Science.gov

Sample records for solid phase radioimmunoassay-bead

  1. Solid phases of tenoxicam.

    PubMed

    Cantera, Rodrigo G; Leza, María G; Bachiller, Carmen M

    2002-10-01

    In this report we describe the preparation and characterization of four polymorphic forms of tenoxicam; they are, three 1:1 stoichiometric solvates with acetonitrile, dioxane, and N,N-dimethylformamide, and an amorphous phase obtained by recrystallization in various solvents. Polymorph IV and solvates with dioxane and N,N-dimethylformamide are reported for the first time in this paper. In addition, three solvates were crystallized in acetone, ethyl acetate, and isopropyl alcohol. These solid forms were characterized by X-ray powder diffraction, differential scanning calorimetry, infrared spectroscopy, thermogravimetry, optical microscopy, and elemental analysis. Solid-state properties, intrinsic dissolution rate, and dissolution kinetics from formulated tablets are also provided.

  2. Solid phase extraction membrane

    DOEpatents

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  3. Solid phase pegylation of hemoglobin.

    PubMed

    Suo, Xiaoyan; Zheng, Chunyang; Yu, Pengzhan; Lu, Xiuling; Ma, Guanghui; Su, Zhiguo

    2009-01-01

    A solid phase conjugation process was developed for attachment of polyethylene glycol to hemoglobin molecule. Bovine hemoglobin was loaded onto an ion exchange chromatography column and adsorbed by the solid medium. Succinimidyl carbonate mPEG was introduced in the mobile phase after the adsorption. Pegylation took place between the hemoglobin on the solid phase, and the pegylation reagent in the liquid phase. A further elution was carried out to separate the pegylated and the unpegylated protein. Analysis by HPSEC, SDS-PAGE, and MALLS demonstrated that the fractions eluted from the solid phase contained well-defined components. Pegylated hemoglobin with one PEG chain was obtained with the yield of 75%, in comparison to the yield of 30% in the liquid phase pegylation. The P(50) values of the mono-pegylated hemoglobin, prepared with SC-mPEG 5 kDa, 10 kDa and 20 kDa, were 19.97, 20.23 and 20.54 mmHg, which were much closer to the value of red blood cells than that of pegylated hemoglobin prepared with the conventional method.

  4. Solid Phase Micro Extraction (SPME)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Internation Flavors and Fragrances Inc. proprietary research technology, Solid Phase Micro Extraction (SPME) utilizes a special fiber needle placed directly next to the bloom of the living flower to collect the fragrance molecules. SPME was used in the Space Flower experiment aboard STS-95 space shuttle mission, after which Dr. Braja Mookherjee (left) and Subha Patel of IFF will analyze the effects of gravity on the Overnight Scentsation rose plant.

  5. Solid phase syntheses of oligoureas

    SciTech Connect

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J.

    1997-02-19

    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  6. Colorimetric Solid-Phase Extractor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The heart of a colorimetric solid phase extractor (CSPE) test kit quickly measures the concentration of the biocides silver or iodine in astronauts' drinking water to determine whether concentrations are safe. When 10 milliliters (ml) of water is drawn through the disk, the disk will turn color (yellow in this picture for iodine) indicating the presence of the biocides. The device could someday be used to test water safety at reservoirs and water treatment plants on Earth. (photo credit: Microanalytical Instrumentation Center, Iowa State University).

  7. Solid phase microextraction field kit

    DOEpatents

    Nunes, Peter J.; Andresen, Brian D.

    2005-08-16

    A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.

  8. Colorimetric Solid-Phase Extractor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The heart of a colorimetric solid phase extractor (CSPE) test kit quickly measures the concentration of the biocides silver or iodine in astronauts' drinking water to determine whether concentrations are safe. When 10 milliliters (ml) of water is drawn through the disk, the disk will turn color (yellow in this picture for iodine) indicating the presence of the biocides. The device could someday be used to test water safety at reservoirs and water treatment plants on Earth. (photo credit: Microanalytical Instrumentation Center, Iowa State University).

  9. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    SciTech Connect

    Cooke, Gary A.

    2015-03-09

    The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4 gallons of solid tank waste adhering to the nozzle area.

  10. A comparison of observables for solid-solid phase transitions

    SciTech Connect

    Smilowitz, Laura B; Henson, Bryan F; Romero, Jerry J

    2009-01-01

    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  11. Solid-solid phase transitions via melting in metals.

    PubMed

    Pogatscher, S; Leutenegger, D; Schawe, J E K; Uggowitzer, P J; Löffler, J F

    2016-04-22

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a 'real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  12. Solid-solid phase transitions via melting in metals

    NASA Astrophysics Data System (ADS)

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-04-01

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a `real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  13. Molecular Modeling of Solid Fluid Phase Behavior

    SciTech Connect

    Peter A. Monson

    2007-12-20

    This report gives a summary of the achievements under DOE contract No. DOE/ER/14150 during the period September 1, 1990 to December 31, 2007. This project was concerned with the molecular modeling of solid-fluid equilibrium. The focus was on understanding how solid-fluid and solid-solid phase behavior are related to molecular structure, and the research program made a seminal contribution in this area. The project led to 34 journal articles, including a comprehensive review article published in Advances in Chemical Physics. The DOE funding supported the work of 5 Ph.D. students, 2 M.S. students and 5 postdoctoral researchers.

  14. Solid phase thermodynamic perturbation theory: test and application to multiple solid phases.

    PubMed

    Zhou, Shiqi

    2007-08-28

    A simple procedure for the determination of hard sphere (HS) solid phase radial distribution function (rdf) is proposed, which, thanks to its physical foundation, allows for extension to other crystal structures besides the fcc structure. The validity of the procedure is confirmed by comparing (1) the predicted HS solid phase rdf's with corresponding simulation data and (2) the predicted non-HS solid phase Helmholtz free energy by the present solid phase first-order thermodynamic perturbation theory (TPT) whose numerical implementation depends on the HS solid phase rdf's as input, with the corresponding predictions also by the first-order TPT but the required HS solid phase rdf is given by an "exact" empirical simulation-fitted formula. The present solid phase first-order TPT predicts isostructural fcc-fcc transition of a hard core attractive Yukawa fluid, in very satisfactory agreement with the corresponding simulation data and is far more accurate than a recent thermodynamically consistent density functional perturbation theory. The present solid phase first-order TPT is employed to investigate multiple solid phases. It is found that a short-ranged potential, even if it is continuous and differentiable or is superimposed over a long-ranged potential, is sufficient to induce the multiple solid phases. When the potential range is short enough, not only isostructural fcc-fcc transition but also isostructural bcc-bcc transition, simple cubic (sc)-sc transition, or even fcc-bcc, fcc-sc, and bcc-sc transitions can be induced. Even triple point involving three solid phases becomes possible. The multiple solid phases can be stable or metastable depending on the potential parameters.

  15. Binary Solid-Liquid Phase Equilibria

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    1978-01-01

    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  16. Solid phase sequencing of biopolymers

    DOEpatents

    Cantor, Charles; Koster, Hubert

    2010-09-28

    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  17. Solid phase sequencing of biopolymers

    SciTech Connect

    Cantor, Charles R.; Hubert, Koster

    2014-06-24

    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Probes may be affixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  18. New Polymeric Materials for Solid Phase Extraction.

    PubMed

    Płotka-Wasylka, Justyna; Marć, Mariusz; Szczepańska, Natalia; Namieśnik, Jacek

    2017-04-11

    Solid phase extraction (SPE) is a popular sample preparation technique, which can be applied directly in gas-solid phase and liquid-solid phase, or indirectly to solid samples by using, e.g., thermodesorption with subsequent chromatographic analysis. Although SPE can be described as a physical extraction process involving a liquid phase and a solid phase, the increased use of packed sorbent formats seems to have led to a bias toward packed sorbent SPE devices. Without any doubt, the heart of the SPE technique is the sorbent material as it has a direct influence on the selectivity, sorptive capacity, and the format or the configuration of the resultant SPE device. There will always be a need for new sorbent materials, and therefore, it is imperative to focus research efforts on versatile sorbent fabrication techniques that could address current and anticipated challenges. Various polymeric materials have been developed and implemented in everyday life. They are also extensively used in analytical chemistry. This review provides an updated summary of the most important features of polymeric sorptive materials used at the stage of preparing samples for analysis. The application of each new polymeric sorbent material is discussed in detail. Moreover, the comparison between these materials is done.

  19. Nonthermal solid-to-solid phase transitions in tungsten

    NASA Astrophysics Data System (ADS)

    Giret, Yvelin; Daraszewicz, Szymon L.; Duffy, Dorothy M.; Shluger, Alexander L.; Tanimura, Katsumi

    2014-09-01

    The ab initio calculations of phonon dispersions and nonthermal forces along structural deformation paths were used to study nonthermal solid-to-solid phase transitions in photoexcited tungsten. We assumed that electronic excitation can be described by an electronic temperature and demonstrated that nonthermal, i.e., caused purely by electronic excitation, bcc-to-fcc and bcc-to-hcp phase transitions can occur for electronic temperatures between 1.7 and 4.3 eV. These transitions result from soft modes along the Σ line of the Brillouin zone. Structural path calculations at different electronic temperatures indicate that both transitions are likely to take place in nonequilibrium conditions. We further predict that transient fcc and hcp phases of tungsten could be observed for several ps.

  20. Solid-Solid Phase Transition Kinetics of FOX-7

    SciTech Connect

    Burnham, A K; Weese, R K; Wang, R; Kwok, Q M; Jones, D G

    2005-07-12

    Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. This paper will present our results for the phase changes of FOX-7 using DSC and HFC (Heat Flow Calorimetry). DSC thermal curves recorded at linear heating rates of 0.10, 0.35 and 1.0 C min{sup -1} show two endothermic peaks and two exothermic peaks. The two endothermic peaks represent solid-solid phase transitions, which have been observed in the literature at 114 C ({beta}-{gamma}) and 159 C ({gamma}-{delta}) by both DSC and XPD (X-ray powder diffraction) measurements. The first transition shifts from 114.5 to 115.8 C as the heating rate increases from 0.10 to 1.0 C min{sup -1}, while the second transition shifts from 158.5 to 160.4 C. Cyclical heating experiments show the endotherms and exotherms for a first heating through the {gamma} phase to the {delta} phase, a cooling and reversion to the {alpha} or {beta} phase, and a second heating to the {gamma} and {delta} phases. The data are interpreted using kinetic models with thermodynamic constraints.

  1. Solid-liquid phase transition in argon

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1978-01-01

    Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

  2. Mesoporous VN prepared by solid-solid phase separation

    SciTech Connect

    Yang Minghui; Ralston, Walter T.; Tessier, Franck; Allen, Amy J.; DiSalvo, Francis J.

    2013-01-15

    We recently reported a simple route to prepare mesoporous, conducting nitrides from Zn containing ternary transition metal oxides. Those materials result from the condensation of atomic scale voids created by the loss of Zn by evaporation, the replacement of 3 oxygen anions by 2 nitrogen anions, and in most cases the loss of oxygen to form water on the reduction of the transition metal. In this report, we present a different route to prepare mesoporous VN from K containing vanadium oxides. In this case, ammonolysis results in a multiphase solid product that contains VN, and other water soluble compounds such as KOH or KNH{sub 2}. On removing the K containing products by washing with degassed water, only mesoporous VN remains. VN materials with different pore sizes (10 nm-20 nm) were synthesized at 600 Degree-Sign C by varying the reaction time, while larger pores are obtained at higher temperatures (50 nm at 800 Degree-Sign C). - Graphical Abstract: The synthesis process of mesoporous VN from solid-solid separation. Highlights: Black-Right-Pointing-Pointer Mesoporous VN has been prepared by solid-solid phase separation. Black-Right-Pointing-Pointer Mesoporous VN was characterized by Rietveld refinement of PXRD, SEM and nitrogen physisorption. Black-Right-Pointing-Pointer VN materials with different pore sizes (10 nm-50 nm) were synthesized.

  3. A rapid solid-phase protein microsequencer.

    PubMed Central

    Walker, J E; Fearnley, I M; Blows, R A

    1986-01-01

    A solid-phase protein microsequencer is described that has been designed to determine protein sequences with subnanomolar quantities of protein. Its utility has been demonstrated by the determination of many sequences in subunits of mitochondrial F1-ATPase, in a protein isolated from mouse gap junctions and in the mitochondrial phosphate-transporter protein. It has a number of advantages over liquid- and gas-phase sequencers. Firstly, the degradation cycle takes 24 min, more than twice as fast as any other sequencer. This helps to reduce exposure of proteins to inimical reagents and increases throughput of samples. Secondly, polar amino acids such as phosphoserine, and polar derivatives formed by active-site photoaffinity labelling with 8-azido-ATP, are recovered quantitatively from the reaction column and can be positively identified. In other types of sequencer these polar derivatives, being somewhat insoluble in butyl chloride, tend to remain in the reaction chamber of the instrument and so are more difficult to identify. The solid-phase protein sequencer is also more suited than the liquid-phase instrument for analysis of proteolipids from membranes. These hydrophobic proteins tend to dissolve in organic solvents during washing steps in the liquid-phase instrument and are lost. Covalent attachment as used in the solid-phase instrument solves this problem. PMID:3800890

  4. Astronomical observations of solid phase carbon

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1990-01-01

    In the outer envelopes of red giants, when the gas cools sufficiently, molecules and solids form. Thermodynamically, the most stable molecule is CO, and it is usually assumed that all the available carbon and oxygen are consumed in the formation of this molecule (Salpeter 1977). If the carbon abundance is greater than the oxygen abundance, then the carbon left over after the formation of CO is available for solid grains. Because carbon is by far the most abundant species available for making solids in these environments, researchers anticipate that the grains are composed of nearly pure carbon in some form. The observations which can be used to infer the nature of this solid phase carbon are discussed. The observations of the dust around carbon-rich red giants are discussed. These results are then placed into their broader astrophysical context.

  5. Multiplexed Colorimetric Solid-Phase Extraction

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  6. Staphylococcal Enterotoxin C: Solid-Phase Radioimmunoassay

    PubMed Central

    Bukovic, Joann A.; Johnson, Howard M.

    1975-01-01

    A solid-phase radioimmunoassay test employing 125I-labeled enterotoxin C and polystyrene tubes coated with specific antibody was used for the detection and quantitation of enterotoxin C in condensed milk, cheddar cheese, custard, and ham salad. The assay was sensitive to 1 to 10 ng of toxin per g of food; nonspecific inhibitions were 16% or less. PMID:1190765

  7. Solid-phase fermentation of sweet sorghum

    SciTech Connect

    Bryan, W.L.; Parrish, R.L.

    1982-12-01

    Solid-phase fermentations of chopped Wray sweet sorghum, (0.6 and 2.5 cm size) occurred in 7-liter fermentors at higher rates than juice fermentations and produced 80% ethanol yields, compared to 73% for juice. Heat loss from fermentors limited maximum temperatures to 38 degrees C. Low ethanol yields may have been caused by natural inhibitors or by thermal inhibition.

  8. Phase 2, Solid waste retrieval strategy

    SciTech Connect

    Johnson, D.M.

    1994-09-29

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  9. Grafted supports in solid-phase synthesis.

    PubMed

    Rasoul, F; Ercole, F; Pham, Y; Bui, C T; Wu, Z; James, S N; Trainor, R W; Wickham, G; Maeji, N J

    2000-01-01

    Solid-phase synthesis is greatly dependent on the solid phase. We are interested in the development of a "pellicular" type of solid support where a more mobile polymer is grafted to rigid plastics. Compared to low cross-linked microporous beads that dominate the field, this approach allows great flexibility of design, as plastics are available as sheets, films, or threads, or can be molded into any shape, as required. Many different polymers or copolymers can be grafted onto any particular shape to give a wide choice of options in the physicochemical characteristics of the actual solid support. As an example of such a solid support, we report on polystyrene-grafted polypropylene in a particular shape that we have called "Lanterns." Its synthesis characteristics are compared to the commonly available low cross-linked polystyrene resins. As well, the handling advantages of these types of supports in multiple synthesis are highlighted. Copyright 2000 John Wiley & Sons, Inc. Biopolymers (Pept Sci) 55: 207-216, 2000

  10. Megabar pressure phases of solid hydrogen

    NASA Astrophysics Data System (ADS)

    Chen, Nancy Hueling

    The behavior of solid Hsb2, Dsb2, and HD at low temperatures high pressures was investigated. The experimental data were obtained by combining high pressure diamond anvil cell apparatus with cryogenic and spectroscopic techniques. Megabar pressures (1 bar = 10sp5 Pa) and liquid helium temperatures were accessible. The observed phases and phase lines are discussed with respect to orientational order, crystal structure, and electronic properties. The orientational order-disorder phase transition in HD was studied by Raman spectroscopy. Due to the distinguishability of the nuclei in an HD molecule, the observed phase line exhibits surprising behavior relative to that expected for the homonuclear molecules Hsb2 and Dsb2. The megabar pressure phase diagram of solid Dsb2 was investigated by infrared and Raman spectroscopy. The broken symmetry phase (BSP) transition line and the D-A phase line were observed to meet at a triple point. The relative arrangement of phase lines in P-T space, combined with group theoretical analysis of observed infrared and Raman spectra within the phases, sets symmetry restrictions on the allowed crystal structures. The electronic properties of the high pressure H-A and D-A phases were examined, since these recently discovered phases were suspected of being metallic. Acquired broadband infrared absorption spectra extending to 10 mum were analyzed in terms of the Drude model for metals. No evidence indicating metallic behavior was found. Refinements in high pressure techniques were explored, in order to increase the maximum pressures attainable. A method of extending ruby fluorescence pressure measurements to multimegabar pressures was developed, which involved excitation of ruby fluorescence with red, rather than blue or green laser light.

  11. Solid phase synthesis of bifunctional antibodies.

    PubMed

    DeSilva, B S; Wilson, G S

    1995-12-15

    Bifunctional antibodies were prepared using the principle of solid-phase synthesis. The two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')2 fragments from intact IgG were prepared using an immobilized pepsin column. Goat, mouse and human antibodies were digested completely within 4 h. The F(ab')2 fragments thus produced did not contain any IgG impurities. The Fab' fragments were produced by reducing the inter-heavy chain disulfide bonds using 2-mercaptoethylamine. The use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of the bifunctional antibody preparation and the rapid optimization of reaction conditions.

  12. Solid-phase fermentation of sweet sorghum

    SciTech Connect

    Bryan, W.L.; Parrish, R.L.

    1982-12-01

    Solid-phase fermentations of chopped Wray sweet sorghum, (0.6 and 2.5 cm size) occurred in 7-liter fermentors at higher rates than juice fermentations and produced 80% ethanol yields, compared to 73% for juice. Heat loss from fermentors limited maximum temperatures to 38/sup 0/C. Low ethanol yields may have been caused by natural inhibitors or by thermal inhibition.

  13. Solid-phase biotinylation of antibodies.

    PubMed

    Strachan, Elizabeth; Mallia, A Krishna; Cox, Joanna M; Antharavally, Babu; Desai, Surbhi; Sykaluk, Laura; O'Sullivan, Valerie; Bell, Peter A

    2004-01-01

    Biotinylation is an established method of labeling antibody molecules for several applications in life science research. Antibody functional groups such as amines, cis hydroxyls in carbohydrates or sulfhydryls may be modified with a variety of biotinylation reagents. Solution-based biotinylation is accomplished by incubating antibody in an appropriate buffered solution with biotinylation reagent. Unreacted biotinylation reagent must be removed via dialysis, diafiltration or desalting. Disadvantages of the solution-based approach include dilution and loss of antibody during post-reaction purification steps, and difficulty in biotinylation and recovery of small amounts of antibody. Solid-phase antibody biotinylation exploits the affinity of mammalian IgG-class antibodies for nickel IMAC (immobilized metal affinity chromatography) supports. In this method, antibody is immobilized on a nickel-chelated chromatography support and derivitized on-column. Excess reagents are easily washed away following reaction, and biotinylated IgG molecule is recovered under mild elution conditions. Successful solid phase labeling of antibodies through both amine and sulfhydryl groups is reported, in both column and mini-spin column formats. Human or goat IgG was bound to a Ni-IDA support. For sulfhydryl labeling, native disulfide bonds were reduced with TCEP, and reduced IgG was biotinylated with maleimide-PEO(2) biotin. For amine labeling, immobilized human IgG was incubated with a solution of NHS-PEO(4) biotin. Biotinylated IgG was eluted from the columns using a buffered 0.2 M imidazole solution and characterized by ELISA, HABA/avidin assay, probing with a streptavidin-alkaline phosphatase conjugate, and binding to a monomeric avidin column. The solid phase protocol for sulfhydryl labeling is significantly shorter than the corresponding solution phase method. Biotinylation in solid phase is convenient, efficient and easily applicable to small amounts of antibody (e.g. 100 microg

  14. Solid-solid phase transition measurements in iron

    SciTech Connect

    Schwartz, Cynthia Louise

    2010-01-01

    Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the Los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy mUlti-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where radiographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {mu}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {mu}m/5.251 km/s = 50 ns. Both Boettger and Jensen conclude that the

  15. Kinetics of Solid-Solid Phase Transition in Iron (u)

    SciTech Connect

    Schwartz, Cynthia, L

    2011-01-27

    Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter of polycrystalline ARMCO iron. The iron is backed by a sapphire optical window for velocimetry measurements. The aluminum flyer on the left of the iron is barely visible for visual display purposes. Direct density jumps were measured which corresponded to calculations to within 1% using a Wondy multi-phase equation of state model. In addition, shock velocities were measured using an edge fitting technique and followed that edge movement from radiograph to radiograph, where rad iographs are separated in time by 500 ns. Preliminary measurements give a shock velocity (P1 wave) of 5.251 km/s. The projectile velocity was 0.725 km/s which translate to a peak stress of 17.5 GPa. Assuming the P1 wave is instantaneous, we are able to calibrate the chromatic, motion, object and camera blur by measuring the width of the P1 wave. This approximation works in this case since each of the two density jumps are small compared to the density of the object. Subtracting the measured width of the P1 wave in quadrature from the width of the P2 wave gives a preliminary measurement of the transition length of 265 {micro}m. Therefore, a preliminary measured phase transition relaxation time {tau} = transition length/u{sub s} = 265 {micro}m/5.251 km/s = 50 ns. Both Boettger1 & Jensen2 conclude that

  16. Solid-phase extraction in segmented flow.

    PubMed

    Rendl, Martin; Brandstetter, Thomas; Rühe, Jürgen

    2014-11-04

    Two-phase flow systems are increasingly popular for miniaturized, high-throughput performance of analytical or chemical reactions. In this contribution, we extend a previously described method that allows to increase the range of applications of heterogeneous reactions in two-phase flow, i.e., reactions that rely on isolation and purification of the compound of interest for downstream analysis. Our concept is based on liquid plugs, which serve as miniaturized compartments for the analytical reactions. Purification of the target compound is achieved by extracting the analyte from the aqueous compartments using magnetic beads as solid carriers. In the present paper, we elucidate the influence of parameters such as the polarity of the liquid/liquid and solid/liquid interfaces, the magnetic forces and the fluidic conditions onto the extraction performance. The conditions for reliable extraction and purification of the target compounds are determined. Furthermore, we investigate how to facilitate breaking of the plugs through reduction of the surface tension of the solid/liquid interface. When a lower surface tension is employed, a smaller number of beads is required for the extraction process, which implies a higher sensitivity of the device. In addition, we generate channels with different surface chemistries, which are able to manipulate the flow of the two immiscible liquids. We describe a very simple way to generate such devices and show that we can achieve a transition from segmented flow of plugs to a side-by side flow of the two immiscible liquids, a key requirement for the purification of the compounds.

  17. Density-functional theory for fluid-solid and solid-solid phase transitions

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Atul S.; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u (r ) =ɛ "close="1 /n )">σ /r n , where parameter n measures softness of the potential. We find that for 1 /n ≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  18. Density-functional theory for fluid-solid and solid-solid phase transitions.

    PubMed

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  19. Solvent-assisted dispersive solid phase extraction.

    PubMed

    Jamali, Mohammad Reza; Firouzjah, Ahmad; Rahnama, Reyhaneh

    2013-11-15

    In this research, a novel extraction technique termed solvent-assisted dispersive solid phase extraction (SADSPE) was developed for the first time. The new method was based on the dispersion of the sorbent into the sample to maximize the contact surface. In this method, the dispersion of the sorbent at a very low milligram level was achieved by injecting a solution of the sorbent into the aqueous sample. Thereby, a cloudy solution formed. The cloudy state resulted from the dispersion of the fine particles of the sorbent in the bulk aqueous sample. After extraction, phase separation was performed by centrifugation and the enriched analyte in the sedimented phase could be determined by instrumental methods. The performance of SADSPE was illustrated with the determination of the trace amounts of cobalt(II) as a test analyte in food and environmental water samples by using flame atomic absorption spectrometry detection. Some key parameters for SADSPE, such as sorbent selection and amount, type and volume of dispersive solvent, pH, chelating agent concentration, and salt concentration, were investigated. Under the most favorable conditions, good limit of detection (as low as 0.2 µg L(-1)) and repeatability of extraction (RSD below 2.2%, n=10) was obtained. The accuracy of the method was tested with standard reference material (SRM-1643e and SRM-1640a) and spiked addition. The advantages of SADSPE method are simplicity of operation, rapidity, low cost, high recovery, and enrichment factor. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Offline solid phase microextraction sampling system

    DOEpatents

    Harvey, Chris A.

    2008-12-16

    An offline solid phase microextraction (SPME) sampling apparatus for enabling SPME samples to be taken a number of times from a previously collected fluid sample (e.g. sample atmosphere) stored in a fused silica lined bottle which keeps volatile organics in the fluid sample stable for weeks at a time. The offline SPME sampling apparatus has a hollow body surrounding a sampling chamber, with multiple ports through which a portion of a previously collected fluid sample may be (a) released into the sampling chamber, (b) SPME sampled to collect analytes for subsequent GC analysis, and (c) flushed/purged using a fluidically connected vacuum source and purging fluid source to prepare the sampling chamber for additional SPME samplings of the same original fluid sample, such as may have been collected in situ from a headspace.

  1. Solid phase microextraction device using aerogel

    DOEpatents

    Miller, Fred S.; Andresen, Brian D.

    2005-06-14

    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  2. Solid-phase microextraction in biomedical analysis.

    PubMed

    Ulrich, S

    2000-12-01

    Chromatographic methods are preferred in the analysis of organic molecules with lower molecular mass (<500 g/mol) in body fluids, i.e., the assay of drugs, metabolites, endogenous substances and poisons as well as of environmental exposure by gas chromatography (GC) and liquid chromatography (LC), for example. Sample preparation in biomedical analysis is mainly performed by liquid-liquid extraction and solid-phase extraction. However, new methods are investigated with the aim to increase the sample throughput and to improve the quality of analytical methods. Solid-phase microextraction (SPME) was introduced about a decade ago and it was mainly applied to environmental and food analysis. All steps of sample preparation, i.e., extraction, concentration, derivatization and transfer to the chromatograph, are integrated in one step and in one device. This is accomplished by the intelligent combination of an immobilized extraction solvent (a polymer) with a special geometry (a fiber within a syringe). It was a challenge to test this novel principle in biomedical analysis. Thus, an introduction is provided to the theory of SPME in the present paper. A critical review of the first applications to biomedical analyses is presented in the main paragraph. The optimization of SPME as well as advantages and disadvantages are discussed. It is concluded that, because of some unique characteristics, SPME can be introduced with benefit into several areas of biomedical analysis. In particular, the application of headspace SPME-GC-MS in forensic toxicology and environmental medicine appears to be promising. However, it seems that SPME will not become a universal method. Thus, on-line SPE-LC coupling with column-switching technique may be a good alternative if an analytical problem cannot be sufficiently dealt with by SPME.

  3. Solid-phase synthesis of quinolinone library.

    PubMed

    Kwak, Seung-Hwa; Kim, Min Jeong; Lee, So-Deok; You, Hyun; Kim, Yong-Chul; Ko, Hyojin

    2015-01-12

    Quinolinones have various biological activities, including antibacterial, anticancer, and antiviral properties. The 3-substituted amide quinolin-2(1H)-ones not only show antibacterial activity, but also act as immunomodulators, 5-HT4 receptor agonists, cannabinoid receptor inverse agonists, and AchE and, BuchE inhibitors. To investigate the potent biological activity of 3-substituted amide quinolin-2(1H)-ones, a large number of 3,5-amide substituted-2-oxoquinolinones were prepared by parallel solid-phase synthesis. The compound 5-amino-1-(4-methoxybenzyl)-2-oxo-1,2-dihydroquinoline-3-carboxylic acid was loaded onto 4-formyl-3,5-dimethoxyphenoxy (PL-FDMP) resin by reductive amination with high efficiency. Various building blocks were attached to the 3 and 5 positions to yield 3,5-disubstituted-2-oxoquinolinones with high purity and good yield. The ability some of these compound to inhibit the release of IL-1β, a cytokine involved in the immune response was measured, and they showed about 50% inhibition at 10 μM.

  4. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.

    2000-01-01

    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  5. Solid-solid phase transitions determined by differential scanning calorimetry.

    NASA Technical Reports Server (NTRS)

    Murrill, E.; Whitehead, M. E.; Breed, L.

    1972-01-01

    Data are presented to show that tris(hydroxymethyl)acetic acid, monochloropentaerythritol, monofluoropentaerythritol, difluoropentaerythritol, monoaminopentaerythritol, and diaminopentaerythritol exhibit solid-state transitions to a plastic crystalline state. Transitional enthalpies in many of these substances are lower than might be expected by analogy with related structures, suggesting that some configurational contributions to their entropy increments have been inhibited.

  6. Solid-solid phase transitions determined by differential scanning calorimetry.

    NASA Technical Reports Server (NTRS)

    Murrill, E.; Whitehead, M. E.; Breed, L.

    1972-01-01

    Data are presented to show that tris(hydroxymethyl)acetic acid, monochloropentaerythritol, monofluoropentaerythritol, difluoropentaerythritol, monoaminopentaerythritol, and diaminopentaerythritol exhibit solid-state transitions to a plastic crystalline state. Transitional enthalpies in many of these substances are lower than might be expected by analogy with related structures, suggesting that some configurational contributions to their entropy increments have been inhibited.

  7. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds

  8. Stability of solid phases in the dipolar hard sphere system

    NASA Astrophysics Data System (ADS)

    Levesque, D.; Weis, J.-J.

    2011-12-01

    Free energy differences between solid phases of dipolar hard spheres are estimated by Monte Carlo simulation using a nonequilibrium work method. These calculations allow one to determine which of the considered phases has the minimum free energy. The phase diagram which we obtain is confirmed by simulations in the isothermal-isobaric ensemble over a wide region of the density and temperature domain.

  9. Solid lubrication design methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Pallini, R. A.; Wedeven, L. D.; Ragen, M. A.; Aggarwal, B. B.

    1986-01-01

    The high temperature performance of solid lubricated rolling elements was conducted with a specially designed traction (friction) test apparatus. Graphite lubricants containing three additives (silver, phosphate glass, and zinc orthophosphate) were evaluated from room temperature to 540 C. Two hard coats were also evaluated. The evaluation of these lubricants, using a burnishing method of application, shows a reasonable transfer of lubricant and wear protection for short duration testing except in the 200 C temperature range. The graphite lubricants containing silver and zinc orthophosphate additives were more effective than the phosphate glass material over the test conditions examined. Traction coefficients ranged from a low of 0.07 to a high of 0.6. By curve fitting the traction data, empirical equations for slope and maximum traction coefficient as a function of contact pressure (P), rolling speed (U), and temperature (T) can be developed for each lubricant. A solid lubricant traction model was incorporated into an advanced bearing analysis code (SHABERTH). For comparison purposes, preliminary heat generation calculations were made for both oil and solid lubricated bearing operation. A preliminary analysis indicated a significantly higher heat generation for a solid lubricated ball bearing in a deep groove configuration. An analysis of a cylindrical roller bearing configuration showed a potential for a low friction solid lubricated bearing.

  10. Solid-Phase Synthesis of 2-Aminoethyl Glucosamine Sulfoforms

    PubMed Central

    Liu, Runhui

    2012-01-01

    Mono- and disaccharides of sulfonated glucosamines (GlcN sulfoforms) conjugated to 2-aminoethyl linkers were generated by solid-phase synthesis. Orthogonally protected intermediates were tethered onto tritylated polystyrene resin beads, subjected to a modular sequence of deprotection and sulfonation steps, then cleaved from solid support without degradation of N- or O-sulfate esters using solvolytic conditions, and finally purified by reverse-phase HPLC to afford the title compounds. PMID:23180905

  11. The solid-phase Nicholas reaction: scope and limitations.

    PubMed

    Gachkova, Natalie; Cassel, Johan; Leue, Stefanie; Kann, Nina

    2005-01-01

    Two libraries of alpha-substituted alkynes has been prepared on solid phase using a sequential Sonogashira/Nicholas reaction approach. The scope of nucleophiles in the Nicholas reaction on solid phase has been investigated, including carbon, oxygen, nitrogen, sulfur, fluoride, and hydride nucleophiles. The conditions for the reaction sequence have been optimized in terms of Lewis acid, catalyst for the Sonogashira step, temperature, reaction time, and decomplexation method, enabling the five-step sequence to be performed in 1 day.

  12. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  13. Solid-Phase S-Alkylation Promoted by Molecular Sieves.

    PubMed

    Calce, Enrica; Leone, Marilisa; Mercurio, Flavia Anna; Monfregola, Luca; De Luca, Stefania

    2015-11-20

    A solid-phase S-alkylation procedure to introduce chemical modification on the cysteine sulfhydryl group of a peptidyl resin is reported. The reaction is promoted by activated molecular sieves and consists of a solid-solid process, since both the catalyst and the substrate are in a solid state. The procedure was revealed to be efficient and versatile, particularly when used in combination with the solution S-alkylation approach, allowing for the introduction of different molecular diversities on the same peptide molecule.

  14. Solid-Phase Synthesis of 2-Aminobenzothiazoles

    PubMed Central

    Piscitelli, Francesco; Smith, Amos B.

    2009-01-01

    A traceless solid supported protocol for the synthesis of 2-aminobenzothiazoles is described, employing resin-bound acyl-isothiocyanate and a series of anilines. Cyclization of the resulting N-acyl, N′-phenyl-thioureas generates the 2-aminobenzothiazole scaffold, which can be further elaborated prior to hydrazine-mediated cleavage of the final products from the carboxy-polystyrene resin. A small, focused library of 2-aminobenzothiazoles was prepared. PMID:19954974

  15. CO2 in the mantle: Melting and solid-solid phase boundaries

    NASA Astrophysics Data System (ADS)

    Teweldeberhan, A. M.; Boates, B.; Bonev, S. A.

    2013-07-01

    The high temperature phase boundaries of CO2 in the proximity of the Earth's adiabat are determined using first-principles molecular dynamics simulations based on density functional theory. The melting curve, predicted here up to 71 GPa, and the molecular to polymeric solid phase transition are computed through a phase coexistence approach from free energy calculations. The resulting CO2 phase IV-phase V-liquid triple point is at 31.8 GPa and 1636 K, in excellent agreement with the available experimental data. The Earth's geotherm crosses into the non-molecular phase V near 40 GPa and 2160 K, indicating that free deposits of carbon dioxide in the lower mantle would exist as a polymeric solid. We have also examined the thermodynamic stability of phase V and find no indication of transformations into a dissociated diamond and oxygen phase at mantle conditions.

  16. Solid-phase products of bacterial oxidation of arsenical pyrite.

    PubMed

    Carlson, L; Lindström, E B; Hallberg, K B; Tuovinen, O H

    1992-03-01

    Bacterial leaching of an As-containing pyrite concentrate produced acidic (pH < 1) leachates. During the leaching, the bacteria solubilized both As and Fe, and these two elements were distributed in solution-phase and solid-phase products. Jarosite and scorodite were the exclusive crystalline products in precipitate samples from the bacterial leaching of the sulfide concentrate.

  17. Diagnostic immunoassay by solid phase separation for digoxin

    SciTech Connect

    Grenier, F.C.; Pry, T.A.; Kolaczkowski, L.

    1988-11-29

    A method is described for conducting a diagnostic immunoassay for digoxin, comprising: (a) forming a reaction mixture of a test sample with a molar excess of labeled anti-digoxin antibodies whereby the labeled antibodies are capable of forming complex with digoxin present in the sample; (b) contacting the reaction mixture with a solid phase material having immobilized thereon a compound; (c) separating the solid phase material from the reaction mixture; and (d) determining the presence of digoxin in the test sample by measuring the amount of complex present in the liquid phase.

  18. Anisotropic kinetics of solid phase transition from first principles: alpha-omega phase transformation of Zr.

    PubMed

    Guan, Shu-Hui; Liu, Zhi-Pan

    2016-02-14

    Structural inhomogeneity is ubiquitous in solid crystals and plays critical roles in phase nucleation and propagation. Here, we develop a heterogeneous solid-solid phase transition theory for predicting the prevailing heterophase junctions, the metastable states governing microstructure evolution in solids. Using this theory and first-principles pathway sampling simulation, we determine two types of heterophase junctions pertaining to metal α-ω phase transition at different pressures and predict the reversibility of transformation only at low pressures, i.e. below 7 GPa. The low-pressure transformation is dominated by displacive Martensitic mechanism, while the high-pressure one is controlled by the reconstructive mechanism. The mechanism of α-ω phase transition is thus highly pressure-sensitive, for which the traditional homogeneous model fails to explain the experimental observations. The results provide the first atomic-level evidence on the coexistence of two different solid phase transition mechanisms in one system.

  19. Soft x-ray induced femtosecond solid-to-solid phase transition

    NASA Astrophysics Data System (ADS)

    Tavella, Franz; Höppner, Hauke; Tkachenko, Victor; Medvedev, Nikita; Capotondi, Flavio; Golz, Torsten; Kai, Yun; Manfredda, Michele; Pedersoli, Emanuele; Prandolini, Mark J.; Stojanovic, Nikola; Tanikawa, Takanori; Teubner, Ulrich; Toleikis, Sven; Ziaja, Beata

    2017-09-01

    Soft x-rays were applied to induce graphitization of diamond through a non-thermal solid-to-solid phase transition. This process was observed within poly-crystalline diamond with a time-resolved experiment using ultrashort soft x-ray pulses of duration 52.5 fs and cross correlated by an optical pulse of duration 32.8 fs. This scheme enabled for the first time the measurement of a phase transition on a timescale of ∼150 fs. Excellent agreement between experiment and theoretical predictions was found, using a dedicated code that followed the non-equilibrium evolution of the irradiated diamond including all transient electronic and structural changes. These observations confirm that soft x-rays can induce a non-thermal ultrafast solid-to-solid phase transition on a hundred femtosecond timescale.

  20. Structural control of Fe-based alloys through diffusional solid/solid phase transformations in a high magnetic field

    PubMed Central

    Ohtsuka, Hideyuki

    2008-01-01

    A magnetic field has a remarkable influence on solid/solid phase transformations and it can be used to control the structure and function of materials during phase transformations. The effects of magnetic fields on diffusional solid/solid phase transformations, mainly from austenite to ferrite, in Fe-based alloys are reviewed. The effects of magnetic fields on the transformation temperature and phase diagram are explained thermodynamically, and the transformation behavior and transformed structures in magnetic fields are discussed. PMID:27877922

  1. Structural control of Fe-based alloys through diffusional solid/solid phase transformations in a high magnetic field.

    PubMed

    Ohtsuka, Hideyuki

    2008-01-01

    A magnetic field has a remarkable influence on solid/solid phase transformations and it can be used to control the structure and function of materials during phase transformations. The effects of magnetic fields on diffusional solid/solid phase transformations, mainly from austenite to ferrite, in Fe-based alloys are reviewed. The effects of magnetic fields on the transformation temperature and phase diagram are explained thermodynamically, and the transformation behavior and transformed structures in magnetic fields are discussed.

  2. Further optimization of detritylation in solid-phase oligodeoxyribonucleotide synthesis.

    PubMed

    Tram, Kha; Sanghvi, Yogesh S; Yan, Hongbin

    2011-01-01

    Various conditions for optimum detritylation (i.e., the removal of 5'-O-trityl protecting groups) during solid-phase synthesis of oligodeoxyribonucleotides were investigated. Di- and tri-chloroacetic acids of variable concentrations were used to study the removal of the 4,4'-dimethoxytrityl (DMTr) group. It was found that the DMTr group could be completely removed under much milder acidic conditions than what are currently used for automated solid-phase synthesis. The 2,7-dimethylpixyl (DMPx) is proposed as an alternative and more readily removable group for the protection of the 5'-OH functions both in solid- and solution-phase synthesis. The improved detritylation conditions are expected to minimize the waste and offer a protocol for incorporation of acid sensitive building-blocks in oligonucleotides.

  3. Solid state photomultiplier for astronomy, phase 2

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hays, K. M.; Laviolette, R. A.

    1989-01-01

    Epitaxial layers with varying donor concentration profiles were grown on silicon substrate wafers using chemical vapor deposition (CVD) techniques, and solid state photomultiplier (SSPM) devices were fabricated from the wafers. Representative detectors were tested in a low background photon flux, low temperature environment to determine the device characteristics for comparison to NASA goals for astronomical applications. The SSPM temperatures varied between 6 and 11 K with background fluxes in the range from less than 5 x 10 to the 6th power to 10 to the 13th power photons/square cm per second at wavelengths of 3.2 and 20 cm. Measured parameters included quantum efficiency, dark count rate and bias current. Temperature for optimal performance is 10 K, the highest ever obtained for SSPMs. The devices exhibit a combination of the lowest dark current and highest quantum efficiency yet achieved. Experimental data were reduced, analyzed and used to generate recommendations for future studies. The background and present status of the microscopic theory of SSPM operation were reviewed and summarized. Present emphasis is on modeling of the avalanche process which is the basis for SSPM operation. Approaches to the solution of the Boltzmann transport equation are described and the treatment of electron scattering mechanisms is presented. The microscopic single-electron transport theory is ready to be implemented for large-scale computations.

  4. Recent developments in matrix solid-phase dispersion extraction.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Giansanti, Piero; Gubbiotti, Riccardo; Samperi, Roberto; Laganà, Aldo

    2010-04-16

    Matrix solid-phase dispersion is a sample preparation strategy widely applied to solid, semisolid or viscous samples, including animal tissues and foods with a high lipidic content. The process consists in blending the matrix onto a solid support, allowing the matrix cell disruption and the subsequent extraction of target analytes by means of a suitable elution solvent. First introduced in 1989, MSPD employment and developments are still growing because of the feasibility and versatility of the process, as evidenced by the several reviews that have been published since nineties. Therefore, the aim of the present review is to provide a general overview and an update of the last developments of MSPD.

  5. Theoretical phase diagrams for solid H{sub 2}

    SciTech Connect

    Surh, M.P.; Runge, K.J.

    1993-07-01

    Possible phase diagrams for solid molecular para-hydrogen in the 0-200 GPa pressure regime are constructed on the basis of ab initio calculations. Structures for the broken symmetry phase (BSP) and H-A phase have recently been proposed under the assumption that the molecules are centered on sites of a hexagonal close-packed lattice with the ideal c/a ratio, i.e., only molecular orientational and electronic changes are allowed. Symmetry considerations then dictate the simplest phase diagrams consistent with experimental observations, although the possibility of additional transitions cannot be ruled out. A simple model is introduced to describe the BSP and H-A transitions.

  6. Influence of impurities on the solid-solid phase transitions in zirconium

    SciTech Connect

    Rigg, Paulo A; Greeff, Carl W; Gray, George T., III; Knudson, Marcus D

    2009-08-04

    In an effort to better understand the influence of impurities on the solid-solid phase transitions in Group IVb metals, experiments have been carried out on polycrystalline zirconium samples using plate impact and isentropic loading techniques. Samples with three levels of impurities were shock-loaded using both gas and powder-driven guns and isentropically loaded using magnetic drive (Sandia's Z-Machine) to determine the properties and characteristics of both the {alpha} {yields} {omega} and {omega} {yields} {beta} transitions.

  7. Acetophenone-based linker for solid-phase peptide synthesis.

    PubMed

    Bui, C T; Bray, A M; Nguyen, T; Ercole, F; Rasoul, F; Sampson, W; Maeji, N J

    2000-02-01

    A new and cost-effective linker for the generation of carboxylic acid end groups on Multipin supports (SynPhase crowns) has been developed. Synthesis of the linker was based on modification of grafted polystyrene (PS) crowns to generate a hydroxyethyl moiety which is acid labile in 10-20% trifluoroacetic acid (TFA) in dichloromethane (DCM). Solid-phase syntheses of model decapeptides using this linker are described.

  8. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  9. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, Clifford B.; Hackel, Lloyd A.

    1999-01-01

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

  10. Solid–solid phase transitions via melting in metals

    PubMed Central

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-01-01

    Observing solid–solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid–solid transition via the formation of a metastable liquid in a ‘real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory. PMID:27103085

  11. Solid Phase Characterization of Tank 241-C-105 Grab Samples

    SciTech Connect

    Ely, T. M.; LaMothe, M. E.; Lachut, J. S.

    2016-01-11

    The solid phase characterization (SPC) of three grab samples from single-shell Tank 241-C-105 (C-105) that were received at the laboratory the week of October 26, 2015, has been completed. The three samples were received and broken down in the 11A hot cells.

  12. Traceless solid-phase synthesis of 2,4-diaminoquinazolines.

    PubMed

    Wilson, L J

    2001-02-22

    [reaction: see text] The solid-phase synthesis of 2,4-diaminoquinazolines is presented. The chemistry involves the sequential condensation of 2-aminobenzonitriles and amines starting from an acyl isothiocyanate resin via a traceless cleavage and cyclization. The alpha-1 antagonist prazosin was synthesized, as well as several other examples, in good yields and purity.

  13. Recent Approaches Toward Solid Phase Synthesis of β-Lactams

    NASA Astrophysics Data System (ADS)

    Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb

    Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.

  14. Solid-phase-supported synthesis of morpholinoglycine oligonucleotide mimics

    PubMed Central

    Belov, Sergey S; Tarasenko, Yulia V; Silnikov, Vladimir N

    2014-01-01

    Summary An efficient solid-phase-supported peptide synthesis (SPPS) of morpholinoglycine oligonucleotide (MorGly) mimics has been developed. The proposed strategy includes a novel specially designed labile linker group containing the oxalyl residue and the 2-aminomethylmorpholino nucleoside analogues as first subunits. PMID:24991266

  15. Kinetics of Microbial Reduction of Solid Phase U(VI)

    SciTech Connect

    Liu, Chongxuan; Jeon, Byong Hun; Zachara, John M.; Wang, Zheming; Dohnalkova, Alice; Fredrickson, Jim K.

    2006-10-01

    Sodium boltwoodite (NaUO2SiO3OH ?1.5H2O) was used to assess the kinetics of microbial reduction of solid phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Batch experiments were performed in a non-growth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intraparticle uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated the intimate coupling of biological, chemical, and physical processes in microbial reduction of solid phase U(VI).

