless, solubilization mostly took place during the first 24 h. The rate of methane production in post-hydrolysis BMPs increased after 48 h hydrolysis time, but not after 24 h. The first order kinetic constant rose by 40% on average. No correlation was observed between soluble COD and downstream methane production rate, indicating a possible modification of the physical structure of the particulate solids during the hydrolytic stage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Solid electrolyte-electrode system for an electrochemical cell
Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.
1995-01-01
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.
Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao
2017-03-01
An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical study of particle deposition and scaling in dust exhaust of cyclone separator
NASA Astrophysics Data System (ADS)
Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.
2016-05-01
The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Dong, Tianchen; Kajiwara, Yuya
2014-06-16
Single- and double-layer graphene nanoribbons (GNRs) with widths of around 10 nm were synthesized directly onto an insulating substrate by solid-phase graphitization using a gallium vapor catalyst and carbon templates made of amyloid fibrils. Subsequent investigation revealed that the crystallinity, conductivity, and carrier mobility were all improved by increasing the temperature of synthesis. The carrier mobility of the GNR synthesized at 1050 °C was 0.83 cm{sup 2}/V s, which is lower than that of mechanically exfoliated graphene. This is considered to be most likely due to electron scattering by the defects and edges of the GNRs.
Meyer, M.T.; Mills, M.S.; Thurman, E.M.
1993-01-01
An automated solid-phase extraction (SPE) method was developed for the pre-concentration of chloroacetanilide and triazine herbicides, and two triazine metabolites from 100-ml water samples. Breakthrough experiments for the C18 SPE cartridge show that the two triazine metabolites are not fully retained and that increasing flow-rate decreases their retention. Standard curve r2 values of 0.998-1.000 for each compound were consistently obtained and a quantitation level of 0.05 ??g/l was achieved for each compound tested. More than 10,000 surface and ground water samples have been analyzed by this method.
Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates
ERIC Educational Resources Information Center
Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter
2007-01-01
A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…
Understanding Performance Limitations to Enable High Performance Magnesium-Ion Batteries
Kim, Sun Ung; Perdue, Brian; Apblett, Christopher A.; ...
2016-05-18
We developed a mathematical model in order to investigate the performance limiting factors of Mg-ion battery with a Chevrel phase (Mg xMo 6S 8) cathode and a Mg metal anode. Furthermore, the model was validated using experimental data from the literature [Cheng et al., Chem. Mater., 26, 4904 (2014)]. Two electrochemical reactions of the Chevrel phase with significantly different kinetics and solid diffusion were included in the porous electrode model, which captured the physics sufficiently well to generate charge curves of five rates (0.1C–2C) for two different particle sizes. Limitation analysis indicated that the solid diffusion and kinetics in themore » higher-voltage plateau limit the capacity and increase the overpotential in the Cheng et al.’s thin (20-μm) electrodes. The model reveals that the performance of the cells with reasonable thickness would also be subject to electrolyte-phase limitations. Finally, the simulation also suggested that the polarization losses on discharge will be lower than that on charge, because of the differences in the kinetics and solid diffusion between the two reactions of the Chevrel phase.« less
Six, Karel; Berghmans, Hugo; Leuner, Christian; Dressman, Jennifer; Van Werde, Kristof; Mullens, Jules; Benoist, Luc; Thimon, Mireille; Meublat, Laurent; Verreck, Geert; Peeters, Jef; Brewster, Marcus; Van den Mooter, Guy
2003-07-01
This study was done to elucidate the physical and pharmaceutical properties of itraconazole-HPMC dispersions and the influence of water on the phase separation. Extrudates were prepared using a corotating twin-screw hot-stage extruder with fixed process parameters. Modulated-temperature differential scanning calorimetry (MTDSC) and DSC 111 were used to examine the mixing behavior of itraconazole and the carrier by evaluation of the glass transition region. High temperature diffuse reflectance infrared transform spectroscopy (HT-DRIFT) was performed to reveal interactions between itraconazole and HPMC. Dissolution was performed to investigate the pharmaceutical performance of the dispersions. Although the dissolution rate of itraconazole significantly increased, we found that the solid dispersions do not form a homogeneous system. A different picture was obtained depending on the way MTDSC analysis was performed, i.e., using open or closed sample pans. Water can evaporate in open pans, which allows itraconazole to interact with HPMC and leads to a partially mixed phase. Analysis in hermetically closed pans revealed a further phase separation as water remains on the sample and impedes the interaction between drug and polymer. Solid dispersions of itraconazole and HPMC do not form a homogeneous phase.
Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide
NASA Astrophysics Data System (ADS)
Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew
2018-04-01
Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.
Wetting and spreading at the molecular scale
NASA Technical Reports Server (NTRS)
Koplik, Joel; Banavar, Jayanth R.
1994-01-01
We have studied the microscopic aspects of the spreading of liquid drops on a solid surface by molecular dynamics simulations of coexisting three-phase Lennard-Jones systems of liquid, vapor and solid. We consider both spherically symmetric atoms and chain-like molecules, and a range of interaction strengths. As the attraction between liquid and solid increases we observed a smooth transition in spreading regimes, from partial to complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with different velocities, the layers are ordered but not solid, with qualitative behavior resembling recent experimental findings, but with interesting differences in the spreading rate.
Limmer, David T.; Chandler, David
2014-01-01
We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens. PMID:24858957
Electron drift in a large scale solid xenon
Yoo, J.; Jaskierny, W. F.
2015-08-21
A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less
Amini, Abbas; Cheng, Chun
2013-01-01
Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips. PMID:23963305
Control of ice chromatographic retention mechanism by changing temperature and dopant concentration.
Tasaki, Yuiko; Okada, Tetsuo
2011-12-15
A liquid phase coexists with solid water ice in a typical binary system, such as NaCl-water, in the temperature range between the freezing point and the eutectic point (t(eu)) of the system. In ice chromatography with salt-doped ice as the stationary phase, both solid and liquid phase can contribute to solute retention in different fashions; that is, the solid ice surface acts as an adsorbent, while a solute can be partitioned into the liquid phase. Thus, both adsorption and partition mechanisms can be utilized for ice chromatographic separation. An important feature in this approach is that the liquid phase volume can be varied by changing the temperature and the concentration of a salt incorporated into the ice stationary phase. Thus, we can control the relative contribution from the partition mechanism in the entire retention because the liquid phase volume can be estimated from the freezing depression curve. Separation selectivity can thereby be modified. The applicability of this concept has been confirmed for the solutes of different adsorption and partition abilities. The predicted retention based on thermodynamics basically agrees well with the corresponding experimental retention. However, one important inconsistency has been found. The calculation predicts a step-like discontinuity of the solute retention at t(eu) because the phase diagram suggests that the liquid phase abruptly appears at t(eu) when the temperature increases. In contrast, the corresponding experimental plots are continuous over the wider range including the subeutectic temperatures. This discrepancy is explained by the existence of the liquid phase below t(eu). A difference between predicted and measured retention factors allows the estimation of the volume of the subeutectic liquid phase.
NASA Astrophysics Data System (ADS)
Kumar, Arvind; Walker, Mike J.; Sundarraj, Suresh; Dutta, Pradip
2011-08-01
In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.
Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui
2013-01-01
This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity. PMID:23867745
Solid phase pegylation of hemoglobin.
Suo, Xiaoyan; Zheng, Chunyang; Yu, Pengzhan; Lu, Xiuling; Ma, Guanghui; Su, Zhiguo
2009-01-01
A solid phase conjugation process was developed for attachment of polyethylene glycol to hemoglobin molecule. Bovine hemoglobin was loaded onto an ion exchange chromatography column and adsorbed by the solid medium. Succinimidyl carbonate mPEG was introduced in the mobile phase after the adsorption. Pegylation took place between the hemoglobin on the solid phase, and the pegylation reagent in the liquid phase. A further elution was carried out to separate the pegylated and the unpegylated protein. Analysis by HPSEC, SDS-PAGE, and MALLS demonstrated that the fractions eluted from the solid phase contained well-defined components. Pegylated hemoglobin with one PEG chain was obtained with the yield of 75%, in comparison to the yield of 30% in the liquid phase pegylation. The P(50) values of the mono-pegylated hemoglobin, prepared with SC-mPEG 5 kDa, 10 kDa and 20 kDa, were 19.97, 20.23 and 20.54 mmHg, which were much closer to the value of red blood cells than that of pegylated hemoglobin prepared with the conventional method.
Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Lu, Dongping; Bowden, Mark
Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less
NASA Astrophysics Data System (ADS)
Basak, Anup; Levitas, Valery I.
2018-05-01
The size effect and the effects of a finite-width surface on barrierless transformations between the solid (S), surface melt (SM), and melt (M) from a spherical nanovoid are studied using a phase field approach. Melting (SM → M and S → M) from the nanovoid occurs at temperatures which are significantly greater than the solid-melt equilibrium temperature θe but well below the critical temperature for solid instability. The relationships between the SM and M temperatures and the ratio of the void surface width and width of the solid-melt interface, Δ ¯ , are found for the nanovoids of different sizes. Below a critical ratio Δ¯ * , the melting occurs via SM and the melting temperature slightly reduces with an increase in Δ ¯ . Both S → SM and SM → M transformations have a jump-like character (excluding the case with the sharp void surface), causing small temperature hysteresis. However, the solid melts without SM for Δ ¯>Δ¯ * , and the melting temperature significantly increases with increasing Δ ¯ . The results for a nanovoid are compared with the melting/solidification of a nanoparticle, for which the melting temperatures, in contrast, are much lower than θe. A linear dependency of the melting temperatures with the inverse of the void radius is shown. The present study shows an unexplored way to control the melting from nanovoids by controlling the void size and the width and energy of the surface.
Apparatus for photon excited catalysis
NASA Technical Reports Server (NTRS)
Saffren, M. M. (Inventor)
1977-01-01
An apparatus is described for increasing the yield of photonically excited gas phase reactions by extracting excess energy from unstable, excited species by contacting the species with the surface of a finely divided solid.
Phase Behavior of Complex Superprotonic Solid Acids
NASA Astrophysics Data System (ADS)
Panithipongwut, Chatr
Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4) 2-RbHSO4 system, Rb3H(SeO4)2-Cs 3H(SeO4)2 solid solution system, and Cs6 (H2SO4)3(H1.5PO4) 4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems. Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO 4 and the previously unknown compound Rb5H3(SO 4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3m of Cs5H 3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity. The compounds Rb3H(SeO4)2 and Cs 3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member. The compound Cs6(H2SO4)3(H 1.5PO4)4 is unusual amongst solid acid compounds in that it has a complex cubic structure at ambient temperature and apparently transforms to a simpler cubic structure of the CsCl-type (isostructural with CsH2PO4) at its transition temperature of 100-120 °C [3]. Here it is found that, depending on the level of humidification, the superprotonic transition of this material is superimposed with a decomposition reaction, which involves both exsolution of (liquid) acid and loss of H2O. This reaction can be suppressed by application of sufficiently high humidity, in which case Cs6(H2SO4)3(H 1.5PO4)4 undergoes a true superprotonic transition. It is proposed that, under conditions of low humidity, the decomposition/dehydration reaction transforms the compound to Cs6(H2-0.5xSO 4)3(H1.5PO4)4-x, also of the CsCl structure type at the temperatures of interest, but with a smaller unit cell. With increasing temperature, the decomposition/dehydration proceeds to greater and greater extent and unit cell of the solid phase decreases. This is identified to be the source of the apparent negative thermal expansion behavior. References: [1] L.A. Cowan, R.M. Morcos, N. Hatada, A. Navrotsky, S.M. Haile, Solid State Ionics 179 (2008) (9-10) 305. [2] M. Sakashita, H. Fujihisa, K.I. Suzuki, S. Hayashi, K. Honda, Solid State Ionics 178 (2007) (21-22) 1262. [3] C.R.I. Chisholm, Superprotonic Phase Transitions in Solid Acids: Parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs), Materials Science, California Institute of Technology, Pasadena, California (2003).
Malempati, Suman; Weigel, Brenda; Ingle, Ashish M.; Ahern, Charlotte H.; Carroll, Julie M.; Roberts, Charles T.; Reid, Joel M.; Schmechel, Stephen; Voss, Stephan D.; Cho, Steven Y.; Chen, Helen X.; Krailo, Mark D.; Adamson, Peter C.; Blaney, Susan M.
2012-01-01
Purpose A phase I/II study of cixutumumab (IMC-A12) in children with refractory solid tumors was conducted. This study was designed to assess the toxicities, pharmacokinetics, and pharmacodynamics of cixutumumab in children to determine a recommended phase II dose and to assess antitumor activity in Ewing sarcoma (ES). Patients and Methods Pediatric patients with relapsed or refractory solid tumors were treated with cixutumumab as a 1-hour intravenous infusion once per week. Two dose levels—6 and 9 mg/kg—were evaluated using a standard three-plus-three cohort design. Patients with refractory ES were treated in an expanded phase II cohort at each dose level. Results Forty-seven eligible patients with a median age of 15 years (range, 4 to 28 years) were enrolled. Twelve patients were treated in the dose-finding phase. Hematologic and nonhematologic toxicities were generally mild and infrequent. Dose-limiting toxicities included grade 4 thrombocytopenia at 6 mg/kg and grade 3 dehydration at 9 mg/kg. Mean trough concentration (± standard deviation) at 9 mg/kg was 106 ± 57 μg/mL, which exceeded the effective trough concentration of 60 μg/mL observed in xenograft models. Three patients with ES had confirmed partial responses: one of 10 at 6 mg/kg and two of 20 at 9 mg/kg. Serum insulin-like growth factor I (IGF-I) levels consistently increased after one dose of cixutumumab. Tumor IGF-I receptor expression by immunohistochemistry did not correlate with response in patients with ES. Conclusion Cixutumumab is well tolerated in children with refractory solid tumors. The recommended phase II dose is 9 mg/kg. Limited single-agent activity of cixutumumab was seen in ES. PMID:22184397
Engineered glass seals for solid-oxide fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry
2017-02-07
A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.
Solid electrolyte-electrode system for an electrochemical cell
Tuller, H.L.; Kramer, S.A.; Spears, M.A.
1995-04-04
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.
Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang
2016-03-01
An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid Fuel Burning in Steady, Strained, Premixed Flow Fields: The Graphite/Air/Methane System
NASA Technical Reports Server (NTRS)
Egolfopoulos, Fokion N.; Wu, Ming-Shin (Technical Monitor)
2000-01-01
A detailed numerical investigation was conducted on the simultaneous burning of laminar premixed CH4/air flames and solid graphite in a stagnation flow configuration. The graphite and methane were chosen for this model, given that they are practical fuels and their chemical kinetics are considered as the most reliable ones among solid and hydrocarbon fuels, respectively. The simulation was performed by solving the quasi-one-dimensional equations of mass, momentum, energy, and species. The GRI 2.1 scheme was used for the gas-phase kinetics, while the heterogeneous kinetics were described by a six-step mechanism including stable and radical species. The effects of the graphite surface temperature, the gas-phase equivalence ratio, and the aerodynamic strain rate on the graphite burning rate and NO, production and destruction mechanisms were assessed. Results indicate that as the graphite temperature increases, its burning rate as well as the NO, concentration increase. Furthermore, it was found that by increasing the strain rate, the graphite burning rate increases as a result of the augmented supply of the gas-phase reactants towards the surface, while the NO, concentration decreases as a result of the reduced residence time. The effect of the equivalence ratio on both the graphite burning rate and NO, concentration was found to be non-monotonic and strongly dependent on the graphite temperature. Comparisons between results obtained for a graphite and a chemically inert surface revealed that the chemical activity of the graphite surface can result to the reduction of NO through reactions of the CH3, CH2, CH, and N radicals with NO.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Liu, Q.; Li, Y.
2012-03-01
Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with the standard wall function model might be the best approach, by which, the simulation data seems to be closest to the experimental results.
Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide
NASA Astrophysics Data System (ADS)
Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li
2014-12-01
In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.
1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...
Feltus, A; Ramanathan, S; Daunert, S
1997-12-01
Biotinylated recombinant aequorin was used in the development of a heterogeneous bioluminescence binding assay for biotin. This assay is based on a competition between a biotinylated aequorin conjugate and biotin for the binding sites of avidin immobilized on solid particles. Dose-response curves were obtained that relate solid-phase aequorin activity to the concentration of biotin. Under certain experimental conditions these curves were biphasic; i.e., as the biotin concentration increased, the solid-phase aequorin activity first increased reaching a maximum and then decreased at higher biotin concentrations. This "hook" effect was observed with four different types of immobilization supports. The effect was more pronounced when low concentrations of aequorin-biotin conjugate were used, and diminished at a high conjugate concentration. This behavior indicates a possible positive cooperativity in the interaction between the immobilized avidin and biotin. Scatchard plot analysis was also consistent with a positive cooperativity mechanism. By using the ascending portion of the dose-response curve, the detection limit of the assay for biotin was 1 x 10(-15) M (100 zmol of biotin in the sample). Copyright 1997 Academic Press.
Cassada, D A; Monson, S J; Snow, D D; Spalding, R F
1999-06-04
Recent improvements in the LC-MS interface have increased the sensitivity and selectivity of this instrument in the analysis of polar and thermally-labile aqueous constituents. Determination of RDX, nitroso-RDX metabolites, and other munitions was enhanced using LC-MS with solid-phase extraction, 15N3-RDX internal standard, and electrospray ionization (ESI) in negative ion mode. ESI produced a five-fold increase in detector response over atmospheric pressure chemical ionization (APCI) for the nitramine compounds, while the more energetic APCI produced more than twenty times the ESI response for nitroaromatics. Method detection limits in ESI for nitramines varied from 0.03 microgram l-1 for MNX to 0.05 microgram l-1 for RDX.
Quantification of diphtheria toxin mediated ADP-ribosylation in a solid-phase assay.
Bachran, Christopher; Sutherland, Mark; Bachran, Diana; Fuchs, Hendrik
2007-09-01
Because of reduced vaccination programs, the number of diphtheria infections has increased in the last decade. Diphtheria toxin (DT) is expressed by Corynebacterium diphtheriae and is responsible for the lethality of diphtheria. DT inhibits cellular protein synthesis by ADP-ribosylation of the eukaryotic elongation factor 2 (eEF2). No in vitro system for the quantification of DT enzymatic activity exists. We developed a solid-phase assay for the specific detection of ADP-ribosylation by DT. Solid phase-bound his-tag eEF2 is ADP-ribosylated by toxins using biotinylated NAD(+) as substrate, and the transferred biotinylated ADP-ribose is detected by streptavidin-peroxidase. DT enzymatic activity correlated with absorbance. We measured the amount of ADP-ribosylated eEF2 after precipitation with streptavidin-Sepharose. Quantification was done after Western blotting and detection with anti-his-tag antibody using an LAS-1000 System. The assay detected enzymatically active DT at 30 ng/L, equivalent to 5 mU/L ADP-ribosylating activity. Pseudomonas exotoxin A (PE) activity was also detected at 100 ng/L. We verified the assay with chimeric toxins composed of the catalytic domain of DT or PE and a tumor-specific ligand. These chimeric toxins revealed increased signals at 1000 ng/L. Heat-inactivated DT and cholera toxin that ADP-ribosylates G-proteins did not show any signal increase. The assay may be the basis for the development of a routine diagnostic assay for the detection of DT activity and highly specific inhibitors of DT.
Mashile, Geaneth Pertunia; Nomngongo, Philiswa N
2017-03-04
Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.
Li, Xi; Lu, Zhenyuan; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Ren, Zhongming
2016-01-01
Effect of a weak transverse magnetic field on the microstructures in directionally solidified Fe-Ni and Pb-Bi peritectic alloys has been investigated experimentally. The results indicate that the magnetic field can induce the formation of banded and island-like structures and refine the primary phase in peritectic alloys. The above results are enhanced with increasing magnetic field. Furthermore, electron probe micro analyzer (EPMA) analysis reveals that the magnetic field increases the Ni solute content on one side and enhances the solid solubility in the primary phase in the Fe-Ni alloy. The thermoelectric (TE) power difference at the liquid/solid interface of the Pb-Bi peritectic alloy is measured in situ, and the results show that a TE power difference exists at the liquid/solid interface. 3 D numerical simulations for the TE magnetic convection in the liquid are performed, and the results show that a unidirectional TE magnetic convection forms in the liquid near the liquid/solid interface during directional solidification under a transverse magnetic field and that the amplitude of the TE magnetic convection at different scales is different. The TE magnetic convections on the macroscopic interface and the cell/dendrite scales are responsible for the modification of microstructures during directional solidification under a magnetic field. PMID:27886265
Modulated structure and molecular dissociation of solid chlorine at high pressures
NASA Astrophysics Data System (ADS)
Li, Peifang; Gao, Guoying; Ma, Yanming
2012-08-01
Among diatomic molecular halogen solids, high pressure structures of solid chlorine (Cl2) remain elusive and least studied. We here report first-principles structural search on solid Cl2 at high pressures through our developed particle-swarm optimization algorithm. We successfully reproduced the known molecular Cmca phase (phase I) at low pressure and found that it remains stable up to a high pressure 142 GPa. At 150 GPa, our structural searches identified several energetically competitive, structurally similar, and modulated structures. Analysis of the structural results and their similarity with those in solid Br2 and I2, it was suggested that solid Cl2 adopts an incommensurate modulated structure with a modulation wave close to 2/7 in a narrow pressure range 142-157 GPa. Eventually, our simulations at >157 GPa were able to predict the molecular dissociation of solid Cl2 into monatomic phases having body centered orthorhombic (bco) and face-centered cubic (fcc) structures, respectively. One unique monatomic structural feature of solid Cl2 is the absence of intermediate body centered tetragonal (bct) structure during the bco → fcc transition, which however has been observed or theoretically predicted in solid Br2 and I2. Electron-phonon coupling calculations revealed that solid Cl2 becomes superconductors within bco and fcc phases possessing a highest superconducting temperature of 13.03 K at 380 GPa. We further probed the molecular Cmca → incommensurate phase transition mechanism and found that the softening of the Ag vibrational (rotational) Raman mode in the Cmca phase might be the driving force to initiate the transition.
Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition
An, Zhinan; Jia, Haoling; Wu, Yueying; ...
2015-05-04
The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Lan, Jian; Zhao, Dengke; Li, Chuanjun; Shang, Xingfu; Zhong, Yunbo; Li, Xi; Ren, Zhongming
2018-05-01
The effect of a high magnetic field on the γ' phase of Ni-based single crystal superalloy during directional solidification is investigated experimentally. The results clearly indicate that the magnetic field significantly reduces the γ' phase size. Further, the quenching experiment is carried out, and the results found that the length of mushy zone is obviously decreased under a high magnetic field. Based on both experimental results and nucleation mechanism, it is found that the decrease of γ' phase size should be attributed to the fact that a high magnetic field causes the increase of temperature gradient in front of solid/liquid interface and leads to the increase of undercooling of γ' phase.
Method for making an electrochemical cell
Tuller, Harry L.; Kramer, Steve A.; Spears, Marlene A.; Pal, Uday B.
1996-01-01
An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.
Pressure induced solid-solid reconstructive phase transition in LiGa O2 dominated by elastic strain
NASA Astrophysics Data System (ADS)
Hu, Qiwei; Yan, Xiaozhi; Lei, Li; Wang, Qiming; Feng, Leihao; Qi, Lei; Zhang, Leilei; Peng, Fang; Ohfuji, Hiroaki; He, Duanwei
2018-01-01
Pressure induced solid-solid reconstructive phase transitions for graphite-diamond, and wurtzite-rocksalt in GaN and AlN occur at significantly higher pressure than expected from equilibrium coexistence and their transition paths are always inconsistent with each other. These indicate that the underlying nucleation and growth mechanism in the solid-solid reconstructive phase transitions are poorly understood. Here, we propose an elastic-strain dominated mechanism in a reconstructive phase transition, β -LiGa O2 to γ -LiGa O2 , based on in situ high-pressure angle dispersive x-ray diffraction and single-crystal Raman scattering. This mechanism suggests that the pressure induced solid-solid reconstructive phase transition is neither purely diffusionless nor purely diffusive, as conventionally assumed, but a combination. The large elastic strains are accumulated, with the coherent nucleation, in the early stage of the transition. The elastic strains along the 〈100 〉 and 〈001 〉 directions are too large to be relaxed by the shear stress, so an intermediate structure emerges reducing the elastic strains and making the transition energetically favorable. At higher pressures, when the elastic strains become small enough to be relaxed, the phase transition to γ -LiGa O2 begins and the coherent nucleation is substituted with a semicoherent one with Li and Ga atoms disordered.
Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina
2016-08-15
Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.
Rodenko, Boris; Detz, Remko J; Pinas, Victorine A; Lambertucci, Catia; Brun, Reto; Wanner, Martin J; Koomen, Gerrit-Jan
2006-03-01
The rapid increase of resistance to drugs commonly used in the treatment of tropical diseases such as malaria and African sleeping sickness calls for the prompt development of new safe and efficacious drugs. The pathogenic protozoan parasites lack the capability of synthesising purines de novo and they take up preformed purines from their host through various transmembrane transporters. Adenosine derivatives constitute a class of potential therapeutics due to their selective internalisation by these transporters. Automated solid-phase synthesis can speed up the process of lead finding and we pursued the solid-phase synthesis of di- and trisubstituted 5'-carboxamidoadenosine derivatives by using a safety-catch approach. While efforts with Kenner's sulfonamide linker remained fruitless, successful application of the hydrazide safety-catch linker allowed the construction of two representative combinatorial libraries. Their antiprotozoal evaluation identified two compounds with promising activity: N(6)-benzyl-5'-N-phenylcarboxamidoadenosine with an IC(50) value of 0.91 microM against Trypanosoma brucei rhodesiense and N(6)-diphenylethyl-5'-phenylcarboxamidoadenosine with an IC(50) value of 1.8 microM against chloroquine resistant Plasmodium falciparum.
Wang, Wenquan; Li, Wenmo; Xu, Hongyong
2017-07-11
The strengthening hard phases TiN/C 1- x N x Ti were generated by in-situ solid-gas reaction in Ni-based composite coatings prepared using a plasma spray welding process to reinforce the wear resistance of the coatings. The microstructures and properties of the coatings were investigated. The results showed that the coatings mainly consisted of phases such as TiN, C 1- x N x Ti, TiC, etc. A small amount of CrB, M₇C₃, and M 23 C₆ were also detected in the coatings by micro-analysis method. Compared with the originally pure NiCrBSi coatings, the hardness of the NiCrBSi coatings reinforced by in-situ solid-gas reaction was 900 HV 0.5 , increased by more than 35%. Consequently, the wear resistance of the reinforced coatings was greatly improved due to the finely and uniformly dispersed hard phases mentioned above. The weight losses after wear test for the two kinds of coatings were 15 mg and 8 mg, respectively.
