Sample records for solid sampling analysis

  1. DWPF DECON FRIT: SUMP AND SLURRY SOLIDS ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Peeler, D.; Click, D.

    The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. In this report, the physical and chemical characterization results of the slurry solids and sump solids are reported. Crawford et al. (2010) provide the results of the supernate analysis. The results of the sump solidsmore » are reported on a mass basis given the samples were essentially dry upon receipt. The results of the slurry solids were converted to a volume basis given approximately 2.4 grams of slurry solids were obtained from the {approx}4 liters of liquid slurry sample. Although there were slight differences in the analytical results between the sump solids and slurry solids the following general summary statements can be made. Slight differences in the results are also captured for specific analysis. (1) Physical characterization - (a) SEM/EDS analysis suggested that the samples were enriched in Li and Si (B and Na not detectable using the current EDS system) which is consistent with two of the four principle oxides of Frit 418 (B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O and SiO{sub 2}). (b) SEM/EDS analysis also identified impurities which were elementally consistent with stainless steel (i.e., Fe, Ni, Cr contamination). (c) XRD results indicated that the sump solids samples were amorphous which is consistent with XRD results expected for a Frit 418 based sample. (d) For the sump solids, SEM/EDS analysis indicated that the particle size of the sump solids were consistent with that of an as received Frit 418 sample from a current DWPF vendor. (e) For the slurry solids, SEM/EDS analysis indicated that the particle size range of the slurry solids was much broader than compared to the sump solids. More specifically, there were significantly more fines in the slurry solids as compared to the sump solids. (f) PSD results indicated that > 99% of both the sump and slurry solids were less than 350 microns. The PSD results also supported SEM/EDS analysis that there were significantly more fines in the slurry solids as compared to the sump solids. (2) Weight Percent Solids - Based on the measured supernate density and mass of insoluble solids (2.388 grams) filtered from the four liters of liquid slurry samples, the weight percent insoluble solids was estimated to be 0.060 wt%. This level of insoluble solids is higher than the ETP WAC limit of 100 mg/L, or 0.01 wt% which suggests a separation technology of some type would be required. (3) Chemical Analysis - (a) Elemental results from ICP-ES analysis indicated that the sump solids and slurry were very consistent with the nominal composition of Frit 418. There were other elements identified by ICP analysis which were either consistent with the presence of stainless steel (as identified by SEM/EDS analysis) or impurities that have been observed in 'as received' Frit 418 from the vendor. (b) IC anion analysis of the sump solids and slurry solids indicated all of the species were less than detection limits. (c) Radionuclide analysis of the sump solids also indicated that most of the analytes were either at or below the detection limits. (d) Organic analysis of the sump solids and slurry solids indicated all of the species were less than detection limits. It should be noted that the results of this study may not be representative of future decon frit solutions or sump/slurry solids samples. Therefore, future DWPF decisions regarding the possible disposal pathways for either the aqueous or solid portions of the Decon Frit system need to factor in the potential differences. More specifically, introduction of a different frit or changes to other DWPF flowsheet unit operations (e.g., different sludge batch or coupling with other process streams) may impact not only the results but also the conclusions regarding acceptability with respect to the ETF WAC limits or other alternative disposal options.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOCmore » and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program.« less

  3. Automated, Ultra-Sterile Solid Sample Handling and Analysis on a Chip

    NASA Technical Reports Server (NTRS)

    Mora, Maria F.; Stockton, Amanda M.; Willis, Peter A.

    2013-01-01

    There are no existing ultra-sterile lab-on-a-chip systems that can accept solid samples and perform complete chemical analyses without human intervention. The proposed solution is to demonstrate completely automated lab-on-a-chip manipulation of powdered solid samples, followed by on-chip liquid extraction and chemical analysis. This technology utilizes a newly invented glass micro-device for solid manipulation, which mates with existing lab-on-a-chip instrumentation. Devices are fabricated in a Class 10 cleanroom at the JPL MicroDevices Lab, and are plasma-cleaned before and after assembly. Solid samples enter the device through a drilled hole in the top. Existing micro-pumping technology is used to transfer milligrams of powdered sample into an extraction chamber where it is mixed with liquids to extract organic material. Subsequent chemical analysis is performed using portable microchip capillary electrophoresis systems (CE). These instruments have been used for ultra-highly sensitive (parts-per-trillion, pptr) analysis of organic compounds including amines, amino acids, aldehydes, ketones, carboxylic acids, and thiols. Fully autonomous amino acid analyses in liquids were demonstrated; however, to date there have been no reports of completely automated analysis of solid samples on chip. This approach utilizes an existing portable instrument that houses optics, high-voltage power supplies, and solenoids for fully autonomous microfluidic sample processing and CE analysis with laser-induced fluorescence (LIF) detection. Furthermore, the entire system can be sterilized and placed in a cleanroom environment for analyzing samples returned from extraterrestrial targets, if desired. This is an entirely new capability never demonstrated before. The ability to manipulate solid samples, coupled with lab-on-a-chip analysis technology, will enable ultraclean and ultrasensitive end-to-end analysis of samples that is orders of magnitude more sensitive than the ppb goal given in the Science Instruments.

  4. Analysis of solid uranium samples using a small mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kahr, Michael S.; Abney, Kent D.; Olivares, José A.

    2001-07-01

    A mass spectrometer for isotopic analysis of solid uranium samples has been constructed and evaluated. This system employs the fluorinating agent chlorine trifluoride (ClF 3) to convert solid uranium samples into their volatile uranium hexafluorides (UF 6). The majority of unwanted gaseous byproducts and remaining ClF 3 are removed from the sample vessel by condensing the UF 6 and then pumping away the unwanted gases. The UF 6 gas is then introduced into a quadrupole mass spectrometer and ionized by electron impact ionization. The doubly charged bare metal uranium ion (U 2+) is used to determine the U 235/U 238 isotopic ratio. Precision and accuracy for several isotopic standards were found to be better than 12%, without further calibration of the system. The analysis can be completed in 25 min from sample loading, to UF 6 reaction, to mass spectral analysis. The method is amenable to uranium solid matrices, and other actinides.

  5. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...

  6. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...

  7. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.

    2000-10-17

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  8. Solid matrix transformation and tracer addition using molten ammonium bifluoride salt as a sample preparation method for laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Grate, Jay W; Gonzalez, Jhanis J; O'Hara, Matthew J; Kellogg, Cynthia M; Morrison, Samuel S; Koppenaal, David W; Chan, George C-Y; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E

    2017-09-08

    Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.

  9. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov Websites

    Compositional Analysis This procedure describes methods for sample drying and size reduction, obtaining samples methods used to determine the amount of solids or moisture present in a solid or slurry biomass sample as values? We have found that neutral detergent fiber (NDF) and acid detergent fiber (ADF) methods report

  10. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING SOLID FOOD SAMPLES FOR ANALYSIS OF POLAR ORGANIC POLLUTANTS (SOP-5.28)

    EPA Science Inventory

    This SOP describes the extraction and preparation of a solid food sample for analysis of acidic persistent organic pollutants such as acid herbicides, pentachlorphenol, and 3,5,6-trichloro-2-phenol. It covers the extraction, concentration and derivatization of samples that are to...

  11. Measuring solids concentration in stormwater runoff: comparison of analytical methods.

    PubMed

    Clark, Shirley E; Siu, Christina Y S

    2008-01-15

    Stormwater suspended solids typically are quantified using one of two methods: aliquot/subsample analysis (total suspended solids [TSS]) or whole-sample analysis (suspended solids concentration [SSC]). Interproject comparisons are difficult because of inconsistencies in the methods and in their application. To address this concern, the suspended solids content has been measured using both methodologies in many current projects, but the question remains about how to compare these values with historical water-quality data where the analytical methodology is unknown. This research was undertaken to determine the effect of analytical methodology on the relationship between these two methods of determination of the suspended solids concentration, including the effect of aliquot selection/collection method and of particle size distribution (PSD). The results showed that SSC was best able to represent the known sample concentration and that the results were independent of the sample's PSD. Correlations between the results and the known sample concentration could be established for TSS samples, but they were highly dependent on the sample's PSD and on the aliquot collection technique. These results emphasize the need to report not only the analytical method but also the particle size information on the solids in stormwater runoff.

  12. Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis

    DOE PAGES

    Stratz, S. Adam; Jones, Steven A.; Oldham, Colton J.; ...

    2016-06-27

    This study presents the first known detection of fission products commonly found in post-detonation nuclear debris samples using solid sample introduction and a uniquely coupled gas chromatography inductively-coupled plasma time-of-flight mass spectrometer. Rare earth oxides were chemically altered to incorporate a ligand that enhances the volatility of the samples. These samples were injected (as solids) into the aforementioned instrument and detected for the first time. Repeatable results indicate the validity of the methodology, and this capability, when refined, will prove to be a valuable asset for rapid post-detonation nuclear forensic analysis.

  13. Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratz, S. Adam; Jones, Steven A.; Oldham, Colton J.

    This study presents the first known detection of fission products commonly found in post-detonation nuclear debris samples using solid sample introduction and a uniquely coupled gas chromatography inductively-coupled plasma time-of-flight mass spectrometer. Rare earth oxides were chemically altered to incorporate a ligand that enhances the volatility of the samples. These samples were injected (as solids) into the aforementioned instrument and detected for the first time. Repeatable results indicate the validity of the methodology, and this capability, when refined, will prove to be a valuable asset for rapid post-detonation nuclear forensic analysis.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{submore » 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.« less

  15. Laser ablation in analytical chemistry - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling,more » with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.« less

  16. Extraction and quantitative analysis of iodine in solid and solution matrixes.

    PubMed

    Brown, Christopher F; Geiszler, Keith N; Vickerman, Tanya S

    2005-11-01

    129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.

  17. Methods for the preparation and analysis of solids and suspended solids for total mercury

    USGS Publications Warehouse

    Olund, Shane D.; DeWild, John F.; Olson, Mark L.; Tate, Michael T.

    2004-01-01

    The methods documented in this report are utilized by the Wisconsin District Mercury Lab for analysis of total mercury in solids (soils and sediments) and suspended solids (isolated on filters). Separate procedures are required for the different sample types. For solids, samples are prepared by room-temperature acid digestion and oxidation with aqua regia. The samples are brought up to volume with a 5 percent bromine monochloride solution to ensure complete oxidation and heated at 50?C in an oven overnight. Samples are then analyzed with an automated flow injection system incorporating a cold vapor atomic fluorescence spectrometer. A method detection limit of 0.3 ng of mercury per digestion bomb was established using multiple analyses of an environmental sample. Based on the range of masses processed, the minimum sample reporting limit varies from 0.6 ng/g to 6 ng/g. Suspended solids samples are oxidized with a 5 percent bromine monochloride solution and held at 50?C in an oven for 5 days. The samples are then analyzed with an automated flow injection system incorporating a cold vapor atomic fluorescence spectrometer. Using a certified reference material as a surrogate for an environmental sample, a method detection limit of 0.059 ng of mercury per filter was established. The minimum sample reporting limit varies from 0.059 ng/L to 1.18 ng/L, depending on the volume of water filtered.

  18. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis requirements. 257.23 Section 257.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally...

  19. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 257.23 Section 257.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally...

  20. AUTOMATED SOLID PHASE EXTRACTION GC/MS FOR ANALYSIS OF SEMIVOLATILES IN WATER AND SEDIMENTS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line sampl...

  1. TANK 26F SUPERNATANT AND 2F EVAPORATOR EDUCTOR PUMP SAMPLE CHARACTERIZATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W.; Hay, M.; Coleman, C.

    2011-08-23

    In an effort to understand the reasons for system plugging problems in the SRS 2F evaporator, supernatant samples were retrieved from the evaporator feed tank (Tank 26F) and solids were collected from the evaporator eductor feed pump for characterization. The variable depth supernatant samples were retrieved from Tank 26F in early December of 2010 and samples were provided to SRNL and the F/H Area laboratories for analysis. Inspection and analysis of the samples at SRNL was initiated in early March of 2011. During the interim period, samples were frequently exposed to temperatures as low as 12 C with daily temperaturemore » fluctuations as high as 10 C. The temperature at the time of sample collection from the waste tank was 51 C. Upon opening the supernatant bottles at SRNL, many brown solids were observed in both of the Tank 26F supernatant samples. In contrast, no solids were observed in the supernatant samples sent to the F/H Area laboratories, where the analysis was completed within a few days after receipt. Based on these results, it is believed that the original Tank 26F supernatant samples did not contain solids, but solids formed during the interim period while samples were stored at ambient temperature in the SRNL shielded cells without direct climate control. Many insoluble solids (>11 wt. % for one sample) were observed in the Tank 26F supernatant samples after three months of storage at SRNL which would not dissolve in the supernatant solution in two days at 51 C. Characterization of these solids along with the eductor pump solids revealed the presence of sodium oxalate and clarkeite (uranyl oxyhydroxide) as major crystalline phases. Sodium nitrate was the dominant crystalline phase present in the unwashed Eductor Pump solids. Crystalline sodium nitrate may have formed during the drying of the solids after filtration or may have been formed in the Tank 26F supernatant during storage since the solution was found to be very concentrated (9-12 M Na{sup +}). Concentrated mineral acids and elevated temperature were required to dissolve all of these solids. The refractory nature of some of the solids is consistent with the presence of metal oxides such as aluminosilicates (observed as a minor phase by XRD). Characterization of the water wash solutions and the digested solids confirmed the presence of oxalate salts in both solid samples. Sulfate enrichment was also observed in the Tank 26F solids wash solution, indicating the presence of sulfate precipitates such as burkeite. OLI modeling of the Tank 26F filtered supernatant composition revealed that sodium oxalate has a very low solubility in this solution. The model predicts that the sodium oxalate solubility in the Tank 26F supernatant is only 0.0011 M at 50 C. The results indicate that the highly concentrated nature of the evaporator feed solution and the addition of oxalate anion to the waste stream each contribute to the formation of insoluble solids in the 2F evaporator system.« less

  2. Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography: Environmental Analysis

    DTIC Science & Technology

    2006-01-01

    ENVIRONMENTAL ANALYSIS Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography Howard T. Mayfield Air Force Research...Abstract: Current methods for the analysis of explosives in soils utilize time consuming sample preparation workups and extractions. The method detection...chromatography/mass spectrometry to provide a con- venient and sensitive analysis method for explosives in soil. Keywords: Explosives, TNT, solid phase

  3. Micropyrolyzer for chemical analysis of liquid and solid samples

    DOEpatents

    Mowry, Curtis D.; Morgan, Catherine H.; Manginell, Ronald P.; Frye-Mason, Gregory C.

    2006-07-18

    A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20.degree. C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.

  4. ACCELERATED SOLVENT EXTRACTION COMBINED WITH AUTOMATED SOLID PHASE EXTRACTION-GC/MS FOR ANALYSIS OF SEMIVOLATILE COMPOUNDS IN HIGH MOISTURE CONTENT SOLID SAMPLES

    EPA Science Inventory

    A research project was initiated to address a recurring problem of elevated detection limits above required risk-based concentrations for the determination of semivolatile organic compounds in high moisture content solid samples. This project was initiated, in cooperation with t...

  5. K West Basin Sand Filter Backwash Sample Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, Sandra K.; Smoot, Margaret R.; Coffey, Deborah S.

    A sand filter is used to help maintain water clarity at the K West Basin where highly radioactive sludge is stored. Eventually that sand filter will require disposal. The radionuclide content of the solids trapped in the sand filter will affect the selection of the sand filter disposal pathway. The Pacific Northwest National Laboratory (PNNL) was contracted by the K Basin Operations & Plateau Remediation Project (operations contractor CH2M Hill) to analyze the radionuclide content of the solids collected from the backwash of the K West Basin sand filter. The radionuclide composition in the sand filter backwash solids will bemore » used by CH2M Hill to determine if the sand filter media and retained sludge solids will be designated as transuranic waste for disposal purposes or can be processed through less expensive means. On October 19, 2015, K Basin Operations & Plateau Remediation Project staff backwashed the sand filter into the North Load-Out Pit (NLOP) and immediately collected sample slurry from a sampling tube positioned 24 in. above the NLOP floor. The 764 g sand filter backwash slurry sample, KW-105 SFBW-001, was submitted to PNNL for analysis on October 20, 2015. Solids from the slurry sample were consolidated into two samples (i.e., a primary and a duplicate sample) by centrifuging and measured for mass (0.82 g combined – wet centrifuged solids basis) and volume (0.80 mL combined). The solids were a dark brown/orange color, consistent with iron oxide/hydroxide. The solids were dried; the combined dry solids mass was 0.1113 g, corresponding to 0.0146 weight percent (wt%) solids in the original submitted sample slurry. The solids were acid-digested using nitric and hydrochloric acids. Insoluble solids developed upon dilution with 0.5 M HNO 3, corresponding to an average 6.5 wt% of the initial dry solids content. The acid digestate and insoluble solids were analyzed separately by gamma spectrometry. Nominally, 7.7% of the 60Co was present in the insoluble solids; less than 1% of other gamma-emitters (i.e., 137Cs, 154/155Eu, and 241Am) were present in the insoluble solids. Aliquots of the acid digestate were analyzed directly using gamma energy analysis (GEA) and after separations for 238Pu, 239+240Pu, 237Np, and 241Am radioisotopes using alpha energy analysis (AEA). The 90Sr was measured by liquid scintillation counting (LSC) on the Sr-separated fraction. The plutonium isotopic distribution of the acid digestate was analyzed following Pu separations by thermal ionization mass spectrometry (TIMS). A table summarizes the results for the primary and duplicate samples. The 239+240Pu concentration (µCi/g dry) relative to 90Sr and to 137Cs concentrations (µCi/g dry) was examined. The K West Basin sludge has a 239+240Pu/ 90Sr ranging from 0.1 to 1.2 and the 239+240Pu/ 137Cs ratio ranging from 0.10 to 0.47. In contrast, the sand filter backwash solids 239+240Pu/ 90Sr ratio was 10.6 and the 239+240Pu/ 137Cs ratio was 2.0. The ratio differences indicate a relative enhancement of the Pu concentration in the sand filter solids relative to the 137Cs and 90Sr sludge concentrations currently in the K West Basin. A dose-to-curie radioisotope evaluation of the sand filter waste form may need to consider this dissimilarity.« less

  6. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    PubMed

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  7. Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples

    NASA Astrophysics Data System (ADS)

    Bilge, Gonca; Sezer, Banu; Boyaci, Ismail Hakki; Eseller, Kemal Efe; Berberoglu, Halil

    2018-07-01

    Liquid analysis by using LIBS is a complicated process due to difficulties encountered during the collection of light and formation of plasma in liquid. To avoid these, some applications are performed such as aerosol formation and transforming liquid into solid state. However, performance of LIBS in liquid samples still remains a challenging issue. In this study, performance evaluation of LIBS and parameter optimizations in liquid and solid phase samples were performed. For this purpose, milk was chosen as model sample; milk powder was used as solid sample, and milk was used as liquid sample in the experiments. Different experimental setups have been constructed for each sampling technique, and optimizations were performed to determine suitable parameters such as delay time, laser energy, repetition rate and speed of rotary table for solid sampling technique, and flow rate of carrier gas for liquid sampling technique. Target element was determined as Ca, which is a critically important element in milk for determining its nutritional value and Ca addition. In optimum parameters, limit of detection (LOD), limit of quantification (LOQ) and relative standard deviation (RSD) values were calculated as 0.11%, 0.36% and 8.29% respectively for milk powders samples; while LOD, LOQ and RSD values were calculated as 0.24%, 0.81%, and 10.93% respectively for milk samples. It can be said that LIBS is an applicable method in both liquid and solid samples with suitable systems and parameters. However, liquid analysis requires much more developed systems for more accurate results.

  8. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; hide

    2014-01-01

    The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.

  9. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysismore » of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD, XRD and SEM) in support of the Salt IPT chemistry team. The overall conclusions from analyses performed in this study are that the PRFT slurry consists of 0.61 Wt.% insoluble MST solids suspended in a 0.77 M [Na+] caustic solution containing various anions such as nitrate, nitrite, sulfate, carbonate and oxalate. The corresponding measured sulfur level in the PRFT slurry, a critical element for determining how much of the PRFT slurry gets blended into the SRAT, is 0.437 Wt.% TS. The PRFT slurry does not contain insoluble oxalates nor significant quantities of high activity sludge solids. The lack of sludge solids has been alluded to by the Salt IPT chemistry team in citing that the mixing pump has been removed from Tank 49H, the feed tank to ARP-MCU, thus allowing the sludge solids to settle out. The PRFT aqueous slurry from DWPF was found to contain 5.96 Wt.% total dried solids. Of these total dried solids, relatively low levels of insoluble solids (0.61 Wt.%) were measured. The densities of both the filtrate and slurry were 1.05 g/mL. Particle size distribution of the PRFT solids in filtered caustic simulant and XRD analysis of washed/dried PRFT solids indicate that the PRFT slurry contains a bimodal distribution of particles in the range of 1 and 6 μm and that the particles contain sodium titanium oxide hydroxide Na2Ti2O4(OH)2 crystalline material as determined by XRD. These data are in excellent agreement with similar data obtained from laboratory sampling of vendor supplied MST. Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-ray Spectroscopy (EDS) analysis of washed/dried PRFT solids shows the particles to be like previous MST analyses consisting of irregular shaped micron-sized solids consisting primarily of Na and Ti. Thermogravimetric analysis of the washed and unwashed PRFT solids shows that the washed solids are very similar to MST solids. The TGA mass loss signal for the unwashed solids shows similar features to TGA performed on cellulose nitrate filter paper indicating significant presence of the deteriorated filter in this unwashed sample. Neither the washed nor unwashed PRFT solids TGA traces showed any features that would indicate presence of sodium oxalate solids. The PRFT Filtrate elemental analysis shows that Na, S and Al are major soluble species with trace levels of B, Cr, Cu, K, Li, Si, Tc, Th and U present. Nitrate, nitrite, sulfate, oxalate, carbonate and hydroxide are major soluble anion species. There is good agreement between the analyzed TOC and the total carbon calculated from the sum of oxalate and minor species formate. Comparison of the amount and speciation of the carbon species between filtrate and slurry indicates no significant carbon-containing species, e.g., sodium oxalate, are present in the slurry solids. Dissolution of the PRFT slurry and subsequent analysis shows that Na, Ti, Si and U are the major elements present on a Wt.% total dried solids basis with 30, 5.8 and 0.47 and 0.11 Wt.% total dried solids, respectively. The amount of Al in the dissolved PRFT slurry is less than that calculated from the PRFT filtrate alone which suggests that the mixed acid digestion used in this work is not optimized for Al recovery. The concentrations of Ca, Fe, Hg and U are all low (at or below 0.11 wt%) and there is no detectable Mn or Ni present which indicates no significant HLW sludge solids are present in the PRFT slurry sample.« less

  10. Real-scale comparison between simple and composite raw sewage sampling

    NASA Astrophysics Data System (ADS)

    Sergio Scalize, Paulo; Moraes Frazão, Juliana

    2018-06-01

    The present study performed a qualitative and quantitative characterization of the raw sewage collected at the entrance of the sewage treatment station of the city of Itumbiara, state of Goiás. Samples were collected every two hours over a period of seven consecutive days. Characterization of both point samples and composite samples was performed. The parameters analyzed were: temperature, pH, alkalinity, chemical oxygen demand, oil and grease, electric conductivity, total phosphorus, settleable solids, ammoniacal nitrogen, total suspended solids, volatile suspended solids, fixed suspended solids and turbidity. These results allowed us to verify that it is possible to perform the collection and analysis of a point sample, instead of a composite sample, as a way of monitoring the efficiency of a sewage treatment plant.

  11. EPA Method 3135.2I: Cyanide, Total and Amenable in Aqueous and Solid Samples Automated Colorimetric With Manual Digestion

    EPA Pesticide Factsheets

    This method describes procedures for preparation and analysis of solid, water and wipe samples for detection and measurement of cyanide amendable to chlorination using acid digestion and spectrophotometry.

  12. Space Shuttle solid rocket motor exposure monitoring

    NASA Technical Reports Server (NTRS)

    Brown, S. W.

    1993-01-01

    During the processing of the Space Shuttle Solid Rocket Booster (SRB), segments at the Kennedy Space Center, an odor was detected around the solid propellant. An Industrial Hygiene survey was conducted to determine the chemical identity of the SRB offgassing constituents. Air samples were collected inside a forward SRB segment and analyzed to determine chemical composition. Specific chemical analysis for suspected offgassing constituents of the propellant indicated ammonia to be present. A gas chromatograph mass spectroscopy (GC/MS) analysis of the air samples detected numerous high molecular weight hydrocarbons.

  13. 24-HOUR DIFFUSIVE SAMPLING OF TOXIC VOCS IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - LABORATORY STUDIES

    EPA Science Inventory

    Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...

  14. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING SOLID FOOD SAMPLES FOR ANALYSIS OF PERSISTENT ORGANIC POLLUTANTS (SOP-5.20)

    EPA Science Inventory

    This SOP describes the procedures for homogenizing, extracting and concentrating solid food samples for persistent organic pollutants such as organochlorine compounds, organophosphate compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, substituted phenols, and...

  15. AUTOMATED ANALYSIS OF AQUEOUS SAMPLES CONTAINING PESTICIDES, ACIDIC/BASIC/NEUTRAL SEMIVOLATILES AND VOLATILE ORGANIC COMPOUNDS BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GC/MS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...

  16. Online-LASIL: Laser Ablation of Solid Samples in Liquid with online-coupled ICP-OES detection for direct determination of the stoichiometry of complex metal oxide thin layers.

    PubMed

    Bonta, Maximilian; Frank, Johannes; Taibl, Stefanie; Fleig, Jürgen; Limbeck, Andreas

    2018-02-13

    Advanced materials such as complex metal oxides are used in a wide range of applications and have further promising perspectives in the form of thin films. The exact chemical composition essentially influences the electronic properties of these materials which makes correct assessment of their composition necessary. However, due to high chemical resistance and in the case of thin films low absolute analyte amounts, this procedure is in most cases not straightforward and extremely time-demanding. Commonly applied techniques either lack in ease of use (i.e., solution-based analysis with preceding sample dissolution), or adequately accurate quantification (i.e., solid sampling techniques). An analysis approach which combines the beneficial aspects of solution-based analysis as well as direct solid sampling is Laser Ablation of a Sample in Liquid (LASIL). In this work, it is shown that the analysis of major as well as minor sample constituents is possible using a novel online-LASIL setup, allowing sample analysis without manual sample handling after placing it in an ablation chamber. Strontium titanate (STO) thin layers with different compositions were analyzed in the course of this study. Precision of the newly developed online-LASIL method is comparable to conventional wet chemical approaches. With only about 15-20 min required for the analysis per sample, time demand is significantly reduced compared to often necessary fusion procedures lasting multiple hours. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Methods for evaluating temporal groundwater quality data and results of decadal-scale changes in chloride, dissolved solids, and nitrate concentrations in groundwater in the United States, 1988-2010

    USGS Publications Warehouse

    Lindsey, Bruce D.; Rupert, Michael G.

    2012-01-01

    Decadal-scale changes in groundwater quality were evaluated by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Samples of groundwater collected from wells during 1988-2000 - a first sampling event representing the decade ending the 20th century - were compared on a pair-wise basis to samples from the same wells collected during 2001-2010 - a second sampling event representing the decade beginning the 21st century. The data set consists of samples from 1,236 wells in 56 well networks, representing major aquifers and urban and agricultural land-use areas, with analytical results for chloride, dissolved solids, and nitrate. Statistical analysis was done on a network basis rather than by individual wells. Although spanning slightly more or less than a 10-year period, the two-sample comparison between the first and second sampling events is referred to as an analysis of decadal-scale change based on a step-trend analysis. The 22 principal aquifers represented by these 56 networks account for nearly 80 percent of the estimated withdrawals of groundwater used for drinking-water supply in the Nation. Well networks where decadal-scale changes in concentrations were statistically significant were identified using the Wilcoxon-Pratt signed-rank test. For the statistical analysis of chloride, dissolved solids, and nitrate concentrations at the network level, more than half revealed no statistically significant change over the decadal period. However, for networks that had statistically significant changes, increased concentrations outnumbered decreased concentrations by a large margin. Statistically significant increases of chloride concentrations were identified for 43 percent of 56 networks. Dissolved solids concentrations increased significantly in 41 percent of the 54 networks with dissolved solids data, and nitrate concentrations increased significantly in 23 percent of 56 networks. At least one of the three - chloride, dissolved solids, or nitrate - had a statistically significant increase in concentration in 66 percent of the networks. Statistically significant decreases in concentrations were identified in 4 percent of the networks for chloride, 2 percent of the networks for dissolved solids, and 9 percent of the networks for nitrate. A larger percentage of urban land-use networks had statistically significant increases in chloride, dissolved solids, and nitrate concentrations than agricultural land-use networks. In order to assess the magnitude of statistically significant changes, the median of the differences between constituent concentrations from the first full-network sampling event and those from the second full-network sampling event was calculated using the Turnbull method. The largest median decadal increases in chloride concentrations were in networks in the Upper Illinois River Basin (67 mg/L) and in the New England Coastal Basins (34 mg/L), whereas the largest median decadal decrease in chloride concentrations was in the Upper Snake River Basin (1 mg/L). The largest median decadal increases in dissolved solids concentrations were in networks in the Rio Grande Valley (260 mg/L) and the Upper Illinois River Basin (160 mg/L). The largest median decadal decrease in dissolved solids concentrations was in the Apalachicola-Chattahoochee-Flint River Basin (6.0 mg/L). The largest median decadal increases in nitrate as nitrogen (N) concentrations were in networks in the South Platte River Basin (2.0 mg/L as N) and the San Joaquin-Tulare Basins (1.0 mg/L as N). The largest median decadal decrease in nitrate concentrations was in the Santee River Basin and Coastal Drainages (0.63 mg/L). The magnitude of change in networks with statistically significant increases typically was much larger than the magnitude of change in networks with statistically significant decreases. The magnitude of change was greatest for chloride in the urban land-use networks and greatest for dissolved solids and nitrate in the agricultural land-use networks. Analysis of data from all networks combined indicated statistically significant increases for chloride, dissolved solids, and nitrate. Although chloride, dissolved solids, and nitrate concentrations were typically less than the drinking-water standards and guidelines, a statistical test was used to determine whether or not the proportion of samples exceeding the drinking-water standard or guideline changed significantly between the first and second full-network sampling events. The proportion of samples exceeding the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level for dissolved solids (500 milligrams per liter) increased significantly between the first and second full-network sampling events when evaluating all networks combined at the national level. Also, for all networks combined, the proportion of samples exceeding the USEPA Maximum Contaminant Level (MCL) of 10 mg/L as N for nitrate increased significantly. One network in the Delmarva Peninsula had a significant increase in the proportion of samples exceeding the MCL for nitrate. A subset of 261 wells was sampled every other year (biennially) to evaluate decadal-scale changes using a time-series analysis. The analysis of the biennial data set showed that changes were generally similar to the findings from the analysis of decadal-scale change that was based on a step-trend analysis. Because of the small number of wells in a network with biennial data (typically 4-5 wells), the time-series analysis is more useful for understanding water-quality responses to changes in site-specific conditions rather than as an indicator of the change for the entire network.

  18. Measuring Sulfur Isotope Ratios from Solid Samples with the Sample Analysis at Mars Instrument and the Effects of Dead Time Corrections

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Kasprzak, W.; Lyness, E.; Raaen, E.

    2011-01-01

    The Sample Analysis at Mars (SAM) instrument suite comprises the largest science payload on the Mars Science Laboratory (MSL) "Curiosity" rover. SAM will perform chemical and isotopic analysis of volatile compounds from atmospheric and solid samples to address questions pertaining to habitability and geochemical processes on Mars. Sulfur is a key element of interest in this regard, as sulfur compounds have been detected on the Martian surface by both in situ and remote sensing techniques. Their chemical and isotopic composition can belp constrain environmental conditions and mechanisms at the time of formation. A previous study examined the capability of the SAM quadrupole mass spectrometer (QMS) to determine sulfur isotope ratios of SO2 gas from a statistical perspective. Here we discuss the development of a method for determining sulfur isotope ratios with the QMS by sampling SO2 generated from heating of solid sulfate samples in SAM's pyrolysis oven. This analysis, which was performed with the SAM breadboard system, also required development of a novel treatment of the QMS dead time to accommodate the characteristics of an aging detector.

  19. 40 CFR 60.51b - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gases, liquids, or solids through the heating of municipal solid waste, and the gases, liquids, or... diluent gas) for subsequent on-or off-site analysis; integrated sample(s) collected are representative of... arithmetic average flue gas temperature measured at the particulate matter control device inlet during four...

  20. 40 CFR 60.51b - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gases, liquids, or solids through the heating of municipal solid waste, and the gases, liquids, or... diluent gas) for subsequent on-or off-site analysis; integrated sample(s) collected are representative of... arithmetic average flue gas temperature measured at the particulate matter control device inlet during four...

  1. 40 CFR 60.51b - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gases, liquids, or solids through the heating of municipal solid waste, and the gases, liquids, or... diluent gas) for subsequent on-or off-site analysis; integrated sample(s) collected are representative of... arithmetic average flue gas temperature measured at the particulate matter control device inlet during four...

  2. Simultaneous Solid Phase Extraction and Derivatization of Aliphatic Primary Amines Prior to Separation and UV-Absorbance Detection

    PubMed Central

    Felhofer, Jessica L.; Scida, Karen; Penick, Mark; Willis, Peter A.; Garcia, Carlos D.

    2013-01-01

    To overcome the problem of poor sensitivity of capillary electrophoresis-UV absorbance for the detection of aliphatic amines, a solid phase extraction and derivatization scheme was developed. This work demonstrates successful coupling of amines to a chromophore immobilized on a solid phase and subsequent cleavage and analysis. Although the analysis of many types of amines is relevant for myriad applications, this paper focuses on the derivatization and separation of amines with environmental relevance. This work aims to provide the foundations for future developments of an integrated sample preparation microreactor capable of performing simultaneous derivatization, preconcentration, and sample cleanup for sensitive analysis of primary amines. PMID:24054648

  3. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.

  4. Effects of Drying Process on an IgG1 Monoclonal Antibody Using Solid-State Hydrogen Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS).

    PubMed

    Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M

    2018-01-03

    Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.

  5. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Chris R.; Cabane, M.; Conrad, Pamela G.; Coll, Patrice; Atreya, Sushil K.; Arvey, Robert; Barciniak, Michael; Benna, Mehdi; Bleacher, L.; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm.