  16. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  17. Solid phases of spatially nanoconfined oxygen: A neutron scattering study

    SciTech Connect

    Kojda, Danny; Wallacher, Dirk; Hofmann, Tommy; Baudoin, Simon; Hansen, Thomas; Huber, Patrick

    2014-01-14

    We present a comprehensive neutron scattering study on solid oxygen spatially confined in 12 nm wide alumina nanochannels. Elastic scattering experiments reveal a structural phase sequence known from bulk oxygen. With decreasing temperature cubic γ-, orthorhombic β- and monoclinic α-phases are unambiguously identified in confinement. Weak antiferromagnetic ordering is observed in the confined monoclinic α-phase. Rocking scans reveal that oxygen nanocrystals inside the tubular channels do not form an isotropic powder. Rather, they exhibit preferred orientations depending on thermal history and the very mechanisms, which guide the structural transitions.

  18. Solid-liquid phase changes in simulated isoenergetic Ar13

    NASA Astrophysics Data System (ADS)

    Jellinek, Julius; Beck, Thomas L.; Berry, R. Stephen

    1986-03-01

    Simulations by molecular dynamics of 13-particle clusters of argon display distinct nonrigid, liquid-like and near-rigid, solid-like ``phases.'' The simulations, conducted at constant total energy, display a low-energy region in which only the solid-like form appears, a high-energy region in which only the liquid-like form appears, and an intermediate band of energy—a ``coexistence region''— in which clusters exhibit both forms. The intervals of time spent in each phase in the two-form coexistence region are long compared with the intervals required to establish equilibrium-like properties distinctive of each form, such as mean square displacement and power spectrum, so that well-defined phases can be said to exist. The fraction of time spent in each phase is a function of the energy. When a long simulation is separated into regions of solid-like and liquid-like behavior, the curve of the derived caloric equation of state is double valued in the two-phase range of energy, forming two well-defined, smooth branches. When, instead, the caloric curve is constructed from averages over all of a long run, its form is smooth and monotonic showing no trace of the ``loop'' that had been reported for earlier treatments with much shorter molecular dynamics runs, and which we could also reproduce with short runs.

  19. Phase field modeling of flexoelectricity in solid dielectrics

    NASA Astrophysics Data System (ADS)

    Chen, H. T.; Zhang, S. D.; Soh, A. K.; Yin, W. Y.

    2015-07-01

    A phase field model is developed to study the flexoelectricity in nanoscale solid dielectrics, which exhibit both structural and elastic inhomogeneity. The model is established for an elastic homogeneous system by taking into consideration all the important non-local interactions, such as electrostatic, elastic, polarization gradient, as well as flexoelectric terms. The model is then extended to simulate a two-phase system with strong elastic inhomogeneity. Both the microscopic domain structures and the macroscopic effective piezoelectricity are thoroughly studied using the proposed model. The results obtained show that the largest flexoelectric induced polarization exists at the interface between the matrix and the inclusion. The effective piezoelectricity is greatly influenced by the inclusion size, volume fraction, elastic stiffness, and the applied stress. The established model in the present study can provide a fundamental framework for computational study of flexoelectricity in nanoscale solid dielectrics, since various boundary conditions can be easily incorporated into the phase field model.

  20. Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases

    NASA Astrophysics Data System (ADS)

    Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.

    2010-12-01

    Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement

  1. The solid phase of ginkgolide K: Structure and physicochemical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwen; Zhang, Guoshun; Wang, Zhenzhong; Lv, Yang; Xiao, Wei

    2016-05-01

    Four solvates of ginkgolide K with dimethyl sulfoxide(I), water molecule(II), acetone-isopropyl alcohol(III), methanol-ethanol(IV) and one solvate-free (V) have been described in this work. And the solid-state techniques such as X-ray diffraction, thermal analysis and Fourier transform infrared spectroscopy were used for characterization of the solid phases. The single crystal structures of ginkgolide K solvates (I-IV) have been determined. Ginkgolide K shows strong inflexibility and solvents being incorporated in the crystal structure results in it forming polymorphs via the diverse hydrogen bond interactions.

  2. Phenomena of solid state grain boundaries phase transition in technology

    SciTech Connect

    Minaev, Y. A.

    2015-03-30

    The results of study the phenomenon, discovered by author (1971), of the phase transition of grain boundary by the formation of two-dimensional liquid or quasi-liquid films have been done. The described phenomena of the first order phase transition (two-dimensional melting) at temperatures 0.6 – 0.9 T{sub S0} (of the solid state melting point) is a fundamental property of solid crystalline materials, which has allowed to revise radically scientific representations about a solid state of substance. Using the mathematical tools of the film thermodynamics it has been obtained the generalized equation of Clausius - Clapeyron type for two-dimensional phase transition. The generalized equation has been used for calculating grain boundary phase transition temperature T{sub Sf} of any metal, which value lies in the range of (0.55…0.86) T{sub S0}. Based on these works conclusions the develop strategies for effective forming of coatings (by thermo-chemical processing) on surface layers of functional alloys and hard metals have been made. The short overview of the results of some graded alloys characterization has been done.

  3. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-04

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance.

  4. Studies in Solid Phase Peptide Synthesis: A Personal Perspective

    SciTech Connect

    Mitchell, A R

    2007-06-01

    By the early 1970s it had became apparent that the solid phase synthesis of ribonuclease A could not be generalized. Consequently, virtually every aspect of solid phase peptide synthesis (SPPS) was reexamined and improved during the decade of the 1970s. The sensitive detection and elimination of possible side reactions (amino acid insertion, N{sup {alpha}}-trifluoroacetylation, N{sup {alpha}{var_epsilon}}-alkylation) was examined. The quantitation of coupling efficiency in SPPS as a function of chain length was studied. A new and improved support for SPPS, the 'PAM-resin', was prepared and evaluated. These and many other studies from the Merrifield laboratory and elsewhere increased the general acceptance of SPPS leading to the 1984 Nobel Prize in Chemistry for Bruce Merrifield.

  5. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    PubMed

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2017-06-01

    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH4 kgVSfed(-1) for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Application of aryloximes as solid-phase ketone linkers.

    PubMed

    Lepore, Salvatore D; Wiley, Michael R

    2003-01-09

    In both solution and the solid phase, a variety of ketone oxime anions have been treated with 4-substituted-2-fluorobenzonitriles to give the corresponding nucleophilic aromatic substitution aryloxime adducts. Under aqueous acidic conditions, these adducts underwent cyclization to give the corresponding ketones. Suzuki and amide coupling reactions were also successfully performed on two resin-bound oximes followed by subsequent cyclorelease to give ketone product in good yields and purities. [reaction--see text

  7. Solid-phase total synthesis of daptomycin and analogs.

    PubMed

    Lohani, Chuda Raj; Taylor, Robert; Palmer, Michael; Taylor, Scott D

    2015-02-06

    An entirely solid-phase synthesis of daptomycin, a cyclic lipodepsipeptide antibiotic currently in clinical use, was achieved using a combination of α-azido and Fmoc amino acids. This methodology was applied to the synthesis of several daptomycin analogs, one of which did not contain kynurenine or the synthetically challenging amino acid (2S,3R)-methylglutamate yet exhibited an MIC approaching that of daptomycin.

  8. Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.

    PubMed

    Tóth, Blanka; Horvai, George

    2012-01-01

    Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.

  9. New Phase Transition of Solid Bromine under High Pressure

    SciTech Connect

    San-Miguel, A.; Libotte, H.; Gaspard, J.-P.; Gauthier, M.; Aquilanti, G.; Pascarelli, S.

    2007-07-06

    Solid bromine has been studied by x-ray absorption spectroscopy experiments up to a maximum pressure of 75 GPa. The data analysis of the extended fine structure reveals that the intramolecular distance first increases, reaching its maximum value at 25{+-}5 GPa. From this value the intramolecular distance abruptly begins to decrease evidencing a nonpreviously observed phase transformation taking place at 25{+-}5 GPa. A maximum variation of 0.08 A ring is observed at 65{+-}5 GPa where again a phase transition occurs. This last transformation could correspond with the recently observed change to an incommensurate modulated phase. We discuss the possible generalization of the observed new phase transition at 25{+-}5 GPa to the case of the other halogens.

  10. Oscillatory burning of solid propellants including gas phase time lag.

    NASA Technical Reports Server (NTRS)

    T'Ien, J. S.

    1972-01-01

    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  11. Oscillatory burning of solid propellants including gas phase time lag.

    NASA Technical Reports Server (NTRS)

    T'Ien, J. S.

    1972-01-01

    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  12. Influence of Impurities on the Solid-Solid Phase Transitions in Zirconium

    NASA Astrophysics Data System (ADS)

    Rigg, P. A.; Greeff, C. W.; Knudson, M. D.; Gray, G. T.

    2009-12-01

    In an effort to better understand the influence of impurities on the solid-solid phase transitions in Group IVb metals, experiments have been carried out on polycrystalline zirconium samples using plate impact and isentropic loading techniques. Samples with three levels of impurities were shock-loaded using both gas and powder-driven guns and isentropically loaded using magnetic drive (Sandia's Z-Machine) to determine the properties and characteristics of both the α→ω and ω→β transitions.

  13. Clinically relevant interpretation of solid phase assays for HLA antibody

    PubMed Central

    Bettinotti, Maria P.; Zachary, Andrea A.; Leffell, Mary S.

    2016-01-01

    Purpose of review Accurate and timely detection and characterization of human leukocyte antigen (HLA) antibodies are critical for pre-transplant and post-transplant immunological risk assessment. Solid phase immunoassays have provided increased sensitivity and specificity, but test interpretation is not always straightforward. This review will discuss the result interpretation considering technical limitations; assessment of relative antibody strength; and the integration of data for risk stratification from complementary testing and the patient's immunological history. Recent findings Laboratory and clinical studies have provided insight into causes of test failures – false positive reactions because of antibodies to denatured HLA antigens and false negative reactions resulting from test interference and/or loss of native epitopes. Test modifications permit detection of complement-binding antibodies and determination of the IgG subclasses. The high degree of specificity of single antigen solid phase immunoassays has revealed the complexity and clinical relevance of antibodies to HLA-C, HLA-DQ, and HLA-DP antigens. Determination of antibody specificity for HLA epitopes enables identification of incompatible antigens not included in test kits. Summary Detection and characterization of HLA antibodies with solid phase immunoassays has led to increased understanding of the role of those antibodies in graft rejection, improved treatment of antibody-mediated rejection, and increased opportunities for transplantation. However, realization of these benefits requires careful and accurate interpretation of test results. PMID:27200498

  14. Nuclear Ordered Phases of Solid 3He in Silver Sinters

    NASA Astrophysics Data System (ADS)

    Schuberth, Erwin A.; Kath, Matthias; Bago, Simone

    2006-09-01

    To determine the exact spin structure of the nuclear magnetic ordered phases of solid 3He, the U2D2 low field and the high field phases above 0.4 T, a European Research and Training Network for neutron scattering from the ordered solid was established which consisted of a collaboration with the Hahn Meitner Institute, Berlin, and other European and US groups. For this experiment it is crucial to grow a single crystal within the sinter needed for cooling the solid to temperatures of the order of 500 μK and to keep it cold long enough to measure a magnetic neutron diffraction. The sinter is also necessary to absorb the major part (> 90%) of the heat generated by the neutron capture and decay reaction of the 3He nucleus. In this work we studied the growth of crystals in Ag sinters of different pore sizes and with different growth speeds to find an optimal way to obtain single crystalline samples, or at least samples with only a few grains. We used SQUID magnetometry and NMR to measure the magnetization in the ordered phases. They were indicated by the known drop of the intensity, both in the NMR signal and in the dc magnetization, for the U2D2 phase, and by an increase of about 30% for the high field phase. The best results for cooling were obtained with sinters made from 700 Å "Japanese powder" with a packing fraction of 50% which were annealed at 130 °C after sintering and then had a calculated particle size of about 4200 Å. In the dc magnetization we found a paramagnetic surface contribution from a few monolayers of 3He down to 500 μK in addition to the bulk magnetization.

  15. Existence of multi crystallographic phase in BNT-BTO solid solution near morphotropic phase boundary (MPB)

    NASA Astrophysics Data System (ADS)

    Pradhan, Lagen kumr; Pandey, Rabichandra; Kar, Manoranjan

    2017-05-01

    Lead free Bismuth sodium titanate (BNT) base solid solutions are focusing intensively due to their potential applications as an alternative for Pb-base compounds. In this work, Solid solutions of BNT and barium titanate [(1-x) BNT + x BTO with x=0.00, 0.06, 1.00] have been prepared via conventional solid state route by using the planetary ball mill method. Crystallinity of the samples characterized by XRD and various structural parameters are calculated by employing Rietveld refinement technique. The distinct peak (002/200) splitting around 460 to 470 confirmed the presence of both rhombohedral and tetragonal phase in the solid solution. Dielectric constant of the solid solution near the morphotropic phase boundary (x= 0.06) is significantly enhanced as compared to BNT and BTO. The electrical conductivity of the solid solution was found to reduce w.r.t to BNT. The above results indicate the possible application of BNT-BTO solid solution near MPB in the field of energy storage.

  16. Collective Atomic Displacements during Complex Phase Boundary Migration in Solid-Solid Phase Transformations.

    PubMed

    Duncan, Juliana; Harjunmaa, Ari; Terrell, Rye; Drautz, Ralf; Henkelman, Graeme; Rogal, Jutta

    2016-01-22

    The A15 to bcc phase transition is simulated at the atomic scale based on an interatomic potential for molybdenum. The migration of the phase boundary proceeds via long-range collective displacements of entire groups of atoms across the interface. To capture the kinetics of these complex atomic rearrangements over extended time scales we use the adaptive kinetic Monte Carlo approach. An effective barrier of 0.5 eV is determined for the formation of each new bcc layer. This barrier is not associated with any particular atomistic process that governs the dynamics of the phase boundary migration. Instead, the effective layer transformation barrier represents a collective property of the complex potential energy surface.

  17. Influence of Impurities on the Solid-Solid Phase Transitions in Zirconium

    NASA Astrophysics Data System (ADS)

    Rigg, P. A.; Greeff, C. W.; Gray, G. T., III; Knudson, M. D.

    2009-06-01

    In an effort to better understand the influence of impurities on the solid-solid phase transitions in Group IVb metals, experiments have been carried out in zirconium using plate impact and isentropic loading techniques. Samples with three levels of impurities were shock-loaded using both gas and powder-driven guns and isentropically loaded using magnetic drive (Sandia's Z-Machine) to determine the properties and characteristics of both the α-φ and φ-β transitions. In addition to the transmission type experiments that were performed in the past, front surface impact experiments --- where the sample is impacted directly onto a LiF window --- were performed to obtain direct Hugoniot measurements in both the φ and β phases. Comparisons of all data obtained to calculations using our current Equation of State will be presented.

  18. One-phase crystal disorder in pharmaceutical solids and its implication for solid-state stability.

    PubMed

    Clawson, Jacalyn S; Kennedy-Gabb, Sonya; Lee, Alfred Y; Copley, Royston C B

    2011-10-01

    Solid-state disorders of active pharmaceutical ingredients have been characterized by means of X-ray diffraction techniques and solid-state nuclear magnetic resonance spectroscopy. The results determined that the pleuromutilin-derivative, I, displays a unique continuous conformational disorder while retaining its long-range crystalline structure. The propionic acid (PA) version of this compound displayed partial crystalline order and site disorder of PA, depending on the quantity of PA incorporated in the structure. Thus, I is a unique example of one-phase crystalline-amorphous model. Physical and chemical stability data was acquired on these disordered systems and discussed in relation with the characterized disorder present in the crystal systems. Analysis of the results showed that in contrast to phase-separated amorphous, restrained disorders do not influence the stability.

  19. Phase transformation considerations during process development and manufacture of solid oral dosage forms.

    PubMed

    Zhang, Geoff G Z; Law, Devalina; Schmitt, Eric A; Qiu, Yihong

    2004-02-23

    The quality and performance of a solid oral dosage form depends on the choice of the solid phase, the formulation design, and the manufacturing process. The potential for process-induced solid phase transformations must be evaluated during design and development of formulations and manufacturing processes. This article briefly reviews the basic principles of polymorphism, defines the classes of phase transformation and the underlying transformation mechanisms, and discusses respective kinetic factors. The potential phase transformations associated with common unit operations employed in manufacturing solid oral dosage forms are highlighted. Specific examples are given to illustrate the importance of solid phases, and process-induced phase transitions in formulation and process development.

  20. Mechanism of phase transition, from vapor to solid: Transient liquid phase is between the two

    NASA Astrophysics Data System (ADS)

    Mahapatra, A. K.; Wang, Junyong; Zhang, Hongwei; Han, Min

    2016-08-01

    The mechanism of phase transition, from vapor to solid, is studied by producing non-stoichiometric ZnO and CdS nanoclusters (NCs) by low-energy cluster beam deposition technique, and examining their morphological and compositional evolution over a long span of time. It is concluded that the transition of vapor to solid goes through a transient liquid phase: coagulation of a large number of atomic clusters first forms liquid NCs which then solidify. The nature of the material and the experimental conditions determine crystallinity and shape of the NCs during the solidification process.

  1. Biosorption: a new rise for elemental solid phase extraction methods.

    PubMed

    Pacheco, Pablo H; Gil, Raúl A; Cerutti, Soledad E; Smichowski, Patricia; Martinez, Luis D

    2011-10-15

    Biosorption is a term that usually describes the removal of heavy metals from an aqueous solution through their passive binding to a biomass. Bacteria, yeast, algae and fungi are microorganisms that have been immobilized and employed as sorbents in biosorption processes. The binding characteristics of microorganisms are attributed to functional groups on the surface providing some features to the biosorption process like selectivity, specificity and easy release. These characteristics turn the biosorption into an ideal process to be introduced in solid phase extraction systems for analytical approaches. This review encompasses the research carried out since 2000, focused on the employment of biosorption processes as an analytical tool to improve instrumental analysis. Since aminoacids and peptides as synthetic analogues of natural metallothioneins, proteins present in the cell wall of microorganisms, have been also immobilized on solid supports (controlled pore glass, carbon nanotubes, silica gel polyurethane foam, etc.) and introduced into solid phase extraction systems; a survey attending this issue will be developed as well in this review. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  3. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  4. Laser-induced solid-phase doped graphene.

    PubMed

    Choi, Insung; Jeong, Hu Young; Jung, Dae Yool; Byun, Myunghwan; Choi, Choon-Gi; Hong, Byung Hee; Choi, Sung-Yool; Lee, Keon Jae

    2014-08-26

    There have been numerous efforts to improve the performance of graphene-based electronic devices by chemical doping. Most studies have focused on gas-phase doping with chemical vapor deposition. However, that requires a complicated transfer process that causes undesired doping and defects by residual polymers. Here, we report a solid-phase synthesis of doped graphene by means of silicon carbide (SiC) substrate including a dopant source driven by pulsed laser irradiation. This method provides in situ direct growth of doped graphene on an insulating SiC substrate without a transfer step. A numerical simulation on the temperature history of the SiC surface during laser irradiation reveals that the surface temperature of SiC can be accurately controlled to grow nitrogen-doped graphene from the thermal decomposition of nitrogen-doped SiC. Laser-induced solid-phase doped graphene is highly promising for the realization of graphene-based nanoelectronics with desired functionalities.

  5. Heterogeneous Phase Transfer Catalysis in Solid Phase Syntheses of Anth-Cyclic Tetrapeptides.

    PubMed

    Xin, Dongyue; Yuan, Jian; Wong, Kwok-Yin; Burgess, Kevin

    2016-09-02

    This study features solid phase syntheses of cyclic tetrapeptides containing anthranilic acid (Anth) on relatively inexpensive resins derived from polystyrene. It proved to be difficult to hydrolyze a supported Anth-methyl ester unless a phase transfer catalyst was added to facilitate transport of hydroxide into the swollen hydrophobic gel state of the resin. We suggest this may be an under-appreciated strategy for improving syntheses on polystyrene supports.

  6. Solid-phase colorimetric method for the quantification of fucoidan.

    PubMed

    Lee, Jung Min; Shin, Z-U; Mavlonov, Gafurjon T; Abdurakhmonov, Ibrokhim Y; Yi, Tae-Hoo

    2012-11-01

    We described the simple, selective, and rapid method for determination of fucoidans using methylene blue staining of sulfated polysaccharides, immobilized into filter paper and consequent optic density (at A (663) nm) measurement of the eluted dye from filter paper. This solid-phase method allows selective determination of 1-20 μg fucoidan in presence of potentially interfering compounds (alginic acid, DNA, salts, proteins, and detergents). Further, we demonstrated the alternative way of using image processing software for fucoidan quantification without extraction of methylene blue dye from stained spots of fucoidan-dye complex.

  7. Rapid Solid-Phase Radioimmunoassay for Staphylococcal Enterotoxin A

    PubMed Central

    Collins, William S.; Johnson, Anna D.; Metzger, Joseph F.; Bennett, Reginald W.

    1973-01-01

    A rapid solid-phase radioimmunoassay for staphylococcal enterotoxin A is described. The assay procedure requires 3 to 4 h for completion by using a competitive inhibition system in which the antibody is attached to bromacetyl cellulose particles. It is accurate to a level of 0.01 μg of enterotoxin A/ml in a variety of media such as ham, milk products, crab meat, custard, etc. No significant interference was found with any media or food product tested. PMID:4715556

  8. Advances in solid-phase extraction disks for environmental chemistry

    USGS Publications Warehouse

    Thurman, E.M.; Snavely, K.

    2000-01-01

    The development of solid-phase extraction (SPE) for environmental chemistry has progressed significantly over the last decade to include a number of new sorbents and new approaches to SPE. One SPE approach in particular, the SPE disk, has greatly reduced or eliminated the use of chlorinated solvents for the analysis of trace organic compounds. This article discusses the use and applicability of various SPE disks, including micro-sized disks, prior to gas chromatography-mass spectrometry for the analysis of trace organic compounds in water. Copyright (C) 2000 Elsevier Science B.V.

  9. Progress of solid-phase microextraction coatings and coating techniques.

    PubMed

    Jiang, Guibin; Huang, Minjia; Cai, Yaqi; Lv, Jianxia; Zhao, Zongshan

    2006-07-01

    Solid-phase microextraction (SPME) has been popular as an environmentally friendly sample pretreatment technique to extract a very wide range of analytes. This is partly owing to the development of SPME coatings. One of the key factors affecting the extraction performances, such as the sensitivity, selectivity, and reproducibility, is the properties of the coatings on SPME fibers. This paper classifies the materials used as SPME coatings and introduces some common preparation techniques of SPME coating in detail, such as sol-gel technique, electrochemical polymerization technique, particle direct pasting technique, restricted access matrix SPME technique, and molecularly imprinted SPME technique.

  10. Kinetics of solid-solid phase transitions in metals using proton radiography (u)

    SciTech Connect

    Schwartz, Cynthia L; Rigg, Paulo A; Hixson, Rob S; Jensen, Brian J

    2011-01-25

    When a compressed material changes phase it doesn't do so instantly. Instead it transitions through a mixed phase as it transforms to the end state phase for a given pressure, volume and temperature. Common phase diagrams show the phase boundaries as sharp lines when compression has been slowly applied and held for an infinite amount of time. When the compression is applied with high strain rate, however, the phase boundaries are no longer crisp as the kinetic effects of the crystal reorientation delay the transitions, resulting in regions of mixed phase. This opens up the possibility that some degree of metastability exists for such transition in dynamic compression. The compression path can go past the equilibrium phase boundary and the transition happen from a metastable state because of the very short timescale of the compression process. Molecular dynamics (MD) simulations recently have been used to examine shock-induced phase transitions in single crystal materials illustrating an orientation dependence of the transition stress, mechanisms, kinetics, and Hugoniot response. For example, the [100] orientation of iron had a simulated transition stress higher than the experimentally determined polycrystalline value of 13 GPa by 2 GPa. Previously, dynamic experiments on iron have observed a non-zero transition time and width in the solid-solid {alpha}-{var_epsilon} phase transition. Using Proton Radiography at the Los Alamos Neutron Science Center, we have performed plate impact experiments on iron to further study the {alpha}-{var_epsilon} phase transition which occurs at 13 GPa. A 40mm bore powder gun was coupled to a proton radiography beam line and imaging system and synchronized to the impact of the projectile on the target sample with the proton beam pattern. A typical experimental configuration for the iron study, as shown below in 3 color-enhanced radiographs, is a 40mm diameter aluminum sabot impacting a 40mm diameter sample of polycrystalline ARMCO iron

  11. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    PubMed

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.

  12. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    NASA Astrophysics Data System (ADS)

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  13. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  14. Two-phase flows in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Murakami, Takuji; Shimada, Toru

    Axisymmetric gas-particle two-phase flows in solid-rocket-motor combustion chambers and nozzles with small throat radius of curvature and with submerged configuration are investigated numerically by utilizing a second-order finite-volume method with van Leer's flux-vector splitting in conjunction with a technique of body-fitted cell system. Effects of the particle radius and the particle mass fraction on the two-phase flow, especially on the particle density distribution, the particle-free zone, and the rate of deceleration of the gas are studied. The scheme can capture the particle-free zone with a relatively coarse cell system without numerical oscillation, being benefited by internal dissipative effect which this high-resolution upwind method involves. The validity of the present numerical simulation is thus confirmed.

  15. Nucleation of the diamond phase in aluminium-solid solutions

    NASA Technical Reports Server (NTRS)

    Hornbogen, E.; Mukhopadhyay, A. K.; Starke, E. A., Jr.

    1993-01-01

    Precipitation was studied from fcc solid solutions with silicon, germanium, copper and magnesium. Of all these elements only silicon and germanium form diamond cubic (DC) precipitates in fcc Al. Nucleation of the DC structure is enhanced if both types of atom are dissolved in the fcc lattice. This is interpreted as due to atomic size effects in the prenucleation stage. There are two modes of interference of fourth elements with nucleation of the DC phase in Al + Si, Ge. The formation of the DC phase is hardly affected if the atoms (for example, copper) are rejected from the (Si, Ge)-rich clusters. If additional types of atom are attracted by silicon and/or germanium, DC nuclei are replaced by intermetallic compounds (for example Mg2Si).

  16. SOLID-LIQUID PHASE EQUILIBRIUM IN BINARY SYSTEMS OF TRIPHENYL ANTIMONY WITH BIPHENYL, NAPHTHALENE, AND BENZOIC ACID.

    DTIC Science & Technology

    PHASE STUDIES, *ORGANOMETALLIC COMPOUNDS, SEMICONDUCTORS, SOLID STATE PHYSICS, ANTIMONY COMPOUNDS, EUTECTICS , ZONE MELTING, HALIDES, BISMUTH, ARSENIC, ELECTRONS, NAPHTHALENES , PHASE DIAGRAMS, SOLIDS.

  17. Kinetics of β→δ Solid-Solid Phase Transition of HMX

    SciTech Connect

    Weese, Randall K.

    2000-09-01

    In order to calculate the kinetic parameters from DSC data, we have used the generally accepted methods of Bershtein [13]. We have calculated the rate constants for 4 temperatures and the activation energy based on the shift in the transition temperature, β→δ for HMX. The values of Ea from this work is 402 kJ/mol compared to previous results by Brill [9] of 204 kJ/mol. Brill and associates measured the phase transition of HMX using FTIR, sodium chloride plates and silicon oil. Given the differences in technique between FTIR and DSC the results found in this work are reasonable. In this investigation a large sample set (16) proved to be statistically valid for the determinations of k. Linear regressions were performed, observed and good fits were obtained, for each temperature. The enthalpy determination of ΔHo, for the β→δ phase transition was reproducible with in 3 parts in 100 over the range of this experiment. Thus, the data derived from this experiment k, Ea, and ΔHo are valid parameters for the solid-solid phase transition. Obtaining pure β phase HMX was very important for this investigation. Related to the phase change is the particle size distribution and is presented in Figure 3. Compared to previous work on HMX, this study utilized very pure β phase material. In addition, the particle size was controlled more rigorously at about 160 μm, giving a more consistent result for α. Thus, these kinetic results should have less scatter than results with less control of HMX purity and particle size. The kinetic basis of the polymorphic conversion is due to the cohesive forces in the HMX crystal lattice [21]. The energy required to bring about change from chair to chair-chair conformation has been reported by Brill [21] as ring torsion and is essentially a normal mode of the molecule that requires about 4 kJ mol-1. For the purpose of this investigation the energy of activation found in this work

  18. Selective Stationary Phase for Solid-Phase Microextraction Analysis of Sarin (GB)

    SciTech Connect

    Harvey, Scott; Nelson, D. A.; Wright, Bob W.; Gates, J. W.

    2002-03-02

    A number of critical field applications require monitoring air samples for trace levels of chemical warfare agents. Solid-phase microextraction (SPME) is a convenient format to conduct these analyses. Measurements could be significantly improved if a SPME phase selective for nerve agents were substituted for nonselective polymers typically used (e.g., polydimethylsiloxane). This paper evaluates a novel stationary phase, previously developed for methylphosphonate sensor applications, for use with SPME sampling. The phenol-based polymer, BSP3, was found to offer far higher selectivity toward sarin (GB) than polydimethylsiloxane due to a pronounced affinity toward the target analyte and a lower affinity toward hydrocarbons.

  19. Selective Stationary Phase for Solid-Phase Microextraction Analysis of Sarin (GB)

    SciTech Connect

    Harvey, Scott D.; Nelson, David A.; Wright, Bob W.; Grate, Jay W.

    2002-04-19

    A number of critical field applications require monitoring air samples for trace levels of chemical warfare agents. Solid-phase microextraction (SPME) is a convenient format to conduct these analyses. Measurements could be significantly improved if a SPME phase selective for nerve agents were substituted for nonselective polymers typically used (e.g.,polydimethylsiloxane). This paper evaluates a novel stationary phase, previously developed for methylphosphonate sensor applications, for use with SPME sampling. The phenol-based polymer, BSP3, was found to offer far higher selectivity toward sarin (GB) than polydimethylsiloxane due to a pronounced affinity toward the target analyte and a lower affinity toward hydrocarbons.

  20. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    NASA Astrophysics Data System (ADS)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire

    2017-09-01

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH3OH), binary (H2O:CH3OH, CH3OH:NH3), and ternary ice analogs (H2O:CH3OH:NH3) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.

  1. Solid Phase Characterization of Tank 241-C-108 Residual Waste Solids Samples

    SciTech Connect

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.

    2013-05-29

    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted the SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.

  2. Municipal solid waste development phases: Evidence from EU27.

    PubMed

    Vujić, Goran; Gonzalez-Roof, Alvaro; Stanisavljević, Nemanja; Ragossnig, Arne M

    2015-12-01

    Many countries in the European Union (EU) have very developed waste management systems. Some of its members have managed to reduce their landfilled waste to values close to zero during the last decade. Thus, European Union legislation is very stringent regarding waste management for their members and candidate countries, too. This raises the following questions: Is it possible for developing and developed countries to comply with the European Union waste legislation, and under what conditions? How did waste management develop in relation to the economic development in the countries of the European Union? The correlation between waste management practices and economic development was analysed for 27 of the European Union Member States for the time period between 1995 and 2007. In addition, a regression analysis was performed to estimate landfilling of waste in relation to gross domestic product for every country. The results showed a strong correlation between the waste management variables and the gross domestic product of the EU27 members. The definition of the municipal solid waste management development phases followed a closer analysis of the relation between gross domestic product and landfilled waste. The municipal solid waste management phases are characterised by high landfilling rates at low gross domestic product levels, and landfilling rates near zero at high gross domestic product levels. Hence the results emphasize the importance of wider understanding of what is required for developing countries to comply with the European Union initiatives, and highlight the importance of allowing developing countries to make their own paths of waste management development.

  3. Enhanced solid-phase recombinase polymerase amplification and electrochemical detection.

    PubMed

    Del Río, Jonathan Sabaté; Lobato, Ivan Magriñà; Mayboroda, Olena; Katakis, Ioanis; O'Sullivan, Ciara K

    2017-03-02

    Recombinase polymerase amplification (RPA) is an elegant method for the rapid, isothermal amplification of nucleic acids. Here, we elucidate the optimal surface chemistry for rapid and efficient solid-phase RPA, which was fine-tuned in order to obtain a maximum signal-to-noise ratio, defining the optimal DNA probe density, probe-to-lateral spacer ratio (1:0, 1:1, 1:10 and 1:100) and length of a vertical spacer of the probe as well as investigating the effect of different types of lateral spacers. The use of different labelling strategies was also examined in order to reduce the number of steps required for the analysis, using biotin or horseradish peroxidase-labelled reverse primers. Optimisation of the amplification temperature used and the use of surface blocking agents were also pursued. The combination of these changes facilitated a significantly more rapid amplification and detection protocol, with a lowered limit of detection (LOD) of 1 · 10(-15) M. The optimised protocol was applied to the detection of Francisella tularensis in real samples from hares and a clear correlation with PCR and qPCR results observed and the solid-phase RPA demonstrated to be capable of detecting 500 fM target DNA in real samples. Graphical abstract Relative size of thiolated lateral spacers tested versus the primer and the uvsx recombinase protein.

  4. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    PubMed Central

    Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M.

    2015-01-01

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability. PMID:25660096

  5. Solid-Phase Purification of Synthetic DNA Sequences.

    PubMed

    Grajkowski, Andrzej; Cieslak, Jacek; Beaucage, Serge L

    2016-08-05

    Although high-throughput methods for solid-phase synthesis of DNA sequences are currently available for synthetic biology applications and technologies for large-scale production of nucleic acid-based drugs have been exploited for various therapeutic indications, little has been done to develop high-throughput procedures for the purification of synthetic nucleic acid sequences. An efficient process for purification of phosphorothioate and native DNA sequences is described herein. This process consists of functionalizing commercial aminopropylated silica gel with aminooxyalkyl functions to enable capture of DNA sequences carrying a 5'-siloxyl ether linker with a "keto" function through an oximation reaction. Deoxyribonucleoside phosphoramidites functionalized with the 5'-siloxyl ether linker were prepared in yields of 75-83% and incorporated last into the solid-phase assembly of DNA sequences. Capture of nucleobase- and phosphate-deprotected DNA sequences released from the synthesis support is demonstrated to proceed near quantitatively. After shorter than full-length DNA sequences were washed from the capture support, the purified DNA sequences were released from this support upon treatment with tetra-n-butylammonium fluoride in dry DMSO. The purity of released DNA sequences exceeds 98%. The scalability and high-throughput features of the purification process are demonstrated without sacrificing purity of the DNA sequences.

  6. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy.

    PubMed

    Zhou, Shengqiang; Liu, Fang; Prucnal, S; Gao, Kun; Khalid, M; Baehtz, C; Posselt, M; Skorupa, W; Helm, M

    2015-02-09

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.

  7. Effects of sample homogenization on solid phase sediment toxicity

    SciTech Connect

    Anderson, B.S.; Hunt, J.W.; Newman, J.W.; Tjeerdema, R.S.; Fairey, W.R.; Stephenson, M.D.; Puckett, H.M.; Taberski, K.M.

    1995-12-31

    Sediment toxicity is typically assessed using homogenized surficial sediment samples. It has been recognized that homogenization alters sediment integrity and may result in changes in chemical bioavailability through oxidation-reduction or other chemical processes. In this study, intact (unhomogenized) sediment cores were taken from a Van Veen grab sampler and tested concurrently with sediment homogenate from the same sample in order to investigate the effect of homogenization on toxicity. Two different solid-phase toxicity test protocols were used for these comparisons. Results of amphipod exposures to samples from San Francisco Bay indicated minimal difference between intact and homogenized samples. Mean amphipod survival in intact cores relative to homogenates was similar at two contaminated sites. Mean survival was 34 and 33% in intact and homogenized samples, respectively, at Castro Cove. Mean survival was 41% and 57%, respectively, in intact and homogenized samples from Islais Creek. Studies using the sea urchin development protocol, modified for testing at the sediment/water interface, indicated considerably more toxicity in intact samples relative to homogenized samples from San Diego Bay. Measures of metal flux into the overlying water demonstrated greater flux of metals from the intact samples. Zinc flux was five times greater, and copper flux was twice as great in some intact samples relative to homogenates. Future experiments will compare flux of metals and organic compounds in intact and homogenized sediments to further evaluate the efficacy of using intact cores for solid phase toxicity assessment.

  8. The role of solid-solid phase transitions in mantle convection

    NASA Astrophysics Data System (ADS)

    Faccenda, Manuele; Dal Zilio, Luca

    2017-01-01

    With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine

  9. Studies of phase transitions in the aripiprazole solid dosage form.

    PubMed

    Łaszcz, Marta; Witkowska, Anna

    2016-01-05

    Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III.

  10. Modified phase-field-crystal model for solid-liquid phase transitions

    NASA Astrophysics Data System (ADS)

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k =km will enhance the stability of the ordered phase, while the increase of peak height at k =0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k =km will decrease the interface width and the velocity coefficient C , but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  11. Modified phase-field-crystal model for solid-liquid phase transitions.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  12. Determination of nitrate esters in water samples Comparison of efficiency of solid-phase extraction and solid-phase microextraction.

    PubMed

    Jezová, Vera; Skládal, Jan; Eisner, Ales; Bajerová, Petra; Ventura, Karel

    2007-12-07

    This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.

  13. Density functional theory study of phase IV of solid hydrogen

    NASA Astrophysics Data System (ADS)

    Pickard, Chris J.; Martinez-Canales, Miguel; Needs, Richard J.

    2012-06-01

    We have studied solid hydrogen up to pressures of 300 GPa and temperatures of 350 K using density functional theory methods and have found “mixed structures” that are more stable than those predicted earlier. Mixed structures consist of alternate layers of strongly bonded molecules and weakly bonded graphene-like sheets. Quasiharmonic vibrational calculations show that mixed structures are the most stable at room temperature over the pressure range 250-295 GPa. These structures are stabilized with respect to strongly bonded molecular phases at room temperature by the presence of lower frequency vibrational modes arising from the graphene-like sheets. Our results for the mixed structures are consistent with the experimental Raman data [M. I. Eremets and I. A. Troyan, Nat. Mater.1476-112210.1038/nmat3175 10, 927 (2011) and R. T. Howie , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.125501 108, 125501 (2012)]. We find that mixed phases are reasonable structural models for phase IV of hydrogen.

  14. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

    1985-02-22

    The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  15. Ferrofluid-based dispersive solid phase extraction of palladium.

    PubMed

    Farahani, Malihe Davudabadi; Shemirani, Farzaneh; Gharehbaghi, Maysam

    2013-05-15

    A new mode of dispersive solid phase extraction based on ferrofluid has been developed. In this method, an appropriate amount of ferrofluid is injected rapidly into the aqueous sample by a syringe. Since the sorbent is highly dispersed in the aqueous phase, extraction can be achieved within a few seconds. The ferrofluid can be attracted by a magnet and no centrifugation step is needed for phase separation. Palladium was used as a model compound in the development and evaluation of the extraction procedure in combination with flame atomic absorption spectrometry. The experimental parameters (pH, DDTC concentration, type and concentration of eluent, the amount of adsorbent, extraction time, and the effect of interfering ions) were investigated in detail. Under the optimized conditions, the calibration graph was linear over the range of 1-100 μg L(-1) and relative standard deviation of 3.3% at 0.1 μg mL(-1) was obtained (n=7). The limit of detection and enrichment factor (EF) was obtained to be 0.35 μg L(-1) and 267, respectively. The maximum adsorption capacity of the adsorbent at optimum conditions was found to be 24.6 mg g(-1) for Pd(II). The method was validated using certified reference material, and has been applied for the determination of trace Pd(II) in actual samples with satisfactory results.

  16. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.

    1988-01-01

    The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  17. Methods and protocols of modern solid phase Peptide synthesis.

    PubMed

    Amblard, Muriel; Fehrentz, Jean-Alain; Martinez, Jean; Subra, Gilles

    2006-07-01

    The purpose of this article is to delineate strategic considerations and provide practical procedures to enable non-experts to synthesize peptides with a reasonable chance of success. This article is not encyclopedic but rather devoted to the Fmoc/tBu approach of solid phase peptide synthesis (SPPS), which is now the most commonly used methodology for the production of peptides. The principles of SPPS with a review of linkers and supports currently employed are presented. Basic concepts for the different steps of SPPS such as anchoring, deprotection, coupling reaction and cleavage are all discussed along with the possible problem of aggregation and side-reactions. Essential protocols for the synthesis of fully deprotected peptides are presented including resin handling, coupling, capping, Fmoc-deprotection, final cleavage and disulfide bridge formation.

  18. Method for preparing a solid phase microextraction device using aerogel

    DOEpatents

    Miller, Fred S.; Andresen, Brian D.

    2006-10-24

    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  19. Solid-Phase Synthesis of RNA Analogs Containing Phosphorodithioate Linkages.

    PubMed

    Yang, Xianbin

    2017-09-18

    The oligoribonucleotide phosphorodithioate (PS2-RNA) modification uses two sulfur atoms to replace two non-bridging oxygen atoms at an internucleotide phosphorodiester backbone linkage. Like a natural phosphodiester RNA backbone linkage, a PS2-modified backbone linkage is achiral at phosphorus. PS2-RNAs are highly stable to nucleases and several in vitro assays have demonstrated their biological activity. For example, PS2-RNAs silenced mRNA in vitro and bound to protein targets in the form of PS2-aptamers (thioaptamers). Thus, the interest in and promise of PS2-RNAs has drawn attention to synthesizing, isolating, and characterizing these compounds. RNA-thiophosphoramidite monomers are commercially available from AM Biotechnologies and this unit describes an effective methodology for solid-phase synthesis, deprotection, and purification of RNAs having PS2 internucleotide linkages. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. Volume phase holographic gratings for astronomy based on solid photopolymers

    NASA Astrophysics Data System (ADS)

    Zanutta, Alessio; Bianco, Andrea; Insausti, Maider; Garzón, Francisco

    2014-07-01

    Volume Phase Holographic Gratings (VPHG) are gaining more and more interest as optical dispersing elements in new astronomical spectrographs at low and medium resolution. A key point is the development of new photosensitive materials suitable to produce VPHGs that match the stringent requirements of the astronomical environment. Here we report on the performances of VPHG based on Bayfol®HX solid photopolymer films developed by Bayer MaterialScience AG. Parameters affecting the grating efficiency (e. g. photopolymer film thickness and refractive index modulation) are measured and linked to the performances of VPHG working in the VIS-NIR region. Moreover, the behavior at low temperature and the aging properties of such materials/gratings are reported. Substantial efficiency gains on a new VPHG installed at the Asiago's spectrograph are shown and proven on the observation of a standard star (hr5501).

  1. Porous protective solid phase micro-extractor sheath

    DOEpatents

    Andresen, Brian D.; Randich, Erik

    2005-03-29

    A porous protective sheath for active extraction media used in solid phase microextraction (SPME). The sheath permits exposure of the media to the environment without the necessity of extending a fragile coated fiber from a protective tube or needle. Subsequently, the sheath can pierce and seal with GC-MS septums, allowing direct injection of samples into inlet ports of analytical equipment. Use of the porous protective sheath, within which the active extraction media is contained, mitigates the problems of: 1) fiber breakage while the fiber is extended during sampling, 2) active media coating loss caused by physical contact of the bare fiber with the sampling environment; and 3) coating slough-off during fiber extension and retraction operations caused by rubbing action between the fiber and protective needle or tube.

  2. Solid phase epitaxial regrowth of (001) anatase titanium dioxide

    SciTech Connect

    Barlaz, David Eitan; Seebauer, Edmund G.

    2016-03-15

    The growing interest in metal oxide based semiconductor technologies has driven the need to produce high quality epitaxial films of one metal oxide upon another. Largely unrecognized in synthetic efforts is that some metal oxides offer strongly polar surfaces and interfaces that require electrostatic stabilization to avoid a physically implausible divergence in the potential. The present work examines these issues for epitaxial growth of anatase TiO{sub 2} on strontium titanate (001). Solid phase epitaxial regrowth yields only the (001) facet, while direct crystalline growth by atomic layer deposition yields both the (112) and (001). The presence of amorphous TiO{sub 2} during regrowth may provide preferential stabilization for formation of the (001) facet.

  3. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    SciTech Connect

    Ahn, Jaehyun Koh, Donghyi; Roy, Anupam; Banerjee, Sanjay K.; Chou, Harry; Kim, Taegon; Song, Jonghan

    2016-03-21

    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration of 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.

  4. Fast conventional Fmoc solid-phase peptide synthesis with HCTU.

    PubMed

    Hood, Christina A; Fuentes, German; Patel, Hirendra; Page, Karen; Menakuru, Mahendra; Park, Jae H

    2008-01-01

    1H-Benzotriazolium 1-[bis(dimethyl-amino)methylene]-5-chloro-hexafluorophosphate (1-),3-oxide (HCTU) is a nontoxic, nonirritating and noncorrosive coupling reagent. Seven biologically active peptides (GHRP-6, (65-74)ACP, oxytocin, G-LHRH, C-peptide, hAmylin(1-37), and beta-amyloid(1-42)) were synthesized with reaction times reduced to deprotection times of 3 min or less and coupling times of 5 min or less using HCTU as the coupling reagent. Expensive coupling reagents or special techniques were not used. Total peptide synthesis times were dramatically reduced by as much as 42.5 h (1.8 days) without reducing the crude peptide purities. It was shown that HCTU can be used as an affordable, efficient coupling reagent for fast Fmoc solid-phase peptide synthesis.

  5. Microscale solid-phase extraction system for explosives.

    PubMed

    Smith, Matthew; Collins, Greg E; Wang, Joseph

    2003-04-04

    A simple, semi-automated, microcolumn solid-phase extraction (SPE) system is optimized for the extraction, preconcentration and HPLC analysis of seven different explosives and explosive derivatives contaminating seawater, river water and well water samples. The microcolumns were constructed from 1/16 in. O.D. PTFE tubing (1 in.=2.54 cm) packed with 0.5-1.5 mg of SPE material. LiChrolut EN or Porapak R. The extraction system consisted of two syringe pumps and several solenoid valves. Optimal detection limits were realized when the sample water flow-rate was maximally increased within the limits of the pump, 5-10 ml/min (despite exceeding the breakthrough threshold of the SPE microcolumn), and when the eluate volume collected from the column was minimized, <5 microl (despite very low recovery percentages).

  6. Solid-phase genotoxicity assay for organic compounds in soil

    SciTech Connect

    Alexander, R.R.; Chung, N.; Alexander, M.

    1999-03-01

    A genotoxicity assay was developed for samples from environments in which toxic organic compounds are largely sorbed. The assay entails measurement of the rate of mutation of a strain of Pseudomonas putida to rifampicin resistance. The ratio of induced to spontaneous mutants was a function of the concentration of a test mutagen in soil. In studies of the utility of the assay in samples amended with 2-aminofluorene as a test mutagen, the ratio of induced to spontaneous mutants declined with time. The decline paralleled the disappearance of extractable 2-aminofluorene from the soil. The ratio of induced to spontaneous mutants also feel in four other soils with dissimilar properties. The authors suggest that this solid-phase assay is more appropriate for the estimation of genotoxicants sorbed in soil than assays involving extractants or suspensions of soil or sediment samples.

  7. A Neutron Scattering Kernel of Solid Methane in phase II

    NASA Astrophysics Data System (ADS)

    Shin, Yunchang; Snow, William Michael; Liu, Cnen-Yu; Lavelle, Christopher M.; Baxter, David V.