Crisp, Jessica L.; Vera, David R.; Tsien, Roger Y.; Ting, Richard
2016-01-01
New protecting group chemistry is used to greatly simplify imaging probe production. Temperature and organic solvent-sensitive biomolecules are covalently attached to a biotin-bearing dioxaborolane, which facilitates antibody immobilization on a streptavidin-agarose solid-phase support. Treatment with aqueous fluoride triggers fluoride-labeled antibody release from the solid phase, separated from unlabeled antibody, and creates [18F]-trifluoroborate-antibody for positron emission tomography and near-infrared fluorescent (PET/NIRF) multimodality imaging. This dioxaborolane-fluoride reaction is bioorthogonal, does not inhibit antigen binding, and increases [18F]-specific activity relative to solution-based radiosyntheses. Two applications are investigated: an anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody (mAb) that labels prostate tumors and Cetuximab, an anti-epidermal growth factor receptor (EGFR) mAb (FDA approved) that labels lung adenocarcinoma tumors. Colocalized, tumor-specific NIRF and PET imaging confirm utility of the new technology. The described chemistry should allow labeling of many commercial systems, diabodies, nanoparticles, and small molecules for dual modality imaging of many diseases. PMID:27064381
Rodriguez, Erik A; Wang, Ye; Crisp, Jessica L; Vera, David R; Tsien, Roger Y; Ting, Richard
2016-05-18
New protecting group chemistry is used to greatly simplify imaging probe production. Temperature and organic solvent-sensitive biomolecules are covalently attached to a biotin-bearing dioxaborolane, which facilitates antibody immobilization on a streptavidin-agarose solid-phase support. Treatment with aqueous fluoride triggers fluoride-labeled antibody release from the solid phase, separated from unlabeled antibody, and creates [(18)F]-trifluoroborate-antibody for positron emission tomography and near-infrared fluorescent (PET/NIRF) multimodality imaging. This dioxaborolane-fluoride reaction is bioorthogonal, does not inhibit antigen binding, and increases [(18)F]-specific activity relative to solution-based radiosyntheses. Two applications are investigated: an anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody (mAb) that labels prostate tumors and Cetuximab, an anti-epidermal growth factor receptor (EGFR) mAb (FDA approved) that labels lung adenocarcinoma tumors. Colocalized, tumor-specific NIRF and PET imaging confirm utility of the new technology. The described chemistry should allow labeling of many commercial systems, diabodies, nanoparticles, and small molecules for dual modality imaging of many diseases.
Coupling fluid-structure interaction with phase-field fracture
NASA Astrophysics Data System (ADS)
Wick, Thomas
2016-12-01
In this work, a concept for coupling fluid-structure interaction with brittle fracture in elasticity is proposed. The fluid-structure interaction problem is modeled in terms of the arbitrary Lagrangian-Eulerian technique and couples the isothermal, incompressible Navier-Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff solid model. The brittle fracture model is based on a phase-field approach for cracks in elasticity and pressurized elastic solids. In order to derive a common framework, the phase-field approach is re-formulated in Lagrangian coordinates to combine it with fluid-structure interaction. A crack irreversibility condition, that is mathematically characterized as an inequality constraint in time, is enforced with the help of an augmented Lagrangian iteration. The resulting problem is highly nonlinear and solved with a modified Newton method (e.g., error-oriented) that specifically allows for a temporary increase of the residuals. The proposed framework is substantiated with several numerical tests. In these examples, computational stability in space and time is shown for several goal functionals, which demonstrates reliability of numerical modeling and algorithmic techniques. But also current limitations such as the necessity of using solid damping are addressed.
Oliver-Calixte, Nyoté J; Uba, Franklin I; Battle, Katrina N; Weerakoon-Ratnayake, Kumuditha M; Soper, Steven A
2014-05-06
The process of immobilizing enzymes onto solid supports for bioreactions has some compelling advantages compared to their solution-based counterpart including the facile separation of enzyme from products, elimination of enzyme autodigestion, and increased enzyme stability and activity. We report the immobilization of λ-exonuclease onto poly(methylmethacrylate) (PMMA) micropillars populated within a microfluidic device for the on-chip digestion of double-stranded DNA. Enzyme immobilization was successfully accomplished using 3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling to carboxylic acid functionalized PMMA micropillars. Our results suggest that the efficiency for the catalysis of dsDNA digestion using λ-exonuclease, including its processivity and reaction rate, were higher when the enzyme was attached to a solid support compared to the free solution digestion. We obtained a clipping rate of 1.0 × 10(3) nucleotides s(-1) for the digestion of λ-DNA (48.5 kbp) by λ-exonuclease. The kinetic behavior of the solid-phase reactor could be described by a fractal Michaelis-Menten model with a catalytic efficiency nearly 17% better than the homogeneous solution-phase reaction. The results from this work will have important ramifications in new single-molecule DNA sequencing strategies that employ free mononucleotide identification.
Gorazda, K; Tarko, B; Werle, S; Wzorek, Z
2018-03-01
Increasing problems associated with sewage sludge disposal are observed nowadays. As the thermal conversion of sewage sludge (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for its management, the solid residues left after gasification were examined. The present study evaluates the potential of this waste as an alternative phosphorus source in the context of phosphorus recovery. The obtained solid gasification residues were characterised (chemical and phase composition, thermal properties, surface properties and technological parameters used for phosphorus raw materials) and compared to commercial phosphate raw materials. It was revealed that gasification residue is a valuable source of phosphorus and microelements, comparable to sewage sludge ash (SSA) considered nowadays as secondary phosphorus raw materials. Chemical properties as well as technological parameters characteristic for natural phosphate ores are different. Solid gasification residue was leached with mineral acids (phosphoric and nitric) according to the patented method of phosphorus recovery - PolFerAsh, developed by Cracow University of Technology. It was revealed that phosphorus can be selectively leached from solid gasification residue with high efficiency (73-82%); moreover, most of the iron and heavy metals stay in the solid phase due to the low concentration of acids and proper solid to liquid phase ratio. The obtained leachates are valuable products that can be considered for the production of fertilisers. Combining the gasification process with nutrient recovery provides the opportunity for more environmentally efficient technologies driven by sustainable development rules. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matraszek, Aleksandra, E-mail: aleksandra.matraszek@ue.wroc.pl
2013-07-15
A diagram representing phase relationships in the Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} phosphate system has been developed on the basis of results obtained by thermal analysis (DTA/DSC/TGA) and X-ray diffraction (XRD) methods. One intermediate compound with the formula Sr{sub 3}Ce(PO{sub 4}){sub 3} occurs in the Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} system at temperatures exceeding 1045 °C. The compound has a eulytite structure with the following structural parameters: a=b=c=10.1655(8) Å, α=β=γ=90.00°, V=1050.46(6) Å{sup 3}. It's melting point exceeds 1950 °C. A limited solid solution exists in the system, which possesses the structure of a low-temperature form of Sr{sub 3}(PO{sub 4}){sub 2}.more » At 1000 °C the maximal concentration of CePO{sub 4} in the solid solution is below 20 mol%. The solid solution phase field narrows with increased temperature. There is a eutectic point in the (Sr{sub 3}(PO{sub 4}){sub 2}+Sr{sub 3}Ce(PO{sub 4}){sub 3}) phase field at 1765 °C and 15 mol% of CePO{sub 4}. The melting temperature of Sr{sub 3}(PO{sub 4}){sub 2} is 1882±15 °C. - Graphical abstract: The phase diagram of Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} system showing the stability ranges of limited solid solution and Sr{sub 3}Ce(PO{sub 4}){sub 3} phases. - Highlights: • Sr{sub 3}(PO{sub 4}){sub 2} melts at 1882 °C. • Phase diagram of Sr{sub 3}(PO{sub 4}){sub 2}–CePO{sub 4} system has been proposed. • Limited solid solution of CePO{sub 4} in Sr{sub 3}(PO{sub 4}){sub 2} forms in the system. • The Sr{sub 3}Ce(PO{sub 4}){sub 2} phosphate is stable at temperatures above 1045 °C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki
2013-06-12
The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less
The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.
ERIC Educational Resources Information Center
Long, Gary J.; Leighly, H. P., Jr.
1982-01-01
Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinger, T.R.; Krishnam, K.M.; Moya, J.S.
1984-10-01
A mullite/15 vol.%ZrO/sub 2/ composite was analyzed using the techniques of microdiffraction and energy dispersive X-ray spectroscopy (EDXS). The EDXS results indicate that there is a significantly high solid solubility of mullite in zirconia and zirconia in mullite; microdiffraction results suggest that ordering occurs in the ZrO/sub 2/(ss) phase based on the presence of forbidden reflections for the P 2/sub 1//c space group of monoclinic zirconia. The presence of a secondary phase at the grain boundaries, either amorphous or crystalline, has not been generally detected throughout the bulk. The results provide experimental evidence for the hypothesis of Moya and Osendimore » that the increased toughness and flexural strength of these composites are related to solid solution effects rather than to transformation or microcrack toughening mechanisms.« less
NASA Astrophysics Data System (ADS)
Deng, J.; Lee, K. K. M.
2017-12-01
At nearly 2900 km depth, the core-mantle boundary (CMB) represents the largest density increase within the Earth going from a rocky mantle into an iron-alloy core. This compositional change sets up steep temperature gradients, which in turn influences mantle flow, structure and seismic velocities. Here we compute the melting phase relations of (Mg,Fe)O ferropericlase, the second most abundant mineral in the Earth's mantle, at CMB conditions and find that ultralow-velocity zones (ULVZs) could be explained by solid ferropericlase with 35 < Mg# = 100×(Mg/(Mg+Fe) by mol%) < 65. For compositions outside of this range, a solid ferropericlase cannot explain ULVZs. Additionally, solid ferropericlase can also provide a matrix for iron infiltration at the CMB by morphological instability, providing a mechanism for a high electrical conductivity layer of appropriate length scale inferred from core nutations.
Formation of the Giant Planets by Concurrent Accretion of Solids and Gas
NASA Technical Reports Server (NTRS)
Hubickyj, Olenka
1997-01-01
Models were developed to simulate planet formation. Three major phases are characterized in the simulations: (1) planetesimal accretion rate, which dominates that of gas, rapidly increases owing to runaway accretion, then decreases as the planet's feeding zone is depleted; (2) occurs when both solid and gas accretion rates are small and nearly independent of time; and (3) starts when the solid and gas masses are about equal and is marked by runaway gas accretion. The models applicability to planets in our Solar System are judged using two basic "yardsticks". The results suggest that the solar nebula dissipated while Uranus and Neptune were in the second phase, during which, for a relatively long time, the masses of their gaseous envelopes were small but not negligible compared to the total masses. Background information, results and a published article are included in the report.
Spin-injection optical pumping of molten cesium salt and its NMR diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Kiyoshi
2015-07-15
Nuclear spin polarization of cesium ions in the salt was enhanced during optical pumping of cesium vapor at high magnetic field. Significant motional narrowing and frequency shift of NMR signals were observed by intense laser heating of the salt. When the hyperpolarized salt was cooled by blocking the heating laser, the signal width and frequency changed during cooling and presented the phase transition from liquid to solid. Hence, we find that the signal enhancement is mostly due to the molten salt and nuclear spin polarization is injected into the salt efficiently in the liquid phase. We also show that opticalmore » pumping similarly induces line narrowing in the solid phase. The use of powdered salt provided an increase in effective surface area and signal amplitude without glass wool in the glass cells.« less
Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui
2015-12-01
Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K M; K Kukkadapu, R K; Qafoku, N P
2012-05-23
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla
2012-05-23
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite ofmore » analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K. M.; Kukkadapu, R. K.; Qafoku, N. P.
2012-08-01
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO 4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less
Some aspects of the thermodynamic behaviour of the lead-doped Bi-2223 system
NASA Astrophysics Data System (ADS)
Tetenbaum, M.; Maroni, V. A.
1996-02-01
A thermodynamic assessment of lead-doped Bi-2223 with emphasis on compositions and oxygen partial pressures within the homogeneity region prior to solid-state decomposition is presented. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Long-term metastability was indicated during cycling over a temperature range of ∼ 700-815°C of a lead-doped Bi-2223 sample having an oxygen-deficient stoichiometry of 9.64 prior to solid-state decomposition corresponding to the diphasic CuOCu 2O system. A trend of increasing negative values of the partial molar enthalpy Δ overlineH( O 2) and entropy Δ overlineS( O2 with increasing oxygen deficiency of the condensed phase indicated an increase in ordering of the cuprate structure prior to solid-state decomposition.
Building of Equations of State with Numerous Phase Transitions — Application to Bismuth
NASA Astrophysics Data System (ADS)
Heuzé, Olivier
2006-07-01
We propose an algorithm to build complete equation of state EOS including several solid/solid or solid/liquid phase transitions. Each phase has its own EOS and independent parameters. The phase diagram is deduced from the thermodynamic equilibrium assumption. Until now, such an approach was used in simple cases and limited to 2 or 3 phases. We have applied it in the general case to bismuth for which up to 13 phases have been identified. This study shows the great influence of binary mixtures and triple points properties in released isentropes after shock waves.
Seetapan, Nispa; Bejrapha, Piyawan; Srinuanchai, Wanwisa; Ruktanonchai, Uracha Rungsardthong
2010-01-01
In the present study, gamma-oryzanol was incorporated into glycerol behenate (Compritol 888 ATO) nanoparticles (SLNs) at 5 and 10% (w/w) of lipid phase. Increasing lipid phase concentration resulted in increased consistency and particle diameter of SLNs. Upon storage over 60 days at 4, 25 and 40 degrees C, the instability was observed by rheological analysis for all samples due to the formation of gelation. Rheological measurement revealed the increase in storage modulus and critical stress during storage at all temperatures. However, at 40 degrees C, the pronounced instability was observed from the highest increase in storage modulus and a formation of rod-like network structure from scanning electron micrographs. An increase in crystallinity, determined by differential scanning calorimetry, was also found during storage at all temperatures, confirming the instability of SLNs. Particle diameters and zeta potentials of both concentrations at all storage conditions failed to explain the observed instability. These investigations may help to develop formulations of solid lipid nanoparticles, which are optimized with respect to the desired rheological properties.
Magnetic properties of solid oxygen under pressure (Review Article)
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.
2015-11-01
Solid oxygen is a unique crystal combining properties of a simple molecular solid and a magnet. Unlike ordinary magnets, the exchange interaction in solid oxygen acts on a background of weak Van der Waals forces, providing a significant part of the total lattice energy. Therefore, the magnetic and lattice properties of solid oxygen are very closely related. This manifests itself in a very rich phase diagram and numerous anomalies of thermal, magnetic and optical properties. Low-temperature low-pressure α-O2 is a two-sublattice collinear Neel antiferromagnet. At a pressure of ˜6 GPa, α-O2 is transformed into δ-O2, in which three different magnetic structures are realized upon increasing temperature. At ˜8 GPa δ-O2 is transformed into ɛ-O2. In this transition, O2 molecules combine into four-molecule clusters (O2)4. This transformation is accompanied by a magnetic collapse. This review describes the evolution of the magnetic structure with increasing pressure, and analyzes the causes behind this behavior.
Effects of Gas-Phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
2001-01-01
This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include Surface radiation only and gas-phase and surface radiation using a black surface model. The analysis includes discussion of detailed flame chemistry over the flammable regime and, in particular, at the low stretch extinction limit. We emphasize the low stretch regime of the radiatively participating flame, since this is the region representative of microgravity flames. When only surface radiation is included, two extinction limits exist (the blow-off limit, and the low stretch radiative limit), and the burning rate and maximum flame temperatures are lower, as expected. With the inclusion of surface and gas-phase radiation, results show that, while flame temperatures are lower, the burning rate of the trioxane diffusion flame may actually increase at low stretch rate due to radiative feedback from the flame to the surface.
Majhi, Bijoy Kumar; Jash, Tushar
2016-12-01
Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m 3 kg -1 VS, at OLR of 1.11-1.585kgm -3 d -1 , were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.
Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan
2016-07-21
Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the product crystallinity of solid phase transition. The new knowledge on the kinetics of pseudomartensitic transition complements the theory of diffusionless solid phase transition.
Ionic Conductivity of TlBr1-xIx(x = 0, 0.2, 1): Candidate Gamma Ray Detector
NASA Astrophysics Data System (ADS)
Bishop, S. R.; Ciampi, G.; Lee, C. D.; Kuhn, M.; Tuller, H. L.; Higgins, W.; Shah, K. S.
2012-10-01
The ionic conductivity of TlBr, TlI and their solid solutions, candidates for high energy radiation detection, was examined using impedance spectroscopy. The orthorhombic to cubic phase change in TlI was observed via a steep change in conductivity with increasing temperature, whereas the TlBr-TlI solid solution was cubic throughout the measured temperature range, in agreement with the literature. The intrinsic conductivity of the cubic phase of each material showed nearly identical behavior, indicating that I substitution for Br has little to no effect on the combined defect formation and transport parameters in the studied range. Additionally, optical transmission was correlated with I concentration.
Modeling of sorption processes on solid-phase ion-exchangers
NASA Astrophysics Data System (ADS)
Dorofeeva, Ludmila; Kuan, Nguyen Anh
2018-03-01
Research of alkaline elements separation on solid-phase ion-exchangers is carried out to define the selectivity coefficients and height of an equivalent theoretical stage for both continuous and stepwise filling of column by ionite. On inorganic selective sorbents the increase in isotope enrichment factor up to 0.0127 is received. Also, parametrical models that are adequately describing dependence of the pressure difference and the magnitude expansion in the ion-exchange layer from the flow rate and temperature have been obtained. The concentration rate value under the optimum realization conditions of process and depending on type of a selective material changes in a range 1.021÷1.092. Calculated results show agreement with experimental data.
Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W
2017-10-12
Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.
Suppressing the cellular breakdown in silicon supersaturated with titanium
NASA Astrophysics Data System (ADS)
Liu, Fang; Prucnal, S.; Hübner, R.; Yuan, Ye; Skorupa, W.; Helm, M.; Zhou, Shengqiang
2016-06-01
Hyper doping Si with up to 6 at.% Ti in solid solution was performed by ion implantation followed by pulsed laser annealing and flash lamp annealing. In both cases, the implanted Si layer can be well recrystallized by liquid phase epitaxy and solid phase epitaxy, respectively. Cross-sectional transmission electron microscopy of Ti-implanted Si after liquid phase epitaxy shows the so-called growth interface breakdown or cellular breakdown owing to the occurrence of constitutional supercooling in the melt. The appearance of cellular breakdown prevents further recrystallization. However, the out-diffusion and cellular breakdown can be effectively suppressed by solid phase epitaxy during flash lamp annealing due to the high velocity of amorphous-crystalline interface and the low diffusion velocity for Ti in the solid phase.
Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong
2017-01-05
The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.
Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A
2014-11-12
Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.
Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys; Kone, El Hadj
2017-04-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. Interestingly, when removing the role of water, our model reduces to a dry granular flow model including dilatancy. We first compare experimental and numerical results of dilatant dry granular flows. Then, by quantitatively comparing the results of simulation and laboratory experiments on submerged granular flows, we show that our model contains the basic ingredients making it possible to reproduce the interaction between the granular and fluid phases through the change in pore fluid pressure. In particular, we analyse the different time scales in the model and their role in granular/fluid flow dynamics. References [1] R. Delannay, A. Valance, A. Mangeney, O. Roche, P. Richard, J. Phys. D: Appl. Phys., in press (2016). [2] F. Bouchut, E. D. Fernández-Nieto, A. Mangeney, G. Narbona-Reina, J. Fluid Mech., 801, 166-221 (2016). [3] R. Jackson, Cambridges Monographs on Mechanics (2000).
Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors
NASA Astrophysics Data System (ADS)
Elliott, T. S.; Majdalani, J.
2014-11-01
Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.
A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences
Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L.
2017-01-01
An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. PMID:28628204
Solid polymer electrolyte (SPE) fuel cell technology program, phase 1/1A. [design and fabrication
NASA Technical Reports Server (NTRS)
1975-01-01
A solid polymer electrolyte fuel cell was studied for the purpose of improving the characteristics of the technology. Several facets were evaluated, namely: (1) reduced fuel cell costs; (2) reduced fuel cell weight; (3) improved fuel cell efficiency; and (4) increased systems compatibility. Demonstrated advances were incorporated into a full scale hardware design. A single cell unit was fabricated. A substantial degree of success was demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiulu; Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan; Liu, Zhongli
2015-02-07
The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of themore » longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.« less
Park, Jeong; Comfort, Steve D; Shea, Patrick J; Kim, Jong Sung
2005-12-15
Mixtures of energetic compounds pose a remediation problem for munitions-contaminated soil. Although treatment with zerovalent iron (Fe0) can be effective, RDX and TNT are more readily destroyed than HMX. Adding didecyldimethylammonium bromide (didecyl) at 2% w/v with 3% (w/v) Fe0 to a 20% slurry of Los Alamos National Laboratory soil containing solid-phase HMX (45 000 mg/kg) resulted in >80% destruction within 6 days. Because the HMX concentration did not increase in solution and the didecyl equilibrium concentration was well below the critical micelle concentration, we conclude thatthe solution primarily contained didecyl monomers. The adsorption isotherm for didecyl on iron is consistent with electrostatic adsorption of monomers and some hydrophobic partitioning at low equilibrium concentrations. Fe0 pretreated with didecyl was superior to Fe0 alone or mixed with didecyl in removing HMX from solution, but it was less effective than Fe0 + didecyl when solid-phase HMX was present. Reseeding HMX to mimic dissolution indicated an initial high reactivity of didecyl-pretreated Fe0, but the reaction slowed with each HMX addition. In contrast, reaction rates were lower but reactivity was maintained when Fe0 and didecyl were added together and didecyl was included in fresh HMX solutions. Destruction of solid-phase HMX requires low didecyl concentrations in solution so that hydrophobic patches are maintained on the iron surface.
Nayhouse, Michael; Kwon, Joseph Sang-Il; Orkoulas, G
2012-05-28
In simulation studies of fluid-solid transitions, the solid phase is usually modeled as a constrained system in which each particle is confined to move in a single Wigner-Seitz cell. The constrained cell model has been used in the determination of fluid-solid coexistence via thermodynamic integration and other techniques. In the present work, the phase diagram of such a constrained system of Lennard-Jones particles is determined from constant-pressure simulations. The pressure-density isotherms exhibit inflection points which are interpreted as the mechanical stability limit of the solid phase. The phase diagram of the constrained system contains a critical and a triple point. The temperature and pressure at the critical and the triple point are both higher than those of the unconstrained system due to the reduction in the entropy caused by the single occupancy constraint.
Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials
NASA Astrophysics Data System (ADS)
Missonnier, Marc; Heuzé, Olivier
2006-07-01
When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.
Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue
2013-01-01
We previously adapted the β-elimination/Michael addition chemistry to solid-phase derivatization on reversed-phase supports, and demonstrated the utility of this reaction format to prepare phosphoseryl peptides in unfractionated protein digests for mass spectrometric identification and facile phosphorylation-site determination. Here, we have expanded the use of this technique to β-N-acetylglucosamine peptides, modified at serine/threonine, phosphothreonyl peptides, and phosphoseryl/phosphothreonyl peptides, followed in sequence by proline. The consecutive β-elimination with Michael addition was adapted to optimize the solid-phase reaction conditions for throughput and completeness of derivatization. The analyte remained intact during derivatization and was recovered efficiently from the silica-based, reversed-phase support with minimal sample loss. The general use of the solid-phase approach for enzymatic dephosphorylation was demonstrated with phosphoseryl and phosphothreonyl peptides and was used as an orthogonal method to confirm the identity of phosphopeptides in proteolytic mixtures. The solid-phase approach proved highly suitable to prepare substrates from low-level amounts of protein digests for phosphorylation-site determination by chemical-targeted proteolysis. The solid-phase protocol provides for a simple, robust, and efficient tool to prepare samples for phosphopeptide identification in MALDI mass maps of unfractionated protein digests, using standard equipment available in most biological laboratories. The use of a solid-phase analytical platform is expected to be readily expanded to prepare digest from O-glycosylated- and O-sulfonated proteins for mass spectrometry-based structural characterization. PMID:23997661
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxian; Crawford, John W.; Flavel, Richard J.; Young, Iain M.
2016-10-01
The Lattice Boltzmann (LB) model and X-ray computed tomography (CT) have been increasingly used in combination over the past decade to simulate water flow and chemical transport at pore scale in porous materials. Because of its limitation in resolution and the hierarchical structure of most natural soils, the X-ray CT tomography can only identify pores that are greater than its resolution and treats other pores as solid. As a result, the so-called solid phase in X-ray images may in reality be a grey phase, containing substantial connected pores capable of conducing fluids and solute. Although modified LB models have been developed to simulate fluid flow in such media, models for solute transport are relatively limited. In this paper, we propose a LB model for simulating solute transport in binary soil images containing permeable solid phase. The model is based on the single-relaxation time approach and uses a modified partial bounce-back method to describe the resistance caused by the permeable solid phase to chemical transport. We derive the relationship between the diffusion coefficient and the parameter introduced in the partial bounce-back method, and test the model against analytical solution for movement of a pulse of tracer. We also validate it against classical finite volume method for solute diffusion in a simple 2D image, and then apply the model to a soil image acquired using X-ray tomography at resolution of 30 μm in attempts to analyse how the ability of the solid phase to diffuse solute at micron-scale affects the behaviour of the solute at macro-scale after a volumetric average. Based on the simulated results, we discuss briefly the danger in interpreting experimental results using the continuum model without fully understanding the pore-scale processes, as well as the potential of using pore-scale modelling and tomography to help improve the continuum models.
Equations of State and Phase Diagrams of Ammonia
ERIC Educational Resources Information Center
Glasser, Leslie
2009-01-01
We present equations of state relating the phases and a three-dimensional phase diagram for ammonia with its solid, liquid, and vapor phases, based on fitted authentic experimental data and including recent information on the high-pressure solid phases. This presentation follows similar articles on carbon dioxide and water published in this…
Ge, Aimin; Peng, Qiling; Qiao, Lin; Yepuri, Nageshwar R; Darwish, Tamim A; Matsusaki, Michiya; Akashi, Mitsuru; Ye, Shen
2015-07-21
Broadband phase-sensitive vibrational sum frequency generation (SFG) spectroscopy was utilized to study the molecular orientation of molecules adsorbed on dielectric solid substrates. A gold thin film was employed to generate a SFG signal as a local oscillator (LO). To simplify the phase measurement, a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) was used as a standard sample for phase correction of the phase-sensitive SFG measurements on the solid/air interface. It was demonstrated that the absolute orientation of molecules in the LB films on a fused quartz surface can be clearly distinguished by phase-sensitive SFG measurement. In addition, the observation on the SAM of d35-OTS reveals that the two C-H stretching modes for α-CH2 group are in opposite phase. Furthermore, by using the present phase-sensitive SFG setup, the orientation flipping of water molecules on positively and negatively charged solid/liquid interface can be distinguished.
Grace Dearborn's DARAMEND™ Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil’s ability to supply biologically available water/nutrients to micro...
SITE TECHNOLOGY CAPSULE: GRACE DEARBORN INC.'S DARAMEND BIOREMEDIATION TECHNOLOGY
Grace Dearborn's DARAMEND Bioremediation Technology was developed to treat soils/sediment contaminated with organic contaminants using solid-phase organic amendments. The amendments increase the soil's ability to supply biologically available water/nutrients to microorganisms and...
Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys
NASA Astrophysics Data System (ADS)
Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing
2018-04-01
Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.
Mo, Kyung; Lee, Wonbae; Kim, Moonil
2017-02-01
A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.