  6. 16S rRNA analysis of diversity of manure microbial community in dairy farm environment

    PubMed Central

    Miao, Max; Wang, Yi; Settles, Matthew; del Rio, Noelia Silva; Castillo, Alejandro; Souza, Alex; Pereira, Richard

    2018-01-01

    Dairy farms generate a considerable amount of manure, which is applied in cropland as fertilizer. While the use of manure as fertilizer reduces the application of chemical fertilizers, the main concern with regards to manure application is microbial pollution. Manure is a reservoir of a broad range of microbial populations, including pathogens, which have potential to cause contamination and pose risks to public and animal health. Despite the widespread use of manure fertilizer, the change in microbial diversity of manure under various treatment processes is still not well-understood. We hypothesize that the microbial population of animal waste changes with manure handling used in a farm environment. Consequential microbial risk caused by animal manure may depend on manure handling. In this study, a reconnaissance effort for sampling dairy manure in California Central Valley followed by 16S rRNA analysis of content and diversity was undertaken to understand the microbiome of manure after various handling processes. The microbial community analysis of manure revealed that the population in liquid manure differs from that in solid manure. For instance, the bacteria of genus Sulfuriomonas were unique in liquid samples, while the bacteria of genus Thermos were observed only in solid samples. Bacteria of genus Clostridium were present in both solid and liquid samples. The population among liquid samples was comparable, as was the population among solid samples. These findings suggest that the mode of manure application (i.e., liquid versus solid) could have a potential impact on the microbiome of cropland receiving manure as fertilizers. PMID:29304047

  7. Current trends in sample preparation for cosmetic analysis.

    PubMed

    Zhong, Zhixiong; Li, Gongke

    2017-01-01

    The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A METHOD FOR AUTOMATED ANALYSIS OF 10 ML WATER SAMPLES CONTAINING ACIDIC, BASIC, AND NEUTRAL SEMIVOLATILE COMPOUNDS LISTED IN USEPA METHOD 8270 BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    Data is presented showing the progress made towards the development of a new automated system combining solid phase extraction (SPE) with gas chromatography/mass spectrometry for the single run analysis of water samples containing a broad range of acid, base and neutral compounds...

  9. Robotic solid phase extraction and high performance liquid chromatographic analysis of ranitidine in serum or plasma.

    PubMed

    Lloyd, T L; Perschy, T B; Gooding, A E; Tomlinson, J J

    1992-01-01

    A fully automated assay for the analysis of ranitidine in serum and plasma, with and without an internal standard, was validated. It utilizes robotic solid phase extraction with on-line high performance liquid chromatographic (HPLC) analysis. The ruggedness of the assay was demonstrated over a three-year period. A Zymark Py Technology II robotic system was used for serial processing from initial aspiration of samples from original collection containers, to final direct injection onto the on-line HPLC system. Automated serial processing with on-line analysis provided uniform sample history and increased productivity by freeing the chemist to analyse data and perform other tasks. The solid phase extraction efficiency was 94% throughout the assay range of 10-250 ng/mL. The coefficients of variation for within- and between-day quality control samples ranged from 1 to 6% and 1 to 5%, respectively. Mean accuracy for between-day standards and quality control results ranged from 97 to 102% of the respective theoretical concentrations.

  10. Analysis of the contaminants released from municipal solid waste landfill site: A case study.

    PubMed

    Samadder, S R; Prabhakar, R; Khan, D; Kishan, D; Chauhan, M S

    2017-02-15

    Release and transport of leachate from municipal solid waste landfills pose a potential hazard to both surrounding ecosystems and human populations. In the present study, soil, groundwater, and surface water samples were collected from the periphery of a municipal solid waste landfill (located at Ranital of Jabalpur, Madhya Pradesh, India) for laboratory analysis to understand the release of contaminants. The landfill does not receive any solid wastes for dumping now as the same is under a landfill closure plan. Groundwater and soil samples were collected from the bore holes of 15m deep drilled along the periphery of the landfill and the surface water samples were collected from the existing surface water courses near the landfill. The landfill had neither any bottom liner nor any leachate collection and treatment system. Thus the leachate generated from the landfills finds paths into the groundwater and surrounding surface water courses. Concentrations of various physico-chemical parameters including some toxic metals (in collected groundwater, soil, and surface water samples) and microbiological parameters (in surface water samples) were determined. The analyzed data were integrated into ArcGIS environment and the spatial distribution of the metals and other physic- chemical parameter across the landfill was extrapolated to observe the distribution. The statistical analysis and spatial variations indicated the leaching of metals from the landfill to the groundwater aquifer system. The study will help the readers and the municipal engineers to understand the release of contaminants from landfills for better management of municipal solid wastes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    PubMed

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-03

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,

  13. Solid-phase microextraction technology for in vitro and in vivo metabolite analysis

    PubMed Central

    Zhang, Qihui; Zhou, Liandi; Chen, Hua; Wang, Chong-Zhi; Xia, Zhining; Yuan, Chun-Su

    2016-01-01

    Analysis of endogenous metabolites in biological samples may lead to the identification of biomarkers in metabolomics studies. To achieve accurate sample analysis, a combined method of continuous quick sampling and extraction is required for online compound detection. Solid-phase microextraction (SPME) integrates sampling, extraction and concentration into a single solvent-free step for chemical analysis. SPME has a number of advantages, including simplicity, high sensitivity and a relatively non-invasive nature. In this article, we reviewed SPME technology in in vitro and in vivo analyses of metabolites after the ingestion of herbal medicines, foods and pharmaceutical agents. The metabolites of microorganisms in dietary supplements and in the gastrointestinal tract will also be examined. As a promising technology in biomedical and pharmaceutical research, SPME and its future applications will depend on advances in analytical technologies and material science. PMID:27695152

  14. Headspace analysis of polar organic compounds in biological matrixes using solid phase microextraction (SPME)

    USDA-ARS?s Scientific Manuscript database

    Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...

  15. COMPARISON OF TWO DIFFERENT SOLID PHASE EXTRACTION/LARGE VOLUME INJECTION PROCEDURES FOR METHOD 8270

    EPA Science Inventory

    Two solid phase (SPE) and one traditional continuous liquid-liquid extraction method are compared for analysis of Method 8270 SVOCs. Productivity parameters include data quality, sample volume, analysis time and solvent waste.

    One SPE system, unique in the U.S., uses aut...

  16. Metal-organic framework based in-syringe solid-phase extraction for the on-site sampling of polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu

    2018-04-01

    In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    PubMed

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H

    2015-04-15

    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Heterogenic Solid Biofuel Sampling Methodology and Uncertainty Associated with Prompt Analysis

    PubMed Central

    Pazó, Jose A.; Granada, Enrique; Saavedra, Ángeles; Patiño, David; Collazo, Joaquín

    2010-01-01

    Accurate determination of the properties of biomass is of particular interest in studies on biomass combustion or cofiring. The aim of this paper is to develop a methodology for prompt analysis of heterogeneous solid fuels with an acceptable degree of accuracy. Special care must be taken with the sampling procedure to achieve an acceptable degree of error and low statistical uncertainty. A sampling and error determination methodology for prompt analysis is presented and validated. Two approaches for the propagation of errors are also given and some comparisons are made in order to determine which may be better in this context. Results show in general low, acceptable levels of uncertainty, demonstrating that the samples obtained in the process are representative of the overall fuel composition. PMID:20559506

  19. Comparison of rumen bacteria distribution in original rumen digesta, rumen liquid and solid fractions in lactating Holstein cows.

    PubMed

    Ji, Shoukun; Zhang, Hongtao; Yan, Hui; Azarfar, Arash; Shi, Haitao; Alugongo, Gibson; Li, Shengli; Cao, Zhijun; Wang, Yajing

    2017-01-01

    Original rumen digesta, rumen liquid and solid fractions have been frequently used to assess the rumen bacterial community. However, bacterial profiles in rumen original digesta, liquid and solid fractions vary from each other and need to be better established. To compare bacterial profiles in each fraction, samples of rumen digesta from six cows fed either a high fiber diet (HFD) or a high energy diet (HED) were collected via rumen fistulas. Rumen digesta was then squeezed through four layers of cheesecloth to separate liquid and solid fractions. The bacterial profiles of rumen original digesta, liquid and solid fractions were analyzed with High-throughput sequencing technique. Rumen bacterial diversity was mainly affected by diet and individual cow ( P  > 0.05) rather than rumen fraction. Bias distributed bacteria were observed in solid and liquid fractions of rumen content using Venn diagram and LEfSe analysis. Fifteen out of 16 detected biomarkers (using LEfSe analysis) were found in liquid fraction, and these 15 biomarkers contributed the most to the bacterial differences among rumen content fractions. Similar results were found when using samples of original rumen digesta, rumen liquid or solid fractions to assess diversity of rumen bacteria; however, more attention should be draw onto bias distributed bacteria in different ruminal fractions, especially when liquid fraction has been used as a representative sample for rumen bacterial study.

  20. Fifty years of solid-phase extraction in water analysis--historical development and overview.

    PubMed

    Liska, I

    2000-07-14

    The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.

  1. Direct analysis of herbal powders by pipette-tip electrospray ionization mass spectrometry.

    PubMed

    Wang, Haixing; So, Pui-Kin; Yao, Zhong-Ping

    2014-01-27

    Conventional electrospray ionization mass spectrometry (ESI-MS) is widely used for analysis of solution samples. The development of solid-substrate ESI-MS allows direct ionization analysis of bulky solid samples. In this study, we developed pipette-tip ESI-MS, a technique that combines pipette tips with syringe and syringe pump, for direct analysis of herbal powders, another common form of samples. We demonstrated that various herbal powder samples, including herbal medicines and food samples, could be readily online extracted and analyzed using this technique. Various powder samples, such as Rhizoma coptidis, lotus plumule, great burdock achene, black pepper, Panax ginseng, roasted coffee beans, Fructus Schisandrae Chinensis and Fructus Schisandrae Sphenantherae, were analyzed using pipette-tip ESI-MS and quality mass spectra with stable and durable signals could be obtained. Both positive and negative ion modes were attempted and various compounds including amino acids, oligosaccharides, glycosides, alkaloids, organic acids, ginosensides, flavonoids and lignans could be detected. Principal component analysis (PCA) based on the acquired mass spectra allowed rapid differentiation of closely related herbal species. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review

    PubMed Central

    Islas, Gabriela; Hernandez, Prisciliano

    2017-01-01

    To achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. Dispersive solid phase extraction (DSPE) has been used as a pretreatment technique for the analysis of several compounds. This technique is based on the dispersion of a solid sorbent in liquid samples in the extraction isolation and clean-up of different analytes from complex matrices. DSPE has found a wide range of applications in several fields, and it is considered to be a selective, robust, and versatile technique. The applications of dispersive techniques in the analysis of veterinary drugs in different matrices involve magnetic sorbents, molecularly imprinted polymers, carbon-based nanomaterials, and the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method. Techniques based on DSPE permit minimization of additional steps such as precipitation, centrifugation, and filtration, which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique and how it has been applied to food analysis. PMID:29181027

  3. USARCENT AOR Contingency Base Waste Stream Analysis: An Analysis of Solid Waste Streams at Five Bases in the U. S. Army Central (USARCENT) Area of Responsibility

    DTIC Science & Technology

    2013-03-31

    certainly remain comingled with other solid waste. For example, some bases provided containers for segregation of recyclables including plastic and...prevalent types of solid waste are food (19.1% by average sample weight), wood (18.9%), and plastics (16.0%) based on analysis of bases in...within the interval shown. Food and wood wastes are the largest components of the average waste stream (both at ~19% by weight), followed by plastic

  4. Pulsed microdischarge with inductively coupled plasma mass spectrometry for elemental analysis on solid metal samples.

    PubMed

    Li, Weifeng; Yin, Zhibin; Cheng, Xiaoling; Hang, Wei; Li, Jianfeng; Huang, Benli

    2015-05-05

    Pulsed microdischarge employed as source for direct solid analysis was investigated in N2 environment at atmospheric pressure. Compared with direct current (DC) microdischarge, it exhibits advantages with respect to the ablation and emission of the sample. Comprehensive evidence, including voltage-current relationship, current density (j), and electron density (ne), suggests that pulsed microdischarge is in the arc regime while DC microdischarge belongs to glow. Capability in ablating metal samples demonstrates that pulsed microdischarge is a viable option for direct solid sampling because of the enhanced instantaneous energy. Using optical spectrometer, only common emission lines of N2 can be acquired in DC mode, whereas primary atomic and ionic lines of the sample are obtained in the case of pulsed mode. Calculations show a significant difference in N2 vibrational temperatures between DC and pulsed microdischarge. Combined with inductively coupled plasma mass spectrometry (ICPMS), pulsed microdischarge exhibits much better performances in calibration linearity and limits of detection (LOD) than those of DC discharge in direct analysis of samples of different matrices. To improve transmission efficiency, a mixture of Ar and N2 was employed as discharge gas as well as carrier gas in follow-up experiments, facilitating that LODs of most elements reached ng/g.

  5. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    PubMed

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  6. Investigation of Tank 241-AN-101 Floating Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, Douglas P.; Meznarich, H. K.

    Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floatingmore » and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.« less

  7. Sample preparation techniques for the determination of trace residues and contaminants in foods.

    PubMed

    Ridgway, Kathy; Lalljie, Sam P D; Smith, Roger M

    2007-06-15

    The determination of trace residues and contaminants in complex matrices, such as food, often requires extensive sample extraction and preparation prior to instrumental analysis. Sample preparation is often the bottleneck in analysis and there is a need to minimise the number of steps to reduce both time and sources of error. There is also a move towards more environmentally friendly techniques, which use less solvent and smaller sample sizes. Smaller sample size becomes important when dealing with real life problems, such as consumer complaints and alleged chemical contamination. Optimal sample preparation can reduce analysis time, sources of error, enhance sensitivity and enable unequivocal identification, confirmation and quantification. This review considers all aspects of sample preparation, covering general extraction techniques, such as Soxhlet and pressurised liquid extraction, microextraction techniques such as liquid phase microextraction (LPME) and more selective techniques, such as solid phase extraction (SPE), solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The applicability of each technique in food analysis, particularly for the determination of trace organic contaminants in foods is discussed.

  8. Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer

    PubMed Central

    Kumano, Shun; Sugiyama, Masuyuki; Yamada, Masuyoshi; Nishimura, Kazushige; Hasegawa, Hideki; Morokuma, Hidetoshi; Inoue, Hiroyuki; Hashimoto, Yuichiro

    2015-01-01

    We previously reported on the development of a portable mass spectrometer for the onsite screening of illicit drugs, but our previous sampling system could only be used for liquid samples. In this study, we report on an attempt to develop a probe heating method that also permits solid samples to be analyzed using a portable mass spectrometer. An aluminum rod is used as the sampling probe. The powdered sample is affixed to the sampling probe or a droplet of sample solution is placed on the tip of the probe and dried. The probe is then placed on a heater to vaporize the sample. The vapor is then introduced into the portable mass spectrometer and analyzed. With the heater temperature set to 130°C, the developed system detected 1 ng of methamphetamine, 1 ng of amphetamine, 3 ng of 3,4-methylenedioxymethamphetamine, 1 ng of 3,4-methylenedioxyamphetamine, and 0.3 ng of cocaine. Even from mixtures consisting of clove powder and methamphetamine powder, methamphetamine ions were detected by tandem mass spectrometry. The developed probe heating method provides a simple method for the analysis of solid samples. A portable mass spectrometer incorporating this method would thus be useful for the onsite screening of illicit drugs. PMID:26819909

  9. Comparison of polycyclic aromatic hydrocarbons level between suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia

    NASA Astrophysics Data System (ADS)

    Muslim, Noor Zuhartini Md; Babaheidari, Seyedreza Hashemi; Zakaria, Mohamad Pauzi

    2015-09-01

    Sixteen type of common Polycyclic Aromatic Hydrocarbons (PAHs) which consist of naphthalene, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]-perylene, indeno[1,2,3-cd]-pyrene and dibenz[a,h]-anthracene in suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia were investigated. The analysis samples were taken from six different sites of Pengkalan Chepa River during sunny day. The samples were subjected to a series of pre-treatment before the level of PAHs can be determined. A Gas Chromatography-Mass Spectrometry (GC-MS) was the prime method for the analysis of PAHs level. A total of 16 PAHs concentration in suspended solid of the whole Pengkalan Chepa River was found to be 2144.6 ng/g dry weights. This concentration was about eight times more than 16 PAHs concentration in sediment which found to be 266.5 ng/g dry weights.

  10. Direct determination of lead in biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) after furnace-fusion in the sample cuvette-tungsten boat furnace.

    PubMed

    Okamoto, Y

    2000-06-01

    The newly conceived electrothermal vaporization (ETV) system using a tungsten boat furnace (TBF) sample cuvette was designed for the direct analysis of solid samples with detection by inductively coupled plasma mass spectrometry (ICP-MS). Into this small sample cuvette, a solid mixture of the biological samples and diammonium hydrogenphosphate powder as a fusion flux was placed and situated on a TBF. Tetramethylammonium hydroxide solution was added to the mixture. After the on-furnace digestion had been completed, the analyte in the cuvette was vaporized and introduced into the ICP mass spectrometer. The solid samples were analyzed by using a calibration curve prepared from the aqueous standard solutions. The detection limit was estimated to be 5.1 pg of lead, which corresponds to 10.2 ng g(-1) of lead in solid samples when a prepared sample amount of 1.0 mg was applied. The relative standard deviation for 8 replicate measurements obtained with 100 pg of lead was calculated to be 6.5%. The analytical results for various biological samples are described.

  11. A sol-gel based solid phase microextraction fiber for the analysis of aliphatic alcohols in apple juices.

    PubMed

    Farhadi, Khalil; Maleki, Ramin; Tahmasebi, Raheleh

    2010-01-01

    A new fiber based on titania-chitin sol-gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250 degrees C) was obtained. The proposed headspace solid-phase microextraction-GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.

  12. EVALUATION OF SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF HYDROPHILIC COMPOUNDS

    EPA Science Inventory

    Two commercially available solid phase microextractions (SPME) fibers, polyacrylate and carboxem/polydimethylsiloxane (PDMS), were evaluated for their ability to extract hydrophilic compounds from drinking water. Conditions, such as desorption time, desorption temperature, sample...

  13. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    PubMed

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  14. First Detection of Non-Chlorinated Organic Molecules Indigenous to a Martian Sample

    NASA Technical Reports Server (NTRS)

    Freissinet, C.; Glavin, D. P.; Buch, A.; Szopa, C.; Summons, R. E.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brinckerhoff, W. B.; Brunner, A. E.; Cabane, M.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard Curiosity can perform pyrolysis of martian solid samples, and analyze the volatiles by direct mass spectrometry in evolved gas analysis (EGA) mode, or separate the components in the GCMS mode (coupling the gas chromatograph and the mass spectrometer instruments). In addition, SAM has a wet chemistry laboratory designed for the extraction and identification of complex and refractory organic molecules in the solid samples. The chemical derivatization agent used, N-methyl-N-tert-butyldimethylsilyl- trifluoroacetamide (MTBSTFA), was sealed inside seven Inconel metal cups present in SAM. Although none of these foil-capped derivatization cups have been punctured on Mars for a full wet chemistry experiment, an MTBSTFA leak was detected and the resultant MTBSTFA vapor inside the instrument has been used for a multi-sol MTBSTFA derivatization (MD) procedure instead of direct exposure to MTBSTFA liquid by dropping a solid sample directly into a punctured wet chemistry cup. Pyr-EGA, Pyr-GCMS and Der-GCMS experiments each led to the detection and identification of a variety of organic molecules in diverse formations of Gale Crater.

  15. Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples

    PubMed Central

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  16. New Mechanism of Extractive Electrospray Ionization Mass Spectrometry for Heterogeneous Solid Particles.

    PubMed

    Kumbhani, S; Longin, T; Wingen, L M; Kidd, C; Perraud, V; Finlayson-Pitts, B J

    2018-02-06

    Real-time in situ mass spectrometry analysis of airborne particles is important in several applications, including exposure studies in ambient air, industrial settings, and assessing impacts on visibility and climate. However, obtaining molecular and 3D structural information is more challenging, especially for heterogeneous solid or semisolid particles. We report a study of extractive electrospray ionization mass spectrometry (EESI-MS) for the analysis of solid particles with an organic coating. The goal is to elucidate how much of the overall particle content is sampled, and determine the sensitivity of this technique to the surface layers. It is shown that, for NaNO 3 particles coated with glutaric acid (GA), very little of the solid NaNO 3 core is sampled compared to the GA coating, whereas for GA particles coated with malonic acid (MA), significant signals from both the MA coating and the GA core are observed. However, conventional ESI-MS of the same samples collected on a Teflon filter (and then extracted) detects much more core material compared to EESI-MS in both cases. These results show that, for the experimental conditions used here, EESI-MS does not sample the entire particle but, instead, is more sensitive to surface layers. Separate experiments on single-component particles of NaNO 3 , GA, or citric acid show that there must be a kinetics limitation to dissolution that is important in determining EESI-MS sensitivity. We propose a new mechanism of EESI solvent droplet interaction with solid particles that is consistent with the experimental observations. In conjunction with previous EESI-MS studies of organic particles, these results suggest that EESI does not necessarily sample the entire particle when solid, and that not only solubility but also surface energies and the kinetics of dissolution play an important role.

  17. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    PubMed

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina

    2016-08-15

    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Neutron activation analysis for antimetabolites. [in food samples

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  19. Streamlined sample cleanup using combined dispersive solid-phase extraction and in-vial filtration for analysis of pesticides and environmental pollutants in shrimp

    USDA-ARS?s Scientific Manuscript database

    A new method of sample preparation was developed and is reported for the first time. The approach combines in-vial filtration with dispersive solid-phase extraction (d-SPE) in a fast and convenient cleanup of QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts. The method was appli...

  20. Analysis of volatile compounds by open-air ionization mass spectrometry.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2017-05-08

    This study demonstrates a simple method for rapid and in situ identification of volatile and endogenous compounds in culinary spice samples through mass spectrometry (MS). This method only requires a holder for solid spice sample (2-3 mm) that is placed close to a mass spectrometer inlet, which is applied with a high voltage. Volatile species responsible for the aroma of the spice samples can be readily detected by the mass spectrometer. Sample pretreatment is not required prior to MS analysis, and no solvent was used during MS analysis. The high voltage applied to the inlet of the mass spectrometer induces the ionization of volatile compounds released from the solid spice samples. Furthermore, moisture in the air also contributes to the ionization of volatile compounds. Dried spices including cinnamon and cloves are used as the model sample to demonstrate this straightforward MS analysis, which can be completed within few seconds. Furthermore, we also demonstrate the suitability of the current method for rapid screening of cinnamon quality through detection of the presence of a hepatotoxic agent, i.e. coumarin. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Microvolume trace environmental analysis using peak-focusing online solid-phase extraction-nano-liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Stravs, Michael A; Mechelke, Jonas; Ferguson, P Lee; Singer, Heinz; Hollender, Juliane

    2016-03-01

    Online solid-phase extraction was combined with nano-liquid chromatography coupled to high-resolution mass spectrometry (HRMS) for the analysis of micropollutants in environmental samples from small volumes. The method was validated in surface water, Microcystis aeruginosa cell lysate, and spent Microcystis growth medium. For 41 analytes, quantification limits of 0.1-28 ng/L (surface water) and 0.1-32 ng/L (growth medium) were obtained from only 88 μL of sample. In cell lysate, quantification limits ranged from 0.1-143 ng/L or 0.33-476 ng/g dry weight from a sample of 88 μL, or 26 μg dry weight, respectively. The method matches the sensitivity of established online and offline solid-phase extraction-liquid chromatography-mass spectrometry methods but requires only a fraction of the sample used by those techniques, and is among the first applications of nano-LC-MS for environmental analysis. The method was applied to the determination of bioconcentration in Microcystis aeruginosa in a laboratory experiment, and the benefit of coupling to HRMS was demonstrated in a transformation product screening.

  2. THE LIBERATION OF ARSENOSUGARS FROM MATRIX COMPONENTS IN DIFFICULT TO EXTRACT SEAFOOD SAMPLES UTILIZING TMAOH/ACETIC ACID SEQUENTIALLY IN A TWO-STAGE EXTRACTION PROCESS

    EPA Science Inventory

    Sample extraction is one of the most important steps in arsenic speciation analysis of solid dietary samples. One of the problem areas in this analysis is the partial extraction of arsenicals from seafood samples. The partial extraction allows the toxicity of the extracted arse...

  3. Application of Atmospheric Solids Analysis Probe Mass Spectrometry (ASAP-MS) in Petroleomics: Analysis of Condensed Aromatics Standards, Crude Oil, and Paraffinic Fraction.

    PubMed

    Tose, Lilian V; Murgu, Michael; Vaz, Boniek G; Romão, Wanderson

    2017-11-01

    Atmospheric solids analysis probe mass spectrometry (ASAP-MS) is a powerful tool for analysis of solid and liquid samples. It is an excellent alternative for crude oil analysis without any sample preparation step. Here, ASAP-MS in positive ion mode, ASAP(+)-MS, has been optimized for analysis of condensed aromatics (CA) standards, crude oil, and paraffinic fraction samples using a Synapt G2-S HDMS. Initially, two methodologies were used to access the chemical composition of samples: (1) using a temperature gradient varying from 150 to 600 °C at a heating rate of 150 °C min -1 , and (2) with constant temperature of 300 and 400 °C. ASAP(+)-MS ionized many compounds with a typical petroleum profile, showing a greater signals range of m/z 250-1300 and 200-1400 for crude oil and paraffin samples, respectively. Such performance, mainly related to the detection of high molecular weight compounds (>1000 Da), is superior to that of other traditional ionization sources, such as ESI, APCI, DART, and DESI. Additionally, the CA standards were identified in both forms: radicals, [M] +• , and protonated cations, [M + H] + , with minimum fragmentation. Therefore, ASAP was more efficient in accessing the chemical composition of nonpolar and polar compounds. It is promising in its application with ultrahigh resolution MS instruments, such as FT-ICR MS and Orbitrap, since molecular formulas with greater resolution and mass accuracy (<1 ppm) would be assigned. Graphical Abstract ᅟ.

  4. Application of Atmospheric Solids Analysis Probe Mass Spectrometry (ASAP-MS) in Petroleomics: Analysis of Condensed Aromatics Standards, Crude Oil, and Paraffinic Fraction

    NASA Astrophysics Data System (ADS)

    Tose, Lilian V.; Murgu, Michael; Vaz, Boniek G.; Romão, Wanderson

    2017-08-01

    Atmospheric solids analysis probe mass spectrometry (ASAP-MS) is a powerful tool for analysis of solid and liquid samples. It is an excellent alternative for crude oil analysis without any sample preparation step. Here, ASAP-MS in positive ion mode, ASAP(+)-MS, has been optimized for analysis of condensed aromatics (CA) standards, crude oil, and paraffinic fraction samples using a Synapt G2-S HDMS. Initially, two methodologies were used to access the chemical composition of samples: (1) using a temperature gradient varying from 150 to 600 °C at a heating rate of 150 °C min-1, and (2) with constant temperature of 300 and 400 °C. ASAP(+)-MS ionized many compounds with a typical petroleum profile, showing a greater signals range of m/z 250-1300 and 200-1400 for crude oil and paraffin samples, respectively. Such performance, mainly related to the detection of high molecular weight compounds (>1000 Da), is superior to that of other traditional ionization sources, such as ESI, APCI, DART, and DESI. Additionally, the CA standards were identified in both forms: radicals, [M]+•, and protonated cations, [M + H]+, with minimum fragmentation. Therefore, ASAP was more efficient in accessing the chemical composition of nonpolar and polar compounds. It is promising in its application with ultrahigh resolution MS instruments, such as FT-ICR MS and Orbitrap, since molecular formulas with greater resolution and mass accuracy (<1 ppm) would be assigned. [Figure not available: see fulltext.

  5. Application of Solid Phase Microextraction Coupled with Gas Chromatography/Mass Spectrometry as a Rapid Method for Field Sampling and Analysis of Chemical Warfare Agents and Toxic Industrial Chemicals

    DTIC Science & Technology

    2003-01-01

    PHASE MICROEXTRACTION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS...SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...GAS CHROMATOGRAPHY/MASS SPECTROMETRY AS A RAPID METHOD FOR FIELD SAMPLING AND ANALYSIS OF CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS

  6. Application of Solid Phase Microextraction with Gas Chromatography-Mass Spectrometry as a Rapid, Reliable, and Safe Method for Field Sampling and Analysis of Chemical Warfare Agent Precursors

    DTIC Science & Technology

    2005-03-01

    in hair samples with analysis by GC-MS [41,42]. The research discussed here examined a polydimethylsiloxane polymer with 10% activated charcoal (PDMS...Field Sampling and Analysis of Chemical Warfare Agent Precursors” Name of Candidate: LT Douglas Parrish Doctor of Philosophy, Environmental...Microextraction with Gas Chromatography-Mass Spectrometry as a Rapid, Reliable, and Safe Method for Field Sampling and Analysis of Chemical Warfare

  7. Drop-on-demand sample introduction system coupled with the flowing atmospheric-pressure afterglow for direct molecular analysis of complex liquid micro-volume samples

    PubMed Central

    Schaper, J. Niklas; Pfeuffer, Kevin P.; Shelley, Jacob T.; Bings, Nicolas H.

    2012-01-01

    One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed “drop-on-demand” (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (~17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 µg/mL, without sample pretreatment, were obtained. PMID:23025277

  8. Drop-on-demand sample introduction system coupled with the flowing atmospheric-pressure afterglow for direct molecular analysis of complex liquid microvolume samples.

    PubMed

    Schaper, J Niklas; Pfeuffer, Kevin P; Shelley, Jacob T; Bings, Nicolas H; Hieftje, Gary M

    2012-11-06

    One of the fastest developing fields in analytical spectrochemistry in recent years is ambient desorption/ionization mass spectrometry (ADI-MS). This burgeoning interest has been due to the demonstrated advantages of the method: simple mass spectra, little or no sample preparation, and applicability to samples in the solid, liquid, or gaseous state. One such ADI-MS source, the flowing atmospheric-pressure afterglow (FAPA), is capable of direct analysis of solids just by aiming the source at the solid surface and sampling the produced ions into a mass spectrometer. However, direct introduction of significant volumes of liquid samples into this source has not been possible, as solvent loads can quench the afterglow and, thus, the formation of reagent ions. As a result, the analysis of liquid samples is preferably carried out by analyzing dried residues or by desorbing small amounts of liquid samples directly from the liquid surface. In the former case, reproducibility of sample introduction is crucial if quantitative results are desired. In the present study, introduction of liquid samples as very small droplets helps overcome the issues of sample positioning and reduced levels of solvent intake. A recently developed "drop-on-demand" (DOD) aerosol generator is capable of reproducibly producing very small volumes of liquid (∼17 pL). In this paper, the coupling of FAPA-MS and DOD is reported and applications are suggested. Analytes representing different classes of substances were tested and limits of detections were determined. Matrix tolerance was investigated for drugs of abuse and their metabolites by analyzing raw urine samples and quantification without the use of internal standards. Limits of detection below 2 μg/mL, without sample pretreatment, were obtained.

  9. The SOLID (Signs Of LIfe Detector) instrument concept: an antibody microarray-based biosensor for life detection in astrobiology

    NASA Astrophysics Data System (ADS)

    Parro, V.; Rivas, L. A.; Rodríguez-Manfredi, J. A.; Blanco, Y.; de Diego-Castilla, G.; Cruz-Gil, P.; Moreno-Paz, M.; García-Villadangos, M.; Compostizo, C.; Herrero, P. L.

    2009-04-01

    Immunosensors have been extensively used since many years for environmental monitoring. Different technological platforms allow new biosensor designs and implementations. We have reported (Rivas et al., 2008) a shotgun approach for antibody production for biomarker detection in astrobiology and environmental monitoring, the production of 150 new polyclonal antibodies against microbial strains and environmental extracts, and the construction and validation of an antibody microarray (LDCHIP200, for "Life Detector Chip") containing 200 different antibodies. We have successfully used the LDCHIP200 for the detection of biological polymers in extreme environments in different parts of the world (e.g., a deep South African mine, Antarctica's Dry valleys, Yellowstone, Iceland, and Rio Tinto). Clustering analysis associated similar immunopatterns to samples from apparently very different environments, indicating that they indeed share similar universal biomarkers. A redundancy in the number of antibodies against different target biomarkers apart of revealing the presence of certain biomolecules, it renders a sample-specific immuno-profile, an "immnuno-fingerprint", which may constitute by itself an indirect biosignature. We will present a case study of immunoprofiling different iron-sulfur as well as phylosilicates rich samples along the Rio Tinto river banks. Based on protein microarray technology, we designed and built the concept instrument called SOLID (for "Signs Of LIfe Detector"; Parro et al., 2005; 2008a, b; http://cab.inta.es/solid) for automatic in situ analysis of soil samples and molecular biomarkers detection. A field prototype, SOLID2, was successfully tested for the analysis of grinded core samples during the 2005 "MARTE" campaign of a Mars drilling simulation experiment by a sandwich microarray immunoassay (Parro et al., 2008b). We will show the new version of the instrument (SOLID3) which is able to perform both sandwich and competitive immunoassays. SOLID3 consists of two separate functional units: a Sample Preparation Unit (SPU), for ten different extractions by ultrasonication, and a Sample Analysis Unit (SAU), for fluorescent immunoassays. The SAU consists of ten different flow cells each of one allocate one antibody microarray (up to 2000 spots), and is equipped with an unique designed optical package for fluorescent detection. We demonstrate the performance of SOLID3 for the detection of a broad range of molecular size compounds, from the amino acid size, peptides, proteins, to whole cells and spores, with sensitivities at the ppb level. References Parro, V., et al., 2005. Planetary and Space Science 53: 729-737. Parro, V., et al., 2008a. Space Science Reviews 135: 293-311 Parro, V., et al., 2008b. Astrobiology 8:987-99 Rivas, L. A., et al., 2008. Analytical Chemistry 80: 7970-7979

  10. Offline solid phase microextraction sampling system

    DOEpatents

    Harvey, Chris A.

    2008-12-16

    An offline solid phase microextraction (SPME) sampling apparatus for enabling SPME samples to be taken a number of times from a previously collected fluid sample (e.g. sample atmosphere) stored in a fused silica lined bottle which keeps volatile organics in the fluid sample stable for weeks at a time. The offline SPME sampling apparatus has a hollow body surrounding a sampling chamber, with multiple ports through which a portion of a previously collected fluid sample may be (a) released into the sampling chamber, (b) SPME sampled to collect analytes for subsequent GC analysis, and (c) flushed/purged using a fluidically connected vacuum source and purging fluid source to prepare the sampling chamber for additional SPME samplings of the same original fluid sample, such as may have been collected in situ from a headspace.

  11. Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li

    2014-12-01

    In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.

  12. Solid-phase extraction with the metal-organic framework MIL-101(Cr) combined with direct analysis in real time mass spectrometry for the fast analysis of triazine herbicides.