    2008-04-01

    A neutron scattering cross section model of solid methane was studied for the cold neutron moderator of Low Energy Neutron Source (LENS) at IUCF/Indiana University especially in temperature range of 20.4 4K. The analytical scattering kernel was adapted from Ozaki.et al .[1][2] to describe molecular rotation in this temperature range. This model includes a molecular translation and intra-molecular vibration as well as the rotational degree of freedom in effective ways. For more broad applications into monte carlo simulations, neutron scattering libraries for MCNP were produced from the frequency spectrums using NJOY code. We have tested this newly- developed scattering kernels for phase II solid methane by calculating the neutron spectral intensity expected from the methane moderator at the LENS neutron source using MCNP. The predictions are compared to the measured energy spectra. The simulations agree with the measurement data at both temperatures. The simulation results show good agreement with measurement data in different temperatures. [1] Y. Ozaki, Y. Kataoka, and T. Yamamoto, The Journal of Chemical Physics 73, 3442 (1980). [2] Y. Ozaki, Y. Kataoka, K. Otaka, and T. Yamamoto, Can. J. Physics. 59, 275 (1981).

  8. Rapid and Selective RNA Analysis by Solid-Phase Microextraction.

    PubMed

    Nacham, Omprakash; Clark, Kevin D; Varona, Marcelino; Anderson, Jared L

    2017-09-05

    In this study, a solid-phase microextraction (SPME) method was developed for the purification of messenger RNA (mRNA) from complex biological samples using a real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for quantification. The chemical composition of the polymeric ionic liquid (PIL) and a poly acrylate (PA) SPME sorbent coating was optimized to enhance the extraction performance. Of the studied SPME sorbent coatings, the PIL containing carboxylic acid moieties in the monomer and halide-based anions extracted the highest amount of mRNA from aqueous solutions, whereas the native PA fiber showed the lowest extraction efficiency. On the basis of RT-qPCR data, electrostatic interactions and an ion-exchange mechanism between the negatively charged phosphate backbone of RNA and the PIL cation framework were the major driving forces for mRNA extraction. The optimized PIL-based SPME method purified a high quantity of mRNA from crude yeast cell lysate compared to a phenol/chloroform extraction method. The reusability and robustness of PIL-based SPME for RNA analysis represents a significant advantage over conventional silica-based solid-phase RNA extraction kits. The selectivity of the SPME method toward mRNA was enhanced by functionalizing the PA sorbent with oligo dT20 using carbodiimide-based amide linker chemistry. Compared to the native PA coating, an approximate 1000-fold higher mass of mRNA was extracted by the oligo dT20-modified PA sorbent coating. The modified PA sorbent extracted sufficient mRNA from total RNA at concentrations as low as 5 ng µL-1 in aqueous solutions without the use of organic solvents and time-consuming multiple centrifugation steps that are required in traditional RNA extraction methods.

  9. Bench-scale solid phase biotreatment: Benfield Industries Superfund site

    SciTech Connect

    Marlowe, M.W.; Harper, T.R.; Semenak, R.K.

    1995-12-31

    The Benfield Industries, Inc. Superfund site located in Hazelwood, North Carolina has been found to have approximately 15,000 cubic yards of polycyclic aromatic hydrocarbon (PAH) contaminated soil. Risk based clean up goals were specified at the site for eight target PAH compounds including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, naphthalene, and pentachlorophenol. Treatability studies were performed to evaluate solid phase bioremediation, which includes ex-situ and in-situ land treatment processes, for treatment of the site soil. All treatments were conducted using only indigenous microorganisms maintained under aerobic conditions. Two soil samples with different levels of PAH contamination were collected from the site for use in the treatability evaluations. The two soil samples were contaminated with total PAHs at concentrations of approximately 30 milligrams per kilogram (mg/kg) and 6,000 mg/kg, respectively. Three solid phase bioremediation studies were conducted over a one and one half year period using starting concentrations of total PAHs of approximately 30; 600; and 6,000 mg/kg. The objectives of the studies included determining (1) if clean up goals could be achieved, (2) the approximate biodegradation rate of PAHs in the site soils, and (3) the optimum environmental conditions for biodegradation of the PAHs. Some of the environmental parameters which were varied during the testing included moisture levels, soil conditioners, nutrients and pH. The results of the testing indicated that total and target PAHs can be reduced by up to 90 percent in less than 50 days, depending on environmental conditions maintained in the reactors. Clean up goals for all of the target compounds were achieved at some point during the study.

  10. ACTIVATION OF HAGEMAN FACTOR IN SOLID AND FLUID PHASES

    PubMed Central

    Cochrane, C. G.; Revak, S. D.; Wuepper, K. D.

    1973-01-01

    The activation of Hageman factor in solid and fluid phase has been analyzed. Activation of highly purified Hageman factor occurred after it interacted with and became bound to a negatively charged surface. Activation was observed in the absence of enzymes that are inhibitable with diisopropylfluorophosphate, phenyl methyl sulfonyl fluoride and ε-amino-n-caproic acid. The binding of [125I]Hageman factor to the negatively charged surface was markedly inhibited by plasma or purified plasma proteins. Activation of Hageman factor in solution (fluid phase) was obtained with kallikrein, plasmin, and Factor XI (plasma thromboplastin antecedent). Kallikrein was greater than 10 times more active in its ability to activate Hageman factor than plasmin and Factor XI. The data offer a plausible explanation for the finding that highly purified kallikrein promotes clotting of normal plasma. In addition, the combined results of this and previously reported data from this laboratory indicate that the reciprocal activation of Hageman factor by kallikrein in fluid phase is essential for normal rate of activation of the intrinsic-clotting, kinin-forming, and fibrinolytic systems. Activation of Hageman factor was associated with three different structural changes in the molecule: (a) Purified Hageman factor, activated on negatively charged surfaces retained its native mol wt of 80–90,000. Presumably a conformational change accompanied activation. (b) In fluid phase, activation with kallikrein and plasmin did not result in cleavage of large fragments of rabbit Hageman factor, although the activation required hydrolytic capacity of the enzymes. (c) Activation of human Hageman factor with kallikrein or plasmin was associated with cleavage of the molecule to 52,000, 40,000, and 28,000 mol wt fragments. Activation of rabbit Hageman factor with trypsin resulted in cleavage of the molecule into three fragments, each of 30,000 mol wt as noted previously. This major cleavage occurred

  11. Solid state phase transitions characterized by ESR and XAS

    NASA Astrophysics Data System (ADS)

    Acrivos, Juana Vivó

    2000-12-01

    Measurements of the relaxation time, τ of electron systems to a disturbance, by two different spectroscopic methods are examined in detail, with the purpose to establish how the presence of fluctuations near a solid state phase transition are made evident in insulators, conductors and superconductors. The absolute temperature and the relaxation time determine the thermodynamic stability of the electronic system near a phase transition by the Uncertainty Principle. At a given temperature T, Landau and Lifshitz obtain the stability from the lower limit of the uncertainty in entropy in units of the Boltzmann constant, Δ S/ kB<<1 when Tτ>>3.82 K ps. Magnetic resonance can measure τ>>10 -10 s, when v=9 GHz. X-ray spectroscopy can measure τ<10 -16s for hv>5 keV. The results extract information about phenomena that occur at the phase transition by following the evolution of spectral features versus T and crystal orientation. Electron spin resonance identifies the phase transition by the evolution of doublet, triplet and antiferromagnetic resonance, and energy loss. Analysis of the X-ray absorption near an element edge determines one, the relative valence: V(Cu in chains)- V(Cu in planes) ≈1 in YBa 2Cu 3O 7- δ, two, the appearance of allowed Cu K pre-edge quadrupole transitions at Tc, three, the enhancement of Ba L3,2 edge transitions by an order of magnitude, just above Tc, at a crystal orientation of the c-axis to the X-ray polarization vector of 8 π/18, and four, difference X-ray absorption spectra, relative to the transition temperature, identify the bonds as well as the atoms involved in the transition. The figure abstract shows the changes in electron density obtained by temperature difference X-ray absorption near the Y K-edge in YBa 2Cu 3O 7- δ below Tc.

  12. New methods and materials for solid phase extraction and high performance liquid chromatography

    SciTech Connect

    Dumont, Philip John

    1996-04-23

    This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.

  13. Development of novel solid-phase protein formulations

    NASA Astrophysics Data System (ADS)

    Montalvo Ortiz, Brenda Liz

    Proteins are the next-generation drugs for the treatment of several diseases. However, the number of protein drugs is still limited due to the physical or chemical instability of proteins during processing, formulation, storage, and delivery. The formulation of proteins at the solid state has advantages over liquid state, such as improved stability during long-term storage and delivery and decreases transportation costs. In this dissertation, we developed new solid-phase protein formulations in which the integrity of the protein was not compromised. The long term goal of this research was to use these protein formulations to improve protein stability in drug delivery devices, such as poly(lactic-co-glycolic) acid (PLGA). The first solid-phase protein formulation developed in this investigation was named "glassification". We proposed glassification as an alternative protein dehydration technique to the common used one, lyophilization, because this last method involves a series of steps which are detrimental to protein structure and stability. The glassification method consisted on protein dehydration by the use of organic solvents. As a result of the glassification process a small (micrometer size range) protein solid bead was obtained. The proteins used to study the glassification process were lysozyme (LYS), alpha-chymotrypsin (CHYMO) and horseradish peroxidase (HRP). These studies revealed that the glassification process itself did not alter protein structure and the activity was preserved. Ethyl acetate was the most effective organic solvent for protein glassification because it led to the highest protein residual activity, no insoluble aggregate formation and is a relatively non-toxic solvent, which allow the incorporation of these protein microparticles in PLGA microspheres. The incorporation of spherical HRP microparticles into PLGA microspheres resulted in superior properties when compared with encapsulated lyophilized HRP powder, such as improved release

  14. Solid-solid phase transformations induced through cation exchange and strain in 2D heterostructured copper sulfide nanocrystals.

    PubMed

    Ha, Don-Hyung; Caldwell, Andrew H; Ward, Matthew J; Honrao, Shreyas; Mathew, Kiran; Hovden, Robert; Koker, Margaret K A; Muller, David A; Hennig, Richard G; Robinson, Richard D

    2014-12-10

    We demonstrate dual interface formation in nanocrystals (NCs) through cation exchange, creating epitaxial heterostructures within spherical NCs. The thickness of the inner-disk layer can be tuned to form two-dimensional (2D), single atomic layers (<1 nm). During the cation exchange reaction from copper sulfide to zinc sulfide (ZnS), we observe a solid-solid phase transformation of the copper sulfide phase in heterostructured NCs. As the cation exchange reaction is initiated, Cu ions replaced by Zn ions at the interfaces are accommodated in intrinsic Cu vacancy sites present in the initial roxbyite (Cu1.81S) phase of copper sulfide, inducing a full phase transition to djurleite (Cu1.94S)/low chalcocite (Cu2S), a more thermodynamically stable phase than roxbyite. As the reaction proceeds and reduces the size of the copper sulfide layer, the epitaxial strain at the interfaces between copper sulfide and ZnS increases and is maximized for a copper sulfide disk ∼ 5 nm thick. To minimize this strain energy, a second phase transformation occurs back to the roxbyite phase, which shares a similar sulfur sublattice to wurtzite ZnS. The observation of a solid-solid phase transformation in our unique heterostructured NCs provides a new pathway to control desired phases and an insight into the influence of cation exchange on nanoscale phase transitions in heterostructured materials.

  15. Alternative solvents for elevated-temperature solid-phase parallel synthesis. Application to thionation of amides.

    PubMed

    Coats, Steven J; Link, Jeffrey S; Hlasta, Dennis J

    2003-03-06

    A new class of higher-boiling solvents was investigated for elevated-temperature solid-phase parallel synthesis. Extremely low vapor pressures at high temperature and a broader range of solvent effect tuning make this new class of solvents an ideal choice for high-temperature parallel solid-phase synthesis. Benzyl benzoate is identified as a superior high-boiling solvent for parallel solid-phase Lawesson's thionation reactions.

  16. Demonstration of entanglement-enhanced phase estimation in solid

    PubMed Central

    Liu, Gang-Qin; Zhang, Yu-Ran; Chang, Yan-Chun; Yue, Jie-Dong; Fan, Heng; Pan, Xin-Yu

    2015-01-01

    Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: an nitrogen-vacancy centre electron spin and a proximal 13C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent an elemental demonstration of enhancement of quantum metrology against classical procedure. PMID:25832364

  17. The nature and role of incoherent interphase interfaces in diffusional solid-solid phase transformations

    NASA Astrophysics Data System (ADS)

    Massalski, T. B.; Soffa, W. A.; Laughlin, D. E.

    2006-03-01

    In this article, some views on the nature of incoherent interphase interfaces, and their role in the nucleation and growth processes governing the evolution of microstructure in solid-state diffusional transformations (reconstructive transformations), are explored. It is argued that essentially incoherent interfaces can be involved in the initiation and propagation of polymorphic transformations and massive transformations as well as in various precipitation phenomena in metallic and ceramic systems. Similar views have already been advanced earlier in connection with studies of massive transformations. Faceting along the interphase interface during nucleation and growth can derive from thermodynamic, kinetic, and crystallographic factors independent of the bicrystallography of the conjugate phases. This idiomorphic behavior can be relevant to both intergranular and intragranular phase formation. The concept of one-dimensional (1-D) commensuration of phases through plane edge-to-edge/row matching is an interesting extension of the classic ideas of coherency and bicrystallography and potentially important in characterizing the behavior of certain types of boundaries. However, the general importance of these geometrical relations in real and reciprocal space will depend on the depth of the energy wells in orientation space associated with these special boundaries.

  18. Size Dependence of a Temperature-Induced Solid-Solid Phase Transition in Copper(I) Sulfide

    SciTech Connect

    Rivest, Jessy B; Fong, Lam-Kiu; Jain, Prashant K; Toney, Michael F; Alivisatos, A Paul

    2011-07-24

    Determination of the phase diagrams for the nanocrystalline forms of materials is crucial for our understanding of nanostructures and the design of functional materials using nanoscale building blocks. The ability to study such transformations in nanomaterials with controlled shape offers further insight into transition mechanisms and the influence of particular facets. Here we present an investigation of the size-dependent, temperature-induced solid-solid phase transition in copper sulfide nanorods from low- to high-chalcocite. We find the transition temperature to be substantially reduced, with the high chalcocite phase appearing in the smallest nanocrystals at temperatures so low that they are typical of photovoltaic operation. Size dependence in phase trans- formations suggests the possibility of accessing morphologies that are not found in bulk solids at ambient conditions. These other- wise-inaccessible crystal phases could enable higher-performing materials in a range of applications, including sensing, switching, lighting, and photovoltaics.

  19. Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples.

    PubMed

    Yiantzi, Evangelia; Kalogerakis, Nicolas; Psillakis, Elefteria

    2015-08-26

    For the first time, Vacuum Assisted Headspace Solid Phase Microextraction (Vac-HSSPME) is used for the recovery of polycyclic aromatic hydrocarbons (PAHs) from solid matrices. The procedure was investigated both theoretically and experimentally. According to the theory, reducing the total pressure increases the vapor flux of chemicals at the soil surface, and hence improves HSSPME extraction kinetics. Vac-HSSPME sampling could be further enhanced by adding water as a modifier and creating a slurry mixture. For these soil-water mixtures, reduced pressure conditions may increase the volatilization rates of compounds with a low K(H) present in the aqueous phase of the slurry mixture and result in a faster HSSPME extraction process. Nevertheless, analyte desorption from soil to water may become a rate-limiting step when significant depletion of the aqueous analyte concentration takes place during Vac-HSSPME. Sand samples spiked with PAHs were used as simple solid matrices and the effect of different experimental parameters was investigated (extraction temperature, modifiers and extraction time). Vac-HSSPME sampling of dry spiked sand samples provided the first experimental evidence of the positive combined effect of reduced pressure and temperature on HSSPME. Although adding 2 mL of water as a modifier improved Vac-HSSPME, humidity decreased the amount of naphthalene extracted at equilibrium as well as impaired extraction of all analytes at elevated sampling temperatures. Within short HSSPME sampling times and under mild sampling temperatures, Vac-HSSPME yielded linear calibration curves in the range of 1-400 ng g(-1) and, with the exception of fluorene, regression coefficients were found higher than 0.99. The limits of detection for spiked sand samples ranged from 0.003 to 0.233 ng g(-1) and repeatability from 4.3 to 10 %. Finally, the amount of PAHs extracted from spiked soil samples was smaller compared to spiked sand samples, confirming that soil could bind target

  20. Phase field modeling of grain growth in porous polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Ahmed, Karim E.

    The concurrent evolution of grain size and porosity in porous polycrystalline solids is a technically important problem. All the physical properties of such materials depend strongly on pore fraction and pore and grain sizes and distributions. Theoretical models for the pore-grain boundary interactions during grain growth usually employ restrictive, unrealistic assumptions on the pore and grain shapes and motions to render the problem tractable. However, these assumptions limit the models to be only of qualitative nature and hence cannot be used for predictions. This has motivated us to develop a novel phase field model to investigate the process of grain growth in porous polycrystalline solids. Based on a dynamical system of coupled Cahn-Hilliard and All en-Cahn equations, the model couples the curvature-driven grain boundary motion and the migration of pores via surface diffusion. As such, the model accounts for all possible interactions between the pore and grain boundary, which highly influence the grain growth kinetics. Through a formal asymptotic analysis, the current work demonstrates that the phase field model recovers the corresponding sharp-interface dynamics of the co-evolution of grain boundaries and pores; this analysis also fixes the model kinetic parameters in terms of real materials properties. The model was used to investigate the effect of porosity on the kinetics of grain growth in UO2 and CeO2 in 2D and 3D. It is shown that the model captures the phenomenon of pore breakaway often observed in experiments. Pores on three- and four- grain junctions were found to transform to edge pores (pores on two-grain junction) before complete separation. The simulations demonstrated that inhomogeneous distribution of pores and pore breakaway lead to abnormal grain growth. The simulations also showed that grain growth kinetics in these materials changes from boundary-controlled to pore-controlled as the amount of porosity increases. The kinetic growth

  1. Modeling the solid-liquid phase transition in saturated triglycerides

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Hanna, Charles B.; Sandt, Christophe; MacDonald, Adam J.; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick

    2010-02-01

    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of ˜120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h∗-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h∗ conformation in the liquid state at temperatures higher than the phase-transition temperature, T∗=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h∗ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h∗ model gave a value of ΔH that was too small by a factor of ˜3-4. We also predicted the temperature dependence of the 1132 cm-1 Raman band for both models, and performed measurements of the ratios of three TL Raman

  2. Monitoring solid phase synthesis reactions with electrochemical impedance spectroscopy (EIS).

    PubMed

    Hutton, Roger S; Adams, Joseph P; Trivedi, Harish S

    2003-01-01

    This work describes the use of electrochemical impedance spectroscopy (EIS) as a means to monitor solid phase synthesis on resin beads. EIS was used to track changes during the swelling of beads in various solvents, during three typical reactions and throughout cleavage of the final product from the bead. The impedance response was investigated in a chemical reactor and was found to be faintly sensitive to the resin swelling and solvent flow. The position of the electrode within the reactor was found to be critical as polystyrene based beads float or sink dependent upon the solvent used. However, by choosing electrode position it was possible to monitor reaction progress on beads or within the bulk reactant/product mixture. Of the three typical chemical reactions studied impedance spectroscopy successfully followed two. Fitting of the impedance data to an equivalent electrical circuit provided an estimate as to the relative contribution of capacitive and resistive components to the overall response. Kinetic data from two reactions were also modelled, in both cases complex kinetics was observed, in close agreement with other studies.

  3. IN SITU SOLID-PHASE EXTRACTION AND ANALYSIS OF ...

    EPA Pesticide Factsheets

    Fragrance materials, such as synthetic musks in aqueous samples, are normally analyzed by GC/MS in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of 1-L samples. A 1-L sample, however, usually provides too little analyte for full-scan data acquisition.We have developed an on-site extraction method for extracting synthetic musks from 60 L of wastewater effluent. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for various synthetic musk compounds. Quantification of these compounds was conveniently achieved from the full-scan data directly, without preparing SIM descriptors for each compound to acquire SIM data. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-s

  4. ON-SITE SOLID-PHASE EXTRACTION AND LABORATORY ...

    EPA Pesticide Factsheets

    Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are required to verify that a target analyte has been found by comparison with the mass spectra of fragrance compounds in the NIST mass spectral library. A I -L sample usually provides insufficient analyte for full scan data acquisition. This paper describes an on-site extraction method developed at the U.S. Environmental Protection Agency (USEPA)- Las Vegas Nevada - for synthetic musks from 60 L of wastewater effluent. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for a wide array of synthetic musks. Quantification of these compounds was achieved from the full-scan data directly, without the need to acquire SIM data. The detection limits obtained with this method are an order of magnitude lower than those obtained from liquid-liquid and other solid phase extraction methods. This method is highly reproducible, and recoveries ranged from 80 to 97% in spiked sewage treatment plant effluent. The high rate of sorbent-sample mass transfer eliminated the need for a methanolic activation step, which reduced extraction time, labor, and solvent use, More samples could be extracted in the field at lower cost. After swnple extraction, the light- weight cartridges ar

  5. Solid Phase Microextraction for the Analysis of Nuclear Weapons

    SciTech Connect

    Chambers, D M

    2001-06-01

    This document is a compendium of answers to commonly asked questions about solid phase microextraction as it relates to the analysis of nuclear weapons. We have also included a glossary of terms associated with this analytical method as well as pertinent weapons engineering terminology. Microextraction is a new collection technique being developed to nonintrusively sample chemicals from weapon headspace gases for subsequent analysis. The chemicals that are being targeted outgas from the high explosives and other organic materials used in the weapon assembly. This technique is therefore a valuable tool to: (1) remotely detect and assess the aging of Lawrence Livermore National Laboratory (LLNL) and, in some cases, Sandia National Laboratory (SNL) organic materials; and (2) identify potential compatibility issues (i.e., materials interactions) that should be more carefully monitored during surveillance tear-downs. Microextraction is particularly attractive because of the practical constraints inherent to the weapon surveillance procedure. To remain transparent to other core surveillance activities and fall within nuclear safety guidelines, headspace analysis of the weapons requires a procedure that: (1) maintains ambient temperature conditions; (2) allows practical collection times of less than 20 min; (3) maintains the integrity of the weapon gas volume; (4) provides reproducible and quantitative results; and (5) can identify all possible targets.

  6. Molecularly imprinted solid phase extraction of fluconazole from pharmaceutical formulations.

    PubMed

    Manzoor, S; Buffon, R; Rossi, A V

    2015-03-01

    This work encompasses a direct and coherent strategy to synthesise a molecularly imprinted polymer (MIP) capable of extracting fluconazole from its sample. The MIP was successfully prepared from methacrylic acid (functional monomer), ethyleneglycoldimethacrylate (crosslinker) and acetonitrile (porogenic solvent) in the presence of fluconazole as the template molecule through a non-covalent approach. The non-imprinted polymer (NIP) was prepared following the same synthetic scheme, but in the absence of the template. The data obtained from scanning electronic microscopy, infrared spectroscopy, thermogravimetric and nitrogen Brunauer-Emmett-Teller plot helped to elucidate the structural as well as the morphological characteristics of the MIP and NIP. The application of MIP as a sorbent was demonstrated by packing it in solid phase extraction cartridges to extract fluconazole from commercial capsule samples through an offline analytical procedure. The quantification of fluconazole was accomplished through UPLC-MS, which resulted in LOD≤1.63×10(-10) mM. Furthermore, a high percentage recovery of 91±10% (n=9) was obtained. The ability of the MIP for selective recognition of fluconazole was evaluated by comparison with the structural analogues, miconazole, tioconazole and secnidazole, resulting in percentage recoveries of 51, 35 and 32%, respectively.

  7. Solid-Phase Microextraction and the Human Fecal VOC Metabolome

    PubMed Central

    Dixon, Emma; Clubb, Cynthia; Pittman, Sara; Ammann, Larry; Rasheed, Zeehasham; Kazmi, Nazia; Keshavarzian, Ali; Gillevet, Pat; Rangwala, Huzefa; Couch, Robin D.

    2011-01-01

    The diagnostic potential and health implications of volatile organic compounds (VOCs) present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME) has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein. PMID:21494609

  8. Solid-phase microextraction for the analysis of biological samples.

    PubMed

    Theodoridis, G; Koster, E H; de Jong, G J

    2000-08-04

    Solid-phase microextraction (SPME) has been introduced for the extraction of organic compounds from environmental samples. This relatively new extraction technique has now also gained a lot of interest in a broad field of analysis including food, biological and pharmaceutical samples. SPME has a number of advantages such as simplicity, low cost, compatibility with analytical systems, automation and the solvent-free extraction. The last few years, SPME has been combined with liquid chromatography and capillary electrophoresis, besides the generally used coupling to gas chromatography, and has been applied to various biological samples such as, e.g., urine, plasma and hair. The objective of the present paper is a survey of the application of SPME for the analysis of biological samples. Papers about the analysis of biologically active compounds are categorised and reviewed. The impact of SPME on various analytical fields (toxicological, forensic, clinical, biochemical, pharmaceutical, and natural products) is illustrated. The main features of SPME and its modes are briefly described and important aspects about its application for the determination of pharmaceuticals, drugs of abuse and compounds of clinical and toxicological interest are discussed. SPME is compared with other sample pretreatment techniques. The potential of SPME and its main advantages are demonstrated. Special attention is paid to new trends in applications of SPME in bioanalysis.

  9. Immobilization of microorganisms for detection by solid-phase immunoassays.

    PubMed Central

    Ibrahim, G F; Lyons, M J; Walker, R A; Fleet, G H

    1985-01-01

    Several cultures of gram-negative and gram-positive bacteria were successfully immobilized with titanous hydroxide. The immobilization efficiency for the microorganisms investigated in saline and broth media ranged from 80.2 to 99.9%. The immobilization of salmonellae was effective over a wide pH range. The presence of buffers, particularly phosphate buffer, drastically reduced the immobilization rate. However, buffers may be added to immunoassay systems after immobilization of microorganisms. The immobilization process involved only one step, i.e., shaking 100 microliter of culture with 50 microliter of titanous hydroxide suspension in polystyrene tubes for only 10 min. The immobilized cells were so tenaciously bound that vigorous agitation for 24 h did not result in cell dissociation. The nonspecific binding of 125I-labeled antibody from rabbits and 125I-labeled protein A by titanous hydroxide was inhibited in the presence of 2% gelatin and amounted to only 5.6 and 3.9%, respectively. We conclude that this immobilization procedure is a potentially powerful tool which could be utilized in solid-phase immunoassays concerned with the diagnosis of microorganisms. PMID:3900128

  10. Monolithic graphene fibers for solid-phase microextraction.

    PubMed

    Fan, Jing; Dong, Zelin; Qi, Meiling; Fu, Ruonong; Qu, Liangti

    2013-12-13

    Monolithic graphene fibers for solid-phase microextraction (SPME) were fabricated through a dimensionally confined hydrothermal strategy and their extraction performance was evaluated. For the fiber fabrication, a glass pipeline was innovatively used as a hydrothermal reactor instead of a Teflon-lined autoclave. Compared with conventional methods for SPME fibers, the proposed strategy can fabricate a uniform graphene fiber as long as several meters or more at a time. Coupled to capillary gas chromatography (GC), the monolithic graphene fibers in a direct-immersion (DI) mode achieved higher extraction efficiencies for aromatics than those for n-alkanes, especially for polycyclic aromatic hydrocarbons (PAHs), thanks to π-π stacking interaction and hydrophobic effect. Additionally, the fibers exhibited excellent durability and can be repetitively used more than 160 times without significant loss of extraction performance. As a result, an optimum extraction condition of 40°C for 50min with 20% NaCl (w/w) was finally used for SPME of PAHs in aqueous samples. For the determination of PAHs in water samples, the proposed DI-SPME-GC method exhibited linear range of 0.05-200μg/L, limits of detection (LOD) of 4.0-50ng/L, relative standard deviation (RSD) less than 9.4% and 12.1% for one fiber and different fibers, respectively, and recoveries of 78.9-115.9%. The proposed method can be used for analysis of PAHs in environmental water samples.

  11. Headspace solid-phase microextraction for wine volatile analysis.

    PubMed

    Azzi-Achkouty, Samar; Estephan, Nathalie; Ouaini, Naïm; Rutledge, Douglas N

    2017-07-03

    The most commonly used technique to prepare samples for the analysis of wine volatile is the headspace solid-phase microextraction (HS-SPME). This method has gained popularity in last few years, as it is a unique solventless preparation technique. In this paper, a summary of recently published studies using HS-SPME for the analysis of wine aromas, with special emphasis on the method developed, has been compiled. Several papers are discussed in detail, mainly with respect to the SPME conditions used. A brief summary of the reviews related to HS-SPME analysis is given and discussed. Several parameters affecting the HS-SPME, such as the salt concentration and the agitation conditions, are used in the same way as used in several papers. The HS-SPME extraction proved to be sufficiently sensitive to satisfy legislative requirements related to low detection and quantification limits as well as method accuracy and precision requirements. However, in order to achieve the best performance and precision, the protocol needs to be optimized for each case. The effect of different parameters must be well characterized to ensure correct extraction and desorption to ensure the transfer of extracted compounds into the analytical system. The operating parameters, such as time, temperature, and agitation, must then be kept constant for all the samples.

  12. Ionic liquids in solid-phase microextraction: a review.

    PubMed

    Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L

    2011-06-10

    Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed.

  13. Characterizing solid phase ammonia toxicity in marine sediments

    SciTech Connect

    Ho, K.T.; Burgess, R.M.; Kuhn, A.

    1994-12-31

    The presence and toxicity of ammonia in sediments represents an interesting scientific and regulatory concern. From a scientific perspective, ammonia toxicity is largely pH dependent and easily detected under special exposure conditions. Regulating the concentration of ammonia is difficult because ammonia concentrations may be elevated by naturally occurring anaerobic sediment bacteria; however, these bacteria may be enhanced by excessive carbon inputs into a system. This presentation will demonstrate progress toward characterizing ammonia toxicity.in solid phase exposure. Toxicity tests were conducted using the mysid (Mysidopsis bahia) and the amphipod (Ampelisca abdita). Results from ammonia spiked and ammonia induced whole marine sediments demonstrate pH dependent toxicity under a graduated pH (7, 8 and 9) testing regime. Several metals (Cd, Cu, Ni, Pb and Zn) tested under the graduated pH testing regime showed varying toxicity patterns also as a function of pH. Other compounds, the toxicity of which are pH dependent will be discussed. In addition the results of testing with complex environmental sediments containing high ammonia concentrations and other contaminants will be reported.

  14. Spherical clay conglomerates:  a novel stationary phase for solid-phase extraction and "reversed-phase" liquid chromatography.

    PubMed

    Bucheli, T D; Müller, S R; Reichmuth, P; Haderlein, S B; Schwarzenbach, R P

    1999-06-01

    A new solid phase is presented to be used for the solid-phase extraction (SPE) of organic compounds from aqueous solutions and as a stationary phase for the separation of organic compounds in "reversed-phase" HPLC. The material consists of spherical clay conglomerates (SCCs) in the size ranges of 2-5, 5-10, and 10-20 μm. SCCs are especially well suited for the extraction and separation of aromatic compounds with electron-withdrawing substituents, because of the formation of specific electron donor-acceptor (EDA) complexes of such compounds with natural clay minerals. A series of nitroaromatic compounds (NACs), e.g., nitrophenols, and nitrotoluenes, served as probe substances for the characterization of the SPE with SCCs online coupled to a C18-HPLC-DAD system. Breakthrough volumes were > 1 L and method detection limits (MDLs) < 100 ng/L for compounds with moderate to high affinity towards clay minerals. The performance of the material is hardly affected by matrix effects and because of its excellent physical properties, i.e., regenerability and pressure-resistance, it meets the requirements for fully automated routine trace analysis of several primary pollutants, such as 6-methyl-2,4-dinitrophenol (DNOC) or 2,4,6-trinitrotoluene (TNT), in various natural waters. Offline SPE with SCCs was superior or equivalent to commercial SPE products for analysis of such compounds. Finally, SCCs are shown to be well suited as a stationary phase in reversed-phase HPLC. This opens a wide range of applications, e.g., as an easy and fast separation technique that is orthogonal to C18 reversed-phase HPLC.

  15. Determining the solid phases hosting arsenic in Mekong Delta sediments

    NASA Astrophysics Data System (ADS)

    Wucher, M.; Stuckey, J. W.; McCurdy, S.; Fendorf, S.

    2011-12-01

    The major river systems originating from the Himalaya deposit arsenic bearing sediment into the deltas of South and Southeast Asia. High rates of sediment and organic carbon deposition combined with frequent flooding leads to anaerobic processes that release arsenic into the pore-water. Arsenic concentrations in the groundwater of these sedimentary basins are often above the World Health Organization drinking water standard of 10 μg As L-1. As a result, 150 million people are at risk of chronic arsenic poisoning through water and rice consumption. The composition of the iron bearing phases hosting the arsenic in these deltaic sediments is poorly understood. Here we implemented a suite of selective chemical extractions to help constrain the types of arsenic bearing solid phases, which were complimented with synchrotron-based X-ray absorption spectroscopy and X-ray diffraction analyses to define the arsenic and iron mineralogy of the system. Sediment cores were collected in triplicate from a seasonally-inundated wetland in Cambodia at depths of 10, 50, 100, and 150 centimeters. We hypothesize that (i) arsenic will be predominantly associated with iron oxides, and (ii) the ratio of crystalline to amorphous iron oxides will increase with sediment depth (and age). We performed four selective extractions in parallel to quantify the various pools of arsenic. First, 1 M MgCl2 was used to extract electrostatically-bound arsenic (labile forms) from the sediment. Second, 1 M NaH2PO4 targeted strongly adsorbed arsenic. Third, 1 M HCl was used to liberated arsenic coprecipitated with amorphous Fe/Mn oxides, carbonates, and acid-volatile sulfides. Finally, a dithionite extraction was used to account for arsenic associated with reducible Fe/Mn oxides. Through this work, we identified the composition of the phases hosting arsenic at various depths through the soil profile, improving our understanding of how arsenic persists in the aquifer. In addition, defining the arsenic and

  16. Rapid synthesis of oligodeoxyribonucleotides. IV. Improved solid phase synthesis of oligodeoxyribonucleotides through phosphotriester intermediates.

    PubMed Central

    Gait, M J; Singh, M; Sheppard, R C; Edge, M D; Greene, A R; Heathcliffe, G R; Atkinson, T C; Newton, C R; Markham, A F

    1980-01-01

    A phosphotriester solid phase method on a polyamide support has been used to prepare oligodeoxyribonucleotides up to 12 units long. Compared to solid phase phosphodiester synthesis the new methodology is quicker, more flexible and gives 10-60-fold better overall yields. PMID:7443540

  17. Solid-state retrodirective phased array concepts for microwave power transmission from Solar Power Satellite

    NASA Technical Reports Server (NTRS)

    Schroeder, K. G.; Petroff, I. K.

    1980-01-01

    Two prototype solid-state phased array systems concepts for potential use in the Solar Power Satellite are described. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed is on-going solid-state amplifier development.

  18. The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.

    ERIC Educational Resources Information Center

    Long, Gary J.; Leighly, H. P., Jr.

    1982-01-01

    Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)

  19. The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.

    ERIC Educational Resources Information Center

    Long, Gary J.; Leighly, H. P., Jr.

    1982-01-01

    Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)

  20. Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates

    ERIC Educational Resources Information Center

    Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter

    2007-01-01

    A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…

  1. Estimating production and consumption of solid reactive Fe phases in marine sediments from concentration profiles

    EPA Science Inventory

    1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...

  2. Estimating production and consumption of solid reactive Fe phases in marine sediments from concentration profiles

    EPA Science Inventory

    1D diffusion models may be used to estimate rates of production and consumption of dissolved metabolites in marine sediments, but are applied less often to the solid phase. Here we used a numerical inverse method to estimate solid phase Fe(III) and Fe(II) consumption and product...

  3. Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates

    ERIC Educational Resources Information Center

    Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter

    2007-01-01

    A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…

  4. Inhibition of a solid phase reaction among excipients that accelerates drug release from a solid dispersion with aging.

    PubMed

    Mizuno, Masayasu; Hirakura, Yutaka; Yamane, Ikuro; Miyanishi, Hideo; Yokota, Shoji; Hattori, Munetaka; Kajiyama, Atsushi

    2005-11-23

    Hydrophobic drug substances can be formulated as a solid dispersion or solution using macromolecular matrices with high glass transition temperatures to attain satisfactory dissolution. However, very few marketed products have previously relied on solid dispersion technology due to physical and chemical instability problems, and processing difficulties. In the present study, a modified release product of a therapeutic drug for hypertension, Barnidipine hydrochloride, was developed. The drug product consisted of solid dispersion based on a matrix of carboxymethylethylcellulose (CMEC), which was produced using the spray-coating method. An enteric coat layer was sprayed on the surface of the solid dispersion to control drug release. Interestingly, the release rate accelerated as the drug product aged, while there were no indications of deceleration of the release rate which was due to crystallization of the drug substance. To prevent changes in the dissolution kinetics during storage periods, a variety of processing conditions were tried. It was found that not only use of non-aqueous solvents but also a reduction in coating temperatures consistently resulted in stable solid dispersions. The molecular bases of dissolution of the drug substance from those matrices were investigated. The molecular weight of CMEC was found to be a dominant factor that determined dissolution kinetics, which followed zero-order release, suggesting an involvement of an osmotic pumping mechanism. While dissolution was faster using a higher molecular weight CMEC, the molecular weight of CMEC in the drug product slowly increased with aging (solid phase reaction) depending on the processing conditions, causing the time-induced elevation of dissolution. While no crystalline components were found in the solid dispersion, the amorphous structure maintained a degree of non-equilibrium by nature. Plasticization by water in the coating solution relaxed the amorphous system and facilitated phase

  5. Novel materials and methods for solid-phase extraction and liquid chromatography

    SciTech Connect

    Ambrose, Diana

    1997-06-24

    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  6. Solid phase epitaxial regrowth of (100)GaAs

    SciTech Connect

    Almonte, Marlene Isabel

    1996-02-01

    This thesis showed that low temperature (250°C) SPE of stoichiometrically balanced ion implanted GaAs layers can yield good epitaxial recovery for doses near the amorphization threshold. For 250°C anneals, most of the regrowth occurred in the first 10 min. HRTEM revealed much lower stacking fault density in the co-implanted sample than in the As-only and Ga-only samples with comparable doses. After low temp annealing, the nonstoichiometric samples had a large number of residual defects. For higher dose implants, very high temperatures (700°C) were needed to remove residual defects for all samples. The stoichiometrically balanced layer did not regrow better than the Ga-only and As-only samples. The co-implanted sample exhibited a thinner amorphous layer and a room temperature (RT) annealing effect. The amorphous layer regrew about 5 nm, suggesting that stoichiometrically balanced amorphous layers can regrow even at RT. Mechanisms for solid phase crystallization in (100)GasAs is discussed: nucleation and growth of randomly oriented crystallites and SPE. These two mechanisms compete in compound semiconductors at much lower temperatures than in Si. For the low dose As-only and Ga-only samples with low-temp anneals, both mechanisms are active. For this amorphization threshold dose, crystallites remain in the amorphous layer for all as-implants. 250°C annealing showed recrystallization from the surface and bulk for these samples; for the co-implant, the mechanism is not evident.

  7. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    SciTech Connect

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M.

    1995-12-10

    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  8. Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering.

    PubMed

    Diwan, Anubhav; Singh, Bhupinder; Roychowdhury, Tuhin; Yan, DanDan; Tedone, Laura; Nesterenko, Pavel N; Paull, Brett; Sevy, Eric T; Shellie, Robert A; Kaykhaii, Massoud; Linford, Matthew R

    2016-02-02

    We describe a new process for preparing porous solid phase microextraction (SPME) coatings by the sputtering of silicon onto silica fibers. The microstructure of these coatings is a function of the substrate geometry and mean free path of the silicon atoms, and the coating thickness is controlled by the sputtering time. Sputtered silicon structures on silica fibers were treated with piranha solution (a mixture of concd H2SO4 and 30% H2O2) to increase the concentration of silanol groups on their surfaces, and the nanostructures were silanized with octadecyldimethylmethoxysilane in the gas phase. The attachment of this hydrophobic ligand was confirmed by X-ray photoelectron spectroscopy and contact angle goniometry on model, planar silicon substrates. Sputtered silicon coatings adhered strongly to their surfaces, as they were able to pass the Scotch tape adhesion test. The extraction time and temperature for headspace extraction of mixtures of alkanes and alcohols on the sputtered fibers were optimized (5 min and 40 °C), and the extraction performances of SPME fibers with 1.0 or 2.0 μm of sputtered silicon were compared to those from a commercial 7 μm poly(dimethylsiloxane) (PDMS) fiber. For mixtures of alcohols, aldehydes, amines, and esters, the 2.0 μm sputtered silicon fiber yielded signals that were 3-9, 3-5, 2.5-4.5, and 1.5-2 times higher, respectively, than those of the commercial fiber. For the heavier alkanes (undecane-hexadecane), the 2.0 μm sputtered fiber yielded signals that were approximately 1.0-1.5 times higher than the commercial fiber. The sputtered fibers extracted low molecular weight analytes that were not detectable with the commercial fiber. The selectivity of the sputtered fibers appears to favor analytes that have both a hydrophobic component and hydrogen-bonding capabilities. No detectable carryover between runs was noted for the sputtered fibers. The repeatability (RSD%) for a fiber (n = 3) was less than 10% for all analytes tested

  9. Solid rocket motor fire tests: Phases 1 and 2

    NASA Astrophysics Data System (ADS)

    Chang, Yale; Hunter, Lawrence W.; Han, David K.; Thomas, Michael E.; Cain, Russell P.; Lennon, Andrew M.

    2002-01-01

    JHU/APL conducted a series of open-air burns of small blocks (3 to 10 kg) of solid rocket motor (SRM) propellant at the Thiokol Elkton MD facility to elucidate the thermal environment under burning propellant. The propellant was TP-H-3340A for the STAR 48 motor, with a weight ratio of 71/18/11 for the ammonium perchlorate, aluminum, and HTPB binder. Combustion inhibitor applied on the blocks allowed burning on the bottom and/or sides only. Burns were conducted on sand and concrete to simulate near-launch pad surfaces, and on graphite to simulate a low-recession surface. Unique test fixturing allowed propellant self-levitation while constraining lateral motion. Optics instrumentation consisted of a longwave infrared imaging pyrometer, a midwave spectroradiometer, and a UV/visible spectroradiometer. In-situ instrumentation consisted of rod calorimeters, Gardon gauges, elevated thermocouples, flush thermocouples, a two-color pyrometer, and Knudsen cells. Witness materials consisted of yttria, ceria, alumina, tungsten, iridium, and platinum/rhodium. Objectives of the tests were to determine propellant burn characteristics such as burn rate and self-levitation, to determine heat fluxes and temperatures, and to carry out materials analyses. A summary of qualitative results: alumina coated almost all surfaces, the concrete spalled, sand moisture content matters, the propellant self-levitated, the test fixtures worked as designed, and bottom-burning propellant does not self-extinguish. A summary of quantitative results: burn rate averaged 1.15 mm/s, thermocouples peaked at 2070 C, pyrometer readings matched MWIR data at about 2400 C, the volume-averaged plume temperatures were 2300-2400 C with peaks of 2400-2600 C, and the heat fluxes peaked at 125 W/cm2. These results are higher than other researchers' measurements of top-burning propellant in chimneys, and will be used, along with Phase 3 test results, to analyze hardware response to these environments, including General

  10. Observation of Solid-Solid Phase Transitions in Ramp-Compressed Aluminum

    NASA Astrophysics Data System (ADS)

    Polsin, D. N.; Boehly, T. R.; Delettrez, J. A.; Gregor, M. C.; McCoy, C. A.; Henderson, B.; Fratanduono, D. E.; Smith, R.; Kraus, R.; Eggert, J. H.; Collins, R.; Coppari, F.; Celliers, P. M.

    2016-10-01

    We present results of experiments using x-ray diffraction to study the crystalline structure of solid aluminum compressed up to 500 GPa. Aluminum is of interest because it is frequently used as a standard material in high-pressure compression experiments. At ambient pressure and temperature, Al is a face-centered cubic close-packed crystal and has been observed to transform to hexagonal close-packed (hcp) when compressed to 200GPa in a diamond anvil cell. It is predicted to transform from hcp to body-centered cubic when compressed to 315GPa. Laser-driven ramp waves will be used to compress Al to various constant-pressure states. The goal is to investigate the Al phase diagram along its isentrope, i.e., at temperatures 1000K and pressures ranging from 200 to 500 GPa. X-ray diffraction will be used to measure the crystalline structure of the compressed Al and observe the transformations that occur at various pressures. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Solid-phase PEGylation of an immobilized protein cage on polyelectrolyte multilayer.

    PubMed

    Uto, Koichiro; Yamamoto, Kazuya; Iwahori, Kenji; Aoyagi, Takao; Yamashita, Ichiro

    2014-01-01

    We used a quartz crystal microbalance (QCM) to quantitatively characterize solid-phase poly(ethylene glycol) modification (PEGylation) of apoferritin that was electrostatically immobilized on the surface of a polyelectrolyte multilayer. The solid-phase PEGylation processes were monitored by analyzing QCM frequency shifts, which showed that the PEG chains were covalently introduced onto the surface of the immobilized apoferritin. We investigated the effect of PEG concentration, PEG molecular weight, and two-dimensional coverage of the immobilized apoferritin on the solid-phase PEGylation process in addition to the surface properties of the PEGylated apoferritin film, such as wettability and protein adsorption capacity. Since the reaction field is more spatially restricted in solid-phase PEGylation than in traditional aqueous-phase PEGylation, this study shows that a ferritin protein cage is potentially useful as a tailored building block, one that has well-defined structures different from the PEGylated ferritin prepared by an aqueous-phase approach.

  12. Reconstruction of Porous Media with Multiple Solid Phases

    PubMed

    Losic; Thovert; Adler

    1997-02-15

    A process is proposed to generate three-dimensional multiphase porous media with fixed phase probabilities and an overall correlation function. By varying the parameters, a specific phase can be located either at the interface between two phases or within a single phase. When the interfacial phase has a relatively small probability, its shape can be chosen as granular or lamellar. The influence of a third phase on the macroscopic conductivity of a medium is illustrated.

  13. Materials research for passive solar systems: solid-state phase-change materials

    SciTech Connect

    Benson, D.K.; Webb, J.D.; Burrows, R.W.; McFadden, J.D.O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C/sub 5/H/sub 12/O/sub 4/), pentaglycerinve (C/sub 5/H/sub 12/O/sub 3/), and neopentyl glycol (C/sub 5/H/sub 12/O/sub 2/). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature betweeen 25/sup 0/C and 188/sup 0/C, and have latent heats of transformation between 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier. Nevertheless, a higher cost of the phase-change materials (approx. =$0.70 per pound) is likely to limit their applicability in passive solar systems unless their performance can be significantly improved through further research.

  14. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells.