Oliveira, Éder Costa; Echegoyen, Yolanda; Cruz, Sandra Andrea; Nerin, Cristina
2014-09-01
Hollow fiber liquid phase microextraction (HFLPME) and solid phase microextraction (SPME) methods for pre-concentration of contaminants (toluene, benzophenone, tetracosane and chloroform) in food simulants were investigated. For HFLPME 1-heptanol, 2-octanone and dibutyl-ether were studied as extracting solvents. Analysis by gas chromatography coupled to mass spectrometry (GC-MS), flame ionization (GC-FID) and electron capture detectors (GC-ECD) were carried out. In addition, the methods were employed to evaluate the safety in use of a PET material after the recycling process (comprising washing, extrusion and solid state polymerization (SSP)) through extractability studies of the contaminants using 10% (v/v) ethanol in deionized water and 3% (w/v) acetic acid in deionized water as food simulants in different conditions: 10 days at 40°C and 2h at 70°C. The HFLPME preconcentration method provided increased sensitivity when compared to the SPME method and allowed to analyze concentration levels below 10 µg surrogate per kg food simulant. The results of the extractability studies showed considerable reductions after the extrusion and SSP processes and indicated the compliance with regulations for using recycled PET in contact with food. Copyright © 2014 Elsevier B.V. All rights reserved.
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite
NASA Astrophysics Data System (ADS)
Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott
2010-02-01
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II) (aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III) (s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.
Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocar, B.; Borch, T; Fendorf, S
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II){sub (aq)} concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III){sub (s)} depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less
Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less
Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry
Abdeljawad, Fadi; Foiles, Stephen M.
2016-05-04
The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less
Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdeljawad, Fadi; Foiles, Stephen M.
The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less
Zheng, Wei; Lü, Fan; Phoungthong, Khamphe; He, Pinjing
2014-06-01
The evolution of spectral properties during anaerobic digestion (AD) of 29 types of biodegradable solid waste was investigated to determine if spectral characteristics could be used for assessment of biological stabilization during AD. Biochemical methane potential tests were conducted and spectral indicators (including the ratio of ultraviolet-visible absorbance at 254nm to dissolved organic carbon concentration (SUVA254), the ratio of ultraviolet-visible absorbance measured at 465nm and 665nm (E4/E6), and the abundance of fluorescence peaks) were measured at different AD phases. Inter-relationship between organic degradation and spectral indicators were analyzed by principle component analysis. The results shows that from methane production phase to the end of methane production phase, SUVA254 increased by 0.16-10.93 times, the abundance of fulvic acid-like compounds fluorescence peak increased by 0.01-0.54 times, the abundance of tyrosine fluorescence peak decreased by 0.03-0.64 times. Therefore, these indicators were useful to judge the course of mixed waste digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Zhong, zhimin
2005-01-01
Nanopowders of Sm0.5Sr0.5CoO(3-x) (SSC) and La0.6Sr0.4CoO(3-x) (LSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells, were synthesized by a solution-combustion method using metal nitrates and glycine as fuel. Development of crystalline phases in the as-synthesized powders after heat treatments at various temperatures was monitored by x-ray diffraction. Perovskite phase in LSC formed more readily than in SSC. Single phase perovskites were obtained after heat treatment of the combustion synthesized LSC and SSC powders at 1000 and 1200 C, respectively. The as-synthesized powders had an average particle size of 12 nm as determined from x-ray line broadening analysis using the Scherrer equation. Average grain size of the powders increased with increase in calcination temperature. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy.
Thermal properties of spinel based solid solutions
NASA Astrophysics Data System (ADS)
O'Hara, Kelley Rae
Solid solution formation in spinel based systems proved to be a viable approach to decreasing thermal conductivity. Samples with systematically varied additions of MgGa2O4 to MgAl2O 4 were prepared and thermal diffusivity was measured using the laser flash technique. Additionally, heat capacity was measured using differential scanning calorimetry and modeled for the MgAl2O4-MgGa 2O4 system. At 200°C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. The solid solution continued to decrease the thermal conductivity by 13% up to 1000°C with 5 mol% addition. The decrease in thermal conductivity ultimately resulted in a decrease in heat flux when applied to a theoretical furnace lining, which could lead to energy savings in industrial settings. The MgAl2O4-Al2O3 phase equilibria was investigated to fully understand the system and the thermal properties at elevated temperatures. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al 2O3 at 1500°C, 83.0 wt% Al2O4 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been identified at temperatures up to 1700°C which could have significant implications for material processing and properties. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevated temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present. Thermal properties in the MgAl2O4-Al2O 3 system were investigated in both the single phase solid solution region and the two phase region. The thermal diffusivity decreased through the MgAl 2O4 solid solution region and was at a minimum through the entire metastable (nucleation and growth) region. As Al2O 3 became present as a second phase the thermal diffusivity increased with Al2O3 content. There was an 11.7% increase in thermal diffusivity with a change in overall chemistry of 85.20 wt% Al2O 3 to 87.71 wt% Al2O3, due to the drastic change in final chemistry (38.3 wt% Al20 3) caused by the nucleation and growth region in the system.
Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla
2016-03-01
As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to avoid environmental impact. Due to the biodegradability of manure, anaerobic digestion is an interesting alternative to treat these effluents. The low volatile solid concentration in the swine manure suggests the need for solid-liquid separation as a tool to improve biogas generation capacity. The present study aimed to determine the influence of simplified and cheap solid-liquid separation strategies (based on screening and settling) and different manure of each swine production phases (gestating and farrowing sows houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sows house (GSH-a and GSH-b), two farrowing sows house (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). The Biochemical Methane Production (BMP) tests were performed according to international standard procedure (VDI 4630). The settled sludge fraction responds for 20-30% of raw manure volume, producing 40-60% of the total methane yield. The methane potential of settled sludge fraction was about 2 times higher than the supernatant fraction. There are differences on biogas yield between the raw manure of different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH 970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences are relative to production phase (feed type, feeding techniques, etc.), but also the management of the effluent inside the facilities (water management). Copyright © 2015 Elsevier Ltd. All rights reserved.
Feng, Xingli; Ma, Houyi; Huang, Shaoxin; Pan, Wei; Zhang, Xiaokai; Tian, Fang; Gao, Caixia; Cheng, Yingwen; Luo, Jingli
2006-06-29
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.
NASA Technical Reports Server (NTRS)
Jiang, Ching-Biau; T'ien, James S.
1994-01-01
Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.
Phase III gross solids removal devices pilot study, 2002-2005.
DOT National Transportation Integrated Search
2005-12-01
The objective of the Phase III Gross Solids Removal Devices (GSRDs) Pilot study was to : evaluate the performance of non-proprietary devices that can capture gross solids and that can be : incorporated into existing highway drainage systems or implem...
Effect of multiphase radiation on coal combustion in a pulverized coal jet flame
NASA Astrophysics Data System (ADS)
Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.
2017-08-01
The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame.
The morphology of blends of linear and branched polyethylenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wignall, G.D.; Londono, J.D.; Alamo, R.G.
1995-12-31
The state of mixing in blends of high density (HD), low density (LD) and linear low density (LLD) polyethylenes (PE) in the melt and solid states has been examined by small-angle x-ray and neutron scattering (SAXS and SANS). In the melt, SANS results indicate that HDPE/LDPE mixtures (with 1-2 branches/100 C) form a single phase. HDPE/LLDPE blends are also homogeneous when the branch content is low, but phase separate as the branching increases. In the solid state, after slow-cooling from the melt, the HDPE/LDPE system segregates into domains {approximately}10{sup 2} in size. For high concentrations of linear polymer ({phi} {ge}more » 0.5), there are separate stacks of HDPE and LDPE lamellae, and the measured SANS cross section agrees closely with the theoretical calculation based on the assumption of complete phase separation of the components. For predominantly branched blends ({phi} < 0.5), the phase segregation is less complete, and the components are separated within the same lamellar stack. Moreover, the phases no longer consist of the pure components, and the HDPE lamellae contain up to 15% LDPE. The segregation of components in the solid state is a consequence of crystallization mechanisms and the blend morphology is a strong function of the cooling rate. Rapid quenching to -78{degrees}C produces only one lamellar stack and these blends show extensive cocrystallization. Samples quenched less rapidly (e.g., into water at 23{degrees}C) show a similar structure to slowly cooled samples. The solid state morphology also depends on the type of branching and differences between HDPE/LDPE and HDPE/LLDPE blends will be reviewed.« less
Three-phase boundary length in solid-oxide fuel cells: A mathematical model
NASA Astrophysics Data System (ADS)
Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf
A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.
Alhijjaj, Muqdad; Bouman, Jacob; Wellner, Nikolaus; Belton, Peter; Qi, Sheng
2015-12-07
Creating in situ phase separation in solid dispersion based formulations to allow enhanced functionality of the dosage form, such as improving dissolution of poorly soluble model drug as well as being mucoadhesive, can significantly maximize the in vitro and in vivo performance of the dosage form. This formulation strategy can benefit a wide range of solid dosage forms for oral and alternative routes of delivery. This study using buccal patches as an example created separated phases in situ of the buccal patches by selecting the excipients with different miscibility with each other and the model drug. The quaternary dispersion based buccal patches containing PEG, PEO, Tween 80, and felodipine were prepared by direct hot melt extrusion-injection molding (HME-IM). The partial miscibility between Tween 80 and semicrystalline PEG-PEO led to the phase separation after extrusion. The Tween phases acted as drug solubilization compartments, and the PEG-PEO phase had the primary function of providing mucoadhesion and carrier controlled dissolution. As felodipine was preferably solubilized in the amorphous regions of PEG-PEO, the high crystallinity of PEG-PEO resulted in an overall low drug solubilizing capacity. Tween 80 was added to improve the solubilization capacity of the system as the model drug showed good solubility in Tween. Increasing the drug loading led to the supersaturation of drug in Tween compartments and crystalline drug dispersed in PEG-PEO phases. The spatial distribution of these phase-separated compartments was mapped using X-ray micro-CT, which revealed that the domain size and heterogeneity of the phase separation increased with increasing the drug loading. The outcome of this study provides new insights into the applicability of in situ formed phase separation as a formulation strategy for the delivery of poorly soluble drugs and demonstrated the basic principle of excipient selection for such technology.
da Silva, Meire Ribeiro; Mauro Lanças, Fernando
2018-03-10
Sulfonamides are antibiotics widely used in the treatment of diseases in dairy cattle. However, their indiscriminate use for disease control may lead to their presence in tissues and milk and their determination requires a sample preparation step as part of an analytical approach. Among the several sample preparation techniques available, those based upon the use of sorptive materials have been widely employed. Recently, the application of ionic liquids immobilized on silica surfaces or polymeric materials has been evaluated for such an application. This manuscript addresses the evaluation of silica-based ionic liquid obtained by a sol-gel synthesis process by basic catalysis as sorbent for online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry for sulfonamides determination. Infrared vibrational spectroscopy confirmed the presence of the ionic liquid on the silica surface, suggesting that the ionic liquid was anchored on to the silica surface. Other sorbents varying the ionic liquid alkyl chain were also synthesized and evaluated by off-line solid-phase extraction in the sulfonamide extraction. As the length of the alkyl chain increased, the amount of extracted sulfonamides decreased, possibly due to a decrease in the electrostatic interaction caused by the reduction in the polarity, as well as the presence of a hexafluorophosphate anion that increases the hydrophobic character of the material. The use of 1-butyl-3-methylimidazolium hexafluorophosphate as a selective ionic liquid sorbent enabled the isolation and sulfonamide preconcentration in bovine milk by online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The limit of quantification for the method developed was 5-7, 5 μg/mL, with extraction recoveries ranging between 74 and 93% and intra- and interassay between 1.5-12.5 and 2.3-13.1, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Dong Wuk; Kwon, Min Seok; Yousaf, Abid Mehmood; Balakrishnan, Prabagar; Park, Jong Hyuck; Kim, Dong Shik; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2014-12-19
The intention of this study was to compare the physicochemical properties, stability and bioavailability of a clopidogrel napadisilate (CN)-loaded solid dispersion (SD) and solid self-microemulsifying drug delivery system (solid SMEDDS). SD was prepared by a surface attached method using different ratios of Cremophor RH60 (surfactant) and HPMC (polymer), optimized based on their drug solubility. Liquid SMEDDS was composed of oil (peceol), a surfactant (Cremophor RH60) and a co-surfactant (Transcutol HP). A pseudo-ternary phase diagram was constructed to identify the emulsifying domain, and the optimized liquid SMEDDS was spray dried with an inert solid carrier (silicon dioxide), producing the solid SMEDDS. The physicochemical properties, solubility, dissolution, stability and pharmacokinetics were assessed and compared to clopidogrel napadisilate (CN) and bisulfate (CB) powders. In solid SMEDDS, liquid SMEDDS was absorbed or coated inside the pores of silicon dioxide. In SD, hydrophilic polymer and surfactants were adhered onto drug surface. The drug was in crystalline and molecularly dispersed form in SD and solid SMEDDS, respectively. Solid SMEDDS and SD greatly increased the solubility of CN but gave lower drug solubility compared to CB powder. These preparations significantly improved the dissolution of CN, but the latter more increased than the former. Stability under accelerated condition showed that they were more stable compared to CB powder, and SD was more stable than solid SMEDDS. They significantly increased the oral bioavailability of CN powder. Furthermore, SD showed significantly improved oral bioavailability compared to solid SMEDDS and CB powder. Thus, SD with excellent stability and bioavailability is recommended as an alternative for the clopidogrel-based oral formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liquid phase sintered compacts in space
NASA Technical Reports Server (NTRS)
Mookherji, T. K.; Mcanelly, W. B.
1974-01-01
A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.
The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.
Noya, Eva G; Vega, Carlos; Doye, Jonathan P K; Louis, Ard A
2010-06-21
The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.
Kris, M G; Yeh, S D; Gralla, R J; Young, C W
1986-01-01
To develop an additional method for the measurement of gastric emptying in supine subjects, 10 normal subjects were given a test meal containing 99Tc-labelled scrambled egg as the "solid" phase marker and 111In in tapwater as the marker for the "liquid" phase. The mean time for emptying 50% of the "solid" phase (t1/2) was 85 min and 29 min for the "liquid" phase. Three individuals were restudied with a mean difference between the two determinations of 10.8% for the "solid" phase and 6.5% for the "liquid" phase. Twenty-six additional studies attempted have been successfully completed in symptomatic patients with advanced cancer. This method provides a simple and reproducible procedure for the determination of gastric emptying that yields results similar to those reported for other test meals and can be used in debilitated patients.
Thermal shock resistance ceramic insulator
Morgan, Chester S.; Johnson, William R.
1980-01-01
Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.
Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron
NASA Astrophysics Data System (ADS)
Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José
2017-10-01
The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.
Phase IV gross solids removal devices pilot study, 2004-2005.
DOT National Transportation Integrated Search
2005-12-01
The objective of the Phase IV Gross Solids Removal Device (GSRD) Pilot study was to evaluate : the performance of one non-proprietary device that can capture gross solids and that can be : incorporated into existing highway drainage systems or implem...
NASA Astrophysics Data System (ADS)
Ning, Guo
1995-06-01
The solid-phase behavior of [n-C9H19NH3]2CuCl4 was investigated by infrared spectroscopy. The nature of the three solid phases (phase I, phase II, and phase III) is discussed. A temperature-dependent study of infrared spectra provides evidence for the occurrence of structural phase transitions related to the dynamics of the alkyl chains and -NH3 polar heads. The phase transition at Tc1 (22°C) arises from variation in the interaction and packing structure of the chain. The phase transition at Tc2 (34°C) is related to variation in partial conformational order-disorder at the intramolecular level. The GTG or GTG‧ and small concentration of TG structures near the CH3 group are generated in phase III (above 38°C).
Development of terbinafine solid lipid nanoparticles as a topical delivery system
Chen, Ying-Chen; Liu, Der-Zen; Liu, Jun-Jen; Chang, Tsung-Wei; Ho, Hsiu-O; Sheu, Ming-Thau
2012-01-01
To resolve problems of long treatment durations and frequent administration of the antifungal agent terbinafine (TB), solid lipid nanoparticles (SLNs) with the ability to load lipophilic drugs and nanosize were developed. The SLNs were manufactured by a microemulsion technique in which glyceryl monostearate (GMS), glyceryl behenate (Compritol® 888; Gattefossé), and glyceryl palmitostearate (Precirol® ATO 5; Gattefossé) were used as the solid lipid phases, Tween® and Cremophor® series as the surfactants, and propylene glycol as the cosurfactant to construct ternary phase diagrams. The skin of nude mice was used as a barrier membrane, and penetration levels of TB of the designed formulations and a commercial product, Lamisil® Once™ (Novartis Pharmaceuticals), in the stratum corneum (SC), viable epidermis, and dermis were measured; particle sizes were determined as an indicator of stability. The optimal SLN system contained a <5% lipid phase and >50% water phase. The addition of ethanol or etchants had no significant effect on enhancing the amount of TB that penetrated the skin layers, but it was enhanced by increasing the percentage of the lipid phase. Furthermore, the combination of GMS and Compritol® 888 was able to increase the stable amount of TB that penetrated all skin layers. For the ACP1-GM1 (4% lipid phase; Compritol® 888: GMS of 1:1) formulation, the amount of TB that penetrated the SC was similar to that of Lamisil® Once™, whereas the amount of TB of the dermis was higher than that of Lamisil® Once™ at 12 hours, and it was almost the same as that of Lamisil® Once™ at 24 hours. It was concluded that the application of ACP1-GM1 for 12 hours might have an efficacy comparable to that of Lamisil® Once™ for 24 hours, which would resolve the practical problem of the longer administration period that is necessary for Lamisil® Once™. PMID:22923986
Wang, Fudong; Buhro, William E
2017-12-26
Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.
Environmental solid particle effects on compressor cascade performance
NASA Technical Reports Server (NTRS)
Tabakoff, W.; Balan, C.
1982-01-01
The effect of suspended solid particles on the performance of the compressor cascade was investigated experimentally in a specially built cascade tunnel, using quartz sand particles. The cascades were made of NACA 65(10)10 airfoils. Three cascades were tested, one accelerating cascade and two diffusing cascades. The theoretical analysis assumes inviscid and incompressible two dimensional flow. The momentum exchange between the fluid and the particle is accounted for by the interphase force terms in the fluid momentum equation. The modified fluid phase momentum equations and the continuity equation are reduced to the conventional stream function vorticity formulation. The method treats the fluid phase in the Eulerian system and the particle phase in Lagrangian system. The experimental results indicate a small increase in the blade surface static pressures, while the theoretical results indicate a small decrease. The theoretical analysis, also predicts the loss in total pressure associated with the particulate flow through the cascade.
Effects of Coulomb Repulsion on the Phase Diagram of the Asakura-Oosawa Model
NASA Astrophysics Data System (ADS)
Haaga, Jason; Pemberton, Elizabeth; Gunton, James; Rickman, Jeffrey
We investigate the effect of adding a screened Coulomb charge to a model colloidal system interacting via the Asakura-Oosawa depletion potential. This model has previously been used to study the early stages of amelogenin self-assembly, a crucial process in the formation of dental enamel, by Li et al (BiophysicalJournal 101, 2502 (2011). By employing Monte Carlo simulations, we explore the role of interaction strengths and ranges on phase behavior. We find that charge strength and range have a strong influence on the stable, in the case of long range depletion potential, or metastable, in the case of short range depletion, fluid-fluid phase separation. Coulomb repulsion narrows and flattens the coexistence curve with increasing charge. This talk will also discuss solid-solid transitions present for certain interaction ranges. This work is supported by the G. Harold and Leila Y. Mathers Foundation.
Foaming in simulated radioactive waste.
Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C
2001-10-01
Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella generation in the sludge system.
Solid-liquid critical behavior of water in nanopores.
Mochizuki, Kenji; Koga, Kenichiro
2015-07-07
Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.
Intermixing in Cu/Ni multilayers induced by cold rolling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z.; Perepezko, J. H., E-mail: perepezk@engr.wisc.edu; Larson, D.
2015-04-28
Repeated cold rolling was performed on multilayers of Cu60/Ni40 and Cu40/Ni60 foil arrays to study the details of driven atomic scale interfacial mixing. With increasing deformation, there is a significant layer refinement down to the nm level that leads to the formation of a solid solution phase from the elemental end members. Intriguingly, the composition of the solid solution is revealed by an oscillation in the composition profile across the multilayers, which is different from the smoothly varying profile due to thermally activated diffusion. During the reaction, Cu mixed into Ni preferentially compared to Ni mixing into Cu, which ismore » also in contrast to the thermal diffusion behavior. This is confirmed by observations from X-ray diffraction, electron energy loss spectrum and atom probe tomography. The diffusion coefficient induced by cold rolling is estimated as 1.7 × 10{sup −17} m{sup 2}/s, which cannot be attributed to any thermal effect. The effective temperature due to the deformation induced mixing is estimated as 1093 K and an intrinsic diffusivity d{sub b}, which quantifies the tendency towards equilibrium in the absence of thermal diffusion, is estimated as 6.38 × 10{sup −18} m{sup 2}/s. The fraction of the solid solution phase formed is illustrated by examining the layer thickness distribution and is described by using an error function representation. The evolution of mixing in the solid solution phase is described by a simplified sinusoid model, in which the amplitude decays with increased deformation level. The promoted diffusion coefficient could be related to the effective temperature concept, but the establishment of an oscillation in the composition profile is a characteristic behavior that develops due to deformation.« less
Six, Karel; Verreck, Geert; Peeters, Jef; Brewster, Marcus; Van Den Mooter, Guy
2004-01-01
Solid dispersions were prepared of itraconazole-Eudragit E100, itraconazole-PVPVA64, and itraconazole-Eudragit E100/PVPVA64 using a corotating twin-screw hot-stage extruder. Modulated temperature differential scanning calorimetry (MTDSC) was used to evaluate the miscibility of the extrudates, and dissolution experiments were performed in simulated gastric fluid without pepsin (SGF(sp)). Itraconazole and Eudragit E100 are miscible up to 13% w/w drug loading. From that concentration on, phase separation is observed. Pharmaceutical performance of this dispersion was satisfactory because 80% of the drug dissolved after 30 min. Extrudates of itraconazole and PVPVA64 were completely miscible but the pharmaceutical performance was low, with 45% of drug dissolved after 3 h. Combination of both polymers in different ratios, with a fixed drug loading of 40% w/w, was evaluated. MTDSC results clearly indicated a two-phase system consisting of itraconazole-Eudragit E100 and itraconazole-PVPVA64 phases. In these extrudates, no free crystalline or glassy clusters of itraconazole were observed; all itraconazole was mixed with one of both polymers. The pharmaceutical performance was tested in SGF(sp) for different polymer ratios, and Eudragit E100/PVPVA64 ratios of 50/50 and 60/40 showed significant increases in dissolution rate and level. Polymer ratios of 70/30 and 80/20, on the other hand, had a release of 85% after 30 min. Precipitation of the drug was never observed. The combination of the two polymers provides a solid dispersion with good dissolution properties and improved physical stability compared with the binary solid dispersions of itraconazole. Copyright 2004 Wiley-Liss, Inc.
Domene, Xavier; Alcañiz, Josep M; Andrés, Pilar
2008-02-01
Development of methodologies to assess the safety of reusing polluted organic wastes in soil is a priority in Europe. In this study, and coupled with chemical analysis, seven organic wastes were subjected to different aquatic and soil bioassays. Tests were carried out with solid-phase waste and three different waste eluates (water, methanol, and dichloromethane). Solid-phase assays were indicated as the most suitable for waste testing not only in terms of relevance for real situations, but also because toxicity in eluates was generally not representative of the chronic effects in solid-phase. No general correlations were found between toxicity and waste pollutant burden, neither in solid-phase nor in eluate assays, showing the inability of chemical methods to predict the ecotoxicological risks of wastes. On the contrary, several physicochemical parameters reflecting the degree of low organic matter stability in wastes were the main contributors to the acute toxicity seen in collembolans and daphnids.
Solid-Phase Radioimmunoassay of Total and Influenza-Specific Immunoglobulin G
Daugharty, Harry; Warfield, Donna T.; Davis, Marianne L.
1972-01-01
An antigen-antibody system of polystyrene tubes coated with immunoglobulin antibody was used for quantitating immunoglobulins. A similar radioimmunoassay method was adapted for a viral antigen-antibody system. The viral system can be used for quantitating viruses and for measuring virus-specific antibodies by reacting with 125iodine-labeled anti-immunoglobulin G (IgG). Optimal conditions for coating the solid phase, specificity of the immune reaction, and other kinetics and sensitivities of the assay method were investigated. Comparison of direct and indirect methods of assaying for immunoglobulins or viral antibody indicates that the indirect method is more sensitive and can quantitate a minimum of 0.037 μg of IgG per ml. Results of solid-phase radioimmunoassay for influenza antibody correlate well with hemagglutinin antibody titers but not with complement-fixing antibody titers. Radioimmunoassay results for influenza antibody by solid phase are likewise in agreement with results by the carrier precipitate radioimmunoassay method. The simplicity, reproducibility, and versatility of the solid-phase procedure make it diagnostically useful. PMID:5062884
NASA Astrophysics Data System (ADS)
Lin, Changwei; Tang, Yu; Song, Jun; Han, Lei; Yu, Jingbo; Lu, Anxian
2018-06-01
In the present study, series of garnet-type Li6.75+ x La3- x Sr x Zr1.75Nb0.25O12 solid electrolytes [LLSZN with various Sr contents ( x = 0.05-0.25)] have been prepared via conventional solid-state method. The effects of Sr contents on their phase structure and ionic conductivity have been systematically investigated on the combined measurements of X-ray diffraction and scanning electron microscopy and alter current impedance spectroscopy. Our results reveal that a phase transition from tetragonal to cubic structure occurs when both Sr and Nb elements is introduced, and such a cubic structure can be stable over the whole Sr contents variation, which is suggested to provide a beneficial impact on the performance of LLSZN. Accordingly, both relative density and total ionic conductivity exhibit a favorable tendency of increasing first and then decreasing with increased Sr contents, wherein a peak value at 93.46% and 5.09 × 10-4 S cm-1, respectively, can be well achieved. Particularly, the maximum ionic conductivity is almost twice that of the compared sample (2.93 × 10-4 S cm-1), and possess the minimum activation energy 0.30 eV. Such a modification method, featured with higher efficiency and lower cost, is expected to be helpful for the development of solid electrolyte.
Li, Hui; Stowell, Joseph G; He, Xiaorong; Morris, Kenneth R; Byrn, Stephen R
2007-05-01
Solid-solid transformation of 5-methyl-2-[(4-methyl-2-nitrophenyl)amino]-3-thiophenecarbonitrile from the dark-red to the red form was investigated. By controlled crystallization, the dark-red form was prepared and the crystals were sieved into fractions: coarse (>250 microm), medium (125-177 microm), and fine (<88 microm). The transformation rate order (fastest to slowest) of the different fractions is coarse > medium > fine. However, milling accelerates the transformation, that is, smaller particles generated by milling transforms faster. Furthermore, ethanol vapor annealing slows both the transformation of the coarse and medium fractions, especially the latter. Therefore, the mechanism of transformation is not directly related to the crystal-size and most likely related to the amount and activity of the defects in the crystals. The three-dimensional (3-D) Avrami-Erofe'ev model, know as "random nucleation and growth" model, fits the kinetics of coarse fraction best. Higher relative humidity accelerates the transformation dramatically even though the compound is highly-hydrophobic. With minimal hydrogen bonding interaction involved, it appears even small amounts of water can serve as a nucleation catalyst by binding to the crystal surface, especially at defect sites, thus increasing the molecular mobility of these sites, promoting the transformation to the second phase and thereby increasing the transformation rate. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar
2018-05-01
We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.