    PubMed

    Li, Xianjiang; Xing, Jiawei; Chang, Cuilan; Wang, Xin; Bai, Yu; Yan, Xiuping; Liu, Huwei

    2014-06-01

    MIL-101(Cr) is an excellent metal-organic framework with high surface area and nanoscale cavities, making it promising in solid-phase extraction. Herein, we used MIL-101(Cr) as a solid-phase extraction packing material combined with fast detection of direct analysis in real time mass spectrometry (DART-MS) for the analysis of triazine herbicides. After systematic optimization of the operation parameters, including the gas temperature of DART, the moving speed of the 1D platform, solvent for desorption, amount of MIL-101(Cr) extraction time, eluent volume and salt concentration, this method can realize the simultaneous detection of five kinds of triazine herbicides. The limits of detection were 0.1∼0.2 ng/mL and the linear ranges covered more than two orders of magnitude with the quantitation limits of 0.5∼1 ng/mL. Moreover, the developed method has been applied for the analysis of lake water samples and the recoveries for spiked analytes were in the range of 85∼110%. These results showed that solid-phase extraction with metal-organic frameworks is an efficient sample preparation approach for DART-MS analysis and could find more applications in environmental analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Analysis of Volatile Fragrance and Flavor Compounds by Headspace Solid Phase Microextraction and GC-MS: An Undergraduate Instrumental Analysis Experiment

    NASA Astrophysics Data System (ADS)

    Galipo, Randolph C.; Canhoto, Alfredo J.; Walla, Michael D.; Morgan, Stephen L.

    1999-02-01

    A senior-level undergraduate laboratory experiment that demonstrates the use of solid-phase microextraction (SPME) and capillary gas chromatography-mass spectrometry (GC-MS) was developed for the identification of volatile compounds in consumer products. SPME minimizes sample preparation and concentrates volatile analytes in a solvent-free manner. Volatile flavor and fragrance compounds were extracted by SPME from the headspace of vials containing shampoos, chewing gums, and perfumes and analyzed by GC-MS. Headspace SPME was shown to be more sensitive than conventional headspace analysis of similar samples performed with an airtight syringe. Analysis times were less than 30 min, allowing multiple analyses to be performed in a typical laboratory class period.

  14. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; Brumfield, Brian E.; LaHaye, Nicole L.

    2018-04-20

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  15. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    DOE PAGES

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; ...

    2018-04-20

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Lastly, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  16. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  17. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Lastly, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  18. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    DOE PAGES

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; ...

    2018-06-01

    This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.

  19. The application of microwave digestion in decomposing some refractory ore samples with solid fusion agent.

    PubMed

    Lu, Yan; Li, Gang; Liu, Wei; Yuan, Hongyan; Xiao, Dan

    2018-08-15

    It is known that most of the refractory ore are the basis of national economy and widely applied in various fields, however, the complexity of the chemical composition and the diversity of the crystallinity in the mineral phases make the sample pre-treatment of refractory ore still remains a challenge. In this work, the complete decomposition of the refractory ore sample can be achieved just by exposing the solid fusion agent and the refractory ore sample in the microwave irradiation environment for a few minutes, and induced by a drop of water. A digestion time of 15 min for 3.0 g solid fusion agent mixture of sodium peroxide/sodium carbonate (Na 2 O 2 /Na 2 CO 3 ) in a corundum crucible via microwave heating is sufficient to decompose 0.1 g refractory ore sample. An excellent microwave digestion solid agent should meet the following conditions, a good decomposition ability, an outstanding ability of absorbing microwave energy and converting it into heat quickly, a higher melting point than the decomposing temperature of the ore sample. In the research, the induction effect of water plays an important role for the microwave digestion. The energy which is released by the reaction of water and the solid fusion agent (Na 2 O 2 ) is the key to decompose refractory ore samples with solid fusion agent, which replenished the total energy required for the microwave digestion and made the microwave digestion completed successfully. This microwave digestion technique has good reproducibility and precision, RSD % for Mo, Fe, Ti, Cr and W in the refractory ore samples were all better than 6, except RSD % for Be of about 8 because of the influence of matrix-effect. Meanwhile, the analysis results of the elements in the refractory ore samples provided by the microwave digestion technique were all in good agreement with the analysis results provided by the traditional fusion method except for Cr in the mixture ore samples. In the study, the non-linear dependence of the electromagnetic and thermal properties of the solid fusion agent on temperature under microwave irradiation and the selective heating of microwave are fully applied in this simple microwave technique. Comparing to the traditional fusion decomposition method, this microwave digestion technique is a simple, economical, fast and energy-saving sample pre-treatment technique. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Improving the accuracy of sediment-associated constituent concentrations in whole storm water samples by wet-sieving

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.; Bowman, G.

    2007-01-01

    Sand-sized particles (>63 ??m) in whole storm water samples collected from urban runoff have the potential to produce data with substantial bias and/or poor precision both during sample splitting and laboratory analysis. New techniques were evaluated in an effort to overcome some of the limitations associated with sample splitting and analyzing whole storm water samples containing sand-sized particles. Wet-sieving separates sand-sized particles from a whole storm water sample. Once separated, both the sieved solids and the remaining aqueous (water suspension of particles less than 63 ??m) samples were analyzed for total recoverable metals using a modification of USEPA Method 200.7. The modified version digests the entire sample, rather than an aliquot, of the sample. Using a total recoverable acid digestion on the entire contents of the sieved solid and aqueous samples improved the accuracy of the derived sediment-associated constituent concentrations. Concentration values of sieved solid and aqueous samples can later be summed to determine an event mean concentration. ?? ASA, CSSA, SSSA.

  1. Multiple headspace-solid-phase microextraction: an application to quantification of mushroom volatiles.

    PubMed

    Costa, Rosaria; Tedone, Laura; De Grazia, Selenia; Dugo, Paola; Mondello, Luigi

    2013-04-03

    Multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography/mass spectrometry (GC-MS) and flame ionization detection (GC-FID) was applied to the identification and quantification of volatiles released by the mushroom Agaricus bisporus, also known as champignon. MHS-SPME allows to perform quantitative analysis of volatiles from solid matrices, free of matrix interferences. Samples analyzed were fresh mushrooms (chopped and homogenized) and mushroom-containing food dressings. 1-Octen-3-ol, 3-octanol, 3-octanone, 1-octen-3-one and benzaldehyde were common constituents of the samples analyzed. Method performance has been tested through the evaluation of limit of detection (LoD, range 0.033-0.078 ng), limit of quantification (LoQ, range 0.111-0.259 ng) and analyte recovery (92.3-108.5%). The results obtained showed quantitative differences among the samples, which can be attributed to critical factors, such as the degree of cell damage upon sample preparation, that are here discussed. Considerations on the mushrooms biochemistry and on the basic principles of MHS analysis are also presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Solid Phase Microextraction and Related Techniques for Drugs in Biological Samples

    PubMed Central

    Moein, Mohammad Mahdi; Said, Rana; Bassyouni, Fatma

    2014-01-01

    In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from one side, toward automatization and online coupling of sample preparation units. The primary objective of this review is to present the recent developments in microextraction sample preparation methods for analysis of drugs in biological fluids. Microextraction techniques allow for less consumption of solvent, reagents, and packing materials, and small sample volumes can be used. In this review the use of solid phase microextraction (SPME), microextraction in packed sorbent (MEPS), and stir-bar sorbtive extraction (SBSE) in drug analysis will be discussed. In addition, the use of new sorbents such as monoliths and molecularly imprinted polymers will be presented. PMID:24688797

  4. Solid-phase reductive amination for glycomic analysis.

    PubMed

    Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George

    2017-04-15

    Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.

  5. Structural analysis of geochemical samples by solid-state nuclear magnetic resonance spectrometry. Role of paramagnetic material

    USGS Publications Warehouse

    Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.

    1987-01-01

    An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.

  6. Methods of analysis by the U. S. Geological Survey National Water Quality Laboratory - determination of organonitrogen herbicides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring

    USGS Publications Warehouse

    Sandstrom, Mark W.; Wydoski, Duane S.; Schroeder, Michael P.; Zamboni, Jana L.; Foreman, William T.

    1992-01-01

    A method for the isolation of organonitrogen herbicides from natural water samples using solid-phase extraction and analysis by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction cartridges containing octadecyl-bonded porous silica to remove the herbicides. The cartridges are dried using carbon dioxide, and adsorbed herbicides are removed from the cartridges by elution with 1.8 milliliters of hexaneisopropanol (3:1). Extracts of the eluants are analyzed by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of at least three characteristic ions. The method detection limits are dependent on sample matrix and each particular herbicide. The method detection limits, based on a 100-milliliter sample size, range from 0.02 to 0.25 microgram per liter. Recoveries averaged 80 to 115 percent for the 23 herbicides and 2 metabolites in 1 reagent-water and 2 natural-water samples fortified at levels of 0.2 and 2.0 micrograms per liter.

  7. Characterization of the leachate in an urban landfill by physicochemical analysis and solid phase microextraction-GC/MS.

    PubMed

    Banar, Müfide; Ozkan, Aysun; Kürkçüoğlu, Mine

    2006-10-01

    The aim of this study is to evaluate extensively the characterization and identification of major pollutant parameters by paying attention to the organic chemical pollution for unregulated dumping site leachate in Eskişehir/Turkey. The study that is first and only one research has been very important data related with before new sanitary landfill site in Eskişehir city. For this purpose, in this study leachate samples were collected in-situ at monthly interval for a period of 8 months. Firstly, thirty three physicochemical parameters were monitored. Secondly, SPME technique was used for identification of organic pollutants. Meteorological data were also recorded for the same sampling period to correlate meteorological data and physicochemical parameters. Mean values are used in the correlation analysis. Correlation is shown only for the relationship between air temperature and NO(3) (-). No correlation has been found between rain and leachate quality parameters since the amount of rain was very low during the sampling period. However, analysis results were generally decreased in winter season when each parameter and each sampling point are examined separately. According to correlation between every parameter, especially solid content and dissolved oxygen concentration of leachate is affecting to other parameters. Also, sodium and potassium are changing proportionally with same parameters (suspended solids, fixed solids, dissolved oxygen) and high correlation between chloride and heavy metal concentration is showing. The results were statistically evaluated by use of SPSS 10.0 program. Second part of the study, the leachate was extracted by Solid Phase Microextraction (SPME) technique and then analyzed. Of the methodologies tested in this study, the best one selected was based on 100 micro m polydimethylsiloxane coated fiber (PDMS), headspace with heating (Delta HS) sampling mode and an extraction time of 15 min. at a temperature of 50 degrees C. Thirty three organic compounds in leachate were identified by GC/MS.

  8. Atmospheric Transformation of Volatile Organic Compounds

    DTIC Science & Technology

    2008-03-01

    Study Analysis Reactant mixtures and standards from product identification experiments were sampled by exposing a 100% polydimethylsiloxane solid...later using the DNPH derivatization method described above and confirmed against a commercial standard. HPLC analysis of the DNPH cartridges also...reaction mixture for a combined total photolysis time ofapproximately 50 seconds. 2.3. Kinetic Study Analysis Samples from kinetic studies were

  9. Adsorption and mobility of metals in build-up on road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2015-01-01

    The study investigated the adsorption and bioavailability characteristics of traffic generated metals common to urban land uses, in road deposited solids particles. To validate the outcomes derived from the analysis of field samples, adsorption and desorption experiments were undertaken. The analysis of field samples revealed that metals are selectively adsorbed to different charge sites on solids. Zinc, copper, lead and nickel are adsorbed preferentially to oxides of manganese, iron and aluminium. Lead is adsorbed to organic matter through chemisorption. Cadmium and chromium form weak bonding through cation exchange with most of the particle sizes. Adsorption and desorption experiments revealed that at high metal concentrations, chromium, copper and lead form relatively strong bonds with solids particles while zinc is adsorbed through cation exchange with high likelihood of being released back into solution. Outcomes from this study provide specific guidance for the removal of metals from stormwater based on solids removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Solid film lubricants and thermal control coatings flown aboard the EOIM-3 MDA sub-experiment

    NASA Technical Reports Server (NTRS)

    Murphy, Taylor J.; David, Kaia E.; Babel, Hank W.

    1995-01-01

    Additional experimental data were desired to support the selection of candidate thermal control coatings and solid film lubricants for the McDonnell Douglas Aerospace (MDA) Space Station hardware. The third Evaluation of Oxygen Interactions With Materials Mission (EOIM-3) flight experiment presented an opportunity to study the effects of the low Earth orbit environment on thermal control coatings and solid film lubricants. MDA provided five solid film lubricants and two anodic thermal control coatings for EOIM-3. The lubricant sample set consisted of three solid film lubricants with organic binders one solid film lubricant with an inorganic binder, and one solid film lubricant with no binder. The anodize coating sample set consisted of undyed sulfuric acid anodize and cobalt sulfide dyed sulfuric acid anodize, each on two different substrate aluminum alloys. The organic and inorganic binders in the solid film lubricants experienced erosion, and the lubricating pigments experienced oxidation. MDA is continuing to assess the effect of exposure to the low Earth orbit environment on the life and friction properties of the lubricants. Results to date support the design practice of shielding solid film lubricants from the low Earth orbit environment. Post-flight optical property analysis of the anodized specimens indicated that there were limited contamination effects and some atomic oxygen and ultraviolet radiation effects. These effects appeared to be within the values predicted by simulated ground testing and analysis of these materials, and they were different for each coating and substrate.

  11. FDA Bacteriological Analytical Manual, Chapter 10, 2003: Listeria monocytogenes

    EPA Pesticide Factsheets

    FDA Bacteriological Analytical Manual, Chapter 10 describes procedures for analysis of food samples and may be adapted for assessment of solid, particulate, aerosol, liquid and water samples containing Listeria monocytogenes.

  12. Solid-phase microextraction coupled to liquid chromatography for the analysis of phenolic compounds in water.

    PubMed

    González-Toledo, E; Prat, M D; Alpendurada, M F

    2001-07-20

    Solid-phase microextraction (SPME) coupled to high-performance liquid chromatography (HPLC) has been applied to the analysis of priority pollutant phenolic compounds in water samples. Two types of polar fibers [50 microm Carbowax-templated resin (CW-TPR) and 60 microm polydimethylsiloxane-divinylbenzene (PDMS-DVB)] were evaluated. The effects of equilibration time and ionic strength of samples on the adsorption step were studied. The parameters affecting the desorption process, such as desorption mode, solvent composition and desorption time, were optimized. The developed method was used to determine the phenols in spiked river water samples collected in the Douro River, Portugal. Detection limits of 1-10 microg l(-1) were achieved under the optimized conditions.

  13. Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring

    NASA Technical Reports Server (NTRS)

    Diehl, S. R.; Smith, D. T.; Sydor, M.

    1979-01-01

    Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.

  14. EPA Method 3031 (SW-846): Acid Digestion of Oils for Metals Analysis by Atomic Absorption or ICP Spectrometry

    EPA Pesticide Factsheets

    Procedures are described for analysis of water samples and may be adapted for assessment of solid, particulate and liquid samples. The method uses real-time PCR assay for detecting Toxoplasma gondii DNA using gene-specific primers and probe.

  15. A statistical evaluation of spectral fingerprinting methods using analysis of variance and principal component analysis

    USDA-ARS?s Scientific Manuscript database

    Six methods were compared with respect to spectral fingerprinting of a well-characterized series of broccoli samples. Spectral fingerprints were acquired for finely-powdered solid samples using Fourier transform-infrared (IR) and Fourier transform-near infrared (NIR) spectrometry and for aqueous met...

  16. Sample analysis at Mars

    NASA Astrophysics Data System (ADS)

    Coll, P.; Cabane, M.; Mahaffy, P. R.; Brinckerhoff, W. B.; Sam Team

    The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. The Sample Analysis at Mars (SAM) suite consists of a group of tightly-integrated experiments that would analyze samples delivered directly from a coring drill or by a facility sample processing and delivery (SPAD) mechanism. SAM consists of an advanced GC/MS system and a laser desorption mass spectrometer (LDMS). The combined capabilities of these techniques can address Mars science objectives with much improved sensitivity, resolution, and analytical breadth over what has been previously possible in situ. The GC/MS system analyzes the bulk composition (both molecular and isotopic) of solid-phase and atmospheric samples. Solid samples are introduced with a highly flexible chemical derivatization/pyrolysis subsystem (Pyr/GC/MS) that is significantly more capable than the mass spectrometers on Viking. The LDMS analyzes local elemental and molecular composition in solid samples vaporized and ionized with a pulsed laser. We will describe how each of these capabilities has particular strengths that can achieve key measurement objectives at Mars. In addition, the close codevelopment of the GC/MS and LDMS along with a sample manipulation system enables the the sharing of resources, the correlation of results, and the utilization of certain approaches that would not be possible with separate instruments. For instance, the same samples could be analyzed with more than one technique, increasing efficiency and providing cross-checks for quantification. There is also the possibility of combining methods, such as by permitting TOF-MS analyses of evolved gas (Pyr/EI-TOF-MS) or GC/MS analyses of laser evaporated gas (LD-GC/MS).

  17. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.

    2018-06-01

    Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower lineshapes, as opposed to emission spectroscopy which requires higher plasma temperatures to be able to detect thermally excited emission. Improvements in laser and detection systems and spectroscopic techniques have allowed for isotopic measurements to be carried out at standoff distances under ambient atmospheric conditions, which have expanded the applicability of optical spectroscopy-based isotopic measurements to a variety of scientific fields. These technological advances offer an in-situ measurement capability that was previously not available. This review will focus on isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing knowledge/technological gaps identified from the current literature and suggestions for the future work.

  18. Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography-mass spectrometry.

    PubMed

    Gatidou, Georgia; Thomaidis, Nikolaos S; Stasinakis, Athanasios S; Lekkas, Themistokles D

    2007-01-05

    An integrated analytical method for the simultaneous determination of 4-n-nonylphenol (4-n-NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), bisphenol A (BPA) and triclosan (TCS) in wastewater (dissolved and particulate phase) and sewage sludge was developed based on gas chromatography-mass spectrometry. Chromatographic analysis was achieved after derivatization with bis(trimethylsilyl)trifluoroacetamide (BSTFA). Extraction from water samples was performed by solid-phase extraction (SPE). The optimization of SPE procedure included the type of sorbent and the type of the organic solvent used for the elution. Referred to solid samples, the target compounds were extracted by sonication. In this case the optimization of the extraction procedure included the variation of the amount of the extracted biomass, the duration and the temperature of sonication and the type of the extraction organic solvent. The developed extraction procedures resulted in good repeatability and reproducibility with relative standard deviations (RSDs) less than 13% for all the tested compounds for both types of samples. Satisfactory recoveries were obtained (>60%) for all the compounds in both liquid and solid samples, except for 4-n-NP, which gave recoveries up to 35% in wastewater samples and up to 63% in sludge samples. The limits of detection (LODs) of the target compounds varied from 0.03 (4-n-NP) to 0.41 microg l(-1) (NP2EO) and from 0.04 (4-n-NP) to 0.96 microg kg(-1) (NP2EO) for liquid and solid samples, respectively. The developed methods were successfully applied to the analysis of the target compounds in real samples.

  19. Comprehensive automation of the solid phase extraction gas chromatographic mass spectrometric analysis (SPE-GC/MS) of opioids, cocaine, and metabolites from serum and other matrices.

    PubMed

    Lerch, Oliver; Temme, Oliver; Daldrup, Thomas

    2014-07-01

    The analysis of opioids, cocaine, and metabolites from blood serum is a routine task in forensic laboratories. Commonly, the employed methods include many manual or partly automated steps like protein precipitation, dilution, solid phase extraction, evaporation, and derivatization preceding a gas chromatography (GC)/mass spectrometry (MS) or liquid chromatography (LC)/MS analysis. In this study, a comprehensively automated method was developed from a validated, partly automated routine method. This was possible by replicating method parameters on the automated system. Only marginal optimization of parameters was necessary. The automation relying on an x-y-z robot after manual protein precipitation includes the solid phase extraction, evaporation of the eluate, derivatization (silylation with N-methyl-N-trimethylsilyltrifluoroacetamide, MSTFA), and injection into a GC/MS. A quantitative analysis of almost 170 authentic serum samples and more than 50 authentic samples of other matrices like urine, different tissues, and heart blood on cocaine, benzoylecgonine, methadone, morphine, codeine, 6-monoacetylmorphine, dihydrocodeine, and 7-aminoflunitrazepam was conducted with both methods proving that the analytical results are equivalent even near the limits of quantification (low ng/ml range). To our best knowledge, this application is the first one reported in the literature employing this sample preparation system.

  20. Physicochemical properties and combustion behavior of duckweed during wet torrefaction.

    PubMed

    Zhang, Shuping; Chen, Tao; Li, Wan; Dong, Qing; Xiong, Yuanquan

    2016-10-01

    Wet torrefaction of duckweed was carried out in the temperature range of 130-250°C to evaluate the effects on physicochemical properties and combustion behavior. The physicochemical properties of duckweed samples were investigated by ultimate analysis, proximate analysis, FTIR, XRD and SEM techniques. It was found that wet torrefaction improved the fuel characteristics of duckweed samples resulting from the increase in fixed carbon content, HHVs and the decrease in nitrogen and sulfur content and atomic ratios of O/C and H/C. It can be seen from the results of FTIR, XRD and SEM analyses that the dehydration, decarboxylation, solid-solid conversion, and condensation polymerization reactions were underwent during wet torrefaction. In addition, the results of thermogravimetric analysis (TGA) in air indicated that wet torrefaction resulted in significant changes on combustion behavior and combustion kinetics parameters. Duckweed samples after wet torrefaction behaved more char-like and gave better combustion characteristics than raw sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Solid-state stability studies of 13-cis-retinoic acid and all-trans-retinoic acid using microcalorimetry and HPLC analysis.

    PubMed

    Tan, X; Meltzer, N; Lindebaum, S

    1992-09-01

    The solid-state stabilities of 13-cis-retinoic acid and all-trans-retinoic acid in the presence and absence of oxygen were investigated. The samples were first evaluated using microcalorimetry. The rate laws of different samples under different conditions were deduced from the shapes of the heat flow curves, and the activation energies of the reactions were determined from Arrhenius plots. Under an air atmosphere, the decomposition of 13-cis-retinoic acid is an autocatalytic reaction, while all-trans-retinoic acid undergoes a zero-order process. The degradation of the two compounds at a selected elevated temperature was also determined utilizing HPLC analysis. This technique confirmed the decomposition kinetics. Hence, their half-lives and shelf lives at room temperature could be calculated. Under a nitrogen atmosphere, the microcalorimetric experiment showed a first-order phenomenon for both samples, but HPLC analysis showed no degradation, suggesting that the two samples, in the absence of oxygen, undergo only a physical change.

  2. Concurrent Ultrasonic Tomography and Acoustic Emission in Solid Materials

    NASA Astrophysics Data System (ADS)

    Chow, Thomas M.

    A series of experiments were performed to detect stress induced changes in the elastic properties of various solid materials. A technique was developed where these changes were monitored concurrently by two methods, ultrasonic tomography and acoustic emission monitoring. This thesis discusses some experiments in which acoustic emission (AE) and ultrasonic tomography were performed on various samples of solid materials including rocks, concrete, metals, and fibre reinforced composites. Three separate techniques were used to induce stress in these samples. Disk shaped samples were subject to stress via diametral loading using an indirect tensile test geometry. Cylindrical samples of rocks and concrete were subject to hydraulic fracture tests, and rectangular samples of fibre reinforced composite were subject to direct tensile loading. The majority of the samples were elastically anisotropic. Full waveform acoustic emission and tomographic data were collected while these samples were under load to give information concerning changes in the structure of the material as it was undergoing stress change and/or failure. Analysis of this data indicates that AE and tomographic techniques mutually compliment each other to give a view of the stress induced elastic changes in the tested samples.

  3. Solid fat content as a substitute for total polar compound analysis in edible oils

    USDA-ARS?s Scientific Manuscript database

    The solid fat contents (SFC) of heated edible oil samples were measured and found to correlate positively with total polar compounds (TPC) and inversely with triglyceride concentration. Traditional methods for determination of total polar compounds require a laboratory setting and are time intensiv...

  4. Highly sensitive solids mass spectrometer uses inert-gas ion source

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Mass spectrometer provides a recorded analysis of solid material surfaces and bulk. A beam of high-energy inert-gas ions bombards the surface atoms of a sample and converts a percentage into an ionized vapor. The mass spectrum analyzer separates the vapor ionic constituents by mass-to-charge ratio.

  5. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  6. Literature Reference for Entamoeba histolytica (Journal of Parasitology. 1972. 58(2): 306–310)

    EPA Pesticide Factsheets

    Procedures are described for analysis of clinical samples and may be adapted for assessment of solid, particulate, liquid and water samples contaminated with Entamoeba histolytica using a culture method.

  7. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid

    NASA Astrophysics Data System (ADS)

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-03-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L-1 limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, J.

    This document is a report of the analytical results for samples collected from the radioactive wastes in Tank 241-U-202 at the Hanford Reservation. Core samples were collected from the solid wastes in the tank and underwent safety screening analyses including differential scanning calorimetry, thermogravimetric analysis, and total alpha analysis. Results indicate that no safety screening notification limits were exceeded.

  9. Assessment of statistical uncertainty in the quantitative analysis of solid samples in motion using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Cabalín, L. M.; González, A.; Ruiz, J.; Laserna, J. J.

    2010-08-01

    Statistical uncertainty in the quantitative analysis of solid samples in motion by laser-induced breakdown spectroscopy (LIBS) has been assessed. For this purpose, a LIBS demonstrator was designed and constructed in our laboratory. The LIBS system consisted of a laboratory-scale conveyor belt, a compact optical module and a Nd:YAG laser operating at 532 nm. The speed of the conveyor belt was variable and could be adjusted up to a maximum speed of 2 m s - 1 . Statistical uncertainty in the analytical measurements was estimated in terms of precision (reproducibility and repeatability) and accuracy. The results obtained by LIBS on shredded scrap samples under real conditions have demonstrated that the analytical precision and accuracy of LIBS is dependent on the sample geometry, position on the conveyor belt and surface cleanliness. Flat, relatively clean scrap samples exhibited acceptable reproducibility and repeatability; by contrast, samples with an irregular shape or a dirty surface exhibited a poor relative standard deviation.

  10. Multivariate analysis of the volatile components in tobacco based on infrared-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe

    2016-11-01

    A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Direct Analysis of Amphetamine Stimulants in a Whole Urine Sample by Atmospheric Solids Analysis Probe Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Crevelin, Eduardo J.; Salami, Fernanda H.; Alves, Marcela N. R.; De Martinis, Bruno S.; Crotti, Antônio E. M.; Moraes, Luiz A. B.

    2016-05-01

    Amphetamine-type stimulants (ATS) are among illicit stimulant drugs that are most often used worldwide. A major challenge is to develop a fast and efficient methodology involving minimal sample preparation to analyze ATS in biological fluids. In this study, a urine pool solution containing amphetamine, methamphetamine, ephedrine, sibutramine, and fenfluramine at concentrations ranging from 0.5 pg/mL to 100 ng/mL was prepared and analyzed by atmospheric solids analysis probe tandem mass spectrometry (ASAP-MS/MS) and multiple reaction monitoring (MRM). A urine sample and saliva collected from a volunteer contributor (V1) were also analyzed. The limit of detection of the tested compounds ranged between 0.002 and 0.4 ng/mL in urine samples; the signal-to-noise ratio was 5. These results demonstrated that the ASAP-MS/MS methodology is applicable for the fast detection of ATS in urine samples with great sensitivity and specificity, without the need for cleanup, preconcentration, or chromatographic separation. Thus ASAP-MS/MS could potentially be used in clinical and forensic toxicology applications.

  12. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  13. Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL.

    PubMed

    Deans, Zandra C; Costa, Jose Luis; Cree, Ian; Dequeker, Els; Edsjö, Anders; Henderson, Shirley; Hummel, Michael; Ligtenberg, Marjolijn Jl; Loddo, Marco; Machado, Jose Carlos; Marchetti, Antonio; Marquis, Katherine; Mason, Joanne; Normanno, Nicola; Rouleau, Etienne; Schuuring, Ed; Snelson, Keeda-Marie; Thunnissen, Erik; Tops, Bastiaan; Williams, Gareth; van Krieken, Han; Hall, Jacqueline A

    2017-01-01

    The clinical demand for mutation detection within multiple genes from a single tumour sample requires molecular diagnostic laboratories to develop rapid, high-throughput, highly sensitive, accurate and parallel testing within tight budget constraints. To meet this demand, many laboratories employ next-generation sequencing (NGS) based on small amplicons. Building on existing publications and general guidance for the clinical use of NGS and learnings from germline testing, the following guidelines establish consensus standards for somatic diagnostic testing, specifically for identifying and reporting mutations in solid tumours. These guidelines cover the testing strategy, implementation of testing within clinical service, sample requirements, data analysis and reporting of results. In conjunction with appropriate staff training and international standards for laboratory testing, these consensus standards for the use of NGS in molecular pathology of solid tumours will assist laboratories in implementing NGS in clinical services.

  14. Assessment of the impact of landfill on groundwater quality: a case study of the Pirana site in western India.

    PubMed

    Singh, Umesh Kumar; Kumar, Manish; Chauhan, Rita; Jha, Pawan Kumar; Ramanathan, Al; Subramanian, V

    2008-06-01

    In present study focus has been given on estimating quality and toxicity of waste with respect to heavy metals and its impact on groundwater quality, using statistical and empirical relationships between different hydrochemical data, so that easy monitoring may be possible which in turn help the sustainable management of landfill site and municipal solid waste. Samples of solid waste, leachate and groundwater were analyzed to evaluate the impact of leachates on groundwater through the comparison of their hydrochemical nature. Results suggest the existence of an empirical relationship between some specific indicator parameters like heavy metals of all three above mentioned sample type. Further, K/Mg ratio also indicates three groundwater samples heavily impacted from leachate contamination. A good number of samples are also showing higher values for NO(3)(-) and Pb than that of World Health Organization (WHO) drinking water regulation. Predominance of Fe and Zn in both groundwater and solid waste samples may be due to metal plating industries in the area. Factor analysis is used as a tool to explain observed relation between numerous variables in term of simpler relation, which may help to deduce the strength of relation. Positive loading of most of the factors for heavy metal clearly shows landfill impact on ground water quality especially along the hydraulic gradient. Cluster analysis, further substantiates the impact of landfill. Two major groups of samples obtained from cluster analysis suggest that one group comprises samples that are severely under the influence of landfill and contaminated leachates along the groundwater flow direction while other assorted with samples without having such influence.

  15. SOLID2: An Antibody Array-Based Life-Detector Instrument in a Mars Drilling Simulation Experiment (MARTE)

    NASA Astrophysics Data System (ADS)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A.; Moreno-Paz, Mercedes; Rivas, Luis A.; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C.; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  16. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    PubMed

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  17. Trace elemental analysis of glass and paint samples of forensic interest by ICP-MS using laser ablation solid sample introduction

    NASA Astrophysics Data System (ADS)

    Almirall, Jose R.; Trejos, Tatiana; Hobbs, Andria; Furton, Kenneth G.

    2003-09-01

    The importance of small amounts of glass and paint evidence as a means to associate a crime event to a suspect or a suspect to another individual has been demonstrated in many cases. Glass is a fragile material that is often found at the scenes of crimes such as burglaries, hit-and-run accidents and violent crime offenses. Previous work has demonstrated the utility of elemental analysis by solution ICP-MS of small amounts of glass for the comparison between a fragment found at a crime scene to a possible source of the glass. The multi-element capability and the sensitivity of ICP-MS combined with the simplified sample introduction of laser ablation prior to ion detection provides for an excellent and relatively non-destructive technique for elemental analysis of glass fragments. The direct solid sample introduction technique of laser ablation (LA) is reported as an alternative to the solution method. Direct solid sampling provides several advantages over solution methods and shows great potential for a number of solid sample analyses in forensic science. The advantages of laser ablation include the simplification of sample preparation, thereby reducing the time and complexity of the analysis, the elimination of handling acid dissolution reagents such as HF and the reduction of sources of interferences in the ionization plasma. Direct sampling also provides for essentially "non-destructive" sampling due to the removal of very small amounts of sample needed for analysis. The discrimination potential of LA-ICP-MS is compared with previously reported solution ICP-MS methods using external calibration with internal standardization and a newly reported solution isotope dilution (ID) method. A total of ninety-one different glass samples were used for the comparison study using the techniques mentioned. One set consisted of forty-five headlamps taken from a variety of automobiles representing a range of twenty years of manufacturing dates. A second set consisted of forty-six automotive glasses (side windows and windshields) representing casework glass from different vehicle manufacturers over several years was also characterized by RI and elemental composition analysis. The solution sample introduction techniques (external calibration and isotope dilution) provide for excellent sensitivity and precision but have the disadvantages of destroying the sample and also involve complex sample preparation. The laser ablation method was simpler, faster and produced comparable discrimination to the EC-ICP-MS and ID-ICP-MS. LA-ICP-MS can provide for an excellent alternative to solution analysis of glass in forensic casework samples. Paints and coatings are frequently encountered as trace evidence samples submitted to forensic science laboratories. A LA-ICP-MS method has been developed to complement the commonly used techniques in forensic laboratories in order to better characterize these samples for forensic purposes. Time-resolved plots of each sample can be compared to associate samples to each other or to discriminate between samples. Additionally, the concentration of lead and the ratios of other elements have been determined in various automotive paints by the reported method. A sample set of eighteen (18) survey automotive paint samples have been analyzed with the developed method in order to determine the utility of LA-ICP-MS and to compare the method to the more commonly used scanning electron microscopy (SEM) method for elemental characterization of paint layers in forensic casework.

  18. Literature Reference for Cryptosporidium spp. (Applied and Environmental Microbiology. 1999. 65(9): 3936–3941)

    EPA Pesticide Factsheets

    Procedures are described for analysis of animal samples using tissue culture techniques that may be adapted for assessment of solid, particulate, liquid and water samples contaminated with Cryptosporidium parvum.

  19. Classification of narcotics in solid mixtures using principal component analysis and Raman spectroscopy.

    PubMed

    Ryder, Alan G

    2002-03-01

    Eighty-five solid samples consisting of illegal narcotics diluted with several different materials were analyzed by near-infrared (785 nm excitation) Raman spectroscopy. Principal Component Analysis (PCA) was employed to classify the samples according to narcotic type. The best sample discrimination was obtained by using the first derivative of the Raman spectra. Furthermore, restricting the spectral variables for PCA to 2 or 3% of the original spectral data according to the most intense peaks in the Raman spectrum of the pure narcotic resulted in a rapid discrimination method for classifying samples according to narcotic type. This method allows for the easy discrimination between cocaine, heroin, and MDMA mixtures even when the Raman spectra are complex or very similar. This approach of restricting the spectral variables also decreases the computational time by a factor of 30 (compared to the complete spectrum), making the methodology attractive for rapid automatic classification and identification of suspect materials.