    PubMed

    Hatke, A T; Liu, Yang; Magill, B A; Moon, B H; Engel, L W; Shayegan, M; Pfeiffer, L N; West, K W; Baldwin, K W

    2014-06-20

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  15. Characterization of interactions between soil solid phase and soil solution in the initial ecosystem development phase

    NASA Astrophysics Data System (ADS)

    Zimmermann, Claudia; Schaaf, Wolfgang

    2010-05-01

    In the initial phase of soil formation interactions between solid and liquid phases and processes like mineral weathering, formation of reactive surfaces and accumulation of organic matter play a decisive role in developing soil properties. As part of the Transregional Collaborative Research Centre (SFB/TRR 38) 'Patterns and processes of initial ecosystem development' in an artificial catchment, these interactions are studied at the catchment 'Chicken Creek' (Gerwin et al. 2009). To link the interactions between soil solid phase and soil solution at the micro-scale with observed processes at the catchment scale, microcosm experiments under controlled laboratory conditions were carried out. Main objectives were to determine the transformation processes of C and N from litter decomposition within the gaseous, liquid and solid phase, the interaction with mineral surfaces and its role for the establishment of biogeochemical cycles. The microcosm experiments were established in a climate chamber at constant 10 ° C. In total 48 soil columns (diameter: 14.4 cm; height: 30 cm) were filled with two different quaternary substrates (sand and loamy sand) representing the textural variation within the catchment at a bulk density of 1.4-1.5 g*cm-3. The columns were automatically irrigated four times a day with 6.6 ml each (corresponding to 600 mm*yr-1). The gaseous phase in the headspace of the microcosms was analysed continuously for CO2 and N2O contents. C and N transformation processes were studied using 13C and 15N labelled litter of two different plant species occurring at the catchment (Lotus corniculatus, Calamagrostis epigejos) that was incorporated into the microcosm surface. All treatments including a control ran with four replicates over a period of 40 weeks. Two additional microcosms act as pure litter controls where substrate was replaced by glass pearls. Litter and substrate were analysed before and after the experiment. Percolate was continuously collected and

  16. The Double Solid Reactant Method for modeling the release of trace elements from dissolving solid phases: I. Outline and limitations

    NASA Astrophysics Data System (ADS)

    Accornero, Marina; Marini, Luigi

    2008-10-01

    A Double Solid Reactant Method was elaborated from a suggestion of Marini (Geological sequestration of carbon dioxide: Thermodynamics, kinetics, and reaction path modeling. Developments in Geochemistry, Elsevier, Amsterdam, 2007) to simulate the release of trace elements during the progressive dissolution of solid phases. The method is based on the definition, for each dissolving solid, of both an entity whose thermodynamic and kinetic properties are known (either a pure mineral or a solid mixture) and a special reactant, that is, a material of known stoichiometry and unknown thermodynamic and kinetic properties. The special reactant is utilised to take into account the concentrations of trace elements in the dissolving solid phase. In this communication, the influence of several trace elements on the Δ G f o, Δ G r o and log K of the minerals considered by Lelli et al. (Environ Geol, 2007) and Accornero and Marini (Geobasi, 2007a; Proceedings of IMWA symposium, Cagliari, 27 31 May 2007b) was evaluated assuming ideal mixing in the solid state. These effects were found to be negligible for albite and the leucite latitic glass, limited for muscovites and chlorites, and slightly more important for apatites. These influences become progressively higher with increasing concentration of trace elements in these minerals. Based on these deviations in thermodynamic parameters, special reactants should not include oxide components with molar fractions higher than 0.003.

  17. Quarter-filled supersolid and solid phases in the extended Bose-Hubbard model.

    PubMed

    Ng, Kwai-Kong; Chen, Y C; Tzeng, Y C

    2010-05-12

    We numerically study the ground state phase diagram of the two-dimensional hard-core Bose-Hubbard model with nearest-(V(1)) and next-nearest-neighbour (V(2)) repulsions. In particular, we focus on the quarter-filled phases where one supersolid and two solid phases are observed. Using both canonical and grand canonical quantum Monte Carlo (QMC) methods and a mean-field calculation, we provide evidence for the existence of a commensurate supersolid. Despite the two possible diagonal long-range orderings for the solid phase, only one kind of supersolid phase is found to be energetically stable. The competition between the two solid phases manifests itself as a first-order phase transition around 2V(2) ∼ V(1). The change of order parameters as a function of the chemical potential is also presented.

  18. Crystallization and Phase Changes in Paracetamol from the Amorphous Solid to the Liquid Phase

    PubMed Central

    2014-01-01

    For the case of paracetamol, we show how terahertz time-domain spectroscopy can be used to characterize the solid and liquid phase dynamics. Heating of supercooled amorphous paracetamol from 295 K in a covered sample under vacuum leads to its crystallization at 330 K. First, form III is formed followed by the transformation of form III to form II at 375 K, to form I at 405 K, and finally melting is observed around 455 K. We discuss the difference between the featureless spectra of the supercooled liquid and its liquid melt. Lastly, we studied the onset of crystallization from the supercooled liquid in detail and quantified its kinetics based on the Avrami–Erofeev model. We determined an effective rate constant of k = 0.056 min–1 with a corresponding onset of crystallization at T = 329.5 K for a heating rate of 0.4 K min–1. PMID:24579729

  19. Plate-to-plate fluorous solid-phase extraction for solution-phase parallel synthesis.

    PubMed

    Zhang, Wei; Lu, Yimin; Nagashima, Tadamichi

    2005-01-01

    A commercially available Argonaut VacMaster-96 plate-to-plate solid-phase extraction (SPE) station equipped with 24 FluoroFlash cartridges is employed for parallel purification of fluorous reaction mixtures. Each cartridge charged with 3 g of fluorous silica gel has the capability to produce up to 100 mg of purified small molecules. The 24-well receiving plate has a standard footprint that can be directly concentrated in a Genevac vacuum centrifuge. Important issues such as sample loading, product cross-contamination, cartridge reuse, and reproducibility are investigated. The SPE system has been demonstrated in the purification of three small libraries that were produced involving amine scavenging reactions with fluorous isatoic anhydride, amide coupling reactions with 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (fluorous CDMT), and amide coupling reactions with a newly developed fluorous Mukaiyama condensation reagent.

  20. Microfluidic chips with reversed-phase monoliths for solid phase extraction and on-chip labeling.

    PubMed

    Nge, Pamela N; Pagaduan, Jayson V; Yu, Ming; Woolley, Adam T

    2012-10-26

    The integration of sample preparation methods into microfluidic devices provides automation necessary for achieving complete micro total analysis systems. We have developed a technique that combines on-chip sample enrichment with fluorescence labeling and purification. Polymer monoliths made from butyl methacrylate were fabricated in cyclic olefin copolymer microdevices and used for solid phase extraction. We studied the retention of fluorophores, amino acids and proteins on these columns. The retained samples were subsequently labeled with both Alexa Fluor 488 and Chromeo P503, and unreacted dye was rinsed off the column before sample elution. Additional purification was obtained from the differential retention of proteins and fluorescent labels. A linear relation between the eluted peak areas and concentrations of on-chip labeled heat shock protein 90 samples demonstrated the utility of this method for on-chip quantitation. Our fast and simple method of simultaneously concentrating and labeling samples on-chip is compatible with miniaturization and desirable for automated analysis.

  1. Solid-Phase Equilibria for Metal-Silicon-Oxygen Ternary Systems. II. Sc, Y, and La

    DTIC Science & Technology

    1991-02-28

    Organization: Regents of the University of California TECHNICAL REPORT No. 9 SOLID- PHASE EQUILIBRIA FOR METAL-SILICON-OXYGEN TERNARY SYSTEMS: 11: Sc, Y, AND La...34’ SOLID- PHASE EQUILIBRIA FOR METAL-SILICON-OXYGEN TERNARY SYSTEMS: 11: Sc, Y, AND 1a 13 0911OtiA AUTHORCS) Haojie Yuan and R. Stanley Williams lI" TV...0660te tCLhSSWI=) Solid phase equilibria for metal-silicon-oxygen ternary systems I1: Sc, Y and La Haojie Yuan and R. Stanley Williams Department of

  2. Solid-fluid and solid-solid equilibrium in hard sphere united atom models of n-alkanes: rotator phase stability.

    PubMed

    Cao, M; Monson, P A

    2009-10-22

    We present a study of the phase behavior for models of n-alkanes with chain lengths up to C(21) based on hard sphere united atom models of methyl and methylene groups, with fixed bond lengths and C-C-C bond angles. We extend earlier work on such models of shorter alkanes by allowing for gauche conformations in the chains. We focus particularly on the orientational order about the chain axes in the solid phase near the melting point, and our model shows how the loss of this orientational order leads to the formation of rotator phases. We have made extensive calculations of the thermodynamic properties of the models as well as order parameters for tracking the degree of orientational order around the chain axis. Depending on the chain length and whether the carbon number is even or odd, the model exhibits both a rotator phase and a more orientationally ordered solid phase in addition to the fluid phase. Our results indicate that the transition between the two solid phases is first-order with a small density change. The results are qualitatively similar to those seen experimentally and show that rotator phases can appear in models of alkanes without explicit treatment of attractive forces or explicit treatment of the hydrogen atoms in the chains.

  3. Anomalous bond length behavior and a new solid phase of bromine under pressure

    PubMed Central

    Wu, Min; Tse, John S.; Pan, Yuanming

    2016-01-01

    The behavior of diatomic molecular solids under pressure have attracted great interest and been extensively studied. Under ambient pressure, the structure of bromine is known to be a molecular phase (phase I). With increasing pressure, it transforms into an incommensurate phase (phase V) before eventually to a monoatomic phase (phase II). However, between phases I and V, the interatomic distance was found to first increase with pressure and then decreased abruptly. This anomalous bond length behavior is accompanied by the splitting of the Raman bands. These phenomena have not been resolved. Here we suggest a new solid phase that explains the Raman spectra. Furthermore, the anomalous bond length behavior is found to be the result of subtle second neighbor intermolecular interactions and is an intrinsic property of bromine in molecular phases. PMID:27156710

  4. Anomalous bond length behavior and a new solid phase of bromine under pressure

    NASA Astrophysics Data System (ADS)

    Wu, Min; Tse, John S.; Pan, Yuanming

    2016-05-01

    The behavior of diatomic molecular solids under pressure have attracted great interest and been extensively studied. Under ambient pressure, the structure of bromine is known to be a molecular phase (phase I). With increasing pressure, it transforms into an incommensurate phase (phase V) before eventually to a monoatomic phase (phase II). However, between phases I and V, the interatomic distance was found to first increase with pressure and then decreased abruptly. This anomalous bond length behavior is accompanied by the splitting of the Raman bands. These phenomena have not been resolved. Here we suggest a new solid phase that explains the Raman spectra. Furthermore, the anomalous bond length behavior is found to be the result of subtle second neighbor intermolecular interactions and is an intrinsic property of bromine in molecular phases.

  5. Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility. ESTCP Cost and Performance Report

    DTIC Science & Technology

    2012-08-01

    Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility August 2012 Report Documentation Page Form...DATES COVERED - 4. TITLE AND SUBTITLE Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and...polyoxymethylene PRC performance reference compounds SERDP Strategic Environmental Research and Development Program SPME solid phase microextraction

  6. Adsorption of the Three-phase Emulsion on Various Solid Surfaces.

    PubMed

    Enomoto, Yasutaka; Imai, Yoko; Tajima, Kazuo

    2017-07-01

    The present study investigates the adsorption of the three-phase emulsion on various solid/water interfaces. Vesicles can be used as emulsifiers in the three-phase emulsions and act as an independent phase unlike the surfactant used in conventional emulsions; therefore, it is expected that the three-phase emulsion formed by the adhesion of vesicles to the oil/water interface will adsorb on various solid/water interfaces. The cationic three-phase emulsion was prepared to encourage emulsion adsorption on negatively charged solid substrates in water. The emulsifier polyoxyethylene-(10) hydrogenated castor oil was rendered cationic by mixing with the surfactant cetyltrimethylammonium bromide and then used to prepare the cationic three-phase emulsion of hexadecane-in-water. Three solid substrates (silicon, glass, and copper) were dipped in the cationic emulsion and the emulsion was found to adsorb on the solid substrates while maintaining its structure. The amount of hexadecane adsorbed on the various surfaces was investigated by gas chromatography and found to increase with increasing hexadecane concentration in the emulsion and eventually plateaued just like molecular adsorption. The maximum surface coverage of the emulsion on the substrates was approximately 80%. However, even the equivalent nonionic three-phase emulsion was found to adsorb on the three solid surfaces. This was attributed to a novel mechanism of irreversible adhesion via the van der Waals attractive force.

  7. Silica supported Fe(3)O(4) magnetic nanoparticles for magnetic solid-phase extraction and magnetic in-tube solid-phase microextraction: application to organophosphorous compounds.

    PubMed

    Moliner-Martinez, Y; Vitta, Yosmery; Prima-Garcia, Helena; González-Fuenzalida, R A; Ribera, Antonio; Campíns-Falcó, P; Coronado, Eugenio

    2014-03-01

    This work demonstrates the application of silica supported Fe3O4 nanoparticles as sorbent phase for magnetic solid-phase extraction (MSPE) and magnetic on-line in-tube solid-phase microextraction (Magnetic-IT-SPME) combined with capillary liquid chromatography-diode array detection (CapLC-DAD) to determine organophosphorous compounds (OPs) at trace level. In MSPE, magnetism is used as separation tool while in Magnetic-IT-SPME, the application of an external magnetic field gave rise to a significant improvement of the adsorption of OPs on the sorbent phase. Extraction efficiency, analysis time, reproducibility and sensitivity have been compared. This work showed that Magnetic-IT-SPME can be extended to OPs with successful results in terms of simplicity, speed, extraction efficiency and limit of detection. Finally, wastewater samples were analysed to determine OPs at nanograms per litre.

  8. Phase nucleation and evolution mechanisms in heterogeneous solids

    NASA Astrophysics Data System (ADS)

    Udupa, Anirudh

    Phase nucleation and evolution is a problem of critical importance in many applications. As the length scales are reduced, it becomes increasingly important to consider interfacial and micro-structural effects that can be safely ignored at larger length scales owing to randomness. The theory of phase nucleation has been addressed usually by the classical nucleation theory, which was originally derived for single component fluid systems, after making an assumption of equilibrium. The criterion has not been rigorously derived for solids, which are far from equilibrium due to dissipation by multiple physical drivers. In this thesis, a thermodynamically sound nucleation criterion is derived for systems with multiple interacting physical phenomena and multiple dissipating mechanisms. This is done, using the tools of continuum mechanics, by determining the change in free energy upon the introduction of a new nucleus into the system. The developed theory is demonstrated to be a generalization of the classical nucleation theory (CNT). The developed theory is then applied to the problem of electromigration driven void nucleation, a serious reliability concern for the microelectronics industry. The void grows and eventually severs the line making the chip nonfunctional. There are two classes of theories at present in the electromigration literature to address the problem of void nucleation, the vacancy supersaturation theory and the entropic dissipation theory, both of which are empirical and based on intuition developed from experimental observations. When the developed theory was applied to the problem of electromigration, it was found to be consistent with the vacancy supersaturation theory, but provided the correct energetic quantity, the chemical potential, which has contribution from both the vacancy concentration as well as the hydrostatic stress. An experiment, consisting of electromigration tests on serpentine lines, was developed to validate the developed

  9. DETERMINATION OF CHLOROETHENES IN ENVIRONMENTAL BIOLOGICAL SAMPLES USING GAS CHROMATOGRAPHY COUPLED WITH SOLID PHASE MICRO EXTRACTION

    EPA Science Inventory

    An analytical method has been developed to determine the chloroethene series, tetrachloroethene (PCE), trichloroethene (TCE),cisdichloroethene (cis-DCE) andtransdichloroethene (trans-DCE) in environmental biotreatment studies using gas chromatography coupled with a solid phase mi...

  10. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    PubMed

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  11. COMPARING THE SOLID PHASE AND SALINE EXTRACT MICROTOX(R) ASSAYS FOR TWO PAH CONTAMINATED SOILS

    EPA Science Inventory

    The performance of remedial treatments is typically evaluated by measuring the concentration of specific chemicals. By adding toxicity bioassays to treatment evaluations, a fuller understanding of treatment performance is obtained. The solid phase Microtox assay is one potenti...

  12. A pentaerythritol-based molecular scaffold for solid-phase combinatorial chemistry.

    PubMed

    Farcy, N; De Muynck, H; Madder, A; Hosten, N; De Clercq, P J

    2001-12-27

    A convergent synthesis has been developed for the preparation of solid-phase bound construct 1, consisting of an orthogonally protected trifunctional core structure that is attached to TentaGel via a photocleavable linker. [structure: see text

  13. DETERMINATION OF CHLOROETHENES IN ENVIRONMENTAL BIOLOGICAL SAMPLES USING GAS CHROMATOGRAPHY COUPLED WITH SOLID PHASE MICRO EXTRACTION

    EPA Science Inventory

    An analytical method has been developed to determine the chloroethene series, tetrachloroethene (PCE), trichloroethene (TCE),cisdichloroethene (cis-DCE) andtransdichloroethene (trans-DCE) in environmental biotreatment studies using gas chromatography coupled with a solid phase mi...

  14. EVALUATION OF SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF HYDROPHILIC COMPOUNDS

    EPA Science Inventory

    Two commercially available solid phase microextractions (SPME) fibers, polyacrylate and carboxem/polydimethylsiloxane (PDMS), were evaluated for their ability to extract hydrophilic compounds from drinking water. Conditions, such as desorption time, desorption temperature, sample...

  15. [Development and performance evaluation for a solid phase adsorption gas sampler of formaldehyde in indoor air].

    PubMed

    Yao, Xiao-Yuan; Wang, Wen; Chen, Yuan-Li; Wang, Yan; Qi, Qiping

    2005-07-01

    We developed a solid phase adsorption gas sampler, which is suitable for collection and analysis of indoor air formaldehyde. This solid phase adsorption gas sampler is composed of two parts, a support part made of a glass tube covered silica-gel stopper on ports, an absorbent part in glass tube made of surface denatured synthetic fibre coated formaldehyde absorbent. We evolved its performance, and established an method for sampling and determination formaldehyde in indoor air with the gas sampler. For the solid phase adsorption gas sampler, the collection efficiency was 98.7%, and the desorption efficiency was 98.6%. The variation coefficients of sampling was 4.02% (n = 10). The above method was compared with the standard method (GB/T 16129-1995 ), the results showed no significant difference between the two methods. This solid phase adsorption gas sampler can be used for sampling and determination formaldehyde in indoor air.

  16. Effect of solids, caloric content on dual-phase gastric emptying

    SciTech Connect

    Van Den Maegdenbergh, V.; Urbain, J.L.; Siegel, J.A.; Mortelmans, L.; De Roo, M. Temple Univ. Hospital, Philadelphia, PA )

    1990-03-01

    The dual-phase gastric emptying technique is routinely employed to determine the differential emptying of solids and liquids in a wide spectrum of gastrointestinal diseases. Composition, acidity, volume, caloric density, physical form and viscosity of the test means have been shown to be important determinants for the quantitative evaluation of gastric emptying. In this study, the authors have evaluated the effect of increasing the caloric content of the solid portion of a physiologic test mean on both solid and liquid emptying kinetics in health male volunteers. They observed that increasing solid caloric content delayed emptying of both solids and liquids. For the solid phase, the delay was accounted for by a longer lag phase and decrease in emptying rate; for liquids a longer emptying rate was also obtained. They conclude that modification of the caloric content of the solid portion of a meal not only affects the emptying of the solid phase but also alters the emptying of the liquid component of the meal.

  17. A new method for the measurement of solids holdup in gas-liquid-solid three-phase systems

    SciTech Connect

    Wenge, F.; Chisti, Y.; Moo-Young, M.

    1995-03-01

    Gas-liquid-solid multiphase systems are commonly encountered in the chemical process industry, in bio-processing, and in environmental pollution abatement devices. A method for the measurement of gas and solids holdups in gas-liquid-solid multiphase devices is developed and tested. The method depends on measurements of hydrostatic pressures in the three-phase dispersion followed by interruption of gas flow, complete gas disengagement, and a second pressure measurement in the resulting two-phase solid-liquid slurry, over a short period of time (< 30 s). The proposed method is compared with results obtained with physical sampling of the multiphase flow in vertical up- and down-flow in a large airlift reactor (0.243 m diameter, 7.825 m overall height, 2.44 riser-to-downcomer cross-sectional area ratio). Applicability of the technique to slurries of glass beads in tap water is demonstrated for various sizes and concentrations of beads over a range of gas flow rates (0.070--0.150 {times} 10{sup {minus}3} m bead diameter, 2,500 kg/m{sup 3} solids density, 0.02--0.17 m/s superficial gas velocity).

  18. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    PubMed

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  19. Solid Phase Equilibria in the Pi-Ga-As and Pt-Ga-Sb Systems

    DTIC Science & Technology

    1988-07-22

    OFFICE OF NAVAL RESEARCH Research Contract N00014-87-K-0014 R&T Code 413E026---01 AD-A 198 654 TECHNICAL REPORT No. 9 SOLID PHASE EQUILIBRIA IN THE...Classtcation) UNCLASSLFIED: Tech.Rept.#9 SOLID PHASE EQUILIBRIA IN T11: Pt-Ga-As AND Pt-Ga-Sb SYST’IS 12 PERSONAL AuTiOR(S) C.T. Tsai and R.S. Williats 13a TYPE

  20. Isotope effects in dense solid hydrogen - Phase transition in deuterium at 190 + or - 20 GPa

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Mao, H. K.

    1989-01-01

    Raman measurements of solid normal deuterium compressed in a diamond-anvil cell indicate that the material undergoes a structural phase transformation at 190 + or - 20 GPa and 77 K. Spectroscopically, the transition appears analogous to that observed in hydrogen at 145 + or - 5 GPa. The large isotope effect on the transition pressure suggests there is a significant vibrational contribution to the relative stability of the solid phases of hydrogen at very high densities.

  1. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    PubMed

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Modeling of phase decomposition of supersaturated solid solutions using the free-energy density functional method

    NASA Astrophysics Data System (ADS)

    L'vov, P. E.; Svetukhin, V. V.; Maslov, K. S.

    2016-08-01

    The nucleation and growth of particles of the second phase in a one-dimensional binary alloy is considered based on the Cahn-Hilliard equation with allowance for fluctuations. Using the results of modeling, it is shown that the second phase is occupied by the mechanism of solid solution decomposition, which involves simultaneous processes of the fluctuational nucleation of the second phase, diffusion-type growth of precipitations, and absorption of small clusters by coarse ones at the coalescence stage. Composition fluctuations are among the main factors influencing the distribution of solid solution phases.

  3. Analysis of the structure of synthetic and natural melanins by solid-phase

    SciTech Connect

    Duff, G.A.; Roberts, J.E.; Foster, N.

    1988-09-06

    The structures of one synthetic and two natural melanins are examined by solid-state NMR using cross polarization, magic angle sample spinning, and high-power proton decoupling. The structural features of synthetic dopa malanin are compared to those of melanin from malignant melanoma cells grown in culture and sepia melanin from squid ink. Natural abundance /sup 13/C and /sup 15/N spectra show resonances consistent with known pyrrolic and indolic structures within the heterogeneous biopolymer; /sup 13/C spectra indicate the presence of aliphatic residues in all three materials. These solid-phase experiments illustrate the promise of solid-phase NMR for elucidating structural from insoluble biomaterials.

  4. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  5. New insights in Microbial Fuel Cells: novel solid phase anolyte

    NASA Astrophysics Data System (ADS)

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia

    2016-07-01

    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system.

  6. New insights in Microbial Fuel Cells: novel solid phase anolyte

    PubMed Central

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia

    2016-01-01

    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system. PMID:27375205

  7. New insights in Microbial Fuel Cells: novel solid phase anolyte.

    PubMed

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia

    2016-07-04

    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system.

  8. Phase transition of solid bismuth under high pressure

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Yan; Xiang, Shi-Kai; Yan, Xiao-Zhen; Zheng, Li-Rong; Zhang, Yi; Liu, Sheng-Gang; Bi, Yan

    2016-10-01

    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904133, 11304294, 11274281, 11404006, and U1230201), the Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101004, 2013B0401062, and 2012A0101001), the Research Foundation of the Laboratory of Shock Wave and Detonation, China (Grant No. 9140C670201140C67282).

  9. Phase relationships involving RDX and common solid propellant binders

    SciTech Connect

    Boyer, E.; Brown, P.W.; Kuo, K.K.

    1996-07-01

    The solubilities of the common propellant ingredients acetyl triethyl citrate (ATEC) and cellulose acetate butyrate (CAB) and their effects on RDX (cyclotrimethylenetrinitramine) unit cell dimensions were investigated. If there is appreciable solid solubility, solutions will form and will have enthalpies of fusion, melting temperatures, and other characteristics different from those of pure RDX. It is desirable to establish the properties of such mixtures when designing new propellant formulations. Samples were aged at an elevated temperature to speed the formation of solid solutions. A least-squares analysis of X-ray diffraction data was used to obtain the lattice parameters from which unit cell volume and solubility was deduced. Both ATEC and CAB caused an expansion of the unit cell, indicating the formation of a solid solution. The limit of solubility in the ATEC/RDX mixture appeared to be approximately 13 wt% ATEC, while the CAB/RDX limit is above 16 wt% CAB. In both mixes, the cell volume expanded linearly with increasing proportion of binder. The large amount of gas generated and high energy released during combustion make RDX very attractive for both rocket and gun propulsion applications. The absence of HCl in the combustion products makes RDX desirable on an environmental basis as well.

  10. Solid-matrix fluorescence and phosphorescence and solid-phase microextraction of polycyclic aromatic hydrocarbons with hydrophobic paper

    SciTech Connect

    Ackerman, A.H.; Hurtubise, R.J.

    1999-07-01

    Solid-matrix fluorescence (SMF) and solid-matrix phosphorescence (SMP) have been used in conjunction with solid-phase microextraction to characterize mixtures of polycyclic aromatic hydrocarbons (PAHs) isolated from water. Whatman 1PS paper was used to extract the PAH from water, and then the isolated PAHs were directly identified on the paper by obtaining SMF and SMP spectra. The SMF and SMP properties of 10 PAH were obtained, and the PAHs in a two-component mixture, a three-component mixture, and a four-component mixture were easily identified by a combination of SMF and SMP. No external heavy atom was needed to acquire the SMP data. Benzo[{ital e}]pyrene gave a limit of detection of 6.2 pg/mL with SMP, and with SMF benzo[{ital a}]pyrene gave a limit of detection of 19 pg/mL. {copyright} {ital 1999} {ital Society for Applied Spectroscopy}

  11. Effect of shear stress in ferroelectric solid solutions with coexisting phases

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyan; Zhang, Hangbo; Zheng, Limei; Cao, Wenwu

    2017-08-01

    One common feature of ferroelectric solid solutions with large piezoelectricity is the coexistence of two or more phases. Due to the strain mismatch among coexisting phases, adaptive structures near the interfaces or domain walls develop to maintain the atomic coherency. Shear stresses commonly exist, especially when the domain size is small. The effect of shear stresses on phase morphology in Pb(Zr1-xTix)O3 solid solutions with compositions within the morphotropic phase boundary region was studied within the framework of Landau phenomenological theory. Our results show that the coexisting rhombohedral (R) and tetragonal (T) phases can be modified to form stable or metastable R-like and/or T-like monoclinic phases under shear stresses. Large stresses may also induce first order or second order phase transitions.

  12. Solid-liquid phase equilibria of the Gaussian core model fluid.

    PubMed

    Mausbach, Peter; Ahmed, Alauddin; Sadus, Richard J

    2009-11-14

    The solid-liquid phase equilibria of the Gaussian core model are determined using the GWTS [J. Ge, G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 (2003)] algorithm, which combines equilibrium and nonequilibrium molecular dynamics simulations. This is the first reported use of the GWTS algorithm for a fluid system displaying a reentrant melting scenario. Using the GWTS algorithm, the phase envelope of the Gaussian core model can be calculated more precisely than previously possible. The results for the low-density and the high-density (reentrant melting) sides of the solid state are in good agreement with those obtained by Monte Carlo simulations in conjunction with calculations of the solid free energies. The common point on the Gaussian core envelope, where equal-density solid and liquid phases are in coexistence, could be determined with high precision.

  13. Application of nuclear techniques in two-phase liquid-solid particles hydrotransport investigations

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Vlasak, Pavel; Petryka, Leszek; Jaszczur, Marek

    2016-03-01

    The paper presents gamma radiation application to two-phase flow investigation in a vertical pipeline, where the flow of solid particles transported by water was examined by use of both: radiotracers and gamma-absorption method. The simultaneous use of two methods allows analyzing of important parameters of solid particles hydrotransport. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. Radiotracers allow to track the movements of selected models, representing specified grain size and the designation of its velocity. However gamma-absorption method enables measurement of average solid-phase velocity. For analysis of electrical signals obtained from scintillation detectors the cross-correlation method has been applied.

  14. Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth.

    PubMed

    Paulose, Maggie; Varghese, Oomman K; Grimes, Craig A

    2003-08-01

    Nanoscale wires of silicon oxide, and silicon oxide with embedded gold-silicide nanospheres, are synthesized by heating of a gold-coated silicon wafer at temperatures of 1000 degrees C or above, with the resulting wires having diameters ranging from 30 to 150 nm and lengths of approximately 1 mm. This simple fabrication process should make possible economical bulk production of nanowires. Studies indicate that the growth of these gold-silica composite nanowires occurs directly on the silicon wafer by a solid-liquid-solid mechanism.

  15. The solid state structures of the high and low temperature phases of dimethylcadmium.

    PubMed

    Hanke, Felix; Hindley, Sarah; Jones, Anthony C; Steiner, Alexander

    2016-08-09

    The solid state structure of dimethylcadmium, a classic organometallic compound with a long history, has remained elusive for almost a century. X-ray crystallography and density functional theory reveal similar phase behaviour as in dimethylzinc. The high temperature tetragonal phase, α-Me2Cd, exhibits two-dimensional disorder, while the low temperature monoclinic phase, β-Me2Cd, is ordered. Both phases contain linearly coordinated cadmium atoms. While the methyl groups are staggered in the α-phase, they are eclipsed in the β-phase.

  16. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... centrifugation and filtration through a 0.45 micron filter. The suspended particulate phase is the supernatant as obtained above prior to centrifugation and filtration. The solid phase includes all material settling to... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may...

  17. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... centrifugation and filtration through a 0.45 micron filter. The suspended particulate phase is the supernatant as obtained above prior to centrifugation and filtration. The solid phase includes all material settling to... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may...

  18. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... centrifugation and filtration through a 0.45 micron filter. The suspended particulate phase is the supernatant as obtained above prior to centrifugation and filtration. The solid phase includes all material settling to... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may...

  19. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... centrifugation and filtration through a 0.45 micron filter. The suspended particulate phase is the supernatant as obtained above prior to centrifugation and filtration. The solid phase includes all material settling to... interact with ocean water to form insoluble matter or new toxic compounds, or materials which may...

  20. Comparison of the solid-phase fragment condensation and phase-change approaches in the synthesis of salmon I calcitonin.

    PubMed

    Gatos, D; Tzavara, C

    2001-02-01

    Salmon I calcitonin was synthesized using both phase-change and conventional solid-phase fragment condensation (SPFC) approaches, utilizing the Rink amide linker (Fmoc-amido-2,4-dimethoxybenzyl-4-phenoxyacetic acid) combined with 2-chlorotrityl resin and the Fmoc/tBu(Trt)-based protection scheme. Phase-change synthesis, performed by the selective detachment of the fully protected C-terminal 22-mer peptide-linker from the resin and subsequent condensation in solution with the N-terminal 1-10 fragment, gave a product of slightly less purity (85 vs. 92%) than the corresponding synthesis on the solid-phase. In both cases salmon I calcitonin was easily obtained in high purity.

  1. Use of a solid-state multihead gamma counter in a second-generation system for solid-phase immunoassay.

    PubMed

    Parsons, G H; Rogers, C H; Polsky-Cynkin, R; Wood, A M; Miles, L E; Rogers, A H

    1983-09-01

    Simultaneous advances in detector technology and solid-phase separation systems, as well as the availability of powerful desktop computers, have made possible the development of "second-generation" solid-phase immunoassays. These retain the advantages of classical solid phase while significantly accelerating reaction kinetics. Hapten assays--such as for digoxin, thyroxin, and triiodothyronine uptake--in batches of 48 are processed in about 20 min from reagent introduction until hard-copy printout, with minimal operator involvement. The system also functions as a 48-detector gamma counter, capable of counting and reducing data for any 125I-based RIA that can be run in a 12 X 75 mm test tube. System control, data management, and computer screen displays of kinetic data are provided by an unmodified Hewlett Packard HP-87XM computer. User-friendly disc-based software facilitates the creation and storage of counting and data reduction protocols for as many as 30 RIAs from various manufacturers as well as up to 30 of our own assays.

  2. Use of a solid-state multihead gamma counter in a second-generation system for solid-phase immunoassay

    SciTech Connect

    Parsons, G.H. Jr.; Rogers, C.H.; Polsky-Cynkin, R.; Wood, A.M.; Miles, L.E.; Rogers, A.H.

    1983-09-01

    Simultaneous advances in detector technology and solid-phase separation systems, as well as the availability of powerful desktop computers, have made possible the development of ''second-generation'' solid-phase immunoassays. These retain the advantages of classical solid phase while significantly accelerating reaction kinetics. Hapten assays--such as for digoxin, thyroxin, and triiodothyronine uptake--in batches of 48 are processed in about 20 min from reagent introduction until hard-copy printout, with minimal operator involvement. The system also functions as a 48-detector gamma counter, capable of counting and reducing data for any /sup 125/I-based RIA that can be run in a 12 X 75 mm test tube. System control, data management, and computer screen displays of kinetic data are provided by an unmodified Hewlett Packard HP-87XM computer. User-friendly disc-based software facilitates the creation and storage of counting and data reduction protocols for as many as 30 RIAs from various manufacturers as well as up to 30 of our own assays.

  3. Practical solid and liquid phase markers for studying gastric emptying in man

    SciTech Connect

    Thomforde, G.M.; Brown, M.L.; Malagelada, J.R.

    1985-03-01

    This paper presents a method used to evaluate solid and liquid phase markers for radionuclide gastric emptying studies. The authors conducted in vitro and in vivo comparative experiments employing several radiolabeled markers. Among the solid phase markers tested, Tc-99m-sulfur colloid in vivo-labeled liver and I-131-fiber performed optimally. However, Tc-99M sulfur colloid in scrambled egg showed very acceptable performance and it is significantly easier to prepare. Among liquid phase markers, they found In-111-DTPA stabilized with 1% albumin to be a good agent and appropriate for dual isotope emptying studies.

  4. Solid-State Phase Equilibria in the ZnS-CdS System

    DTIC Science & Technology

    1988-09-01

    OFFICE OF NAVAL RESEARCH !iTIB - K Contract N00014-87-K-0531 R&TCode 431a016 TECHNICAL REPORT NO. I Solid-State Phase Equilibria in the ZnS-CdS...PROGRAM PROJECT TASK VVORK j*JT ELEMENT NO NO NO % Q I rTi (Incluc e Security Classitication) Solid-State Phase Equilibria in the ZnS-CdS System 12 PERSONAL...are obsolete Accesslon For NTI& GRA&1 SOLD-STATE PHASE EQUILIBRIA IN THE ZnS-CdS SYSTEM DTIC TAB 3 W. W. Chen, J. M. Zhang, A. J. Ardell, and B. Dunn

  5. Nuclear dynamics and phase polymorphism in solid formic acid.

    PubMed

    Krzystyniak, Maciej; Drużbicki, Kacper; Romanelli, Giovanni; Gutmann, Matthias J; Rudić, Svemir; Imberti, Silvia; Fernandez-Alonso, Felix

    2017-03-29

    We apply a unique sequence of structural and dynamical neutron-scattering techniques, augmented with density-functional electronic-structure calculations, to establish the degree of polymorphism in an archetypal hydrogen-bonded system - crystalline formic acid. Using this combination of experimental and theoretical techniques, the hypothesis by Zelsmann on the coexistence of the β1 and β2 phases above 220 K is tested. Contrary to the postulated scenario of proton-transfer-driven phase coexistence, the emerging picture is one of a quantitatively different structural change over this temperature range, whereby the loosening of crystal packing promotes temperature-induced shearing of the hydrogen-bonded chains. The presented work, therefore, solves a fifty-year-old puzzle and provides a suitable framework for the use neutron-Compton-scattering techniques in the exploration of phase polymorphism in condensed matter.

  6. Theoretical calculations of phase transitions and optical properties of solid iodine under high pressures

    NASA Astrophysics Data System (ADS)

    San, Xiaojiao; Wang, Liancheng; Ma, Yanming; Liu, Zhiming; Cui, Tian; Liu, Bingbing; Zou, Guangtian

    2008-04-01

    The structural stability and optical properties of solid iodine under pressure have been studied using the ab initio pseudopotential plane-wave method. The dependence of lattice parameters on pressure indicates that the first structural phase transition from phase I to phase V occurs at about 20 GPa. From the pressure dependence of our elastic constants for solid iodine in phase I, it is found that the first structural transformation from molecular phase I to the intermediate phase V occurs at about 20 GPa due to the softening of the elastic constant C44, which is very close to the transition pressure of 20 GPa obtained by geometry optimizations and 23.2 GPa obtained by experimental measurements. The optimized structure for phase V is a face-centered orthorhombic (fco) phase with equal interatomic distances d1 = d2 = d3, but this fco structure is mechanically unstable, with shear elastic stiffness coefficient C44<0. To understand the modulated phase V, we use a periodic crystal structure to mimic the incommensurate phase V and obtain some quantitative information. In our calculation, the modulated phase is thermodynamically and mechanically stable. It is believed that phase V is not a monatomic phase but an intermediate state between a molecular and a monatomic state.

  7. Rapidly Activated Dynamic Phase Transitions in Nonlinear Solids

    DTIC Science & Technology

    1993-02-15

    I Form Approv# edAD -A263 601 AiENTA11ON PAGE- f____________18 1. AGENCY USE ONLY (Lea"e blaWk 12. REPORT DATE 13. REPORT TYPE AND OATES COVEREO Feb...phase transforming media during high energy impact. Conversion of mechanical energy to thermal ener- gy has been studied by means of an extended theory...and Phase Structures in General Media , R. Fosdick, E. Dunn & M. Slemrod eds., IMA volume series, Springer- Verlag. Song, J. and T. L. Pence (1992

  8. Two-phase anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.

    PubMed

    Majhi, Bijoy Kumar; Jash, Tushar

    2016-12-01

    Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m(3)kg(-1)VS, at OLR of 1.11-1.585kgm(-3)d(-1), were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation.

  9. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    SciTech Connect

    Zhang, Xiulu; Liu, Zhongli; Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.

  10. A review on solid phase extraction of actinides and lanthanides with amide based extractants.

    PubMed

    Ansari, Seraj A; Mohapatra, Prasanta K

    2017-05-26

    Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. SANS study of phase separation in solid {sup 3}He-{sup 4}He

    SciTech Connect

    Koster, J.P.; Nagler, S.E.; Adams, E.D.; Wignall, G.D.

    1994-12-31

    Small angle neutron scattering has been used to study phase separation in a quantum alloy, solid {sup 3}He{sub x}-{sup 4}He{sub 1{minus}x}. The onset of phase separation is marked by a dramatic increase in the measured scattering. A simple interpretation of the results suggests that the late-stage phase separation kinetics are dominated by an increase in the concentration of {sup 3}He atoms in preexisting precipitate regions.

  12. Phase separation in garnet solid solutions and its effect on optical properties.

    PubMed

    Kaveh, Shakiba; Tremblay, Clément P; Norhashim, Nurhakimah; Curry, Richard J; Cheetham, Anthony K

    2013-11-26

    Phase behavior is studied in erbium-doped Y3 Al5 O12 (YAG) garnets synthesized by solid-state reactions. High resolution synchrotron XRD and SEM-EDX studies reveal phase separation at an erbium content between 8 and 50 at%, depending upon the processing conditions. Similar results are found in closely-related garnet systems. The phase separation has a striking effect on the optical properties of YAG:Er(3+) .

  13. A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences.

    PubMed

    Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L

    2017-06-19

    An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5'-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5'-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. Determination of melamine in aquaculture feed samples based on molecularly imprinted solid-phase extraction.

    PubMed

    Lian, Ziru; Liang, Zhenlin; Wang, Jiangtao

    2015-10-01

    This research highlights the application of highly efficient molecularly imprinted solid-phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine-imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross-linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid-phase extraction sorbents for the selective cleanup of melamine. An off-line molecularly imprinted solid-phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high-performance liquid chromatography analysis. Optimum molecularly imprinted solid-phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6-96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid-phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre-treatment of melamine in aquaculture feed samples.

  15. Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system.

    PubMed

    Zhu, Baoning; Zhang, Ruihong; Gikas, Petros; Rapport, Joshua; Jenkins, Bryan; Li, Xiujin

    2010-08-01

    This research was conducted to develop an integrated rotary drum reactor (RDR)-anaerobic-phased solids (APS) digester system for the treatment of municipal solid waste (MSW) to produce biogas energy and achieve waste reduction. A commercial RDR facility was used to provide a 3-d pretreatment and sufficient separation of the organics from MSW and then the organics were digested in a laboratory APS-digester system for biogas production. The organics generated from the RDR contained 50% total solids (TS) and 36% volatile solids (VS) on wet basis. The APS-digester was started at an organic loading rate (OLR) of 3.1 gVS L(-1) d(-1) and operated at three higher OLRs of 4.6, 7.7 and 9.2 gVS L(-1) d(-1). At the OLR of 9.2 gVS L(-1) d(-1) the system biogas production rate was 3.5 L L(-1) d(-1) and the biogas and methane yields were 0.38 and 0.19 L gVS(-1), respectively. Anaerobic digestion resulted in 38% TS reduction and 53% VS reduction in the organic solids. It was found that the total VFA concentration reached a peak value of 15,000 mg L(-1) as acetic acid in the first 3d of batch digestion and later decreased to about 500 mg L(-1). The APS-digester system remained stable at each OLRs for over 100d with the pH in the hydrolysis reactors in the range of 7.3-7.8 and the pH in the biogasification reactor in 7.9-8.1. The residual solids after the digestion had a high heating value of 14.7 kJ gTS(-1). Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion

    NASA Astrophysics Data System (ADS)

    Bueno, Jesus; Bona-Casas, Carles; Bazilevs, Yuri; Gomez, Hector

    2015-06-01

    There is a large body of literature dealing with the interaction of solids and classical fluids, but the mechanical coupling of solids and complex fluids remains practically unexplored, at least from the computational point of view. Yet, complex fluids produce much richer physics than classical fluids when they interact with solids, especially at small scales. Here, we couple a nonlinear hyperelastic solid with a single-component two-phase flow, where the fluid can condensate and evaporate naturally due to temperature and/or pressure changes. We propose a fully-coupled fluid-structure interaction algorithm to solve the problem. We illustrate the viability of the theoretical framework and the effectiveness of our algorithms by solving several problems of phase-change-driven implosion, a physical process in which a thin structure collapses due to the condensation of a fluid.

  17. Solid phosphorus phase in aluminum- and iron-treated biosolids.

    PubMed

    Huang, Xiao-Lan; Chen, Yona; Shenker, Moshe

    2007-01-01

    Stabilization of phosphorus (P) in sewage sludge (biosolids) to reduce water-soluble P concentrations is essential for minimizing P loss from amended soils and maximizing the capacity of the soil to safely serve as an outlet for this waste material. The chemical form at which P is retained in biosolids stabilized by Al(2)(SO(4))(3) x 18H(2)O (alum) or FeSO(4) x 7H(2)O (FeSul) was investigated by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray elemental spectrometry (EDXS) and by X-ray diffraction (XRD). Both treatments resulted in the formation of a Ca-P phase, probably brushite. Phosphorus was further retained in the alum-treated biosolids by precipitation of an Al-P phase with an Al/P molar ratio of about 1:1, while in the FeSul-treated biosolids, P was retained by both precipitation with Fe/P molar ratios of 1:1 or 1.5:1, and by adsorption onto newly formed Fe hydroxides exhibiting an Fe/P molar ratio of up to 11:1. All of these mechanisms efficiently reduced P solubility and are crucial in biosolids environmentally safe agronomic beneficial use for this waste product; however, each P phase formed may react differently in the amended soil, depending on soil properties. Thus, the proper P stabilization method would depend on the target soil.

  18. Determination of alkylphenols and alkylphenol polyethoxylates by reversed-phase high-performance liquid chromatography and solid-phase extraction.

    PubMed

    Takasu, Takuma; Iles, Alexander; Hasebe, Kiyoshi

    2002-02-01

    A simple, accurate and reproducible reversed-phase high-performance liquid chromatography (HPLC) method was developed for the separation and characterisation of alkylphenols (APs) and alkylphenol polyethoxylates (APEOs), using a C18 octadecyl silica (ODS) column. APs and each APEO oligomer were separated successfully within a reasonable time without gradient elution. An excellent resolution was obtained, even for mixtures of APs and low EO number APEOs, which are otherwise difficult to separate using conventional normal-phase HPLC methods. This method, combined with solid-phase extraction, was highly applicable for the simultaneous determination of alkylphenols and alkylphenol ethoxylates in real samples.

  19. Solid phase synthesis of a GHRP analog containing C-terminal thioamide group.

    PubMed

    Majer, Z; Zewdu, M; Hollósi, M; Sepródi, J; Vadász, Z; Teplán, I

    1988-02-15

    [Lyst6]GHRP, the C-terminally thionated analog of the highly potent growth hormone releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 was prepared by using solid support. The success of the synthesis showed that Lawesson's reagent can be used for selective thionation of an amide group not only in solution but also on the surface of a resin. The C-terminal thioamide group proved to be stable under the conditions of the solid phase synthesis.

  20. Solid solution, phase separation, and cathodoluminescence of GaP-ZnS nanostructures.

    PubMed

    Liu, Baodan; Bando, Yoshio; Dierre, Benjamin; Sekiguchi, Takashi; Golberg, Dmitri; Jiang, Xin

    2013-09-25

    Quaternary solid-solution nanowires made of GaP and ZnS have been synthesized through well-designed synthetic routines. The as-synthesized GaP-ZnS solid-solution nanowires exhibit decent crystallinity with the GaP phase as the host, while a large amount of twin structural defects are observed in ZnS-rich nanowires. Cathodoluminescence studies showed that GaP-rich solid-solution nanowires have a strong visible emission centered at 600 nm and the ZnS-rich solid-solution nanowires exhibited a weak emission peak in the UV range and a broad band in the range 400-600 nm. The formation mechanism, processes, and optical emissions of GaP-ZnS solid-solution nanowires were discussed in detail.

  1. The solid-liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids.

    PubMed

    Costa, Mariana C; Sardo, Mariana; Rolemberg, Marlus P; Coutinho, João A P; Meirelles, Antonio J A; Ribeiro-Claro, Paulo; Krähenbühl, M A

    2009-08-01

    For the first time, the solid-liquid phase diagrams of five binary mixtures of saturated fatty acids are here presented. These mixtures are formed of caprylic acid (C(8:0))+capric acid (C(10:0)), capric acid (C(10:0))+lauric acid (C(12:0)), lauric acid (C(12:0))+myristic acid (C(14:0)), myristic acid (C(14:0))+palmitic acid (C(16:0)) and palmitic acid (C(16:0))+stearic acid (C(18:0)). The information used in these phase diagrams was obtained by differential scanning calorimetry (DSC), X-ray diffraction (XRD), FT-Raman spectrometry and polarized light microscopy, aiming at a complete understanding of the phase diagrams of the fatty acid mixtures. All of the phase diagrams reported here presented the same global behavior and it was shown that this was far more complex than previously imagined. They presented not only peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common in fatty acids and regions of solid solution not previously reported. This work contributes to the elucidation of the phase behavior of these important biochemical molecules, with implications in various industrial applications.

  2. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    PubMed

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  3. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    PubMed

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater.

  4. The use of coal in a solid phase reduction of iron oxide

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhihina, I. D.; Hodosov, I. E.