NASA Astrophysics Data System (ADS)
Sellers, Michael; Lisal, Martin; Brennan, John
2015-06-01
Investigating the ability of a molecular model to accurately represent a real material is crucial to model development and use. When the model simulates materials in extreme conditions, one such property worth evaluating is the phase transition point. However, phase transitions are often overlooked or approximated because of difficulty or inaccuracy when simulating them. Techniques such as super-heating or super-squeezing a material to induce a phase change suffer from inherent timescale limitations leading to ``over-driving,'' and dual-phase simulations require many long-time runs to seek out what frequently results in an inexact location of phase-coexistence. We present a compilation of methods for the determination of solid-solid and solid-liquid phase transition points through the accurate calculation of the chemical potential. The methods are applied to the Smith-Bharadwaj atomistic potential's representation of cyclotrimethylene trinitramine (RDX) to accurately determine its melting point (Tm) and the alpha to gamma solid phase transition pressure. We also determine Tm for a coarse-grain model of RDX, and compare its value to experiment and atomistic counterpart. All methods are employed via the LAMMPS simulator, resulting in 60-70 simulations that total 30-50 ns. Approved for public release. Distribution is unlimited.
NASA Astrophysics Data System (ADS)
Sukkha, Usa; Muanghlua, Rangson; Niemcharoen, Surasak; Boonchoma, Banjong; Vittayakorn, Naratip
2010-08-01
The combination of antiferroelectric PbZrO3 (PZ) and relaxor ferroelectric Pb(Zn1/3Nb2/3)O3 was prepared via the columbite precursor method. The basic characterizations were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), linear thermal expansion, differential scanning calorimetry (DSC) techniques, dielectric spectroscopy, and hysteresis measurement. The XRD result indicated that the solid solubility limit of the (1- x)PZ- xPZN system was about x=0.40. The crystal structure of (1- x)PZ- xPZN transformed from orthorhombic to rhombohedral symmetry when the concentration of PZN was increased. A ferroelectric intermediate phase began to appear between the paraelectric and antiferroelectric phases of pure PZ, with increasing PZN content. In addition, the temperature range of the ferroelectric phase increased with increasing PZN concentration. The morphotropic phase boundary (MPB) in this system was located close to the composition, x=0.20.
Phase transition thermodynamics of bisphenols.
Costa, José C S; Dávalos, Juan Z; Santos, Luís M N B F
2014-10-16
Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.
2006-01-01
ENVIRONMENTAL ANALYSIS Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography Howard T. Mayfield Air Force Research...Abstract: Current methods for the analysis of explosives in soils utilize time consuming sample preparation workups and extractions. The method detection...chromatography/mass spectrometry to provide a con- venient and sensitive analysis method for explosives in soil. Keywords: Explosives, TNT, solid phase
Binary Solid-Liquid Phase Equilibria
ERIC Educational Resources Information Center
Ellison, Herbert R.
1978-01-01
Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)
Gatos, D; Tzavara, C
2001-02-01
Salmon I calcitonin was synthesized using both phase-change and conventional solid-phase fragment condensation (SPFC) approaches, utilizing the Rink amide linker (Fmoc-amido-2,4-dimethoxybenzyl-4-phenoxyacetic acid) combined with 2-chlorotrityl resin and the Fmoc/tBu(Trt)-based protection scheme. Phase-change synthesis, performed by the selective detachment of the fully protected C-terminal 22-mer peptide-linker from the resin and subsequent condensation in solution with the N-terminal 1-10 fragment, gave a product of slightly less purity (85 vs. 92%) than the corresponding synthesis on the solid-phase. In both cases salmon I calcitonin was easily obtained in high purity.
Huang, Ke; Xu, Kailai; Zhu, Wei; Yang, Lu; Hou, Xiandeng; Zheng, Chengbin
2016-01-05
A low-cost, simple, and highly selective analytical method was developed for sensitive visual detection of selenium in human urine both outdoors and at home, by coupling hydride generation with headspace solid-phase extraction using quantum dots (QDs) immobilized on paper. The visible fluorescence from the CdTe QDs immobilized on paper was quenched by H2Se from hydride generation reaction and headspace solid-phase extraction. The potential mechanism was investigated by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) as well as Density Functional Theory (DFT). Potential interferences from coexisting ions, particularly Ag(+), Cu(2+), and Zn(2+), were eliminated. The selectivity was significantly increased because the selenium hydride was effectively separated from sample matrices by hydride generation. Moreover, due to the high sampling efficiency of hydride generation and headspace solid phase extraction, the sensitivity and the limit of detection (LOD) were significantly improved compared to conventional methods. A LOD of 0.1 μg L(-1) and a relative standard deviation (RSD, n = 7) of 2.4% at a concentration of 20 μg L(-1) were obtained when using a commercial spectrofluorometer as the detector. Furthermore, a visual assay based on the proposed method was developed for the detection of Se, 5 μg L(-1) of selenium in urine can be discriminated from the blank solution with the naked eye. The proposed method was validated by analysis of certified reference materials and human urine samples with satisfactory results.
Phase diagrams and physicochemical properties of Li+,K+(Rb+)//borate-H2O systems at 323 K
NASA Astrophysics Data System (ADS)
Feng, Shan; Yu, Xudong; Cheng, Xinglong; Zeng, Ying
2017-11-01
The phase and physicochemical properties diagrams of Li+,K+(Rb+)//borate-H2O systems at 323 K were constructed using the experimentally measured solubilities, densities, and refractive indices. The Schreinemakers' wet residue method and the X-ray diffraction were used for the determination of the compositions of solid phase. Results show that these two systems belong to the hydrate I type, with no solid solution or double salt formation. The borate phases formed in our experiments are RbB5O6(OH)4 · 2H2O, Li2B4O5(OH)4 · H2O, and K2B4O5(OH)4 · 2H2O. Comparison between the stable phase diagrams of the studied system at 288, 323, and 348 K show that in this temperature range, the crystallization form of salts do not changed. With the increase in temperature, the crystallization field of Li2B4O5(OH)4 · H2O salt at 348 K is obviously larger than that at 288 K. In the Li+,K+(Rb+)//borate-H2O systems, the densities and refractive indices of the solutions (at equilibrium) increase along with the mass fraction of K2B4O7 (Rb2B4O7), and reach the maximum values at invariant point E.
2018-05-31
B-cell Lymphomas (Phase 1); Advanced Solid Tumors (Phase 1); Diffuse Large B-cell Lymphoma (Phase 2); Follicular Lymphoma (Phase 2); Transformed Follicular Lymphoma; Primary Mediastinal Large B-Cell Lymphoma
Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H
2012-09-26
Degradation of dispersed lipophilic compounds in hydrophilic solids depends upon matrix stability and lipid physicochemical properties. This study investigated effects of solid microstructure and size of lipid droplets on the stability of dispersed β-carotene in freeze-dried systems. Emulsions of β-carotene in sunflower oil were dispersed in maltodextrin systems (M040/DE6, M100/DE11, and M250/DE25.5) (8% w/w oil) and prefrozen at various freezing conditions prior to freeze-drying to control nucleation and subsequent pore size and structural collapse of freeze-dried solids. The particle size, physical state, and β-carotene contents of freeze-dried emulsions were measured during storage at various water activity (a(w)) using a laser particle size analyzer, differential scanning calorimeter, and high performance liquid chromatography (HPLC), respectively. The results showed that M040 stabilized emulsions in low temperature freezing exhibited lipid crystallization. Collapse of solids in storage at a(w) which plasticized systems to the rubbery state led to flow and increased the size of oil droplets. Degradation of β-carotene analyzed using a reversed-phase C(30) column followed first-order kinetics. Porosity of solids had a major effect on β-carotene stability; however, the highest stability was found in fully plasticized and collapsed solids.
NASA Astrophysics Data System (ADS)
Yang, Lina; Zhang, Kan; Zeng, Yi; Wang, Xin; Du, Suxuan; Tao, Chuanying; Ren, Ping; Cui, Xiaoqiang; Wen, Mao
2017-11-01
Boron doped bcc-W (WBx, x = B/W) films were deposited on Si(100) substrates by magnetron co-sputtering pure W and B targets. Our results reveal that when the absolute value of substrate bias voltage (Vb) increases from floating to 240 V, the value of x monotonously decreases from 0.18 to 0.04, accompanied by a phase transition from a mixture of tetragonal γ-W2B and body-centered cubic α-W(B) phase (-Vb ≤ 60 V) to α-W(B) single phase (-Vb > 60 V). Hardness, depending on Vb, increases first and then drops, where the maximum hardness of 30.8 GPa was obtained at -Vb = 60 V and far higher than pure W and W2B theoretical value. In the mixed phase structure, the grain boundaries strengthening, Hall-Petch effect and solid-solution strengthening induced by B dominate the strengthening mechanism. Astonishingly, the film grown at -Vb = 120 V still possesses twice higher hardness than pure W, wherein unexpectedly low (6.7 at.%) B concentration and only the single α-W(B) phase can be identified. In this case, both Hall-Petch effect and solid-solution strengthening work. Besides, low friction coefficient of ∼0.18 can be obtained for the films with α-W(B) phase, which is competitive to that of reported B-rich transition-metal borides, such as TiB2, CrB and CrB2.
Mills, M.S.; Thurman, E.M.
1992-01-01
Reversed-phase isolation and ion-exchange purification were combined in the automated solid-phase extraction of two polar s-triazine metabolites, 2-amino-4-chloro-6-(isopropylamino)-s-triazine (deethylatrazine) and 2-amino-4-chloro-6-(ethylamino)-s-triazine (deisopropylatrazine) from clay-loam and slit-loam soils and sandy aquifer sediments. First, methanol/ water (4/1, v/v) soil extracts were transferred to an automated workstation following evaporation of the methanol phase for the rapid reversed-phase isolation of the metabolites on an octadecylresin (C18). The retention of the triazine metabolites on C18 decreased substantially when trace methanol concentrations (1%) remained. Furthermore, the retention on C18 increased with decreasing aqueous solubility and increasing alkyl-chain length of the metabolites and parent herbicides, indicating a reversed-phase interaction. The analytes were eluted with ethyl acetate, which left much of the soil organic-matter impurities on the resin. Second, the small-volume organic eluate was purified on an anion-exchange resin (0.5 mL/min) to extract the remaining soil pigments that could foul the ion source of the GC/MS system. Recoveries of the analytes were 75%, using deuterated atrazine as a surrogate, and were comparable to recoveries by soxhlet extraction. The detection limit was 0.1 ??g/kg with a coefficient of variation of 15%. The ease and efficiency of this automated method makes it viable, practical technique for studying triazine metabolites in the environment.
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; ...
2018-02-27
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai
2018-02-01
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianlin; Kang, Qinjun; Yao, Jun
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less
Conformational and orientational order and disorder in solid polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Sprik, Michiel; Rothlisberger, Ursula; Klein, Michael L.
The low pressure phase diagram of solid polytetrafluoroethylene (PTFE/Teflon) has been investigated using constant temperature-constant pressure molecular dynamics techniques and a new all-atom potential model for fluorocarbons. The simulation was started in an ordered low temperature phase in which the molecules are parallel and have a helical conformation with a pitch of uniform magnitude and sign (chirality). In accordance with experiment, a transition to an orientationally disordered state is observed upon heating. The coherent helical winding of CF2 groups also disappears abruptly at the transition but short helical segments remain and become equally distributed between left and right chirality with increasing temperature. The orientational and conformational disorder is accompanied by translational diffusion along the chain direction. At a still higher temperature melting sets in. On cooling, the disordered solid phase is recovered and its structure is shown to be identical to that generated on heating. On further cooling, a spontaneous ordering transition is observed but the system fails to recover a uniform helical ground state. Instead, the high pressure ordered monoclinic all- trans (alkane-like) structure is obtained: an observation that indicates a deficiency in the potential model.
Terraced spreading of simple liquids on solid surfaces
NASA Technical Reports Server (NTRS)
Yang, Ju-Xing; Koplik, Joel; Banavar, Jayanth R.
1992-01-01
We have studied the spreading of liquid drops on a solid surface by molecular-dynamics simulations of coexisting three-phase Lennard-Jones systems of liquid, vapor, and solid. We consider both spherically symmetric atoms and diatomic molecules, and a range of interaction strengths. As the attraction between liquid and solid increases we observe a smooth transition in spreading regimes, from partial to complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with different velocities, the layers are ordered but not solid, with substantial molecular diffusion both within and between layers. The quantitative behavior resembles recent experimental findings, but the detailed dynamics differ. In particular, the layers exhibit an unusual spreading law, where their radii vary in time as R-squared approximately equal to log10t, which disagrees with experiments on polymeric liquids as well as recent calculations.
Solid and liquid Equation of state for initially porous aluminum where specific heat is constant
NASA Astrophysics Data System (ADS)
Forbes, Jerry W.; Lemar, E. R.; Brown, Mary
2011-06-01
A porous solid's initial state is off the thermodynamic surface of the non-porous solid to start with but when pressure is high enough to cause total pore collapse or crush up, then the final states are on the condensed matter thermodynamic surfaces. The Hugoniot for the fully compacted solid is above the Principle Hugoniot with pressure, temperature and internal energy increased at a given v. There are a number of ways to define this hotter Hugoniot, which can be referenced to other thermodynamic paths on this thermodynamic surface. The choice here was to use the Vinet isotherm to define a consistent thermodynamic surface for the solid and melt phase of 6061 aluminum where specific heat is constant for the P-v-T space of interest. Analytical equations are developed for PH and TH.
The major volume /density/ of solid oxygen in equilibrium with vapor
NASA Technical Reports Server (NTRS)
Roder, H. M.
1979-01-01
Data from the literature on the molar volume of solid oxygen have been compiled and critically analyzed. A correlated and thermodynamically consistent set of molar volumes, including the volume changes at the various solid phase transitions, is presented. Evidence for the existence of a delta-solid phase is reviewed. Uncertainties in the data and in the recommended set of values are discussed.
A novel mechanical model for phase-separation in debris flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.
2015-04-01
Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène
2010-05-15
The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.
Urbain, J L; Penninckx, F; Siegel, J A; Vandenborre, P; Van Cutsem, E; Vandenmaegdenbergh, V; De Roo, M
1990-10-01
The role of the distal stomach in gastric emptying was studied. Ten patients with proximal gastric vagotomy (PV) and 10 age-matched patients with Roux-en-Y gastro-jejunostomy (R-Y) were compared with 10 healthy controls. Gastric emptying of solids and liquids was determined by the use of Tc-99m SC scrambled eggs and In-111 DTPA. In PV, gastric emptying of both solids and liquids was delayed; the prolongation with solids was mainly accounted for by an abnormal lag phase. In R-Y patients, no lag phase was observed, and the solid emptying curve pattern was characterized by early rapid emptying followed by very slow emptying. Both the solid and liquid phases were prolonged. The lag phase is affected by proximal vagotomy and is mainly determined by the distal stomach, which appears to be essential for normal emptying.
Subcritical water extraction of lipids from wet algal biomass
Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar
2016-05-03
Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.
Formation and Stability of Pb-Sn Embedded Multiphase Alloy Nanoparticles via Mechanical Alloying
NASA Astrophysics Data System (ADS)
Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu
2015-08-01
The present paper describes the preparation, characterization, and stability of Pb-Sn multiphase alloy nanoparticles embedded in Al matrix via mechanical alloying (MA). MA is a solid-state processing route, which can produce nanocrystalline phases by severely deforming the materials at high strain rate. Therefore, in order to understand the effect of the increasing interface as well as defects on the phase transformation behavior of Pb-Sn nanoparticles, Pb-Sn multiphase nanoparticles have been embedded in Al by MA. The nanoparticles have extensively been characterized using X-ray diffraction and transmission electron microscope. The characterization reveals the formation of biphasic as well as single-phase solid solution nanoparticles embedded in the matrix. The detailed microstructural and differential scanning calorimetry studies indicate that the formation of biphasic nanoparticles is due to size effect, mechanical attrition, and ballistic diffusion of Pb and Sn nanoparticles embedded in Al grains. Thermal characterization data reveal that the heating event consists of the melting peaks due to the multiphase nanoparticles and the peak positions shift to lower temperature with the increase in milling time. The role of interface structure is believed to play a prominent role in determining the phase stability of the nanoparticle. The results are discussed in the light of the existing literature.
Nibu; Suemori; Inoue
1997-07-01
Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to construct and characterize the phase diagram for a binary mixture of heptaethylene glycol decyl ether (C10 E7 ) and water in the temperature range from -60 to 80°C. Plots of the endothermic peak temperatures obtained by DSC measurements against compositions provided eutectic solid-liquid phase boundaries with a eutectic composition of 34 wt% of H2 O. On the other hand, heat of fusion per unit weight of the mixture changed discretely at the composition corresponding to the "eutectic" composition. Furthermore, the IR spectra obtained for the mixture in the solid phase were well reproduced as a superposition of those for the mixture of 34 wt% H2 O and pure components but were not reproduced by superimposing the spectra obtained for the solid surfactant and ice. These observations indicate that a solid phase compound is formed between C10 E7 and water with a stoichiometry of 1:14 and that the compound and pure components exist as separate phases, rather than the phases separating into surfactant and ice, which would be expected if the C10 E7 /water mixture formed a true eutectic mixture system. It is estimated from the composition corresponding to the phase compounds that two molecules of water per oxyethylene unit are bound to hydrophilic polyoxyethylene chain of C10 E7 to form a hydrated compound.
Interfacial Reaction and Mechanical Properties of Sn-Bi Solder joints
Huang, Ying; Zhang, Zhijie
2017-01-01
Sn-Bi solder with different Bi content can realize a low-to-medium-to-high soldering process. To obtain the effect of Bi content in Sn-Bi solder on the microstructure of solder, interfacial behaviors in solder joints with Cu and the joints strength, five Sn-Bi solders including Sn-5Bi and Sn-15Bi solid solution, Sn-30Bi and Sn-45Bi hypoeutectic and Sn-58Bi eutectic were selected in this work. The microstructure, interfacial reaction under soldering and subsequent aging and the shear properties of Sn-Bi solder joints were studied. Bi content in Sn-Bi solder had an obvious effect on the microstructure and the distribution of Bi phases. Solid solution Sn-Bi solder was composed of the β-Sn phases embedded with fine Bi particles, while hypoeutectic Sn-Bi solder was composed of the primary β-Sn phases and Sn-Bi eutectic structure from networked Sn and Bi phases, and eutectic Sn-Bi solder was mainly composed of a eutectic structure from short striped Sn and Bi phases. During soldering with Cu, the increase on Bi content in Sn-Bi solder slightly increased the interfacial Cu6Sn5 intermetallic compound (IMC)thickness, gradually flattened the IMC morphology, and promoted the accumulation of more Bi atoms to interfacial Cu6Sn5 IMC. During the subsequent aging, the growth rate of the IMC layer at the interface of Sn-Bi solder/Cu rapidly increased from solid solution Sn-Bi solder to hypoeutectic Sn-Bi solder, and then slightly decreased for Sn-58Bi solder joints. The accumulation of Bi atoms at the interface promoted the rapid growth of interfacial Cu6Sn5 IMC layer in hypoeutectic or eutectic Sn-Bi solder through blocking the formation of Cu6Sn5 in solder matrix and the transition from Cu6Sn5 to Cu3Sn. Ball shear tests on Sn-Bi as-soldered joints showed that the increase of Bi content in Sn-Bi deteriorated the shear strength of solder joints. The addition of Bi into Sn solder was also inclined to produce brittle morphology with interfacial fracture, which suggests that the addition of Bi increased the shear resistance strength of Sn-Bi solder. PMID:28792440
2016-04-01
QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID-PHASE EXTRACTION ULTRA-PERFORMANCE...TITLE AND SUBTITLE Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid Chromatography... food matrices. The mixed-mode cation exchange (MCX) sorbent and Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods were used for
Simulation of granular and gas-solid flows using discrete element method
NASA Astrophysics Data System (ADS)
Boyalakuntla, Dhanunjay S.
2003-10-01
In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D fluidized bed simulations have been performed and the results have been shown to satisfactorily compare with those published in the literature. A comprehensive study of the effect of drag correlations on the simulation of fluidized beds has been performed. It has been found that nearly all the drag correlations studied make similar predictions of global quantities such as the time-dependent pressure drop, bubbling frequency and growth. In conclusion, discrete element simulation has been successfully coupled to continuum gas-phase. Though all the results presented in the thesis are two-dimensional, the present implementation is completely three dimensional and can be used to study 3D fluidized beds to aid in better design and understanding. Other industrially important phenomena like particle coating, coal gasification etc., and applications in emerging areas such as nano-particle/fluid mixtures can also be studied through this type of simulation. (Abstract shortened by UMI.)
Borcherdt, Roger D.; Wennerberg, Leif
1985-01-01
The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.
Chimeric Antigen Receptor-Modified T Cells for Solid Tumors: Challenges and Prospects
Guo, Yelei; Wang, Yao; Han, Weidong
2016-01-01
Recent studies have highlighted the successes of chimeric antigen receptor-modified T- (CART-) cell-based therapy for B-cell malignancies, and early phase clinical trials have been launched in recent years. The few published clinical studies of CART cells in solid tumors have addressed safety and feasibility, but the clinical outcome data are limited. Although antitumor effects were confirmed in vitro and in animal models, CART-cell-based therapy still faces several challenges when directed towards solid tumors, and it has been difficult to achieve the desired outcomes in clinical practice. Many studies have struggled to improve the clinical responses to and benefits of CART-cell treatment of solid tumors. In this review, the status quo of CART cells and their clinical applications for solid tumors will be summarized first. Importantly, we will suggest improvements that could increase the therapeutic effectiveness of CART cells for solid tumors and their future clinical applications. These interventions will make treatment with CART cells an effective and routine therapy for solid tumors. PMID:26998495
Impact of the volume of gaseous phase in closed reactors on ANC results and modelling
NASA Astrophysics Data System (ADS)
Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise
2016-04-01
The understanding of the geochemical behavior of polluted solid materials is often challenging and requires huge expenses of time and money. Nevertheless, given the increasing amounts of polluted solid materials and related risks for the environment, it is more and more crucial to understand the leaching of majors and trace metals elements from these matrices. In the designs of methods to quantify pollutant solubilization, the combination of experimental procedures with modeling approaches has recently gained attention. Among usual methods, some rely on the association of ANC and geochemical modeling. ANC experiments - Acid Neutralization Capacity - consists in adding known quantities of acid or base to a mixture of water and contaminated solid materials at a given liquid / solid ratio in closed reactors. Reactors are agitated for 48h and then pH, conductivity, redox potential, carbon, majors and heavy metal solubilized are quantified. However, in most cases, the amounts of matrix and water do not reach the total volume of reactors, leaving some space for air (gaseous phase). Despite this fact, no clear indication is given in standard procedures about the effect of this gaseous phase. Even worse, the gaseous phase is never accounted for when exploiting or modeling ANC data. The gaseous phase may exchange CO2 with the solution, which may, in turn, impact both pH and element release. This study lies within the most general framework for the use of geochemical modeling for the prediction of ANC results for the case of pure phases to real phase assemblages. In this study, we focus on the effect of the gaseous phase on ANC experiments on different mineral phases through geochemical modeling. To do so, we use PHREEQC code to model the evolution of pH and element release (including majors and heavy metals) when several matrices are put in contact with acid or base. We model the following scenarios for the gaseous phase: no gas, contact with the atmosphere (open system) and real reactors conditions (semi-closed systems). The solid phases tested are pure phases (calcite, sulfides, etc.) and synthetic assemblages mimicking complex polluted matrices. The modeling clearly shows that the systems are sensitive to the opening to the atmosphere. If the open system and the system with no gas are entirely different, "real" reactors also differ significantly from the other systems. Apparently, the presence of the gaseous phase in reactors greatly impacts pH and element release. This parameter should be accounted for in ANC experimental procedures and modeling. In addition to this numerical study, experimental results, previously obtained for urban polluted sediments, are analyzed in lights of the findings of the numerical study. This step allows us to strengthen conclusions and to pinpoint at the necessity to account for the gaseous phase when performing and modeling ANC experiments.
Blaesi, Aron H; Saka, Nannaji
2017-11-01
In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.
Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F
2016-01-01
In this work, two analytical methodologies based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were developed for quantification of emerging pollutants identified in sewage sludge after a previous wide-scope screening. The target list included 13 emerging contaminants (EC): thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-aminoantipyrine (4-AA), 4-acetyl aminoantipyrine (4-AAA), 4-formyl aminoantipyrine (4-FAA), venlafaxine and benzoylecgonine. The aqueous and solid phases of the sewage sludge were analyzed making use of Solid-Phase Extraction (SPE) and UltraSonic Extraction (USE) for sample treatment, respectively. The methods were validated at three concentration levels: 0.2, 2 and 20 μg L(-1) for the aqueous phase, and 50, 500 and 2000 μg kg(-1) for the solid phase of the sludge. In general, the method was satisfactorily validated, showing good recoveries (70-120%) and precision (RSD < 20%). Regarding the limit of quantification (LOQ), it was below 0.1 μg L(-1) in the aqueous phase and below 50 μg kg(-1) in the solid phase for the majority of the analytes. The method applicability was tested by analysis of samples from a wider study on degradation of emerging pollutants in sewage sludge under anaerobic digestion. The key benefits of these methodologies are: • SPE and USE are appropriate sample procedures to extract selected emerging contaminants from the aqueous phase of the sewage sludge and the solid residue. • LC-MS/MS is highly suitable for determining emerging contaminants in both sludge phases. • Up to our knowledge, the main metabolites of dipyrone had not been studied before in sewage sludge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Long; Alamillo, Ricardo; Elliott, William A.
Liquid-phase processing of molecules using heterogeneous catalysts – an important strategy for obtaining renewable chemicals sustainably from biomass – involves reactions that occur at solid-liquid interfaces. In glucose isomerization catalyzed by basic faujasite zeolites, the catalytic activity depends strongly on the solvent composition: initially, it declines precipitously when water is mixed with a small amount of the organic co-solvent γ-valerolactone (GVL), then recovers as the GVL content increases. Using solid-state 13C NMR spectroscopy, we observed glucose isomers located inside the zeolite pores directly, and followed their transformations into fructose and mannose in real time. At low GVL concentrations, glucose ismore » depleted in the zeolite pores relative to the liquid phase, while higher GVL concentrations in solution drive glucose inside the pores, resulting in up to a 32 enhancement in the local glucose concentration. Although their populations exchange rapidly, molecules present at the reactive interface experience a significantly different environment from the bulk solution.« less
Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams
NASA Astrophysics Data System (ADS)
Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.
2018-04-01
Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.
NASA Astrophysics Data System (ADS)
Moctezuma, R. E.; Arauz-Lara, J. L.; Donado, F.