  20. Thermal analysis of combinatorial solid geometry models using SINDA

    NASA Technical Reports Server (NTRS)

    Gerencser, Diane; Radke, George; Introne, Rob; Klosterman, John; Miklosovic, Dave

    1993-01-01

    Algorithms have been developed using Monte Carlo techniques to determine the thermal network parameters necessary to perform a finite difference analysis on Combinatorial Solid Geometry (CSG) models. Orbital and laser fluxes as well as internal heat generation are modeled to facilitate satellite modeling. The results of the thermal calculations are used to model the infrared (IR) images of targets and assess target vulnerability. Sample analyses and validation are presented which demonstrate code products.

  1. Electrochemical pesticide detection with AutoDip--a portable platform for automation of crude sample analyses.

    PubMed

    Drechsel, Lisa; Schulz, Martin; von Stetten, Felix; Moldovan, Carmen; Zengerle, Roland; Paust, Nils

    2015-02-07

    Lab-on-a-chip devices hold promise for automation of complex workflows from sample to answer with minimal consumption of reagents in portable devices. However, complex, inhomogeneous samples as they occur in environmental or food analysis may block microchannels and thus often cause malfunction of the system. Here we present the novel AutoDip platform which is based on the movement of a solid phase through the reagents and sample instead of transporting a sequence of reagents through a fixed solid phase. A ball-pen mechanism operated by an external actuator automates unit operations such as incubation and washing by consecutively dipping the solid phase into the corresponding liquids. The platform is applied to electrochemical detection of organophosphorus pesticides in real food samples using an acetylcholinesterase (AChE) biosensor. Minimal sample preparation and an integrated reagent pre-storage module hold promise for easy handling of the assay. Detection of the pesticide chlorpyrifos-oxon (CPO) spiked into apple samples at concentrations of 10(-7) M has been demonstrated. This concentration is below the maximum residue level for chlorpyrifos in apples defined by the European Commission.

  2. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from

  3. Micro-matrix solid-phase dispersion coupled with MEEKC for quantitative analysis of lignans in Schisandrae Chinensis Fructus using molecular sieve TS-1 as a sorbent.

    PubMed

    Chu, Chu; Wei, Mengmeng; Wang, Shan; Zheng, Liqiong; He, Zheng; Cao, Jun; Yan, Jizhong

    2017-09-15

    A simple and effective method was developed for determining lignans in Schisandrae Chinensis Fructus by using a micro-matrix solid phase dispersion (MSPD) technique coupled with microemulsion electrokinetic chromatography (MEEKC). Molecular sieve, TS-1, was applied as a solid supporting material in micro MSPD extraction for the first time. Parameters that affect extraction efficiency, such as type of dispersant, mass ratio of the sample to the dispersant, grinding time, elution solvent and volume were optimized. The optimal extraction conditions involve dispersing 25mg of powdered Schisandrae samples with 50mg of TS-1 by a mortar and pestle. A grinding time of 150s was adopted. The blend was then transferred to a solid-phase extraction cartridge and the target analytes were eluted with 500μL of methanol. Moreover, several parameters affecting MEEKC separation were studied, including the type of oil, SDS concentration, type and concentration of cosurfactant, and concentration of organic modifier. A satisfactory linearity (R>0.9998) was obtained, and the calculated limits of quantitation were less than 2.77μg/mL. Finally, the micro MSPD-MEEKC method was successfully applied to the analysis of lignans in complex Schisandrae fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility (User’s Manual)

    DTIC Science & Technology

    2012-05-01

    with HPLC and PCBs with GC-ECD. Details of the chemical analysis are not included in this description but standard methods are referenced. Other...5 4.4 Analysis of samples to get the accumulated uptake in the fiber ...................................... 8 4.5 Determination of pore water...13 5.5 QC samples for chemical analysis

  5. Improved chip design for integrated solid-phase microextraction in on-line proteomic sample preparation.

    PubMed

    Bergkvist, Jonas; Ekström, Simon; Wallman, Lars; Löfgren, Mikael; Marko-Varga, György; Nilsson, Johan; Laurell, Thomas

    2002-04-01

    A recently introduced silicon microextraction chip (SMEC), used for on-line proteomic sample preparation, has proved to facilitate the process of protein identification by sample clean up and enrichment of peptides. It is demonstrated that a novel grid-SMEC design improves the operating characteristics for solid-phase microextraction, by reducing dispersion effects and thereby improving the sample preparation conditions. The structures investigated in this paper are treated both numerically and experimentally. The numerical approach is based on finite element analysis of the microfluidic flow in the microchip. The analysis is accomplished by use of the computational fluid dynamics-module FLOTRAN in the ANSYS software package. The modeling and analysis of the previously reported weir-SMEC design indicates some severe drawbacks, that can be reduced by changing the microextraction chip geometry to the grid-SMEC design. The overall analytical performance was thereby improved and also verified by experimental work. Matrix-assisted laser desorption/ionization mass spectra of model peptides extracted from both the weir-SMEC and the new grid-SMEC support the numerical analysis results. Further use of numerical modeling and analysis of the SMEC structures is also discussed and suggested in this work.

  6. 40 CFR Appendix A-7 to Part 60 - Test Methods 19 through 25E

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equations for Fw if %H and %O include the unavailable hydrogen and oxygen in the form of H2O.) 12.3.2.2Use... during the averaging period. 12.5.2.1Solid Fossil (Including Waste) Fuel/Sampling and Analysis. Note: For... for each gross sample. 12.5.2.2Liquid Fossil Fuel-Sampling and Analysis. See Note under Section 12.5.2...

  7. 40 CFR Appendix A-7 to Part 60 - Test Methods 19 through 25E

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equations for Fw if %H and %O include the unavailable hydrogen and oxygen in the form of H2O.) 12.3.2.2Use... during the averaging period. 12.5.2.1Solid Fossil (Including Waste) Fuel/Sampling and Analysis. Note: For... basis for each gross sample. 12.5.2.2Liquid Fossil Fuel-Sampling and Analysis. See Note under Section 12...

  8. 40 CFR Appendix A-7 to Part 60 - Test Methods 19 through 25E

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equations for Fw if %H and %O include the unavailable hydrogen and oxygen in the form of H2O.) 12.3.2.2Use... during the averaging period. 12.5.2.1Solid Fossil (Including Waste) Fuel/Sampling and Analysis. Note: For... basis for each gross sample. 12.5.2.2Liquid Fossil Fuel-Sampling and Analysis. See Note under Section 12...

  9. 40 CFR Appendix A-7 to Part 60 - Test Methods 19 through 25E

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equations for Fw if %H and %O include the unavailable hydrogen and oxygen in the form of H2O.) 12.3.2.2Use... during the averaging period. 12.5.2.1Solid Fossil (Including Waste) Fuel/Sampling and Analysis. Note: For... for each gross sample. 12.5.2.2Liquid Fossil Fuel-Sampling and Analysis. See Note under Section 12.5.2...

  10. Preparation and Analysis of Solid Solutions in the Potassium Perchlorate-Permanganate System.

    ERIC Educational Resources Information Center

    Johnson, Garrett K.

    1979-01-01

    Describes an experiment, designed for and tested in an advanced inorganic laboratory methods course for college seniors and graduate students, that prepares and analyzes several samples in the nearly ideal potassium perchlorate-permanganate solid solution series. The results are accounted for by a theoretical treatment based upon aqueous…

  11. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    PubMed Central

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał

    2018-01-01

    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297

  12. Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples.

    PubMed

    Zheng, Hao-Bo; Ding, Jun; Zheng, Shu-Jian; Zhu, Gang-Tian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    In this study, we proposed a method to fabricate magnetic carbon nitride (CN) nanosheets by simple physical blending. Low-cost CN nanosheets prepared by urea possessed a highly π-conjugated structure; therefore the obtained composites were employed as magnetic solid-phase extraction (MSPE) sorbent for extraction of polycyclic aromatic hydrocarbons (PAHs) in edible oil samples. Moreover, sample pre-treatment time could be carried out within 10 min. Thus, a simple and cheap method for the analysis of PAHs in edible oil samples was established by coupling magnetic CN nanosheets-based MSPE with gas chromatography-mass spectrometry (GC/MS) analysis. Limits of quantitation (LOQs) for eight PAHs ranged from 0.4 to 0.9 ng/g. The intra- and inter-day relative standard deviations (RSDs) were less than 15.0%. The recoveries of PAHs for spiked soybean oil samples ranged from 91.0% to 124.1%, with RSDs of less than 10.2%. Taken together, the proposed method offers a simple and cost-effective option for the convenient analysis of PAHs in oil samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A NEW SW-846 METHOD FOR THE ANALYSIS OF TOXAPHENE AND TOXAPHENE CONGENERS IN SOLID AND AQUEOUS SAMPLES USING GAS CHROMATOGRAPHY / NEGATIVE ION MASS SPECTROMETRY

    EPA Science Inventory

    US EPA SW-846 methods have typically relied on dual column gas chromatography coupled with electron capture detection (GC-ECD) for analysis of low concentrations of organochlorine pesticides, including toxaphene, in environmental samples. Toxaphene is one of the most widely appl...

  14. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination

    NASA Astrophysics Data System (ADS)

    Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.

    2018-01-01

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.

  15. Multiplexed Colorimetric Solid-Phase Extraction

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  16. A simplified radiometabolite analysis procedure for PET radioligands using a solid phase extraction with micellar medium.

    PubMed

    Nakao, Ryuji; Halldin, Christer

    2013-07-01

    A solid phase extraction method has been developed for simple and high-speed direct determination of PET radioligands in plasma. This methodology makes use of a micellar medium and a solid-phase extraction cartridge for displacement of plasma protein bound radioligand and separation of PET radioligands from their radiometabolites without significant preparation. The plasma samples taken from monkey or human during PET measurements were mixed with a micellar eluent containing an anionic surfactant sodium dodecyl sulphate and loaded onto SPE cartridges. The amount of radioactivity corresponding to parent radioligand (retained on the cartridge) and its radioactive metabolites (eluted with micellar eluent) was measured. Under the optimized conditions, excellent separation of target PET radioligands from their radiometabolites was achieved with a single elution and short run-time of 1 min. This method was successfully applied to study the metabolism for (11)C-labelled radioligands in human or monkey plasma. The amount of parent PET radioligands estimated by micellar solid phase extraction strongly corresponded with that determined by radio-LC. The improved throughput permitted the analysis of a large number of plasma samples (up to 13 samples per one PET study) for accurate estimation of metabolite-corrected input function during quantitative PET imaging studies. Solid phase extraction together with micellar medium is fast, sensitive and easy to use, and therefore it is an attractive alternative method to determine relative composition of PET radioligands in plasma. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.

    PubMed

    Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M

    2007-11-15

    The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.

  18. Thermal Design, Analysis, and Testing of the Quench Module Insert Bread Board

    NASA Technical Reports Server (NTRS)

    Breeding Shawn; Khodabandeh, Julia; Turner, Larry D. (Technical Monitor)

    2001-01-01

    The science requirements for materials processing is to provide the desired PI requirements of thermal gradient, solid/liquid interface front velocity for a given processing temperature desired by the PI. Processing is performed by translating the furnace with the sample in a stationary position to minimize any disturbances to the solid/liquid interface front during steady state processing. Typical sample materials for this metals and alloys furnace are lead-tin alloys, lead-antimony alloys, and aluminum alloys. Samples must be safe to process and therefore typically are contained with hermetically sealed cartridge tubes (gas tight) with inner ceramic liners (liquid tight) to prevent contamination and/or reaction of the sample material with the cartridge tube.

  19. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review.

    PubMed

    Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han

    2017-01-01

    In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sample Results from MCU Solids Outage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.; Washington, A.; Oji, L.

    2014-09-22

    Savannah River National Laboratory (SRNL) has received several solid and liquid samples from MCU in an effort to understand and recover from the system outage starting on April 6, 2014. SRNL concludes that the presence of solids in the Salt Solution Feed Tank (SSFT) is the likely root cause for the outage, based upon the following discoveries: A solids sample from the extraction contactor #1 proved to be mostly sodium oxalate; A solids sample from the scrub contactor#1 proved to be mostly sodium oxalate; A solids sample from the Salt Solution Feed Tank (SSFT) proved to be mostly sodium oxalate;more » An archived sample from Tank 49H taken last year was shown to contain a fine precipitate of sodium oxalate; A solids sample from ; A liquid sample from the SSFT was shown to have elevated levels of oxalate anion compared to the expected concentration in the feed. Visual inspection of the SSFT indicated the presence of precipitated or transferred solids, which were likely also in the Salt Solution Receipt Tank (SSRT). The presence of the solids coupled with agitation performed to maintain feed temperature resulted in oxalate solids migration through the MCU system and caused hydraulic issues that resulted in unplanned phase carryover from the extraction into the scrub, and ultimately the strip contactors. Not only did this carryover result in the Strip Effluent (SE) being pushed out of waste acceptance specification, but it resulted in the deposition of solids into several of the contactors. At the same time, extensive deposits of aluminosilicates were found in the drain tube in the extraction contactor #1. However it is not known at this time how the aluminosilicate solids are related to the oxalate solids. The solids were successfully cleaned out of the MCU system. However, future consideration must be given to the exclusion of oxalate solids into the MCU system. There were 53 recommendations for improving operations recently identified. Some additional considerations or additional details are provided below as recommendations. From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system; Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid; The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future; Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing; Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.« less

  1. Aromatic dipeptides and their salts—Solid-state linear-dichroic infrared (IR-LD) spectral analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.

    2008-07-01

    Stereo-structural analysis and IR-bands assignment of the aromatic dipeptides L-tryrosyl- L-phenylalanine ( Tyr-Phe), L-phenylalanyl- L-tyrosine ( Phe-Tyr) and their hydrochloride salts have been carried out by means of IR-LD spectroscopy of oriented as nematic liquid crystal suspension solid samples. The experimental data are compared with known crystallographic ones and theoretical predicted geometries at RHF/ and UHF/6-31G**.

  2. Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting

    NASA Astrophysics Data System (ADS)

    Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.

    2016-04-01

    Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.

  3. Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    He, Man; Hu, Bin; Chen, Beibei; Jiang, Zucheng

    2017-01-01

    Inductively coupled plasma optical emission spectrometry (ICP-OES) merits multielements capability, high sensitivity, good reproducibility, low matrix effect and wide dynamic linear range for rare earth elements (REEs) analysis. But the spectral interference in trace REEs analysis by ICP-OES is a serious problem due to the complicated emission spectra of REEs, which demands some correction technology including interference factor method, derivative spectrum, Kalman filtering algorithm and partial least-squares (PLS) method. Matrix-matching calibration, internal standard, correction factor and sample dilution are usually employed to overcome or decrease the matrix effect. Coupled with various sample introduction techniques, the analytical performance of ICP-OES for REEs analysis would be improved. Compared with conventional pneumatic nebulization (PN), acid effect and matrix effect are decreased to some extent in flow injection ICP-OES, with higher tolerable matrix concentration and better reproducibility. By using electrothermal vaporization as sample introduction system, direct analysis of solid samples by ICP-OES is achieved and the vaporization behavior of refractory REEs with high boiling point, which can easily form involatile carbides in the graphite tube, could be improved by using chemical modifier, such as polytetrafluoroethylene and 1-phenyl-3-methyl-4-benzoyl-5-pyrazone. Laser ablation-ICP-OES is suitable for the analysis of both conductive and nonconductive solid samples, with the absolute detection limit of ng-pg level and extremely low sample consumption (0.2 % of that in conventional PN introduction). ICP-OES has been extensively employed for trace REEs analysis in high-purity materials, and environmental and biological samples.

  4. DWPF DECON FRIT SUPERNATE ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D.; Crawford, C.

    2010-09-22

    The Savannah River National Laboratory (SRNL) has been requested to perform analyses on samples of the Defense Waste Processing Facility (DWPF) decon frit slurry (i.e., supernate samples and sump solid samples). Four 1-L liquid slurry samples were provided to SRNL by Savannah River Remediation (SRR) from the 'front-end' decon activities. Additionally, two 1-L sump solids samples were provided to SRNL for compositional and physical analysis. This report contains the results of the supernate analyses, while the solids (sump and slurry) results will be reported in a supplemental report. The analytical data from the decon frit supernate indicate that all ofmore » the radionuclide, organic, and inorganic concentrations met the limits in Revision 4 of the Effluent Treatment Plant (ETP) Waste Acceptance Criteria (WAC) with the exception of boron. The ETP WAC limit for boron is 15.0 mg/L while the average measured concentration (based on quadruplicate analysis) was 15.5 mg/L. The measured concentrations of Li, Na, and Si were also relatively high in the supernate analysis. These results are consistent with the relatively high measured value of B given the compositional make-up of Frit 418. Given these results, it was speculated that either (a) Frit 418 was dissolving into the supernate or aqueous fraction and/or (b) fine frit particulates were carried forward to the analytical instrument based on the sampling procedure used (i.e., the supernate samples were not filtered - only settled with the liquid fraction being transferred with a pipette). To address this issue, a filtered supernate sample (using a 0.45 um filter) was prepared and submitted for analysis. The results of the filtered sample were consistent with 'unfiltered or settled' sample - relatively high values of B, Li, Na, and Si were found. This suggests that Frit 418 is dissolving in the liquid phase which could be enhanced by the high surface area of the frit fines or particulates in suspension. Based on the results of this study, it is recommended that DWPF re-evaluate the technical basis for the B WAC limit (the only component that exceeds the ETP WAC limit from the supernate analyses) or assess if a waiver or exception can be obtained for exceeding this limit. Given the possible dissolution of B, Li, Na, and Si into the supernate (due to dissolution of frit), DWPF may need to assess if the release of these frit components into the supernate are a concern for the disposal options being considered. It should be noted that the results of this study may not be representative of future decon frit solutions or sump/slurry solids samples. Therefore, future DWPF decisions regarding the possible disposal pathways for either the aqueous or solid portions of the Decon Frit system need to factor in the potential differences. More specifically, introduction of a different frit or changes to other DWPF flowsheet unit operations (e.g., different sludge batch or coupling with other process streams) may impact not only the results but also the conclusions regarding acceptability with respect to the ETF WAC limits.« less

  5. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application.

    PubMed

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  6. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples.

    PubMed

    Ötles, Semih; Kartal, Canan

    2016-01-01

    Solid-Phase Extraction (SPE) is a sample preparation method that is practised on numerous application fields due to its many advantages compared to other traditional methods. SPE was invented as an alternative to liquid/liquid extraction and eliminated multiple disadvantages, such as usage of large amount of solvent, extended operation time/procedure steps, potential sources of error, and high cost. Moreover, SPE can be plied to the samples combined with other analytical methods and sample preparation techniques optionally. SPE technique is a useful tool for many purposes through its versatility. Isolation, concentration, purification and clean-up are the main approaches in the practices of this method. Food structures represent a complicated matrix and can be formed into different physical stages, such as solid, viscous or liquid. Therefore, sample preparation step particularly has an important role for the determination of specific compounds in foods. SPE offers many opportunities not only for analysis of a large diversity of food samples but also for optimization and advances. This review aims to provide a comprehensive overview on basic principles of SPE and its applications for many analytes in food matrix.

  7. Literature Reference for Cryptosporidium spp. (Applied and Environmental Microbiology. 2007. 73(13): 4218–4225)

    EPA Pesticide Factsheets

    Procedures are described for analysis of drinking water samples and may be adapted for assessment of solid, particulate, aerosol, and liquid samples. The method uses real-time PCR for identification of Cryptosporidium spp.

  8. Improved sample preparation of glyphosate and methylphosphonic acid by EPA method 6800A and time-of-flight mass spectrometry using novel solid-phase extraction.

    PubMed

    Wagner, Rebecca; Wetzel, Stephanie J; Kern, John; Kingston, H M Skip

    2012-02-01

    The employment of chemical weapons by rogue states and/or terrorist organizations is an ongoing concern in the United States. The quantitative analysis of nerve agents must be rapid and reliable for use in the private and public sectors. Current methods describe a tedious and time-consuming derivatization for gas chromatography-mass spectrometry and liquid chromatography in tandem with mass spectrometry. Two solid-phase extraction (SPE) techniques for the analysis of glyphosate and methylphosphonic acid are described with the utilization of isotopically enriched analytes for quantitation via atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry (APCI-Q-TOF-MS) that does not require derivatization. Solid-phase extraction-isotope dilution mass spectrometry (SPE-IDMS) involves pre-equilibration of a naturally occurring sample with an isotopically enriched standard. The second extraction method, i-Spike, involves loading an isotopically enriched standard onto the SPE column before the naturally occurring sample. The sample and the spike are then co-eluted from the column enabling precise and accurate quantitation via IDMS. The SPE methods in conjunction with IDMS eliminate concerns of incomplete elution, matrix and sorbent effects, and MS drift. For accurate quantitation with IDMS, the isotopic contribution of all atoms in the target molecule must be statistically taken into account. This paper describes two newly developed sample preparation techniques for the analysis of nerve agent surrogates in drinking water as well as statistical probability analysis for proper molecular IDMS. The methods described in this paper demonstrate accurate molecular IDMS using APCI-Q-TOF-MS with limits of quantitation as low as 0.400 mg/kg for glyphosate and 0.031 mg/kg for methylphosphonic acid. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Method development for the analysis of ionophore antimicrobials in dairy manure to assess removal within a membrane-based treatment system.

    PubMed

    Hurst, Jerod J; Wallace, Josh S; Aga, Diana S

    2018-04-01

    Ionophore antimicrobials are heavily used in the livestock industries, both for preventing animal infection by coccidia protozoa and for increasing feed efficiency. Ionophores are excreted mostly unmetabolized and are released into the environment when manure is land-applied to fertilize croplands. Here, an analytical method was optimized to study the occurrences of five ionophore residues (monensin, lasalocid, maduramycin, salinomycin, and narasin) in dairy manure after solid-liquid separation and further treatment of the liquid manure by a membrane-based treatment system. Ionophore residues from the separated solid manure (dewatered manure) and suspended solids of manure slurry samples were extracted using ultrasonication with methanol, followed by sample clean-up using solid phase extraction (SPE) and subsequent analysis via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The use of an ethyl acetate and methanol (1:1 v:v) mixture as an SPE eluent resulted in higher recoveries and lower method quantitation limits (MQL), when compared to using methanol. Overall recoveries from separated solid manure ranged from 73 to 134%. Liquid manure fractions were diluted with Nanopure™ water and cleaned up using SPE, where recoveries ranged from 51 to 100%. The developed extraction and LC-MS/MS methods were applied to analyze dairy manure samples subjected to an advanced manure treatment process involving a membrane-based filtration step (reverse osmosis). Monensin and lasalocid were detected at higher concentrations in the suspended solid fractions (4.40-420 ng/g for lasalocid and 85-1950 ng/g for monensin) compared to the liquid fractions (

  10. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; hide

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  11. The potential of household solid waste reduction in Sukomanunggal District, Surabaya

    NASA Astrophysics Data System (ADS)

    Warmadewanthi, I. D. A. A.; Kurniawati, S.

    2018-01-01

    The rapid population growth affects the amount of waste generated. Sukomanunggal Subdistrict is the densest area in West Surabaya which has a population of 100,602 inhabitants with a total area of 11.2 km2. The population growth significantly affects the problem of limited land for landfill facilities (final processing sites). According to the prevailing regulations, solid waste management solutions include the solid waste reduction and management. This study aims to determine the potential reduction of household solid waste at the sources. Household solid waste samplings were performed for eight consecutive days. The samples were then analyzed to obtain the generation rate, density, and composition so that the household solid waste reduction potential for the next 20 years could be devised. Results of the analysis showed that the value of waste is 0.27 kg/person/day, while the total household solid waste generation amounted to 27,162.58 kg/day or 187.70 m3/day. Concerning the technical aspects, the current solid waste reduction in Sukomanunggal Subdistrict has reached 2.1% through the application of waste bank, composting, and scavenging activities at the dumping sites by the garbage collectors. In the year of 2036, the potential reduction of household solid waste in Sukomanunggal Subdistrict has been estimated to reach 28.0%.

  12. SOLID-STATE SYNTHESIS AND SOME PROPERTIES OF MAGNESIUM-DOPED COPPER ALUMINUM OXIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Ren, Fei; Wang, Hsin

    2010-01-01

    Copper aluminum oxide (CuAlO2) with delafossite structure is a promising candidate for high temperature thermoelectric applications because of its modest band gap, high stability and low cost. We investigate magnesium doping on the aluminum site as a means of producing higher electrical conductivity and optimized Seebeck coefficient. Powder samples were synthesized using solid-state reaction and bulk samples were prepared using both cold-pressing and hot-pressing techniques. Composition analysis, microstructural examination and transport property measurements were performed, and the results suggest that while hot-pressing can achieve high density samples, secondary phases tend to form and lower the performance of the materials.

  13. Freeze-thaw method improves the detection of volatile compounds in insects using Headspace Solid-Phase Microextraction (HS-SPME)

    USDA-ARS?s Scientific Manuscript database

    Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC-MS) is commonly used in analyzing insect volatiles. In order to improve the detection of volatiles in insects, a freeze-thaw method was applied to insect samples before the HS-SPME-GC-MS analysis. ...

  14. Critical evaluation of sample pretreatment techniques.

    PubMed

    Hyötyläinen, Tuulia

    2009-06-01

    Sample preparation before chromatographic separation is the most time-consuming and error-prone part of the analytical procedure. Therefore, selecting and optimizing an appropriate sample preparation scheme is a key factor in the final success of the analysis, and the judicious choice of an appropriate procedure greatly influences the reliability and accuracy of a given analysis. The main objective of this review is to critically evaluate the applicability, disadvantages, and advantages of various sample preparation techniques. Particular emphasis is placed on extraction techniques suitable for both liquid and solid samples.

  15. Hyphenation of Raman spectroscopy with gravimetric analysis to interrogate water-solid interactions in pharmaceutical systems.

    PubMed

    Gift, Alan D; Taylor, Lynne S

    2007-01-04

    A moisture sorption gravimetric analyzer has been combined with a Raman spectrometer to better understand the various modes of water-solid interactions relevant to pharmaceutical systems. A commercial automated moisture sorption balance was modified to allow non-contact monitoring of the sample properties by interfacing a Raman probe with the sample holder. This hybrid instrument allows for gravimetric and spectroscopic changes to be monitored simultaneously. The utility of this instrument was demonstrated by investigating different types of water-solid interactions including stoichiometric and non-stoichiometric hydrate formation, deliquescence, amorphous-crystalline transformation, and capillary condensation. In each of the model systems, sulfaguanidine, cromolyn sodium, ranitidine HCl, amorphous sucrose and silica gel, spectroscopic changes were observed during the time course of the moisture sorption profile. Analysis of spectroscopic data provided information about the origin of the observed changes in moisture content as a function of relative humidity. Furthermore, multivariate data analysis techniques were employed as a means of processing the spectroscopic data. Principle components analysis was found to be useful to aid in data processing, handling and interpretation of the spectral changes that occurred during the time course of the moisture sorption profile.

  16. Effect of air confinement on thermal contact resistance in nanoscale heat transfer

    NASA Astrophysics Data System (ADS)

    Pratap, Dheeraj; Islam, Rakibul; Al-Alam, Patricia; Randrianalisoa, Jaona; Trannoy, Nathalie

    2018-03-01

    Here, we report a detailed analysis of thermal contact resistance (R c) of nano-size contact formed between a Wollaston wire thermal probe and the used samples (fused silica and titanium) as a function of air pressure (from 1 Pa to 105 Pa). Moreover, we suggest an analytical model using experimental data to extract R c. We found that for both samples, the thermal contact resistance decreases with increasing air pressure. We also showed that R c strongly depends on the thermal conductivity of materials keeping other parameters the same, such as roughness of the probe and samples, as well as the contact force. We provide a physical explanation of the R c trend with pressure and thermal conductivity of the materials: R c is ascribed to the heat transfer through solid-solid (probe-sample) contact and confined air at nanoscale cavities, due to the rough nature of the materials in contact. The contribution of confined air on heat transfer through the probe sample contact is significant at atmospheric pressure but decreases as the pressure decreases. In vacuum, only the solid-solid contact contributes to R c. In addition, theoretical calculations using the well-known acoustic and diffuse mismatch models showed a high thermal conductivity material that exhibits high heat transmission and consequently low R c, supporting our findings.

  17. Analysis of imazaquin in soybeans by solid-phase extraction and high-performance liquid chromatography.

    PubMed

    Guo, C; Hu, J-Y; Chen, X-Y; Li, J-Z

    2008-02-01

    An analytical method for the determination imazaquin residues in soybeans was developed. The developed liquid/liquid partition and strong anion exchange solid-phase extraction procedures provide the effective cleanup, removing the greatest number of sample matrix interferences. By optimizing mobile-phase pH water/acetonitrile conditions with phosphoric acid, using a C-18 reverse-phase chromatographic column and employing ultraviolet detection, excellent peak resolution was achieved. The combined cleanup and chromatographic method steps reported herein were sensitive and reliable for determining the imazaquin residues in soybean samples. This method is characterized by recovery >88.4%, precision <6.7% CV, and sensitivity of 0.005 ppm, in agreement with directives for method validation in residue analysis. Imazaquin residues in soybeans were further confirmed by high performance liquid chromatography-mass spectrometry (LC-MS). The proposed method was successfully applied to the analysis of imazaquin residues in soybean samples grown in an experimental field after treatments of imazaquin formulation.

  18. Sample Manipulation System for Sample Analysis at Mars

    NASA Technical Reports Server (NTRS)

    Mumm, Erik; Kennedy, Tom; Carlson, Lee; Roberts, Dustyn

    2008-01-01

    The Sample Analysis at Mars (SAM) instrument will analyze Martian samples collected by the Mars Science Laboratory Rover with a suite of spectrometers. This paper discusses the driving requirements, design, and lessons learned in the development of the Sample Manipulation System (SMS) within SAM. The SMS stores and manipulates 74 sample cups to be used for solid sample pyrolysis experiments. Focus is given to the unique mechanism architecture developed to deliver a high packing density of sample cups in a reliable, fault tolerant manner while minimizing system mass and control complexity. Lessons learned are presented on contamination control, launch restraint mechanisms for fragile sample cups, and mechanism test data.

  19. Literature Reference for Noroviruses (Journal of Clinical Microbiology. 2004. 42(10): 4679–4685)

    EPA Pesticide Factsheets

    Procedures are described for analysis of clinical samples and may be adapted for of solid, particulate, aerosol, and water samples. This method is an assay for detection and quantitation of norovirus using real-time reverse transcription-PCR.

  20. Literature Reference for Influenza H5N1 (Emerging Infectious Diseases. 2005. 11(8): 1303–1305)

    EPA Pesticide Factsheets

    Procedures are described for analysis of clinical samples and may be adapted for assessment of solid, particulate, aerosol, liquid and water samples. This is a two-step, real-time reverse transcriptase-PCR multiplex assay.

  1. UNCERTAINTY IN SCALING NUTRIENT EXPORT COEFFICIENTS

    EPA Science Inventory

    The Innov-X XT400 portable XRF analyzer features a miniature, rugged x-ray tube excitation source for analyzing a wide variety of elements and sample materials, including alloys, environmental solids, and other analytical samples. The x-ray tube source and Light Element Analysis...

  2. 1QCY17 Saltstone waste characterization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.

    2017-07-25

    In the first quarter of calendar year 2017, a salt solution sample was collected from Tank 50 on January 16, 2017 in order to meet South Carolina (SC) Regulation 61-107.19 Part I C, “Solid Waste Management: Solid Waste Landfills and Structural Fill – General Requirements” and the Saltstone Disposal Facility Class 3 Landfill Permit. The Savannah River National Laboratory (SRNL) was requested to prepare and ship saltstone samples to a United States Environmental Protection Agency (EPA) certified laboratory to perform the Toxicity Characteristic Leaching Procedure (TCLP) and subsequent characterization.

  3. Fabrication of a Dipole-assisted Solid Phase Extraction Microchip for Trace Metal Analysis in Water Samples

    PubMed Central

    Chen, Ping-Hung; Chen, Shun-Niang; Tseng, Sheng-Hao; Deng, Ming-Jay; Lin, Yang-Wei; Sun, Yuh-Chang

    2016-01-01

    This paper describes a fabrication protocol for a dipole-assisted solid phase extraction (SPE) microchip available for trace metal analysis in water samples. A brief overview of the evolution of chip-based SPE techniques is provided. This is followed by an introduction to specific polymeric materials and their role in SPE. To develop an innovative dipole-assisted SPE technique, a chlorine (Cl)-containing SPE functionality was implanted into a poly(methyl methacrylate) (PMMA) microchip. Herein, diverse analytical techniques including contact angle analysis, Raman spectroscopic analysis, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis were employed to validate the utility of the implantation protocol of the C-Cl moieties on the PMMA. The analytical results of the X-ray absorption near-edge structure (XANES) analysis also demonstrated the feasibility of the Cl-containing PMMA used as an extraction medium by virtue of the dipole-ion interactions between the highly electronegative C-Cl moieties and the positively charged metal ions. PMID:27584954

  4. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry

    PubMed Central

    2017-01-01

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples. PMID:28632988

  5. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry.

    PubMed

    Yung, Yeni P; Wickramasinghe, Raveendra; Vaikkinen, Anu; Kauppila, Tiina J; Veryovkin, Igor V; Hanley, Luke

    2017-07-18

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples.

  6. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-12-01

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.

  7. Magnetic dummy molecularly imprinted polymers based on multi-walled carbon nanotubes for rapid selective solid-phase extraction of 4-nonylphenol in aqueous samples.

    PubMed

    Rao, Wei; Cai, Rong; Yin, Yuli; Long, Fang; Zhang, Zhaohui

    2014-10-01

    In this paper, a highly selective sample clean-up procedure combining magnetic dummy molecular imprinting with solid-phase extraction was developed for rapid separation and determination of 4-nonylphenol (NP) in the environmental water samples. The magnetic dummy molecularly imprinted polymers (mag-DMIPs) based on multi-walled carbon nanotubes were successfully synthesized with a surface molecular imprinting technique using 4-tert-octylphenol as the dummy template and tetraethylorthosilicate as the cross-linker. The maximum adsorption capacity of the mag-DMIPs for NP was 52.4 mg g(-1) and it took about 20 min to achieve the adsorption equilibrium. The mag-DMIPs exhibited the specific selective adsorption toward NP. Coupled with high performance liquid chromatography analysis, the mag-DMIPs were used to extract solid-phase and detect NP in real water samples successfully with the recoveries of 88.6-98.1%. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Sampling and analysis of airborne resin acids and solvent-soluble material derived from heated colophony (rosin) flux: a method to quantify exposure to sensitizing compounds liberated during electronics soldering.