    2015-09-01

    The results of the research process of producing metalized products by solid-phase reduction of iron using solid carbonaceous reducing agents. Thermodynamic modeling was carried out on the model of the unit the Fe-C-O and system with iron ore and coal. As a result of modeling the thermodynamic boundary reducing, oxidizing, and transition areas and the value of the ratio of carbon and oxygen in the system. Simulation of real systems carried out with the gas phase obtained in the pyrolys of coal. The simulation results allow to determine the optimal cost of coal required for complete reduction of iron ore from a given composition. The kinetics of the processes of solid-phase reduction of iron using coal of various technological brands.

  5. Matrix solid-phase dispersion extraction procedure for multiresidue pesticide analysis in oranges.

    PubMed

    Torres, C M; Picó, Y; Redondo, M J; Mañes, J

    1996-01-05

    A multiresidue extraction method based on matrix solid-phase dispersion (MSPD) is optimized for the extraction and gas chromatographic screening of eighteen insecticides (aldrin, carbophenothion, captafol, chlorpyriphos, chlorfenvinphos, diazinon, dicofol, alpha-endosulfan, beta-endosulfan, ethion, fenitrothion, folpet, methidathion, malathion, methyl-azinphos, methyl-parathion, phosmet, and tetradifon) from oranges. After optimization of different parameters, such as type of solid phase used and the amount of solid phase or eluent, recoveries ranged from 67 to 102% with relative standard deviations ranging from 2 to 10%. The limits of detection, calculated as 3 times the baseline noise ranged from 2 to 171 micrograms/kg. These limits of detection were about 10 times lower than the maximum residue levels established by the European Community. Compared with classical methods, the described procedure is simple, less labour intensive and does not require preparation and maintenance of equipment. Troublesome emulsions, such as those frequently observed in liquid-liquid partitioning did not occur.

  6. Structural and optical properties of solid-phase singlet oxygen photosensitizers based on fullerene aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Belousova, I. M.; Belousov, V. P.; Kiselev, V. M.; Murav'eva, T. D.; Kislyakov, I. M.; Sirotkin, A. K.; Starodubtsev, A. M.; Kris'ko, T. K.; Bagrov, I. V.; Ermakov, A. V.

    2008-11-01

    The relationship between the structural and photosensitizing properties of solid-phase particles of fullerene C60 in aqueous suspensions is studied using the methods of absorption spectroscopy, electron spin resonance spectroscopy (ESR), X-ray diffraction, and spectrophotometry of solutions of singlet oxygen chemical traps—histidine in combination with p-nitrosodimethylaniline. Two new variants are proposed for obtaining aqueous suspensions of particles of solid-phase fullerene whose structures are disordered and whose degrees of amorphization are 67 and 40%, respectively. It is shown that an increase in the disorder of the structure of particles in suspensions and a decrease in their average size facilitate an increase in the formation efficiency of singlet oxygen by solid-phase fullerene presumably due to an in increase in the concentration of surface localized excitons.

  7. Solid-Phase Synthesis of Amine/Carboxyl Substituted Prolines and Proline Homologues: Scope and Limitations.

    PubMed

    Zhou, Ziniu; Scott, William L; O'Donnell, Martin J

    2016-03-15

    A solid-phase procedure is used to synthesize racemic peptidomimetics based on the fundamental peptide unit. The peptidomimetics are constructed around proline or proline homologues variably substituted at the amine and carbonyl sites. The procedure expands the diversity of substituted peptidomimetic molecules available to the Distributed Drug Discovery (D3) project. Using a BAL-based solid-phase synthetic sequence the proline or proline homologue subunit is both constructed and incorporated into the peptidomimetic by an α-alkylation, hydrolysis and intramolecular cyclization sequence. Further transformations on solid-phase provide access to a variety of piperazine derivatives representing a class of molecules known to exhibit central nervous system activity. The procedure works well with proline cores, but with larger six- and seven-membered ring homologues the nature of the carboxylic acid acylating the cyclic amine can lead to side reactions and result in poor overall yields.

  8. Solid-phase assays for the detection of alloantibody against human leukocyte antigens: panacea or Pandora?

    PubMed

    Roberts, T; Tumer, G; Gebel, H M; Bray, R A

    2014-10-01

    Serological assessments of antibodies directed against human leucocyte antigens (HLA) formed the basis of early histocompatibility testing (Patel & Terasaki, 1969 N Engl J Med, 280, 735). However, over the past decade, significant advances in HLA antibody detection technologies have emerged. The development and implementation of solid-phase assays has led to safer and more efficient allocation of organs by effectively distinguishing HLA from non-HLA antibodies. Although solid-phase assays are not standardized, they are widely accepted as the new 'gold standard'. However, this technology is not without its challenges. This review is intended to provide a better understanding of solid-phase HLA antibody testing and will focus on important caveats associated with this evolving technology. Examples of the limitations of the technology as well as common data misinterpretations will be shown. Both of which could pose potential harm to transplant recipients (Tait et al., Transplantation, 95, 19). © 2014 John Wiley & Sons Ltd.

  9. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing; Cantor, Charles R.; Koster, Hubert; Smith, Cassandra L.

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  10. Fe-Solid Phase Transformations Under Highly Basic Conditions

    SciTech Connect

    Qafoku, Nik; Qafoku, Odeta; Ainsworth, Calvin C.; Dohnalkova, Alice; McKinley, Susan G.

    2007-09-01

    Hyperalkaline and saline radioactive waste fluids with elevated temperatures from S-SX high-level waste tank farm at Hanford, WA accidentally leaked into sediments beneath the tanks, initiating a series of geochemical processes and reactions whose significance and extent was unknown. Among the most important processes was the dissolution of soil minerals and precipitation of stable secondary phases. The objective of this investigation was to study the release of Fe into the aqueous phase upon dissolution of Fe-bearing soil minerals, and the subsequent formation of Fe rich precipitates. Batch reactors were used to conduct experiments at 50 0C using solutions similar in composition to the waste fluids. Results clearly showed that, similarly to Si and Al, Fe was released from the dissolution of soil minerals (most likely phyllosilicates such as biotite, smectite, and chlorite). The extent of Fe release increased with base concentration and decreased with Al concentration in the contacting solution. The maximum apparent rate of Fe release (0.566 × 10-13 mol m-2 s-1) was measured in the treatment with no Al and a concentration of 4.32 mol L-1 NaOH in the contacting solution. Results from electron microscopy indicated that while Si and Al precipitated together to form feldspathoids in the groups of cancrinite and/or sodalite, Fe precipitation followed a different pathway leading to the formation of hematite and goethite. The newly formed Fe oxy-hydroxides may increase the sorption capacity of the sediments, promote surface mediated reactions such as precipitation and heterogeneous redox reactions, and affect the phase distribution of contaminant and radionuclides.

  11. NASA satellite communications application research. Phase 2: Efficient high power, solid state amplifier for EFH communications

    NASA Technical Reports Server (NTRS)

    Benet, James

    1993-01-01

    The final report describes the work performed from 9 Jun. 1992 to 31 Jul. 1993 on the NASA Satellite Communications Application Research (SCAR) Phase 2 program, Efficient High Power, Solid State Amplifier for EHF Communications. The purpose of the program was to demonstrate the feasibility of high-efficiency, high-power, EHF solid state amplifiers that are smaller, lighter, more efficient, and less costly than existing traveling wave tube (TWT) amplifiers by combining the output power from up to several hundred solid state amplifiers using a unique orthomode spatial power combiner (OSPC).

  12. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Li, Yi; Cui, Baoling; Zhu, Zuchao; Dou, Huashu

    2013-01-01

    The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k- ɛ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.

  13. Leaching behavior and solubility -- Controlling solid phases of heavy metals in municipal solid waste incinerator ash

    SciTech Connect

    Johnson, C.A.; Ziegler, F.; Kersten, M.; Moor, H.C.

    1996-12-31

    This paper highlights the uses and limitations of thermodynamic calculations in the planning of leach tests in the laboratory or for research in the field. Heavy metal solubility has been studied in leachate from Landfill Lostorf, AG, Switzerland. Also, the influence of pH on the solubility of Cu, Pb, Cd and Zn has been determined in the laboratory. The results have been compared with the maximum allowable heavy metal concentrations in equilibrium with the appropriate (hydr)oxides and carbonates. Copper is supersaturated with respect to Cu(OH){sub 2} in both laboratory and field studies. Complexation with organic ligands is a probable explanation for this observation. Both Zn and Pb are undersaturated with respect to pure (hydr)oxides and carbonates, though agreement between calculations and measurements are close enough, that PbCO{sub 3} could be controlling the solubility in the laboratory experiments. The markedly lower concentrations of Pb in the field in comparison with the laboratory data could be explained by the affinity for Pb to bind to solids and the higher solid:solution ratio in field conditions. The solubility of Cd could be controlled by the formation of CdCO{sub 3}. The relatively high concentrations of Mo in the landfill leachate could be limited by the precipitation of CaMoO{sub 4}.

  14. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  15. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  16. Collector phase transitions during vapor-solid-solid nucleation of GaN nanowires.

    PubMed

    Chèze, Caroline; Geelhaar, Lutz; Trampert, Achim; Brandt, Oliver; Riechert, Henning

    2010-09-08

    We investigate the nucleation of Ni-induced GaN nanowires by in situ and ex situ experiments. Three nucleation stages are evidenced. In the first two stages, different crystal structures of the Ni collectors are identified. Real-time monitoring of the Ga desorption allows the amount of Ga incorporated in the collectors to be quantified. A transition of their crystal structure prior to nanowire growth is found to be in agreement with the thermodynamically stable phase sequence of the relevant phase diagrams.

  17. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium.

  18. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME).

    PubMed

    Benhabib, Karim; Town, Raewyn M; van Leeuwen, Herman P

    2009-04-09

    Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the coupled diffusion of free and particle-bound atrazine toward the solid/sample solution interface. In the eventual equilibrium the total atrazine concentration in the solid phase is dictated by the solid phase/water partition coefficient (K(sw)) and the concentration of the free atrazine in the sample solution. These observations demonstrate that the nanoparticles do not enter the solid phase. The experimental data show that the rate of release of sorbed atrazine from the latex particles is fast on the effective time scale of the microextraction process. A lability criterion is derived to quantitatively describe the relative rates of these two processes. All together, the results indicate that SPME has a strong potential for dynamic speciation analysis of organic compounds in media containing sorbing nanoparticles.

  19. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    PubMed

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides.

  20. Optical Measurement for Solid- and Liquid-Phase Sb2Te3 around Its Melting Point

    NASA Astrophysics Data System (ADS)

    Kuwahara, Masashi; Endo, Rie; Tsutsumi, Kouichi; Morikasa, Fukuyoshi; Tsuruoka, Tohru; Fukaya, Toshio; Suzuki, Michio; Susa, Masahiro; Endo, Tomoyoshi; Tadokoro, Toshiyasu

    2013-11-01

    We have developed a system for measuring the complex refractive index of liquid- and solid-phase chalcogenide around their melting points. The system consists of a spectroscopic ellipsometer, an infrared heating system, and prism optics. As a container for the chalcogenide, we use a customized quartz cell, evacuated to several pascal level to avoid sample degradation. We adopted a measurement configuration that uses access from the bottom side, because a mirror-like surface which is necessary for optical measurement was naturally and easily created at the container bottom by gravity. We succeeded in observing the remarkable difference on the indices between liquid- and solid-phase Sb2Te3.

  1. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid

    NASA Astrophysics Data System (ADS)

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-03-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L-1 limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  2. Synthesis of a Small Library of Imidazolidin-2-ones using Gold Catalysis on Solid Phase.

    PubMed

    La-Venia, Agustina; Medran, Noelia S; Krchňák, Viktor; Testero, Sebastián A

    2016-08-08

    An efficient and high-yielding solid phase synthesis of a small library of imidazolidin-2-ones and imidazol-2-ones was carried out employing a high chemo- and regioselective gold-catalyzed cycloisomerization as a key step. Polymer-supported amino acids derivatized with several alkyne functionalities combined with tosyl- and phenylureas have been subjected to gold-catalysis exhibiting exclusively C-N bond formation. The present work proves the potential of solid phase synthesis and homogeneous gold catalysis as an efficient and powerful synthetic tool for the generation of drug-like heterocycles.

  3. Resin Capsules: Permeable Containers for Parallel/Combinatorial Solid-Phase Organic Synthesis

    PubMed Central

    Bouillon, Isabelle; Soural, Miroslav; Krchňák, Viktor

    2009-01-01

    A resin capsule is a permeable container for resin beads designed for multiple/combinatorial solid-phase organic synthesis. Resin capsules consist of a high density polyethylene ring sealed with peek mesh on both sides. The cylindrical shape of resin capsules enabled space-saving packing into plastic column-like reaction vessels commonly used for solid-phase organic synthesis. Resin capsules have been evaluated for their use in combinatorial synthesis, and a set of model compounds with excellent purity was prepared. PMID:18656988

  4. Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengwei; Jiang, Jia Qian

    2012-07-01

    A simple and economic solid-phase extraction coupled with UV/Vis spectrophotometric method is described for the analysis of ibuprofen and ciprofloxacin. Following solid-phase extraction from model wastewater samples containing standard ibuprofen or ciprofloxacin, elutes were analyzed by a UV/Vis spectrophotometer at 225 nm for ibuprofen and 280 nm for ciprofloxacin. The assay was linear for both compounds with good coefficients of correlation. This method shows good recoveries for both compounds with 101.0 ± 9.8% for ibuprofen and 99.4 ± 11.8% ciprofloxacin.

  5. Reusable and specific proton transfer signalling by inorganic cyanide in solution and solid phase.

    PubMed

    Kaloo, Masood Ayoub; Sankar, Jeyaraman

    2015-10-04

    A highly specific cyanide mediated proton transfer signalling (PTS) is exhibited by a simple diaminomalenonitrile (DAMN) derivative 1. By virtue of the functional groups on it, the chromophore offered a rigid anchoring on a silica surface via a simple dip method, while retaining the recognition behaviour. The PTS triggered a prompt dual-modal display i.e., chromogenic and fluorogenic. The signal readout can be visualized even in micromolar concentrations. It is noteworthy that PTS can be reversed in both solution and solid phases. The remarkable sensitivity of 1 to detect CN(-) from the solution and solid phase envisages a pivotal step towards field-usable sensing.

  6. A photolabile linker for the solid-phase synthesis of peptide hydrazides and heterocycles.

    PubMed

    Qvortrup, Katrine; Komnatnyy, Vitaly V; Nielsen, Thomas E

    2014-09-19

    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino acids, including those with side-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis.

  7. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase.

    PubMed

    Castro, Vida; Rodríguez, Hortensia; Albericio, Fernando

    2016-01-11

    Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.

  8. Selective enrichment of phenols from coal liquefaction oil by solid phase extraction method

    SciTech Connect

    Tian, M.; Feng, J.

    2009-07-01

    This study focuses on the solid phase extraction method for the enrichment and separation of phenol from coal liquefaction oil. The phenols' separation efficiency was compared on different solid phase extraction (SPE) cartridges, and the effect of solvents with different polarity and solubility parameter on amino-bonded silica was compared for selection of optimal elution solution. The result showed that amino-bonded silica has the highest selectivity and best extraction capability due to two factors, weak anion exchange adsorption and polar attraction adsorption.

  9. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid.

    PubMed

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-12-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L(-1) limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  10. Solid-phase combinatorial synthesis using MicroKan reactors, Rf tagging, and directed sorting.

    PubMed

    Xiao, X Y; Li, R; Zhuang, H; Ewing, B; Karunaratne, K; Lillig, J; Brown, R; Nicolaou, K C

    2000-01-01

    A modular system for high-output solid-phase combinatorial synthesis has been designed and developed. The system employs three technological innovations to achieve its high efficiency and reliability: (1) application of microreactors as the reaction units in solid-phase synthesis; (2) use of radiofrequency tagging as the non-chemical tracking method; and (3) development of the directed sorting technology for split & pool synthesis. The system has been successfully applied in the synthesis of compound libraries of several hundred to several thousand compounds in multi-milligrams per compound quantity by many organizations. Copyright 2000 John Wiley & Sons, Inc.

  11. Preferential extraction of hydrocarbons from fire debris samples by solid phase microextraction.

    PubMed

    Lloyd, Julie A; Edmiston, Paul L

    2003-01-01

    Headspace analysis by extraction/GC-MS is a common method of detecting volatile hydrocarbon accelerants in fire debris samples. Solid-phase microextraction was tested to determine if there is selective extraction of chemically distinct compounds. It was found that both the polydimethylsiloxane (PDMS) and Carboxen/PDMS solid phase microextraction fibers show preferential extraction of aliphatic or aromatic compounds from the headspace depending on fiber type and temperature. The Carboxen/PDMS fiber type showed particular (although not exclusive) selectivity for extraction of aromatic hydrocarbons. Other experimental considerations of SPME are noted.

  12. Development of orthogonally protected hypusine for solid-phase peptide synthesis.

    PubMed

    Song, Aimin; Tom, Jeffrey; Yu, Zhiyong; Pham, Victoria; Tan, Dajin; Zhang, Dengxiong; Fang, Guoyong; Yu, Tao; Deshayes, Kurt

    2015-04-03

    An orthogonally protected hypusine reagent was developed for solid-phase synthesis of hypusinated peptides using the Fmoc/t-Bu protection strategy. The reagent was synthesized in an overall yield of 27% after seven steps from Cbz-Lys-OBzl and (R)-3-hydroxypyrrolidin-2-one. The side-chain protecting groups (Boc and t-Bu) are fully compatible with standard Fmoc chemistry and can be readily removed during the peptide cleavage step. The utility of the reagent was demonstrated by solid-phase synthesis of hypusinated peptides.

  13. Study on phase-locked coherence of evanescent wave coupling in solid-state laser

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Liu, Xu; Zhu, Mengzhen; Lu, Changyong; Lu, Yimin; Tan, Caoyong; Wei, Shangfang

    2016-01-01

    The mechanism and characteristics of evanescent-wave coupling in solid-state laser is analyzed theoretically and experimentally. The results shown that self-organized phase locking between laser modes can be realized by evanescentwave coupling in solid-state laser. Based on "mutual injection and evanescent wave" characteristics of corner-cube prism, the paper reveals that far-field output of corner-cube laser is the inner reason and mechanism of coherent combining distribution by theory of evanescent wave and its coherence is better than plane parallel resonator. And "mutually coupled phase locking of six lasers based cube-corner resonator" scheme is proposed on this basis.

  14. Novel functionalized polymeric fabric and fiber material as solid support for solid-phase synthesis and biomedical applications

    NASA Astrophysics Data System (ADS)

    Xiang, Bei

    The aim of the research is to develop novel polymer solid support by modifying or fabricating polymeric fibrous materials for peptide synthesis and biomedical applications. Originally chemical inert isotactic polypropylene (iPP) fabric was utilized and modified to serve as a functional flexible planar solid support for solid phase peptide synthesis. The modification was achieved through thermal initiated radical grafting polymerization using acrylic acid, poly (ethylene glycol) diacrylate as monomers, and benzoyl peroxide as radical initiator. The iPP fabric was successfully functionalized and possessing as high as 0.7mmol/g carboxylic acid groups. Peptide ligand LHPQF was successfully synthesized on the new functional planar support. Specific enzyme immobilization was fulfilled on the functional iPP fabric support. A commercially available ethylene-acrylic acid copolymer was made into ultrafine copolymer fiber bundles which are composed of nanofibers with diameters ranging from 200nm to 800nm. Various mixing ratios of copolymer/matrix materials were utilized to explore the effect on the final nanofiber physical properties including morphology and stability in solvents. The surface carboxylic acid groups were further converted to amino groups before the functional nanofibers can be applied in solid phase peptide synthesis. Two peptide ligands, LHPQF and HWRGWV, were also successfully synthesized on the nanofiber bundles. Streptavidin and human immunoglobulin G specific binding with the corresponding ligand which was anchored on the nanofibers was conducted successfully to illustrate the potential applications of the nanofiber materials in biomedical field. Further study on the dispersion of the ethylene-acrylic acid nanofiber bundles was pursued to take advantage of the super high active surface area of functional nanofibers. To manipulate the polymer nanofibers during synthesis and bio-assays, a technique was developed to controllably assemble and disperse the

  15. Influence of Geometry on a High Surface Area-Solid Phase Microextraction Sampler for Chemical Vapor Collection

    DTIC Science & Technology

    2007-06-04

    Title of Thesis: Influence of Geometry on a High Surface Area-Solid Phase Microextraction Sampler for Chemical Vapor Collection Name of...TITLE AND SUBTITLE Influence of Geometry on a High Surface Area-Solid Phase Microextraction Sampler for Chemical Vapor Collection 5a. CONTRACT...SUPPLEMENTARY NOTES 14. ABSTRACT The High Surface Area Solid Phase Microextraction (HSA-SPME) device is an internally heated sampling device designed for

  16. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    PubMed

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin

    2014-10-01

    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat.

  17. Effects of gravity reduction on phase equilibria. Part 1: Unary and binary isostructural solids

    NASA Technical Reports Server (NTRS)

    Larson, D. J., Jr.

    1975-01-01

    Analysis of the Skylab II M553 Experiment samples resulted in the hypothesis that the reduced gravity environment was altering the melting and solidification reactions. A theoretical study was conducted to define the conditions under which such alteration of phase relations is feasible, determine whether it is restricted to space processing, and, if so, ascertain which alloy systems or phase reactions are most likely to demonstrate such effects. Phase equilibria of unary and binary systems with a single solid phase (unary and isomorphous) were considered.

  18. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    SciTech Connect

    Rosencrance, S.

    2003-03-12

    The synthesis of sodium aluminosilicate solids phases precipitated from NO{sub 2}/NO{sub 3}-free and NO{sub 2}/NO{sub 3}-rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO{sub 2}/NO{sub 3}-rich crystalline sodalite; and (4) NO{sub 2}/NO{sub 3}-rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing.

  19. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    PubMed

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  20. Thermally stable coexistence of liquid and solid phases in gallium nanoparticles

    NASA Astrophysics Data System (ADS)

    Losurdo, Maria; Suvorova, Alexandra; Rubanov, Sergey; Hingerl, Kurt; Brown, April S.

    2016-09-01

    Gallium (Ga), a group III metal, is of fundamental interest due to its polymorphism and unusual phase transition behaviours. New solid phases have been observed when Ga is confined at the nanoscale. Herein, we demonstrate the stable coexistence, from 180 K to 800 K, of the unexpected solid γ-phase core and a liquid shell in substrate-supported Ga nanoparticles. We show that the support plays a fundamental role in determining Ga nanoparticle phases, with the driving forces for the nucleation of the γ-phase being the Laplace pressure in the nanoparticles and the epitaxial relationship of this phase to the substrate. We exploit the change in the amplitude of the evolving surface plasmon resonance of Ga nanoparticle ensembles during synthesis to reveal in real time the solid core formation in the liquid Ga nanoparticle. Finally, we provide a general framework for understanding how nanoscale confinement, interfacial and surface energies, and crystalline relationships to the substrate enable and stabilize the coexistence of unexpected phases.

  1. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees.

  2. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    PubMed

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  3. X-ray phase determination of solid paraffins in asphalts

    SciTech Connect

    Biktimirova, T.G.; Aleksandrova, S.L.; Fryazinov, V.V.

    1984-03-01

    This article discusses the attempt to increase the sensitivity of the x-ray phase analysis and to broaden the field of its application in determining the content of paraffins in petroleum asphalts and residual stocks from various raw materials. Samples were prepared by blending technical-grade paraffin wax with a paraffin-free asphalt. The influence of the cooling time on the intensity of the paraffin lines was determined for the various asphalt samples. In order to improve the reproducibility of the line intensity, 1% microcrystalline wax with a known content of paraffins was added to each reference sample. Artificial mixtures of paraffins with model asphalts having various group compositions were prepared in order to determine the influence of the composition of the various asphalts on the intensity of the paraffin reflections under the preparation conditions (heating and cooling). It is established that with increasing takeoff of distillate in the vacuum distillation of atmospheric resids, or in the course of oxidation of residual stocks to produce asphalts, the paraffin content drops. Includes 2 tables.

  4. Liquid versus solid phase bioassays for dredged material toxicity assessment.

    PubMed

    Casado-Martínez, M C; Fernández, N; Forja, J M; DelValls, T A

    2007-05-01

    Since 1994 the results of the analyses of key chemical compounds (trace metals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons) and the comparison with the corresponding sediment quality guidelines (SQGs) are used in decision-making for dredged material management in Spain. Nonetheless in the last decades a tiered testing approach is promoted for assessing the physical and chemical characteristics of dredged sediments and their potential biological effects in the environment. Bioassays have been used for sediment toxicity assessment in Spain but few or no experiences are reported on harbour sediments. We studied the incidence of toxicity in the 7 d bioassay using rotifers (Brachionus plicatilis) and the 48 h bioassay using sea urchin (Paracentrotus lividus) embryos over a series of experiments employing 22 different elutriates. The relative performance of this exposure phase was not comparable to data on the 10-d acute toxicity test using the burrowing amphipod Corophium volutator and the polychaete Arenicola marina, carried out on the whole sediments. These results evidence the importance of the exposure route and the test selected in decision-making, as the toxicity registered for the undiluted elutriates was largely due to the different solubility of sediment-bound contaminants. This work and other studies indicate that for many sediments, a complete battery of test is recommended together with physico-chemical analyses to decide whether dredged sediments are suitable for open water disposal or not.

  5. A solid-phase radioimmunoassay for plasma progesterone

    PubMed Central

    Dighe, Kailas K.; Hunter, William M.

    1974-01-01

    A detailed procedure is presented for the assay of plasma progesterone. The routine assay is based on the use of antiserum which is covalently linked to microcrystalline cellulose, the double-antibody method being used as a reference separation system. This procedure gives high precision accompanied by small and acceptable losses of antiserum titre but without loss of sensitivity when compared with the double-antibody method. Ethanol is first added to the plasma (10vol. of plasma+1vol. of ethanol) after which a single extraction with light petroleum yields a constant recovery [92.4±1.2 (s.d.)% of added [3H]progesterone] and obviates the need for tracer recoveries on each sample being assayed. Distortions of the response curve owing to solvent residues have been almost eliminated. The assay can measure progesterone at all stages of the menstrual cycle when volumes of 200μl of plasma are used and this permits the detection of the periovulatory rise at its inception. Detailed specificity studies are presented for the assay end point itself and these are related to the responses to be expected in extracts of plasma. Progesterone-like activity was found in urine and a fourfold increase in excretion rates was observed between the follicular and luteal phase of the normal menstrual cycle. PMID:4478132

  6. Pressure-induced phase transition in solid hydrogen sulfide at 11 GPa

    NASA Astrophysics Data System (ADS)

    Shimizu, H.; Nakamichi, Y.; Sasaki, S.

    1991-08-01

    The Raman spectra of hydrogen-bonded molecular solid H2S have been measured up to 23 GPa at 300 K in a gasketed diamond-anvil cell. In the orientationally disordered phase I between 0.47 and 11 GPa, the symmetric stretching mode ν1 shows a red-shift in frequency (dν1/dP=-10.1 cm-1/GPa ) and a dramatic broadening with pressure. At about 11 GPa, the antisymmetric stretching band ν3 appears at the higher-frequency side of ν1. Near this same pressure five low-frequency vibrational modes also appear and show pressure-sensitive features. These results indicate a pressure-induced phase transition near 11 GPa. This new solid phase, which persists to at least 23 GPa at 300 K, seems to be the same phase as previously found above 3.3 GPa at 25 K.

  7. High-pressure chemistry of molecular solids: evidences for novel extended phases of carbon dioxide

    SciTech Connect

    Yoo, C S

    1999-07-22

    At high pressures and temperatures, many molecular solids become unstable and transform into denser extended phases. Recently, we have discovered evidences for two novel extended phases of carbon dioxide at high pressures and temperatures: (1) an ionic form of dimeric CO,, C02+C03*- at 8-13 GPa and above 2000 K [I] and (2) a polymeric phase CO,-V above 35 GPa and 1800 K [2,3]. These extended phases can be quenched at room temperature at low pressures, from which their molecular and crystal structures have been determined. These transitions occur to soften highly repulsive intermolecular potentials via delocalization of electrons at high pressures and temperatures. Based on these and other previous results, we conjecture that three fundamental mechanisms of high-pressure chemistry are ionization, polymerization, and metallization, occurring in high-density molecular solids and fluids. [carbon dioxide, polymeric COZ, ionic CO, dimer, high-pressure chemistry, electron delocalization

  8. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    PubMed

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J

    2010-11-01

    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  9. Solid dispersion of pharmaceutical ternary systems I: Phase diagram of aspirin-acetaminophen-urea system.

    PubMed

    el-Banna, H M

    1978-08-01

    The phase diagram of an aspirin-acetaminophen-urea system was constructed. The data obtained by the thermomicroscopic method showed that the binary systems of aspirin-acetaminophen, aspirin-urea, and acetaminophen-urea are simple eutectic mixtures with negligible formation of solid solutions or molecular compounds. The equilateral triangular phase diagram of the ternary system revealed that it forms, upon solidification, solid dispersions of the mechanical mixture type. The ternary eutectic corresponded to a composition of 60% aspirin, 20% acetaminophen, and 20% urea at 72 degrees. The method of calculating the composition finally solidified melts, lying within any area of the phase diagram, is presented. Use of the phase diagram in selecting the optimum ratio of components to enhance dissolution rates of these drugs may be possible.

  10. Fluid-solid coexistence from two-phase simulations: binary colloidal mixtures and square well systems.

    PubMed

    Méndez-Maldonado, G Arlette; Chapela, Gustavo A; Martínez-González, José Adrián; Moreno, José Antonio; Díaz-Herrera, Enrique; Alejandre, José

    2015-02-07

    Molecular dynamics simulations are performed to clarify the reasons for the disagreement found in a previous publication [G. A. Chapela, F. del Río, and J. Alejandre, J. Chem. Phys. 138(5), 054507 (2013)] regarding the metastability of liquid-vapor coexistence on equimolar charged binary mixtures of fluids interacting with a soft Yukawa potential with κσ = 6. The fluid-solid separation obtained with the two-phase simulation method is found to be in agreement with previous works based on free energy calculations [A. Fortini, A.-P. Hynninen, and M. Dijkstra, J. Chem. Phys. 125, 094502 (2006)] only when the CsCl structure of the solid is used. It is shown that when pressure is increased at constant temperature, the solids are amorphous having different structures, densities, and the diagonal components of the pressure tensor are not equal. A stable low density fluid-solid phase separation is not observed for temperatures above the liquid-vapor critical point. In addition, Monte Carlo and discontinuous molecular dynamics simulations are performed on the square well model of range 1.15σ. A stable fluid-solid transition is observed above the vapor-liquid critical temperature only when the solid has a face centered cubic crystalline structure.

  11. Features of the phase dynamics in a ring solid-state laser

    SciTech Connect

    Kravtsov, Nikolai V; Lariontsev, E G

    2005-07-31

    The peculiarities of the phase dynamics are studied in a ring solid-state laser operating in transient quasi-sinusoidal oscillation regimes of the first and second kinds (QS-1 and QS-2) appearing upon periodic modulation of the pump power. It is shown that recording of a change in the phase difference of counterpropagating waves in the QS-2 regime under certain conditions makes it possible to determine directly the mutual nonreciprocity of the laser resonator. (control of laser radiation parameters)

  12. Enhancing a phase measurement by sequentially probing a solid-state system

    NASA Astrophysics Data System (ADS)

    Knott, P. A.; Munro, W. J.; Dunningham, J. A.

    2016-05-01

    In a recent paper, Liu et al. [Nat. Commun. 6:6726 (2015)] claim to perform the first room temperature entanglement-enhanced phase measurement in a solid-state system. We argue here that this claim is incorrect: their measurement is not enhanced because of the entanglement in their system, but instead the enhancement comes from the fact that the phase shift is applied twice to their state.

  13. Dynamically slow solid-to-solid phase transition induced by thermal treatment of DimimFeCl4 magnetic ionic liquid.

    PubMed

    de Pedro, Imanol; Fabelo, Oscar; García-Saiz, Abel; Vallcorba, Oriol; Junquera, Javier; Blanco, Jesús Angel; Waerenborgh, João Carlos; Andreica, D; Wildes, Andrew; Fernández-Díaz, María Teresa; Fernández, Jesús Rodríguez

    2016-08-03

    The results reported here represent the first direct experimental observations supporting the existence of a solid-to-solid phase transition induced by thermal treatment in magnetic ionic liquids (MILs). The phase transitions of the solid phases of 1,3-dimethylimidazolium tetrachloroferrate, DimimFeCl4, are closely related to its thermal history. Two series of solid-to-solid phase transitions can be described in this MIL: (i) from room temperature (RT) phase II [space group (s.g.) = P21] to phase I-a [s.g. = P212121] via thermal quenching or via fast cooling at T > 2 K min(-1); (ii) from phase I-a to phase I-b [s.g. = P21/c] when the temperature was kept above 180 K for several minutes. The latter involves a slow translational and reorientational dynamical process of both the imidazolium cation and the tetrachloroferrate anion and has been characterized using synchrotron and neutron powder diffraction and DFT (density functional theory) studies. The transition is also related to the modification of the super-exchange pathways of low-temperature phases which show a overall antiferromagnetic behavior. A combination of several experimental methods such as magnetometry, Mössbauer and muon spectroscopy together with polarized and non-polarized neutron powder diffraction has been used in order to characterize the different features observed in these phases.

  14. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma.

    PubMed

    Hughto, J; Horowitz, C J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K

    2012-12-01

    The neutron-rich isotope ²²Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of ²²Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of ²²Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Q_{imp} and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model.

  15. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma

    NASA Astrophysics Data System (ADS)

    Hughto, J.; Horowitz, C. J.; Schneider, A. S.; Medin, Zach; Cumming, Andrew; Berry, D. K.

    2012-12-01

    The neutron-rich isotope 22Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of 22Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of 22Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Qimp and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model.

  16. The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content

    NASA Astrophysics Data System (ADS)

    Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari

    2017-07-01

    Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.

  17. Phase behavior, intermolecular interaction, and solid state characterization of amorphous solid dispersion of Febuxostat.

    PubMed

    Kini, Ashwini; Patel, Sarsvatkumar B

    2017-02-01

    The aim of this work was to prepare and characterize the amorphous molecular dispersion of Febuxostat (FXT) using PVP K30, HPMC-AS, Soluplus®, and PVP VA64. The solid dispersions were prepared by solvent evaporation technique. Their physical properties were studied by differential scanning calorimetry, powder X-ray diffraction, Fourier transformation infrared spectroscopy, and compared to that of same physical mixtures. The success of physicochemical stability of the dispersions is often revealed as glass transition temperature (Tg) versus composition (w) dependencies. The shape of the Tg versus composition was mathematically modeled using the Gordon-Taylor equation, Couchman-Karasz equation, Brekner-Schneider-Cantow equation, and a three-parameter BCKV equation. In this work, different types of Tg patterns obtained for FXT-polymer binary mixtures are analyzed in terms of the above equations and relations between their prime fitting parameters are presented. The theoretical values and modeled parameters were compared using various results obtained by thermal analysis. The influence of important physicochemical phenomena and properties of the mixtures on the shape of the Tg versus composition patterns are also illustrated. The interaction between drug and polymers and the model parameters were analyzed, aiming to assess the state of mixing and intermolecular interactions.

  18. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    PubMed

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  19. The synthesis and chemical durability of Nd-doped single-phase zirconolite solid solutions

    NASA Astrophysics Data System (ADS)

    Cai, Xin; Teng, Yuancheng; Wu, Lang; Zhang, Kuibao; Huang, Yi

    2016-10-01

    Nd-doped single-phase zirconolite solid solutions was synthesized by solid-state reaction and following two steps of acid treatment. The phase composition, microstructure, and chemical durability of the zirconolite solid solutions were investigated. About 15 at% Nd was successfully stabilized into the zirconolite. The element mapping images of Ca, Zr, Nd and Ti show that all the elements are almost distributed homogeneously in the zirconolite waste forms. Product Consistency Test (PCT) was conducted under different pH values (pH = 5, 7 and 9) to evaluate the chemical durability of the Nd-doped zirconolite waste forms. The normalized element release rate of Ca (LRCa) in pH = 5 medium is higher than that of pH = 7 and 9, while the LRNd value remains almost unchanged under different pH values. The LRNd value is as low as 10-5 g m-2 d-1 after 42 days.

  20. Solid-liquid phase epitaxial growth of Li4Ti5O12 thin film

    NASA Astrophysics Data System (ADS)

    Li, Ning; Katase, Takayoshi; Zhu, Yanbei; Matsumoto, Takao; Umemura, Tomonari; Ikuhara, Yuichi; Ohta, Hiromichi

    2016-12-01

    A thin film of Li4Ti5O12, a candidate anode material for solid-state Li-ion batteries, was heteroepitaxially grown on a (001) SrTiO3 substrate using solid-liquid phase epitaxy. An amorphous Li4Ti5O12 film deposited at room temperature was first heated with LiNO3 powder in air and then washed with distilled water. The Li4Ti5O12 epitaxial film was obtained by heating with molten LiNO3 at 600 °C the liquid LiNO3 completely covered the film, suppressing the formation of Li deficiencies and enhancing the low-temperature crystal growth. Solid-liquid phase epitaxy is a powerful approach to grow Li-containing-oxide films, which are difficult to fabricate because of the loss of Li species at high temperature.

  1. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis.

    PubMed

    Sabatino, Giuseppina; Papini, Anna M

    2008-11-01

    Solid-phase strategies speed up the production of both short- and long-sequence peptides compared with solution methodologies. Therefore, solid-phase peptide synthesis (SPPS), proposed by Merrifield in the early 1960s, contributed to the 'Peptide Revolution' in the fields of diagnostics, and drug and vaccine development. Since then, peptide chemistry research has aimed to optimize these synthetic procedures, focusing on areas such as amide bond formation (the coupling step), solid supports and automation. Particular attention was devoted to the environmental impact of SPPS: the requirement for large amounts of organic solvents meant high costs for industrial peptide manufacturing that needed to be reduced. SPPS, alone or in hybrid technologies, has become strategic for the production of peptides as active pharmaceutical ingredients on a commercial scale.

  2. Soxhlet-assisted matrix solid phase dispersion to extract flavonoids from rape (Brassica campestris) bee pollen.

    PubMed

    Ma, Shuangqin; Tu, Xijuan; Dong, Jiangtao; Long, Peng; Yang, Wenchao; Miao, Xiaoqing; Chen, Wenbin; Wu, Zhenhong

    2015-11-15

    Soxhlet-assisted matrix solid phase dispersion (SA-MSPD) method was developed to extract flavonoids from rape (Brassica campestris) bee pollen. Extraction parameters including the extraction solvent, the extraction time, and the solid support conditions were investigated and optimized. The best extraction yields were obtained using ethanol as the extraction solvent, silica gel as the solid support with 1:2 samples to solid support ratio, and the extraction time of one hour. Comparing with the conventional solvent extraction and Soxhlet method, our results show that SA-MSPD method is a more effective technique with clean-up ability. In the test of six different samples of rape bee pollen, the extracted content of flavonoids was close to 10mg/g. The present work provided a simple and effective method for extracting flavonoids from rape bee pollen, and it could be applied in the studies of other kinds of bee pollen.

  3. AUTOMATED SOLID PHASE EXTRACTION GC/MS FOR ANALYSIS OF SEMIVOLATILES IN WATER AND SEDIMENTS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line sampl...

  4. COMPARISON OF TWO DIFFERENT SOLID PHASE EXTRACTION/LARGE VOLUME INJECTION PROCEDURES FOR METHOD 8270

    EPA Science Inventory

    Two solid phase (SPE) and one traditional continuous liquid-liquid extraction method are compared for analysis of Method 8270 SVOCs. Productivity parameters include data quality, sample volume, analysis time and solvent waste.

    One SPE system, unique in the U.S., uses aut...

  5. Electronic structure of elements and compounds and electronic phases of solids

    NASA Astrophysics Data System (ADS)

    Nadykto, B. A.

    2000-07-01

    The paper reviews technique [1] and computed energies for various electronic states of many-electron multiply charged ions, molecular ions, and electronic phases of solids. The model used allows computation of the state energy for free many-electron multiply charged ions with relative accuracy ˜10-4 suitable for analysis of spectroscopy data.

  6. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    DOEpatents

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  7. Solid-phase microextraction of hydrocarbons from water in a centrifuge

    NASA Astrophysics Data System (ADS)

    Ryabov, A. Yu.; Chuikin, A. V.; Velikov, A. A.

    2016-06-01

    The results of our study of solid-phase microextraction of substances using a centrifuge for determining the microquantities of hydrocarbon impurities in water are presented. The cartridge diameter, sorbent mass, and solvent volume were shown to affect the percent extraction of substances and the analytical signal intensity. The relationship between the cartridge geometry, the sorbent mass, and the solvent volume was considered.

  8. A Discovery-Oriented Approach to Solid-Phase Peptide Synthesis

    ERIC Educational Resources Information Center

    Bockman, Matthew R.; Miedema, Christopher J.; Brennan, Brian B.

    2012-01-01

    In this discovery-oriented laboratory experiment, students use solid-phase synthesis techniques to construct a dipeptide containing an unknown amino acid. Following synthesis and cleavage from the polymeric support, electrospray ionization-mass spectrometry is employed to identify the unknown amino acid that was used in the peptide coupling. This…

  9. COMPARISON OF TWO DIFFERENT SOLID PHASE EXTRACTION/LARGE VOLUME INJECTION PROCEDURES FOR METHOD 8270

    EPA Science Inventory

    Two solid phase (SPE) and one traditional continuous liquid-liquid extraction method are compared for analysis of Method 8270 SVOCs. Productivity parameters include data quality, sample volume, analysis time and solvent waste.

    One SPE system, unique in the U.S., uses aut...

  10. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    ERIC Educational Resources Information Center

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  11. A Discovery-Oriented Approach to Solid-Phase Peptide Synthesis

    ERIC Educational Resources Information Center

    Bockman, Matthew R.; Miedema, Christopher J.; Brennan, Brian B.

    2012-01-01

    In this discovery-oriented laboratory experiment, students use solid-phase synthesis techniques to construct a dipeptide containing an unknown amino acid. Following synthesis and cleavage from the polymeric support, electrospray ionization-mass spectrometry is employed to identify the unknown amino acid that was used in the peptide coupling. This…

  12. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  13. Effects of Inoculum Size on Solid-Phase Fermentation of Fodder Beets for Fuel Ethanol Production

    PubMed Central

    Gibbons, William R.; Westby, Carl A.

    1986-01-01

    This fuel ethanol study examined the effects of Saccharomyces cerevisiae inoculum size on solid-phase fermentation of fodder beet pulp. A 5% inoculum (wt/wt) resulted in rapid yeast and ethanol (9.1% [vol/vol]) production. Higher inocula showed no advantages. Lower inocula resulted in lowered final yeast populations and increased fermentation times. PMID:16347193

  14. A solid phase adsorption method for preparation of bovine serum albumin-bovine hemoglobin conjugate.

    PubMed

    Hu, Tao; Su, Zhiguo

    2003-02-13

    A solid phase adsorption method was proposed to prepare well-defined bovine serum albumin-bovine hemoglobin (Hb) conjugate. After adsorption by the solid phase, Q Sepharose Fast Flow media, bovine serum albumin (BSA) molecules were allowed to react with glutaraldehyde. The spacing out of BSA molecules on the solid phase was assumed to limit polymerization of BSA molecules, except some molecules bound closely on the solid phase resulting in minor dimer formation. Following the elution procedure, the activated monomeric BSA was separated from the dimers by gel filtration chromatography on Superdex 200 and then reacted with bovine Hb at 4 degrees C and pH 9.5. The 1:1 (BSA:Hb) conjugate was obtained with the yield of 64%. The P(50) values of the conjugates, prepared under anaerobic and aerobic conditions, were 19.1 and 14.2 mmHg, respectively. The dependence of the P(50) on chloride ions for the conjugate was slightly diminished, presumably due to covalent attachment of BSA to bovine Hb.

  15. Solid phase synthesis of hydantoins by thermal cyclization and screening of reaction conditions using APOS 1200.

    PubMed

    Karnbrock, W; Deeg, M; Gerhardt, J; Rapp, W

    1998-01-01

    A novel strategy for solid-phase synthesis of hydantoins with high optical purity is described using a thermal pH-neutral cyclization and simultaneous release from resin. Hereby even hydantoins bearing a pH-sensitive side chain (protection) are available. The reaction conditions are well screened applying the parallel organic synthesizer APOS 1200.

  16. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    ERIC Educational Resources Information Center

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  17. Solid-gaseous phase transformation of elemental contaminants during the gasification of biomass.

    PubMed

    Jiang, Ying; Ameh, Abiba; Lei, Mei; Duan, Lunbo; Longhurst, Philip

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid-gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (<1000°C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000-1200°C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (>1200°C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place.

  18. High performance solid-phase analytical derivatization of phenols for gas chromatography-mass spectrometry.

    PubMed

    Kojima, Miki; Tsunoi, Shinji; Tanaka, Minoru

    2004-07-09

    The solid-phase analytical derivatization of phenols with pentafluoropyridine is performed. Fourteen phenols including chlorophenols and alkylphenols, could be efficiently adsorbed on a strong anion-exchange solid phase, Oasis MAX. The phenols adsorbed on Oasis MAX as phenolate ions were desorbed after derivatization with pentafluoropyridine. After optimization of the adsorption and derivatization, we established a procedure for the determination of the phenols in water samples by means of GC-MS. Under the optimized conditions, calibration curves were linear in the range of 10-1000 ng/l for the alkylphenols (100-10000 ng/l for nonylphenol) and 50-1000 ng/l for the others. By processing 100 ml samples, the method detection limits (MDLs) were in the range of 0.45-2.3 ng/l for the alkylphenols (8.5 ng/l for nonylphenol) and 2.4-16 ng/l for the others. Compared with the biphasic reaction system, the signal-to-noise ratios obtained by the solid-phase analytical derivatization were significantly higher. This is ascribed to the fact that coexisting neutral and acidic compounds are efficiently removed from the sample solution by this solid-phase analytical derivatization system.

  19. THE DISTRIBUTION AND SOLID-PHASE SPECIATION OF AS IN IRON-BASED TREATMENT MEDIA

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These r...

  20. Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.

    1986-10-01

    This fuel ethanol study examined the effects of Saccharomyces cerevisiae inoculum size on solid-phase fermentation of fodder beet pulp. A 5% inoculum (wt/wt) resulted in rapid yeast and ethanol (9.1% (vol/vol)) production. Higher inocula showed no advantages. Lower inocula resulted in lowered final yeast populations and increased fermentation times.

  1. Solid phase microextraction for active or passive sampling of methyl bromide during fumigations

    USDA-ARS?s Scientific Manuscript database

    The high diffusivity and volatility of methyl bromide make it an ideal compound for Solid Phase Micro Extraction (SPME)-based sampling of air prior to gas-chromatographic quantifications. SPME fibers can be used as active methyl bromide samplers, with high capacities and an equilibrium time of 1-2 m...

  2. Headspace analysis of polar organic compounds in biological matrixes using solid phase microextraction (SPME)

    USDA-ARS?s Scientific Manuscript database

    Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...