2018-04-01
The structure of a two-dimensional magnetic granular system was determined by multifractal and Voronoi polygon analysis for a wide range of particle concentrations. Randomizing of the particle motions are produced by applying to the system a time-dependent sinusoidal magnetic field directed along the vertical direction. Both repulsive and attractive short-range interactions between the particles are induced. A direct observation of such system shows qualitatively that, as particle concentration increases, the structure evolves from being liquid-like at low particle concentrations to solid-like at high concentrations. We observe the formation of clusters which are small and weakly bonded and short-lived at low concentrations. Above a threshold particle concentration, clusters grow larger and are more strongly attached. In the system, one can distinguish the mobile particles from the immobile particles belonging to clusters, they can be considered separately as two different phases, a fluid and a solid. We determined the information entropy of the system as a whole and separately from each phase as particle concentration increases. The distribution of the Voronoi polygon areas are well fitted by a two-parameter gamma distribution and we have found that the regularity factor shows a notable change when pieces of the solid phase start to form. The methods we use here show that they can use even when the system is heterogeneous and they provide information when changes start.
Quantitative tomographic measurements of opaque multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less
NASA Astrophysics Data System (ADS)
Pradhan, S. K.; Dutta, H.
2005-05-01
High-energy ball milling of monoclinic ZrO 2-30 mol% anatase TiO 2 mixture at different durations results in the formation of m-ZrO 2-a-TiO 2 solid solution from which the nucleation of nanocrystalline cubic (c) ZrO 2 polymorphic phase sets in. Post-annealing of 12 h ball-milled sample at different elevated temperatures for 1 h results in almost complete formation of c-ZrO 2 phase. Microstructure of the unmilled, all the ball milled and annealed samples has been characterized by Rietveld's X-ray powder structure refinement method. Particle size, rms lattice strain, change in lattice parameters and phase content of individual phases have been estimated from Rietveld analysis, and are utilized to interpret the results. In course of milling, (1 1 1) of cubic lattice became parallel to ( 1bar 1 1) plane of monoclinic lattice due to the orientation effect and cubic phase may have been formed on the (0 0 1) of the m-ZrO 2-a-TiO 2 solid solution lattice. A comparative study of microstructure and phase transformation kinetics of ZrO 2-10, 20 and 30 mol% a-TiO 2 ball-milled and post-annealed samples reveals that rate of phase transformation m→c-ZrO 2 increases with increasing a-TiO 2 concentration and ∼30 mol% of nanocrystalline c-ZrO 2 phase can be obtained within 4 h of milling time in the presence of 30 mol% of a-TiO 2. The post-annealing treatment at 773, 873 and 973 K for 1 h duration each reveals that rate of c-ZrO 2 formation with increasing temperature is retarded with increasing a-TiO 2 concentration but the amount of c-ZrO 2 becomes almost equal (∼95 mol%) at 973 K. It suggests that almost fully stabilized nanocrystalline c-ZrO 2 can be formed by adding a tetravalent solute to m-ZrO 2.
Pardo, Beatriz; Paz-Ares, Luis; Tabernero, Josep; Ciruelos, Eva; García, Margarita; Salazar, Ramón; López, Ana; Blanco, María; Nieto, Antonio; Jimeno, José; Izquierdo, Miguel Angel; Trigo, José Manuel
2008-02-15
A dose-escalation, phase I study evaluated the safety, pharmacokinetics, and efficacy of a weekly 1-h regimen of kahalalide F, a cyclic depsipeptide isolated from the marine mollusk Elysia rufescens, in adult patients with advanced solid tumors and no standard treatment available. Patients received an i.v. 1-h infusion of kahalalide F once weekly until disease progression or unacceptable toxicity. The starting kahalalide F dose was 266 microg/m(2), and dose escalation proceeded based on the worst toxicity found in the previous cohort. Thirty-eight patients were enrolled at three Spanish institutions and received once-weekly kahalalide F 1-h infusions at doses between 266 and 1,200 microg/m(2). Dose-limiting toxicities consisted of transient grade 3/4 increases in transaminase blood levels. The maximum tolerated dose for this kahalalide F schedule was 800 microg/m(2), and the recommended dose for phase II studies was 650 microg/m(2). No accumulated toxicity was found. One patient with malignant melanoma had unconfirmed partial response, one patient with metastatic lung adenocarcinoma had minor response, and six patients with different types of metastatic solid tumors had stable disease for 2.8 to 12.7 months. The noncompartmental pharmacokinetics of this kahalalide F schedule was linear and showed a narrow distribution and short body residence. The transaminitis associated with kahalalide F was dose dependent. The maximum tolerated dose was 800 microg/m(2). Dose-limiting toxicities with weekly kahalalide F 1-h i.v. infusions were transient grade 3/4 increases in blood transaminase levels, and 650 microg/m(2) was declared the recommended dose for phase II studies. This schedule showed a favorable safety profile and hints of antitumor activity.
A two-phase solid/fluid model for dense granular flows including dilatancy effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys
2016-04-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. We present several numerical tests of two-phase granular flows over sloping topography that are compared to the results of the model proposed by {Pitman and Le} [2005]. In particular, we quantify the role of the fluid and compression/dilatation processes on granular flow velocity field and runout distance. F. Bouchut, E.D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase shallow debris flow model with energy balance, {ESAIM: Math. Modelling Num. Anal.}, 49, 101-140 (2015). F. Bouchut, E. D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase two-layer model for fluidized granular flows with dilatancy effects, {J. Fluid Mech.}, submitted (2016). R.M. Iverson, M. Logan, R.G. LaHusen, M. Berti, The perfect debris flow? Aggregated results from 28 large-scale experiments, {J. Geophys. Res.}, 115, F03005 (2010). R. Jackson, The Dynamics of Fluidized Particles, {Cambridges Monographs on Mechanics} (2000). E.B. Pitman, L. Le, A two-fluid model for avalanche and debris flows, {Phil.Trans. R. Soc. A}, 363, 1573-1601 (2005). S. Roux, F. Radjai, Texture-dependent rigid plastic behaviour, {Proceedings: Physics of Dry Granular Media}, September 1997. (eds. H. J. Herrmann et al.). Kluwer. Cargèse, France, 305-311 (1998).
Lubach, Joseph W; Hau, Jonathan
2018-02-20
To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.
Further insight into the mechanism of heavy metals partitioning in stormwater runoff.
Djukić, Aleksandar; Lekić, Branislava; Rajaković-Ognjanović, Vladana; Veljović, Djordje; Vulić, Tatjana; Djolić, Maja; Naunovic, Zorana; Despotović, Jovan; Prodanović, Dušan
2016-03-01
Various particles and materials, including pollutants, deposited on urban surfaces are washed off by stormwater runoff during rain events. The interactions between the solid and dissolved compounds in stormwater runoff are phenomena of importance for the selection and improvement of optimal stormwater management practices aimed at minimizing pollutant input to receiving waters. The objective of this research was to further investigate the mechanisms responsible for the partitioning of heavy metals (HM) between the solid and liquid phases in urban stormwater runoff. The research involved the collection of samples from urban asphalt surfaces, chemical characterization of the bulk liquid samples, solids separation, particle size distribution fractionation and chemical and physico-chemical characterization of the solid phase particles. The results revealed that a negligible fraction of HM was present in the liquid phase (less than 3% by weight), while there was a strong correlation between the total content of heavy metals and total suspended solids. Examinations of surface morphology and mineralogy revealed that the solid phase particles consist predominantly of natural macroporous materials: alpha quartz (80%), magnetite (11.4%) and silicon diphosphate (8.9%). These materials have a low surface area and do not have significant adsorptive capacity. These materials have a low surface area and do not have significant adsorptive capacity. The presence of HM on the surface of solid particles was not confirmed by scanning electron microscopy and energy dispersive X-ray microanalyses. These findings, along with the results of the liquid phase sample characterization, indicate that the partitioning of HM between the liquid and solid phases in the analyzed samples may be attributed to precipitation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.
1998-09-08
A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.
Method for removing solid particulate material from within liquid fuel injector assemblies
Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.
1998-01-01
A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.
Baggiani, C; Giovannoli, C; Anfossi, L; Tozzi, C
2001-12-14
A molecularly imprinted polymer (MIP) was synthesized using the herbicide 2,4,5-trichlorophenoxyacetic acid as a template, 4-vinylpyridine as an interacting monomer, ethylendimethacrylate as a cross-linker and a methanol-water mixture as a porogen. The binding properties and the selectivity of the polymer towards the template were investigated by frontal and zonal liquid chromatography. The polymer was used as a solid-phase extraction material for the clean-up of the template molecule and some related herbicides (2,4-dichlorophenoxyacetic acid, fenoprop, dichlorprop) from river water samples at a concentration level of ng/ml with quantitative recoveries comparable with those obtained with a traditional C18 reversed-phase column when analyzed by capillary electrophoresis. The results obtained show that the MIP-based approach to the solid-phase extraction is comparable with the more traditional solid-phase extraction with C18 reversed-phase columns in terms of recovery, but it is superior in terms of sample clean-up.
2012-10-01
5e. TASK NUMBER LC90061 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...transduction mechanism based on solid- liquid phase change nanoparticles works for the detection of multiple proteins. A series of metal and alloy...early stage. With the support from DOD-LCRP, we have proved the new signal transduction mechanism based on solid-liquid phase change nanoparticles works
Foaming phenomenon in bench-scale anaerobic digesters.
Siebels, Amanda M; Long, Sharon C
2013-04-01
The Madison Metropolitan Sewerage District (The District) in Madison, Wisconsin has been experiencing seasonal foaming in their anaerobic biosolids digesters, which has occurred from mid-November to late June for the past few years. The exact cause(s) of foaming is unknown. Previous research findings are unclear as to whether applications of advanced anaerobic digestion processes reduce the foaming potential of digesters. The object of this study was to investigate how configurations of thermophilic and acid phase-thermophilic anaerobic digestion would affect foaming at the bench-scale level compared to single stage mesophilic digestion for The District. Bench-scale anaerobic digesters were fed with a 4 to 4.5% by dry weight of solids content blend of waste activated sludge (WAS) and primary sludge from The District. Foaming potential was monitored using Alka-Seltzer and aeration foaming tests. The bench-scale acid phase-thermophilic digester had a higher foaming potential than the bench-scale mesophilic digester. These results indicate that higher temperatures increase the foaming potential of the bench-scale anaerobic digesters. The bench-scale acid phase-thermophilic digesters had a greater percent (approximately 5 to 10%) volatile solids destruction and a greater percent (approximately 5 to 10%) total solids destruction when compared to the bench-scale mesophilic digester. Overall, for the full-scale foaming experienced by The District, it appears that adding an acid phase or switching to thermophilic digestion would not alleviate The District's foaming issues.
Phase equilibria in the UO 2-PuO 2 system under a temperature gradient
NASA Astrophysics Data System (ADS)
Kleykamp, Heiko
2001-04-01
The phase behaviour of U 0.80Pu 0.20O 1.95 was investigated under a steady-state temperature gradient between the solidus and liquidus by a short-time power-to-melt irradiation experiment. The radial U, Pu, Am and O profiles in the fuel pin after redistribution were measured by X-ray microanalysis. During irradiation, an inner fuel melt forms which is separated from the outer solid only by one concentric liquid-solid-phase boundary. The UO 2 concentration increases to 85% and the PuO 2 concentration decreases to 15% on the solid side of the interface. Opposite gradients occur on the liquid side of the interface. The concentration discontinuity is a consequence of the necessary equality of the chemical potentials of UO 2 and PuO 2 on both sides of the phase boundary which corresponds to a 2750°C isotherm. The radial oxygen profile results in an O/(U + Pu) ratio of 2.00 at the fuel surface and 1.92 at the central void of the fuel. The redistribution is caused by the thermal diffusion of oxygen vacancies in the lattice along the temperature gradient. This process is quantified by the heat of transport Q*v which ranges between -10 kJ/mol at the central void and about -230 kJ/mol near the fuel surface.
A review on solid phase extraction of actinides and lanthanides with amide based extractants.
Ansari, Seraj A; Mohapatra, Prasanta K
2017-05-26
Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.
Composite Solid Electrolyte Containing Li+- Conducting Fibers
NASA Technical Reports Server (NTRS)
Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu
2006-01-01
Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.
Zhao, Zong-Yan; Liu, Qing-Lu; Dai, Wen-Wu
2016-08-23
Six BiOX1-xYx (X, Y = F, Cl, Br, and I) solid solutions have been systematically investigated by density functional theory calculations. BiOCl1-xBrx, BiOBr1-xIx, and BiOCl1-xIx solid solutions have very small bowing parameters; as such, some of their properties increase almost linearly with increasing x. For BiOF1-xYx solid solutions, the bowing parameters are very large and it is extremely difficult to fit the related calculated data by a single equation. Consequently, BiOX1-xYx (X, Y = Cl, Br, and I) solid solutions are highly miscible, while BiOF1-xYx (Y = Cl, Br, and I) solid solutions are partially miscible. In other words, BiOF1-xYx solid solutions have miscibility gaps or high miscibility temperature, resulting in phase separation and F/Y inhomogeneity. Comparison and analysis of the calculated results and the related physical-chemical properties with different halogen compositions indicates that the parameters of BiOX1-xYx solid solutions are determined by the differences of the physical-chemical properties of the two halogen compositions. In this way, the large deviation of some BiOX1-xYx solid solutions from Vegard's law observed in experiments can be explained. Moreover, the composition ratio of BiOX1-xYx solid solutions can be measured or monitored using optical measurements.
Anderson, M A; Wachs, T; Henion, J D
1997-02-01
A method based on ionspray liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of reserpine in equine plasma. A comparison was made of the isolation of reserpine from plasma by liquid-liquid extraction and by solid-phase extraction. A structural analog, rescinnamine, was used as the internal standard. The reconstituted extracts were analyzed by ionspray LC/MS/MS in the selected reaction monitoring (SRM) mode. The calibration graph for reserpine extracted from equine plasma obtained using liquid-liquid extraction was linear from 10 to 5000 pg ml-1 and that using solid-phase extraction from 100 to 5000 pg ml-1. The lower level of quantitation (LLQ) using liquid-liquid and solid-phase extraction was 50 and 200 pg ml-1, respectively. The lower level of detection for reserpine by LC/MS/MS was 10 pg ml-1. The intra-assay accuracy did not exceed 13% for liquid-liquid and 12% for solid-phase extraction. The recoveries for the LLQ were 68% for liquid-liquid and 58% for solid-phase extraction.
Recent Approaches Toward Solid Phase Synthesis of β-Lactams
NASA Astrophysics Data System (ADS)
Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb
Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.
A new ferroelectric solid solution system of LaCrO 3-BiCrO 3
NASA Astrophysics Data System (ADS)
Chen, J. I. L.; Kumar, M. Mahesh; Ye, Z.-G.
2004-04-01
A new perovskite solid solution system of (1- x)LaCrO 3- xBiCrO 3 has been prepared by conventional solid-state reaction and sintering processes at 1200°C in a sealed Pt tube or a Bi 2O 3-rich environment. A clean orthorhombic phase of LaCrO 3-type structure is established at room temperature for compositions with 0⩽ x⩽0.35. The relative density, lattice parameters, sintering mechanism, microstructure and ferroelectricity of the compounds are investigated. The substitution of Bi 2O 3 for La 2O 3 is found to decrease the unit cell volume and increase the grain size of the ceramics. The relative density of the ceramics sintered at 1200°C is significantly improved from 40% for LaCrO 3 up to about 90% for La 0.65Bi 0.35CrO 3 through a liquid phase sintering mechanism. The ferroelectricity is revealed in La 1- xBi xCrO 3 with 0.1⩽ x⩽0.35 by dielectric hysteresis loops displayed at 77 K. The remnant polarization is found to increase with increasing Bi 3+ content. The origin of the ferroelectricity is attributed to the structural distortion induced by the stereochemically active Bi 3+ ion on the A site.
Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong
2016-04-15
Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.
The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry
NASA Astrophysics Data System (ADS)
Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire
2017-09-01
In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH3OH), binary (H2O:CH3OH, CH3OH:NH3), and ternary ice analogs (H2O:CH3OH:NH3) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.
Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements
NASA Astrophysics Data System (ADS)
Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun
2016-11-01
It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.
Melting of Simple Solids and the Elementary Excitations of the Communal Entropy
NASA Astrophysics Data System (ADS)
Bongiorno, Angelo
2010-03-01
The melting phase transition of simple solids is addressed through the use of atomistic computer simulations. Three transition metals (Ni, Au, and Pt) and a semiconductor (Si) are considered in this study. Iso-enthalpic molecular dynamics simulations are used to compute caloric curves across the solid-to-liquid phase transition of a periodic crystalline system, to construct the free energy function of the solid and liquid phases, and thus to derive the thermodynamical limit of the melting point, latent heat and entropy of fusion of the material. The computational strategy used in this study yields accurate estimates of melting parameters, it consents to determine the superheating and supercooling temperature limits, and it gives access to the atomistic mechanisms mediating the melting process. In particular, it is found that the melting phase transition in simple solids is driven by exchange steps involving a few atoms and preserving the crystalline structure. These self-diffusion phenomena correspond to the elementary excitations of the communal entropy and, as their rate depends on the local material cohesivity, they mediate both the homogeneous and non-homogeneous melting process in simple solids.
[Determination of lead in edible salt with solid-phase extraction and GFAAS].
Zhao, Xin; Zhou, Shuang; Ma, Lan; Yang, Dajin
2013-01-01
Establishing a method for determination of lead in salt with solid-phase extraction and GFAAS. Salt sample was diluted to a certain volume directly with ammonium acetate, then the sample solution was filtered through the solid phase extraction column which has been pre-activated. Lead ions were retained, and the sodium chloride matrix was removed. After elution, the collected lead ions was determined by graphite furnace atomic absorption spectrometry in 257.4 nm. This method can be used effectively to wipe off the sodium chloride in matrix. The limit of detection was 0.7 microg/kg and the limit of quantification was 2 microg/kg. Solid phase extraction technique can be used effectively to reduce the interference in matrix and improves the accuracy and reproducibility of detection.
Self-healing liquid/solid state battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.
A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrodemore » includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.« less
Groenewold, Gary S; Scott, Jill R; Rae, Catherine
2011-07-04
Recovery of chemical contaminants from fixed surfaces for analysis can be challenging, particularly if it is not possible to acquire a solid sample to be taken to the laboratory. A simple device is described that collects semi-volatile organic compounds from fixed surfaces by creating an enclosed volume over the surface, then generating a modest vacuum. A solid-phase microextraction (SPME) fiber is then inserted into the evacuated volume where it functions to sorb volatilized organic contaminants. The device is based on a syringe modified with a seal that is used to create the vacuum, with a perforable plunger through which the SPME fiber is inserted. The reduced pressure speeds partitioning of the semi-volatile compounds into the gas phase and reduces the boundary layer around the SPME fiber, which enables a fraction of the volatilized organics to partition into the SPME fiber. After sample collection, the SPME fiber is analyzed using conventional gas chromatography/mass spectrometry. The methodology has been used to collect organophosphorus compounds from glass surfaces, to provide a simple test for the functionality of the devices. Thirty minute sampling times (ΔT(vac)) resulted in fractional recovery efficiencies that ranged from 10(-3) to >10(-2), and in absolute terms, collection of low nanograms was demonstrated. Fractional recovery values were positively correlated to the vapor pressure of the compounds being sampled. Fractional recovery also increased with increasing ΔT(vac) and displayed a roughly logarithmic profile, indicating that an operational equilibrium is being approached. Fractional recovery decreased with increasing time between exposure and sampling; however, recordable quantities of the phosphonates could be collected three weeks after exposure. Copyright © 2011 Elsevier B.V. All rights reserved.
A method of solid-solid phase equilibrium calculation by molecular dynamics
NASA Astrophysics Data System (ADS)
Karavaev, A. V.; Dremov, V. V.
2016-12-01
A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.
NASA Astrophysics Data System (ADS)
Xi, Wen; Song, Xiaoqing; Hu, Shi; Chen, Zheng
2017-11-01
In this work, the phase field crystal (PFC) method is used to study the localized solid-state amorphization (SSA) and its dynamic transformation process in polycrystalline materials under the uniaxial tensile deformation with different factors. The impacts of these factors, including strain rates, temperatures and grain sizes, are analyzed. Kinetically, the ultra-high strain rate causes the lattice to be seriously distorted and the grain to gradually collapse, so the dislocation density rises remarkably. Therefore, localized SSA occurs. Thermodynamically, as high temperature increases the activation energy, the atoms are active and prefer to leave the original position, which induce atom rearrangement. Furthermore, small grain size increases the percentage of grain boundary and the interface free energy of the system. As a result, Helmholtz free energy increases. The dislocations and Helmholtz free energy act as the seed and driving force for the process of the localized SSA. Also, the critical diffusion-time step and the percentage of amorphous region areas are calculated. Through this work, the PFC method is proved to be an effective means to study localized SSA under uniaxial tensile deformation.
Xi, Wen; Song, Xiaoqing; Hu, Shi; Chen, Zheng
2017-11-29
In this work, the phase field crystal (PFC) method is used to study the localized solid-state amorphization (SSA) and its dynamic transformation process in polycrystalline materials under the uniaxial tensile deformation with different factors. The impacts of these factors, including strain rates, temperatures and grain sizes, are analyzed. Kinetically, the ultra-high strain rate causes the lattice to be seriously distorted and the grain to gradually collapse, so the dislocation density rises remarkably. Therefore, localized SSA occurs. Thermodynamically, as high temperature increases the activation energy, the atoms are active and prefer to leave the original position, which induce atom rearrangement. Furthermore, small grain size increases the percentage of grain boundary and the interface free energy of the system. As a result, Helmholtz free energy increases. The dislocations and Helmholtz free energy act as the seed and driving force for the process of the localized SSA. Also, the critical diffusion-time step and the percentage of amorphous region areas are calculated. Through this work, the PFC method is proved to be an effective means to study localized SSA under uniaxial tensile deformation.
Space shuttle holddown post blast shield
NASA Technical Reports Server (NTRS)
Larracas, F. B.
1991-01-01
The original and subsequent designs of the Solid Rocket Booster/Holddown Post blast shield assemblies and their associated hardware are described. It presents the major problems encountered during their early use in the Space Shuttle Program, during the Return-to-Flight Modification Phase, and during their fabrication and validation testing phases. The actions taken to correct the problems are discussed, along with the various concepts now being considered to increase the useful life of the blast shield.
Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F
2012-04-07
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.
Interdiffusion and Intrinsic Diffusion in the Mg-Al System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho
2012-01-01
Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electronmore » microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al3Mg2 phase.« less
Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D
2013-11-01
Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.
2016-06-01
A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.
NASA Astrophysics Data System (ADS)
Warshavsky, Vadim B.; Ford, David M.; Monson, Peter A.
2018-01-01
The stability of the body-centered cubic (bcc) solid phase of classical hard spheres is of intrinsic interest and is also relevant to the development of perturbation theories for bcc solids of other model systems. Using canonical ensemble Monte Carlo, we simulated systems initialized in a perfect bcc lattice at various densities in the solid region. We observed that the systems rapidly evolved into one of four structures that then persisted for the duration of the simulation. Remarkably, one of these structures was identified as cI16, a cubic crystalline structure with 16 particles in the unit cell, which has recently been observed experimentally in lithium and sodium solids at high pressures. The other three structures do not exhibit crystalline order but are characterized by common patterns in the radial distribution function and bond-orientational order parameter distribution; we refer to them as bcc-di, with i ranging from 1 to 3. We found similar outcomes when employing any of the three single occupancy cell (SOC) restrictions commonly used in the literature. We also ran long constant-pressure simulations with box shape fluctuations initiated from bcc and cI16 initial configurations. At lower pressures, all the systems evolved to defective face-centered cubic (fcc) or hexagonal close-packed (hcp) structures. At higher pressures, most of the systems initiated as bcc evolved to cI16 with some evolving to defective fcc/hcp. High pressure systems initiated from cI16 remained in that structure. We computed the chemical potential of cI16 using the Einstein crystal reference method and found that it is higher than that of fcc by ˜0.5kT-2.5kT over the pressure range studied, with the difference increasing with pressure. We find that the undistorted bcc solid, even with constant-volume and SOC restrictions applied, is so mechanically unstable that it is unsuitable for consideration as a metastable phase or as a reference system for studying bcc phases of other systems. On the other hand, cI16 is a mechanically stable structure that can spontaneously emerge from a bcc starting point but it is thermodynamically metastable relative to fcc or hcp.
Cao, Wudi; Wang, Yanting; Saielli, Giacomo
2018-01-11
We simulate the heating process of ionic liquids [C n Mim][NO 3 ] (n = 4, 6, 8, 10, 12), abbreviated as C n , by means of molecular dynamics (MD) simulation starting from a manually constructed triclinic crystal structure composed of polar layers containing anions and cationic head groups and nonpolar regions in between containing cationic alkyl side chains. During the heating process starting from 200 K, each system undergoes first a solid-solid phase transition at a lower temperature, and then a melting phase transition at a higher temperature to an isotropic liquid state (C 4 , C 6 , and C 8 ) or to a liquid crystal state (C 10 and C 12 ). After the solid-solid phase transition, all systems keep the triclinic space symmetry, but have a different set of lattice constants. C 4 has a more significant structural change in the nonpolar regions which narrows the layer spacing, while the layer spacings of other systems change little, which can be qualitatively understood by considering that the contribution of the effective van der Waals interaction in the nonpolar regions (abbreviated as EF1) to free energy becomes stronger with increasing side-chain length, and at the same time the contribution of the effective electrostatic interaction in the polar layers (abbreviated as EF2) to free energy remains almost the same. The melting phase transitions of all systems except C 6 are found to be a two-step process with an intermediate metastable state appeared during the melting from the crystal state to the liquid or liquid crystal state. Because the contribution of EF2 to the free energy is larger than EF1, the metastable state of C 4 has the feature of having higher ordered polar layers and lower ordered side-chain orientation. By contrast, C 8 -C 12 have the feature of having lower ordered polar layers and higher ordered side-chain orientation, because for these systems, the contribution of EF2 to the free energy is smaller than EF1. No metastable state is found for C 6 because the free-energy contribution of EF1 is balanced with EF2.
NASA Astrophysics Data System (ADS)
Lee, Hanjie; Pearlstein, Arne J.
2000-09-01
We present steady axisymmetric computations of solute distributions and radial segregation for vertical Bridgman growth of pyridine-doped benzene, a binary aromatic system with anisotropic solid-phase thermal conductivity, that serves as a model of solute transport in crystal growth of organic nonlinear optical materials. The radial variation of solid-phase mass fraction ( Cs) of pyridine, which is rejected at the growing interface, depends strongly on growth conditions. High growth velocities tend to increase Cs near the centerline, the ampoule wall, or both, and low growth velocities give more nearly uniform radial distributions. The maximum ampoule-wall temperature gradient also affects radial segregation, with convex-to-the-liquid interfaces at small temperature gradients being associated with radially monotonic Cs distributions, and ridged interfaces at higher gradients being associated with nonmonotonic distributions having maxima at the centerline and ampoule wall. Nonuniformity is strongly determined by both interface shape and the nature of the flow near the interface. Solute is transported down to the interface by a large toroidal vortex, and swept radially inward to the centerline by a second, flattened toroidal cell. When the interface is depressed at its junction with the ampoule wall, rejected solute accumulates in the overlying liquid, where convection is relatively weak, resulting in local solute enrichment of the solid. Computations at normal and zero gravity show that for two very similar interface shapes, a maximum in the radial solid-phase solute distribution at the ampoule wall is associated with the interface shape, while the maximum on the centerline is associated with sweeping of solute to the centerline by a vortical flow on the interface. We also show that radial solute segregation depends significantly on whether account is taken of the anisotropy of the solid-phase thermal conductivity. Finally, the computations provide guidance as to the minimum ampoule length required to produce an axially uniform solute distribution over at least part of the length of a boule.