    PubMed

    Smith, P A; Son, P S; Callaghan, P M; Jederberg, W W; Kuhlmann, K; Still, K R

    1996-07-17

    Components of colophony (rosin) resin acids are sensitizers through dermal and pulmonary exposure to heated and unheated material. Significant work in the literature identifies specific resin acids and their oxidation products as sensitizers. Pulmonary exposure to colophony sensitizers has been estimated indirectly through formaldehyde exposure. To assess pulmonary sensitization from airborne resin acids, direct measurement is desired, as the degree to which aldehyde exposure correlates with that of resin acids during colophony heating is undefined. Any analytical method proposed should be applicable to a range of compounds and should also identify specific compounds present in a breathing zone sample. This work adapts OSHA Sampling and Analytical Method 58, which is designed to provide airborne concentration data for coal tar pitch volatile solids by air filtration through a glass fiber filter, solvent extraction of the filter, and gravimetric analysis of the non-volatile extract residue. In addition to data regarding total soluble material captured, a portion of the extract may be subjected to compound-specific analysis. Levels of soluble solids found during personal breathing zone sampling during electronics soldering in a Naval Aviation Depot ranged from below the "reliable quantitation limit" reported in the method to 7.98 mg/m3. Colophony-spiked filters analyzed in accordance with the method (modified) produced a limit of detection for total solvent-soluble colophony solids of 10 micrograms/filter. High performance liquid chromatography was used to identify abietic acid present in a breathing zone sample.

  9. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  10. Results of initial analyses of the salt (macro) batch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    2017-01-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 10 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 10 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amount of solids, or unusual colors. Further sample results will be reported in a futuremore » document. This memo satisfies part of Deliverable 3 of the Technical Task Request (TTR).« less

  11. Results of initial analyses of the salt (macro) batch 11 Tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 11 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 11 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amounts of solids, or unusual colors. Further sample results will be reported in a futuremore » document. This memo satisfies part of Deliverable 3 of the Technical Task Request (TTR).« less

  12. Detection and quantification of long chain fatty acids in liquid and solid samples and its relevance to understand anaerobic digestion of lipids.

    PubMed

    Neves, L; Pereira, M A; Mota, M; Alves, M M

    2009-01-01

    A method for long chain fatty acids (LCFA) extraction, identification and further quantification by gas chromatography was developed and its application to liquid and solid samples collected from anaerobic digesters was demonstrated. After validation, the usefulness of this method was demonstrated in a cow manure digester receiving pulses of an industrial effluent containing high lipid content. From the LCFA analysis data it was showed that the conversion of oleic acid, the main LCFA fed to the reactor, by the adapted biomass became faster and more effective along the successive pulses. Conversely, the accumulation of palmitic acid in the solid phase suggests that degradation of this LCFA, under these conditions, is less effective.

  13. Development and optimization of a solid-phase microextraction gas chromatography-tandem mass spectrometry methodology to analyse ultraviolet filters in beach sand.

    PubMed

    Vila, Marlene; Llompart, Maria; Garcia-Jares, Carmen; Homem, Vera; Dagnac, Thierry

    2018-06-06

    A methodology based on solid-phase microextraction (SPME) followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of eleven multiclass ultraviolet (UV) filters in beach sand. To the best of our knowledge, this is the first time that this extraction technique is applied to the analysis of UV filters in sand samples, and in other kind of environmental solid samples. Main extraction parameters such as the fibre coating, the amount of sample, the addition of salt, the volume of water added to the sand, and the temperature were optimized. An experimental design approach was implemented in order to find out the most favourable conditions. The final conditions consisted of adding 1 mL of water to 1 g of sample followed by the headspace SPME for 20 min at 100 °C, using PDMS/DVB as fibre coating. The SPME-GC-MS/MS method was validated in terms of linearity, accuracy, limits of detection and quantification, and precision. Recovery studies were also performed at three concentration levels in real Atlantic and Mediterranean sand samples. The recoveries were generally above 85% and relative standard deviations below 11%. The limits of detection were in the pg g -1 level. The validated methodology was successfully applied to the analysis of real sand samples collected from Atlantic Ocean beaches in the Northwest coast of Spain and Portugal, Canary Islands (Spain), and from Mediterranean Sea beaches in Mallorca Island (Spain). The most frequently found UV filters were ethylhexyl salicylate (EHS), homosalate (HMS), 4-methylbenzylidene camphor (4MBC), 2-ethylhexyl methoxycinnamate (2EHMC) and octocrylene (OCR), with concentrations up to 670 ng g -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  15. Experimental research results of solid particle erosion resistance of blade steel with protective coating

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Seleznev, L. I.

    2017-11-01

    The paper presents the results of metallographic studies and solid particle erosion tests of uncoated blade steel 20kH13 samples and samples with a protective coating based on chromium carbide (Cr-CrC) at a flow (air) velocity CA = 180 m/s, flow temperature tA = 25 °C, attack angle α = 30° and consumption of solid abrasive particles GP = 5·10-4 kg/s. It was found that the coating has a granular structure, a thickness is about 11 μm, the microhardness of the surface is 1520 ± 50 HV0.05. Processing of the obtained data by statistical analysis methods showed that the protective coating based on Cr-CrC increases the solid particle erosion resistance of the blade steel 20kH13 by the incubation-transitional period duration more than 2.5 times.

  16. Using large volume samplers for the monitoring of particle bound micro pollutants in rivers

    NASA Astrophysics Data System (ADS)

    Kittlaus, Steffen; Fuchs, Stephan

    2015-04-01

    The requirements of the WFD as well as substance emission modelling at the river basin scale require stable monitoring data for micro pollutants. The monitoring concepts applied by the local authorities as well as by many scientists use single sampling techniques. Samples from water bodies are usually taken in volumes of about one litre and depending on predetermined time steps or through discharge thresholds. For predominantly particle bound micro pollutants the small sample size of about one litre results in a very small amount of suspended particles. To measure micro pollutant concentrations in these samples is demanding and results in a high uncertainty of the measured concentrations, if the concentration is above the detection limit in the first place. In many monitoring programs most of the measured values were below the detection limit. This results in a high uncertainty if river loads were calculated from these data sets. The authors propose a different approach to gain stable concentration values for particle bound micro pollutants from river monitoring: A mixed sample of about 1000 L was pumped in a tank with a dirty-water pump. The sampling usually is done discharge dependant by using a gauge signal as input for the control unit. After the discharge event is over or the tank is fully filled, the suspended solids settle in the tank for 2 days. After this time a clear separation of water and solids can be shown. A sample (1 L) from the water phase and the total mass of the settled solids (about 10 L) are taken to the laboratory for analysis. While the micro pollutants can't hardly be detected in the water phase, the signal from the sediment is high above the detection limit, thus certain and very stable. From the pollutant concentration in the solid phase and the total tank volume the initial pollutant concentration in the sample can be calculated. If the concentration in the water phase is detectable, it can be used to correct the total load. This relatively low cost approach (less costs for analysis because of small sample number) allows to quantify the pollutant load, to derive dissolved-solid partition coefficients and to quantify the pollutant load in different particle size classes.

  17. Results of initial analyses of the salt (macro) batch 9 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    2015-10-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amount of solids, or unusual colors. Further results on the chemistry and other tests willmore » be issued in the future.« less

  18. Methods for the preparation and analysis of solids and suspended solids for methylmercury

    USGS Publications Warehouse

    DeWild, John F.; Olund, Shane D.; Olson, Mark L.; Tate, Michael T.

    2004-01-01

    This report presents the methods and method performance data for the determination of methylmercury concentrations in solids and suspended solids. Using the methods outlined here, the U.S. Geological Survey's Wisconsin District Mercury Laboratory can consistently detect methylmercury in solids and suspended solids at environmentally relevant concentrations. Solids can be analyzed wet or freeze dried with a minimum detection limit of 0.08 ng/g (as-processed). Suspended solids must first be isolated from aqueous matrices by filtration. The minimum detection limit for suspended solids is 0.01 ng per filter resulting in a minimum reporting limit ranging from 0.2 ng/L for a 0.05 L filtered volume to 0.01 ng/L for a 1.0 L filtered volume. Maximum concentrations for both matrices can be extended to cover nearly any amount of methylmercury by limiting sample size.

  19. Solid-phase extraction of small biologically active peptides on cartridges and microelution 96-well plates from human urine.

    PubMed

    Semenistaya, Ekaterina; Zvereva, Irina; Krotov, Grigory; Rodchenkov, Grigory

    2016-09-01

    Currently liquid chromatography - mass spectrometry (LC-MS) analysis after solid-phase extraction (SPE) on weak cation-exchange cartridges is a method of choice for anti-doping analysis of small bioactive peptides such as growth hormone releasing peptides (GHRPs), desmoporessin, LHRH, and TB-500 short fragment. Dilution of urine samples with phosphate buffer for pH adjustment and SPE on weak cation exchange microelution plates was tested as a means to increase throughput of this analysis. Dilution using 200 mM phosphate buffer provides good buffering capacity without affecting the peptides recoveries. SPE on microelution plates was performed on Waters Positive Pressure-96 Processor with subsequent evaporation of eluates in nitrogen flow. Though the use of smaller sample volume decreases the pre-concentration factor and increases the limits of detection of 5 out of 17 detected peptides, the recovery, linearity, and reproducibility of the microelution extraction were comparable with cartridge SPE. The effectiveness of protocols was confirmed by analysis of urine samples containing ipamorelin, and GHRP-6 and its metabolites. SPE after urine sample dilution with buffer can be used for faster sample preparation. The use of microelution plates decreases consumption of solvents and allows processing of up to 96 samples simultaneously. Cartridge SPE with manual рН adjustment remains the best option for confirmation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry.

    PubMed

    Kopf, Thomas; Schmitz, Gerd

    2013-11-01

    The determination of the fatty acid (FA) profile of lipid classes is essential for lipidomic analysis. We recently developed a GC/MS-method for the analysis of the FA profile of total FAs, i.e. the totality of bound and unbound FAs, in any given biological sample (TOFAs). Here, we present a method for the analysis of non-esterified fatty acids (NEFAs) in biological samples, i.e. the fraction that is present as extractable free fatty acids. Lipid extraction is performed according to Dole using 80/20 2-propanol/n-hexane (v/v), with 0.1% H2SO4. The fatty acid-species composition of this NEFA-fraction is determined as FAME after derivatization with our GC/MS-method on a BPX column (Shimadzu). Validation of the NEFA-method presented was performed in human plasma samples. The validated method has been used with human plasma, cells and tissues, as well as mammalian body fluids and tissue samples. The newly developed solid-phase-extraction (SPE)-GC-MS method allows the rapid separation of the NEFA-fraction from a neutral lipid extract of plasma samples. As a major advantage compared to G-FID-methods, GC-MS allows the use of stable isotope labeled fatty acid precursors to monitor fatty acid metabolism. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination.

    PubMed

    Mogolodi Dimpe, K; Mpupa, Anele; Nomngongo, Philiswa N

    2018-01-05

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5μgL -1 and 1.7μgL -1 , respectively, and intraday and interday precision expressed in terms of relative standard deviation were >6%.The maximum adsorption capacity was 138mgg -1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fast Micromethod: Determination of DNA Integrity in Cell Suspensions and in Solid Tissues.

    PubMed

    Bihari, Nevenka

    2017-01-01

    The Fast Micromethod is a rapid and convenient microplate procedure for the determination of DNA integrity in cell suspensions and in solid tissues. The procedure is based on the ability of fluorochromes to preferentially interact with double-stranded DNA in alkaline conditions. Rapid sample lysis is followed by denaturation at high pH during 15 min. Only 30 ng of DNA from cell suspensions or tissue homogenates per single well are required for the analyses. The whole analysis is performed within 3 h or less (for one 96-well microplate).The Fast Micromethod is broadly used in biology and medicine. Its applications range from environmental pollution tests in marine invertebrates to the analysis of biopsy samples in cancer patients to detect DNA alterations caused by irradiation or chemotherapy.The procedure presented here describes the Fast Micromethod applied for the determination of DNA integrity in cell suspensions (HeLa cells) and solid tissues (mussel gills).

  3. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Evans, Sian E; Davies, Paul; Lubben, Anneke; Kasprzyk-Hordern, Barbara

    2015-07-02

    This is the first study presenting a multi-residue method allowing for comprehensive analysis of several chiral pharmacologically active compounds (cPACs) including beta-blockers, antidepressants and amphetamines in wastewater and digested sludge at the enantiomeric level. Analysis of both the liquid and solid matrices within wastewater treatment is crucial to being able to carry out mass balance within these systems. The method developed comprises filtration, microwave assisted extraction and solid phase extraction followed by chiral liquid chromatography coupled with tandem mass spectrometry to analyse the enantiomers of 18 compounds within all three matrices. The method was successfully validated for 10 compounds within all three matrices (amphetamine, methamphetamine, MDMA, MDA, venlafaxine, desmethylvenlafaxine, citalopram, metoprolol, propranolol and sotalol), 7 compounds validated for the liquid matrices only (mirtazapine, salbutamol, fluoxetine, desmethylcitalopram, atenolol, ephedrine and pseudoephedrine) and 1 compound (alprenolol) passing the criteria for solid samples only. The method was then applied to wastewater samples; cPACs were found at concentration ranges in liquid matrices of: 1.7 ng L(-1) (metoprolol) - 1321 ng L(-1) (tramadol) in influent,

  4. Solid-substrate fermentation of alfalfa for enhanced protein recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajracharya, R.; Madgett, R.E.

    1979-04-01

    Solid-substrate fermentations for extraction of protein from pressed alfalfa residues with Aspergillus Sp. QM 9994, Aspergillus niger QM 877, and Rhizopus nigricans QM 387 were conducted in shake flasks. Upon reimbibing and second pressing, total protein recovery from alfalfa was increased from 47.2% for control samples and up to 64.5% for fermented samples. Analysis of juice from fermented samples indicated the presence of cellulase as well as pectinase activities. Dialysis cultures of cellulase-producing fungi showed that total biomass production and solids consumption were much higher than those of a mutant strain lacking the ability to produce cellulase, indicating significant utilizationmore » of cellulosic materials in alfalfa. The biomass yields in the former case ranged from 39-47% based on total solids consumption. Since some of the cellulosic and other carbohydrate constituents in alfalfa may be converted into fungal protein, final alfalfa residues following protein extraction in a commercial process would be less bulky for storage and handling and would be more digestible as a nonruminant animal feed.« less

  5. Split Flow Online Solid-Phase Extraction Coupled with Inductively Coupled Plasma Mass Spectrometry System for One-Shot Data Acquisition of Quantification and Recovery Efficiency.

    PubMed

    Furukawa, Makoto; Takagai, Yoshitaka

    2016-10-04

    Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.

  6. Literature Reference for Toxoplasma gondii (Applied and Environmental Microbiology. 2004. 70(7): 4035–4039)

    EPA Pesticide Factsheets

    Procedures are described for analysis of water samples and may be adapted for assessment of solid, particulate and liquid samples. The method uses real-time PCR assay for detecting Toxoplasma gondii DNA using gene-specific primers and probe.

  7. An in Situ Technique for Elemental Analysis of Lunar Surfaces

    NASA Technical Reports Server (NTRS)

    Kane, K. Y.; Cremers, D. A.

    1992-01-01

    An in situ analytical technique that can remotely determine the elemental constituents of solids has been demonstrated. Laser-Induced Breakdown Spectroscopy (LIBS) is a form of atomic emission spectroscopy in which a powerful laser pulse is focused on a solid to generate a laser spark, or microplasma. Material in the plasma is vaporized, and the resulting atoms are excited to emit light. The light is spectrally resolved to identify the emitting species. LIBS is a simple technique that can be automated for inclusion aboard a remotely operated vehicle. Since only optical access to a sample is required, areas inaccessible to a rover can be analyzed remotely. A single laser spark both vaporizes and excites the sample so that near real-time analysis (a few minutes) is possible. This technique provides simultaneous multielement detection and has good sensitivity for many elements. LIBS also eliminates the need for sample retrieval and preparation preventing possible sample contamination. These qualities make the LIBS technique uniquely suited for use in the lunar environment.

  8. Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of phenylurea herbicides in aqueous samples.

    PubMed

    Lin, Hsin-Hang; Sung, Yu-Hsiang; Huang, Shang-Da

    2003-09-12

    Solid-phase microextraction coupled with high-performance liquid chromatography was successfully applied to the analysis of nine phenylurea herbicides (metoxuron, monuron, chlorotoluron, isoproturon, monolinuron, metobromuron, buturon, linuron, and chlorbromuron). Polydimethylsiloxane-divinylbenzene (PDMS-DVB, 60 microm) and Carbowax-templated resin (CW-TPR, 50 microm) fibers were selected from four commercial fibers for further study because of their better extraction efficiencies. The parameters of the desorption procedure were studied and optimized. The effects of the properties of analytes and fiber coatings, carryover, duration and temperature of absorption, pH, organic solvent and ionic strength of samples were also investigated. External calibration with an aqueous standard can be used for the analysis of environmental samples (lake water) using either PDMS-DVB or CW-TPR fibers. Good precisions (1.0-5.9%) are achieved for this method, and the detection limits are at the level of 0.5-5.1 ng/ml.

  9. Method development for the analysis of N-nitrosodimethylamine and other N-nitrosamines in drinking water at low nanogram/liter concentrations using solid-phase extraction and gas chromatography with chemical ionization tandem mass spectrometry.

    PubMed

    Munch, Jean W; Bassett, Margarita V

    2006-01-01

    N-nitrosodimethylamine (NDMA) is a probable human carcinogen of concern that has been identified as a drinking water contaminant. U.S. Environmental Protection Agency Method 521 has been developed for the analysis of NDMA and 6 additional N-nitrosamines in drinking water at low ng/L concentrations. The method uses solid-phase extraction with coconut charcoal as the sorbent and dichloromethane as the eluent to concentrate 0.50 L water samples to 1 mL. The extracts are analyzed by gas chromatography-chemical ionization tandem mass spectrometry using large-volume injection. Method performance was evaluated in 2 laboratories. Typical analyte recoveries of 87-104% were demonstrated for fortified reagent water samples, and recoveries of 77-106% were demonstrated for fortified drinking water samples. All relative standard deviations on replicate analyses were < 11%.

  10. Silk fiber for in-tube solid-phase microextraction to detect aldehydes by chemical derivatization.

    PubMed

    Wang, Xiuqin; Pan, Lei; Feng, Juanjuan; Tian, Yu; Luo, Chuannan; Sun, Min

    2017-11-03

    Aldehydes are the potentially damaging pollutants in the environment, but it is difficult to be determined due to the low concentration level. Therefore, to accurate analysis of aldehydes, it is important for efficient sample preparation with selective enrichment and rapid separation. Environmentally friendly silk fiber as adsorbent material was directly applied to develop in-tube solid-phase microextraction for analyzing aqueous samples combined with high performance liquid chromatography. 2,4-Dinitrophenylhydrazine as a derivative reagent was used for chemical derivatization of aldehydes before extraction. Under optimum conditions, an online analysis method was built with the limits of detection in the range of 0.005-0.01μgL -1 and the linearity in the range of 0.03-10μgL -1 . Three aldehydes were determined in two real samples, and the relative recoveries were in the range of 95-102%. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Solid-phase extraction and GC-MS analysis of THC-COOH method optimized for a high-throughput forensic drug-testing laboratory.

    PubMed

    Stout, P R; Horn, C K; Klette, K L

    2001-10-01

    In order to facilitate the confirmation analysis of large numbers of urine samples previously screened positive for delta9-tetrahydrocannabinol (THC), an extraction, derivitization, and GC-MS analysis method was developed. This method utilized a positive pressure manifold anion-exchange polymer-based solid-phase extraction followed by elution directly into the automated liquid sampling (ALS) vials. Rapid derivitization was accomplished using pentafluoropropionic anhydride/pentafluoropropanol (PFPA/PFPOH). Recoveries averaged 95% with a limit of detection of 0.875 ng/mL with a 3-mL sample volume. Performance of 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH)-d3 and THC-COOH-d9 internal standards were evaluated. The method was linear to 900 ng/mL THC-COOH using THC-COOH-d9 with negligible contribution from the internal standard to very weak samples. Excellent agreement was seen with previous quantitations of human urine samples. More than 1000 human urine samples were analyzed using the method with 300 samples analyzed using an alternate qualifier ion (m/z 622) after some interference was observed with a qualifier ion (m/z 489). The 622 ion did not exhibit any interference even in samples with interfering peaks present in the 489 ion. The method resulted in dramatic reductions in processing time, waste production, and exposure hazards to laboratory personnel.

  12. Development of Analytical Protocols For Organics and Isotopes Analysis on the 2009 MARS Science Laboratory.

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.

    2006-01-01

    The Mars Science Laboratory, under development for launch in 2009, is designed explore and quantitatively asses a local region on Mars as a potential habitat for present or past life. Its ambitious goals are to (1) assess the past or present biological potential of the target environment, (2) to characterize the geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The planned capabilities of the rover payload will enable a comprehensive search for organic molecules, a determination of definitive mineralogy of sampled rocks and fines, chemical and isotopic analysis of both atmospheric and solid samples, and precision isotope measurements of several volatile elements. A range of contact and remote surface and subsurface survey tools will establish context for these measurements and will facilitate sample identification and selection. The Sample Analysis at Mars (SAM) suite of MSL addresses several of the mission's core measurement goals. It includes a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer. These instruments will be designed to analyze either atmospheric samples or gases extracted from solid phase samples such as rocks and fines. We will describe the range of measurement protocols under development and study by the SAM engineering and science teams for use on the surface of Mars.

  13. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    USDA-ARS?s Scientific Manuscript database

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  14. Electrochemical detection of Piscirickettsia salmonis genomic DNA from salmon samples using solid-phase recombinase polymerase amplification.

    PubMed

    Del Río, Jonathan Sabaté; Svobodova, Marketa; Bustos, Paulina; Conejeros, Pablo; O'Sullivan, Ciara K

    2016-12-01

    Electrochemical detection of solid-phase isothermal recombinase polymerase amplification (RPA) of Piscirickettsia salmonis in salmon genomic DNA is reported. The electrochemical biosensor was constructed by surface functionalization of gold electrodes with a thiolated forward primer specific to the genomic region of interest. Solid-phase RPA and primer elongation were achieved in the presence of the specific target sequence and biotinylated reverse primers. The formation of the subsequent surface-tethered duplex amplicons was electrochemically monitored via addition of streptavidin-linked HRP upon completion of solid-phase RPA. Successful quantitative amplification and detection were achieved in less than 1 h at 37 °C, calibrating with PCR-amplified genomic DNA standards and achieving a limit of detection of 5 · 10 -8  μg ml -1 (3 · 10 3 copies in 10 μl). The presented system was applied to the analysis of eight real salmon samples, and the method was also compared to qPCR analysis, observing an excellent degree of correlation. Graphical abstract Schematic of use of electrochemical RPA for detection of Psiricketessia salmonis in salmon liver.

  15. Method of analysis and quality-assurance practices for determination of pesticides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry at the U.S. Geological Survey California District Organic Chemistry Laboratory, 1996-99

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Baker, Lucian M.; Kuivila, Kathryn

    2000-01-01

    A method of analysis and quality-assurance practices were developed to study the fate and transport of pesticides in the San Francisco Bay-Estuary by the U.S. Geological Survey. Water samples were filtered to remove suspended-particulate matter and pumped through C-8 solid-phase extraction cartridges to extract the pesticides. The cartridges were dried with carbon dioxide and the pesticides were eluted with three cartridge volumes of hexane:diethyl ether (1:1) solution. The eluants were analyzed using capillary-column gas chromatography/mass spectrometry in full-scan mode. Method detection limits for pesticides ranged from 0.002 to 0.025 microgram per liter for 1-liter samples. Recoveries ranged from 44 to 140 percent for 25 pesticides in samples of organic-free reagent water and Sacramento-San Joaquin Delta and Suisun Bay water fortified at 0.05 and 0.50 microgram per liter. The estimated holding time for pesticides after extraction on C-8 solid-phase extraction cartridges ranged from 10 to 257 days.

  16. Dual Source Time-of-flight Mass Spectrometer and Sample Handling System

    NASA Astrophysics Data System (ADS)

    Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.

    We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging and laser microprobe studies would necessarily precede the pyrolysis step to assure that the grain-scale composition is captured.)

  17. Sample Results From Tank 48H Samples HTF-48-14-158, -159, -169, and -170

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.; Hang, T.

    2015-04-28

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 48H in support of determining the cause for the unusually high dose rates at the sampling points for this tank. A set of two samples was taken from the quiescent tank, and two additional samples were taken after the contents of the tank were mixed. The results of the analyses of all the samples show that the contents of the tank have changed very little since the analysis of the previous sample in 2012. The solids are almost exclusively composed of tetraphenylborate (TPB) salts, and there is no indication of accelerationmore » in the TPB decomposition. The filtrate composition shows a moderate increase in salt concentration and density, which is attributable to the addition of NaOH for the purposes of corrosion control. An older modeling simulation of the TPB degradation was updated, and the supernate results from a 2012 sample were run in the model. This result was compared to the results from the 2014 recent sample results reported in this document. The model indicates there is no change in the TPB degradation from 2012 to 2014. SRNL measured the buoyancy of the TPB solids in Tank 48H simulant solutions. It was determined that a solution of density 1.279 g/mL (~6.5M sodium) was capable of indefinitely suspending the TPB solids evenly throughout the solution. A solution of density 1.296 g/mL (~7M sodium) caused a significant fraction of the solids to float on the solution surface. As the experiments could not include the effect of additional buoyancy elements such as benzene or hydrogen generation, the buoyancy measurements provide an upper bound estimate of the density in Tank 48H required to float the solids.« less

  18. Gas-Surface Interactions in Cryogenic Whole Air Sampling.

    DTIC Science & Technology

    1981-05-01

    analysis using electron paramagnetic resonance (EPR) for the cryofrost in the solid phase, and gas chromatography for samples desorbed to the gas...e.g. cryogenic-fraction (used on occasion), and/or controlled vaporization, followed by analysis using NO xchemiluminescence, gas chromatography , and...CS202 closed cycle cryogenic refrigerator, which employs helium as the working fluid . This refrigerator is comprised of two basic sections - an

  19. High Volume Air Sampling for Viral Aerosols: A Comparative Approach

    DTIC Science & Technology

    2010-03-01

    Solid Impaction Aerosol Collection (Verreault, 2008. Reproduced with Permission from American Society of Microbiology ) Liquid collection...Reproduced with Permission from American Society of Microbiology ) Filter aerosol collection is often more efficient than other sampling...collected using a crude filter consisting of a glass tube packed with dry cotton. Sample analysis was conducted by inoculating chicken embryos with

  20. Mutation spectrum and differential gene expression in cystic and solid vestibular schwannoma.

    PubMed

    Zhang, Zhihua; Wang, Zhaoyan; Sun, Lianhua; Li, Xiaohua; Huang, Qi; Yang, Tao; Wu, Hao

    2014-03-01

    We sought to characterize the mutation spectrum of NF2 and the differential gene expression in cystic and solid vestibular schwannomas. We collected tumor tissue and blood samples of 31 cystic vestibular schwannomas and 114 solid vestibular schwannomas. Mutation screening of NF2 was performed in both tumor and blood DNA samples of all patients. cDNA microarray was used to analyze the differential gene expression between 11 cystic vestibular schwannomas and 6 solid vestibular schwannomas. Expression levels of top candidate genes were verified by quantitative reverse transcription PCR. NF2 mutations were identified in 34.5% of sporadic vestibular schwannomas, with all mutations being exclusively somatic. No significant difference was found between the mutation detection rates of cystic vestibular schwannoma (35.5%) and solid vestibular schwannoma (34.2%). cDNA microarray analysis detected a total of 46 differentially expressed genes between the cystic vestibular schwannoma and solid vestibular schwannoma samples. The significantly decreased expression of four top candidate genes, C1orf130, CNTF, COL4A3, and COL4A4, was verified by quantitative reverse transcription PCR. NF2 mutations are not directly involved in the cystic formation of vestibular schwannoma. In addition, the differential gene expression of cystic vestibular schwannoma reported in our study may provide useful insights into the molecular mechanism underlying this process.

  1. Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled plasma mass spectrometry in materials science

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2002-12-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.

  2. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  3. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  4. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    PubMed

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0.1 mg/L. The method showed a linearity coefficient of 0.98 and relative standard deviations of 10%, using small water sample volumes between 0.3 and 0.6 L. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Analysis of rumen microbial populations in lactating dairy cattle fed diets varying in carbohydrate profiles and Saccharomyces cerevisiae fermentation product.

    PubMed

    Mullins, C R; Mamedova, L K; Carpenter, A J; Ying, Y; Allen, M S; Yoon, I; Bradford, B J

    2013-09-01

    The rumen microbial ecosystem is a critical factor that links diets to bovine physiology and productivity; however, information about dietary effects on microbial populations has generally been limited to small numbers of samples and qualitative assessment. To assess whether consistent shifts in microbial populations occur in response to common dietary manipulations in dairy cattle, samples of rumen contents were collected from 2 studies for analysis by quantitative real-time PCR (qPCR). In one study, lactating Holstein cows (n=8) were fed diets in which a nonforage fiber source replaced an increasing proportion of forages and concentrates in a 4×4 Latin square design, and samples of ruminal digesta were collected at 9-h intervals over 3 d at the end of each period. In the second study, lactating Holstein cows (n=15) were fed diets with or without the inclusion of a Saccharomyces cerevisiae fermentation product (SCFP) in a crossover design. In this study, rumen liquid and solid samples were collected during total rumen evacuations before and after feeding in a 42-h period. In total, 146 samples of ruminal digesta were used for microbial DNA isolation and analysis by qPCR. Validated primer sets were used to quantify total bacterial and anaerobic fungal populations as well as 12 well-studied bacterial taxa. The relative abundance of the target populations was similar to those previously reported. No significant treatment effects were observed for any target population. A significant interaction of treatment and dry matter intake was observed, however, for the abundance of Eubacterium ruminantium. Increasing dry matter intake was associated with a quadratic decrease in E. ruminantium populations in control animals but with a quadratic increase in E.ruminantium populations in cows fed SCFP. Analysis of sample time effects revealed that Fibrobacter succinogenes and fungal populations were more abundant postfeeding, whereas Ruminococcus albus tended to be more abundant prefeeding. Seven of the target taxa were more abundant in either the liquid or solid fractions of ruminal digesta. By accounting for the total mass of liquid and solid fractions in the rumen and the relative abundance of total bacteria in each fraction, it was estimated that 92% of total bacteria were found in the solid digesta fraction. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Solid-state synthesis of nano-sized Ba(Ti1- x Sn x )O3 powders and dielectric properties of corresponding ceramics

    NASA Astrophysics Data System (ADS)

    Ansaree, Md. Jawed; Kumar, Upendra; Upadhyay, Shail

    2017-06-01

    Powders of a few compositions of solid solution BaTi1- x Sn x O3 ( x = 0.0, 0.1, 0.2, 0.3 and 0.40) have been synthesized at 800 °C for 8 h using Ba(NO3)2, TiO2 and SnCl4·5H2O as starting materials. The thermogravimetric (TG) and differential scanning calorimetric (DSC) analysis of mixture in the stoichiometric proportion for sample BaTi0.80Sn0.20O3 have been carried out to understand the formation of solid solutions. Single-phase pure compounds (except x = 0.40) of the samples have been obtained at a lower calcination temperature (800 °C) than that of those reported in the literature for traditional solid-state synthesis making use of oxides and or carbonates as starting material (≥1200 °C). Tetragonal symmetry for compositions x = 0.0 and 0.10, cubic for x = 0.2 and 0.30 were found by X-ray diffraction (XRD) analysis. The transmission electron microscopic (TEM) analysis confirmed that calcined powders have a particle size between 30 and 50 nm. Ceramics of these powders were prepared by sintering at 1350 °C for 4 h. Properties of ceramics obtained in this work have been compared with properties reported in the literature.

  7. Laboratory and quality assurance protocols for the analysis of herbicides in ground water from the Management Systems Evaluation Area, Princeton, Minnesota

    USGS Publications Warehouse

    Larson, S.J.; Capel, P.D.; VanderLoop, A.G.

    1996-01-01

    Laboratory and quality assurance procedures for the analysis of ground-water samples for herbicides at the Management Systems Evaluation Area near Princeton, Minnesota are described. The target herbicides include atrazine, de-ethylatrazine, de-isopropylatrazine, metribuzin, alachlor, 2,6-diethylaniline, and metolachlor. The analytical techniques used are solid-phase extraction, and analysis by gas chromatography with mass-selective detection. Descriptions of cleaning procedures, preparation of standard solutions, isolation of analytes from water, sample transfer methods, instrumental analysis, and data analysis are included.

  8. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste

    PubMed Central

    Durso, Lisa M.; Harhay, Dayna M.; Schmidt, John W.

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two “low impact” environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences and concentrations of antimicrobial-resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in livestock environments. PMID:26197056

  9. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    PubMed

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences and concentrations of antimicrobial-resistant bacteria and antimicrobial resistance genes exist in cattle, human, and swine waste streams, but a higher diversity of antimicrobial resistance genes are present in treated human waste discharged from municipal wastewater treatment plants than in livestock environments.

  10. Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS

    NASA Astrophysics Data System (ADS)

    Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana

    2016-12-01

    The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34-80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics.

  11. Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS

    PubMed Central

    Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana

    2016-01-01

    The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34–80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics. PMID:28000704

  12. Fabrication of polyaniline-coated halloysite nanotubes by in situ chemical polymerization as a solid-phase microextraction coating for the analysis of volatile organic compounds in aqueous solutions.

    PubMed

    Abolghasemi, Mir Mahdi; Arsalani, Naser; Yousefi, Vahid; Arsalani, Mahmood; Piryaei, Marzieh

    2016-03-01

    We have synthesized an organic-inorganic polyaniline-halloysite nanotube composite by an in situ polymerization method. This nanocomposite is immobilized on a stainless-steel wire and can be used as a fiber coating for solid-phase microextraction. It was found that our new solid-phase microextraction fiber is an excellent adsorbent for the extraction of some volatile organic compounds in aqueous samples in combination with gas chromatography and mass spectrometry. The coating can be prepared easily, is mechanically stable, and exhibits relatively high thermal stability. It is capable of extracting phenolic compounds from water samples. Following thermal desorption, the phenols were quantified by gas chromatography with mass spectrometry. The effects of extraction temperature, extraction time, sample ionic strength, stirring rate, pH, desorption temperature and desorption time were studied. Under optimal conditions, the repeatability for one fiber (n = 5), expressed as the relative standard deviation, is between 6.2 and 9.1%. The detection limits range from 0.005 to 4 ng/mL. The method offers the advantage of being simple to use, with a shorter analysis time, lower cost of equipment and higher thermal stability of the fiber in comparison to conventional methods of analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1990. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis. The Chemical Analysis Group uses wet-chemical and instrumental methods for elemental, compositional, and isotopic analyses of solid, liquid, and gaseous samples and provides specialized analytical services. The Instrumental Analysis Group uses nuclear counting techniques in radiochemical analyses over a wide range of sample types from low-level environmental samples to samples of high radioactivity. The Organic Analysis Group uses amore » number of complementary techniques to separate and to quantitatively and qualitatively analyze complex organic mixtures and compounds at the trace level, including synthetic fuels, toxic substances, fossil-fuel residues and emissions, pollutants, biologically active compounds, pesticides, and drugs. The Environmental Analysis Group performs analyses of inorganic environmental and hazardous waste and coal samples.« less

  15. Multiferroic properties in NdFeO3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder

    2018-05-01

    The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.