  3. SOLID PHASE MICROEXTRACTION FOR TRACE LEVEL ANALYSIS OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    This presentation focuses on the development of a solid-phase microextraction (SPME)-gas chromatography (GC)/ion trap mass spectrometry (MS) method for the analysis of semivolatile disinfection by-products (DBPs) in drinking water in the low ug/L range. These DBPs were selected ...

  4. Determination of Plant Volatiles Using Solid Phase Microextraction GC-MS

    ERIC Educational Resources Information Center

    Van Bramer, Scott; Goodrich, Katherine R.

    2015-01-01

    This experiment combines analytical techniques of solid phase microextraction and gas chromatography-mass spectrometry with easily relatable and accessible plant volatile chemistry (floral and vegetative scents of local/available plants). The biosynthesis and structure of these chemicals are of interest in the areas of organic chemistry,…

  5. AUTOMATED SOLID PHASE EXTRACTION GC/MS FOR ANALYSIS OF SEMIVOLATILES IN WATER AND SEDIMENTS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line sampl...

  6. Determination of Plant Volatiles Using Solid Phase Microextraction GC-MS

    ERIC Educational Resources Information Center

    Van Bramer, Scott; Goodrich, Katherine R.

    2015-01-01

    This experiment combines analytical techniques of solid phase microextraction and gas chromatography-mass spectrometry with easily relatable and accessible plant volatile chemistry (floral and vegetative scents of local/available plants). The biosynthesis and structure of these chemicals are of interest in the areas of organic chemistry,…

  7. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  8. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  9. Solid-liquid Phase Equilibria of U(VI) in NaCl Solutions

    NASA Astrophysics Data System (ADS)

    Díaz Arocas, P.; Grambow, B.

    1998-01-01

    Solid-liquid phase equilibria and equilibrium phase relationships of U(VI) in up to 5 m NaCl solutions were studied by analyzing the precipitation process in initially oversaturated solutions at different pH values. Comparison to corresponding behavior in NaClO 4 media is made. Solid precipitates and solution concentrations of U were characterized as a function of time and pH. In NaClO 4 media schoepite (UO 3·2H 2O) was found to be the stable phase between pH 4 and 6. By contrast, in NaCl media, sodium polyuranates formed. For a given NaCl concentration and pH, differences in the solubility concentration of about 3 orders of magnitude were observed, as attributed to metastability with respect to crystallinity and Na/U ratio of the precipitates. Average solubility constants log K° soere calculated for schoepite (log K° so = 5.37 ± 0.25) and for Na 0.33UO 3.16·2H 2O (log K° so = 7.13 ± 0.15). Based on these data and together with a critical review of literature data on schoepite and polyuranates a solid solution model is developed, describing composition and phase transformation of Na-polyuranates as a function of the activity ratio Na/H in solution. Solid solution formation is rationalized within the structural context of uranyl mineral sheet structure topologies and interlayer water properties.

  10. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  11. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    SciTech Connect

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.

  12. Aqueous- and solid-phase biogeochemistry of a calcareous aquifer system downgradient from a municipal solid waste landfill (Winterthur, Switzerland)

    SciTech Connect

    Amirbahman, A.; Schoenenberger, R.; Johnson, C.A.; Sigg, L. |

    1998-07-01

    This study addresses the biogeochemical changes that take place in a calcareous aquifer system under and down-gradient from a municipal solid waste landfill. Aqueous-phase chemical analysis of the redox-sensitive species indicates the presence of aerobic respiration, denitrification/NO{sub 3}{sup {minus}} reduction, and Fe(III), Mn(III/IV), and SO{sub 4} reduction processes under the landfill. Because available and released organic matter is limited, reduction processes downgradient from the landfill do not go far beyond aerobic respiration, denitrification, and Mn(III/IV) reduction. Assuming steady-state conditions, STEADYQL computer program has been used to model the biogeochemical processes by taking into account the kinetics of the redox reactions, calcite precipitation and dilution. Dilution has the most significant influence on the concentrations of the dissolved organic and inorganic carbon. Dissolved Mn(II) concentrations in the entire anaerobic zone are controlled by the solubility of rhodocrocite [MnCO{sub 3}(S)]. At selected locations under the landfill where SO{sub 4} reduction takes place, dissolved Fe(II) concentrations are regulated by the solubility of amorphous FeS. Chemical extraction of the aquifer solid phase indicates that the oxidation capacity of this aquifer system is largely controlled by iron(III)(hydr)-oxides.

  13. Reorientational dynamics and solid-phase transformation of ammonium dicyanamide into dicyandiamide: a (2)H solid-state NMR study.

    PubMed

    Lotsch, Bettina V; Schnick, Wolfgang; Naumann, Ernst; Senker, Jürgen

    2007-10-11

    The reorientational dynamics of ammonium dicyanamide ND4[N(C[triple bond]N)2] and the kinetics as well as the mechanism of the solid-state isomerization reaction from ammonium dicyanamide into dicyandiamide (N[triple bond]C-N==C(NH2)2) was studied by means of 2H and 14N solid-state NMR spectroscopy in a temperature range between 38 and 390 K. Whereas in previous investigations the mechanism of the solid-state transformation was investigated by means of vibrational and magic angle spinning solid-state NMR spectroscopy as well as neutron diffraction, we here present a comprehensive 2H study of the ammonium ion dynamics prior to and during the course of the reaction, thereby highlighting possible cross correlations between dynamics and reactivity involving the ammonium ion. The ND4+ group was found to undergo thermally activated random jumps in a tetrahedral potential, which is increasingly distorted with increasing temperature, giving rise to an asymmetrically compressed or elongated tetrahedron with deviations from the tetrahedral angle of up to 6 degrees . The correlation time follows an Arrhenius law with an activation energy of Ea = 25.8(2) kJ mol(-1) and an attempt frequency of tau0(-1) = 440(80) THz. The spin-lattice relaxation times were fitted according to a simple Bloembergen-Purcell-Pound type model with a T1 minimum of 4 ms at 230 K. Temperature-dependent librational amplitudes were extracted by line-shape simulations between 38 and 390 K and contrasted with those obtained by neutron diffraction, their values ranging between 5 and 28 degrees . The onset and progress of the solid-phase transformation were followed in situ at temperatures above 372 K and could be classified as a strongly temperature-dependent, heterogeneous two-step reaction proceeding with rapid evolution of ammonia and comparatively slow subsequent reintegration into the solid. On the microscopic level, this correlates with a rapid proton transfer -- possibly triggered by a coupling

  14. Determination of aflatoxins in rice samples by ultrasound-assisted matrix solid-phase dispersion.

    PubMed

    Manoochehri, Mahboobeh; Asgharinezhad, Ali Akbar; Safaei, Mahdi

    2015-01-01

    This work describes the application of ultrasound-assisted matrix solid-phase dispersion as an extraction and sample preparation approach for aflatoxins (B1, B2, G1 and G2) and subsequent determination of them by high-performance liquid chromatography-fluorescence detection. A Box-Behnken design in combination with response surface methodology was used to determine the affecting parameters on the extraction procedure. The influence of different variables including type of dispersing phase, sample-to-dispersing phase ratio, type and quantity of clean-up phase, ultrasonication time, ultrasonication temperature, nature and volume of the elution solvent was investigated in the optimization study. C18, primary-secondary amine (PSA) and acetonitrile were selected as dispersing phase, clean-up phase and elution solvent, respectively. The obtained optimized values were sample-to-dispersing phase ratio of 1 : 1, 60 mg of PSA, 11 min ultrasonication time, 30°C ultrasonication temperature and 4 mL acetonitrile. Under the optimal conditions, the limits of detection were ranged from 0.09 to 0.14 ng g(-1) and the precisions [relative standard deviation (RSD%)] were <8.6%. The recoveries of the matrix solid-phase dispersion process ranged from 78 to 83% with RSD <10% in all cases. Finally, this method was successfully applied to the extraction of trace amounts of aflatoxins in rice samples. © The Author [2014]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. First-principles investigation of iron pentacarbonyl molecular solid phases at high pressure

    NASA Astrophysics Data System (ADS)

    Cong, Kien Nguyen; Steele, Brad A.; Landerville, Aaron C.; Oleynik, Ivan I.

    2017-01-01

    The polymeric phases of carbon monoxide (p-CO), an extended non-molecular solid, represent a new class of low-Z energetic materials. The presence of transition metal ions is believed to stabilize polymeric carbon monoxide (p-CO) at ambient conditions. Since p-CO forms at high pressures, it becomes important to investigate the high-pressure behavior of one of the potential precursors, iron pentacarbonyl Fe(CO)5. In this work, a first-principles evolutionary structure search method is used to determine the crystal phases of Fe(CO)5 at high pressure. The calculations predict the crystal structure of Phase I in agreement with experiment. Moreover, the previously unidentified crystal structure of Phase II is found. The calculated pressure-dependent Raman spectra are used to demonstrate that the changes in Raman spectra as a function of pressure observed in recent experiment can be explained without invoking a phase transition to a new phase III.

  16. Chemoselective one-step purification method for peptides synthesized by the solid-phase technique.

    PubMed Central

    Funakoshi, S; Fukuda, H; Fujii, N

    1991-01-01

    The specific reaction between SH and iodoacetamide groups has been explored as the basis of an affinity-type purification procedure for peptides synthesized by the solid-phase technique. For this affinity-type purification procedure, we synthesized an SH precursor reagent bearing an acid-labile S-protecting group, pMB-SCH2CONHCH2CH2-SO2CH2CH2OCO2pNP (compound I), in which pMB is p-methoxybenzyl and pNP is p-nitrophenyl. Using this reagent, the procedure involves the following sequence of four reactions: (i) attachment of the SH function of compound I to the alpha-amino group of a peptide-resin through a base-labile sulfonylethoxycarbonyl linkage in the final step of solid-phase peptide synthesis, (ii) acid treatment to remove the S-pMB and side-chain-protecting groups employed and cleave the modified peptide from the resin, (iii) immobilization of the derived SH-peptide on an iodoacetamide-resin column, and (iv) base (5% NH4OH) treatment to release the desired peptide from the resin in nearly pure form. To facilitate this purification procedure, unreacted amino groups were acetylated in each step during solid-phase synthesis. The usefulness of this method was demonstrated by the purification of several peptides (18 to approximately 44 amino acids in length) synthesized by the 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase technique. The principle of this affinity-type purification procedure may also be applied to the tert-butoxycarbonyl (Boc)-based solid-phase technique. PMID:1871113

  17. Solid-phase synthesis of polysubstituted piperidines by imino-Diels-Alder cycloaddition of 2-amino-1,3-butadienes with solid-supported imines.

    PubMed

    Barluenga, José; Mateos, Carlos; Aznar, Fernando; Valdés, Carlos

    2002-10-17

    [reaction: see text] The solid-phase imino-Diels-Alder reaction of 2-amino-1,3-butadienes with solid-supported imines is described. The reaction furnishes 4-piperidones and 4-aminopiperidines with high diastereoselectivity and with very good yields and purity after the release from the solid support. The possibility of introducing variations in both cycloaddition partners gives rise to substituted piperidines with up to five elements of diversity.

  18. Profilometry of three-dimensional discontinuous solids by combining two-steps temporal phase unwrapping, co-phased profilometry and phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo; Gonzalez, Adonai

    2016-12-01

    In this work we review and combine two techniques that have been recently published for three-dimensional (3D) fringe projection profilometry and phase unwrapping, namely: co-phased profilometry and 2-steps temporal phase-unwrapping. By combining these two methods we get a more accurate, higher signal-to-noise 3D profilometer for discontinuous industrial objects. In single-camera single-projector (standard) profilometry, the camera and the projector must form an angle between them. The phase-sensitivity of the profilometer depends on this angle, so it cannot be avoided. This angle produces regions with self-occluding shadows and glare from the solid as viewed from the camera's perspective, making impossible the demodulation of the fringe-pattern there. In other words, the phase data is undefined at those shadow regions. As published recently, this limitation can be solved by using several co-phased fringe-projectors and a single camera. These co-phased projectors are positioned at different directions towards the object, and as a consequence most shadows are compensated. In addition to this, most industrial objects are highly discontinuous, which precludes the use of spatial phase-unwrappers. One way to avoid spatial unwrapping is to decrease the phase-sensitivity to a point where the demodulated phase is bounded to one lambda, so the need for phase-unwrapping disappears. By doing this, however, the recovered non-wrapped phase contains too much harmonic distortion and noise. Using our recently proposed two-step temporal phase-unwrapping technique, the high-sensitivity phase is unwrapped using the low-frequency one as initial gross estimation. This two-step unwrapping technique solves the 3D object discontinuities while keeping the accuracy of the high-frequency profilometry data. In scientific research, new art are derived as logical and consistent result of previous efforts in the same direction. Here we present a new 3D-profilometer combining these two recently

  19. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    PubMed

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  20. New methodological improvements in the Microtox® solid phase assay.

    PubMed

    Burga Pérez, Karen F; Charlatchka, Rayna; Sahli, Leila; Férard, Jean-François

    2012-01-01

    The classic Microtox® solid phase assay (MSPA) based on the inhibition of light production of the marine bacteria recently renamed Aliivibrio fischeri suffers from various bias and interferences, mainly due to physico-chemical characteristics of the tested solid phase. To precisely assess ecotoxicity of sediments, we have developed an alternative method, named Microtox® leachate phase assay (MLPA), in order to measure the action of dissolved pollutants in the aqueous phase. Two hypotheses were formulated to explain the observed difference between MSPA and MLPA results: a real ecotoxicity of the solid phase or the fixation of bacteria to fine particles and/or organic matter. To estimate the latter, flow cytometry analyses were performed with two fluorochromes (known for their ability to stain bacterial DNA), allowing correction of MSPA measurements and generation of new (corrected) IC50. Comparison of results of MLPA with the new IC50 MSPA allows differentiating real ecotoxic and fixation effect in classic MSPA especially for samples with high amount of fines and/or organic matter.

  1. Phase separation kinetics in amorphous solid dispersions upon exposure to water.

    PubMed

    Purohit, Hitesh S; Taylor, Lynne S

    2015-05-04

    The purpose of this study was to develop a novel fluorescence technique employing environment-sensitive fluorescent probes to study phase separation kinetics in hydrated matrices of amorphous solid dispersions (ASDs) following storage at high humidity and during dissolution. The initial miscibility of the ASDs was confirmed using infrared (IR) spectroscopy and differential scanning calorimetry (DSC). Fluorescence spectroscopy, as an independent primary technique, was used together with conventional confirmatory techniques including DSC, X-ray diffraction (XRD), fluorescence microscopy, and IR spectroscopy to study phase separation phenomena. By monitoring the emission characteristics of the environment-sensitive fluorescent probes, it was possible to successfully monitor amorphous-amorphous phase separation (AAPS) as a function of time in probucol-poly(vinylpyrrolidone) (PVP) and ritonavir-PVP ASDs after exposure to water. In contrast, a ritonavir-hydroxypropylmethylcellulose acetate succinate (HPMCAS) ASD, did not show AAPS and was used as a control to demonstrate the capability of the newly developed fluorescence method to differentiate systems that showed no phase separation following exposure to water versus those that did. The results from the fluorescence studies were in good agreement with results obtained using various other complementary techniques. Thus, fluorescence spectroscopy can be utilized as a fast and efficient tool to detect and monitor the kinetics of phase transformations in amorphous solid dispersions during hydration and will help provide mechanistic insight into the stability and dissolution behavior of amorphous solid dispersions.

  2. Accelerated exploration of multi-principal element alloys with solid solution phases

    NASA Astrophysics Data System (ADS)

    Senkov, O. N.; Miller, J. D.; Miracle, D. B.; Woodward, C.

    2015-03-01

    Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge—how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs—that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction.

  3. Accelerated exploration of multi-principal element alloys with solid solution phases.

    PubMed

    Senkov, O N; Miller, J D; Miracle, D B; Woodward, C

    2015-03-05

    Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge--how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs--that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction.

  4. Multiresidue analysis of neonicotinoids by solid-phase extraction technique using high-performance liquid chromatography.

    PubMed

    Mohan, Chander; Kumar, Yogesh; Madan, Jyotsana; Saxena, Navneet

    2010-06-01

    For routine monitoring of pesticides, a multiresidue analysis through solid-phase extraction technique and using high-performance liquid chromatography (HPLC) in cotton seed cake (CSC) has been developed. Extraction of fortified samples was carried out with aqueous acetone under vacuum. The concentrated extract was loaded onto the solid-phase extraction units, preconditioned with acetonitrile. The extraction units were then washed with hexane and finally eluted with acetonitrile. The pesticide residues were determined using a multiresidue method by reversed-phase HPLC. The average percentage recoveries were found to range between 65.47% and 110% at spiking levels of 10 to 40 mg/kg. The method developed shows a healthy rate of recovery and can successfully be utilized for the extraction and screening of neonicotinoid residues in CSC. The detection limits for imidacloprid, acetamiprid, and thiacloprid using this method were found to be 5, 10, and 20 mg/kg, respectively.

  5. Evidence for Two Different Solid Phases of Two-Dimensional Electrons in High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Chen, Yong P.; Lewis, R. M.; Engel, L. W.; Tsui, D. C.; Ye, P. D.; Wang, Z. H.; Pfeiffer, L. N.; West, K. W.

    2004-11-01

    We have observed two different rf resonances in the frequency dependent real diagonal conductivity of very high quality two-dimensional electron systems in the high magnetic field insulating phase and interpret them as coming from two different pinned electron solid phases (labeled as “A” and “B”). The “A” resonance is observable for Landau level filling ν<2/9 [reentrant around the ν=1/5 fractional quantum Hall effect (FQHE)] and then crosses over to the different “B” resonance which dominates at sufficiently low ν. Moreover, the “A” resonance is found to show dispersion with respect to the size of the transmission line, indicating that the “A” phase has a large correlation length. We suggest that quantum correlations such as those responsible for FQHE may play an important role in giving rise to such different solids.

  6. Three-body interactions and solid-liquid phase equilibria: application of a molecular dynamics algorithm.

    PubMed

    Wang, Liping; Sadus, Richard J

    2006-09-01

    The effect of three-body interactions on the solid-liquid phase boundaries of argon, krypton, and xenon is investigated via a novel technique that combines both nonequilibrium and equilibrium molecular dynamics. The simulations involve the evaluation of two- and three-body forces using accurate two-body and three-body intermolecular potentials. The effect of three-body interactions is to substantially increase the coexistence pressure and to lower the densities of liquid and solid phases. Comparison with experiment indicates that three-body interactions are required to accurately determine the total pressure. In contrast to vapor-liquid phase equilibria, the relative contribution of three-body interactions to the freezing pressure exceeds the contribution of two-body interactions at all temperatures.

  7. Accelerated exploration of multi-principal element alloys with solid solution phases

    PubMed Central

    Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C.

    2015-01-01

    Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge—how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs—that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction. PMID:25739749

  8. Liquid-solid directional composites and anisotropic dipolar phases of polar nanoregions in disordered perovskites.

    PubMed

    Parravicini, Jacopo; DelRe, Eugenio; Agranat, Aharon J; Parravicini, Gianbattista

    2017-07-13

    Using temperature-resolved dielectric spectroscopy in the range of 75-320 K we have inspected the solid-like and liquid-like arrangements of nanometric dipoles (polar nanoregions) embedded in sodium-enriched potassium-tantalate-niobate (KNTN), a chemically-substituted complex perovskite crystal hosting inherent substitutional disorder. The study of order versus direction is carried out using Fröhlich entropy measurements and indicates the presence of four long-range symmetry phases, two of which are found to display profoundly anisotropic features. Exotic phases are found for which the dipoles at one fixed temperature manifest a liquid reorientational response along one crystal axis and a solid-like behavior along another axis. The macroscopic anisotropy observed in the sequence of different phases is found to match a microscopic order-disorder sequence typical of nominally pure perovskites. Moreover, experimental demonstration of the onset of a frozen state above transitions is provided.

  9. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    PubMed

    Momeni, Kasra; Levitas, Valery I

    2016-04-28

    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.

  10. Effect of detached/re-suspended solids from sewer sediment on the sewage phase bacterial activity.

    PubMed

    Leung, H D; Chen, G; Sharma, K

    2005-01-01

    This study was conducted to make an assessment of the effects of the detached/re-suspended solids on the bacterial activity in the sewage phase of a gravity sewer. A physical sewer-model was used to simulate two extreme conditions: sewage flow without the presence of sewer sediment, and filtered sewage flow with the sediment. The first scenario was to evaluate the effect of the settling of solids on the bacterial activity, while the second scenario was to examine the effect of purely re-suspended or detached solids. The water media were aerated to obtain an initial DO level at about 6 mg/L, and the bacterial activity was monitored at a regular time interval during each operation. Two bacterial cell staining techniques, one using 4', 6-diamidino-2-phenyl indole (DAPI), and another using 5-cyano 2, 3-ditoyl tetrazolium chloride (CTC), were employed to measure the amount of total and respiring bacteria, respectively. Both the DAPI and CTC counts decreased with time in the first case, while that increased with time in the second case. The bacterial activity in a sewer phase was observed to be contributed by smaller sized particles. Also, the solids originated from the sewer sediment through re-suspension or detachment demonstrated a higher bacterial activity than the solids originally present in the sewage.

  11. Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase.

    PubMed

    Pilling, Sergio; Baptista, Leonardo; Boechat-Roberty, Heloisa M; Andrade, Diana P P

    2011-11-01

    Despite the extensive search for glycine (NH₂CH₂COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH₂OH. Another possible reaction involves NH₂CH₂ and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH

  12. Quantification of Tetramethylenedisulfotetramine (TETS) in Various Food Matrices by Solid Phase Extraction Liquid ChromatographyIon Trap Mass Spectrometry

    DTIC Science & Technology

    2017-04-01

    QUANTIFICATION OF TETRAMETHYLENEDISULFOTETRAMINE (TETS) IN VARIOUS FOOD MATRICES BY SOLID-PHASE EXTRACTION...Quantification of Tetramethylenedisulfotetramine (TETS) in Various Food Matrices by Solid-Phase Extraction Liquid Chromatography–Ion Trap Mass...method for the quantitation of TETS as spiked into various food matrices , including fruit juices, egg, hot dog, chicken nuggets, turkey deli meat, and

  13. Electron Irradiation Induced Phase Transition of an Amorphous Phase and Face-Centered Cubic Solid Solutions in Zr66.7Pd33.3 Metallic Glass

    NASA Astrophysics Data System (ADS)

    Nagase, Takeshi; Hosokawa, Takashi; Umakoshi, Yukichi

    2007-02-01

    Both amorphization and crystallization were observed in Zr66.7Pd33.3 metallic glass under electron irradiation. The melt-spun amorphous phase was not stable under 2.0 MV electron irradiation and two kinds of fcc-solid solution were precipitated through electron irradiation induced crystallization at 103 and 298 K. The fcc-solid solution obtained by electron irradiation induced crystallization at 298 K transformed to an amorphous phase during irradiation at 103 K. Electron irradiation induced phase transformation behavior in Zr66.7Pd33.3 metallic glass can be explained by phase stability of an amorphous phase and crystalline phases against electron irradiation.

  14. Subscale solid motor nozzle tests, phase 4 and nozzle materials screening and thermal characterization, phase 5

    NASA Technical Reports Server (NTRS)

    Arnold, J.; Dodson, J.; Laub, B.

    1979-01-01

    Subscale solid motor nozzles containing a baseline material or low cost materials to be considered as potential replacements for the baseline material are designed and tested. Data are presented from tests of four identically designed 2.5 inch throat diameter nozzles and one 7 inch throat diameter nozzle. The screening of new candidate low cost materials, as well as their thermophysical and thermochemical characterization is also discussed.

  15. Identification of unwanted photoproducts of cosmetic preservatives in personal care products under ultraviolet-light using solid-phase microextraction and micro-matrix solid-phase dispersion.

    PubMed

    Alvarez-Rivera, Gerardo; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta

    2015-04-17

    The photochemical transformation of widely used cosmetic preservatives including benzoates, parabens, BHA, BHT and triclosan has been investigated in this work applying an innovative double-approach strategy: identification of transformation products in aqueous photodegradation experiments (UV-light, 254nm), followed by targeted screening analysis of such photoproducts in UV-irradiated cosmetic samples. Solid-phase microextraction (SPME) was applied, using different fiber coatings, in order to widen the range of detectable photoproducts in water, whereas UV-irradiated personal care products (PCPs) containing the target preservatives were extracted by micro-matrix solid-phase dispersion (micro-MSPD). Both SPME and micro-MSPD-based methodologies were successfully optimized and validated. Degradation kinetics of parent species, and photoformation of their transformation by-products were monitored by gas chromatography coupled to mass spectrometry (GC-MS). Thirty nine photoproducts were detected in aqueous photodegradation experiments, being tentatively identified based on their mass spectra. Transformation pathways between structurally related by-products, consistent with their kinetic behavior were postulated. The photoformation of unexpected photoproducts such as 2- and 4-hydroxybenzophenones, and 2,8-dichlorodibenzo-p-dioxin in PCPs are reported in this work for the first time.

  16. Determination of triazine herbicides in seaweeds: development of a sample preparation method based on Matrix Solid Phase Dispersion and Solid Phase Extraction Clean-up.

    PubMed

    Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2014-04-01

    A method using dual process columns of Matrix Solid Phase Dispersion (MSPD) and Solid Phase Extraction (SPE) has been developed for extracting and cleaning-up of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine and terbutryn) in seaweed samples. Under optimized conditions, samples were blended with 2g of octasilyl-derivatized silica (C8) and transferred into an SPE cartridge containing ENVI-Carb II/PSA (0.5/0.5 g) as a clean up co-sorbent. Then the dispersed sample was washed with 10 mL of n-hexane and triazines were eluted with 20 mL ethyl acetate and 5 mL acetonitrile. Finally the extract was concentrated to dryness, re-constituted with 1 mL methanol:water (1:1) and injected into the HPLC-DAD system. The linearity of the calibration curves was excellent in matrix matched standards, and yielded the coefficients of determination>0.995 for all the target analytes. The recoveries ranged from 75% to 100% with relative standard deviations lower than 7%. The achieved LOQs (<10 µg kg(-1)) for all triazines under study permits to ensure proper determination at the maximum allowed residue levels set in the European Union Legislation. Samples of three seaweeds were subjected to the procedure proving the suitability of MSPD method for the analysis of triazines in different seaweeds samples.

  17. Two-phase region of vortex-solid melting: 3D XY theory

    NASA Astrophysics Data System (ADS)

    Friesen, M.; Muzikar, P.

    1998-07-01

    In clean enough samples of the high-Tc oxide materials, the phase transition into the superconducting state occurs along a first-order line in the H-T plane. This means that a two-phase region occurs in the B-T plane, in which the liquid and solid vortex phases coexist. We discuss the thermodynamics of this two-phase region, developing formulae relating experimental quantities of interest. We then apply the 3D XY scaling theory to the problem, obtaining detailed predictions for the boundaries of the coexistence region. By using published data, we are able to predict the width of the two-phase region, and determine the physical parameters involved in the 3D XY description.

  18. First order magneto-structural phase transition and associated multi-functional properties in magnetic solids.

    PubMed

    Roy, Sindhunil Barman

    2013-05-08

    We show that the first order magneto-structural phase transitions observed in various classes of magnetic solids are often accompanied by useful multi-functional properties, namely giant magneto-resistance, magneto-caloric effect and magneto-striction. We highlight various characteristic features associated with a disorder influenced first order phase transition namely supercooling, superheating, phase-coexistence and metastability, in several magnetic materials and discuss how a proper understanding of the transition process can help in fine tuning of the accompanied functional properties. Magneto-elastic coupling is a key element in this first order phase transition, and methods need to be explored for maximizing the contributions from both the lattice and the magnetic degree of freedom while simultaneously minimizing the thermomagnetic hysteresis loss. An analogy is also drawn with the first order phase transition observed in dielectric materials and vortex matter of type-II superconductors.

  19. Solid/Liquid phase diagram of the ammonium sulfate/maleic acid/water system.

    PubMed

    Beyer, Keith D; Schroeder, Jason R; Pearson, Christian S

    2011-12-01

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/maleic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/maleic acid phase boundary as well as the ternary eutectic composition and temperature. We also compare our results to the predictions of the extended AIM aerosol thermodynamics model and find good agreement for the ice melting points in the ice primary phase field of this system; however significant differences were found with respect to phase boundaries, maleic acid dissolution, and ammonium sulfate dissolution.

  20. Coupling of interface kinetics and transformation-induced strain during pressure-induced solid solid phase changes

    NASA Astrophysics Data System (ADS)

    Morris, S. J. S.

    2002-07-01

    Kubo et al. (Science 281 (1998b) 85) show that during the pressure-induced transformation of single crystal cubes of San Carlos olivine to its dense spinel phase, interface kinetics and transformation-induced strain are coupled. In experiments at common applied temperature and pressure, they find that conversion of an anhydrous sample stops after the formation of a spinel rim, whereas samples in which creep is accelerated by hydration convert completely. To model those experiments, we analyse a solid-solid phase change in a sphere of rheologically isotropic Maxwell solid with elastic rigidity μ and viscosity η; the sample surface is kept at a constant pressure P+ ΔP exceeding the coexistence pressure P. We take the high-pressure phase of density ρ+Δ ρ to have nucleated as a negligibly thin shell coating the sample, and predict the subsequent growth of that shell into the core of low-pressure phase of density ρ. The process is determined by the equations of motion for the phases, the interfacial jump conditions, and a kinetic equation relating the phase interface speed d R/d t to the difference between the core pressure P( t), and P. The problem reduces to a pair of differential equations for P( t) and R( t) whose solution depends on two parameters. One, ɛ= ΔP/(μ Δρ/ρ) , depends only on known properties, but the other τ= tK/ tη depends on the ratio of the time-scale tK set by kinetics to the unknown scale tη set by creep. The set of behaviours seen in experiments is displayed by the model as τ is varied from zero to infinity, and the data can be fitted by adjusting τ. For one case, the effective viscosity of the spinel rim can be estimated from this fit; the transformation is thus used as rheometer, as first proposed by Morris (Proc. R. Soc. London A 436 (1992) 203). Transformations that stop on the laboratory time-scale correspond to the case τ→0, in which tK≪ tη. The solution then has an inner and outer structure in time. On the fast scale

  1. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Kim, Jaegil; Farrell, James D.; Wales, David J.; Straub, John E.

    2014-11-01

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  2. Rheology of sludge from double phase anaerobic digestion of organic fraction of municipal solid waste.

    PubMed

    Battistoni, P; Pavan, P; Mata-Alvarez, J; Prisciandaro, M; Cecchi, F

    2000-01-01

    In this paper experimental results on the anaerobic digestion of sewage sludge and organic fraction of municipal solid waste (OFMSW) by using a double phase process are reported. The long-term experiment has been carried out on a pilot scale plant, performed in different sets of operative conditions, during which granulometric distributions of particles in sludges and rheological properties of sludges were monitored. A significant fluidification of sludge was evidenced in the meso-thermo process, especially taking into account the variation in sludge behaviour from the first to the second phase. In the thermo-thermo process a fluidification higher than that shown in meso-thermo conditions is not observed, this suggesting that better results in terms of sludge conditioning can be obtained in a long time spent in thermophilic anaerobic digestion. Total volatile solids (TVS) and total fixed solids (TFS) become the most important parameters when mathematical modelling is applied to these processes. In the acidogenic phase, hydraulic retention time (HRT) and temperature are used to determine rigidity coefficient (RC), while only temperature is needed for yield stress (YC). Organic loading rate (OLR) and specific gas production (SGP) exert an important role in methanogenic phase description.

  3. Phase Pattern of Barium Strontium Titanate System and Dielectric Responses of Its Solid Solutions

    NASA Astrophysics Data System (ADS)

    Sadykov, Kh. A.; Verbenko, I. A.; Reznichenko, L. A.; Pavelko, A. A.; Shilkina, L. A.; Konstantinov, G. M.; Abubakarov, A. G.; Shevtsova, S. I.; Pavlenko, A. V.; Khasbulatov, S. V.

    2017-04-01

    Samples of solid solutions of the system Ba1- x Sr x TiO3 (0 ≤ x ≤1.0) are produced by solid-phase synthesis followed by sintering using conventional ceramic technology. Their crystal structure and grain structure are studied at room temperature and dielectric properties - in a wide range of external influences (temperature and frequency of the alternating electric field). Based on these results, the state diagram of the system is constructed including three single-phase fields with different-symmetry (tetragonal, pseudocubic, and cubic) and two morphotropic fields with coexistence of the tetragonal and pseudocubic, pseudocubic and cubic phases. Peculiarities of the grain landscape associated with the formation of morphotropic areas and melting of barium hydroxide are revealed. The dependence of the dielectric properties of solid solutions on their crystal-chemical specifics and position in the phase diagram of the system is demonstrated. A conclusion is made about the possibility of using the compositions with x = 0.2 to create materials with high dielectric constants promising for applications in microelectronics.

  4. The isolation of soyasaponins by fractional precipitation, solid phase extraction, and low pressure liquid chromatography.

    PubMed

    Gurfinkel, D M; Reynolds, W F; Rao, A V

    2005-11-01

    Bioactive soyasaponins are present in soybean (Glycine max). In this study, the isolation of soyasaponins in relatively pure form (>80%) using precipitation, solid phase extraction and reverse phase low pressure liquid chromatography (RP-LPLC) is described. Soy flour soyasaponins were separated from non-saponins by methanol extraction and precipitation with ammonium sulphate. Acetylated group A soyasaponins were isolated first by solid phase extraction followed by RP-LPLC (solvent: ethanol-water). Soyasaponins, from a commercial preparation, were saponified and fractionated into deacetylated group A and group B soyasaponins by solid phase extraction (methanol-water). Partial hydrolysis of group B soyasaponins produced a mixture of soyasaponin III and soyasapogenol B monoglucuronide. RP-LPLC of deacetylated group A soyasaponins separated soyasaponin A1 and A2 (38% methanol); of group B soyasaponins isolated soyasaponin I (50% ethanol); and of the partial hydrolysate separated soyasaponin III from soyasapogenol B monoglucuronide (50% ethanol). This methodology provides soyasaponin fractions that are suitable for biological evaluation.

  5. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    SciTech Connect

    Lu, Qing; Kim, Jaegil; Straub, John E.; Farrell, James D.; Wales, David J.

    2014-11-14

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  6. Electron Shuttling Capacity of Solid-Phase Organic Matter in Forest Soils

    NASA Astrophysics Data System (ADS)

    Patel, A.; Zhao, Q.; Yang, Y.

    2015-12-01

    Soil organic matter, as an electron shuttle, plays an important role in regulating the biogeochemical cycles of metals, especially the redox reactions for iron. Microorganisms can reduce soil organic matter under anaerobic conditions, and biotically-reduced soil organic matter can abiotically donate electrons to ferric oxides. Such soil organic matter-mediated electron transport can facilitate the interactions between microorganisms and insoluble terminal electron acceptors, i.e. iron minerals. Most previous studies have been focused on the electron shuttling processes through dissolved soil organic matter, and scant information is available for solid-phase soil organic matter. In this study, we aim to quantify the electron accepting capacity for solid-phase organic matter in soils collected from four different forests in the United States, including Truckee (CA), Little Valley (NV), Howland (ME) and Hart (MI). We used Shewanella oneidensisMR-1 to biotically reduce soil slurries, and then quantified the electrons transferred to solid-phase and solution-phase organic matter by reacting them with Fe(III)-nitrilotriacetic acid (Fe(III)-NTA). The generation of Fe(II) was measured by a ferrozine assay to calculate the electron accepting capacity of soil organic matter. Our preliminary results showed that the Truckee soil organic matter can accept 0.51±0.07 mM e-/mol carbon. We will measure the electron accepting capacity for four different soils and correlate them to the physicochemical properties of soils. Potential results will provide information about the electron accepting capacity of solid-phase soil organic matter and its governing factors, with broad implication on the coupled biogeochemical cycles of carbon and iron.

  7. The Role of Biogeochemical Dynamics in the Alteration of Uranium Solid Phases Under Oxic Conditions.

    NASA Astrophysics Data System (ADS)

    Letain, T. E.; Silva, R. J.; Nitsche, H.; Nitsche, H.; Hazen, T. C.; Clark, S. B.; Douglas, M.; Gillaspie, C.; Knopp, R.; Panak, P. J.

    2001-12-01

    Microbial reduction of uranium has been shown to lower groundwater concentrations of uranium in anoxic systems, but such biological alterations must be considered temporary unless long-term anoxia can be guaranteed. Under oxic conditions, the more soluble higher oxidation state of uranium, e.g. the uranyl cation UO2(2+), is thermodynamically favored. For example, in U ore deposits in which uraninite - consisting of reduced U(IV) as UO(2+x) - is the parent material, exposure to oxidizing conditions results in alteration to U(VI) minerals, with the U(VI)-phosphates frequently defining the boundaries of the ore body. U(VI)-phosphates are of interest because of their relatively low solubilities compared to other U(VI) solid phases. Since microorganisms are undoubtedly present in such ore deposits, they likely play a role in the formation of U(VI)-phosphate solid phases. To assist the U.S. Department of Energy (DOE) with long-term stewardship issues associated with bioremediation of uranium, the overall goal of this project is to work with model biological systems to define the mechanisms by which microorganisms facilitate the formation of U(VI)-phosphate solid phases. This information can then be used by DOE to design remediation systems that stimulate biological activity to favor the formation of U(VI)-phosphate phases. In this project, we are investigating the role of some individual bacterial strains (Bacillus sphaericus and Shewanella putrefaciens) as well as microbial consortia isolated from the NABIR Field Research Center at Oak Ridge National Laboratory on the alteration of U(VI) solid phases. These strains were selected to reflect a variety of subsurface conditions including aerobic, microaerophilic, and episodically anaerobic. These bacteria or similar species are found throughout subsurface environments. They are believed to influence actinide geochemistry through various mechanisms. These mechanisms are not independent of one another, and together they

  8. Deformability of adsorbents during adsorption and principles of the thermodynamics of solid-phase systems

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-09-01

    A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert (including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilibrium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be determined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2) two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.

  9. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    DOEpatents

    Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  10. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    NASA Astrophysics Data System (ADS)

    Blair, D. S.; Frye, G. C.; Hughes, R. C.; Martin, S. J.; Ricco, A. J.

    1990-05-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material in contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  11. Radioactivity concentration in liquid and solid phases of scale and sludge generated in the petroleum industry.

    PubMed

    Paranhos Gazineu, Maria Helena; de Araújo, Andressa Arruda; Brandão, Yana Batista; Hazin, Clovis Abrahão; de O Godoy, José Marcos

    2005-01-01

    Scales and sludge generated during oil extraction and production can contain uranium, thorium, radium and other natural radionuclides, which can cause exposure of maintenance personnel. This work shows how the oil content can influence the results of measurements of radionuclide concentration in scale and sludge. Samples were taken from a PETROBRAS unit in Northeast Brazil. They were collected directly from the inner surface of water pipes or from barrels stored in the waste storage area of the E&P unit. The oil was separated from the solids with a Soxhlet extractor by using aguarras at 90+/-5 degrees C as solvent. Concentrations of 226Ra and 228Ra in the samples were determined before and after oil extraction by using an HPGe gamma spectrometric system. The results showed an increase in the radionuclide concentration in the solid (dry) phase, indicating that the above radionuclides concentrate mostly in the solid material.

  12. Phase Transitions in Solids Stimulated by Simultaneous Exposure to High Pressure and Relativistic Heavy Ions

    SciTech Connect

    Glasmacher, Ulrich A.; Lang, Maik; Neumann, Reinhard; Schardt, Dieter; Trautmann, Christina; Keppler, Hans; Langenhorst, Falko; Wagner, Guenther A.

    2006-05-19

    In many solids, heavy ions of high kinetic energy (MeV-GeV) produce long cylindrical damage trails with diameters of order 10 nm. Up to now, no information was available how solids cope with the simultaneous exposure to these energetic projectiles and to high pressure. We report the first experiments where relativistic uranium and gold ions from the SIS heavy-ion synchrotron at GSI were injected through several mm of diamond into solid samples pressurized up to 14 GPa in a diamond anvil cell. In synthetic graphite and natural zircon, the combination of pressure and ion beams triggered drastic structural changes not caused by the applied pressure or the ions alone. The modifications comprise long-range amorphization of graphite rather than individual track formation, and in the case of zircon the decomposition into nanocrystals and nucleation of the high-pressure phase reidite.

  13. Solid-state NMR identification and quantification of newly formed aluminosilicate phases in weathered kaolinite systems.

    PubMed

    Crosson, Garry S; Choi, Sunkyung; Chorover, Jon; Amistadi, Mary Kay; O'Day, Peggy A; Mueller, Karl T

    2006-01-19

    The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3-, 1 mol kg-1 of OH-, and pH approximately 13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10(-3), 10(-4), and 10(-5) molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10(-5) m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10(-3) m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and

  14. Solid-State NMR Identification and Quantification of Newly Formed Aluminosilicate Phases in Weathered Kaolinite Systems

    SciTech Connect

    Crosson, Garry S.; Choi, Sunkyung; Chorover, Jon; Amistadi, Mary K.; O'Day, Peggy A.; Mueller, Karl T.

    2006-01-19

    The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3 -, 1 mol kg-1 of OH-, and pH ~13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10-3, 10-4, and 10-5 molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10-5 m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10-3 m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative

  15. Solid phase extraction and liquid chromatographic determination of sildenafil and N-demethylsildenafil in rat serum with basic mobile phase.

    PubMed

    Guermouche, M H; Bensalah, K

    2006-03-03

    HPLC method for the determination of sildenafil and its metabolite (N-demethylsildenafil) in rat serum has been developed. The technique included a solid phase extraction of the serum samples on a [poly(divinylbenzene-co-N-vinylpyrrolidone)] solid phase extraction sorbent. After conditioning, the cartridge was loaded with 0.5 mL of buffered serum containing internal standard. Elution was made with 1 mL of acetonitrile. After evaporation of the eluates to dryness and reconstitution with methanol, the samples were analyzed on Kromasil C18 column phase with phosphate buffer 0.05 M/acetonitrile: 54/46, pH 8. Detection was carried out using a photodiode array detector. For sildenafil and demethylsildenafil, full validation of the proposed method was provided (linearity range, calibration curves, average extraction efficiency; average intra-day and interday variabilities, limit of detection, limit of quantification, specificity). The proposed method was successfully utilised to quantify sildenafil and N-demethylsidenafil in rat serum for a pharmacokinetic study.

  16. SOLID PHASE CHARACTERIZATION OF HEEL SAMPLES FROM TANK 241-C-110

    SciTech Connect

    PAGE JS; COOKE GA; PESTOVICH JA; HUBER HJ

    2011-12-01

    During sluicing operations of tank 241-C-110, a significant amount of solids were unable to be retrieved. These solids (often referred to as the tank 'heel') were sampled in 2010 and chemically and mineralogically analyzed in the 222-S Laboratory. Additionally, dissolution tests were performed to identify the amount of undissolvable material after using multiple water contacts. This report covers the solid phase characterization of six samples from these tests using scanning electron microscopy, polarized light microscopy, and X-ray diffraction. The chemical analyses, particle size distribution analysis, and dissolution test results are reported separately. Two of the samples were from composites created from as-received material - Composite A and Composite B. The main phase in these samples was sodium-fluoride-phosphate hydrate (natrophosphate) - in the X-ray diffraction spectra, this phase was the only phase identifiable. Polarized light microscopy showed the presence of minor amounts of gibbsite and other phases. These phases were identified by scanning electron microscopy - energy dispersive X-ray spectroscopy as sodium aluminosilicates, sodium diuranate, and sodium strontium phosphate hydrate (nastrophite) crystals. The natrophosphate crystals in the scanning electron microscopy analysis showed a variety of erosive and dissolution features from perfectly shaped octahedral to well-rounded appearance. Two samples were from water-washed Composites A and B, with no change in mineralogy compared to the as-received samples. This is not surprising, since the water wash had only a short period of water contact with the material as opposed to the water dissolution tests. The last two samples were residual solids from the water dissolution tests. These tests included multiple additions of water at 15 C and 45 C. The samples were sieved to separate a coarser fraction of > 710 {mu}m and a finer fraction of < 710 {mu}m. These two fractions were analyzed separately. The

  17. Identification of phase separation in solid dispersions of itraconazole and Eudragit E100 using microthermal analysis.

    PubMed

    Six, Karel; Murphy, John; Weuts, Ilse; Craig, Duncan Q M; Verreck, Geert; Peeters, Jef; Brewster, Marcus; Van den Mooter, Guy

    2003-01-01

    To evaluate the phase separation in itraconazole/Eudragit E100 solid dispersions prepared by hot-stage extrusion. Extrudates were prepared using a corotating twin-screw extruder at 180 degrees C. Micro-TA was used to evaluate the phase separation, where the AFM mode is used to visualize the different phases and local thermal analysis (LTA) to characterize the different phases Itraconazole formed a homogeneous mixture with Eudragit E100 with drug concentrations up to approximately 20%. Above this concentration, phase separation was observed. MTDSC revealed two Tgs and the mesophase of free glassy itraconazole. Performing micro-TA on the surface of these dispersions indicated an increase in sample roughness in the z-axis piezo signal, which could be an indication of free glassy itraconazole. However, thermal conductivity did not reveal differences between separate phases. Performing LTA, where only a small area (20 x 20 microm) is heated, showed two separate and mixed phases of itraconazole and Eudragit E100. Tip penetration in itraconazole and Eudragit E100 occurred at 332K and 383K respectively. The difference in tip penetration was explained in terms of the difference in fragility. Micro-TA makes it possible to characterize separate phases of itraconazole and Eudragit E100, thereby confirming the MTDSC results on phase separation.

  18. Double-antibody solid-phase radioimmunoassay: a simplified phase-separation procedure applied to various ligands

    SciTech Connect

    Tevaarwerk, G.J.M.; Boyle, D.A.; Hurst, C.J.; Anguish, I.; Uksik, P.

    1980-06-01

    The purpose was to develop a simplified and reliable method of separating free from antibody-bound ligand using a precipitating antibody linked to a cellulose derivative. Dose-response curves and control sera were set up in parallel for various pituitary and placental polypeptides, steroid hormones, insulin, glucagon, triiodothyronine, thyroxine, angiotensin I, calcitonin, gastrin, cyclic AMP, and digoxin. After first-antibody reactions had reached equilibrium, free and bound ligand were separated using a double-antibody solid-phase system in parallel with conventional methods, including dextran-coated charcoal, double-antibody precipitation, single-antibody solid phase, organic solvents, salt precipitation, and anion-exchange resins. The effect of variations in temperature, incubation time, protein content, pH, and amount of separating material added were studied. The results showed that separation was complete within 1 hr for small ligand molecules and within 2 hr for larger ones. Dose-response curves and control-sera results closely paralleled those obtained with conventional methods. The method was not affected by moderate variations in incubation variables. Nonspecific binding was less than 3% in all assays, while intra-assay and interassay coefficients of variation were similar to those obtained with conventional phase-separation methods. It is concluded that the method is a simple and rapid alternative phase-separation system. It has the advantage of being free from common nonspecific intersample variations, and can be applied to any assay system based on rabbit or guinea pig antibodies without preliminay time- or reagent-consuming titration or adjustments to establish optimum phase-separating conditions.