Kováčik, Andrej; Vogel, Alexander; Adler, Juliane; Pullmannová, Petra; Vávrová, Kateřina; Huster, Daniel
2018-05-01
In this work, we studied model stratum corneum lipid mixtures composed of the hydroxylated skin ceramides N-lignoceroyl 6-hydroxysphingosine (Cer[NH]) and α-hydroxylignoceroyl phytosphingosine (Cer[AP]). Two model skin lipid mixtures of the composition Cer[NH] or Cer[AP], N-lignoceroyl sphingosine (Cer[NS]), lignoceric acid (C24:0) and cholesterol in a 0.5:0.5:1:1 molar ratio were compared. Model membranes were investigated by differential scanning calorimetry and 2 H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Each component of the model mixture was specifically deuterated for selective detection by 2 H NMR. Thus, the exact phase composition of the mixture at varying temperatures could be quantified. Moreover, using X-ray powder diffraction we investigated the lamellar phase formation. From the solid-state NMR and DSC studies, we found that both hydroxylated Cer[NH] and Cer[AP] exhibit a similar phase behavior. At physiological skin temperature of 32 °C, the lipids form a crystalline (orthorhombic) phase. With increasing temperature, most of the lipids become fluid and form a liquid-crystalline phase, which converts to the isotropic phase at higher temperatures (65-80 °C). Interestingly, lignoceric acid in the Cer[NH]-containing mixture has a tendency to form two types of fluid phases at 65 °C. This tendency was also observed in Cer[AP]-containing membranes at 80 °C. While Cer[AP]-containing lipid models formed a short periodicity phase featuring a repeat spacing of d = 5.4 nm, in the Cer[NH]-based model skin lipid membranes, the formation of unusual long periodicity phase with a repeat spacing of d = 10.7 nm was observed. Copyright © 2018 Elsevier B.V. All rights reserved.
Formulation of poorly water-soluble drugs via coacervation--a pilot study using febantel.
De Jaeghere, W; De Geest, B G; Van Bocxlaer, J; Remon, J P; Vervaet, C; Antunes da Fonseca, A
2013-11-01
In this study, febantel was dissolved under increased temperature in a nonionic surfactant Lutrol L44® and subsequently mixed into an aqueous maltodextrin solution. After 8h under static conditions, coacervation or phase separation took place. (1)H NMR spectra and HPLC analysis showed that the upper phase contained mainly all febantel, while no febantel was detected in the lower phase. Fluorescent microscopy showed that maltodextrin is distributed in the lower phase. Coacervation proved to be a promising formulation technology for certain poorly water-soluble drugs, such as febantel. The coacervate phase showed an increase in in vitro dissolution kinetics, compared to Rintal® granules. These results were confirmed in an in vivo study performed on dogs. Febantel and fenbendazole showed a significant increase in plasma concentration compared to Rintal® granules. Further studies have to be performed to transform coacervates into a solid dosage form and to prove broad applicability to other poorly soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Investigation on thixojoining to produce hybrid components with intermetallic phase
NASA Astrophysics Data System (ADS)
Seyboldt, Christoph; Liewald, Mathias
2018-05-01
Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.
Chemistry and Evolution of Interstellar Clouds
NASA Technical Reports Server (NTRS)
Wooden, D. H.; Charnley, S. B.; Ehrenfreund, P.
2003-01-01
In this chapter we describe how elements have been and are still being formed in the galaxy and how they are transformed into the reservoir of materials present at the time of formation of our protosolar nebula. We discuss the global cycle of matter, beginning at its formation site in stars, where it is ejected through winds and explosions into the diffuse interstellar medium. In the next stage of the global cycle occurs in cold, dense molecular clouds, where the complexity of molecules and ices increases relative to the diffuse ISM.. When a protostar forms in a dense core within a molecular cloud, it heats the surrounding infalling matter warms and releases molecules from the solid phase into the gas phase in a warm, dense core, sponsoring a rich gas-phase chemistry. Some material from the cold and warm regions within molecular clouds probably survives as interstellar matter in the protostellar disk. For the diffuse ISM, for cold, dense clouds, and for dense-warm cores, the physio-chemical processes that occur within the gas and solid phases are discussed in detail.
Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinerman, Nadezhda M., E-mail: kleinerman@imp.uran.ru; Serikov, Vadim V., E-mail: kleinerman@imp.uran.ru; Vershinin, Aleksandr V., E-mail: kleinerman@imp.uran.ru
2014-10-27
Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to entermore » the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)« less
The current role of on-line extraction approaches in clinical and forensic toxicology.
Mueller, Daniel M
2014-08-01
In today's clinical and forensic toxicological laboratories, automation is of interest because of its ability to optimize processes, to reduce manual workload and handling errors and to minimize exposition to potentially infectious samples. Extraction is usually the most time-consuming step; therefore, automation of this step is reasonable. Currently, from the field of clinical and forensic toxicology, methods using the following on-line extraction techniques have been published: on-line solid-phase extraction, turbulent flow chromatography, solid-phase microextraction, microextraction by packed sorbent, single-drop microextraction and on-line desorption of dried blood spots. Most of these published methods are either single-analyte or multicomponent procedures; methods intended for systematic toxicological analysis are relatively scarce. However, the use of on-line extraction will certainly increase in the near future.
Nanoscopic dynamics of phospholipid in unilamellar vesicles: Effect of gel to fluid phase transition
Sharma, V. K.; Mamontov, E.; Anunciado, D. B.; ...
2015-03-04
Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, amore » sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. Lastly, the data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.« less
Liu, Qing; He, Ya-Ling; Li, Qing
2017-08-01
In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 - 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study.
Mohammadpour, Amir Hooshang; Ramezani, Mohammad; Tavakoli Anaraki, Nasim; Malaekeh-Nikouei, Bizhan; Amel Farzad, Sara; Hosseinzadeh, Hossein
2013-01-01
Objective(s): The present study reports the development and validation of a sensitive and rapid extraction method beside high performance liquid chromatographic method for the determination of crocetin in human serum. Materials and Methods: The HPLC method was carried out by using a C18 reversed-phase column and a mobile phase composed of methanol/water/acetic acid (85:14.5:0.5 v/v/v) at the flow rate of 0.8 ml/min. The UV detector was set at 423 nm and 13-cis retinoic acid was used as the internal standard. Serum samples were pretreated with solid-phase extraction using Bond Elut C18 (200mg) cartridges or with direct precipitation using acetonitrile. Results: The calibration curves were linear over the range of 0.05-1.25 µg/ml for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction. The mean recoveries of crocetin over a concentration range of 0.05-5 µg/ml serum for direct precipitation method and 0.5-5 µg/ml for solid-phase extraction were above 70 % and 60 %, respectively. The intraday coefficients of variation were 0.37- 2.6% for direct precipitation method and 0.64 - 5.43% for solid-phase extraction. The inter day coefficients of variation were 1.69 – 6.03% for direct precipitation method and 5.13-12.74% for solid-phase extraction, respectively. The lower limit of quantification for crocetin was 0.05 µg/ml for direct precipitation method and 0.5 µg/ml for solid-phase extraction. Conclusion: The validated direct precipitation method for HPLC satisfied all of the criteria that were necessary for a bioanalytical method and could reliably quantitate crocetin in human serum for future clinical pharmacokinetic study. PMID:23638292
Fabrication of single domain GdBCO bulk superconductors by a new modified TSIG technique
NASA Astrophysics Data System (ADS)
Yang, W. M.; Zhi, X.; Chen, S. L.; Wang, M.; Li, J. W.; Ma, J.; Chao, X. X.
2014-01-01
Single domain GdBCO bulk superconductors have been fabricated with new and traditional solid phases by a top seeded infiltration and growth (TSIG) process technique. In the conventional TSIG process, three types of powders, such as Gd2BaCuO5, GdBa2Cu3O7-x and Ba3Cu5O8, must be prepared, but in our new modified TSIG technique, only BaCuO2 powders are required during the fabrication of the single domain GdBCO bulk superconductors. The solid phase used in the conventional process is Gd2BaCuO5 instead of the solid phase (Gd2O3 + BaCuO2) utilized in the new process. The liquid phase used in the conventional process is a mixture of (GdBa2Cu3O7-x + Ba3Cu5O8), and the liquid phase in the new process is a mixture of (Gd2O3 + 10BaCuO2 + 6CuO). Single domain GdBCO bulk superconductors have been fabricated with the new solid and liquid phases. The levitation force of the GdBCO bulk samples fabricated by the new solid phase is 28 N, which is slightly higher than that of the samples fabricated using the conventional solid phases (26 N). The microstructure and the levitation force of the samples indicate that this new method can greatly simplify the fabrication process, introduce nanometer-sized flux centers, improve the levitation force and working efficiency, and greatly reduce the cost of fabrication of single domain GdBCO bulk superconductors by the TSIG process.
NASA Astrophysics Data System (ADS)
Liu, Qing; He, Ya-Ling; Li, Qing
2017-08-01
In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.
The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations
NASA Astrophysics Data System (ADS)
Azadi, Sam; Foulkes, Matthew
2015-03-01
We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.
Development of a special purpose spacecraft coating, phase 4
NASA Technical Reports Server (NTRS)
Gillman, H. D.
1980-01-01
Coating formulations based on a fluorocarbon resin were evaluated for use on spacecraft exteriors. Formulations modified with an acrylic resin were found to have excellent offgassing properties. A much less expensive process for increasing to solid content of the fluorocarbon latex was developed.
Reforming and decomposition of glucose in an aqueous phase
NASA Technical Reports Server (NTRS)
Amin, S.; Reid, R. C.; Modell, M.
1975-01-01
Exploratory experiments have been carried out to study the decomposition of glucose, a typical carbohydrate, in a high temperature-high pressure water reactor. The objective of the study was to examine the feasibility of such a process to decompose cellulosic waste materials in long-term space missions. At temperatures below the critical point of water, glucose decomposed to form liquid products and char. Little gas was noted with or without reforming catalysts present. The rate of the primary glucose reaction increased significantly with temperature. Partial identification of the liquid phase was made and the C:H:O ratios determined for both the liquid and solid products. One of the more interesting results from this study was the finding that when glucose was injected into a reactor held at the critical temperature (and pressure) of water, no solid products formed. Gas production increased, but the majority of the carbon was found in soluble furans (and furan derivatives). This significant result is now being investigated further.
Thermal stress analysis of sulfur deactivated solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Zeng, Shumao; Parbey, Joseph; Yu, Guangsen; Xu, Min; Li, Tingshuai; Andersson, Martin
2018-03-01
Hydrogen sulfide in fuels can deactivate catalyst for solid oxide fuel cells, which has become one of the most critical challenges to stability. The reactions between sulfur and catalyst will cause phase changes, leading to increase in cell polarization and mechanical mismatch. A three-dimensional computational fluid dynamics (CFD) approach based on the finite element method (FEM) is thus used to investigate the polarization, temperature and thermal stress in a sulfur deactivated SOFC by coupling equations for gas-phase species, heat, momentum, ion and electron transport. The results indicate that sulfur in fuels can strongly affect the cell polarization and thermal stresses, which shows a sharp decrease in the vicinity of electrolyte when 10% nickel in the functional layer is poisoned, but they remain almost unchanged even when the poisoned Ni content was increased to 90%. This investigation is helpful to deeply understand the sulfur poisoning effects and also benefit the material design and optimization of electrode structure to enhance cell performance and lifetimes in various hydrocarbon fuels containing impurities.
Oxidative Dissolution of Arsenopyrite by Mesophilic and Moderately Thermophilic Acidophiles †
Tuovinen, Olli H.; Bhatti, Tariq M.; Bigham, Jerry M.; Hallberg, Kevin B.; Garcia, Oswaldo; Lindström, E. Börje
1994-01-01
The purpose of this work was to determine solution- and solid-phase changes associated with the oxidative leaching of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans and a moderately thermoacidophilic mixed culture. Jarosite [KFe3(SO4)2(OH)6], elemental sulfur (S0), and amorphous ferric arsenate were detected by X-ray diffraction as solid-phase products. The oxidation was not a strongly acid-producing reaction and was accompanied by a relatively low redox level. The X-ray diffraction lines of jarosite increased considerably when ferrous sulfate was used as an additional substrate for T. ferroxidans. A moderately thermoacidophilic mixed culture oxidized arsenopyrite faster at 45°C than did T. ferroxidans at 22°C, and the oxidation was accompanied by a nearly stoichiometric release of Fe and As. The redox potential was initially low but subsequently increased during arsenopyrite oxidation by the thermoacidophiles. Jarosite, S0, and amorphous ferric arsenate were also formed under these conditions. PMID:16349379
Thaler, Florian; Valsasina, Barbara; Baldi, Rosario; Xie, Jin; Stewart, Albert; Isacchi, Antonella; Kalisz, Henryk M; Rusconi, Luisa
2003-06-01
beta-Elimination of the phosphate group on phosphoserine and phosphothreonine residues and addition of an alkyldithiol is a useful tool for analysis of the phosphorylation states of proteins and peptides. We have explored the influence of several conditions on the efficiency of this PO(4)(3-) elimination reaction upon addition of propanedithiol. In addition to the described influence of different bases, the solvent composition was also found to have a major effect on the yield of the reaction. In particular, an increase in the percentage of DMSO enhances the conversion rate, whereas a higher amount of protic polar solvents, such as water or isopropanol, induces the opposite effect. We have also developed a protocol for enrichment of the modified peptides, which is based on solid-phase covalent capture/release with a dithiopyridino-resin. The procedure for beta-elimination and isolation of phosphorylated peptides by solid-phase capture/release was developed with commercially available alpha-casein. Enriched peptide fragments were characterized by MALDI-TOF mass spectrometric analysis before and after alkylation with iodoacetamide, which allowed rapid confirmation of the purposely introduced thiol moiety. Sensitivity studies, carried out in order to determine the detection limit, demonstrated that samples could be detected even in the low picomolar range by mass spectrometry. The developed solid-phase enrichment procedure based on reversible covalent binding of the modified peptides is more effective and significantly simpler than methods based on the interaction between biotin and avidin, which require additional steps such as tagging the modified peptides and work-up of the samples prior to the affinity capture step.
The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content
NASA Astrophysics Data System (ADS)
Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari
2017-07-01
Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.
NASA Astrophysics Data System (ADS)
Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping
2017-09-01
Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.
Preventing gastric sieving by blending a solid/water meal enhances satiation in healthy humans.
Marciani, Luca; Hall, Nicholas; Pritchard, Susan E; Cox, Eleanor F; Totman, John J; Lad, Mita; Hoad, Caroline L; Foster, Tim J; Gowland, Penny A; Spiller, Robin C
2012-07-01
Separation of solids and liquids within the stomach allows faster gastric emptying of liquids compared with solids, a phenomenon known as sieving. We tested the hypothesis that blending a solid and water meal would abolish sieving, preventing the early rapid decrease in gastric volume and thereby enhancing satiety. We carried out 2 separate studies. Study 1 was a 2-way, crossover, satiety study of 22 healthy volunteers who consumed roasted chicken and vegetables with a glass of water (1008 kJ) or the same blended to a soup. They completed satiety visual analogue scales at intervals for 3 h. Study 2 was a 2-way, crossover, mechanistic study of 18 volunteers who consumed the same meals and underwent an MRI to assess gastric emptying, gallbladder contraction, and small bowel water content (SBWC) at intervals for 3 h. In Study 1, the soup meal was associated with reduced hunger (P = 0.02). In Study 2, the volume of the gastric contents after the soup meal decreased more slowly than after the solid/liquid meal (P = 0.0003). The soup meal caused greater gallbladder contraction (P < 0.04). SBWC showed a biphasic response with an initial "gastric" phase during which SBWC was greater when the solid/liquid meal was consumed (P < 0.001) and a later "small bowel" phase when SBWC was greater when the soup meal was consumed (P < 0.01). Blending the solid/liquid meal to a soup delayed gastric emptying and increased the hormonal response to feeding, which may contribute to enhanced postprandial satiety.
Kasapis, Stefan
2008-04-01
Phase separation in protein and polysaccharide gels remains one of the basic tools of achieving the required structural properties and textural profile in food product formulations. As ever, the industrialist is faced with the challenge of innovation in an increasingly competitive market in terms of ingredient cost, product added-value, and expectations of a healthy life-style to mention but a few. It appears, however, that a gap persists between the fundamental knowledge and a direct application to food related concepts with a growing need for scientific input. Furthermore, within the context of materials science, there is a tendency to examine research findings in either low- or high-solid systems without considering synergistic insights/benefits to contemporary needs, spanning the full range of relevant time-, length-, and concentration scales. This review highlights the latest attempts made to utilize and further develop fundamental protocols from the advanced synthetic polymer research as a source of inspiration for contemporary bio-related applications in low- and intermediate-solid composite gels. Then, it takes advantage of this school of thought to "force a passage" through the phase topology and molecular dynamics of binary biopolymer mixtures at high levels of co-solute. It is hoped that these phenomenological and fundamental tools should be able to bridge the divide in the analysis of the two "types" of composite materials (from low to high solids) thus dealing effectively with the specific and often intricate problems of their science and applications.
Lorenzo, María; Campo, Julián; Picó, Yolanda
2018-03-22
A solid-liquid extraction method in combination with high-performance liquid chromatography and tandem mass spectrometry was developed and optimized for extraction and analysis of organophosphorus flame retardants in soil and fish. Methanol was chosen as the optimum extraction solvent, not only in terms of extraction efficiency, but also for its broader analyte coverage. The subsequent clean-up by solid-phase extraction is required to eliminate matrix coextractives and reduce matrix effects. Recoveries of the optimized method were 50-121% for soil and 47-123% for biota, both with high precision (RSDs <12% in soil and <23% in biota). The method limits of detection ranged from 0.06 to 0.20 ng/g dry weight and between 0.02 and 0.30 ng/g wet weight for soil and biota samples, respectively. However, samples with a high lipid content produce several problems as solid-phase extraction cartridge clogging that increase variability and analysis time. The method was successfully applied for the determination of organophosphorus flame retardants in soil and fish from L'Albufera Natural Park (Valencia, Spain). Target compounds were detected in all soil and fish samples with values varying from 13.8 to 89.7 ng/g dry weight and from 3.3 to 53.0 ng/g wet weight, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lei; Ding, Xiangdong, E-mail: dingxd@mail.xjtu.edu.cn, E-mail: ekhard@esc.cam.ac.uk; Sun, Jun
2016-07-18
The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ωmore » transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.« less
Microbial Mercury Cycling in Sediments of the San Francisco Bay-Delta
Marvin-DiPasquale, M.; Agee, J.L.
2003-01-01
Microbial mercury (Hg) methylation and methylmercury (MeHg) degradation processes were examined using radiolabled model Hg compounds in San Francisco Bay-Delta surface sediments during three seasonal periods: late winter, spring, and fall. Strong seasonal and spatial differences were evident for both processes. MeHg production rates were positively correlated with microbial sulfate reduction rates during late winter only. MeHg production potential was also greatest during this period and decreased during spring and fall. This temporal trend was related both to an increase in gross MeHg degradation, driven by increasing temperature, and to a build-up in pore water sulfide and solid phase reduced sulfur driven by increased sulfate reduction during the warmer seasons. MeHg production decreased sharply with depth at two of three sites, both of which exhibited a corresponding increase in reduced sulfur compounds with depth. One site that was comparatively oxidized and alkaline exhibited little propensity for net MeHg production. These results support the hypothesis that net MeHg production is greatest when and where gross MeHg degradation rates are low and dissolved and solid phase reduced sulfur concentrations are low.
Microbial mercury cycling in sediments of the San Francisco Bay-Delta
Marvin-DiPasquale, Mark; Agee, Jennifer L.
2003-01-01
Microbial mercury (Hg) methylation and methylmercury (MeHg) degradation processes were examined using radiolabled model Hg compounds in San Francisco Bay-Delta surface sediments during three seasonal periods: late winter, spring, and fall. Strong seasonal and spatial differences were evident for both processes. MeHg production rates were positively correlated with microbial sulfate reduction rates during late winter only. MeHg production potential was also greatest during this period and decreased during spring and fall. This temporal trend was related both to an increase in gross MeHg degradation, driven by increasing temperature, and to a build-up in pore water sulfide and solid phase reduced sulfur driven by increased sulfate reduction during the warmer seasons. MeHg production decreased sharply with depth at two of three sites, both of which exhibited a corresponding increase in reduced sulfur compounds with depth. One site that was comparatively oxidized and alkaline exhibited little propensity for net MeHg production. These results support the hypothesis that net MeHg production is greatest when and where gross MeHg degradation rates are low and dissolved and solid phase reduced sulfur concentrations are low.
Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko
2016-04-01
Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.
Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun
2017-02-01
Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The analysis of magnesium oxide hydration in three-phase reaction system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xiaojia; Guo, Lin; Chen, Chen
In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phasemore » system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.« less
Microwave impregnation of porous materials with thermal energy storage materials
Benson, David K.; Burrows, Richard W.
1993-01-01
A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.
Microwave impregnation of porous materials with thermal energy storage materials
Benson, D.K.; Burrows, R.W.
1993-04-13
A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.
Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash
NASA Astrophysics Data System (ADS)
Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming
2014-04-01
In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.
Li, Ji; Hu, Xiaoling; Guan, Ping; Zhang, Xiaoyan; Qian, Liwei; Zhang, Nan; Du, Chunbao; Song, Renyuan
2016-05-01
A novel l-phenylalanine molecularly imprinted solid-phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion-pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid-phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l-phenylalanine. Under the optimized conditions of the procedure, an analytical method for l-phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse-phase silica gel, the obtained molecularly imprinted polymer as an solid-phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L(-1) ) for the isolation of l-phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion-pair dummy template imprinting is effective for preparing selective solid-phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira
2016-01-01
High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3–99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144
Okamoto-Uchida, Yoshimi; Nakamura, Ryosuke; Matsuzawa, Yumiko; Soma, Megumi; Kawakami, Hiroshi; Ishii-Watabe, Akiko; Nishimaki-Mogami, Tomoko; Teshima, Reiko; Saito, Yoshiro
2016-01-01
The physicochemical nature of allergen molecules differ from the liquid phase to the solid phase. However, conventional allergy tests are based on the detection of immunoglobulin (Ig)E binding to immobilized allergens. We recently developed an in vitro allergy testing method using a luciferase-reporting humanized rat mast cell line to detect IgE crosslinking-induced luciferase expression (EXiLE test). The aim of the present study was to evaluate the effects of antigen immobilization on the results of different in vitro allergy tests using two anti-ovalbumin (OVA) antibodies (Abs), E-C1 and E-G5, with different properties in the OVA-induced allergic reaction. Both Abs showed clear binding to OVA with an enzyme-linked immunosorbent assay and by BIAcore analysis. However, only E-C1 potentiated EXiLE response for the liquid-phase OVA. On the other hand, OVA immobilized on solid-phase induced EXiLE responses in both E-C1 Ab- and E-G5 Ab-sensitized mast cells. Western blotting of OVA indicated that E-C1 Ab binds both to OVA monomers and dimers, unlike E-G5 Ab, which probably binds only to the OVA dimer. These results suggest that antigen immobilization enhanced IgE crosslinking ability through multimerization of allergen molecules in the solid phase, resulting in an increase in false positives in IgE binding-based conventional in vitro allergy tests. These findings shed light on the physicochemical nature of antigens as an important factor for the development and evaluation of in vitro allergy tests and suggest that mast cell activation-based allergy testing with liquid-phase allergens is a promising strategy to evaluate the physiological interactions of IgE and allergens.
Latent heat of vehicular motion
NASA Astrophysics Data System (ADS)
Ahmadi, Farzad; Berrier, Austin; Habibi, Mohammad; Boreyko, Jonathan
2016-11-01
We have used the thermodynamic concept of latent heat, where a system loses energy due to a solid-to-liquid phase transition, to study the flow of a group of vehicles moving from rest. During traffic flow, drivers keep a large distance from the car in front of them to ensure safe driving. When a group of cars comes to a stop, for example at a red light, drivers voluntarily induce a "phase transition" from this "liquid phase" to a close-packed "solid phase." This phase transition is motivated by the intuition that maximizing displacement before stopping will minimize the overall travel time. To test the effects of latent heat on flow efficiency, a drone captured the dynamics of cars flowing through an intersection on a Smart Road where the initial spacing between cars at the red light was systematically varied. By correlating the experimental results with the Optimal Velocity Model (OVM), we find that the convention of inducing phase transitions at intersections offers no benefit, as the lag time (latent heat) of resumed flow offsets the initial increase in displacement. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to maximize safety with no loss in flow efficiency.
CCCT - NCTN Steering Committees - Pediatric and Adolescent Tumor
The Pediatric and Adolescent Solid Tumor Steering Committee addresses the design, prioritization and evaluation of concepts for large phase 2 and phase 3 clinical trials in extracranial solid tumors of children and youth.
A novel approach to model the transient behavior of solid-oxide fuel cell stacks
NASA Astrophysics Data System (ADS)
Menon, Vikram; Janardhanan, Vinod M.; Tischer, Steffen; Deutschmann, Olaf
2012-09-01
This paper presents a novel approach to model the transient behavior of solid-oxide fuel cell (SOFC) stacks in two and three dimensions. A hierarchical model is developed by decoupling the temperature of the solid phase from the fluid phase. The solution of the temperature field is considered as an elliptic problem, while each channel within the stack is modeled as a marching problem. This paper presents the numerical model and cluster algorithm for coupling between the solid phase and fluid phase. For demonstration purposes, results are presented for a stack operated on pre-reformed hydrocarbon fuel. Transient response to load changes is studied by introducing step changes in cell potential and current. Furthermore, the effect of boundary conditions and stack materials on response time and internal temperature distribution is investigated.
Microbial diversity and dynamics during methane production from municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu; Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706; Wolfe, Georgia L., E-mail: gwolfe@wisc.edu
2013-10-15
Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing ofmore » 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.« less
NASA Astrophysics Data System (ADS)
Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshapande, S. K.; Angadi, Basavaraj
2018-05-01
In this paper the structural and low temperature dielectric properties of Pb0.8Bi0.2Fe0.6Nb0.4O3 (PBFNO) multiferroic solid solution were reported. PBFNO multiferroic was synthesized by single step solid state reaction method. Calcination was carried out at 700 °/2hr with different sintering temperature (800 °C, 850 °C, 900 °C, 950 °C, 1000 °C and 1050 °C for 1 hr) and time duration (800 °C for 1 to 5 hr). Single phase was confirmed through room temperature (RT) X-ray Diffraction (XRD). It was found that sintering carried out at 800°C/3 hr gives single phase. Rietveld refined lattice parameters using monoclinic structure are: a = 5.6663(1) Å, b = 5.6694(1) Å, c = 4.0112(1) Å and β = 90.038(1)° with the average grain size as 2.987 µm. The dielectric properties studied over a wide range of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K). Dielectric constant and loss tangent exhibits frequency dispersion nature at low frequency region. AC conductivity increases with increase in temperature corresponds to negative temperature coefficient of resistance (NTCR) behaviour.
ERIC Educational Resources Information Center
Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.