  16. Advances in Molecular Rotational Spectroscopy for Applied Science

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  17. Comparative Analysis of Households Solid Waste Management in Rural and Urban Ghana

    PubMed Central

    Appiah, Divine Odame; Poku, Adjoa Afriyie; Garsonu, Emmanuel Kofi

    2016-01-01

    The comparative analysis of solid waste management between rural and urban Ghana is largely lacking. This study investigated the solid waste situation and the organisation of solid waste management in both urban and rural settings from the perspective of households. The study employed cross-sectional survey covering both rural and urban districts in the Ashanti and Greater Accra Regions of Ghana. The study systematically sampled houses from which 400 households and respondents were randomly selected. Pearson's Chi square test was used to compare demographic and socioeconomic variables in rural and urban areas. Multivariate Test, Tests of Between-Subjects Effects, and Pair-Wise Comparisons were performed through one-way MANOVA to determine whether or not solid waste situations in rural and urban areas are significantly different. The results revealed that location significantly affects solid waste management in Ghana. Urban communities had lower mean scores than rural communities for poor solid waste situation in homes. However, urban communities had higher mean scores than rural communities for poor solid waste situation in principal streets and dumping sites. The study recommends that the local government authorities implement very comprehensive policies (sanitary inspection, infrastructure development, and community participation) that will take into consideration the specific solid waste management needs of both urban and rural areas. PMID:27807453

  18. Comparative Analysis of Households Solid Waste Management in Rural and Urban Ghana.

    PubMed

    Boateng, Simon; Amoako, Prince; Appiah, Divine Odame; Poku, Adjoa Afriyie; Garsonu, Emmanuel Kofi

    2016-01-01

    The comparative analysis of solid waste management between rural and urban Ghana is largely lacking. This study investigated the solid waste situation and the organisation of solid waste management in both urban and rural settings from the perspective of households. The study employed cross-sectional survey covering both rural and urban districts in the Ashanti and Greater Accra Regions of Ghana. The study systematically sampled houses from which 400 households and respondents were randomly selected. Pearson's Chi square test was used to compare demographic and socioeconomic variables in rural and urban areas. Multivariate Test, Tests of Between-Subjects Effects, and Pair-Wise Comparisons were performed through one-way MANOVA to determine whether or not solid waste situations in rural and urban areas are significantly different. The results revealed that location significantly affects solid waste management in Ghana. Urban communities had lower mean scores than rural communities for poor solid waste situation in homes. However, urban communities had higher mean scores than rural communities for poor solid waste situation in principal streets and dumping sites. The study recommends that the local government authorities implement very comprehensive policies (sanitary inspection, infrastructure development, and community participation) that will take into consideration the specific solid waste management needs of both urban and rural areas.

  19. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Moderate-Use Pesticides and Selected Degradates in Water by C-18 Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry

    USGS Publications Warehouse

    Sandstrom, Mark W.; Stroppel, Max E.; Foreman, William T.; Schroeder, Michael P.

    2001-01-01

    A method for the isolation and analysis of 21 parent pesticides and 20 pesticide degradates in natural-water samples is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase-extraction columns that contain octadecyl-bonded porous silica to extract the analytes. The columns are dried by using nitrogen gas, and adsorbed analytes are eluted with ethyl acetate. Extracted analytes are determined by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 2 micrograms per liter (?g/L) for most analytes. Single-operator method detection limits in reagent-water samples range from 0.00 1 to 0.057 ?g/L. Validation data also are presented for 14 parent pesticides and 20 degradates that were determined to have greater bias or variability, or shorter holding times than the other compounds. The estimated maximum holding time for analytes in pesticide-grade water before extraction was 4 days. The estimated maximum holding time for analytes after extraction on the dry solid-phase-extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time. The method complements existing U.S. Geological Survey Method O-1126-95 (NWQL Schedules 2001 and 2010) by using identical sample preparation and comparable instrument analytical conditions so that sample extracts can be analyzed by either method to expand the range of analytes determined from one water sample.

  20. Three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils.

    PubMed

    Zhang, Yun; Zhou, Hua; Zhang, Zhe-Hua; Wu, Xiang-Lun; Chen, Wei-Guo; Zhu, Yan; Fang, Chun-Fu; Zhao, Yong-Gang

    2017-03-17

    In this paper, a novel three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite (3D-IL@mGO) was prepared, and used as an effective adsorbent for the magnetic dispersive solid phase extraction (MSPE) of 16 polycyclic aromatic hydrocarbons (PAHs) in vegetable oil prior to gas chromatography-mass spectrometry (GC-MS). The properties of 3D-IL@mGO were characterized by scanning electron micrographs (SEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). The 3D-IL@mGO, functionalized by ionic liquid, exhibited high adsorption toward PAHs. Compared to molecularly imprinted solid phase extraction (MISPE), the MSPE method based on 3D-IL@mGO had less solvent consumption and low cost, and was more efficent to light PAHs in quantitative analysis. Furthermore, the rapid and accurate GC-MS method coupled with 3D-IL@mGO MSPE procedure was successfully applied for the analysis of 16 PAHs in eleven vegetable oil samples from supermarket in Zhejiang Province. The results showed that the concentrations of BaP in 3 out of 11 samples were higher than the legal limit (2.0μg/kg, Commission Regulation 835/2011a), the sum of 8 heavy PAHs (BaA, CHR, BbF, BkF, BaP, IcP, DaA, BgP) in 11 samples was between 3.03μg/kg and 229.5μg/kg. Validation results on linearity, specificity, accuracy, precision and stability, as well as on application to the analysis of PAHs in oil samples demonstrated the applicability to food safety risk monitoring in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. MODIFYING EPA METHOD 314.0 FOR ANALYSIS OF PERCHLORATE IN AQUEOUS SAMPLES CONTAINING HIGH TOTAL DISSOLVED SOLIDS

    EPA Science Inventory

    Through the Regional Applied Research Effort (RARE) program, the Chemical Exposure Research Branch and Region 9 personnel in San Francisco, California are collaborating on a project to explore sample pretreatment and preconcentration techniques to lower the method detection limit...

  2. Literature Reference for Entamoeba histolytica (Journal of Clinical Microbiology. 2005. 43(11): 5491–5497)

    EPA Pesticide Factsheets

    Procedures are described for analysis of clinical samples and may be adapted for assessment of solid, particulate, liquid and water samples. The method is a real-time PCR assay that targets the 18S rRNA gene sequence of Entamoeba histolytica.

  3. Applications of infrared photo-acoustic spectroscopy for wood samples

    Treesearch

    Mon-Lin Kuo; John F. McClelland; Siquan Luo; Po-Liang Chien; R.D. Walker; Chung-Yun Hse

    1988-01-01

    Various infrared (IR) spectroscopic techniques for the analysis of wood samples are briefly discussed. Theories and instrumentation of the newly developed photoacoustic spectroscopic (PAS) technique for measuring absorbance spectra of solids are presented. Some important applications of the PAS technique in wood science research are discussed. The application of the...

  4. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis.

    PubMed

    Trefz, Phillip; Rösner, Lisa; Hein, Dietmar; Schubert, Jochen K; Miekisch, Wolfram

    2013-04-01

    Needle trap devices (NTDs) have shown many advantages such as improved detection limits, reduced sampling time and volume, improved stability, and reproducibility if compared with other techniques used in breath analysis such as solid-phase extraction and solid-phase micro-extraction. Effects of sampling flow (2-30 ml/min) and volume (10-100 ml) were investigated in dry gas standards containing hydrocarbons, aldehydes, and aromatic compounds and in humid breath samples. NTDs contained (single-bed) polymer packing and (triple-bed) combinations of divinylbenzene/Carbopack X/Carboxen 1000. Substances were desorbed from the NTDs by means of thermal expansion and analyzed by gas chromatography-mass spectrometry. An automated CO2-controlled sampling device for direct alveolar sampling at the point-of-care was developed and tested in pilot experiments. Adsorption efficiency for small volatile organic compounds decreased and breakthrough increased when sampling was done with polymer needles from a water-saturated matrix (breath) instead from dry gas. Humidity did not affect analysis with triple-bed NTDs. These NTDs showed only small dependencies on sampling flow and low breakthrough from 1-5 %. The new sampling device was able to control crucial parameters such as sampling flow and volume. With triple-bed NTDs, substance amounts increased linearly with increasing sample volume when alveolar breath was pre-concentrated automatically. When compared with manual sampling, automatic sampling showed comparable or better results. Thorough control of sampling and adequate choice of adsorption material is mandatory for application of needle trap micro-extraction in vivo. The new CO2-controlled sampling device allows direct alveolar sampling at the point-of-care without the need of any additional sampling, storage, or pre-concentration steps.

  5. Solid-waste contract-negotiation handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Environmental Protection Agency has estimated that the United States generated 164 million tons of municipal solid waste in 1986, and that the amount is increasing at a rate of more than 1 percent annually. Landfills are reaching capacity and closing. The cost of disposing of waste is growing and local officials are concerned about how they will meet the challenge of managing solid waste. This handbook is designed to help local officials develop contracts with private companies and other governmental units that will protect the interests of the citizens in their communities. This handbook is based on information andmore » analysis derived from a questionnaire survey of 160 local governments located in EPA Region X, plus selected other states; review and analysis of sample provisions from actual solid waste contracts and agreements; follow-up interviews with solid waste managers in several of the states and with responding local governments; and a review of the literature as well as state federal statutes and regulations.« less

  6. Solid-contact potentiometric sensors and multisensors based on polyaniline and thiacalixarene receptors for the analysis of some beverages and alcoholic drinks

    NASA Astrophysics Data System (ADS)

    Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady

    2018-04-01

    Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.

  7. Solid-Contact Potentiometric Sensors and Multisensors Based on Polyaniline and Thiacalixarene Receptors for the Analysis of Some Beverages and Alcoholic Drinks.

    PubMed

    Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady

    2018-01-01

    Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects.

  8. Solid-Contact Potentiometric Sensors and Multisensors Based on Polyaniline and Thiacalixarene Receptors for the Analysis of Some Beverages and Alcoholic Drinks

    PubMed Central

    Sorvin, Michail; Belyakova, Svetlana; Stoikov, Ivan; Shamagsumova, Rezeda; Evtugyn, Gennady

    2018-01-01

    Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects. PMID:29740577

  9. Stable isotope labeling-solid phase extraction-mass spectrometry analysis for profiling of thiols and aldehydes in beer.

    PubMed

    Zheng, Shu-Jian; Wang, Ya-Lan; Liu, Ping; Zhang, Zheng; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2017-12-15

    In this study, we developed a strategy for profiling of thiols and aldehydes in beer samples by stable isotope labeling-solid phase extraction-liquid chromatography-double precursor ion scan/double neutral loss scan-mass spectrometry analysis (SIL-SPE-LC-DPIS/DNLS-MS). A pair of isotope reagents (ω-bromoacetonylquinolinium bromide, BQB; ω-bromoacetonylquinolinium-d 7 bromide, BQB-d 7 ) were used to label thiols; while for the aldehydes, a pair of isotope reagents (4-(2-(trimethylammonio) ethoxy) benzenaminium halide, 4-APC; 4-(2-(trimethylammonio) ethoxy) benzenaminium halide-d 4 , 4-APC-d 4 ) were used. The labeled thiols and aldehydes were extracted and purified with solid-phase extraction, respectively, followed by LC-MS analysis. Using the proposed SIL-SPE-LC-DPIS/DNLS-MS methods, 76 thiol and 25 aldehyde candidates were found in beer. Furthermore, we established SIL-SPE-LC-MRM-MS methods for the relative quantitation of thiols and aldehydes in different beer samples. The results showed that the contents of thiols and aldehydes are closely related to the brands and origins of beers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Hydroxyl Radical Reaction Rate Constant and Products of Cyclohexanol

    DTIC Science & Technology

    2007-10-01

    Analysis Samples from kinetic studies were quantitativelymon- itored using a Hewlett-Packard (HP) gas chromato- graph (GC) 5890 with a flame ionization...excluded from the reaction mixture and the COL concentration was approximately doubled (4.9–9 ppm). Product Study Analysis Reactant mixtures and standards...from product identi- fication experiments were sampled by exposing a 100% polydimethylsiloxane solid phase microextrac- tion fiber (SPME) in the

  11. 24-HOUR DIFFUSIVE SAMPLING OF 1,3-BUTADIENE IN AIR ONTO CARBONPAK X SOLID ADSORBENT WITH THEMAL DESORPTION/GC/MS ANALYSIS - FEASIBILITY STUDIES

    EPA Science Inventory

    Diffusive sampling of 1,3-butadiene for 24 hours onto the graphitic adsorbent Carbopack X contained in a stainless steel tube badge (6.3 mm OD, 5 mm ID, and 90 mm in length) with analysis by thermal desorption/GC/MS has been evaluated in controlled tests. A test matrix of 42 tr...

  12. 24-HOUR DIFFUSIVE SAMPLING OF 1,3-BUTADIENE IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - FEASIBILITY STUDY

    EPA Science Inventory

    Diffusive sampling of 1,3-butadiene for 24 hr onto the graphitic adsorbent Carbopack X packed in a stainless steel tube badge (6.3 mm o.d., 5 mm i.d., and 90 mm in length) with analysis by thermal desorption/gas chromatography (GC)/mass spectrometry (MS) has been evaluated in con...

  13. Ultrafast Screening and Quantitation of Pesticides in Food and Environmental Matrices by Solid-Phase Microextraction-Transmission Mode (SPME-TM) and Direct Analysis in Real Time (DART).

    PubMed

    Gómez-Ríos, Germán Augusto; Gionfriddo, Emanuela; Poole, Justen; Pawliszyn, Janusz

    2017-07-05

    The direct interface of microextraction technologies to mass spectrometry (MS) has unquestionably revolutionized the speed and efficacy at which complex matrices are analyzed. Solid Phase Micro Extraction-Transmission Mode (SPME-TM) is a technology conceived as an effective synergy between sample preparation and ambient ionization. Succinctly, the device consists of a mesh coated with polymeric particles that extracts analytes of interest present in a given sample matrix. This coated mesh acts as a transmission-mode substrate for Direct Analysis in Real Time (DART), allowing for rapid and efficient thermal desorption/ionization of analytes previously concentrated on the coating, and dramatically lowering the limits of detection attained by sole DART analysis. In this study, we present SPME-TM as a novel tool for the ultrafast enrichment of pesticides present in food and environmental matrices and their quantitative determination by MS via DART ionization. Limits of quantitation in the subnanogram per milliliter range can be attained, while total analysis time does not exceed 2 min per sample. In addition to target information obtained via tandem MS, retrospective studies of the same sample via high-resolution mass spectrometry (HRMS) were accomplished by thermally desorbing a different segment of the microextraction device.

  14. Solid phase extraction of large volume of water and beverage samples to improve detection limits for GC-MS analysis of bisphenol A and four other bisphenols.

    PubMed

    Cao, Xu-Liang; Popovic, Svetlana

    2018-01-01

    Solid phase extraction (SPE) of large volumes of water and beverage products was investigated for the GC-MS analysis of bisphenol A (BPA), bisphenol AF (BPAF), bisphenol F (BPF), bisphenol E (BPE), and bisphenol B (BPB). While absolute recoveries of the method were improved for water and some beverage products (e.g. diet cola, iced tea), breakthrough may also have occurred during SPE of 200 mL of other beverages (e.g. BPF in cola). Improvements in method detection limits were observed with the analysis of large sample volumes for all bisphenols at ppt (pg/g) to sub-ppt levels. This improvement was found to be proportional to sample volumes for water and beverage products with less interferences and noise levels around the analytes. Matrix effects and interferences were observed during SPE of larger volumes (100 and 200 mL) of the beverage products, and affected the accurate analysis of BPF. This improved method was used to analyse bisphenols in various beverage samples, and only BPA was detected, with levels ranging from 0.022 to 0.030 ng/g for products in PET bottles, and 0.085 to 0.32 ng/g for products in cans.

  15. Application of a thiourea-containing task-specific ionic liquid for the solid-phase extraction cleanup of lead ions from red lipstick, pine leaves, and water samples.

    PubMed

    Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Mostafavi, Ali

    2014-07-01

    Here, task-specific ionic liquid solid-phase extraction is proposed for the first time. In this approach, a thiourea-functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid-phase extraction column are used for the selective extraction and preconcentration of ultra-trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5-40.0 ng/mL with the detection limit of 0.13 ng/mL (3(Sb)/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Atmospheric Solid Analysis Probe Coupled to Ion Mobility Spectrometry-Mass Spectrometry, a Fast and Simple Method for Polyalphaolefin Characterization

    NASA Astrophysics Data System (ADS)

    Mendes Siqueira, Anna Luiza; Beaumesnil, Mathieu; Hubert-Roux, Marie; Loutelier-Bourhis, Corinne; Afonso, Carlos; Bai, Yang; Courtiade, Marion; Racaud, Amandine

    2018-05-01

    Polyalphaolefins (PAOs) are polymers produced from linear alpha olefins through catalytic oligomerization processes. The PAOs are known as synthetic high-performance base stock fluids used to improve the efficiency of many other synthetic products. In this study, we report the direct characterization of PAOs using atmospheric solid analysis probe (ASAP) coupled with ion mobility spectrometry-mass spectrometry (IMS-MS). We studied different PAOs grades exhibiting low- and high-viscosity index. Specific adjustments of the ASAP source parameters permitted the monitoring of ionization processes as three mechanisms could occur for these compounds: hydride abstraction, nitrogen addition, and/or the formation of [M-2H]+• ions. Several series of fragment ions were obtained, which allowed the identification of the alpha olefin used to synthesize the PAO. The use of the ion mobility separation dimension provides information on isomeric species. In addition, the drift time versus m/z plots permitted rapid comparison between PAO samples and to evidence their complexity. These 2D plots appear as fingerprints of PAO samples. To conclude, the resort to ASAP-IMS-MS provides a rapid characterization of the PAO samples in a direct analysis approach, without any sample preparation.

  17. Automated headspace solid-phase dynamic extraction to analyse the volatile fraction of food matrices.

    PubMed

    Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara

    2004-01-23

    High concentration capacity headspace techniques (headspace solid-phase microextraction (HS-SPME) and headspace sorptive extraction (HSSE)) are a bridge between static and dynamic headspace, since they give high concentration factors as does dynamic headspace (D-HS), and are as easy to apply and as reproducible as static headspace (S-HS). In 2000, Chromtech (Idstein, Germany) introduced an inside-needle technique for vapour and liquid sampling, solid-phase dynamic extraction (SPDE), also known as "the magic needle". In SPDE, analytes are concentrated on a 50 microm film of polydimethylsiloxane (PDMS) and activated carbon (10%) coated onto the inside wall of the stainless steel needle (5 cm) of a 2.5 ml gas tight syringe. When SPDE is used for headspace sampling (HS-SPDE), a fixed volume of the headspace of the sample under investigation is sucked up an appropriate number of times with the gas tight syringe and an analyte amount suitable for a reliable GC or GC-MS analysis accumulates in the polymer coating the needle wall. This article describes the preliminary results of both a study on the optimisation of sampling parameters conditioning HS-SPDE recovery, through the analysis of a standard mixture of highly volatile compounds (beta-pinene, isoamyl acetate and linalool) and of the HS-SPDE-GC-MS analyses of aromatic plants and food matrices. This study shows that HS-SPDE is a successful technique for HS-sampling with high concentration capability, good repeatability and intermediate precision, also when it is compared to HS-SPME.

  18. Analysis report for 241-BY-104 Auger samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1994-11-10

    This report describes the analysis of the surface crust samples taken from single-shell tank (SST) BY-104, suspected of containing ferrocyanide wastes. This sampling and analysis will assist in ascertaining whether there is any hazard due to combustion (burning) or explosion of these solid wastes. These characteristics are important to future efforts to characterize the salt and sludge in this type of waste tank. This report will outline the methodology and detail the results of analyses performed during the characterization of this material. All analyses were performed by Westinghouse Hanford Company at the 222-S laboratory unless stated otherwise.

  19. Determination of fossil carbon content in Swedish waste fuel by four different methods.

    PubMed

    Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko

    2013-10-01

    This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.

  20. Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2018-07-01

    In this work, in situ growth of Ni nanocatalysts to attach onto the ceria (CeO2) surface through direct Ni ex-solution from the NiO-CeO2 solid solution in a reducing atmosphere at high temperatures with an aim to improve the catalytic activity, and stability for low temperature carbon monoxide (CO) oxidation reaction have been reported. The NiO-CeO2 solid solutions were prepared by solution combustion method, and the results of XRD and RAMAN showed that doping of Ni increases the oxygen vacancies due to charge compensation. Ni is clearly visible in XRD and TEM of Ni ex-solved sample (R-UCe5Ni10) after reduction of NiO-CeO2 (UCe5Ni10) sample by 5% H2/Ar reduction at 1000 °C. TEM analysis revealed a size of 9.2 nm of Ni nanoparticle that is ex-solved on the surface CeO2. This ex-solved sample showed very high catalytic activity (T50 ~ 110 °C), and stability (100 h) for CO oxidation reaction as compared to prepared solid solution samples. This is due to the highly active metallic nano-phase which is ex-solved on the surface of CeO2 and strongly adherent to the support. The apparent activation energy Ni ex-solved sample is found out to be 48.4 kJ mol-1. Thus, the above Ni ex-solved sample shows a practical applicability for the CO reaction.

  1. Determination of triazine herbicides in seaweeds: development of a sample preparation method based on Matrix Solid Phase Dispersion and Solid Phase Extraction Clean-up.

    PubMed

    Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2014-04-01

    A method using dual process columns of Matrix Solid Phase Dispersion (MSPD) and Solid Phase Extraction (SPE) has been developed for extracting and cleaning-up of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine and terbutryn) in seaweed samples. Under optimized conditions, samples were blended with 2g of octasilyl-derivatized silica (C8) and transferred into an SPE cartridge containing ENVI-Carb II/PSA (0.5/0.5 g) as a clean up co-sorbent. Then the dispersed sample was washed with 10 mL of n-hexane and triazines were eluted with 20 mL ethyl acetate and 5 mL acetonitrile. Finally the extract was concentrated to dryness, re-constituted with 1 mL methanol:water (1:1) and injected into the HPLC-DAD system. The linearity of the calibration curves was excellent in matrix matched standards, and yielded the coefficients of determination>0.995 for all the target analytes. The recoveries ranged from 75% to 100% with relative standard deviations lower than 7%. The achieved LOQs (<10 µg kg(-1)) for all triazines under study permits to ensure proper determination at the maximum allowed residue levels set in the European Union Legislation. Samples of three seaweeds were subjected to the procedure proving the suitability of MSPD method for the analysis of triazines in different seaweeds samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. IN SITU SOLID-PHASE EXTRACTION AND ANALYSIS OF ULTRA-TRACE SYNTHETIC MUSKS IN MUNICIPAL SEWAGE EFFLUENT USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY, FULL-SCAN MODE

    EPA Science Inventory



    Fragrance materials, such as synthetic musks in aqueous samples, are normally analyzed by GC/MS in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of 1-L samples. A 1-L sample, however, usually provides too little ana...

  3. ON-SITE SOLID PHRASE EXTRACTION AND LABORATORY ANALYSIS OF ULTRA-TRACE SYNTHETIC MUSKS IN MUNICIPAL SEWAGE EFFLUENT USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY, FULL-SCAN MODE

    EPA Science Inventory



    Fragrance materials, such as synthetic musks in aqueous samples, are normally analyzed by GC/MS in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. A I -L sample, however, usually provides too little ana...

  4. OBSERVATIONS AND ANALYSIS OF MERCURY IN THE TOP SOIL WITHIN A 100-METER RADIUS OF A CHLORALKALI PLANT IN NORTHER KAZAKHSTAN USING EPA METHOD 7473

    EPA Science Inventory

    This limited study has shown a comparison of mercury concentrations at different sample collection locations at the chlor-alkali plant in Northern Kazakhstan. Method 7473 uses a direct mercury analyzer for Hg in solid samples. A small amount of sample is dried and combusted. The ...

  5. Observations and Modeling of the Green Ocean Amazon 2014/15: Transmission Electron Microscopy Analysis of Aerosol Particles Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buseck, Peter

    2016-03-01

    During two Intensive Operational Periods (IOP), we collected samples at 3-hour intervals for transmission electron microscopy analysis. The resulting transmission electron microscopy images and compositions were analyzed for the samples of interest. Further analysis will be done especially for the plume of interest. We found solid spherical organic particles from rebounded samples collected with Professor Scot Martin’s group (Harvard University). Approximately 30% of the rebounded particles at 95% relative humidity were spherical organic particles. Their sources and formation process are not known, but such spherical particles could be solid and will have heterogeneous chemical reactions. We observed many organic particlesmore » that are internally mixed with inorganic elements such as potassium and nitrogen. They are either homogeneously mixed or have inorganic cores with organic aerosol coatings. Samples collected from the Manaus, Brazil, pollution plume included many nano-size soot particles mixed with organic material and sulfate. Aerosol particles from clean periods included organic aerosol particles, sulfate, sea salt, dust, and primary biogenic aerosol particles. There was more dust, primary biogenic aerosol, and tar balls in samples taken during IOP1 than those taken during IOP2. Many dust particles were found between March 2 and 3.« less

  6. Multivariate Statistical Approach Applied to Sediment Source Tracking Through Quantification and Mineral Identification, Cheyenne River, South Dakota

    NASA Astrophysics Data System (ADS)

    Valder, J.; Kenner, S.; Long, A.

    2008-12-01

    Portions of the Cheyenne River are characterized as impaired by the U.S. Environmental Protection Agency because of water-quality exceedences. The Cheyenne River watershed includes the Black Hills National Forest and part of the Badlands National Park. Preliminary analysis indicates that the Badlands National Park is a major contributor to the exceedances of the water-quality constituents for total dissolved solids and total suspended solids. Water-quality data have been collected continuously since 2007, and in the second year of collection (2008), monthly grab and passive sediment samplers are being used to collect total suspended sediment and total dissolved solids in both base-flow and runoff-event conditions. In addition, sediment samples from the river channel, including bed, bank, and floodplain, have been collected. These samples are being analyzed at the South Dakota School of Mines and Technology's X-Ray Diffraction Lab to quantify the mineralogy of the sediments. A multivariate statistical approach (including principal components, least squares, and maximum likelihood techniques) is applied to the mineral percentages that were characterized for each site to identify the contributing source areas that are causing exceedances of sediment transport in the Cheyenne River watershed. Results of the multivariate analysis demonstrate the likely sources of solids found in the Cheyenne River samples. A further refinement of the methods is in progress that utilizes a conceptual model which, when applied with the multivariate statistical approach, provides a better estimate for sediment sources.

  7. Determination of organophosphate flame retardants in soil and fish using ultrasound-assisted extraction, solid-phase clean-up, and liquid chromatography with tandem mass spectrometry.

    PubMed

    Lorenzo, María; Campo, Julián; Picó, Yolanda

    2018-03-22

    A solid-liquid extraction method in combination with high-performance liquid chromatography and tandem mass spectrometry was developed and optimized for extraction and analysis of organophosphorus flame retardants in soil and fish. Methanol was chosen as the optimum extraction solvent, not only in terms of extraction efficiency, but also for its broader analyte coverage. The subsequent clean-up by solid-phase extraction is required to eliminate matrix coextractives and reduce matrix effects. Recoveries of the optimized method were 50-121% for soil and 47-123% for biota, both with high precision (RSDs <12% in soil and <23% in biota). The method limits of detection ranged from 0.06 to 0.20 ng/g dry weight and between 0.02 and 0.30 ng/g wet weight for soil and biota samples, respectively. However, samples with a high lipid content produce several problems as solid-phase extraction cartridge clogging that increase variability and analysis time. The method was successfully applied for the determination of organophosphorus flame retardants in soil and fish from L'Albufera Natural Park (Valencia, Spain). Target compounds were detected in all soil and fish samples with values varying from 13.8 to 89.7 ng/g dry weight and from 3.3 to 53.0 ng/g wet weight, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. New mass-spectrometric facility for the analysis of highly radioactive samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warmack, R.J.; Landau, L.; Christie, W.H.

    A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained.

  9. Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaway, William S.

    Eight samples of heel solids from tank 241-C-109 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, one-half to two-thirds of the solids were off-white to tan solids that, visually, were fairly evenly graded in size from coarse silt (30-60 μm) to medium pebbles (8-16 mm). The remaining solids were mostly strongly cemented aggregates ranging from coarse pebbles (16-32 mm) to fine cobbles (6-15 cm) in size. Solid phase characterization and chemical analysis indicated that the air-dry heel solids contained ≈58 wt% gibbsite [Al(OH){sub 3}] and ≈37 wt% natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}·19H{sub 2}O].more » The strongly cemented aggregates were mostly fine-grained gibbsite cemented with additional gibbsite. Dissolution testing was performed on two test samples. One set of tests was performed on large pieces of aggregate solids removed from the heel solids samples. The other set of dissolution tests was performed on a composite sample prepared from well-drained, air-dry heel solids that were crushed to pass a 1/4-in. sieve. The bulk density of the composite sample was 2.04 g/mL. The dissolution tests included water dissolution followed by caustic dissolution testing. In each step of the three-step water dissolution tests, a volume of water approximately equal to 3 times the initial volume of the test solids was added. In each step, the test samples were gently but thoroughly mixed for approximately 2 days at an average ambient temperature of 25 °C. The caustic dissolution tests began with the addition of sufficient 49.6 wt% NaOH to the water dissolution residues to provide ≈3.1 moles of OH for each mole of Al estimated to have been present in the starting composite sample and ≈2.6 moles of OH for each mole of Al potentially present in the starting aggregate sample. Metathesis of gibbsite to sodium aluminate was then allowed to proceed over 10 days of gentle mixing of the test samples at temperatures ranging from 26-30 °C. The metathesized sodium aluminate was then dissolved by addition of volumes of water approximately equal to 1.3 times the volumes of caustic added to the test slurries. Aluminate dissolution was allowed to proceed for 2 days at ambient temperatures of ≈29 °C. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.0 wt% of the tank 241-C-109 crushed heel solids composite test sample. The 20 wt% of solids remaining after the dissolution tests were 85-88 wt% gibbsite. If the density of the residual solids was approximately equal to that of gibbsite, they represented ≈17 vol% of the initial crushed solids composite test sample. In the water dissolution tests, addition of a volume of water ≈6.9 times the initial volume of the crushed solids composite was sufficient to dissolve and recover essentially all of the natrophosphate present. The ratio of the weight of water required to dissolve the natrophosphate solids to the estimated weight of natrophosphate present was 8.51. The Environmental Simulation Program (OLI Systems, Inc., Morris Plains, New Jersey) predicts that an 8.36 w/w ratio would be required to dissolve the estimated weight of natrophosphate present in the absence of other components of the heel solids. Only minor amounts of Al-bearing solids were removed from the composite solids in the water dissolution tests. The caustic metathesis/aluminate dissolution test sequence, executed at temperatures ranging from 27-30 °C, dissolved and recovered ≈69 wt% of the gibbsite estimated to have been present in the initial crushed heel solids composite. This level of gibbsite recovery is consistent with that measured in previous scoping tests on the dissolution of gibbsite in strong caustic solutions. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.3 wt% of the tank 241-C-109 aggregate solids test sample. The residual solids were 92-95 wt% gibbsite. Only a minor portion (≈4.5 wt%) of the aggregate solids was dissolved and recovered in the water dissolution test. Other than some smoothing caused by continuous mixing, the aggregates were essentially unaffected by the water dissolution tests. During the caustic metathesis/aluminate dissolution test sequence, ≈81 wt% of the gibbsite estimated to have been present in the aggregate solids was dissolved and recovered. The pieces of aggregate were significantly reduced in size but persisted as distinct pieces of solids. The increased level of gibbsite recovery, as compared to that for the crushed heel solids composite, suggests that the way the gibbsite solids and caustic solution are mixed is a key determinant of the overall efficiency of gibbsite dissolution and recovery. The liquids recovered after the caustic dissolution tests on the crushed solids composite and the aggregate solids were observed for 170 days. No precipitation of gibbsite was observed. The distribution of particle sizes in the residual solids recovered following the dissolution tests on the crushed heel solids composite was characterized. Wet sieving indicated that 21.4 wt% of the residual solids were >710 μm in size, and laser light scattering indicated that the median equivalent spherical diameter in the <710-μm solids was 35 μm. The settling behavior of the residual solids following the large-scale dissolution tests was also studied. When dispersed at a concentration of ≈1 vol% in water, ≈24 wt% of the residual solids settled at a rate >0.43 in./s; ≈68 wt% settled at rates between 0.02 and 0.43 in./s; and ≈7 wt% settled slower than 0.02 in./s.« less

  10. Use of sol-gels as solid matrixes for simultaneous multielement determination by radio frequency glow discharge optical emission spectrometry: determinations of suspended particulate matter.

    PubMed

    Davis, W Clay; Knippel, Brad C; Cooper, Julia E; Spraul, Bryan K; Rice, Jeanette K; Smith, Dennis W; Marcus, R Kenneth

    2003-05-15

    A new approach for the analysis of particulate matter by radio frequency glow discharge optical emission spectrometry (rf-GD-OES) is described. Dispersion of the particles in a sol-gel sample matrix provides a convenient means of generating a thin film suitable for sputter-sampling into the discharge. Acid-catalyzed sol-gel glasses synthesized from tetramethyl orthosilicate were prepared and spun-cast on glass substrates. The resultant thin films on glass substrates were analyzed to determine the discharge operating conditions and resultant sputtering characteristics while a number of optical emission lines of the film components were monitored. Slurries of powdered standard reference materials NIST SRM 1884a (Portland Cement) and NIST SRM 2690 (Coal Fly Ash) dispersed in the sols were cast into films in the same manner. Use of the sol-gels as sample matrixes allows for background subtraction through the use of analytical blanks and may facilitate the generation of calibration curves via readily synthesized, matrix-matched analytical standards in solids analysis. Detection limits were determined for minor elements via the RSDB method to be in the range of 1-10 microg/g in Portland Cement and Coal Fly Ash samples for the elements Al, Fe, Mg, S, and Si. Values for Ca were in the range of 15-35 microg/g. This preliminary study demonstrates the possibility of incorporating various insoluble species, including ceramics and geological specimens in powder form, into a solid matrix for further analysis by either rf-GD-OES or MS.