  19. Quantitation of Binding, Recovery and Desalting Efficiency in Solid Phase Extraction Micropipette Tips

    SciTech Connect

    Palmblad, M N; Vogel, J S

    2004-08-02

    Micropipette-tip solid phase extraction systems are common in proteomic analyses for desalting and concentrating samples for mass spectrometry, removing interferences, and increasing sensitivity. These systems are inexpensive, disposable, and highly efficient. Here we show micropipette-tip solid phase extraction is a direct sample preparation method for {sup 14}C-accelerator mass spectrometry (AMS), removing salts or reagent from labeled macromolecules. We compared loading, recovery and desalting efficiency in commercially available SPE micro-tips using {sup 14}C-labeled peptides and proteins, AMS, and alpha spectrometry ion energy loss quantitation. The polypropylene in the tips was nearly {sup 14}C-free and simultaneously provided low-background carrier for AMS. The silica material did not interfere with the analysis. Alpha spectrometry provided an absolute measurement of desalting efficiency.

  20. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    SciTech Connect

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  1. Solid-phase synthesis of self-assembling multivalent π-conjugated peptides

    DOE PAGES

    Sanders, Allix M.; Kale, Tejaswini S.; Katz, Howard E.; ...

    2017-02-07

    Here, we present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution. The preparation of these systems via solid-phase methods will be detailed along with their self-assembly properties, asmore » revealed by steady-state spectroscopy and transmission electron microscopy and electrical characterization using field-effect transistor measurements.« less

  2. Solid-phase epitaxy of silicon amorphized by implantation of the alkali elements rubidium and cesium

    SciTech Connect

    Maier, R.; Haeublein, V.; Ryssel, H.; Voellm, H.; Feili, D.; Seidel, H.; Frey, L.

    2012-11-06

    The redistribution of implanted Rb and Cs profiles in amorphous silicon during solid-phase epitaxial recrystallization has been investigated by Rutherford backscattering spectroscopy and secondary ion mass spectroscopy. For the implantation dose used in these experiments, the alkali atoms segregate at the a-Si/c-Si interface during annealing resulting in concentration peaks near the interface. In this way, the alkali atoms are moved towards the surface. Rutherford backscattering spectroscopy in ion channeling configuration was performed to measure average recrystallization rates of the amorphous silicon layers. Preliminary studies on the influence of the alkali atoms on the solid-phase epitaxial regrowth rate reveal a strong retardation compared to the intrinsic recrystallization rate.

  3. Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases

    NASA Astrophysics Data System (ADS)

    Waldner, Peter

    2017-08-01

    All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.

  4. Possible bcc → sc phase transitions in Ca-Sr solid solutions under pressure

    NASA Astrophysics Data System (ADS)

    Pozhivatenko, V. V.

    2017-08-01

    The first-principles calculations of thermodynamic characteristics of bcc and sc structures of Ca1- x Sr x solid solutions have been carried out. Taking into account insufficient accuracy of such calculations, for the description of phase transitions, the known experimental data on bcc and sc structures of calcium and strontium have been used to determine parameters for the calculation of Ca1- x Sr x properties using linear interpolation. The possibility of the occurrence of bcc-sc structural phase transitions in Ca1- x Sr x ( x = 0.0625, 0.125, 0.25, 0.5, 0.75) solid solutions and their characteristics under different pressures have been investigated.

  5. Experimental setup for investigating silicon solid phase crystallization at high temperatures.

    PubMed

    Schmidt, Thomas; Gawlik, Annett; Schneidewind, Henrik; Ihring, Andreas; Andrä, Gudrun; Falk, Fritz

    2013-07-15

    An experimental setup is presented to measure and interpret the solid phase crystallization of amorphous silicon thin films on glass at very high temperatures of about 800 °C. Molybdenum-SiO(2)-silicon film stacks were irradiated by a diode laser with a well-shaped top hat profile. From the relevant thermal and optical parameters of the system the temperature evolution can be calculated accurately. A time evolution of the laser power was applied which leads to a temperature constant in time in the center of the sample. Such a process will allow the observation and interpretation of solid phase crystallization in terms of nucleation and growth in further work.

  6. Orthogonally Protected Furanoid Sugar Diamino Acids for Solid-Phase Synthesis of Oligosaccharide Mimetics.

    PubMed

    John, Franklin; Wittmann, Valentin

    2015-08-07

    Sugar diamino acids (SDAs), which differ from the widely used sugar amino acids in the presence of a second amino group connected to the carbohydrate core, share structural features of both amino acids and carbohydrates. They can be used for the preparation of linear and branched amide-linked oligosaccharide mimetics. Such oligomers carry free amino groups, which are positively charged at neutral pH, in a spatially defined way and, thus, represent a potential class of aminoglycoside mimetics. We report here the first examples of orthogonally protected furanoid SDAs and their use in solid-phase synthesis. Starting from d-glucose, we developed a divergent synthetic route to three derivatives of 3,5-diamino-3,5-dideoxy-d-ribofuranose. These building blocks are compatible with solid-phase peptide synthesis following the 9-fluorenylmethoxycarbonyl (Fmoc) strategy, which we demonstrate by the synthesis of an SDA tetramer.

  7. Nonspiking ohmic contact to p-GaAs by solid-phase regrowth

    NASA Astrophysics Data System (ADS)

    Han, C. C.; Wang, X. Z.; Wang, L. C.; Marshall, E. D.; Lau, S. S.; Schwarz, S. A.; Palmstrøm, C. J.; Harbison, J. P.; Florez, L. T.; Potemski, R. M.; Tischler, M. A.; Kuech, T. F.

    1990-12-01

    A low-resistance and nonspiking contact consisting of a layered structure of Si/Ni(Mg) on p-GaAs is formed by solid-phase regrowth. Backside secondary-ion mass spectrometry and cross-sectional transmission electron microscopy show an initial reaction between Ni and GaAs to form NixGaAs which is later decomposed to form NiSi by reacting with the Si overlayer. This reaction leads to the solid-phase epitaxial regrowth of a p+ -GaAs layer doped with Mg. The total consumption of substrate is limited to a few hundred angstroms. The as-formed ohmic contact structure is uniform and planar with an average specific contact resistivity of ˜7×10-7 Ω cm2 on substrates doped to 8×1018 cm-3. The thermal stability of this contact scheme is also reported.

  8. Solid-phase antibody capture hemadsorption assay for detection of hepatitis A virus immunoglobulin M antibodies.

    PubMed Central

    Summers, P L; Dubois, D R; Cohen, W H; Macarthy, P O; Binn, L N; Sjogren, M H; Snitbhan, R; Innis, B L; Eckels, K H

    1993-01-01

    A solid-phase antibody capture hemadsorption (SPACH) assay was developed to detect hepatitis A virus (HAV)-specific immunoglobulin M (IgM) antibodies in sera from humans recently infected with hepatitis. The assay is performed with microtiter plates coated with anti-human IgM antibodies to capture IgM antibodies from the test sera. HAV-specific IgM antibody is detected by the addition of HAV hemagglutinating antigen and goose erythrocytes. Hemadsorption of erythrocytes to antigen-antibody complexes attached to the solid phase indicate the presence of IgM antibodies. The SPACH assay was compared to a commercial radioimmunoassay and was found to be equally or more sensitive and specific for the detection of HAV IgM antibodies. The SPACH assay is an alternative, rapid assay that doesn't require hazardous substrates or radioactivity for the detection of HAV-specific antibodies. PMID:8388890

  9. Solid phase graft copolymerization of acrylic monomers onto thermoplastics and their use as blend compatibilizers

    NASA Astrophysics Data System (ADS)

    Subramanian, Srinivas

    This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to

  10. Solid-phase assay of lectin activity using HRP-conjugated glycoproteins.

    PubMed

    Kojima-Aikawa, Kyoko

    2014-01-01

    Various enzyme-conjugated probes have been widely used for detection of specific interactions between biomolecules. In the case of glycan-protein interaction, horseradish peroxidase (HRP)-conjugated glycoproteins (HRP-GPs) are useful for the detection of carbohydrate-binding activity of plant and animal lectins. In this chapter, a typical solid-phase assay of the carbohydrate-binding activity of Sophora japonica agglutinin I, a Gal/GalNAc-specific lectin, using HRP-conjugated asialofetuin is described. HRP-GPs are versatile tools for probing lectin activities in crude extracts, screening many samples at one time, and applicable not only for solid-phase binding assays but also samples which are dot- or Western-blotted onto the membrane.

  11. Solid-phase extraction using hierarchical organosilicates for enhanced detection of nitroenergetic targets.

    PubMed

    Johnson, Brandy J; Melde, Brian J; Leska, Iwona A; Charles, Paul T; Hewitt, Alan D

    2011-05-01

    A novel porous organosilicate material was evaluated for application as a solid phase extraction sorbent for preconcentration of nitroenergetic targets from aqueous solution prior to HPLC analysis. The performance of the sorbent in spiked deionized water, groundwater, and surface water was evaluated. Targets considered included 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, RDX, HMX, and nitroglycerin. The sorbent was shown to provide improved performance over Sep-Pak RDX. The impact of complex matrices on target preconcentration by the sorbent was also found to be less dramatic than that observed for LiChrolut EN. The impact of changes in pH on target preconcentration was considered. Aqueous soil extracts generated from samples collected at sites of ordnance testing were also used to evaluate the materials. The results presented here demonstrate the potential of this novel sorbent for application as a solid phase extraction material for the preconcentration of nitroenergetic targets from aqueous solutions.

  12. Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials.

    PubMed

    Gao, Jun; Manard, Benjamin T; Castro, Alonso; Montoya, Dennis P; Xu, Ning; Chamberlin, Rebecca M

    2017-05-15

    Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of nine materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. The microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.

  13. Investigation of phase diagrams and physical stability of drug-polymer solid dispersions.

    PubMed

    Lu, Jiannan; Shah, Sejal; Jo, Seongbong; Majumdar, Soumyajit; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Repka, Michael A

    2015-01-01

    Solid dispersion technology has been widely explored to improve the solubility and bioavailability of poorly water-soluble compounds. One of the critical drawbacks associated with this technology is the lack of physical stability, i.e. the solid dispersion would undergo recrystallization or phase separation thus limiting a product's shelf life. In the current study, the melting point depression method was utilized to construct a complete phase diagram for felodipine (FEL)-Soluplus® (SOL) and ketoconazole (KTZ)-Soluplus® (SOL) binary systems, respectively, based on the Flory-Huggins theory. The miscibility or solubility of the two compounds in SOL was also determined. The Flory-Huggins interaction parameter χ values of both systems were calculated as positive at room temperature (25 °C), indicating either compound was miscible with SOL. In addition, the glass transition temperatures of both solid dispersion systems were theoretically predicted using three empirical equations and compared with the practical values. Furthermore, the FEL-SOL solid dispersions were subjected to accelerated stability studies for up to 3 months.

  14. Molecular simulation of homogeneous crystal nucleation of AB2 solid phase from a binary hard sphere mixture

    NASA Astrophysics Data System (ADS)

    Bommineni, Praveen Kumar; Punnathanam, Sudeep N.

    2017-08-01

    Co-crystal formation from fluid-mixtures is quite common in a large number of systems. The simplest systems that show co-crystal (also called substitutionally ordered solids) formation are binary hard sphere mixtures. In this work, we study the nucleation of AB2 type solid compounds using Monte Carlo molecular simulations in binary hard sphere mixtures with the size ratio of 0.55. The conditions chosen for the study lie in the region where nucleation of an AB2 type solid competes with that of a pure A solid with a face-centered-cubic structure. The fluid phase composition is kept equal to that of the AB2 type solid. The nucleation free-energy barriers are computed using the seeding technique of Sanz et al. [J. Am. Chem. Soc. 135, 15008 (2013)]. Our simulation results show that the nucleation of the AB2 type solid is favored even under conditions where the pure A solid is more stable. This is primarily due to the similarity in the composition of the fluid phase and the AB2 type solid which in turn leads to much lower interfacial tension between the crystal nucleus and the fluid phase. This system is an example of how the fluid phase composition affects the structure of the nucleating solid phase during crystallization and has relevance to crystal polymorphism during crystallization processes.

  15. Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling

    NASA Astrophysics Data System (ADS)

    Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob

    2016-04-01

    The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.

  16. Novel alpha-hydroxyethyl-polystyrene, alpha-chloroethyl-polystyrene and alpha-amino-oxyethyl-polystyrene linkers on the Multipin solid support for solid-phase organic synthesis.

    PubMed

    Bui, C T; Maeji, N J; Bray, A M

    A simple method for the generation of three novel linkers, alpha-hydroxyethyl-polystyrene, alpha-chloroethyl-polystyrene and alpha-amino-oxyethyl-polystyrene on Multipin supports (SynPhase Crowns) has been developed. Applications of these linkers have been successfully demonstrated for solid-phase synthesis of dipeptide, oxime, and hydroxamic acid compounds in good yields and purities.

  17. R. Bruce Merrifield and Solid-Phase Peptide Synthesis: A Historical Assessment

    SciTech Connect

    Mitchell, A R

    2007-12-04

    Bruce Merrifield, trained as a biochemist, had to address three major challenges related to the development and acceptance of solid-phase peptide synthesis (SPPS). The challenges were (1) to reduce the concept of peptide synthesis on a insoluble support to practice, (2) overcome the resistance of synthetic chemists to this novel approach, and (3) establish that a biochemist had the scientific credentials to effect the proposed revolutionary change in chemical synthesis. How these challenges were met is discussed in this article.

  18. Numerical study of light-induced phase behavior of smectic solids

    NASA Astrophysics Data System (ADS)

    Chung, Hayoung; Park, Jaesung; Cho, Maenghyo

    2016-10-01

    By the chemical cross-linking of rigid molecules, liquid crystal polymer (LCP) has been envisaged as a novel heterogeneous material due to the fact that various optical and geometric states of the liquid crystalline (LC) phases are projected onto the polymeric constituents. The phase behavior, which refers to the macroscopic shape change of LCP under thermotropic phase change, is a compelling example of such optical-mechanical coupling. In this study, the photomechanical behavior, which broadly refers to the thermal- or light-induced actuation of smectic solids, is investigated using three-dimensional nonlinear finite element analysis (FEA). First, the various phases of LC are considered as well as their relation to polymeric conformation defined by the strain energy of the smectic polymer; a comprehensive constitutive equation that bridges the strong, optomechanical coupling is then derived. Such photomechanical coupling is incorporated in the FEA considering geometric nonlinearity, which is vital to understanding the large-scale light-induced bending behavior of the smectic solid.To demonstrate the simulation capability of the present model, numerous examples of photomechanical deformations are investigated parametrically, either by changing the operating conditions such as stimuli (postsynthesis) or the intrinsic properties (presynthesis). When compared to nematic solids, distinguished behaviors due to smectic substances are found herein and discussed through experiments. The quasisoftness that bidirectionally couples microscopic variables to mechanical behavior is also explained, while considering the effect of nonlinearity. In addition to providing a comprehensive measure that could deepen the knowledge of photomechanical coupling, the use of the proposed finite element framework offers an insight into the design of light-responsive actuating systems made of smectic solids.

  19. Visual monitoring of solid-phase extraction using chromogenic fluorous synthesis supports.

    PubMed

    Blackburn, Christopher

    2012-03-12

    Reductive aminations and further transformations of an azo dye and fluorous tagged aldehyde are described. The intensely colored 2,4-dialkoxybenzyl protected amines undergo Fmoc-based peptide coupling, Suzuki reactions, and sulfonamide formation with product isolation facilitated by visual monitoring of fluorous solid phase extraction. Target compounds are released from the supports in high yields and purities by treatment with trifluoroacetic acid (TFA).

  20. [Advances of solid-phase microextraction and current status of application in food analysis].

    PubMed

    Hu, Guodong

    2009-01-01

    Solid-phase microextraction (SPME) has been widely used as a sample preparation technique in current chromatography. SPME integrates extraction, concentration, desorption and injection in one step, which is highly sensitive and easy to operate. This review briefly introduces the evolution of the coating, equipment and corresponding techniques of SPME in recent years. It also summarizes SPME applications in food analysis and discusses some of the common issues found in quantitative analysis.

  1. Competitive solid phase enzyme-linked immunoassay for the quantification of limonin in citrus.

    PubMed

    Jourdan, P S; Mansell, R L; Oliver, D G; Weiler, E W

    1984-04-01

    A solid-phase enzyme immunoassay for the quantitative determination of the bitter triterpene-lactone, limonin, in citrus juice samples is described. As little as 0.1 ppm of limonin can be detected. Quantitative results are available within 1 h of total assay time. The assay makes use of a limonin-alkaline phosphatase tracer of high immunoreactivity and has been semiautomated using antibody-coated polystyrene microcuvettes, a vertical light path photometer, and a forced-air microplate incubator.

  2. Solid phase microextraction analysis of B83 SLTS and Core B compatibility test units

    SciTech Connect

    Chambers, D M; Ithaca, J; King, H A; Malcolm, S

    1999-03-26

    Solid phase microextraction has permitted the efficient collection and analysis of a broad range of volatile and semivolatile compounds outgassed from materials. In 1998, we implemented a microextraction protocol at Mason and Hanger, Pantex Plant, for the analysis of weapons and compatibility test units. The chemical information that was obtained from this work is interpreted by determining the source and outgas mechanism for each compound in the weapon signature, which is a task only accomplished by analysis of material standards.

  3. Solid phase synthesis and biological evaluation of probestin as an angiogenesis inhibitor.

    PubMed

    Pathuri, Gopal; Thorpe, Jessica E; Disch, Bryan C; Bailey-Downs, Lora C; Ihnat, Michael A; Gali, Hariprasad

    2013-06-15

    Probestin is a potent aminopeptidase N (APN) inhibitor originally isolated from the bacterial culture broth. Here, we report probestin synthesis by solid phase peptide synthesis (SPPS) method and evaluated its activity to inhibit angiogenesis using a chicken embryo chorioallantoic membrane (CAM) assay and a CAM tumor xenograft model. Results from these studies demonstrate that probestin inhibits the angiogenic activity and tumor growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Standardisation of a two-site PTH immunoradiometric assay using various solid phase formats.

    PubMed

    Prasad, U V; Mohan, R Krishna; Samuel, G; Harinarayan, C V; Sivaprasad, N; Venkatesh, M

    2012-12-01

    Estimation of parathyroid hormone (PTH) levels is important in the management of metabolic bone disorders. Here we describe a simple, sensitive and specific second generation immunoradiometric assay (IRMA) to detect intact PTH levels using different solid phase matrices. Different methods for immobilization of antibodies have also been evaluated. Experiments were carried out with physical adsorption of antibodies, covalent coupling using 2 per cent glutaraldehyde and N,N`carbonyldiimidazole. In all cases, antibodies raised against C-terminal were used as solid phase agent. Detector antibodies were N terminal antibodies that were radio-iodinated with [125] I followed by gel purification. Several of the antibodies coupled to various solid phase matrices were incubated with PTH standards and the detector antibody as well as the commercially available tracer from DiaSorin kit to identify a suitable match pair. The best pair was polyclonal C-terminal PTH antibody along with the kit tracer from DiaSorin with regards to antibody coated to magnetic cellulose particles. Among the various antibodies and the solid phases evaluated, the best assay was obtained with the matched pair of antibodies (70×G67 and 70×G68) from Fitzgerald immobilized on polystyrene tubes. The polyclonal antibody against C-terminal PTH was chosen as the capture antibody and [125] I labelled polyclonal antibody against N-terminal PTH as the tracer. The sample values obtained in the antibody coated tubes were comparable to those obtained using a commercial kit. The results indicated the feasibility of adopting this system for further development into a PTH IRMA for regular production as there is no indigenous kit available for intact PTH.

  5. Model of cohesive properties and structural phase transitions in non-metallic solids

    SciTech Connect

    Majewski, J.A.; Vogl, P.

    1986-01-01

    We have developed a simple, yet microscopic and universal model for cohesive properties of solids. This model explains the physical mechanisms determining the chemical and predicts semiquantitatively static and dynamic cohesive properties. It predicts a substantial softening of the long-wavelength transverse optical phonons across the pressure induced phase transition from the zincblenda to rocksalt structure in II-VI compounds. The origin of this softening is shown to be closely related to ferroelectricity.

  6. [An improved solid phase synthesis of human proinsulin C-peptide].

    PubMed

    Shi, Jia-Hao; Li, Jiang; Ju, Cai-E; Cui, Da-Fu

    2003-10-01

    Human proinsulin C-peptide with C-terminal glutamine amide could be prepared through solid phase method by combining the gamma-carboxyl group of glutamic acid with the amino group of MBHA resin. The protecting groups were cleaved by HF. MBHA resin is relatively inexpensive. The new method is another way for the preparation of human proinsulin C-peptide. The preparation human proinsulin C-peptide of analogue using of PAM resin was also reported.

  7. Application of solid-phase microextraction to the analysis of volatile compounds in virgin olive oils.

    PubMed

    Jiménez, A; Beltrán, G; Aguilera, M P

    2004-03-05

    Solid-phase microextraction was used as a technique for headspace sampling of extra virgin olive oil and virgin olive oil samples with different off-flavours. A 100 microm coated polydimethylsiloxane fiber was used to extract volatile aldehydes, the sampling temperature was 45 degrees C and the fiber has been exposed to the headspace for 15 min. Nonanal and 2-decenal were present in all the olive oils with extraction off-flavours but were not in extra virgin olive oil sample.

  8. Numerical simulation study on gas solid two-phase flow in pre-calciner

    NASA Astrophysics Data System (ADS)

    Hu, Zhijuan; Lu, Jidong; Huang, Lai; Wang, Shijie

    2006-06-01

    A three-dimensional numerical simulation of DD (dual combustion and denitratior process) pre-calciner for cement production was conducted in this paper. In Euler coordinate system, the fluid phase is expressed with RNG k- ɛ two-equation model and the solid phase is expressed with particle stochastic trajectory model in Lagrange coordinate system. Four mixture fractions are deduced in this article to simulate the gas compositions. The results of numerical simulation predicted the burn-out ratio of coal and the decomposition ratio of limestone particles along with particle trajectories. It also supplied theoretical foundation for industrial analysis of the coupling relation between coal combustion and calcium carbonate decomposition.

  9. The role of energetic processing on solid-phase chemistry in star forming regions

    NASA Astrophysics Data System (ADS)

    Palumbo, M. E.; Urso, R. G.; Kaňuchová, Z.; Scirè, C.; Accolla, M.; Baratta, G. A.; Strazzulla, G.

    2016-05-01

    It is generally accepted that complex molecules observed in star forming regions are formed in the solid phase on icy grain mantles and are released to the gas-phase after desorption of icy mantles. Most of our knowledge on the physical and chemical properties of ices in star forming regions is based on the comparison between observations and laboratory experiments performed at low temperature (10-100 K). Here we present some recent laboratory experiments which show the formation of (complex) molecular species after ion bombardment of simple ices.

  10. Anisotropic solid-liquid interface kinetics in silicon: an atomistically informed phase-field model

    NASA Astrophysics Data System (ADS)

    Bergmann, S.; Albe, K.; Flegel, E.; Barragan-Yani, D. A.; Wagner, B.

    2017-09-01

    We present an atomistically informed parametrization of a phase-field model for describing the anisotropic mobility of liquid-solid interfaces in silicon. The model is derived from a consistent set of atomistic data and thus allows to directly link molecular dynamics and phase field simulations. Expressions for the free energy density, the interfacial energy and the temperature and orientation dependent interface mobility are systematically fitted to data from molecular dynamics simulations based on the Stillinger-Weber interatomic potential. The temperature-dependent interface velocity follows a Vogel-Fulcher type behavior and allows to properly account for the dynamics in the undercooled melt.

  11. Diffusionless phase transition with two order parameters in spin-crossover solids

    NASA Astrophysics Data System (ADS)

    Gudyma, Iurii; Ivashko, Victor; Linares, Jorge

    2014-11-01

    The quantitative analysis of the interface boundary motion between high-spin and low-spin phases is presented. The nonlinear effect of the switching front rate on the temperature is shown. A compressible model of spin-crossover solid is studied in the framework of the Ising-like model with two-order parameters under statistical approach, where the effect of elastic strain on interaction integral is considered. These considerations led to examination of the relation between the order parameters during temperature changes. Starting from the phenomenological Hamiltonian, entropy has been derived using the mean field approach. Finally, the phase diagram, which characterizes the system, is numerically analyzed.

  12. Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics

    NASA Astrophysics Data System (ADS)

    Brenneman, Charles A.; Ebeler, Susan E.

    1999-12-01

    We describe a simple laboratory experiment that demonstrates the principles of chromatographic separation using solid-phase extraction columns and red wine. By adjusting pH and mobile phase composition, the wine is separated into three fractions of differing polarity. The content of each fraction can be monitored by UV-vis spectroscopy. When the experiment is combined with experiments involving HPLC or GC separations, students gain a greater appreciation for and understanding of the highly automated instrumental systems currently available. In addition, they learn about the chemistry of polyphenolic compounds, which are present in many foods and beverages and which are receiving much attention for their potentially beneficial health effects.

  13. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    PubMed

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems.

  14. α -β and β -γ phase boundaries of solid oxygen observed by adiabatic magnetocaloric effect

    NASA Astrophysics Data System (ADS)

    Nomura, T.; Kohama, Y.; Matsuda, Y. H.; Kindo, K.; Kobayashi, T. C.

    2017-03-01

    The magnetic-field-temperature phase diagram of solid oxygen is investigated by the adiabatic magnetocaloric effect (MCE) measurement with pulsed magnetic fields. Relatively large temperature decrease with hysteresis is observed at just below the β -γ and α -β phase-transition temperatures owing to the field-induced transitions. The magnetic field dependence of these phase boundaries are obtained as Tβ γ(H ) =43.8 -1.55 ×10-3H2 K and Tα β(H ) =23.9 -0.73 ×10-3H2 K. The magnetic Clausius-Clapeyron equation quantitatively explains the H dependence of Tβ γ, but does not Tα β. The MCE curve at Tβ γ is of typical first order, while the curve at Tα β seems to have both characteristics of first- and second-order transitions. We discuss the order of the α -β phase transition and propose possible reasons for the unusual behaviors.

  15. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures.

    PubMed

    Drummond, N D; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H; López Ríos, P; Pickard, Chris J; Needs, R J

    2015-07-28

    Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases.

  16. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM.

    PubMed

    Chen, Xin; Shu, Jiapei; Chen, Qing

    2017-04-24

    Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.

  17. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Shu, Jiapei; Chen, Qing

    2017-04-01

    Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.

  18. Phase I study of afatinib combined with nintedanib in patients with advanced solid tumours

    PubMed Central

    Bahleda, Rastislav; Hollebecque, Antoine; Varga, Andrea; Gazzah, Anas; Massard, Christophe; Deutsch, Eric; Amellal, Nadia; Farace, Françoise; Ould-Kaci, Mahmoud; Roux, Flavien; Marzin, Kristell; Soria, Jean-Charles

    2015-01-01

    Background: This Phase I study evaluated continuous- and intermittent-dosing (every other week) of afatinib plus nintedanib in patients with advanced solid tumours. Methods: In the dose-escalation phase (n=45), maximum tolerated doses (MTDs) were determined for continuous/intermittent afatinib 10, 20, 30 or 40 mg once daily plus continuous nintedanib 150 or 200 mg twice daily. Secondary objectives included safety and efficacy. Clinical activity of continuous afatinib plus nintedanib at the MTD was further evaluated in an expansion phase (n=25). Results: The most frequent dose-limiting toxicities were diarrhoea (11%) and transaminase elevations (7%). Maximum tolerated doses were afatinib 30 mg continuously plus nintedanib 150 mg, and afatinib 40 mg intermittently plus nintedanib 150 mg. Treatment-related adverse events (mostly Grade ⩽3) included diarrhoea (98%), asthenia (64%), nausea (62%) and vomiting (60%). In the dose-escalation phase, two patients had partial responses (PRs) and 27 (60%) had stable disease (SD). In the expansion phase, one complete response and three PRs were observed (all non-small cell lung cancer), with SD in 13 (52%) patients. No pharmacokinetic interactions were observed. Conclusions: MTDs of continuous or intermittent afatinib plus nintedanib demonstrated a manageable safety profile with proactive management of diarrhoea. Antitumour activity was observed in patients with solid tumours. PMID:26512876

  19. Measurements on Melting Pressure, Metastable Solid Phases, and Molar Volume of Univariant Saturated Helium Mixture

    NASA Astrophysics Data System (ADS)

    Rysti, J.; Manninen, M. S.; Tuoriniemi, J.

    2014-06-01

    A concentration-saturated helium mixture at the melting pressure consists of two liquid phases and one or two solid phases. The equilibrium system is univariant, whose properties depend uniquely on temperature. Four coexisting phases can exist on singular points, which are called quadruple points. As a univariant system, the melting pressure could be used as a thermometric standard. It would provide some advantages compared to the current reference, namely pure He, especially at the lowest temperatures below 1 mK. We have extended the melting pressure measurements of the concentration-saturated helium mixture from 10 to 460 mK. The density of the dilute liquid phase was also recorded. The effect of the equilibrium crystal structure changing from hcp to bcc was clearly seen at mK at the melting pressure MPa. We observed the existence of metastable solid phases around this point. No evidence was found for the presence of another, disputed, quadruple point at around 400 mK. The experimental results agree well with our previous calculations at low temperatures, but deviate above 200 mK.

  20. High-pressure phase transitions of solid HF, HCl, and HBr: An ab initio evolutionary study

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Wang, Yanchao; Zhang, Xinxin; Ma, Yanming

    2010-07-01

    Using ab initio evolutionary methodology for structure predictions, we investigated the high-pressure phase diagram for solid-state HF, HCl, and HBr at zero temperature. The ambient-pressure chain-type Cmc21 structure and sequent high-pressure symmetric hydrogen-bonded Cmcm structure were successfully reproduced by structural simulations with the only known information of chemical compositions. We have also presented insight into the underlying mechanism of hydrogen-bond symmetrization at the Cmc21→Cmcm transformation, by analysis of electron localization functions, potential wells, and zone-center phonons with pressure. At higher pressures, it was predicted that HF transforms from the Cmcm phase to another chain-type Pnma structure at ˜143GPa while the post- Cmcm phase of HCl and HBr adopts an intriguing triclinic P1¯ structure at above 108 GPa and 59 GPa, respectively, which consists of nearly planar squares resembling the ambient phase of HI. The newly predicted high-pressure phases of these halides all contain symmetric hydrogen bonds and satisfy lattice dynamical stability. As for the earlier proposed dissociation of HBr, we found that this can only occur at rather high pressures (above 120 GPa) with the formation of monatomic Br and solid H2 .

  1. Solid-Solid Phase Transitions and tert-Butyl and Methyl Group Rotation in an Organic Solid: X-ray Diffractometry, Differential Scanning Calorimetry, and Solid-State (1)H Nuclear Spin Relaxation.

    PubMed

    Beckmann, Peter A; McGhie, Andrew R; Rheingold, Arnold L; Sloan, Gilbert J; Szewczyk, Steven T

    2017-08-24

    Using solid-state (1)H nuclear magnetic resonance (NMR) spin-lattice relaxation experiments, we have investigated the effects of several solid-solid phase transitions on tert-butyl and methyl group rotation in solid 1,3,5-tri-tert-butylbenzene. The goal is to relate the dynamics of the tert-butyl groups and their constituent methyl groups to properties of the solid determined using single-crystal X-ray diffraction and differential scanning calorimetry (DSC). On cooling, the DSC experiments see a first-order, solid-solid phase transition at either 268 or 155 K (but not both) depending on thermal history. The 155 K transition (on cooling) is identified by single-crystal X-ray diffraction to be one from a monoclinic phase (above 155 K), where the tert-butyl groups are disordered (that is, with a rotational 6-fold intermolecular potential dominating), to a triclinic phase (below 155 K), where the tert-butyl groups are ordered (that is, with a rotational 3-fold intermolecular potential dominating). This transition shows very different DSC scans when both a 4.7 mg polycrystalline sample and a 19 mg powder sample are used. The (1)H spin-lattice relaxation experiments with a much larger 0.7 g sample are very complicated and, depending on thermal history, can show hysteresis effects over many hours and over very large temperature ranges. In the high-temperature monoclinic phase, the tert-butyl groups rotate with NMR activation energies (closely related to rotational barriers) in the 17-23 kJ mol(-1) range, and the constituent methyl groups rotate with NMR activation energies in the 7-12 kJ mol(-1) range. In the low-temperature triclinic phase, the rotations of the tert-butyl groups and their methyl groups in the aromatic plane are quenched (on the NMR time scale). The two out-of-plane methyl groups in the tert-butyl groups are rotating with activation energies in the 5-11 kJ mol(-1) range.

  2. Bacterial migration and motion in a fluid phase and near a solid surface

    SciTech Connect

    Frymier, P.D. Jr.

    1995-01-01

    An understanding of the migration and motion of bacteria in a fluid phase and near solid surfaces is necessary to characterize processes such as the bioremediation of hazardous waste, the pathogenesis of infection, industrial biofouling and wastewater treatment, among others. This study addresses three questions concerning the prediction of the distribution of a population of bacteria in a fluid phase and the motion of bacteria near a solid surface: Under what conditions does a one-dimensional phenomenological model for the density of a population of chemotactic bacteria yield an adequate representation of the migration of bacteria subject to a one-dimensional attractant gradient? How are the values of transport coefficients obtained from experimental data affected by the use of the one-dimensional phenomenological model and also by the use of different descriptions of bacterial swimming behavior in a mathematically rigorous balance equation? How is the characteristic motion of bacteria swimming in a fluid affected by the presence of a solid phase? A computer simulation that rigorously models the movement of a large population of individual chemotactic bacteria in three dimensions is developed to test the validity of a one-dimensional phenomenological model for bacterial migration in a fluid.

  3. A two-fluid model for reactive dilute solid-liquid mixtures with phase changes

    NASA Astrophysics Data System (ADS)

    Reis, Martina Costa; Wang, Yongqi

    2017-03-01

    Based on the Eulerian spatial averaging theory and the Müller-Liu entropy principle, a two-fluid model for reactive dilute solid-liquid mixtures is presented. Initially, some averaging theorems and properties of average quantities are discussed and, then, averaged balance equations including interfacial source terms are postulated. Moreover, constitutive equations are proposed for a reactive dilute solid-liquid mixture, where the formation of the solid phase is due to a precipitation chemical reaction that involves ions dissolved in the liquid phase. To this end, principles of constitutive theory are used to propose linearized constitutive equations that account for diffusion, heat conduction, viscous and drag effects, and interfacial deformations. A particularity of the model is that the mass interfacial source term is regarded as an independent constitutive variable. The obtained results show that the inclusion of the mass interfacial source term into the set of independent constitutive variables permits to easily describe the phase changes associated with precipitation chemical reactions.

  4. Detection of antinuclear antibodies by indirect immunofluorescence and by solid phase assay.

    PubMed

    Op De Beeck, Katrijn; Vermeersch, Pieter; Verschueren, Patrick; Westhovens, René; Mariën, Godelieve; Blockmans, Daniel; Bossuyt, Xavier

    2011-10-01

    Testing for antinuclear antibodies is useful for the diagnosis of systemic rheumatic diseases. Solid phase assays are increasingly replacing indirect immunofluorescence for detection of antinuclear antibodies. In the most recent generation of solid phase assays, manufacturers attempt to improve the performance of the assays by adding extra antigens. Solid phase assay (EliA CTD Screen, Phadia, in which antibodies to 17 antigens are detected) was compared to indirect immunofluorescence for the detection of antinuclear antibodies in diagnostic samples of 236 patients with autoimmune connective tissue diseases, in 149 healthy blood donors, 139 patients with chronic fatigue syndrome, and 134 diseased controls. The sensitivity of EliA CTD Screen for systemic lupus erythematosus, systemic sclerosis, primary Sjögren's syndrome, mixed connective tissue disease, and inflammatory myopathy was 74%, 72%, 89%, 100%, and 39%, respectively. The reactivity in blood donors, in patients with chronic fatigue syndrome, and in diseased controls was <4%. Likelihood ratios increased with increasing antibody concentrations. Generally, a positive test result by EliA CTD Screen had a higher likelihood ratio for systemic rheumatic disease than a positive test result by indirect immunofluorescence. A negative test result by indirect immunofluorescence, however, had a lower likelihood ratio than a negative test result by EliA CTD Screen, indicating that the negative predictive value was higher for indirect immunofluorescence than for EliA CTD screen.

  5. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  6. Solid-phase receptor binding assay for /sup 125/I-hCG

    SciTech Connect

    Bortolussi, M.; Selmin, O.; Colombatti, A.

    1987-01-01

    A solid-phase radioligand-receptor assay (RRA) to measure the binding of /sup 125/I-labelled human chorionic gonadotropin (/sup 125/I-hCG) to target cell membranes has been developed. The binding of /sup 125/I-hCG to membranes immobilized on the wells of microtitration plates reached a maximum at about 3 hours at 37 degrees C, was saturable, displayed a high affinity (Ka = 2.4 X 10(9) M-1) and was specifically inhibited by unlabelled hCG. In comparison with RRAs carried out with membranes in suspension, the solid-phase RRA is significantly simpler and much faster to perform as it avoids centrifugation or filtration procedures. The solid-phase RRA was adapted profitably to process large numbers of samples at the same time. It proved particularly useful as a screening assay to detect anti-hCG monoclonal antibodies with high inhibitory activity for binding of /sup 125/I-hCG to its receptors.

  7. Solid-phase route to Fmoc-protected cationic amino acid building blocks.

    PubMed

    Clausen, Jacob Dahlqvist; Linderoth, Lars; Nielsen, Hanne Mørck; Franzyk, Henrik

    2012-10-01

    Diamino acids are commonly found in bioactive compounds, yet only few are commercially available as building blocks for solid-phase peptide synthesis. In the present work a convenient, inexpensive route to multiple-charged amino acid building blocks with varying degree of hydrophobicity was developed. A versatile solid-phase protocol leading to selectively protected amino alcohol intermediates was followed by oxidation to yield the desired di- or polycationic amino acid building blocks in gram-scale amounts. The synthetic sequence comprises loading of (S)-1-(p-nosyl)aziridine-2-methanol onto a freshly prepared trityl bromide resin, followed by ring opening with an appropriate primary amine, on-resin N(β)-Boc protection of the resulting secondary amine, exchange of the N(α)-protecting group, cleavage from the resin, and finally oxidation in solution to yield the target γ-aza substituted building blocks having an Fmoc/Boc protection scheme. This strategy facilitates incorporation of multiple positive charges into the building blocks provided that the corresponding partially protected di- or polyamines are available. An array of compounds covering a wide variety of γ-aza substituted analogs of simple neutral amino acids as well as analogs displaying high bulkiness or polycationic side chains was prepared. Two building blocks were incorporated into peptide sequences using microwave-assisted solid-phase peptide synthesis confirming their general utility.

  8. A two-fluid model for reactive dilute solid-liquid mixtures with phase changes

    NASA Astrophysics Data System (ADS)

    Reis, Martina Costa; Wang, Yongqi

    2016-12-01

    Based on the Eulerian spatial averaging theory and the Müller-Liu entropy principle, a two-fluid model for reactive dilute solid-liquid mixtures is presented. Initially, some averaging theorems and properties of average quantities are discussed and, then, averaged balance equations including interfacial source terms are postulated. Moreover, constitutive equations are proposed for a reactive dilute solid-liquid mixture, where the formation of the solid phase is due to a precipitation chemical reaction that involves ions dissolved in the liquid phase. To this end, principles of constitutive theory are used to propose linearized constitutive equations that account for diffusion, heat conduction, viscous and drag effects, and interfacial deformations. A particularity of the model is that the mass interfacial source term is regarded as an independent constitutive variable. The obtained results show that the inclusion of the mass interfacial source term into the set of independent constitutive variables permits to easily describe the phase changes associated with precipitation chemical reactions.

  9. Solid-state phase diagram of the zinc sulfide-cadmium sulfide system

    SciTech Connect

    Fedorov, V.A.; Ganshin, V.A.; Korkishko, Y.N. )

    1993-01-01

    The II-VI wide-band compounds zinc sulfide, cadmium sulfide and Cd[sub x]ZN[sub 1[minus]x]S ternary alloys has been of considerable technological interest due to their semiconducting, optical and mechanical properties and are of considerable importance as photoconductors, phosphors, infrared and solar-cell window materials and materials for short-wavelength optoelectronic applications. Structures and phase relation in the ZnS-CdS system were investigated in the temperature range 150-700 C and the boundaries describing the equilibria between the zinc-blend and wurtzite Cd[sub x]An[sub 1[minus]x]S solid solutions were determined by examining the ion exchange processes Cd[sup 2+] [r arrow] Zn[sup 2+] in the ZnS powder. The complete thermodynamical description of the ZnS-CdS system is proposed. It was found, that Cd[sub x]Z[sub n[minus]1]S solid solutions of both modifications obey a regular solution model. Enthalpies of the zinc-blend-to-wurtzite structural phase transition in CdS (550[plus minus]50 J/mol) and in ZnS (1700[plus minus]100 J/mol) were defined. The solid state phase diagram calculated from defined thermodynamical parameters agrees well with the experimental data.

  10. Nonlinear homogenisation of trabecular bone: Effect of solid phase constitutive model.

    PubMed

    Levrero-Florencio, Francesc; Manda, Krishnagoud; Margetts, Lee; Pankaj, Pankaj

    2017-05-01

    Micro-finite element models have been extensively employed to evaluate the elastic properties of trabecular bone and, to a limited extent, its yield behaviour. The macroscopic stiffness tensor and yield surface are of special interest since they are essential in the prediction of bone strength and stability of implants at the whole bone level. While macroscopic elastic properties are now well understood, yield and post-yield properties are not. The aim of this study is to shed some light on what the effect of the solid phase yield criterion is on the macroscopic yield of trabecular bone for samples with different microstructure. Three samples with very different density were subjected to a large set of apparent load cases (which is important since physiological loading is complex and can have multiple components in stress or strain space) with two different solid phase yield criteria: Drucker-Prager and eccentric-ellipsoid. The study found that these two criteria led to small differences in the macroscopic yield strains for most load cases except for those that were compression-dominated; in these load cases, the yield strains for the Drucker-Prager criterion were significantly higher. Higher density samples resulted in higher differences between the two criteria. This work provides a comprehensive assessment of the effect of two different solid phase yield criteria on the macroscopic yield strains of trabecular bone, for a wide range of load cases, and for samples with different morphology.

  11. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    PubMed

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed.

  12. A thermal analysis method to predict the complete phase diagram of drug-polymer solid dispersions.

    PubMed

    Lin, Dexi; Huang, Yanbin

    2010-10-31

    The aim of this work was to develop a method which uses experimentally obtainable data to predict the complete phase diagram of drug-polymer solid dispersion systems, for the first time in literature. Felodipine-poly(acrylic acid) (PAA) solid dispersion was used as an example to illustrate the application of this method. Samples were prepared with different drug loading and analyzed using differential scanning calorimetry (DSC). Values of the drug-polymer interaction parameter χ(T(m)) were calculated from the drug crystal melting point depression data. Since χ is a function of temperature (χ∼1/T) according to the Flory-Huggins theory, the obtained χ-T relationship thus enabled calculation of the complete temperature-composition phase diagram of a drug-polymer solid dispersion system. In experiments, felodipine was shown to be immiscible with PAA in almost the whole range of drug content at room temperature. Two glass transition temperatures were observed, corresponding to almost pure felodipine and pure PAA, respectively, in consistent with the predicted phase behavior. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Characterization of dynamic solid phase DNA extraction from blood with magnetically controlled silica beads.

    PubMed

    Duarte, Gabriela R M; Price, Carol W; Littlewood, Janice L; Haverstick, Doris M; Ferrance, Jerome P; Carrilho, Emanuel; Landers, James P

    2010-03-01

    A novel solid phase extraction technique is described where DNA is bound and eluted from magnetic silica beads in a manner where efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the beta-globin gene. By effectively controlling the movement of the solid phase in the presence of a static sample, the issues associated with reproducibly packing a solid phase in a microchannel and maintaining consistent flow rates are eliminated. The technique described here is rapid, simple, and efficient, allowing for recovery of more than 60% of DNA from 0.6 microL of blood at a concentration which is suitable for PCR amplification. In addition, the technique presented here requires inexpensive, common laboratory equipment, making it easily adopted for both clinical point-of-care applications and on-site forensic sample analysis.

  14. Liquid-solid extraction coupled with magnetic solid-phase extraction for determination of pyrethroid residues in vegetable samples by ultra fast liquid chromatography.

    PubMed

    Jiang, Chunzhu; Sun, Ying; Yu, Xi; Gao, Yan; Zhang, Lei; Wang, Yuanpeng; Zhang, Hanqi; Song, Daqian

    2013-09-30

    In this study, liquid-solid extraction coupled with magnetic solid-phase extraction was successfully developed for the extraction of pyrethroid residues in vegetable samples. The analytes were determined by ultra fast liquid chromatography. The pyrethroids were extracted by liquid-solid extraction and then adsorbed onto magnetic adsorbent. Magnetic adsorbent, C18-functionalized ultrafine magnetic silica nanoparticles, was synthesized by chemical coprecipitation, silanization and alkylation. The analytes adsorbed onto the magnetic adsorbent can be simply and rapidly isolated from sample solution with a strong magnet on the bottom of the extraction vessel. The extraction parameters, such as liquid-solid extraction solvent, liquid-solid extraction time, the amount of magnetic adsorbent, magnetic solid-phase extraction time and magnetic solid-phase extraction desorption solvent, were optimized to improve the extraction efficiency. The analytical performances of this method, including linear range, detection limit, precision, and recovery were evaluated. The limits of detection for pyrethroid were between 0.63 and 1.2 ng g(-1). Recoveries obtained by analyzing the four spiked vegetable samples were between 76.0% and 99.5%. The results showed that the present method was a simple, accurate and high efficient approach for the determination of pyrethroids in the vegetable samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Solid-state synthesis and phase transformations in Ni/Fe films: Structural and magnetic studies

    NASA Astrophysics Data System (ADS)

    Myagkov, V. G.; Zhigalov, V. C.; Bykova, L. E.; Bondarenko, G. N.

    2006-10-01

    We have used X-ray diffraction, volume magnetocrystalline anisotropy constant and resistance measurements to study solid-state synthesis in Ni(0 0 1)/Fe(0 0 1), Ni/Fe(0 0 1) and Ni/Fe thin films with the atomic ratio between Fe and Ni of 1:1 (1Fe:1Ni), and 3:1 (3Fe:1Ni). We have found that the formation of Ni 3Fe and NiFe phases in the 1Fe:1Ni films takes place at temperatures ˜620 and ˜720 K, correspondingly. In the case of the 3Fe:1Ni films the solid-state synthesis starts with Ni 3Fe and NiFe phase formation at the same temperatures as for the 1Fe:1Ni films. The increasing of annealing temperature above 820 K leads to the nucleation of a paramagnetic γpar phase at the FeNi/Fe interface. The final products of solid-state synthesis in the Ni(0 0 1)/Fe(0 0 1) thin films are crystallites which consist of the epitaxially intergrown NiFe and γpar phases according to the [1 0 0](0 0 1)NiFe||[1 0 0](0 0 1) γpar orientation relationship. The crystalline perfection and epitaxial growth of the (NiFe+ γpar) crystallites on the MgO(0 0 1) surface allow to distinguish (0 0 2) γpar and (0 0 2)NiFe X-ray peaks (the cell parameters are: a( γpar)=0.3600±0.0005 nm and a(NiFe)=0.3578±0.0005 nm, correspondingly). At low temperatures the paramagnetic γpar phase undergoes the martensite γ→α' phase transition which can be hindered by thermal and epitaxial strains and epitaxial clamping with a MgO substrate. On the basis of the studies of the thin-film solid-state synthesis we predict the existence of two novel structural phase transformations at the temperatures of about 720 and 820 K for alloys of the invar region of the Fe-Ni system.