2017-01-01
A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…
Sun, Dajun D; Lee, Ping I
2013-11-04
The combination of a rapidly dissolving and supersaturating "spring" with a precipitation retarding "parachute" has often been pursued as an effective formulation strategy for amorphous solid dispersions (ASDs) to enhance the rate and extent of oral absorption. However, the interplay between these two rate processes in achieving and maintaining supersaturation remains inadequately understood, and the effect of rate of supersaturation buildup on the overall time evolution of supersaturation during the dissolution of amorphous solids has not been explored. The objective of this study is to investigate the effect of supersaturation generation rate on the resulting kinetic solubility profiles of amorphous pharmaceuticals and to delineate the evolution of supersaturation from a mechanistic viewpoint. Experimental concentration-time curves under varying rates of supersaturation generation and recrystallization for model drugs, indomethacin (IND), naproxen (NAP) and piroxicam (PIR), were generated from infusing dissolved drug (e.g., in ethanol) into the dissolution medium and compared with that predicted from a comprehensive mechanistic model based on the classical nucleation theory taking into account both the particle growth and ripening processes. In the absence of any dissolved polymer to inhibit drug precipitation, both our experimental and predicted results show that the maximum achievable supersaturation (i.e., kinetic solubility) of the amorphous solids increases, the time to reach maximum decreases, and the rate of concentration decline in the de-supersaturation phase increases, with increasing rate of supersaturation generation (i.e., dissolution rate). Our mechanistic model also predicts the existence of an optimal supersaturation rate which maximizes the area under the curve (AUC) of the kinetic solubility concentration-time profile, which agrees well with experimental data. In the presence of a dissolved polymer from ASD dissolution, these observed trends also hold true except the de-supersaturation phase is more extended due to the crystallization inhibition effect. Since the observed kinetic solubility of nonequilibrium amorphous solids depends on the rate of supersaturation generation, our results also highlight the underlying difficulty in determining a reproducible solubility advantage for amorphous solids.
NASA Astrophysics Data System (ADS)
Torchet, G.; Farges, J.; de Feraudy, M. F.; Raoult, B.
Clusters are produced during the free jet expansion of gaseous CH4, CO2 or H2O. For a given stagnation temperature To, the mean cluster size is easily increased by increasing the stagnation pressure p0. On the other hand, the cluster temperature does not depend on stagnation conditions but mainly on properties of the condensed gas. An electron diffraction analysis provides information about the cluster structure. Depending on whether the diffraction patterns exhibit crystalline lines or not, the structure is worked out either by using crystallographic methods or by constructing cluster models. When they contain more than a few thousand molecules, clusters show a crystalline structure identical to that of one phase, namely, the cubic phase, known in bulk solid: plastic phase (CH4), unique solid phase (CO2) or metastable cubic phase (H2O). When decreasing the cluster size, the studied compounds behave quite differently: CO2 clusters keep the same crystalline structure, CH4 clusters show the multilayer icosahedral structure wich has been found in rare gas clusters, and H2O clusters adopt a disordered structure different from the amorphous structures of bulk ice. Des agrégats sont produits au cours de la détente en jet libre des gaz CH4, CO2 ou H2O. Pour une température initiale donnée To, on accroît facilement la taille moyenne des agrégats en augmentant la pression initiale po . Par contre, la température des agrégats dépend principalement des propriétés du gaz condensé. Une analyse par diffraction électronique permet l'étude de la structure des agrégats. Selon que les diagrammes de diffraction contiennent ou non des raies cristallines, on a recours soit à des méthodes cristallographiques soit à la construction de modèles d'agrégats. Lorsqu'ils renferment plus de quelques milliers de molécules, les agrégats adoptent la structure cristalline de l'une des phases connues du solide massif et plus précisément la phase cubique : phase plastique pour CH4, phase solide unique pour CO2 ou phase cubique métastable pour H2O. Lorsque la taille des agrégats décroît, leurs comportements se révèlent très différents selon les molécules étudiées : les agrégats de CO2 conservent la même structure cristalline, les agrégats de CH4 adoptent la structure icosaédrique multicouche trouvée pour les agrégats de gaz rares, et les agrégats de glace adoptent une structure désordonnée différente des structures amorphes de la glace massive.
Heterogeneous fuel for hybrid rocket
NASA Technical Reports Server (NTRS)
Stickler, David B. (Inventor)
1996-01-01
Heterogeneous fuel compositions suitable for use in hybrid rocket engines and solid-fuel ramjet engines, The compositions include mixtures of a continuous phase, which forms a solid matrix, and a dispersed phase permanently distributed therein. The dispersed phase or the matrix vaporizes (or melts) and disperses into the gas flow much more rapidly than the other, creating depressions, voids and bumps within and on the surface of the remaining bulk material that continuously roughen its surface, This effect substantially enhances heat transfer from the combusting gas flow to the fuel surface, producing a correspondingly high burning rate, The dispersed phase may include solid particles, entrained liquid droplets, or gas-phase voids having dimensions roughly similar to the displacement scale height of the gas-flow boundary layer generated during combustion.
NASA Astrophysics Data System (ADS)
Kolchanova, Kseniia; Barsova, Natalia; Motuzova, Galina; Stepanov, Andrey; Karpukhin, Mikhail
2017-04-01
The aim of this study was to investigate the forms of copper and transformation of organic matter in the soil under the influence of humic substances (potassium humate, which was obtained from coal). The object of research was the top layer of soil model field experience. Field experiments were carried out in 10-liter plastic containers.The upper layers were constructed artificially as mixture of loam, sand and peat. Below it was a layer of loam, then gravel and under it we installed lysimeters. The experiment was conducted in 3 settings: 1) control, 2) control + Cu, and 3) control + Cu + potassium humate . Copper was deposited into upper layer at soil column construction as dry powder (CuSO4*5H2O), which is 1000mg per kg. Humic substance was introduced on surface as liquid form. The focus was the state of the copper and organic matter of solid and liquid phase. In the solid phase pH, carbon content, the molecular-mass distributions for the organic matter, total (HNO3 conc.+ H2O2; decomposition in a microwave oven) and acid-soluble (1H HNO3) copper content, sequential extraction of copper (1 M MgCl2, acetate buffer pH 4,8 (AAB), 1% EDTA) were determined. For liquid phase characteristics aqueous extract was obtained and identified therein: pH, total activity and copper content and water-soluble organic matter(WOM) amphiphilic properties. The introduction of copper is accompanied by a decrease in pH in soils from 7 to 6,3. The introduction of the humic substance softens this effect. Introducing humic preparation gives an increase in carbon at 0.5%. HS and copper has no significant effect on the molecular-mass distribution of solid organic matter. Only about 4% introduced copper accounted for the exchangeable form (MgCl2) for the variant only copper contaminated. Copper, mainly precipitated as hydroxides, moved in an AAB extract. And compared with the exchangeable forms its quantity increases by 10 times. Still more copper goes into an extract of EDTA, about half of the total. That is, the introduction of humic substances increases the amount of copper associated with organic matter in complexes with high stability constants. The total amount of copper of the results of extraction is 88-96% of the all total content. Water-soluble copper contains only 0.5% of the total. But the introduction of humic substances increases the amount of water-soluble copper is 3 times. This is due to the increase in the content of the WOM by 2.5-3 times, both due to the hydrophobic and hydrophilic factions of WOM. And this leads to a sharp reduction in the activity of copper in the liquid phase. Dual effect of introducing humic substances was obtained on the results of the work. On the one hand the introduction of humic substances contributes the immobilization of copper by increasing the fraction associated with organic matter in the solid phase. On the other hand the introduction of humic substances contributes the mobilization of copper in the liquid phase due to the increase of WOM.
Melting curve of SiO2 at multimegabar pressures: implications for gas giants and super-Earths.
González-Cataldo, Felipe; Davis, Sergio; Gutiérrez, Gonzalo
2016-05-23
Ultrahigh-pressure phase boundary between solid and liquid SiO2 is still quite unclear. Here we present predictions of silica melting curve for the multimegabar pressure regime, as obtained from first principles molecular dynamics simulations. We calculate the melting temperatures from three high pressure phases of silica (pyrite-, cotunnite-, and Fe2P-type SiO2) at different pressures using the Z method. The computed melting curve is found to rise abruptly around 330 GPa, an increase not previously reported by any melting simulations. This is in close agreement with recent experiments reporting the α-PbO2-pyrite transition around this pressure. The predicted phase diagram indicates that silica could be one of the dominant components of the rocky cores of gas giants, as it remains solid at the core of our Solar System's gas giants. These results are also relevant to model the interior structure and evolution of massive super-Earths.
Melting curve of SiO2 at multimegabar pressures: implications for gas giants and super-Earths
González-Cataldo, Felipe; Davis, Sergio; Gutiérrez, Gonzalo
2016-01-01
Ultrahigh-pressure phase boundary between solid and liquid SiO2 is still quite unclear. Here we present predictions of silica melting curve for the multimegabar pressure regime, as obtained from first principles molecular dynamics simulations. We calculate the melting temperatures from three high pressure phases of silica (pyrite-, cotunnite-, and Fe2P-type SiO2) at different pressures using the Z method. The computed melting curve is found to rise abruptly around 330 GPa, an increase not previously reported by any melting simulations. This is in close agreement with recent experiments reporting the α-PbO2–pyrite transition around this pressure. The predicted phase diagram indicates that silica could be one of the dominant components of the rocky cores of gas giants, as it remains solid at the core of our Solar System’s gas giants. These results are also relevant to model the interior structure and evolution of massive super-Earths. PMID:27210813
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urtiew, P A; Forbes, J W; Tarver, C M
LX-04 is a widely used HMX-based plastic bonded explosive, which contains 85 weight % HMX and 15 weight % Viton binder. The sensitivity of LX-04 to a single stimulus such as heat, impact, and shock has been previously studied. However, hazard scenarios can involve multiple stimuli, such as heating to temperatures close to thermal explosion conditions followed by fragment impact, producing a shock in the hot explosive. The sensitivity of HMX at elevated temperatures is further complicated by the beta to delta solid-state phase transition, which occurs at approximately 165 C. This paper presents the results of shock initiation experimentsmore » conducted with LX-04 preheated to 190 C, as well as density measurements and small scale safety test results of the {delta} phase HMX at room temperature. This work shows that LX-04 at 190 C is more shock sensitive than LX-04 at 150 C or 170 C due to the volume increase during the {beta} to {delta} solid phase transition, which creates more hot spots, and the faster growth of reaction during shock compression.« less
Liquid?solid helium interface: some conceptual questions
NASA Astrophysics Data System (ADS)
Leggett, A. J.
2003-12-01
I raise, and discuss qualitatively, some conceptual issues concerning the interface between the crystalline solid and superfluid liquid phases of 4He emphasizing, in particular, the fact that the ground-state wave functions of the two phases are prima facie qualitatively quite different, in that the superfluid liquid phase possesses off-diagonal long-range order (ODLRO), while the crystalline solid does not. The fact that the statics and dynamics of the interface do not appear to be particularly sensitive to the presence of ODLRO in the liquid is tentatively explained by the fact that because of a subtlety associated with the Bose statistics obeyed by the atoms, the solid and liquid wave functions are not locally very different.
NASA Astrophysics Data System (ADS)
Uji, S.; Fujii, Y.; Sugiura, S.; Terashima, T.; Isono, T.; Yamada, J.
2018-01-01
Resistance and magnetic torque measurements have been performed to investigate vortex phases for a layered organic superconductor κ -(BEDT-TTF) 2Cu (NCS) 2 [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene], which is modeled as stacks of Josephson junctions. At 25 mK, the out-of-plane resistivity increases at 0.6 T, has a step feature up to 4 T, and then increases again, whereas the in-plane resistivity monotonically increases above 4 T. The results show that both pancake vortices (PVs) and Josephson vortices (JVs) are in solid phases for μ0H <0.6 T, but only JVs are in a liquid phase for 0.6 <μ0H <4 T. For μ0H >4 T, both PVs and JVs are in liquid phases. These melting transitions are predominantly induced by quantum fluctuations (not by thermal fluctuations). In the magnetic torque curves, the irreversibility transition is clearly observed, roughly corresponding to the melting transition of the PVs but no anomaly is found at the JV melting transition. The detailed vortex phase diagram is determined in a wide temperature region.
NASA Astrophysics Data System (ADS)
Tao, R.; Fei, Y.
2017-12-01
Planetary cooling leads to solidification of any initially molten metallic core. Some terrestrial cores (e.g. Mercury) are formed and differentiated under relatively reduced conditions, and they are thought to be composed of Fe-S-Si. However, there are limited understanding of the phase relations in the Fe-S-Si system at high pressure and temperature. In this study, we conducted high-pressure experiments to investigate the phase relations in the Fe-S-Si system up to 25 GPa. Experimental results show that the liquidus and solidus in this study are slightly lower than those in the Fe-S binary system for the same S concentration in liquid at same pressure. The Fe3S, which is supposed to be the stable sub-solidus S-bearing phase in the Fe-S binary system above 17 GPa, is not observed in the Fe-S-Si system at 21 GPa. Almost all S prefers to partition into liquid, while the distribution of Si between solid and liquid depends on experimental P and T conditions. We obtained the partition coefficient log(KDSi) by fitting the experimental data as a function of P, T and S concentration in liquid. At a constant pressure, the log(KDSi) linearly decreases with 1/T(K). With increase of pressure, the slopes of linear correlation between log(KDSi) and 1/T(K) decreases, indicating that more Si partitions into solid at higher pressure. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we established a comprehensive thermodynamic model in the Fe-S-Si system. The results will be used to constrain the distribution of S and Si between solid inner core and liquid outer core for a range of planet sizes. A Si-rich solid inner core and a S-rich liquid outer core are suggested for an iron-rich core.
Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark
2008-01-01
Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.
On the roles of solid wall in the thermal analysis of micro heat pipes
NASA Astrophysics Data System (ADS)
Hung, Yew Mun
Micro heat pipe is a small-scale passive heat transfer device of very high thermal conductance that uses phase change and circulation of its working fluid to transfer thermal energy. Different from conventional heat pipe, a micro heat pipe does not contain any wick structure. In this thesis, a one-dimensional, steady-state mathematical model of a single triangular micro heat pipe is developed, with the main purpose of establishing a series of analytical studies on the roles of the solid wall of micro heat pipes in conjunction with the characterization of the thermal performance under the effects of various design and operational parameters. The energy equation of the solid wall is solved analytically to obtain the temperature distribution. The liquid phase is coupled with the solid wall through the continuity of heat flux at their interface, and the continuity, momentum and energy equations of the liquid and vapour phases, together with the Young-Laplace equation for capillary pressure, are solve numerically to yield the heat and fluid flow characteristics of the micro heat pipe. By coupling this mathematical model with the phase-change interfacial resistance model, the relationships for the axial temperature distributions of the liquid and vapour phases throughout the longitudinal direction of a micro heat pipe are also formulated. Four major aspects associated with the operational performance of micro heat pipes are discussed. Firstly, the investigation of the effects of axial conduction in the solid wall reveals that the presence of the solid wall induces change in the phase-change heat transport of the working fluid besides facilitating axial heat conduction in the solid wall. The analysis also highlights the effects of the thickness and thermal conductivity of the solid wall on the axial temperature distribution of solid wall, in the wake of the effects of the axial heat conduction induced on the phase-change heat transport of the working fluid. Secondly, analysis on thermal performance and physical phenomena of an overloaded micro heat pipes incorporating the effects of axial conduction in the solid wall is carried out. The thermal effects of the solid material are investigated and it is observed that the behaviour of the solid wall temperature distribution varies drastically as the applied heat load exceeds the heat transport capacity. The abrupt change in the temperature profile of an overloaded micro heat pipe is of considerable practical significance in which the occurrence of dryout can be identified by physically measuring the solid wall temperatures along the axial direction. Thirdly, by taking into account the axial conduction in the solid wall, the effect of gravity on the thermal performance of an inclined micro heat pipe is explored. Attributed to the occurrence of dryout, an abrupt temperature rise is observed at the evaporator end when the micro heat pipe is negatively inclined. Therefore, the orientation of a micro heat pipe can be determined by physically measuring the solid wall temperature. Lastly, by coupling the heat transfer model of phase-change phenomena at the liquid-vapour interface, the model with axial conduction in the solid wall of the micro heat pipe is extended to predict the axial liquid and vapour temperature distributions of the working fluid, which is useful for the verification of certain assumptions made in the derivation of the mathematical model besides for analyzing the heat transfer characteristics of the evaporation process.
Solid-state harmonics beyond the atomic limit.
Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A
2016-06-23
Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.
Parejas, Almudena; Montes, Vicente; Hidalgo-Carrillo, Jesús; Sánchez-López, Elena; Marinas, Alberto; Urbano, Francisco J
2017-12-18
Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively). Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water) reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO₂ (especially Zr-SG) are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.
Heat transfer in suspensions of rigid particles
NASA Astrophysics Data System (ADS)
Brandt, Luca; Niazi Ardekani, Mehdi; Abouali, Omid
2016-11-01
We study the heat transfer in laminar Couette flow of suspensions of rigid neutrally buoyant particles by means of numerical simulations. An Immersed Boundary Method is coupled with a VOF approach to simulate the heat transfer in the fluid and solid phase, enabling us to fully resolve the heat diffusion. First, we consider spherical particles and show that the proposed algorithm is able to reproduce the correlations between heat flux across the channel, the particle volume fraction and the heat diffusivity obtained in laboratory experiments and recently proposed in the literature, results valid in the limit of vanishing inertia. We then investigate the role of inertia on the heat transfer and show an increase of the suspension diffusivity at finite particle Reynolds numbers. Finally, we vary the relativity diffusivity of the fluid and solid phase and investigate its effect on the effective heat flux across the channel. The data are analyzed by considering the ensemble averaged energy equation and decomposing the heat flux in 4 different contributions, related to diffusion in the solid and fluid phase, and the correlations between wall-normal velocity and temperature fluctuations. Results for non-spherical particles will be examined before the meeting. Supported by the European Research Council Grant No. ERC-2013- CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing).
Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations
NASA Astrophysics Data System (ADS)
Curran, Thomas; Denner, Fabian; van Wachem, Berend
2017-11-01
The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.
Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.
2015-01-01
A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943
Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate.
Murshed, Mohamed; Rockstraw, David A; Hanson, Adrian T; Johnson, Michael
2003-01-01
The chemistry of sulfide mine tailings treated with potassium ferrate (K2FeO4) in aqueous slurry has been investigated. The reaction system is believed to parallel a geochemical oxidation in which ferrate ion replaces oxygen. This chemical system utilized in a pipeline (as a plug flow reactor) may have application eliminating the potential for tailings to leach acid while recovering the metal from the tailings. Elemental analyses were performed using an ICP spectrometer for the aqueous phase extract of the treated tailings; and an SEM-EDX for the tailing solids. Solids were analyzed before and after treatments were applied. ICP shows that as the mass ratio of ferrate ion to tailings increases, the concentration of metals in the extract solution increases; while EDX indicates a corresponding decrease in sulfur content of the tailing solids. The extraction of metal and reduction in sulfide content is significant. The kinetic timeframe is on the order of minutes.
Kinetics of microbial reduction of Solid phase U(VI).
Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming; Dohnalkova, Alice; Fredrickson, James K
2006-10-15
Sodium boltwoodite (NaUO2SiO3OH x 1.5 H2O) was used to assess the kinetics of microbial reduction of solid-phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads in a nongrowth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid-phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid-phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intragrain uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated that microbial reduction of solid-phase U(VI) is controlled by coupled biological, chemical, and physical processes.
Two-dimensional ice mapping of molecular cores
NASA Astrophysics Data System (ADS)
Noble, J. A.; Fraser, H. J.; Pontoppidan, K. M.; Craigon, A. M.
2017-06-01
We present maps of the column densities of H2O, CO2 and CO ices towards the molecular cores B 35A, DC 274.2-00.4, BHR 59 and DC 300.7-01.0. These ice maps, probing spatial distances in molecular cores as low as 2200 au, challenge the traditional hypothesis that the denser the region observed, the more ice is present, providing evidence that the relationships between solid molecular species are more varied than the generic picture we often adopt to model gas-grain chemical processes and explain feedback between solid phase processes and gas phase abundances. We present the first combined solid-gas maps of a single molecular species, based upon observations of both CO ice and gas phase C18O towards B 35A, a star-forming dense core in Orion. We conclude that molecular species in the solid phase are powerful tracers of 'small-scale' chemical diversity, prior to the onset of star formation. With a component analysis approach, we can probe the solid phase chemistry of a region at a level of detail greater than that provided by statistical analyses or generic conclusions drawn from single pointing line-of-sight observations alone.
Dual-phase Cr-Ta alloys for structural applications
Liu, Chain T.; Brady, Michael P.; Zhu, Jiahong; Tortorelli, Peter F.
2001-01-01
Dual phase alloys of chromium containing 2 to 11 atomic percent tantalum with minor amounts of Mo, Cr, Ti, Y, La, Cr, Si and Ge are disclosed. These alloys contain two phases including Laves phase and Cr-rich solid solution in either eutectic structures or dispersed Laves phase particles in the Cr-rich solid solution matrix. The alloys have superior mechanical properties at high temperature and good oxidation resistance when heated to above 1000.degree. C. in air.
Modelling Phase Transition Phenomena in Fluids
2015-07-01
Sublimation line r @@I Triple point ? Vapourisation liner @@I Critical point -Fusion line Solid Liquid Gas Figure 1: Schematic of a phase diagram means that the...velocity field can be set zero, and only the balance of energy constitutes the Stefan model. In contrast to this the liquid - gas phase transitions...defined by requiring that the phase-transition line is crossed in a direction from solid to liquid or from liquid to gas (vapour) phases. The term T∗ δs is
Krüger, Hans
2010-05-01
A new method for complete separation of steam-volatile organic compounds is described using the example of chamomile flowers. This method is based on the direct combination of hydrodistillation and solid-phase extraction in a circulation apparatus. In contrast to hydrodistillation and simultaneous distillation extraction (SDE), an RP-18 solid phase as adsorptive material is used rather than a water-insoluble solvent. Therefore, a prompt and complete fixation of all volatiles takes place, and the circulation of water-soluble bisabololoxides as well as water-soluble and thermolabile en-yne-spiroethers is inhibited. This so-called simultaneous distillation solid-phase extraction (SD-SPE) provides extracts that better characterise the real composition of the vapour phase, as well as the composition of inhalation vapours, than do SDE extracts or essential oils obtained by hydrodistillation. The data indicate that during inhalation therapy with chamomile, the bisabololoxides and spiroethers are more strongly involved in the inhaling activity than so far assumed. Georg Thieme Verlag KG Stuttgart New York.
Silicon nitride equation of state
NASA Astrophysics Data System (ADS)
Brown, Robert C.; Swaminathan, Pazhayannur K.
2017-01-01
This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.
Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017
2015-12-15
Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less
High temperature lubricating process
Taylor, R.W.; Shell, T.E.
1979-10-04
It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.
High temperature lubricating process
Taylor, Robert W.; Shell, Thomas E.
1982-01-01
It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.
A study of room-temperature LixMn1.5Ni0.5O4 solid solutions
NASA Astrophysics Data System (ADS)
Saravanan, Kuppan; Jarry, Angelique; Kostecki, Robert; Chen, Guoying
2015-01-01
Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 <= x <= 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.
The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin
2017-09-10
In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compoundsmore » in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.« less
Solid Surface Combustion Experiment
1994-09-12
STS064-10-011 (12 Sept. 1994) --- The Solid Surface Combustion Experiment (SSCE), designed to supply information on flame spread over solid fuel surfaces in the reduced-gravity environment of space, is pictured during flight day four operations. The middeck experiment measured the rate of spreading, the solid-phase temperature, and the gas-phase temperature of flames spreading over rectangular fuel beds. STS-64 marked the seventh trip into space for the Lewis Research Center experiment. Photo credit: NASA or National Aeronautics and Space Administration
p-Adic solid-on-solid model on a Cayley tree
NASA Astrophysics Data System (ADS)
Khakimov, O. N.
2017-12-01
We consider a p-adic solid-on-solid ( SOS) model with a nearest-neighbor coupling, m+1 spins, and a coupling constant J ∈ Q p on a Cayley tree. We find conditions under which a phase transition does not occur in the model. We show that if p | m + 1 for some J, then a phase transition occurs. Moreover, we formulate a criterion for the boundedness of p-adic Gibbs measures for the ( m+1)- state SOS model.
NASA Technical Reports Server (NTRS)
Kraeutle, K. J.
1980-01-01
The decomposition of cyclotramethylenetetranitramine (HMX) in the solid and liquid phase was studied by isothermal and nonisothermal heating at atmospheric pressure. Decomposition rates of solid HMX changed with sample size and gaseous environment. Kinetic parameters were obtained from weight loss measurements in the temperature range 229 C - 269 C. These tests also yielded highly porous solid residues. Qualitative aspects of solid and liquid phase decomposition of HMX with additives were also investigated in isothermal and nonisothermal tests.
Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.
Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei
2017-10-26
A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak; Cooper, Bill; Kostka,
2014-01-01
A large-scale ecosystem manipulation (Spruce and Peatland Responses under Climatic and Environmental Change, SPRUCE) is being constructed in the Marcell Experimental Forest, Minnesota, USA, to determine the effects of climatic forcing on ecosystem processes in northern peatlands. Prior to the initiation of the manipulation, we characterized the solid-phase peat to a depth of 2 meters using a variety of techniques, including peat C:N ratios, 13C and 15N isotopic composition, Fourier Transform Infrared (FT IR), and 13C Nuclear Magnetic Resonance spectroscopy (13C NMR). FT IR determined peat humification-levels increased rapidly between and 75 cm, indicating a highly reactive zone. We observedmore » a rapid drop in the abundance of O-alkyl-C, carboxyl-C, and other oxygenated functionalities within this zone and a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75-cm, minimal change was observed except that aromatic functionalities accumulated with depth. Incubation studies revealed the highest methane production rates and greatest CH4:CO2 ratios within this and 75 cm zone. Hydrology and surface vegetation played a role in belowground carbon cycling. Radiocarbon signatures of microbial respiration products in deeper porewaters resembled the signatures of dissolved organic carbon rather than solid phase peat, indicating that more recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as an excellent proxy for soil decomposition rate, and in addition should be a sensitive indicator of the response of the solid phase peat to the climatic manipulation.« less
Catola, Stefano; Kaidala Ganesha, Srikanta Dani; Calamai, Luca; Loreto, Francesco; Ranieri, Annamaria; Centritto, Mauro
2016-01-01
Dimethylsulfoniopropionate (DMSP) and dimethyl sulphide (DMS) are compounds found mainly in marine phytoplankton and in some halophytic plants. DMS is a globally important biogenic volatile in regulating of global sulfur cycle and planetary albedo, whereas DMSP is involved in the maintenance of plant-environment homeostasis. Plants emit minute amounts of DMS compared to marine phytoplankton and there is a need for hypersensitive analytic techniques to enable its quantification in plants. Solid Phase Micro Extraction from Head Space (HS-SPME) is a simple, rapid, solvent-free and cost-effective extraction mode, which can be easily hyphenated with GC-MS for the analysis of volatile organic compounds. Using tomato (Solanum lycopersicum) plants subjected to water stress as a model system, we standardized a sensitive and accurate protocol for detecting and quantifying DMSP pool sizes, and potential DMS emissions, in cryoextracted leaves. The method relies on the determination of DMS free and from DMSP pools before and after the alkaline hydrolysis via Headspace-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS). We found a significant (2.5 time) increase of DMSP content in water-stressed leaves reflecting clear stress to the photosynthetic apparatus. We hypothesize that increased DMSP, and in turn DMS, in water-stressed leaves are produced by carbon sources other than direct photosynthesis, and function to protect plants either osmotically or as antioxidants. Finally, our results suggest that SPME is a powerful and suitable technique for the detection and quantification of biogenic gasses in trace amounts. PMID:27602039
2016-01-01
Several “Beyond Li-Ion Battery” concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high interfacial resistance and difficulties associated with fabrication. One of the most promising solid electrolyte systems for these applications is Al or Ga stabilized Li7La3Zr2O12 (LLZO) based on high ionic conductivities and apparent stability against reduction by Li metal. Nevertheless, the fabrication of dense LLZO membranes with high ionic conductivity and low interfacial resistances remains challenging; it definitely requires a better understanding of the structural and electrochemical properties. In this study, the phase transition from garnet (Ia3̅d, No. 230) to “non-garnet” (I4̅3d, No. 220) space group as a function of composition and the different sintering behavior of Ga and Al stabilized LLZO are identified as important factors in determining the electrochemical properties. The phase transition was located at an Al:Ga substitution ratio of 0.05:0.15 and is accompanied by a significant lowering of the activation energy for Li-ion transport to 0.26 eV. The phase transition combined with microstructural changes concomitant with an increase of the Ga/Al ratio continuously improves the Li-ion conductivity from 2.6 × 10–4 S cm–1 to 1.2 × 10–3 S cm–1, which is close to the calculated maximum for garnet-type materials. The increase in Ga content is also associated with better densification and smaller grains and is accompanied by a change in the area specific resistance (ASR) from 78 to 24 Ω cm2, the lowest reported value for LLZO so far. These results illustrate that understanding the structure–properties relationships in this class of materials allows practical obstacles to its utilization to be readily overcome. PMID:27110064
Rettenwander, Daniel; Redhammer, Günther; Preishuber-Pflügl, Florian; Cheng, Lei; Miara, Lincoln; Wagner, Reinhard; Welzl, Andreas; Suard, Emmanuelle; Doeff, Marca M; Wilkening, Martin; Fleig, Jürgen; Amthauer, Georg
2016-04-12
Several "Beyond Li-Ion Battery" concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high interfacial resistance and difficulties associated with fabrication. One of the most promising solid electrolyte systems for these applications is Al or Ga stabilized Li 7 La 3 Zr 2 O 12 (LLZO) based on high ionic conductivities and apparent stability against reduction by Li metal. Nevertheless, the fabrication of dense LLZO membranes with high ionic conductivity and low interfacial resistances remains challenging; it definitely requires a better understanding of the structural and electrochemical properties. In this study, the phase transition from garnet ( Ia 3̅ d , No. 230) to "non-garnet" ( I 4̅3 d , No. 220) space group as a function of composition and the different sintering behavior of Ga and Al stabilized LLZO are identified as important factors in determining the electrochemical properties. The phase transition was located at an Al:Ga substitution ratio of 0.05:0.15 and is accompanied by a significant lowering of the activation energy for Li-ion transport to 0.26 eV. The phase transition combined with microstructural changes concomitant with an increase of the Ga/Al ratio continuously improves the Li-ion conductivity from 2.6 × 10 -4 S cm -1 to 1.2 × 10 -3 S cm -1 , which is close to the calculated maximum for garnet-type materials. The increase in Ga content is also associated with better densification and smaller grains and is accompanied by a change in the area specific resistance (ASR) from 78 to 24 Ω cm 2 , the lowest reported value for LLZO so far. These results illustrate that understanding the structure-properties relationships in this class of materials allows practical obstacles to its utilization to be readily overcome.
Changes in volatile compound composition of Antrodia camphorata during solid state fermentation.
Xia, Yongjun; Zhang, Baorong; Li, Weijiang; Xu, Ganrong
2011-10-01
Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct-1-en-3-ol, octan-3-one and methyl 2-phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan-3-one and methyl 2-phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5-butyloxolan-2-one, 5-heptyloxolan-2-one, 6-heptyloxan-2-one, contributed greatly to peach and fruit-like flavor. Terpene and terpene alcohol compounds, such as 1-terpineol, L-linalool, T-cadinol, (E, E)-farnesol, β-elemene, cis-α-bisabolene and α-muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5-n-butyl-5H-furan-2-one, β-ionone, (-)-caryophyllene oxide, aromadendrene oxide, diepi-α-cedrene epoxide, β-elemene, α-selinene, α-muurolene, azulene, germacrene D, γ-cadinene and 2-methylpyrazine have not hitherto been reported in A. camphorata. The preliminary results suggest that the aroma-active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be identified as possible taxonomic markers for A. camphorata. Copyright © 2011 Society of Chemical Industry.
Jin, Liyu; Nairn, Kate M; Forsyth, Craig M; Seeber, Aaron J; MacFarlane, Douglas R; Howlett, Patrick C; Forsyth, Maria; Pringle, Jennifer M
2012-06-13
Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P(1,2,2,4)][PF(6)]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid-solid phase transitions and a highly "plastic" and conductive final solid phase in which the conductivity reaches 10(-3) S cm(-1). The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the (1)H, (19)F, and (31)P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P(1,2,2,4)][PF(6)]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.
Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad
2017-01-25
A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.
Workshop Report: Fundamental Reactions in Solid Propellant Combustion
1979-05-01
combustion conditions. 6. What effect might a pressure-induced phase transition to a polymorph other than 6- HMX have on the pressure slope break during...pure HMX as well. Nevertheless, it is recommended that the high pressure polymorphs of HMX and RDX be determined. It was also felt that there...plateau burning phenomena E. Solid phase, surface, gas phase reactions F. Phase transitions : melting, vaporization, polymorphs G. Flame
NASA Technical Reports Server (NTRS)
Lomax, Curtis (Inventor); Webbon, Bruce (Inventor)
1995-01-01
A cooling apparatus includes a container filled with a quantity of coolant fluid initially cooled to a solid phase, a cooling loop disposed between a heat load and the container, a pump for circulating a quantity of the same type of coolant fluid in a liquid phase through the cooling loop, and a pair of couplings for communicating the liquid phase coolant fluid into the container in a direct interface with the solid phase coolant fluid.
Deuterium and carbon-13 NMR of the solid polymorphism of benzenehexoyl hexa-n-hexanoate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lifshitz, E.; Goldfarb,, D.; Vega, S.
Deuterium and carbon-13 NMR of specifically labeled benzenehexoyl hexa-n-hexanoate in the various solid-state phases are reported. The spectra exhibit dynamic line shapes which change discontinuously at the phase transitions. The results are interpreted in terms of sequential melting of the side chains on going from the low-temperature solid phases IV, III, etc., toward the liquid. In phase IV the molecules are very nearly static, except for fast rotation of the methyl groups about their C/sub 3/ axes. The results in phase III were quantitatively interpreted in terms of a two-site isomerization process involving simultaneous rotation by 95/sup 0/ about C/submore » 1/-C/sub 2/ and transition from gtg to g'g't (or equivalently g'tg' to ggt) for the rest of the chain. The specific rate of this reaction at 0/sup 0/C is approx. 10/sup 5/s/sup -1/. In phase II additional chain isomerization processes set-in which were, however, not analyzed quantitatively. Further motional modes, involving reorientation of whole chains about their C/sup ar/-O bonds, appear on going to phase I. In all solid phases the benzene ring remains static.« less
Silicon Nitride Equation of State
NASA Astrophysics Data System (ADS)
Swaminathan, Pazhayannur; Brown, Robert
2015-06-01
This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.
Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong
2014-02-01
Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.
Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; ...
2016-02-08
Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO 3 nanoparticles. (Y 0.77,Gd 0.23)Ba 2Cu 3O y films were grown on metal substrates with different concentration of BaZrO 3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO 3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 10 22/m 3), the irreversibility field (H irr) continues to increase with no signmore » of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high H irr, namely H irr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less
The solid surface combustion experiment aboard the USML-1 mission
NASA Technical Reports Server (NTRS)
Altenkirch, Robert A.; Sacksteder, Kurt; Bhattacharjee, Subrata; Ramachandra, Prashant A.; Tang, Lin; Wolverton, M. Katherine
1994-01-01
AA Experimental results from the five experiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. An experiment was conducted aboard STS-50/USML-1 in the solid Surface Combustion Experiment (SSCE) hardware for flame spread over a thin cellulosic fuel in a quiescent oxidizer of 35% oxygen/65% nitrogen at 1.0 atm. pressure in microgravity. The USML-1 test was the fourth of five planned experiments for thin fuels, one performed during each of five Space Shuttle Orbiter flights. Data that were gathered include gas- and solid-phase temperatures and motion picture flame images. Observations of the flame are described and compared to theoretical predictions from steady and unsteady models that include flame radiation from CO2 and H2O. Experimental results from the five esperiments indicate that flame spread rate increases with increasing ambient oxygen content and pressure. The brightness of the flame and the visible soot radiation also increase with increasing spread rate. Steady-state numerical predictions of temperature and spread rate and flame structure trends compare well with experimental results near the flame's leading edge while gradual flame evolution is captured through the unsteady model.
EVALUATION OF SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF HYDROPHILIC COMPOUNDS
Two commercially available solid phase microextractions (SPME) fibers, polyacrylate and carboxem/polydimethylsiloxane (PDMS), were evaluated for their ability to extract hydrophilic compounds from drinking water. Conditions, such as desorption time, desorption temperature, sample...
SOLID PROPELLANT COMBUSTION MECHANISM STUDIES.
SOLID ROCKET PROPELLANTS, BURNING RATE), LOW PRESSURE, COMBUSTION PRODUCTS, QUENCHING, THERMAL CONDUCTIVITY, KINETIC THEORY, SURFACE PROPERTIES, PHASE STUDIES, SOLIDS, GASES, PYROLYSIS, MATHEMATICAL ANALYSIS.
Titanium α-ω phase transformation pathway and a predicted metastable structure
Zarkevich, Nickolai A.; Johnson, Duane D.
2016-01-15
A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.
Burckhardt, Bjoern B.; Laeer, Stephanie
2015-01-01
In USA and Europe, medicines agencies force the development of child-appropriate medications and intend to increase the availability of information on the pediatric use. This asks for bioanalytical methods which are able to deal with small sample volumes as the trial-related blood lost is very restricted in children. Broadly used HPLC-MS/MS, being able to cope with small volumes, is susceptible to matrix effects. The latter restrains the precise drug quantification through, for example, causing signal suppression. Sophisticated sample preparation and purification utilizing solid-phase extraction was applied to reduce and control matrix effects. A scale-up from vacuum manifold to positive pressure manifold was conducted to meet the demands of high-throughput within a clinical setting. Faced challenges, advances, and experiences in solid-phase extraction are exemplarily presented on the basis of the bioanalytical method development and validation of low-volume samples (50 μL serum). Enalapril, enalaprilat, and benazepril served as sample drugs. The applied sample preparation and extraction successfully reduced the absolute and relative matrix effect to comply with international guidelines. Recoveries ranged from 77 to 104% for enalapril and from 93 to 118% for enalaprilat. The bioanalytical method comprising sample extraction by solid-phase extraction was fully validated according to FDA and EMA bioanalytical guidelines and was used in a Phase I study in 24 volunteers. PMID:25873972
Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.
2014-01-01
Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904
Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L
2014-12-14
Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.
A quantitative study of factors influencing lamellar eutectic morphology during solidification
NASA Technical Reports Server (NTRS)
Kaukler, W. F. S.
1981-01-01
The factors that influence the shape of the solid-liquid interface of a lamellar binary eutectic alloy are evaluated. Alloys of carbon tetrabromide and hexachloroethane which serve as a transparent analogue of lamellar metallic eutectics are used. The observed interface shapes are analyzed by computer-aided methods. The solid-liquid interfacial free energies of each of the individual phases comprising the eutectic system are measured as a function of composition using a 'grain boundary groove' technique. The solid-liquid interfacial free energy of the two phases are evaluated directly from the eutectic interface. The phase diagram for the system, the heat of fusion as a function of composition, and the density as a function of composition are measured. The shape of the eutectic interface is controlled mainly by the solid-liquid and solid-solid interfacial free energy relationships at the interface and by the temperature gradient present, rather than by interlamellar diffusion in the liquid at the interface, over the range of growth rates studied.
NASA Astrophysics Data System (ADS)
Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan
2018-03-01
Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.
2011-12-15
The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.
In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion
NASA Astrophysics Data System (ADS)
McIntyre, Melissa Dawn
Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region and increase electrochemical activity in cermet electrodes. The final study of lanthanum strontium manganite cathodes infiltrated with BaO revealed the reversible decomposition/formation of a Ba3Mn2O8 secondary phase under applied potentials and proposed mechanisms for the enhanced electrocatalytic oxygen reduction associated with this compound under polarizing conditions. Collectively, these studies demonstrate that mechanistic information obtained from molecular/material specific techniques coupled with electrochemical measurements can be used to help optimize materials and operating conditions in solid-state electrochemical cells.
USDA-ARS?s Scientific Manuscript database
Recently, superfruits, such as blueberries, have received much attention as scientists, marketers, and consumers push forward knowledge and demand for high antioxidant, healthier diets. Production and consumption are steadily increasing. Yet, there are very few studies detailing the aroma, astring...
Application of Berry's Phase to the Effective Mass of Bloch Electrons
ERIC Educational Resources Information Center
Rave, M. J.; Kerr, W. C.
2010-01-01
Berry's phase, although well known since 1984, has received little attention among textbook authors of solid state physics. We attempt to address this lack by showing how the presence of the Berry's phase significantly changes a standard concept (effective mass) found in most solid state texts. Specifically, we show that the presence of a non-zero…
Escobedo, Fernando A
2014-03-07
In this work, a variant of the Gibbs-Duhem integration (GDI) method is proposed to trace phase coexistence lines that combines some of the advantages of the original GDI methods such as robustness in handling large system sizes, with the ability of histogram-based methods (but without using histograms) to estimate free-energies and hence avoid the need of on-the-fly corrector schemes. This is done by fitting to an appropriate polynomial function not the coexistence curve itself (as in GDI schemes) but the underlying free-energy function of each phase. The availability of a free-energy model allows the post-processing of the simulated data to obtain improved estimates of the coexistence line. The proposed method is used to elucidate the phase behavior for two non-trivial hard-core mixtures: a binary blend of spheres and cubes and a system of size-polydisperse cubes. The relative size of the spheres and cubes in the first mixture is chosen such that the resulting eutectic pressure-composition phase diagram is nearly symmetric in that the maximum solubility of cubes in the sphere-rich solid (∼20%) is comparable to the maximum solubility of spheres in the cube-rich solid. In the polydisperse cube system, the solid-liquid coexistence line is mapped out for an imposed Gaussian activity distribution, which produces near-Gaussian particle-size distributions in each phase. A terminal polydispersity of 11.3% is found, beyond which the cubic solid phase would not be stable, and near which significant size fractionation between the solid and isotropic phases is predicted.
NASA Astrophysics Data System (ADS)
Silalahi, Alfriska O.; Sukmawati, Nissa; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.
2017-07-01
The thermophysical parameters of organic phase change material (PCM) of coconut oil (co_oil) have been studied by analyzing the temperature vs time data during liquid-solid phase transition (solidification process) based on T-history method, adopting the original version and its modified form to extract the values of mean specific heats of the solid and liquid co_oil and the heat of fusion related to phase transition of co_oil. We found that the liquid-solid phase transition occurs rather gradually, which might be due to the fact that co_oil consists of many kinds of fatty acids with the largest amount of lauric acid (about 50%), with relatively small supercooling degree. For this reason, the end of phase transition region become smeared out, although the inflection point in the temperature derivative is clearly observed signifying the drastic temperature variation between the phase transition and solid phase periods. The data have led to the values of mean specific heat of the solid and liquid co_oil that are comparable to the pure lauric acid, while the value for heat of fusion is resemble to those of the DSC result, both from references data. The advantage of co_oil as the potential sensible and latent TES for room-temperature conditioning application in Indonesia is discussed in terms of its rather broad working temperature range due to its mixture composition characteristic.
Phase equilibrium modeling for high temperature metallization on GaAs solar cells
NASA Technical Reports Server (NTRS)
Chung, M. A.; Davison, J. E.; Smith, S. R.
1991-01-01
Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.
Dense Carbon Monoxide to 160 GPa: Stepwise Polymerization to Two-Dimensional Layered Solid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Young-Jay; Kim, Minseob; Lim, Jinhyuk
Carbon monoxide (CO) is the first molecular system found to transform into a nonmolecular “polymeric” solid above 5.5 GPa, yet been studied beyond 10 GPa. Here, we show a series of pressure-induced phase transformations in CO to 160 GPa: from a molecular solid to a highly colored, low-density polymeric phase I to translucent, high-density phase II to transparent, layered phase III. The properties of these phases are consistent with those expected from recently predicted 1D P2 1/m, 3D I2 12 12 1, and 2D Cmcm structures, respectively. Thus, the present results advocate a stepwise polymerization of CO triple bonds tomore » ultimately a 2D singly bonded layer structure with an enhanced ionic character.« less
Synthesis of solid solutions of perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.
The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoreticalmore » value and showing zero apparent porosity and water absorption.« less
Gormley-Gallagher, Aine Marie; Douglas, Richard William; Rippey, Brian
2015-01-01
Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, K D. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic) lake sediment, transient variations in K D were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the K D (n = 15 for each metal, p > 0.05) for Mn (r 2 = 0.0063), Cu (r 2 = 0.0002, Cr (r 2 = 0.021), Ni (r 2 = 0.0023), Cd (r 2 = 0.00001), Co (r 2 = 0.096), Hg (r 2 = 0.116) or Pb (r 2 = 0.164). The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing) fraction, which inhibited the spurious lowering of K D. The findings conform to the increasingly documented theory that the use of K D in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water. PMID:26200885
Effects of Shock-Breakout Pressure on Ejection of Micron-Scale Material from Shocked Tin Surfaces
NASA Astrophysics Data System (ADS)
Zellner, Michael; Hammerberg, James; Hixson, Robert; Morley, Kevin; Obst, Andrew; Olson, Russell; Payton, Jeremy; Rigg, Paulo; Buttler, William; Grover, Michael; Iverson, Adam; Macrum, Gregory; Stevens, Gerald; Turley, William; Veeser, Lynn; Routley, Nathan
2007-06-01
Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metal surfaces. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.
Pressure Effects on the Ejection of Material from Shocked Tin Surfaces
NASA Astrophysics Data System (ADS)
Zellner, M. B.; Grover, M.; Hammerberg, J. E.; Hixson, R. S.; Iverson, A. J.; Macrum, G. S.; Morley, K. B.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.
2007-12-01
Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metals that have surface defects. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.
Al-Rifai, Asma'a; Aqel, Ahmad; Wahibi, Lamya Al; ALOthman, Zeid A; Badjah-Hadj-Ahmed, Ahmed-Yacine
2018-02-02
A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m -1 for chrysene at flow rate of 0.5 μL min -1 . The method showed a wide linear range (1-500 μg L -1 with R 2 more than 0.9938), acceptable extraction repeatability (RSDs < 6.4%, n = 3) and reproducibility (RSDs < 12.6%, five parallel-made solid phase extraction cartridges) and satisfactory detection limits (0.02-0.22 μg L -1 ). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges. Copyright © 2018. Published by Elsevier B.V.
Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.; Knaeble, Alan R.; Marcus, Matthew A.; Lynch, Joshua K.; Toner, Brandy M.
2017-01-01
e of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (lXAS) approach is developed and applied to rotosonic drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s lXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity observed in the distribution of elevated-As wells.
Dreef-Tromp, C M; van der Maarel, J C; van den Elst, H; van der Marel, G A; van Boom, J H
1992-01-01
The naturally occurring DNA-nucleopeptide H-Asp-Ser[5'-pAAAGTAAGCC-3']-Glu-OH was prepared via a solid-phase phosphite triester approach using N-2-(tert-butyldiphenylsilyloxymethyl)benzoyl protected nucleosides. The oligonucleotide was linked via the extremely base-labile oxalyl ester anchor to the solid support. PMID:1508685
Surface Premelting Coupled with Bulk Phase Transitions in Colloidal Crystals
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, Feng; Zhou, Di; Cao, Xin; Peng, Yi; Ni, Ran; Liao, Maijia; Han, Yilong
2015-03-01
Colloids have been used as outstanding model systems for the studies of various phase transitions in bulk, but not at interface yet. Here we obtained equilibrium crystal-vapor interfaces using tunable attractive colloidal spheres and studied the surface premelting at the single-particle level by video microscopy. We found that monolayer crystals exhibit a bulk isostructural solid-solid transition which triggers the surface premelting. The premelting is incomplete due to the interruption of a mechanical-instability-induced bulk melting. By contrast, two- or multilayer crystals do not have the solid-solid transition and the mechanical instability, hence they exhibit complete premelting with divergent surface-liquid thickness. These novel interplays between bulk and surface phase transitions cast new lights for both types of transitions.
Phase-field model of vapor-liquid-solid nanowire growth
NASA Astrophysics Data System (ADS)
Wang, Nan; Upmanyu, Moneesh; Karma, Alain
2018-03-01
We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth velocity and radius depending on the growth condition. For the basic normal growth mode, the steady-state solid-liquid interface tip shape consists of a main facet intersected by two truncated side facets ending at triple points. The ratio of truncated and main facet lengths are in quantitative agreement with the prediction of sharp-interface theory that is developed here for faceted nanowire growth in two dimensions.
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.; Jodl, H. J.; Crespo, Yanier
2018-05-01
The paper provides an up-to-date review of the experimental and theoretical works on solid oxygen published over the past decade. The most important results presented in this review are the following: Detection of magnetic collapse in neutron studies under the delta-epsilon transition. Identification of the lattice structure of the ɛ phase. In this structure the O2 molecules retain their individuality, but there is an additional link leading to the formation of clusters of molecular quartets with the structural formula (O2)4. Discovery of the unique magnetic properties of the delta phase, which hosts three different magnetic structures in the domain of the same crystallographic structure. The extension of the phase diagram to the high-pressure high-temperature region which was previously beyond the reach for experiment; the molecular η and η‧ phases were found and their structures were identified. Behavior of the melting line up to 60 GPa (1750 K). Discovery of a new molecular θ phase in ultrahigh magnetic fields up to over 190 T and the construction of the thermodynamical magnetic-field-temperature H- T phase diagram on the base of the ultrahigh-field magnetization, optical magneto-transmission, and adiabatic magnetocaloric effect measurements. Prediction of the persistence of the molecular state of solid oxygen up to the pressure of 1.9 TPa which is significantly higher than the corresponding limits in solid hydrogen and nitrogen, other generic molecular solids.
Lü, Weichao; Shen, Shuchang; Wang, Chao
2017-11-08
With magnesium silicate, silica gel, diatomite and calcium sulfate as raw materials, a new solid phase extraction column was prepared through a series of processes of grinding to ethanol homogenate, drying and packing into polypropylene tube. The sample was hydrolyzed by pectinase, extracted by acetonitrile and purified by solid phase extraction. The target compounds were separated on a C18 column (100 mm×2.1 mm, 1.8 μm), using 0.8% (v/v) tetrahydrofuran solution as mobile phase with a flow rate of 0.5 mL/min. The detection wavelength was 276 nm. The effect of pectinase on extraction yield and purification effect of solid-phase extraction column were investigated. The optimum chromatographic conditions were selected. There was a good linear relationship between the peak heights and the mass concentrations of patulin in the range of 0.1 to 10 mg/L with the correlation coefficient ( R 2 ) of 1. The limit of detection for this method was 10.22 μg/kg. The spiked recoveries of samples were 86.58%-94.84% with the relative standard deviations (RSDs) of 1.45%-2.28%. The results indicated that the self-made solid phase extraction column had a good purification efficiency, and the UPLC had a high separation efficiency. The method is simple, accurate and of great significance for the quality and safety control of fruit products.
Matsuo, Koichiro; Kawase, Soichiro; Wakimoto, Nina; Iwatani, Kazuhiro; Masuda, Yuji; Ogasawara, Tadashi
2013-03-01
When eating food containing both liquid and solid phases (two-phase food), the liquid component frequently enters the hypopharynx before swallowing, which may increase the risk of aspiration. We therefore tested whether preswallow bolus transport and swallow initiation would change as the viscosity of two-phase food was increased. Fiberoptic endoscopy was recorded while 18 adult subjects ate 5 g of steamed rice with 3 ml of blue-dye water. Liquid viscosity was set at four levels by adding a thickening agent (0, 1, 2, and 4 wt%, respectively). We measured the timing of the leading edge of the food reaching the base of the epiglottis, as well as the location of the leading edge at swallow initiation. As viscosity increased, the leading edge of the food reached the epiglottis significantly later during chewing and was higher in the pharynx at swallow onset. The time after the leading edge reached the epiglottis did not vary among the viscosities of the two-phase food. This study found that the initial viscosity of two-phase food significantly altered oropharyngeal bolus flow and the timing of swallow initiation. Accordingly, increased two-phase food viscosity may delay food entry into the pharynx and be of use in dysphagic diets.
Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry
NASA Technical Reports Server (NTRS)
Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.
2000-01-01
Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.
The Na 0.60CoO 2 phase, a potential conductive additive for the positive electrode of Ni-MH cells
NASA Astrophysics Data System (ADS)
Tronel, Frédéric; Guerlou-Demourgues, Liliane; Basterreix, Maïté; Delmas, Claude
The Na 0.60CoO 2 phase, obtained by a classical solid-state reaction, is tested as a conductive additive in the nickel oxide electrode. Though the process was not optimised in terms of additive repartition, the experiments show a good efficiency of the Na 0.60CoO 2 phase even at low cobalt content, compared to usual additives like CoO. Moreover, it increases the stability of the electrode at low potential. The added Na 0.60CoO 2 phase is shown to transform, during the first cycles, into a γ-type cobalt oxyhydroxide phase that is more stable at low potential than the usual additives.
As-Cast Icosashedral Quasicrystals in Ti-Zr-Ni Alloys
NASA Astrophysics Data System (ADS)
Lee, Geun Woo; Gangopadhyay, Anup K.; Kelton, Kenneth F.
2002-03-01
Most Ti-based icosahedral quasicrystals (i-phase) obtained by rapid quenching from the melt are metastable and disordered. In contrast, the Ti-Zr-Ni i-phase prepared by low temperature annealing is stable and better ordered. This i-phase is formed by a solid-state transformation from C14 Laves phase and α (Ti/Zr) solid-solution phase. It has not been possible previously to grow this i-phase directly from the liquid. Here, the nucleation and growth of the i-phase from the liquid in as-cast Ti-Zr-Ni alloys is reported. Pentagonal growth ledges in as-cast Ti-Zr-Ni ingots are clearly observed. Transmission electron microscopy and x-ray diffraction studies confirm the phase identity. Differential scanning calorimetry measurements show an endothermic transformation from the i-phase to a phase mixture of the C14 Laves and solid-solution phases, demonstrating that this i-phase is also stable. The short time that the liquid remains in the Laves phase-forming-field and the higher nucleation rate of the i-phase, owing to the presumed similarity between the local atomic structures of the i-phase and liquid, allows the i-phase to nucleate and grow directly from the liquid. Container-less solidification studies using electrostatic levitation (ESL) techniques support this conclusion.