  11. Dielectric spectroscopy for the determination of the glass transition temperature of pharmaceutical solid dispersions.

    PubMed

    O'Donnell, Kevin P; Woodward, W H Hunter

    2015-06-01

    The purpose of this study was to evaluate analytical techniques for the measurement of the glass transition temperature of HPMC and formulated solid dispersions thereof. Unmodified samples of various grades of HPMC and solid dispersions of HPMC and itraconazole produced by hot melt extrusion were analyzed by thermomechanical analysis, differential scanning calorimetry, thermally stimulated depolarization current and dielectric spectroscopy. It was found that dielectric spectroscopy offers the best accuracy and reproducibility for analysis of the base HPMC powders regardless of the substitution type or viscosity grade and that the obtained results were not frequency dependent. The results of dielectric measurements of solid dispersions prepared by hot melt extrusion were compared with predicted values of the Gordon-Taylor equation. It was found that time-temperature superposition effects and small molecule frequency dependence makes broadly applying determination of the glass transition temperature in drug dispersions by dielectric spectroscopy prohibitively difficult.

  12. Recent Advances in On-Line Methods Based on Extraction for Speciation Analysis of Chromium in Environmental Matrices.

    PubMed

    Trzonkowska, Laura; Leśniewska, Barbara; Godlewska-Żyłkiewicz, Beata

    2016-07-03

    The biological activity of Cr(III) and Cr(VI) species, their chemical behavior, and toxic effects are dissimilar. The speciation analysis of Cr(III) and Cr(VI) in environmental matrices is then of great importance and much research has been devoted to this area. This review presents recent developments in on-line speciation analysis of chromium in such samples. Flow systems have proved to be excellent tools for automation of sample pretreatment, separation/preconcentration of chromium species, and their detection by various instrumental techniques. Analytical strategies used in chromium speciation analysis discussed in this review are divided into categories based on selective extraction/separation of chromium species on solid sorbents and liquid-liquid extraction of chromium species. The most popular strategy is that based on solid-phase extraction. Therefore, this review shows the potential of novel materials designed and used for selective binding of chromium species. The progress in miniaturization of measurement systems is also presented.

  13. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction

    PubMed Central

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-01-01

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples. PMID:27924944

  14. Solid-shape energy fuels from recyclable municipal solid waste and plastics

    NASA Astrophysics Data System (ADS)

    Gug, Jeongin

    Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have low temperature ignition, less char formation and reduced CO2 emission with the high heating energy value similar to coal. It is concluded that solid fuels from paper based waste and plastics can be a good energy resource as an alternative and sustainable fuel, which may help to alleviate the environmental problems related to landfill space at the same time.

  15. Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis.

    PubMed

    Deng, Dong-Li; Zhang, Ji-You; Chen, Chen; Hou, Xiao-Ling; Su, Ying-Ying; Wu, Lan

    2012-01-06

    A novel capillary electrophoresis (CE) method coupled with monolithic molecular imprinted polymer (MIP) fiber based solid phase microextraction (SPME) was developed for selective and sensitive determination of ephedrine (E) and pseudoephedrine (PE). With in situ polymerization in a silica capillary mold and E as template, the MIP fibers could be produced in batch reproducibly and each fiber was available for 50 extraction cycles without significant decrease in extraction ability. Using the MIP fiber under optimized extraction conditions, CE detection limits of E and PE were greatly lowered from 0.20 to 0.00096 μg/mL and 0.12 to 0.0011 μg/mL, respectively. Analysis of urine and serum samples by the MIP-SPME-CE method was also performed, with results indicating that E and PE could be selectively extracted. The recoveries and relative standard deviations (RSDs) for sample analysis were found in the range of 91-104% and 3.8-9.1%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    PubMed

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  17. A Synopsis of Technical Issues for Monitoring Sediment in Highway and Urban Runoff

    USGS Publications Warehouse

    Bent, Gardner C.; Gray, John R.; Smith, Kirk P.; Glysson, G. Douglas

    2000-01-01

    Accurate and representative sediment data are critical for assessing the potential effects of highway and urban runoff on receiving waters. The U.S. Environmental Protection Agency identified sediment as the most widespread pollutant in the Nation's rivers and streams, affecting aquatic habitat, drinking water treatment processes, and recreational uses of rivers, lakes, and estuaries. Representative sediment data are also necessary for quantifying and interpreting concentrations, loads, and effects of trace elements and organic constituents associated with highway and urban runoff. Many technical issues associated with the collecting, processing, and analyzing of samples must be addressed to produce valid (useful for intended purposes), current, complete, and technically defensible data for local, regional, and national information needs. All aspects of sediment data-collection programs need to be evaluated, and adequate quality-control data must be collected and documented so that the comparability and representativeness of data obtained for highway- and urban-runoff studies may be assessed. Collection of representative samples for the measurement of sediment in highway and urban runoff involves a number of interrelated issues. Temporal and spatial variability in runoff result from a combination of factors, including volume and intensity of precipitation, rate of snowmelt, and features of the drainage basin such as area, slope, infiltration capacity, channel roughness, and storage characteristics. In small drainage basins such as those found in many highway and urban settings, automatic samplers are often the most suitable method for collecting samples of runoff for a variety of reasons. Indirect sediment-measurement methods are also useful as supplementary and(or) surrogate means for monitoring sediment in runoff. All of these methods have limitations in addition to benefits, which must be identified and quantified to produce representative data. Methods for processing raw sediment samples (including homogenization and subsampling) for subsequent analysis for total suspended solids or suspended-sediment concentration often increase variance and may introduce bias. Processing artifacts can be substantial if the methods used are not appropriate for the concentrations and particle-size distributions present in the samples collected. Analytical methods for determining sediment concentrations include the suspended-sediment concentration and the total suspended solids methods. Although the terms suspended-sediment concentration and total suspended solids are often used interchangeably to describe the total concentration of suspended solid-phase material, the analytical methods differ and can produce substantially different results. The total suspended solids method, which commonly is used to produce highway- and urban-runoff sediment data, may not be valid for studies of runoff water quality. Studies of fluvial and highway-runoff sediment data indicate that analyses of samples by the total suspended solids method tends to under represent the true sediment concentration, and that relations between total suspended solids and suspended-sediment concentration are not transferable from site to site even when grain-size distribution information is available. Total suspended solids data used to calculate suspended-sediment loads in highways and urban runoff may be fundamentally unreliable. Consequently, use of total suspended solids data may have adverse consequences for the assessment, design, and maintenance of sediment-removal best management practices. Therefore, it may be necessary to analyze water samples using the suspended-sediment concentration method. Data quality, comparability, and utility are important considerations in collection, processing, and analysis of sediment samples and interpretation of sediment data for highway- and urban-runoff studies. Results from sediment studies must be comparable and readily transf

  18. Variables controlling the recovery of ignitable liquid residues from simulated fire debris samples using solid-phase microextraction/gas chromatography

    NASA Astrophysics Data System (ADS)

    Furton, Kenneth G.; Almirall, Jose R.; Wang, Jing

    1999-02-01

    In this paper, we present data comparing a variety of different conditions for extracting ignitable liquid residues from simulated fire debris samples in order to optimize the conditions for using Solid Phase Microextraction. A simulated accelerant mixture containing 30 components, including those from light petroleum distillates, medium petroleum distillates and heavy petroleum distillates were used to study the important variables controlling Solid Phase Microextraction (SPME) recoveries. SPME is an inexpensive, rapid and sensitive method for the analysis of volatile residues from the headspace over solid debris samples in a container or directly from aqueous samples followed by GC. The relative effects of controllable variables, including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time, have been optimized. The addition of water and ethanol to simulated debris samples in a can was shown to increase the sensitivity when using headspace SPME extraction. The relative enhancement of sensitivity has been compared as a function of the hydrocarbon chain length, sample temperature, time, and added ethanol concentrations. The technique has also been optimized to the extraction of accelerants directly from water added to the fire debris samples. The optimum adsorption time for the low molecular weight components was found to be approximately 25 minutes. The high molecular weight components were found at a higher concentration the longer the fiber was exposed to the headspace (up to 1 hr). The higher molecular weight components were also found in higher concentrations in the headspace when water and/or ethanol was added to the debris.

  19. Compendium of selected methods for sampling and analysis at geothermal facilities

    NASA Astrophysics Data System (ADS)

    Kindle, C. H.; Pool, K. H.; Ludwick, J. D.; Robertson, D. E.

    1984-06-01

    An independent study of the field has resulted in a compilation of the best methods for sampling, preservation and analysis of potential pollutants from geothermally fueled electric power plants. These methods are selected as the most usable over the range of application commonly experienced in the various geothermal plant sample locations. In addition to plant and well piping, techniques for sampling cooling towers, ambient gases, solids, surface and subsurface waters are described. Emphasis is placed on the use of sampling proves to extract samples from heterogeneous flows. Certain sampling points, constituents and phases of plant operation are more amenable to quality assurance improvement in the emission measurements than others and are so identified.

  20. Predicting protein aggregation during storage in lyophilized solids using solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS).

    PubMed

    Moorthy, Balakrishnan S; Schultz, Steven G; Kim, Sherry G; Topp, Elizabeth M

    2014-06-02

    Solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS) was used to assess the conformation of myoglobin (Mb) in lyophilized formulations, and the results correlated with the extent of aggregation during storage. Mb was colyophilized with sucrose (1:1 or 1:8 w/w), mannitol (1:1 w/w), or NaCl (1:1 w/w) or in the absence of excipients. Immediately after lyophilization, samples of each formulation were analyzed by ssHDX-MS and Fourier transform infrared spectroscopy (FTIR) to assess Mb conformation, and by dynamic light scattering (DLS) and size exclusion chromatography (SEC) to determine the extent of aggregation. The remaining samples were then placed on stability at 25 °C and 60% RH or 40 °C and 75% RH for up to 1 year, withdrawn at intervals, and analyzed for aggregate content by SEC and DLS. In ssHDX-MS of samples immediately after lyophilization (t = 0), Mb was less deuterated in solids containing sucrose (1:1 and 1:8 w/w) than in those containing mannitol (1:1 w/w), NaCl (1:1 w/w), or Mb alone. Deuterium uptake kinetics and peptide mass envelopes also indicated greater Mb structural perturbation in mannitol, NaCl, or Mb-alone samples at t = 0. The extent of deuterium incorporation and kinetic parameters related to rapidly and slowly exchanging amide pools (Nfast, Nslow), measured at t = 0, were highly correlated with the extent of aggregation on storage as measured by SEC. In contrast, the extent of aggregation was weakly correlated with FTIR band intensity and peak position measured at t = 0. The results support the use of ssHDX-MS as a formulation screening tool in developing lyophilized protein drug products.

  1. Wave transmission approach based on modal analysis for embedded mechanical systems

    NASA Astrophysics Data System (ADS)

    Cretu, Nicolae; Nita, Gelu; Ioan Pop, Mihail

    2013-09-01

    An experimental method for determining the phase velocity in small solid samples is proposed. The method is based on measuring the resonant frequencies of a binary or ternary solid elastic system comprising the small sample of interest and a gauge material of manageable size. The wave transmission matrix of the combined system is derived and the theoretical values of its eigenvalues are used to determine the expected eigenfrequencies that, equated with the measured values, allow for the numerical estimation of the phase velocities in both materials. The known phase velocity of the gauge material is then used to asses the accuracy of the method. Using computer simulation and the experimental values for phase velocities, the theoretical values for the eigenfrequencies of the eigenmodes of the embedded elastic system are obtained, to validate the method. We conclude that the proposed experimental method may be reliably used to determine the elastic properties of small solid samples whose geometries do not allow a direct measurement of their resonant frequencies.

  2. Solid-phase microextraction for the determination of volatile compounds in the spoilage of raw ground beef.

    PubMed

    Pérez, Rosa Ana; Rojo, Maria Dolores; González, Gema; De Lorenzo, Cristina

    2008-01-01

    A method using solid-phase microextraction (SPME) and gas chromatography/mass spectrometry was developed and applied to the determination of volatile compounds generated in meat, at different times, from ground beef stored under refrigeration. Selection of the extractive fiber, extraction time, and headspace (HS) or direct extraction was optimized for the determination of volatile compounds from ground meat. Various fibers were investigated, and carboxen/polydimethylsiloxane was selected for these analyses. The HS analysis of the solid sample by HS-SPME produced a higher volatile signal than did direct-SPME. The meat samples were stored under refrigeration and analyzed after 0, 3, and 6 days of storage. These analyses at different times showed important changes in the volatile profile of the evaluated samples. The ketones 3-hydroxy-2-butanone and 2,3-butanedione, and the alcohol 3-methyl-1-butanol were the most representative compounds generated during the meat storage. In general, compounds associated with a butter off-flavor were detected during the storage of raw ground beef.

  3. A new laboratory approach to shale analysis using NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically kerogen, thermally degraded kerogen, and char. Integrated peak areas from the LF-NMR results representative of kerogen and bitumen were found to be well correlated with S1 and S2 parameters from Rock-Eval programmed pyrolysis. This study demonstrates that LFNMR relaxometry can provide a wide range of information on shales and other reservoir rocks that goes well beyond porosity and pore-fluid analysis.

  4. The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Grim, G.; Mariam, F.; Schwartz, C. L.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; Espinoza, C.; Lewis, D.; Bainbridge, J.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2012-05-01

    We report proton transmission images obtained subsequent to the laser assisted thermal ignition of a sample of PBX 9501 (a plastic bonded formulation of the explosive nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)). We describe the laser assisted thermal ignition technique as a means to synchronize a non-linear thermal ignition event while preserving the subsequent post-ignition behavior. We have obtained dynamic proton transmission images at two spatial magnifications and viewed both the radial and transverse axis of a solid cylindrical sample encased in aluminum. Images have been obtained with 3 to 15 μs temporal resolution and approximately 100 μm spatial resolution at the higher magnification. We observe case expansion from very early in the experiment, until case fragmentation. We observe spatially anisotropic features in the transmission which we attribute to cracking in the solid explosive, in agreement with previous measurements conducted on two dimensional samples with optical viewing. Digital analysis of the images also reveals spatially isotropic features which we attribute to the evolution of the loss of density by burning subsequent to thermal ignition.

  5. A novel method for rapid determination of total solid content in viscous liquids by multiple headspace extraction gas chromatography.

    PubMed

    Xin, Li-Ping; Chai, Xin-Sheng; Hu, Hui-Chao; Barnes, Donald G

    2014-09-05

    This work demonstrates a novel method for rapid determination of total solid content in viscous liquid (polymer-enriched) samples. The method is based multiple headspace extraction gas chromatography (MHE-GC) on a headspace vial at a temperature above boiling point of water. Thus, the trend of water loss from the tested liquid due to evaporation can be followed. With the limited MHE-GC testing (e.g., 5 extractions) and a one-point calibration procedure (i.e., recording the weight difference before and after analysis), the total amount of water in the sample can be determined, from which the total solid contents in the liquid can be calculated. A number of black liquors were analyzed by the new method which yielded results that closely matched those of the reference method; i.e., the results of these two methods differed by no more than 2.3%. Compared with the reference method, the MHE-GC method is much simpler and more practical. Therefore, it is suitable for the rapid determination of the solid content in many polymer-containing liquid samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The Mars Science Laboratory Organic Check Material

    NASA Astrophysics Data System (ADS)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  7. Trace analysis of nitrite ions in environmental samples by using in-situ synthesized Zein biopolymeric nanoparticles as the novel green solid phase extractor.

    PubMed

    Hatamie, Amir; Nassiri, Mahmoud; Alivand, Meghdad Doust; Bhatnagar, Amit

    2018-01-01

    For the first time, a novel green method using Zein biopolymeric nanoparticles as a green dispersive solid-phase extractor is reported for the separation and preconcentration of trace amount of nitrite (NO 2 - ) ions in ppb levels. The Zein protein is a biodegradable hydrophobic plant protein that is obtained from corn and is composed of a number of hydrophobic amino acids. Zein bionanoparticles were synthesized in an anti-solvent process and used as a new biosorbent in the extraction technique. In the proposed technique, by using a standard method at first, a mixture of 1-naphthylamine and sulphanilic acid as selective regents was added to the samples, and in the presence of the nitrite ion, a red azo product was formed. After that, the ethanolic Zein solution (equal to 15mg) was injected rapidly into the sample, based on the anti-solvent process. Zein bionanoparticles (BNPs) were produced, the adsorbed colour product was separated by centrifugation, and finally samples were analysed with the spectrophotometric method. The influence of different variables such as pH, buffer and amount of buffer, amount of adsorbent and effect of time on extraction were investigated and Zein BNPs were characterized by TEM, SEM, and FT-IR techniques. The main advantages of Zein as a new solid-phase extractor are that this biopolymer is non-toxic, stable, widely available, biodegradable, very hydrophobic, and can be fabricated easily. Under optimal experimental conditions, the linear correlation coefficient (r 2 ) was found to be 0.9972 at the concentration range of 5.0-1000ngmL -1 . The limit of detection was 2.3ngmL -1 (0.05μM). This method was applied successfully for the analysis of sea and river waters as well as industrial wastewater samples. Finally, this method follows the US EPA (US Environmental Protection Agency) and WHO (World Health Organization) international standards for nitrite analysis. In addition, it has several advantages to warrant its applicability in the near future in separation science as a green biosorbent in both dispersive and normal solid-phase extraction. Copyright © 2017. Published by Elsevier B.V.

  8. Rapid analysis of the skin irritant p-phenylenediamine (PPD) in henna products using atmospheric solids analysis probe mass spectrometry.

    PubMed

    Chen, Weiyang; Nkosi, Thobile A N; Combrinck, Sandra; Viljoen, Alvaro M; Cartwright-Jones, Catherine

    2016-09-05

    Henna (Lawsonia inermis) is applied to stain keratin, present in hair, skin and fingernails, a red-orange or rust colour. Producers of temporary tattoos mix the aromatic amine compound, para-phenylenediamine (PPD) into natural henna to create 'black henna' that rapidly stains the skin black. However, PPD may cause severe delayed hypersensitivity reactions following skin contact. This study proposes a rapid direct-analysis method to detect and identify PPD using an atmospheric solids analysis probe (ASAP) coupled to a Q-ToF mass spectrometer (MS). Since laborious, multistep methods of analysis to determine PPD are undesirable, due to the instability of the compound in solution, a screening method involving no sample preparation steps was developed. Experiments were carried out to optimise the corona current, sample cone voltage, source temperature, and desolvation gas temperature to determine ideal ASAP-Q-ToF-MS analysing conditions. Eleven of the 109 henna samples, originating from various countries, tested positive for PPD when henna products were screened using ASAP-MS, without any form of sample preparation other than grinding. Ultra-performance liquid chromatography electrospray ionisation-mass spectrometry (UPLC-Q-ToF-MS) was subsequently used to confirm the results from ASAP and to determine the concentrations of PPD in henna products. The allergen was detected in the same eleven samples, with concentrations ranging from 0.05-4.21% (w/w). It can be concluded that the sensitivity of the ASAP-MS technique is sufficient (limit of detection=0.025% w/w) to allow screening of henna samples for the presence of PPD. This relatively new technique can be applied to commercial products without extraction, sample treatment or chromatographic separation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Contaminants of emerging concern in the lower Stillaguamish River Basin, Washington, 2008-11

    USGS Publications Warehouse

    Wagner, Richard J.; Moran, Patrick W.; Zaugg, Steven D.; Sevigny, Jennifer M.; Pope, Judy M.

    2014-01-01

    A series of discrete water-quality samples were collected in the lower Stillaguamish River Basin near the city of Arlington, Washington, through a partnership with the Stillaguamish Tribe of Indians. These samples included surface waters of the Stillaguamish River, adjacent tributary streams, and paired inflow and outflow sampling at three wastewater treatment plants in the lower river basin. Chemical analysis of these samples focused on chemicals of emerging concern, including wastewater compounds, human-health pharmaceuticals, steroidal hormones, and halogenated organic compounds on solids and sediment. This report presents the methods used and data results from the chemical analysis of these samples

  10. Photoacoustic sample vessel and method of elevated pressure operation

    DOEpatents

    Autrey, Tom; Yonker, Clement R.

    2004-05-04

    An improved photoacoustic vessel and method of photoacoustic analysis. The photoacoustic sample vessel comprises an acoustic detector, an acoustic couplant, and an acoustic coupler having a chamber for holding the acoustic couplant and a sample. The acoustic couplant is selected from the group consisting of liquid, solid, and combinations thereof. Passing electromagnetic energy through the sample generates an acoustic signal within the sample, whereby the acoustic signal propagates through the sample to and through the acoustic couplant to the acoustic detector.

  11. Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally released from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we report on various chlorinated hydrocarbons (chloromethanes, chlorobenzene and dichloroalkanes) detected at elevated levels above instrument background at the Cumberland (CB) drill site, and discuss their possible sources.

  12. Arc Jet Test and Analysis of Asbestos Free Solid Rocket Motor Nozzle Dome Ablative Materials

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2017-01-01

    Asbestos free solid motor internal insulation samples were recently tested at the MSFC Hyperthermal Arc Jet Facility. Objectives of the test were to gather data for solid rocket motor analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Active instrumentation included use of total calorimeters, in-depth thermocouples, and a surface pyrometer for in-situ surface temperature measurement. Post-test sample forensics involved determination of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.

  13. Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis.

    PubMed

    Estes, Matthew D; Yang, Jianing; Duane, Brett; Smith, Stan; Brooks, Carla; Nordquist, Alan; Zenhausern, Frederic

    2012-12-07

    This study reports the design, prototyping, and assay development of multiplexed polymerase chain reaction (PCR) on a plastic microfluidic device. Amplification of 17 DNA loci is carried out directly on-chip as part of a system for continuous workflow processing from sample preparation (SP) to capillary electrophoresis (CE). For enhanced performance of on-chip PCR amplification, improved control systems have been developed making use of customized Peltier assemblies, valve actuators, software, and amplification chemistry protocols. Multiple enhancements to the microfluidic chip design have been enacted to improve the reliability of sample delivery through the various on-chip modules. This work has been enabled by the encapsulation of PCR reagents into a solid phase material through an optimized Solid Phase Encapsulating Assay Mix (SPEAM) bead-based hydrogel fabrication process. SPEAM bead technology is reliably coupled with precise microfluidic metering and dispensing for efficient amplification and subsequent DNA short tandem repeat (STR) fragment analysis. This provides a means of on-chip reagent storage suitable for microfluidic automation, with the long shelf-life necessary for point-of-care (POC) or field deployable applications. This paper reports the first high quality 17-plex forensic STR amplification from a reference sample in a microfluidic chip with preloaded solid phase reagents, that is designed for integration with up and downstream processing.

  14. Elemental and Isotopic Analysis of Uranium Oxide an NIST Glass Standards by FEMTOSECOND-LA-ICP-MIC-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Chris; Zamzow, Daniel S.; McBay, Eddie H.

    2009-06-01

    The objective of this work was to test and demonstrate the analytical figures of merit of a femtosecond-laser ablation (fs-LA) system coupled with an inductively coupled plasma-multi-ion collector-mass spectrometer (ICP-MIC-MS). The mobile fs-LA sampling system was designed and assembled at Ames Laboratory and shipped to Oak Ridge National Laboratory (ORNL), where it was integrated with an ICP-MIC-MS. The test period of the integrated systems was February 2-6, 2009. Spatially-resolved analysis of particulate samples is accomplished by 100-shot laser ablation using a fs-pulsewidth laser and monitoring selected isotopes in the resulting ICP-MS transient signal. The capability of performing high sensitivity, spatiallymore » resolved, isotopic analyses with high accuracy and precision and with virtually no sample preparation makes fs-LA-ICP-MIC-MS valuable for the measurement of actinide isotopes at low concentrations in very small samples for nonproliferation purposes. Femtosecond-LA has been shown to generate particles from the sample that are more representative of the bulk composition, thereby minimizing weaknesses encountered in previous work using nanosecond-LA (ns-LA). The improvement of fs- over ns-LA sampling arises from the different mechanisms for transfer of energy into the sample in these two laser pulse-length regimes. The shorter duration fs-LA pulses induce less heating and cause less damage to the sample than the longer ns pulses. This results in better stoichiometric sampling (i.e., a closer correlation between the composition of the ablated particles and that of the original solid sample), which improves accuracy for both intra- and inter-elemental analysis. The primary samples analyzed in this work are (a) solid uranium oxide powdered samples having different {sup 235}U to {sup 238}U concentration ratios, and (b) glass reference materials (NIST 610, 612, 614, and 616). Solid uranium oxide samples containing {sup 235}U in depleted, natural, and enriched abundances were analyzed as particle aggregates immobilized in a collodion substrate. The uranium oxide samples were nuclear reference materials (CRMs U0002, U005-A, 129-A, U015, U030-A, and U050) obtained from New Brunswick Laboratory-USDOE.« less

  15. Occurrence, characteristics and leakage of polybrominated diphenyl ethers in leachate from municipal solid waste landfills in China.

    PubMed

    Li, Ying; Li, Jinhui; Deng, Chao

    2014-01-01

    Raw leachate samples were collected from various municipal solid waste (MSW) landfills in a densely populated city in North China to measure the levels and compositional patterns of polybrominated diphenyl ethers (PBDEs) in leachate. The total concentration of PBDEs ranged from 4.0 to 351.2 ng/L, with an average of 73.0 ng/L. BDE-209 dominated the congeners in most of the samples, followed by BDE-47 and -99. Higher PBDEs concentrations were found in leachate from younger landfill facilities in the urban area. Pearson correlation analysis implied a potential dependence of the PBDEs level on landfill age, suspended solids and dissolved organic carbon, while the results of principal component analysis (PCA) suggested potential origins and transportation of PBDEs in leachate. The Monte Carlo method was adopted to estimate the annual leakage of PBDEs into the underground environment nationwide, based on two main scenarios: simple landfills with inadequate liner systems and composite-lined landfills with defective geomembranes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Rapid screening of selective serotonin re-uptake inhibitors in urine samples using solid-phase microextraction gas chromatography-mass spectrometry.

    PubMed

    Salgado-Petinal, Carmen; Lamas, J Pablo; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael

    2005-07-01

    In this paper a solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)-venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline-in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, <14%) and the detection limits achieved were <0.4 ng mL(-1) urine. The time required for the SPME step and for GC analysis (30 min each) enables high throughput. The method was applied to real urine samples from different patients being treated with some of these pharmaceuticals. Some SSRI metabolites were also detected and tentatively identified.

  17. Investigation of phase segregation using Rietveld refinement in Mg doped BaTiO3 solid solutions and their ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Aanchal, Kaur, Kiranpreet; Singh, Anupinder; Singh, Mandeep

    2018-05-01

    Ba(1-x) Mgx Ti O3 (BMT) samples were synthesised using solid state reaction route with `x' varying from 0.025 to 0.10. The structural and ferroelectric properties of the bulk samples were investigated. The XRD analysis shows the presence of two phases, the first phase being magnesium doped BT (space group P4mm) and the second phase being Ba2TiO4 (space group Pna21). The tetragonal phase was found to be the major phase in the samples. The double phase Rietveld refinement was done and the weight percentage of orthorhombic phase was found to vary from 3.43% to 6.96% for x varying from 0.025≤x≤0.10. The P - E measurements reveal that all the samples exhibit lossy behaviour.

  18. Post-Flight Microbial Analysis of Samples from the International Space Station Water Recovery System and Oxygen Generation System

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.

    2011-01-01

    The Regenerative, Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS) includes the the Water Recovery System (WRS) and the Oxygen Generation System (OGS). The WRS consists of a Urine Processor Assembly (UPA) and Water Processor Assembly (WPA). This report describes microbial characterization of wastewater and surface samples collected from the WRS and OGS subsystems, returned to KSC, JSC, and MSFC on consecutive shuttle flights (STS-129 and STS-130) in 2009-10. STS-129 returned two filters that contained fluid samples from the WPA Waste Tank Orbital Recovery Unit (ORU), one from the waste tank and the other from the ISS humidity condensate. Direct count by microscopic enumeration revealed 8.38 x 104 cells per mL in the humidity condensate sample, but none of those cells were recoverable on solid agar media. In contrast, 3.32 x lOs cells per mL were measured from a surface swab of the WRS waste tank, including viable bacteria and fungi recovered after S12 days of incubation on solid agar media. Based on rDNA sequencing and phenotypic characterization, a fungus recovered from the filter was determined to be Lecythophora mutabilis. The bacterial isolate was identified by rDNA sequence data to be Methylobacterium radiotolerans. Additional UPA subsystem samples were returned on STS-130 for analysis. Both liquid and solid samples were collected from the Russian urine container (EDV), Distillation Assembly (DA) and Recycle Filter Tank Assembly (RFTA) for post-flight analysis. The bacterium Pseudomonas aeruginosa and fungus Chaetomium brasiliense were isolated from the EDV samples. No viable bacteria or fungi were recovered from RFTA brine samples (N= 6), but multiple samples (N = 11) from the DA and RFTA were found to contain fungal and bacterial cells. Many recovered cells have been identified to genus by rDNA sequencing and carbon source utilization profiling (BiOLOG Gen III). The presence of viable bacteria and fungi from WRS and OGS subsystems demonstrates the need for continued monitoring of ECLSS during future ISS operations and investigation of advanced antimicrobial controls.

  19. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of pesticides in water by Carbopak-B solid-phase extraction and high-preformance liquid chromatography

    USGS Publications Warehouse

    Werner, Stephen L.; Burkhardt, Mark R.; DeRusseau, Sabrina N.

    1996-01-01

    In accordance with the needs of the National Water-Quality Assessment Program (NAWQA), the U.S. Geological Survey has developed and implemented a graphitized carbon-based solid-phase extraction and high-performance liquid chromatographic analytical method. The method is used to determine 41 pesticides and pesticide metabolites that are not readily amenable to gas chromatography or other high-temperature analytical techniques. Pesticides are extracted from filtered environmental water samples using a 0.5-gram graphitized carbon-based solid-phase cartridge, eluted from the cartridge into two analytical fractions, and analyzed using high-performance liquid chromatography with photodiode-array detection. The upper concentration limit is 1.6 micrograms per liter (=B5g/L) for most compounds. Single-operator method detection limits in organic-free water samples ranged from 0.006 to 0.032 =B5g/L= Recoveries in organic-free water samples ranged from 37 to 88 percent. Recoveries in ground- and surface-water samples ranged from 29 to 94 percent. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time of 7 days.

  20. Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine.

    PubMed

    de Oliveira, Anderson Rodrigo Moraes; Cesarino, Evandro José; Bonato, Pierina Sueli

    2005-04-25

    A simple and rapid solid-phase microextraction method was developed for the enantioselective analysis of ibuprofen in urine. The sampling was made with a polydimethylsiloxane-divinylbenzene coated fiber immersed in the liquid sample. After desorptioning from the fiber, ibuprofen enantiomers were analyzed by HPLC using a Chiralpak AD-RH column and UV detection. The mobile phase was made of methanol-pH 3.0 phosphoric acid solution (75:25, v/v), at a flow rate of 0.45 mL/min. The mean recoveries of SPME were 19.8 and 19.1% for (-)-R-ibuprofen and (+)-(S)-ibuprofen, respectively. The method was linear at the range of 0.25-25 microg/mL. Within-day and between-day assay precision and accuracy were below 15% for both ibuprofen enantiomers at concentrations of 0.75, 7.5 and 20 microg/mL. The method was tested with urine quality control samples and human urine fractions after administration of 200 mg rac-ibuprofen.

  1. Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics.

    PubMed

    Yoon, Yong-Joong; Kim, Wan-Chin; Park, No-Cheol; Park, Kyoung-Su; Park, Young-Pil

    2009-07-01

    We analyzed the behavior of the electric field in a focal plane consisting of a solid immersion lens (SIL), an air gap, and a measurement sample for radially polarized illumination in SIL-based near-field optics with an annular aperture. The analysis was based on the Debye diffraction integral and multiple beam interference. For SIL-based near-field optics whose NA is higher than unity, radially polarized light generates a smaller beam spot on the bottom surface of a SIL than circularly polarized light; however, the beam spot on the measurement sample is broadened with a more dominant transverse electric field. By introducing an annular aperture technique, it is possible to decrease the effects of the transverse electric field, and therefore the size of the beam spot on the measurement sample can be small. This analysis could have various applications in near-field optical storage, near-field microscopy, lithography at ultrahigh resolution, and other applications that use SILs for high resolution.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, T.F.; Thorne, P.G.; Myers, K.F.

    Salting-out solvent extraction (SOE) was compared with cartridge and membrane solid-phase extraction (SPE) for preconcentration of nitroaromatics, nitramines, and aminonitroaromatics prior to determination by reversed-phase high-performance liquid chromatography. The solid phases used were manufacturer-cleaned materials, Porapak RDX for the cartridge method and Empore SDB-RPS for the membrane method. Thirty-three groundwater samples from the Naval Surface Warfare Center, Crane, Indiana, were analyzed using the direct analysis protocol specified in SW846 Method 8330, and the results were compared with analyses conducted after preconcentration using SOE with acetonitrile, cartridge-based SPE, and membrane-based SPE. For high-concentration samples, analytical results from the three preconcentration techniquesmore » were compared with results from the direct analysis protocol; good recovery of all target analytes was achieved by all three pre-concentration methods. For low-concentration samples, results from the two SPE methods were correlated with results from the SOE method; very similar data was obtained by the SOE and SPE methods, even at concentrations well below 1 microgram/L.« less

  3. Volatile Analysis by Pyrolysis of Regolith for Planetary Resource Exploration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Malespin, Charles; ten Kate, Inge L.; Getty, Stephanie A.; Holmes, Vincent E.; Mumm, Erik; Franz, Heather B.; Noreiga, Marvin; Dobson, Nick; Southard, Adrian E.; hide

    2012-01-01

    The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 C and determining the composition of volatiles released as a function of temperature.

  4. Digital microfluidics platform for interfacing solid-liquid extraction column with portable capillary electropherograph for analysis of soil amino acids.

    PubMed

    Gorbatsova, Jelena; Jaanus, Martin; Vaher, Merike; Kaljurand, Mihkel

    2016-02-01

    In this work, the concept of a field-portable analyzer is proposed that operates with milliliter amounts of solvents and samples. The need to develop such an analyzer is not only driven by specific extraterrestrial analysis but also, for example, by forensics applications where the amount of liquid that can be taken to the field is severely limited. The prototype of the proposed analyzer consists of a solid-liquid extractor, the output of which is connected to the micropump, which delivers droplets of extracts to digital microfluidic platform (DMFP). In this way, world-to-chip interfacing is established. Further, the sample droplets are transported to CE capillary inlet port, separated and detected via a contactless conductivity detector. Working buffers and other solvents needed to perform CE analysis are also delivered as droplets to the DMFP and transported through the CE capillary. The performance of the analyzer is demonstrated by analysis of amino acids in sand matrices. The recovery of the spiked amino acids from the inert sand sample was from 34 to 51% with analysis LOD from 0.2 to 0.6 ppm and migration time RSD from 0.2 to 6.0%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers.