  16. Geochemistry, mineralogy, solid-phase fractionation and oral bioaccessibility of lead in urban soils of Lisbon.

    PubMed

    Reis, A P; Patinha, C; Wragg, J; Dias, A C; Cave, M; Sousa, A J; Costa, C; Cachada, A; Ferreira da Silva, E; Rocha, F; Duarte, A

    2014-10-01

    An urban survey of Lisbon, the largest city in Portugal, was carried out to investigate its environmental burden, emphasizing metallic elements and their public health impacts. This paper examines the geochemistry of lead (Pb) and its influence on human health data. A total of 51 soil samples were collected from urban recreational areas used by children to play outdoors. The semi-quantitative analysis of Pb was carried out by inductively coupled plasma mass spectrometry after an acid digestion. X-ray diffraction was used to characterize the soil mineralogy. The solid-phase distribution of Pb in the urban soils was investigated on a subset of 7 soils, out of a total of 51 samples, using a non-specific sequential extraction method coupled with chemometric analysis. Oral bioaccessibility measurements were obtained using the Unified BARGE Method developed by the Bioaccessibility Research Group of Europe. The objectives of the study are as follows: (1) investigation of Pb solid-phase distribution; (2) interpretation of Pb oral bioaccessibility measurements; (3) integration of metal geochemistry with human health data; and (4) understanding the influence of geochemistry and mineralogy on oral bioaccessibility. The results show that the bioaccessible fraction of Pb is lower when major metal fractions are associated with less soluble soil phases such as Fe oxyhydroxides, and more increased when the metal is in the highly soluble carbonate phase. However, there is some evidence that the proportion of carbonates in the soil environment is also a key control over the oral bioaccessibility of Pb, irrespective of its solid-phase fractionation.

  17. A two-phase restricted equilibrium model for combustion of metalized solid propellants

    NASA Technical Reports Server (NTRS)

    Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.

    1992-01-01

    An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.

  18. A two-phase restricted equilibrium model for combustion of metalized solid propellants

    NASA Technical Reports Server (NTRS)

    Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.

    1992-01-01

    An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.

  19. Development and elaboration of numerical method for simulating gas-liquid-solid three-phase flows based on particle method

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryohei; Mamori, Hiroya; Yamamoto, Makoto

    2016-02-01

    A numerical method for simulating gas-liquid-solid three-phase flows based on the moving particle semi-implicit (MPS) approach was developed in this study. Computational instability often occurs in multiphase flow simulations if the deformations of the free surfaces between different phases are large, among other reasons. To avoid this instability, this paper proposes an improved coupling procedure between different phases in which the physical quantities of particles in different phases are calculated independently. We performed numerical tests on two illustrative problems: a dam-break problem and a solid-sphere impingement problem. The former problem is a gas-liquid two-phase problem, and the latter is a gas-liquid-solid three-phase problem. The computational results agree reasonably well with the experimental results. Thus, we confirmed that the proposed MPS method reproduces the interaction between different phases without inducing numerical instability.

  20. Application of the phase method in radioisotope measurements of the liquid - solid particles flow in the vertical pipeline

    NASA Astrophysics Data System (ADS)

    Hanus, Robert; Zych, Marcin; Petryka, Leszek; Mosorov, Volodymyr; Hanus, Paweł

    2015-05-01

    The paper presents idea and an application of the gamma-absorption method to a two-phase flow investigation in a vertical pipeline, where the flow of solid particles transported by water was examined by a set of two 241Am radioactive sources and probes with NaI(Tl) scintillation crystals. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. For advanced analysis of electrical signals obtained from detectors the phase of cross-spectral density function has been applied. Results of the average solid-phase velocity measurements were compared with one obtained by application of the classical cross-correlation. It was found that the combined uncertainties of the velocity of solid particles evaluation in the presented experiment did not exceed 0.6% in phase method and 3.2% in cross-correlation method.

  1. Numerical Computation of Flame Spread over a Thin Solid in Forced Concurrent Flow with Gas-phase Radiation

    NASA Technical Reports Server (NTRS)

    Jiang, Ching-Biau; T'ien, James S.

    1994-01-01

    Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.

  2. Immobilization and functional reconstitution of antibody Fab fragment by solid-phase refolding.

    PubMed

    Kumada, Yoichi; Hamasaki, Kyoto; Nakagawa, Aya; Sasaki, Eiju; Shirai, Tatsunori; Okumura, Masahiro; Inoue, Manami; Kishimoto, Michimasa

    2013-12-31

    In this study, we demonstrated the successful preparation of a Fab antibody-immobilized hydrophilic polystyrene (phi-PS) plate via one- and two-step solid-phase refolding methods. Both polystyrene-binding peptide (PS-tag)-fused Fd fragment of heavy chain (Fab H-PS) and full-length of light-chain (Fab L-PS) were individually produced in insoluble fractions of Escherichia coli cells, and they were highly purified in the presence of 8M of urea. Antigen-binding activities of Fab antibody immobilized were correctly recovered by the one-step solid-phase refolding method that a mixture of Fab H-PS and Fab L-PS was immobilized in the presence of 0.5-2M urea, followed by surface washing of the phi-PS plate with PBST. These results indicate that by genetic fusion of a PS-tag, a complex between Fab H and Fab L was efficiently immobilized on the surface of a phi-PS plate even in the presence of a low concentration of urea, and was then correctly refolded to retain its high antigen-binding activity via removal of the urea. A two-step solid-phase refolding method whereby Fab H-PS and Fab L-PS were successively refolded on the surface of a phi-PS plate also resulted in Fab antibody formation on the plate. Furthermore, both the binding affinity and the specificity of the Fab antibody produced by the two-step method were highly maintained, according to the results of sandwich ELISA and competitive ELISA using Fab antibody-immobilized plate via two-step solid-phase refolding. Thus, the solid-phase refolding method demonstrated in this study should be quite useful for the preparation of a Fab antibody-immobilized PS surface with high efficiency from individually produced Fab H-PS and Fab L-PS. This method will be applicable to the preparation of a large Fab antibody library on the surface of a PS plate for use in antibody screening.

  3. Radiation graft polymerization of solid monomers by vapor-phase method

    NASA Astrophysics Data System (ADS)

    Hayakawa, Kiyoshi; Kawase, Kaoru; Yamakita, Hiromi

    Radiation graft polymerization proceeding in the sublimation vapors of solid monomers exhibits a peculiar feature differed from that of the ordinary liquid-phase graft polymerization, and also from that of the vapor-phase graft polymerization utilizing gaseous monomers or vapors of liquid monomers. In this experiment, polyethylene and poly(ethylene-co-vinyl acetate) films were irradiated with the γ-rays in the atmosphere of α,β-disubstituted ethylenic solid monomer such as maleimide, maleic anhydride, or acenaphthylene, or in that of the binary solid comonomers. Graft polymerization was characterized by little occluded homopolymer formation and high efficiency of grafting. When the monomer vapor was not sorbed into the polymer film, the reaction took place on the surface of film with the formation of fine granules of the grafted polymer. The oxygen gas coexisting with the monomer vapor did not inhibit the grafting reaction, but merely retarded it to the same extent as nitrogen. Thus the graft polymerization of unsorbed polar monomer as maleimide or maleic anhydride onto polyethylene was considered to proceed on the surface by a solid-state polymerization mechanism. When the monomer was sorbed and dispersed monomolecularly into the backbone polymer film, the grafting reaction seemed to proceed mainly in the inner part of the film. Grafting of copolymer took place when a film was exposed under γ-rays to a combined vapor of binary solid monomers chosen as an electron donor-acceptor combination, and in some cases nearly-alternating copolymer grafting was achieved even if one of the binary comonomers could not be sorbed into the film. The effects of the affinity of film to monomers on the rate of grafting and on the composition of grafted copolymer were also investigated by adopting poly(ethylene-co-vinyl acetate) films of various compositions and their surface-modified ones.

  4. Variable-cell double-ended surface walking method for fast transition state location of solid phase transitions.

    PubMed

    Zhang, Xiao-Jie; Liu, Zhi-Pan

    2015-10-13

    To identify the low energy pathway for solid-to-solid phase transition has been a great challenge in physics and material science. This work develops a new theoretical method, namely, variable-cell double-ended surface walking (VC-DESW) to locate the transition state (TS) and deduce the pathway in solid phase transition. Inherited from the DESW method ( J. Chem. Theory Comput. 2013 , 9 , 5745 ) for molecular systems, the VC-DESW method implements an efficient mechanism to couple the lattice and atom degrees of freedom. The method features with fast pseudopathway building and accurate TS location for solid phase transition systems without requiring expensive Hessian computation and iterative pathway optimization. A generalized coordinate, consisting of the lattice vectors and the scaled atomic coordinates, is designed for describing the crystal potential energy surface (PES), which is able to capture the anisotropic behavior in phase transition. By comparing with the existing method for solid phase transition in different systems, we show that the VC-DESW method can be much more efficient for finding the TS in crystal phase transition. With the combination of the recently developed unbiased stochastic surface walking pathway sampling method, the VC-DESW is further utilized to resolve the lowest energy pathway of SiO2 α-quartz to quartz-II phase transition from many likely reaction pathways. These new methods provide a powerful platform for understanding and predicting the solid phase transition mechanism and kinetics.

  5. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To

  6. Distribution of organohalide-respiring bacteria between solid and aqueous phases.

    PubMed

    Cápiro, Natalie L; Wang, Yonggang; Hatt, Janet K; Lebrón, Carmen A; Pennell, Kurt D; Löffler, Frank E

    2014-09-16

    Contemporary microbial monitoring of aquifers relies on groundwater samples to enumerate nonattached cells of interest. One-dimensional column studies quantified the distribution of bacterial cells in solid and the aqueous phases as a function of microbial species, growth substrate availability and porous medium (i.e., Appling soil versus Federal Fine Ottawa sand with 0.75% and 0.01% [w/w] organic carbon, respectively). Without supplied growth substrates, effluent from columns inoculated with the tetrachloroethene- (PCE-) to-ethene-dechlorinating bacterial consortium BDI-SZ containing Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ), or inoculated with Anaeromyxobacter dehalogenans strain W (AdehalW), captured 94-96, 81-99, and 73-84% of the Dhc, GeoSZ, and AdehalW cells, respectively. Cell retention was organism-specific and increased in the order Dhc < GeoSZ < AdehalW. When amended with 10 mM lactate and 0.11 mM PCE, aqueous samples accounted for 1.3-27 and 0.02-22% of the total Dhc and GeoSZ biomass, respectively. In Appling soil, up to three orders-of-magnitude more cells were associated with the solid phase, and attachment rate coefficients (katt) were consistently greater compared to Federal Fine sand. Cell-solid interaction energies ranged from -2.5 to 787 kT and were consistent with organism-specific deposition behavior, where GeoSZ and AdehalW exhibited greater attachment than Dhc cells. The observed disparities in microbial cell distributions between the aqueous and solid phases imply that groundwater analysis can underestimate the total cell abundance in the aquifer by orders-of-magnitude under conditions of growth and in porous media with elevated organic carbon content. The implications of these findings for monitoring chlorinated solvent sites are discussed.

  7. Matrix solid-phase dispersion and solid-phase microextraction applied to study the distribution of fenbutatin oxide in grapes and white wine.

    PubMed

    Montes, R; Canosa, P; Lamas, J Pablo; Piñeiro, A; Orriols, I; Cela, R; Rodríguez, I

    2009-12-01

    The fate of the acaricide fenbutatin oxide (FBTO) during the elaboration of white wine is evaluated. Matrix solid-phase dispersion (MSPD) and solid-phase microextraction (SPME) were used as sample preparation techniques applied to the semi-solid and the liquid matrices involved in this research, respectively. Selective determination of FBTO was achieved by gas chromatography with atomic emission detection (GC-AED). GC coupled to mass spectrometry was also used to establish the identity of FBTO by-products detected in must and wine samples. MSPD extractions were accomplished using C18 as dispersant and co-sorbent. Sugars and other polar interferences were first removed with water and water/acetone mixtures, then FBTO was recovered with 8 mL of acetone. When used in combination with GC-AED, the MSPD method provided limits of quantification (LOQs) in the low nanogram per gram range, recoveries around 90% and relative standard deviations below 13% for extractions performed in different days. Performance of SPME for must and wine was mainly controlled by the extraction temperature, time and fibre coating. Under final conditions, FBTO was extracted in the headspace mode for 45 min at 100 degrees C, using a 100 microm poly(dimethylsiloxane)-coated fibre. The achieved LOQs remained around or below 0.1 ng mL(-1), depending on the type of sample, and the inter-day precision ranged from 10% to 13%. FBTO residues in grapes stayed mostly on the skin of the fruit. Although FBTO was not removed during must and white wine elaboration, it remained associated with suspended particles existing in must and lees, settled after must fermentation, with a negligible risk of being transferred to commercialised wine. On the other hand, two by-products of FBTO (bis and mono (2-methyl-2-phenylpropyl) tin) were identified, for first time, in must and final white wines obtained from FBTO treated grapes. Found values for the first species ranged from 0.03 to 0.9 ng mL(-1).

  8. The organic matter of Comet Halley as inferred by joint gas phase and solid phase analyses

    NASA Astrophysics Data System (ADS)

    Krueger, F. R.; Korth, A.; Kissel, J.

    1991-04-01

    During encounters with Comet Halley, the experiment PICCA onboard Giotto measured the gas-phase organic ion composition of the coma, and the experiment PUMA onboard Vega-1 measured the dust composition. Joining both results gives a consistent picture of the parent organic matter from which dust and gas is produced: a complex unsaturated polycondensate, which splits during coma formation into the more refractory C=C,C-N-containing dust part and the more volatile C=C,C-O-containing gas part. The responsible exothermal chemical reactions, which are triggered by sunlight, may play a major role in the dynamics of coma formation.

  9. Polymer Microchips Integrating Solid Phase Extraction and High Performance Liquid Chromatography Using Reversed-Phase Polymethacrylate Monoliths

    PubMed Central

    Liu, Jikun; Chen, C. F.; Tsao, C. W.; Chang, C. C.; Chu, C. C.; DeVoe, D. L.

    2009-01-01

    Polymer microfluidic chips employing in situ photopolymerized polymethacrylate monoliths for high performance liquid chromatography separations of peptides is described. The integrated chip design employs a 15 cm long separation column containing a reversed-phase polymethacrylate monolith as a stationary phase, with its front end seamlessly coupled to a 5 mm long methacrylate monolith which functions as a solid phase extraction (SPE) element for sample cleanup and enrichment, serving to increase both detection sensitivity and separation performance. In addition to sample concentration and separation, solvent splitting is also performed on-chip, allowing the use of a conventional LC pump for the generation of on-chip nano-flow solvent gradients. The integrated platform takes advantage of solvent bonding and a novel high-pressure needle interface which together enable the polymer chips to withstand internal pressures above 20 MPa (~2,900 psi) for efficient pressure-driven HPLC separations. Gradient reversed-phase separation of fluorescein-labeled model peptides and BSA tryptic digest are demonstrated using the microchip HPLC system. On-line removal of free fluorescein and enrichment of labeled proteins are simultaneously achieved using the on-chip SPE column, resulting in a 150-fold improvement in sensitivity and a 10-fold reduction in peak width in the following microchip gradient LC separation. PMID:19267447

  10. Lattice model theory of the equation of state covering the gas, liquid, and solid phases

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Tanaka, T.; Chan, E. M.; Horiguchi, T.; Foreman, J. C.

    1975-01-01

    The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon.

  11. Multiple Multidentate Halogen Bonding in Solution, in the Solid State, and in the (Calculated) Gas Phase.

    PubMed

    Jungbauer, Stefan H; Schindler, Severin; Herdtweck, Eberhardt; Keller, Sandro; Huber, Stefan M

    2015-09-21

    The binding properties of neutral halogen-bond donors (XB donors) bearing two multidentate Lewis acidic motifs toward halides were investigated. Employing polyfluorinated and polyiodinated terphenyl and quaterphenyl derivatives as anion receptors, we obtained X-ray crystallographic data of the adducts of three structurally related XB donors with tetraalkylammonium chloride, bromide, and iodide. The stability of these XB complexes in solution was determined by isothermal titration calorimetry (ITC), and the results were compared to X-ray analyses as well as to calculated binding patterns in the gas phase. Density functional theory (DFT) calculations on the gas-phase complexes indicated that the experimentally observed distortion of the XB donors during multiple multidentate binding can be reproduced in 1:1 complexes with halides, whereas adducts with two halides show a symmetric binding pattern in the gas phase that is markedly different from the solid state structures. Overall, this study demonstrates the limitations in the transferability of binding data between solid state, solution, and gas phase in the study of complex multidentate XB donors.

  12. Solution- and solid-phase oligosaccharide synthesis using glucosyl iodides: a comparative study.

    PubMed

    Lam, Son N; Gervay-Hague, Jacquelyn

    2002-11-19

    Glycosyl iodide donors have been used in both solid- and solution-phase syntheses yielding alpha-(1 --> 6)-linked glucosyl oligomers in highly efficient protocols. While the solid-phase strategy offers advantages in terms of ease of purification, it requires a total of 7.5 equiv of donor and approximately 12 h to complete the incorporation of one monosaccharide unit. In contrast, solution-phase methods require only 2.5 equiv of donor and 2-3 h reaction time per glycosylation. Moreover, since the reactions are virtually quantitative (> 90%) column chromatography of the material is facile. The overall advantages of solution-phase oligosaccharide synthesis were further illustrated in the convergent synthesis of a hexamer (methoxycarbonylmethyl 6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl-(1 --> 6)-tetrakis-(2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl-(1 --> 6))-2,3,4-tri-O-benzyl-1-thio-alpha-D-glucopyranoside) that was constructed from dimer donor iodides in a two-plus-two and a two-plus-four fashion.

  13. Fixed bed reactor for solid-phase surface derivatization of superparamagnetic nanoparticles.

    PubMed

    Steitz, Benedikt; Salaklang, Jatuporn; Finka, Andrija; O'Neil, Conlin; Hofmann, Heinrich; Petri-Fink, Alke

    2007-01-01

    The functionalization of nanoparticles is conditio sine qua non in studies of specific interaction with a biological target. Often, their biological functionality is achieved by covalent binding of bioactive molecules on a preexisting single surface coating. The yield and quality of the resulting coated and functionalized superparamagnetic iron oxide nanoparticles (SPIONs) can be significantly improved and reaction times reduced by using solid-phase synthesis strategies. In this study, a fixed bed reactor with a quadrupole repulsive arrangement of permanent magnets was assayed for SPION surface derivatization. The magnet array around the fixed bed reactor creates very high magnetic field gradients that enables the immobilization of SPIONs with a diameter as low as 9 nm. The functionalization on the surface of immobilized 25 nm 3-(aminopropyl)trimethoxysilane-coated SPIONs (APS-SPIONs) was performed using fluorescein-isothiocyanate directly, and by the SV40 large T-antigen nuclear localization signal peptide (PKKKRKVGC) conjugated to acryloylpoly(ethylene glycol)-N-hydroxysuccinimide, where the PEG reagent is conjugated first to create a functionalized nanoparticle and the peptide is added to the acryloyl group. We show that the yield of reactant grafted on the surface of the APS-coated SPIONs was higher in solid-phase within the fixed bed reactor compared to conventional liquid-phase chemistry. In summary, the functionalization of SPIONs using a magnetically fixed bed reactor was superior to the liquid-phase reaction in terms of the yield, reaction times required for derivatization, size distribution, and scalability.

  14. Vapor-phase infrared spectroscopy on solid organic compounds with a pulsed resonant photoacoustic detection scheme

    NASA Astrophysics Data System (ADS)

    Bartlome, Richard; Fischer, Cornelia; Sigrist, Markus W.

    2005-08-01

    There is a great need for a low cost and sensitive method to measure infrared spectra of solid organic compounds in the gas phase. To record such spectra, we propose an optical parametric generator-based photoacoustic spectrometer, which emits in the mid-infrared fingerprint region between 3 and 4 microns. In this system, the sample is heated in a vessel before entering a home built photoacoustic cell, where the gaseous molecules are excited by a tunable laser source with a frequency repetition rate that matches the first longitudinal resonance frequency of the photocaoustic cell. In a first phase, we have focused on low-melting point stimulants such as Nikethamide, Mephentermine sulfate, Methylephedrine, Ephedrine and Pseudoephedrine. The vapor-phase spectra of these doping substances were measured between 2800 and 3100 cm-1, where fundamental C-H stretching vibrations take place. Our spectra show notable differences with commercially available condensed phase spectra. Our scheme enables to measure very low vapor pressures of low-melting point (<160 °C) solid organic compounds. Furthermore, the optical resolution of 8 cm-1 is good enough to distinguish closely related chemical structures such as the Ephedra alkaloids Ephedrine and Methylephedrine, but doesn't allow to differentiate diastereoisomeric pairs such as Ephedrine and Pseudoephedrine, two important neurotransmitters which reveal different biological activities. Therefore, higher resolution and a system capable of measuring organic compounds with higher melting points are required.

  15. Proton or Deuteron Transfer in Phase IV of Solid Hydrogen and Deuterium

    NASA Astrophysics Data System (ADS)

    Liu, Hanyu; Ma, Yanming

    2013-01-01

    The recent discovery of phase IV of solid hydrogen and deuterium consisting of two alternate layers of graphenelike three-molecule rings and unbound H2 molecules have generated great interest. However, the vibrational nature of phase IV remains poorly understood. Here, we report a peculiar proton or deuteron transfer and a simultaneous rotation of three-molecule rings in graphenelike layers predicted by ab initio variable-cell molecular dynamics simulations for phase IV of solid hydrogen and deuterium at pressure ranges of 250-350 GPa and temperature range of 300-500 K. This proton or deuteron transfer is intimately related to the particular elongation of molecules in graphenelike layers, and it becomes more pronounced with increasing pressure at the course of larger elongation of molecules. As the consequence of proton transfer, hydrogen molecules in graphenelike layers are short lived and hydrogen vibration is strongly anharmonic. Our findings provide direct explanations on the observed abrupt increase of Raman width at the formation of phase IV and its large increase with pressure.

  16. Phase shift method to estimate solids circulation rate in circulating fluidized beds

    SciTech Connect

    Ludlow, James Christopher; Panday, Rupen; Shadle, Lawrence J.

    2013-01-01

    While solids circulation rate is a critical design and control parameter in circulating fluidized bed (CFB) reactor systems, there are no available techniques to measure it directly at conditions of industrial interest. Cold flow tests have been conducted at NETL in an industrial scale CFB unit where the solids flow has been the topic of research in order to develop an independent method which could be applied to CFBs operating under the erosive and corrosive high temperatures and pressures of a coal fired boiler or gasifier. The dynamic responses of the CFB loop to modest modulated aeration flows in the return leg or standpipe were imposed to establish a periodic response in the unit without causing upset in the process performance. The resulting periodic behavior could then be analyzed with a dynamic model and the average solids circulation rate could be established. This method was applied to the CFB unit operated under a wide range of operating conditions including fast fluidization, core annular flow, dilute and dense transport, and dense suspension upflow. In addition, the system was operated in both low and high total solids inventories to explore the influence of inventory limiting cases on the estimated results. The technique was able to estimate the solids circulation rate for all transport circulating fluidized beds when operating above upper transport velocity, U{sub tr2}. For CFB operating in the fast fluidized bed regime (i.e., U{sub g}< U{sub tr2}), the phase shift technique was not successful. The riser pressure drop becomes independent of the solids circulation rate and the mass flow rate out of the riser does not show modulated behavior even when the riser pressure drop does.

  17. UV-visible spectral identification of the solution-phase and solid-phase permanganate oxidation reactions of thymine acetic acid.

    PubMed

    Bui, Chinh T; Sam, Lien A; Cotton, Richard G H

    2004-03-08

    Solution-phase and solid-phase permanganate oxidation reactions of thymine acetic acid were investigated by spectroscopy. The spectral data showed the formation of a stable organomanganese intermediate, which was responsible for the rise in the absorbance at 420 nm. This result enables unambiguous interpretation of the absorbance change at 420 nm, as the intermediate permanganate ions could be isolated on the solid supports.

  18. Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Kone, E. H.; Narbona-Reina, G.

    2016-12-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. By comparing quantitatively the results of simulation and laboratory experiments on submerged granular flows, we show that our model contains the basic ingredients making it possible to reproduce the interaction between the granular and fluid phases through the change in pore fluid pressure. In particular, we analyse the different time

  19. Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys; Kone, El Hadj

    2017-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. Interestingly, when removing the role of water, our model reduces to a dry granular flow model including dilatancy. We first compare experimental and numerical results of dilatant dry granular flows. Then, by quantitatively comparing the results of simulation and laboratory experiments on submerged granular flows, we show that our model

  20. Tablets of functionalized polystyrene beads alone and in combination with solid reagents or catalysts. Preparation and applications in parallel solution and solid phase synthesis.

    PubMed

    Ruhland, Thomas; Holm, Per; Andersen, Kim

    2003-01-01

    Pretreatment of polystyrene beads with a nonpolar organic solvent is the key for the generation of mechanically robust tablets consisting of neat functionalized polystyrene beads, both alone and in combination with solid reagents or catalysts. The novel dosing methodology provides accurately preweighed tablets in virtually any shape and size and with excellent disintegration properties, speeding up parallel solution and solid phase synthesis. The use of tablets is demonstrated in parallel Mitsunobu and acylation reactions.

  1. Solid phase synthesis of C-terminal peptide amides: development of a new aminoethyl-polystyrene linker on the Multipin solid support.

    PubMed

    Bui, C T; Bray, A M; Nguyen, T; Ercole, F; Maeji, N J

    2000-05-01

    A new aminoethyl-polystyrene linker, stable at low concentrations of TFA, has been developed for the solid phase synthesis of peptide amides. The described linker is stable under conditions which remove Bu(t) protecting groups (30-50% TFA in DCM) and the desired product can be finally cleaved off the solid support in 95% TFA (5% H2O). Model peptide amides and other N-alkylated peptide amides have been successfully synthesized in good yield and purity.

  2. Conformational properties of asymmetrically substituted mono-, di- and trisulfides: solid and liquid phase Raman spectra

    NASA Astrophysics Data System (ADS)

    Devlin, Mark T.; Barany, George; Levin, Ira W.

    1990-10-01

    The Raman spectra of diallyl trisulfide, allyl methyl sulfide, allyl methyl disulfide and allyl methyl trisulfide in the liquid and solid states are interpreted in terms of their conformational behavior. In both the liquid and solid states, the allyl moieties in all molecules are in a gauche conformation in which the sulfur atoms and the terminal vinyl carbons form a dihedral angle of between 105° and 120°. For diallyl trisulfide and allyl methyl trisulfide in both the liquid and solid states, only a near- cis SS rotational conformer exists with a CSSS dihedral angle of approximately 25°. Furthermore, the rotational isomerism of both SS bonds of these molecules is the same. For allyl methyl disulfide in the solid and liquid phases only the gauche SS conformer exists, with a CSSC dihedral angle of approximately 70°. In the liquid state, two CS rotational conformers occur in each of the four molecules examined. The gauche conformer corresponds to a CCSC (allyl methyl sulfide) or CCSS (allyl methyl disulfide, allyl methyl trisulfide and diallyl trisulfide) dihedral angle of 70°, while the trans conformer corresponds to a CCSC or CCSS dihedral angle of 180°. For allyl methyl sulfide in the solid state only the trans CS conformer exists, while for allyl methyl disulfide and diallyl trisulfide only the gauche CS conformers exist in the solid phase. For allyl methyl trisulfide in the solid state both CS conformers exist, with the gauche CS conformer being more stable. We suggest that the gauche CS conformers for the di- and trisulfide systems are stabilized by attractive 1,4 C··S interactions analogous to those proposed for other sulfur containing molecules (H.E. Van Wart, L.L. Shipman and H.A. Scheraga, J. Phys. Chem., 79 (1975) 1428; ibid., 79 (1975) 1436.)

  3. Syringe-cartridge solid-phase extraction method for patulin in apple juice.

    PubMed

    Eisele, Thomas A; Gibson, Midori Z

    2003-01-01

    A syringe-cartridge solid-phase extraction (SPE) method was developed for determination of patulin in apple juice. A 2.5 mL portion of test sample was passed through a conditioned macroporous SPE cartridge and washed with 2 mL 1% sodium bicarbonate followed by 2 mL 1% acetic acid. Patulin was eluted with 1 mL 10% ethyl acetate in ethyl ether and determined by reversed-phase liquid chromatography using a mobile phase consisting of 81% acetonitrile, 9% water, and 10% 0.05M potassium phosphate buffer, pH 2.4. Recoveries averaged 92% and the relative standard deviation was 8.0% in test samples spiked with 50 ng/mL patulin. The method appears to be applicable for monitoring apple juice samples to meet the U.S. Food and Drug Administration compliance action level of 50 microg/kg in an industrial quality assurance laboratory environment.

  4. Superfluid, solid, and supersolid phases of dipolar bosons in a quasi-one-dimensional optical lattice

    SciTech Connect

    Fellows, Jonathan M.; Carr, Sam T.

    2011-11-15

    We discuss a model of dipolar bosons trapped in a weakly coupled planar array of one-dimensional tubes. We consider the situation where the dipolar moments are aligned by an external field, and we find a rich phase diagram as a function of the angle of this field exhibiting quantum phase transitions between solid, superfluid, and supersolid phases. In the low energy limit, the model turns out to be identical to one describing quasi-one-dimensional superconductivity in condensed matter systems. This opens the possibility of using bosons as a quantum analog simulator of electronic systems, a scenario arising from the intricate relation between statistics and interactions in quasi-one-dimensional systems.

  5. Computation of solid/liquid phase change including free convection - Comparison with data

    NASA Technical Reports Server (NTRS)

    Schneider, G. E.

    1990-01-01

    A computational model is presented for solid/liquid phase-change energy transport including free convection fluid flow in the liquid phase. The computational model considers the velocity components of all nonliquid control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid. The thermal energy model includes the entire domain and employs an enthalpy-like model and a recently developed method for handling the phase-change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problems. Grid independence is achieved, and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data are also provided as velocity vector and isotherm plots. The computational costs incurred are quite low by comparison with other models.

  6. Surface Specularity as an Indicator of Shock-Induced Solid-Liquid Phase Transitions

    SciTech Connect

    Gerald Stevens, Stephen Lutz, William Turley, Lynn Veeser

    2007-06-29

    When highly polished metal surfaces melt upon release after shock loading, they exhibit a number of features that suggest that significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (pre-shock) to diffuse upon melting. A familiar manifestation of this phenomenon is the loss of signal light in velocimetric measurements typically observed above pressures high enough to melt the free-surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometery, conductivity), changes in the specularity of reflection provide a dramatic, sensitive indicator of the solid-liquid phase transition. Data will be presented from multiple diagnostics that support the hypothesis that specularity changes indicate melt. These diagnostics include shadowgraphy, infrared imagery, high-magnification surface images, interferometric velocimetry, and most recently scattering angle measurements.

  7. Phase separation in dilute solutions of 3He in solid 4He

    NASA Astrophysics Data System (ADS)

    Huan, C.; Yin, L.; Xia, J. S.; Candela, D.; Cowan, B. P.; Sullivan, N. S.

    2017-03-01

    We report the results of studies of the phase separation of solid solutions of dilute concentrations of 3He in 4He. The temperatures and the kinetics of the phase separation were determined from NMR experiments for 3He concentrations 1.6 ×10-5phase separation temperatures are found to be in excellent agreement with regular solution theory as augmented by Edwards and Balibar [Phys. Rev. B 39, 4083 (1989), 10.1103/PhysRevB.39.4083]. The growth of 3He droplets shows a t1 /3 time dependence at long times consistent with Ostwald ripening.

  8. Computation of solid/liquid phase change including free convection - Comparison with data

    NASA Technical Reports Server (NTRS)

    Schneider, G. E.

    1990-01-01

    A computational model is presented for solid/liquid phase-change energy transport including free convection fluid flow in the liquid phase. The computational model considers the velocity components of all nonliquid control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid. The thermal energy model includes the entire domain and employs an enthalpy-like model and a recently developed method for handling the phase-change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problems. Grid independence is achieved, and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data are also provided as velocity vector and isotherm plots. The computational costs incurred are quite low by comparison with other models.

  9. Surface Specularity as an Indicator of Shock-induced Solid-liquid Phase Transitions in Tin

    SciTech Connect

    G. D. Stevens, S. S. Lutz, B. R. Marshall, W.D. Turley, et al.

    2007-12-01

    When highly polished metal surfaces melt upon release after shock loading, they exhibit features that suggest significant surface changes accompany the phase transition. The reflection of light from such surfaces changes from specular (pre-shock) to diffuse upon melting. Typical of this phenomenon is the loss of signal light in velocity interferometer system for any reflector (VISAR) measurements, which usually occurs at pressures high enough to melt the free surface. Unlike many other potential material phase-sensitive diagnostics (e.g., reflectometry, conductivity), that show relatively small (1%-10%) changes, the specularity of reflection provides a more sensitive and definitive (>10x) indication of the solid-liquid phase transition. Data will be presented that support the hypothesis that specularity changes indicate melt in a way that can be measured easily and unambiguously.

  10. Diffusion-limited kinetics of the solution–solid phase transition of molecular substances

    PubMed Central

    Petsev, Dimiter N.; Chen, Kai; Gliko, Olga; Vekilov, Peter G.

    2003-01-01

    For critical tests of whether diffusion-limited kinetics is an option for the solution–solid phase transition of molecular substances or whether they are determined exclusively by a transition state, we performed crystallization experiments with ferritin and apoferritin, a unique pair of proteins with identical shells but different molecular masses. We find that the kinetic coefficient for crystallization is identical (accuracy ≤7%) for the pair, indicating diffusion-limited kinetics of crystallization. Data on the kinetics of this phase transition in systems ranging from small-molecule ionic to protein and viri suggest that the kinetics of solution-phase transitions for broad classes of small-molecule and protein materials are diffusion-limited. PMID:12552115

  11. Aplication of Phase Shift Projection Moire Technique in Solid Surfaces Topographic Survey

    NASA Astrophysics Data System (ADS)

    Lino, A. C. L.; Dal Fabbro, I. M.; Enes, A. M.

    2008-04-01

    The application of projection moiré with phase shift techniques in vegetable organs surface topography survey had to step up basic procedures before reaching significant conclusions. As recommended by [1], the proposed method should be tested on virtual surfaces [1] before being carried on solid symmetric surfaces [2], followed by tests on asymmetric surfaces as fruits [3] and finally a generation of a 3D digital models of solid figures as well as of fruits [4]. In this research, identified as the step [2], tested objects included cylinders, cubes and spheres. In this sense a Ronchi grid named G1 was generated in a PC, from which other grids referred as G2, G3, and G4 were set out of phase by 1/4, 1/2 and 3/4 of period from G1. Grid G1 was then projected onto the samples surface instead of being virtually distorted, receiving the name of Gd. The difference between Gd and G1, G2, G3, and G4 followed by filtration generated the moiré fringes M1, M2, M3 and M4 respectively. Fringes are out of phase one from each other by 1/4 of period, which were processed by the Rising Sun Moiré software to produce packed phase and further on, the unpacked fringes. Final representations in gray levels as well as in contour lines showed the topography of the deformed grid Gd. Parallel line segments were projected onto moiré generated surface images to evaluate the approximation to the real surface. Line segments images were then captured by means of the ImageJ software and the corresponding curve fitting obtained. The work conclusions included the reliability of the proposed method in surveying solid figures shape.

  12. MULTI-PHASE CFD MODELING OF A SOLID SORBENT CARBON CAPTURE SYSTEM

    SciTech Connect

    Ryan, Emily M.; Xu, Wei; DeCroix, David; Saha, Kringan; Huckaby, E. D.; Darteville, Sebastien; Sun, Xin

    2012-05-01

    Post-combustion solid sorbent carbon capture systems are being studied via computational modeling as part of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI). The work focuses on computational modeling of device-scale multi-phase computational fluid dynamics (CFD) simulations for given carbon capture reactor configurations to predict flow properties, outlet compositions, temperature and pressure. The detailed outputs of the device-scale models provide valuable insight into the operation of new carbon capture devices and will help in the design and optimization of carbon capture systems. As a first step in this project we have focused on modeling a 1 kWe solid sorbent carbon capture system using the commercial CFD software ANSYS FLUENT®. Using the multi-phase models available in ANSYS FLUENT®, we are investigating the use of Eulerian-Eulerian and Eulerian-Lagrangian methods for modeling a fluidized bed carbon capture design. The applicability of the dense discrete phase method (DDPM) is being considered along with the more traditional Eulerian-Eulerian multi-phase model. In this paper we will discuss the design of the 1 kWe solid sorbent system and the setup of the DDPM and Eulerian-Eulerian models used to simulate the system. The results of the hydrodynamics in the system will be discussed and the predictions of the DDPM and Eulerian-Eulerian simulations will be compared. A discussion of the sensitivity of the model to boundary and initial conditions, computational meshing, granular pressure, and drag sub-models will also be presented.

  13. Solid-phase extraction and HPLC assay of nicotine and cotinine in plasma and brain.

    PubMed

    Dawson, Ralph; Messina, S M; Stokes, C; Salyani, S; Alcalay, N; De Fiebre, N C; De Fiebre, C M

    2002-01-01

    The aim of this study was to develop a simple and reliable assay for nicotine (NIC) and its major metabolite, cotinine (COT), in plasma and brain. A method was developed that uses an extraction method compatible with reverse-phase high-performance liquid chromatography (HPLC) separation and ultraviolet (UV) detection. Sequential solid-phase extraction on silica columns followed by extraction using octadecyl (C18) columns resulted in mean percent recovery (n = 5) of 51 +/- 5, 64 +/- 10, and 52 +/- 10% for NIC, COT, and phenylimidazole (PI), respectively, in spiked 1-mL serum samples. Recovery (mean +/- SEM) of the internal standard (PI) from spiked samples of nicotine-injected rats averaged 64.1 +/- 1.5% (n = 138) from plasma, and 20.7+/-0.8% (n = 128) from brain. The limits of detection of NIC in plasma samples were approximately 8 ng per mL, and of COT, 13.6 ng per mL. Further optimization of our extraction method, using slower flow rates and solid-phase extraction on silica columns, followed by C18 column extraction, yielded somewhat better recoveries (38 +/-3%) for 1-mL brain homogenates. Interassay precision (coefficient of variation) was determined on the basis of daily calibrations for 2 months and was found to be 7%, 9%, and 9% for NIC, COT, and PI, respectively, whereas intra-assay variability was 3.9% for both NIC and COT. Limited studies were performed on analytical columns for comparison of retention, resolution, asymmetry, and column capacity. We concluded that a simple two-step solid-phase extraction method, coupled with HPLC separation and UV detection, can be used routinely to measure NIC and COT in biological fluids and tissues.

  14. Laboratory investigation of aluminum solubility and solid-phase properties following alum treatment of lake waters.

    PubMed

    Berkowitz, Jacob; Anderson, Michael A; Graham, Robert C

    2005-10-01

    Water samples from two southern California lakes adversely affected by internal nutrient loading were treated with a 20 mg/L dose of Al3+ in laboratory studies to examine Al solubility and solid-phase speciation over time. Alum [Al2(SO4)3 . 18 H2O] applications to water samples from Big Bear Lake and Lake Elsinore resulted in a rapid initial decrease in pH and alkalinity followed by a gradual recovery in pH over several weeks. Dissolved Al concentrations increased following treatment, reaching a maximum of 2.54 mg/L after 17 days in Lake Elsinore water and 0.91 mg/L after 48 days in Big Bear Lake water; concentrations in both waters then decreased to <0.25 mg/L after 150 days. The solid phase was periodically collected and analyzed using X-ray diffraction (XRD), differential scanning calorimetry-thermogravimetric analysis (DSC-TGA), scanning electron microscopy (SEM), and surface area analyses to investigate the nature of the reaction products and crystallinity development over time. Poorly ordered, X-ray amorphous solid phases transformed over time to relatively well-ordered gibbsite, with strong diffraction peaks at 4.8 and 4.3 A. XRD also indicated the formation of a second (possibly aluminosilicate) crystalline phase after 150 days in Lake Elsinore water. Surface areas also decreased over time as crystals reordered to form gibbsite/microcrystalline gibbsite species. DSC-TGA results suggested that the initially formed amorphous Al(OH)3 underwent transformation to >45% gibbsite. These results were supported by geochemical modeling using Visual MINTEQ, with Al solubility putatively controlled by amorphous Al(OH)3 shortly after treatment and approaching that of microcrystalline gibbsite after about 150 days. These findings indicate that Al(OH)3 formed after alum treatment undergoes significant chemical and mineralogical changes that may alter its effectiveness as a reactive barrier to phosphorus release from lake sediments.

  15. How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review

    NASA Astrophysics Data System (ADS)

    Datta, Rahul; Anand, Swati; Moulick, Amitava; Baraniya, Divyashri; Pathan, Shamina Imran; Rejsek, Klement; Vranova, Valerie; Sharma, Meenakshi; Sharma, Daisy; Kelkar, Aditi; Formanek, Pavel

    2017-04-01

    A majority of biochemical reactions are often catalysed by different types of enzymes. Adsorption of the enzyme is an imperative phenomenon, which protects it from physical or chemical degradation resulting in enzyme reserve in soil. This article summarizes some of the key results from previous studies and provides information about how enzymes are adsorbed on the surface of the soil solid phase and how different factors affect enzymatic activity in soil. Many studies have been done separately on the soil enzymatic activity and adsorption of enzymes on solid surfaces. However, only a few studies discuss enzyme adsorption on soil perspective; hence, we attempted to facilitate the process of enzyme adsorption specifically on soil surfaces. This review is remarkably unmatched, as we have thoroughly reviewed the relevant publications related to protein adsorption and enzymatic activity. Also, the article focuses on two important aspects, adsorption of enzymes and factors limiting the activity of adsorbed enzyme, together in one paper. The first part of this review comprehensively lays emphasis on different interactions between enzymes and the soil solid phase and the kinetics of enzyme adsorption. In the second part, we encircle various factors affecting the enzymatic activity of the adsorbed enzyme in soil.

  16. New Computational Approach to Determine Liquid-Solid Phase Equilibria of Water Confined to Slit Nanopores.

    PubMed

    Kaneko, Toshihiro; Bai, Jaeil; Yasuoka, Kenji; Mitsutake, Ayori; Zeng, Xiao Cheng

    2013-08-13

    We devise a new computational approach to compute solid-liquid phase equilibria of confined fluids. Specifically, we extend the multibaric-multithermal ensemble method with an anisotropic pressure control to achieve the solid-liquid phase equilibrium for confined water inside slit nanopores (with slit width h ranging from 5.4 Å to 7.2 Å). A unique feature of this multibaric-multithermal ensemble is that the freezing points of confined water can be determined from the heat-capacity peaks. The new approach has been applied to compute the freezing point of two monolayer ices, namely, a high-density flat rhombic monolayer ice (HD-fRMI) and a high-density puckered rhombic monolayer ice (HD-pRMI) observed in our simulation. We find that the liquid-to-solid transition temperature (or the freezing point) of HD-pRMI is dependent on the slit width h, whereas that of HD-fRMI is nearly independent of the h.

  17. Hydrogen diffusion and segregation during solid phase epitaxial regrowth of preamorphized Si

    SciTech Connect

    Mastromatteo, M. De Salvador, D.; Napolitani, E.; Carnera, A.; Johnson, B. C.; McCallum, J. C.

    2016-03-21

    The redistribution of hydrogen during solid phase epitaxial regrowth (SPER) of preamorphized silicon has been experimentally investigated, modeled, and simulated for different H concentrations and temperatures. H was introduced by H implantation and/or infiltration from the sample surface during partial thermal anneals in air in the 520–620 °C temperature range. We characterized the time evolution of the H redistribution by secondary ion mass spectrometry and time resolved reflectivity. The good agreement between all experimental data and the simulations by means of full rate equation numerical calculations allows the quantitative assessment of all the phenomena involved: in-diffusion from annealing atmosphere and the H effect on the SPER rate. We describe the temperature dependence of microscopic segregation of H at the amorphous/crystal (a-c) interface. Only a fraction of H atoms pushed by the a-c interface can be incorporated into the crystal bulk. We propose an energetic scheme of H redistribution in amorphous Si. The segregation of H at the a-c interface is also considered for (110) and (111) orientated substrates. Our description can also be applied to other material systems in which redistribution of impurities during a solid-solid phase transition occurs.

  18. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Song, Ding; Peng, Lihui; Lu, Geng; Yang, Shiyuan; Yan, Yong

    2009-02-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  19. Erosion predictions of stock pump impellers based on liquid-solid two-phase fluid simulations

    NASA Astrophysics Data System (ADS)

    Xiao, Y. X.; Fang, B.; Zeng, C. J.; Yang, L. B.; Wang, F.; Wang, Z. W.

    2013-12-01

    Stock pumps cost 25 percent of total power consumption in a modern paper mill. Owing to the severe erosion of pump casing and impeller during operation, stock pump often results in efficiency drop and rising power consumption. A favourable prediction of the impeller wearing character can effective guide optimization design of stock pump impeller. Thereby it can reduce impeller wear and extend stock pump performance life. We simulated the three-dimensional unsteady solid-liquid two-phase flow characteristic in the hydraulic channel of a low specific speed stock pump with open and three blades impeller. The standard k- ε turbulent model and the pseudo-fluid model were adopted in simulation. Clearance between covers and impeller is taken into consideration in modelling, and pulp is simplified into mixtures of solid particles and water. The Finnie prediction model is applied to predict impeller erosion character. The simulation results of different solid particle size are compared with practical impeller erosion character, and the effects of solid particle size on impeller erosion character are obtained. Thus, numerical method to simulate impeller erosion characteristics of fibered pulp is investigated.

  20. Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution.

    PubMed

    Mullett, W M; Lai, E P

    1998-09-01

    The technique of molecular imprinting is used to produce an extensively cross-linked poly(methacrylic acid-co-ethylene dimethacrylate) material that contains theophylline as a print molecule. After Soxhlet extraction of the theophylline, binding sites are formed in the polymer with complementary size, shape, and positioning of chemical functionalities. The molecularly imprinted polymer's (MIP) high theophylline selectivity, chemical stability, and physically robust nature make it an ideal stationary-phase material in columns for HPLC separation of theophylline from other structurally related drug compounds. Mobile-phase tests confirm that a retention mechanism typical of normal-phase chromatography governs the separation, and selectivity of the MIP column can be controlled by a combination of the mobile phase and the sample solvent. Under optimal conditions, the MIP column functions like a solid-phase sorbent for theophylline extraction. Rapid elution of the bound theophylline can be accomplished in a pulsed format through injection of 20 μL of a solvent that has the proper polarity and protic nature to disrupt the electrostatic interactions and hydrogen bonding between theophylline and binding sites. A concentration detection limit of 120 ng/mL is obtained using direct UV absorption detection at 270 nm, which corresponds to a mass detection limit of 2.4 ng. This new technique, molecularly imprinted solid-phase extraction with pulsed elution (MISPE-PE), permits on-line preconcentration of theophylline from a large volume of dilute sample solution. Using a sample volume of 300 μL, a 40 ng/mL standard solution produces a detectable peak signal. Application of MISPE-PE in serum analysis further demonstrates the high capability of the MIP column to selectively isolate theophylline from other matrix components for fast, accurate determination.