    PubMed

    Li, Kejun

    2011-11-15

    In the present study, indoor and outdoor air samples were collected using four types of air samplers often used for airborne bacterial sampling. These air samplers included two solid impactors (BioStage and RCS), one liquid impinger (BioSampler), and one filter sampler with two kinds of filters (a gelatin and a cellulose acetate filter). The collected air samples were further processed to analyze the diversity and abundance of culturable bacteria and total bacteria through standard culture techniques, denaturing gradient gel electrophoresis (DGGE) fingerprinting and quantitative polymerase chain reaction (qPCR) analysis. The DGGE analysis indicated that the air samples collected using the BioStage and RCS samplers have higher culturable bacterial diversity, whereas the samples collected using the BioSampler and the cellulose acetate filter sampler have higher total bacterial diversity. To obtain more information on the sampled bacteria, some gel bands were excised and sequenced. In terms of sampling efficiency, results from the qPCR tests indicated that the collected total bacterial concentration was higher in samples collected using the BioSampler and the cellulose acetate filter sampler. In conclusion, the sampling bias and efficiency of four kinds of air sampling systems were compared in the present study and the two solid impactors were concluded to be comparatively efficient for culturable bacterial sampling, whereas the liquid impactor and the cellulose acetate filter sampler were efficient for total bacterial sampling. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.

    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted themore » SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.« less

  7. Novel approach to microwave-assisted extraction and micro-solid-phase extraction from soil using graphite fibers as sorbent.

    PubMed

    Xu, Li; Lee, Hian Kee

    2008-05-30

    A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.

  8. Automated solid-phase extraction of herbicides from water for gas chromatographic-mass spectrometric analysis

    USGS Publications Warehouse

    Meyer, M.T.; Mills, M.S.; Thurman, E.M.

    1993-01-01

    An automated solid-phase extraction (SPE) method was developed for the pre-concentration of chloroacetanilide and triazine herbicides, and two triazine metabolites from 100-ml water samples. Breakthrough experiments for the C18 SPE cartridge show that the two triazine metabolites are not fully retained and that increasing flow-rate decreases their retention. Standard curve r2 values of 0.998-1.000 for each compound were consistently obtained and a quantitation level of 0.05 ??g/l was achieved for each compound tested. More than 10,000 surface and ground water samples have been analyzed by this method.

  9. Multiresidue analysis of 24 Water Framework Directive priority substances by on-line solid phase extraction-liquid chromatography tandem mass spectrometry in environmental waters.

    PubMed

    Rubirola, Adrià; Boleda, Mª Rosa; Galceran, Mª Teresa

    2017-04-14

    This paper reports the development of a fully multiresidue and automated on-line solid phase extraction (SPE) - liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the determination of 24 priority substances (PS) belonging to different classes (pesticides, hormones or pharmaceuticals) included in the Directive 2013/39/UE and the recent Watch List (Decision 2015/495) in water samples (drinking water, surface water, and effluent wastewaters). LC-MS/MS conditions and on-line SPE parameters such as sorbent type, sample and wash volumes were optimized. The developed method is highly sensitive (limits of detection between 0.1 and 1.4ngL -1 ) and precise (relative standard deviations lower than 8%). As part of the method validation studies, linearity, accuracy and matrix effects were assessed. The main advantage of this method over traditional off-line procedures is the minimization of tedious sample preparation increasing productivity and sample throughput. The optimized method was applied to the analysis of water samples and the results revealed the presence of 16 PS in river water and effluent water of wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Using Flory-Huggins phase diagrams as a pre-formulation tool for the production of amorphous solid dispersions: a comparison between hot-melt extrusion and spray drying.

    PubMed

    Tian, Yiwei; Caron, Vincent; Jones, David S; Healy, Anne-Marie; Andrews, Gavin P

    2014-02-01

    Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory-Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions. Solid dispersions were prepared using two different techniques (hot-melt extrusion and spray drying), and characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry), spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods. Spray drying permitted generation of amorphous solid dispersions across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug-polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples. Using temperature-composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions. © 2013 Royal Pharmaceutical Society.

  11. Novel Laser-Based Technique is Ideal for Real-Time Environmental Analysis

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2005

    2005-01-01

    Ocean Optics offers laser-induced breakdown spectrometer systems (LIBS) that can be used to identify light to heavy metals in a variety of sample types and geometries in environmental analysis applications. LIBS are versatile, real-time, high-resolution analyzers for qualitative analysis, in less than one second, of every element in solids,…

  12. Guidelines for improving the reproducibility of quantitative multiparameter immunofluorescence measurements by laser scanning cytometry on fixed cell suspensions from human solid tumors.

    PubMed

    Shackney, Stanley; Emlet, David R; Pollice, Agnese; Smith, Charles; Brown, Kathryn; Kociban, Deborah

    2006-01-01

    Laser scanning Cytometry (LSC) is a versatile technology that makes it possible to perform multiple measurements on individual cells and correlate them cell by cell with other cellular features. It would be highly desirable to be able to perform reproducible, quantitative, correlated cell-based immunofluorescence studies on individual cells from human solid tumors. However, such studies can be challenging because of the presence of large numbers of cell aggregates and other confounding factors. Techniques have been developed to deal with cell aggregates in data sets collected by LSC. Experience has also been gained in addressing other key technical and methodological issues that can affect the reproducibility of such cell-based immunofluorescence measurements. We describe practical aspects of cell sample collection, cell fixation and staining, protocols for performing multiparameter immunofluorescence measurements by LSC, use of controls and reference samples, and approaches to data analysis that we have found useful in improving the accuracy and reproducibility of LSC data obtained in human tumor samples. We provide examples of the potential advantages of LSC in examining quantitative aspects of cell-based analysis. Improvements in the quality of cell-based multiparameter immunofluorescence measurements make it possible to extract useful information from relatively small numbers of cells. This, in turn, permits the performance of multiple multicolor panels on each tumor sample. With links among the different panels that are provided by overlapping measurements, it is possible to develop increasingly more extensive profiles of intracellular expression of multiple proteins in clinical samples of human solid tumors. Examples of such linked panels of measurements are provided. Advances in methodology can improve cell-based multiparameter immunofluorescence measurements on cell suspensions from human solid tumors by LSC for use in prognostic and predictive clinical applications. Copyright (c) 2005 Wiley-Liss, Inc.

  13. A comparison study on a sulfonated graphene-polyaniline nanocomposite coated fiber for analysis of nicotine in solid samples through the traditional and vacuum-assisted HS-SPME.

    PubMed

    Ghiasvand, Alireza; Koonani, Samira; Yazdankhah, Fatemeh; Farhadi, Saeid

    2018-02-05

    A simple, rapid, and reliable headspace solid-phase microextraction (HS-SPME) procedure, reinforced by applying vacuum in the extraction vial, was developed. It was applied for the extraction of nicotine in solid samples prior to determination by gas chromatography-flame ionization detection (GC-FID). First, the surface of a narrow stainless steel wire was made porous and adhesive by platinization to obtain a durable, higher surface area, and resistant fiber. Then, a thin film of sulfonated graphene/polyaniline (Sulf-G/PANI) nanocomposite was synthesized and simultaneously coated on the platinized fiber using the electrophoretic deposition (EPD) method. It was demonstrated that the extraction efficiency remarkably increased by applying the reduced-pressure condition in the extraction vial. To evaluate the conventional HS-SPME and vacuum-assisted HS-SPME (VA-HS-SPME) platforms, all experimental parameters affecting the extraction efficiency including desorption time and temperature, extraction time and temperature and moisture content of sample matrix were optimized. The highest extraction efficiency was obtained at 60°C, 10min (extraction temperature and time) and 280°C, 2min (desorption condition), for VA-HS-SPME strategy, while for conventional HS-SPME the extraction and desorption conditions found to be 100°C, 30min and 280°C, 2min, respectively. The Sulf-G/PANI coated fiber showed high thermal stability, good chemical/mechanical resistance, and long lifetime. For analysis of nicotine in solid samples using VA-HS-SPME-GC-FID, linear dynamic range (LDR) was 0.01-30μgg -1 (R 2 =0.996), the relative standard deviation (RSD%, n=6), for analyses of 1μgg -1 nicotine was calculated 3.4% and limit of detection (LOD) found to be 0.002μgg -1 . The VA-HS-SPME-GC-FID strategy was successfully carried out for quantitation of nicotine in hair and tobacco real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of modulation of the particle size distributions in the direct solid analysis by total-reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Fernández-Ruiz, Ramón; Friedrich K., E. Josue; Redrejo, M. J.

    2018-02-01

    The main goal of this work was to investigate, in a systematic way, the influence of the controlled modulation of the particle size distribution of a representative solid sample with respect to the more relevant analytical parameters of the Direct Solid Analysis (DSA) by Total-reflection X-Ray Fluorescence (TXRF) quantitative method. In particular, accuracy, uncertainty, linearity and detection limits were correlated with the main parameters of their size distributions for the following elements; Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb. In all cases strong correlations were finded. The main conclusion of this work can be resumed as follows; the modulation of particles shape to lower average sizes next to a minimization of the width of particle size distributions, produce a strong increment of accuracy, minimization of uncertainties and limit of detections for DSA-TXRF methodology. These achievements allow the future use of the DSA-TXRF analytical methodology for development of ISO norms and standardized protocols for the direct analysis of solids by mean of TXRF.

  15. Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows

    PubMed Central

    2013-01-01

    Background Gyr cows are well adapted to tropical conditions, resistant to some tropical diseases and have satisfactory milk production. However, Gyr dairy herds have a high prevalence of subclinical mastitis, which negatively affects their milk yield and composition. The objectives of this study were (i) to evaluate the effects of seasonality, mammary quarter location (rear x front), mastitis-causing pathogen species, and somatic cell count (SCC) on milk composition in Gyr cows with mammary quarters as the experimental units and (ii) to evaluate the effects of seasonality and somatic cell count (SCC) on milk composition in Gyr cows with cows as the experimental units. A total of 221 lactating Gyr cows from three commercial dairy farms were selected for this study. Individual foremilk quarter samples and composite milk samples were collected once a month over one year from all lactating cows for analysis of SCC, milk composition, and bacteriological culture. Results Subclinical mastitis reduced lactose, nonfat solids and total solids content, but no difference was found in the protein and fat content between infected and uninfected quarters. Seasonality influenced milk composition both in mammary quarters and composite milk samples. Nevertheless, there was no effect of mammary quarter position on milk composition. Mastitis-causing pathogens affected protein, lactose, nonfat solids, and total solids content, but not milk fat content. Somatic cell count levels affected milk composition in both mammary quarters and composite samples of milk. Conclusions Intramammary infections in Gyr cows alter milk composition; however, the degree of change depends on the mastitis-causing pathogen. Somatic cell count is negatively associated with reduced lactose and nonfat solids content in milk. Seasonality significantly affects milk composition, in which the concentration of lactose, fat, protein, nonfat solids and total solids differs between dry and wet seasons in Gyr cows. PMID:23566405

  16. Liquid scintillation sample analysis in microcentrifuge tubes.

    PubMed

    Elliott, J C

    1993-01-01

    Local regulations prohibiting drain disposal of "biodegradable" liquid scintillation cocktails prompted investigation of volume reduction for these materials. Microcentrifuge tubes were used with aqueous and filter media samples of 3H, 14C, 32P, and 125I. Backgrounds, counting efficiencies, figures of merit, and spectral distributions obtained for microcentrifuge tubes compared favorably to conventional vials. Differences in 32P spectra for solid support samples appeared related to filter material and sample volume. Decreases in sample costs and waste volume and disposal costs were approximately 50-75%.

  17. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra

    2016-05-01

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.

  18. Protonation of benzimidazoles and 1,2,3-benzotriazoles Solid-state linear dichroic infrared (IR-LD) spectral analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.; Pindeva, Liliya I.

    2006-09-01

    IR-LD spectroscopic data obtained by the orientated solid samples as a suspension in a nematic liquid crystal of 1-hydroxy-1,2,3-benzotriazole, 2-methyl-, 2-acetonitrilebenzimidazoles and their protonated salts have been presented. The stereo-structures have been predicted and compared with theoretical ones. The IR-characteristic bands assignments of all molecule systems have been achieved.

  19. Potentiometric titration of thiols, cationic surfactants and halides using a solid-state silver-silver sulphide electrode.

    PubMed

    Pinzauti, S; Papeschi, G; La Porta, E

    1983-01-01

    A rugged, low resistance silver-silver sulphide solid-state electrode for determining pharmaceuticals as authentic samples or in dosage forms by potentiometric titration is described. Sodium tetraphenylborate, mercury(II) acetate and silver nitrate (0.01) M were employed as titrants in the analysis of cationic surfactants (cetylpyridinium chloride, benzethonium chloride, benzalkonium chloride and chlorhexidine salts), antithyroid drugs (methimazole and propylthiouracil) or sodium halides respectively.

  20. Determination of the Antibiotic Oxytetracycline in Commercial Milk by Solid-Phase Extraction: A High-Performance Liquid Chromatography (HPLC) Experiment for Quantitative Instrumental Analysis

    ERIC Educational Resources Information Center

    Mei-Ratliff, Yuan

    2012-01-01

    Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…

  1. Analysis of volatile organic compounds in pleural effusions by headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry.

    PubMed

    Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili

    2016-07-01

    Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Rapid analysis of pesticide residues in drinking water samples by dispersive solid-phase extraction based on multiwalled carbon nanotubes and pulse glow discharge ion source ion mobility spectrometry.

    PubMed

    Zou, Nan; Gu, Kejia; Liu, Shaowen; Hou, Yanbing; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping

    2016-03-01

    An analytical method based on dispersive solid-phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass-mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4- to 48.7-fold (theoretical enrichment factor was 50-fold). The detection limits of pesticides were 0.01∼0.77 μg/kg. The linear range was 0.005-0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high-performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polypyrrole nanowire as an excellent solid phase microextraction fiber for bisphenol A analysis in food samples followed by ion mobility spectrometry.

    PubMed

    Kamalabadi, Mahdie; Mohammadi, Abdorreza; Alizadeh, Naader

    2016-08-15

    A polypyrrole nanowire coated fiber was prepared and used in head-space solid phase microextraction coupled with ion mobility spectrometry (HS-SPME-IMS) to the analysis of bisphenol A (BPA) in canned food samples, for the first time. This fiber was synthesized by electrochemical oxidation of the monomer in aqueous solution. The fiber characterization by scanning electron microscopy (SEM) revealed that the new fiber exhibited two-dimensional structures with a nanowire morphology. The effects of important extraction parameters on the efficiency of HS-SPME were investigated and optimized. Under the optimum conditions, the linearity of 10-150ngg(-1) and limit of detection (based on S/N=3) of 1ngg(-1) were obtained in BPA analysis. The repeatability (n=5) expressed as the relative standard deviation (RSD%) was 5.8%. At the end, the proposed method was successfully applied to determine BPA in various canned food samples (peas, corns, beans). Relative recoveries were obtained 93-96%. Method validation was conducted by comparing our results with those obtained through HPLC with fluorescence detection (FLD). Compatible results indicate that the proposed method can be successfully used in BPA analysis. This method is simple and cheaper than chromatographic methods, with no need of extra organic solvent consumption and derivatization prior to sample introduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Investigating the effect of moisture protection on solid-state stability and dissolution of fenofibrate and ketoconazole solid dispersions using PXRD, HSDSC and Raman microscopy.

    PubMed

    Kanaujia, Parijat; Lau, Grace; Ng, Wai Kiong; Widjaja, Effendi; Schreyer, Martin; Hanefeld, Andrea; Fischbach, Matthias; Saal, Christoph; Maio, Mario; Tan, Reginald B H

    2011-09-01

    Enhanced dissolution of poorly soluble active pharmaceutical ingredients (APIs) in amorphous solid dispersions often diminishes during storage due to moisture-induced re-crystallization. This study aims to investigate the influence of moisture protection on solid-state stability and dissolution profiles of melt-extruded fenofibrate (FF) and ketoconazole (KC) solid dispersions. Samples were kept in open, closed and Activ-vials(®) to control the moisture uptake under accelerated conditions. During 13-week storage, changes in API crystallinity were quantified using powder X-ray diffraction (PXRD) (Rietveld analysis) and high sensitivity differential scanning calorimetry (HSDSC) and compared with any change in dissolution profiles. Trace crystallinity was observed by Raman microscopy, which otherwise was undetected by PXRD and HSDSC. Results showed that while moisture protection was ineffective in preventing the re-crystallization of amorphous FF, KC remained X-ray amorphous despite 5% moisture uptake. Regardless of the degree of crystallinity increase in FF, the enhanced dissolution properties were similarly diminished. Moisture uptake above 10% in KC samples also led to re-crystallization and significant decrease in dissolution rates. In conclusion, eliminating moisture sorption may not be sufficient in ensuring the stability of solid dispersions. Analytical quantification of API crystallinity is crucial in detecting subtle increase in crystallinity that can diminish the enhanced dissolution properties of solid dispersions.

  5. Direct Electrospray Ionization Mass Spectrometric Profiling of Real-World Samples via a Solid Sampling Probe

    NASA Astrophysics Data System (ADS)

    Yu, Zhan; Chen, Lee Chuin; Mandal, Mridul Kanti; Yoshimura, Kentaro; Takeda, Sen; Hiraoka, Kenzo

    2013-10-01

    This study presents a novel direct analysis strategy for rapid mass spectrometric profiling of biochemicals in real-world samples via a direct sampling probe (DSP) without sample pretreatments. Chemical modification is applied to a disposable stainless steel acupuncture needle to enhance its surface area and hydrophilicity. After insertion into real-world samples, biofluid can be attached on the DSP surface. With the presence of a high DC voltage and solvent vapor condensing on the tip of the DSP, analyte can be dissolved and electrosprayed. The simplicity in design, versatility in application aspects, and other advantages such as low cost and disposability make this new method a competitive tool for direct analysis of real-world samples.

  6. Effects of Chlorine Promoted Oxidation on Arsenic Release from Sulfide Minerals

    NASA Astrophysics Data System (ADS)

    West, N.; Schreiber, M.; Gotkowitz, M.

    2007-12-01

    High arsenic concentrations (>100 ppb) have been measured in wells completed in the Ordovician St. Peter sandstone aquifer of eastern Wisconsin. The primary source of arsenic is As-bearing sulfide minerals within the aquifer. Periodic disinfection of wells by chlorination may facilitate arsenic release to groundwater by increasing the rate of sulfide mineral oxidation. During typical well disinfection procedures, aquifer solids exposed along uncased portions of wells remain in direct contact with chlorine disinfection solutions for up to twenty-four hours. Due to the redox sensitivity of arsenic mobility in groundwater, it is important to evaluate the effect of repeatedly adding oxidizers to an arsenic impacted aquifer system. This study focuses on abiotic processes that mobilize arsenic from the solid phase during controlled exposure to chlorinated solutions. Two St. Peter samples with As concentrations of 21 and 674 ppm were selected for the experiments. Before reaction, the aquifer mineralogy is characterized using scanning electron microscopy (SEM) and electron microprobe analysis (EMPA). The samples are then reacted with solutions of 60 mg/L free chlorine, 1200 mg/L free chlorine, or nanopure water (control) at pH 7.0 and pH 8.5. These parameters represent typical solution chemistries present within the wells after disinfection. Solutions are sampled periodically during the experiments and analyzed for As, Fe, other trace metals such as Co, Mo, Cr, and Ni, and sulfate. Analysis of the post-reaction solids using SEM, EMPA, laser ablation ICP-MS and Raman techniques are used to document the changes in mineralogy due to chlorination and to document which solid phases contain As.

  7. Optimized multiparametric flow cytometric analysis of circulating endothelial cells and their subpopulations in peripheral blood of patients with solid tumors: a technical analysis.

    PubMed

    Zhou, Fangbin; Zhou, Yaying; Yang, Ming; Wen, Jinli; Dong, Jun; Tan, Wenyong

    2018-01-01

    Circulating endothelial cells (CECs) and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM) assay for CECs and subpopulations in peripheral blood for patients with solid cancers. An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann-Whitney U tests were used to determine statistically significant differences. In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients with solid tumors. Several key technical issues regarding preanalytical elements, FCM data acquisition, and analysis were addressed. Furthermore, we clinically validated the utility of our method. The baseline levels of mature CECs, endothelial progenitor cells, and activated CECs were higher in cancer patients than healthy subjects ( P <0.01). However, there was no significant difference in resting CEC levels between healthy subjects and cancer patients ( P =0.193). We integrated and comprehensively addressed significant technical issues found in previously published assays and validated the reproducibility and sensitivity of our proposed method. Future work is required to explore the potential of our optimized method in clinical oncologic applications.

  8. Speciation analysis of Mn(II)/Mn(VII) using Fe3O4@ionic liquids-β-cyclodextrin polymer magnetic solid phase extraction coupled with ICP-OES.

    PubMed

    Chen, Songqing; Qin, Xingxiu; Gu, Weixi; Zhu, Xiashi

    2016-12-01

    Ionic liquids-β-cyclodextrin polymer (ILs-β-CDCP) was attached on Fe 3 O 4 nanoparticles to prepare magnetic solid phase extraction agent (Fe 3 O 4 @ILs-β-CDCP). The properties and morphology of Fe 3 O 4 @ILs-β-CDCP were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction(XRD), size distribution and magnetic analysis. A new method of magnetic solid phase extraction (MSPE) coupled to ICP-OES for the speciation of Mn(II)/Mn(VII) in water samples was established. The results showed that Mn(VII) and total manganese [Mn(II)+Mn(VII)] were quantitatively extracted after adjusting aqueous sample solution to pH 6.0 and 10.0, respectively. Mn(II) was calculated by subtraction of Mn(VII) from total manganese. Fe 3 O 4 @ILs-β-CDCP showed a higher adsorption capacity toward Mn(II) and Mn(VII). Several factors, such as the pH value, extraction temperature and sample volume, were optimized to achieve the best extraction efficiency. Moreover, the adsorption ability of Fe 3 O 4 @ILs-β-CDCP would not be significantly lower after reusing of 10 times. The accuracy of the developed method was confirmed by analyzing certified reference materials (GSB 07-1189-2000), and by spiking spring water, city water and lake water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Study of the solid state of carbamazepine after processing with gas anti-solvent technique.

    PubMed

    Moneghini, M; Kikic, I; Voinovich, D; Perissutti, B; Alessi, P; Cortesi, A; Princivalle, F; Solinas, D

    2003-09-01

    The purpose of this study was to investigate the influence of supercritical CO2 processing on the physico-chemical properties of carbamazepine, a poorly soluble drug. The gas anti-solvent (GAS) technique was used to precipitate the drug from three different solvents (acetone, ethylacetate and dichloromethane) to study how they would affect the final product. The samples were analysed before and after treatment by scanning electron microscopy analysis and laser granulometry for possible changes in the habitus of the crystals. In addition, the solid state of the samples was studied by means of X-ray powder diffraction, differential scanning calorimetry, diffuse reflectance Fourier-transform infrared spectroscopy and hot stage microscopy. Finally, the in vitro dissolution tests were carried out. The solid state analysis of both samples untreated and treated with CO2, showed that the applied method caused a transition from the starting form III to the form I as well as determined a dramatic change of crystal morphology, resulting in needle-shaped crystals, regardless of the chosen solvent. In order to identify which process was responsible for the above results, carbamazepine was further precipitated from the same three solvents by traditional evaporation method (RV-samples). On the basis of this cross-testing, the solvents were found to be responsible for the reorganisation into a different polymorphic form, and the potential of the GAS process to produce micronic needle shaped particles, with an enhanced dissolution rate compared to the RV-carbamazepine, was ascertained.

  10. Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.

    2007-01-01

    Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.

  11. Rapid preconcentration method for the determination of azadirachtin-A and -B, nimbin and salannin in neem oil samples by using graphitised carbon solid phase extraction.

    PubMed

    Ramesh, A; Balasubramanian, M

    1999-01-01

    A simple and rapid method involving solid phase extraction and liquid chromatography for the determination of azadirachtin-A and -B, nimbin and salannin at nanogram levels in neem oil samples is presented. The neem oil samples are defatted and the compounds of interest extracted by mixing the sample with hexane and passing the hexane solution through a graphitised carbon black column. After washing the column with 2 ml of hexane, azadirachtin-A and -B, nimbin and salannin are eluted with 5 ml of acetonitrile and quantified using HPLC with UV detection. The recoveries of azadirachtin-A and -B, nimbin and salannin in fortified oil samples were 97.4-104.7%. The upper limit of quantification is up to 100 micrograms ml-1 without any additional clean-up and with little interference from lipids during the analysis by HPLC. The method was successfully applied to various neem oil samples collected from different locations in India.

  12. Determination of organotin compounds by headspace solid-phase microextraction-gas chromatography-pulsed flame-photometric detection (HS-SPME-GC-PFPD).

    PubMed

    Bravo, Manuel; Lespes, Gaëtane; De Gregori, Ida; Pinochet, Hugo; Gautier, Martine Potin

    2005-12-01

    A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 mum PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L(-1) in water and close to ng (Sn) kg(-1) in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME-GC-PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices.

  13. Chemical analyses of micrometre-sized solids by a miniature laser ablation/ionisation mass spectrometer (LMS)

    NASA Astrophysics Data System (ADS)

    Tulej, Marek; Wiesendanger, Reto; Neuland, Maike; Meyer, Stefan; Wurz, Peter; Neubeck, Anna; Ivarsson, Magnus; Riedo, Valentine; Moreno-Garcia, Pavel; Riedo, Andreas; Knopp, Gregor

    2017-04-01

    Investigation of elemental and isotope compositions of planetary solids with high spatial resolution are of considerable interest to current space research. Planetary materials are typically highly heterogenous and such studies can deliver detailed chemical information of individual sample components with the sizes down to a few micrometres. The results of such investigations can yield mineralogical surface context including mineralogy of individual grains or the elemental composition of of other objects embedded in the sample surface such as micro-sized fossils. The identification of bio-relevant material can follow by the detection of bio-relevant elements and their isotope fractionation effects [1, 2]. For chemical analysis of heterogenous solid surfaces we have combined a miniature laser ablation mass spectrometer (LMS) (mass resolution (m/Dm) 400-600; dynamic range 105-108) with in situ microscope-camera system (spatial resolution ˜2um, depth 10 um). The microscope helps to find the micrometre-sized solids across the surface sample for the direct mass spectrometric analysis by the LMS instrument. The LMS instrument combines an fs-laser ion source and a miniature reflectron-type time-of-flight mass spectrometer. The mass spectrometric analysis of the selected on the sample surface objects followed after ablation, atomisation and ionisation of the sample by a focussed laser radiation (775 nm, 180 fs, 1 kHz; the spot size of ˜20 um) [4, 5, 6]. Mass spectra of almost all elements (isotopes) present in the investigated location are measured instantaneously. A number of heterogenous rock samples containing micrometre-sized fossils and mineralogical grains were investigated with high selectivity and sensitivity. Chemical analyses of filamentous structures observed in carbonate veins (in harzburgite) and amygdales in pillow basalt lava can be well characterised chemically yielding elemental and isotope composition of these objects [7, 8]. The investigation can be prepared with high selectivity since the host composition is typically readily different comparing to that of the analysed objects. In depth chemical analysis (chemical profiling) is found in particularly helpful allowing relatively easy isolation of the chemical composition of the host from the investigated objects [6]. Hence, both he chemical analysis of the environment and microstructures can be derived. Analysis of the isotope compositions can be measured with high level of confidence, nevertheless, presence of cluster of similar masses can make sometimes this analysis difficult. Based on this work, we are confident that similar studies can be conducted in situ planetary surfaces delivering important chemical context and evidences on bio-relevant processes. [1] Summons et al., Astrobiology, 11, 157, 2011. [2] Wurz et al., Sol. Sys. Res. 46, 408, 2012. [3] Riedo et al., J. Anal. Atom. Spectrom. 28, 1256, 2013. [4] Riedo et al., J. Mass Spectrom.48, 1, 2013. [5] Tulej et al., Geostand. Geoanal. Res., 38, 423, 2014. [6] Grimaudo et al., Anal. Chem. 87, 2041, 2015 [7] Tulej et al., Astrobiology, 15, 1, 2015. [8] Neubeck et al., Int. J. Astrobiology, 15, 133, 2016.

  14. Ultra-sensitive speciation analysis of mercury by CE-ICP-MS together with field-amplified sample stacking injection and dispersive solid-phase extraction.

    PubMed

    Chen, YiQuan; Cheng, Xian; Mo, Fan; Huang, LiMei; Wu, Zujian; Wu, Yongning; Xu, LiangJun; Fu, FengFu

    2016-04-01

    A simple dispersive solid-phase extraction (DSPE) used to extract and preconcentrate ultra-trace MeHg, EtHg and Hg(2+) from water sample, and a sensitive method for the simultaneous analysis of MeHg, EtHg and Hg(2+) by using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) with field-amplified sample stacking injection (FASI) were first reported in this study. The DSPE used thiol cotton particles as adsorbent, and is simple and effective. It can be used to extract and preconcentrate ultra-trace mercury compounds in water samples within 30 min with a satisfied recovery and no mercury species alteration during the process. The FASI enhanced the sensitivity of CE-ICP-MS with 25-fold, 29-fold and 27-fold for MeHg, EtHg and Hg(2+) , respectively. Using FASI-CE-ICP-MS together with DSPE, we have successfully determined ultra-trace MeHg, EtHg and Hg(2+) in tap water with a limits of quantification (LOQs) of 0.26-0.45 pg/mL, an RSD (n = 3) < 6% and a recovery of 92-108%. Ultra-high sensitivity, as well as much less sample and reagent consumption and low operating cost, make our method a valuable technique to the speciation analysis of ultra-trace mercury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Determination of nanomolar chromate in drinking water with solid phase extraction and a portable spectrophotometer.

    PubMed

    Ma, Jian; Yang, Bo; Byrne, Robert H

    2012-06-15

    Determination of chromate at low concentration levels in drinking water is an important analytical objective for both human health and environmental science. Here we report the use of solid phase extraction (SPE) in combination with a custom-made portable light-emitting diode (LED) spectrophotometer to achieve detection of chromate in the field at nanomolar levels. The measurement chemistry is based on a highly selective reaction between 1,5-diphenylcarbazide (DPC) and chromate under acidic conditions. The Cr-DPC complex formed in the reaction can be extracted on a commercial C18 SPE cartridge. Concentrated Cr-DPC is subsequently eluted with methanol and detected by spectrophotometry. Optimization of analytical conditions involved investigation of reagent compositions and concentrations, eluent type, flow rate (sample loading), sample volume, and stability of the SPE cartridge. Under optimized conditions, detection limits are on the order of 3 nM. Only 50 mL of sample is required for an analysis, and total analysis time is around 10 min. The targeted analytical range of 0-500 nM can be easily extended by changing the sample volume. Compared to previous SPE-based spectrophotometric methods, this analytical procedure offers the benefits of improved sensitivity, reduced sample consumption, shorter analysis time, greater operational convenience, and lower cost. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives.

    PubMed

    Ashley, Jon; Shahbazi, Mohammad-Ali; Kant, Krishna; Chidambara, Vinayaka Aaydha; Wolff, Anders; Bang, Dang Duong; Sun, Yi

    2017-05-15

    Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high loading capacity. MIPs have been intensively employed in classical solid-phase extraction and solid-phase microextraction. More recently, MIPs have been combined with magnetic bead extraction, which greatly simplifies sample handling procedures. Studies have consistently shown that MIPs can effectively minimize complex food matrix effects, and improve recoveries and detection limits. In addition to sample preparation, MIPs have also been viewed as promising alternatives to bio-receptors due to the inherent molecular recognition abilities and the high stability in harsh chemical and physical conditions. MIPs have been utilized as receptors in biosensing platforms such as electrochemical, optical and mass biosensors to detect various analytes in food. In this review, we will discuss the current state-of-the-art of MIP synthesis and applications in the context of food analysis. We will highlight the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determination of pesticides in waters by automatic on-line solid-phase extraction-capillary electrophoresis.

    PubMed

    Hinsmann, P; Arce, L; Ríos, A; Valcárcel, M

    2000-01-07

    The separation of seven pesticides by micellar electrokinetic capillary chromatography in spiked water samples is described, allowing the analysis of pesticides mixtures down to a concentration of 50 microg l(-1) in less than 13 min. Calibration, pre-concentration, elution and injection into the sample vial was carried out automatically by a continuous flow system (CFS) coupled to a capillary electrophoresis system via a programmable arm. The whole system was electronically coupled by a micro-processor and completely controlled by a computer. A C18 solid-phase mini-column was used for the pre-concentration, allowing a 12-fold enrichment (as an average value) of the pesticides from fortified water samples. Under the optimal extraction conditions, recoveries between 90 and 114% for most of the pesticides were obtained.

  18. ON SITE SOLID-PHASE EXTRACTION AND LABORATORY ANALYSIS OF ULTRA-TRACE SYNTHETIC MUSKS IN MUNICIPAL SEWAGE EFFLUENT USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY. FULL-SCAN MODE

    EPA Science Inventory

    Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are requ...

  19. DIRECT MERCURY ANALYSIS IN ENVIRONMENTAL SOLIDS BY ICPMS WITH ON-LINE SAMPLE ASHING AND MERCURY PRE-CONCENTRATION USING THE DIRECT MERCURY ANALYZER

    EPA Science Inventory



    A Direct Mercury Analyzer based on sample combustion and mercury concentration by gold amalgamation, followed by atomic absorption determination, was interfaced with a quadrupole and a magnet sector ICPMS. In this paper, we discuss design and operating parameters and eval...

  20. TRICLOSAN AND METHYL-TRICLOSAN MONITORING STUDY IN THE NORTHEAST OF SPAIN USING A MAGNETIC PARTICLE ENZYME IMMUNOASSAY AND CONFIRMATORY ANALYSIS BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY

    USDA-ARS?s Scientific Manuscript database

    The occurrence of triclosan in the water environment around a Mediterranean region was investigated. Triclosan and methyl-triclosan content of ninety five environmental samples were screened using a magnetic particle enzyme immunoassay. Positive samples were confirmed by solid phase extraction (SPE...

  1. Method development for liquid chromatographic/triple quadrupole mass spectrometric analysis of trace level perfluorocarboxylic acids in articles of commerce

    EPA Science Inventory

    An analytical method to identify and quantify trace levels of C5 to C12 perfluorocarboxylic acids (PFCAs) in articles of commerce (AOC) is developed and rigorously validated. Solid samples were extracted in methanol, and liquid samples were diluted with a solvent consisting of 60...

  2. A rapid space-resolved solid-phase microextraction method as a powerful tool to determine contaminants in wine based on their volatility.

    PubMed

    Liu, Min; Peng, Qing-Qing; Chen, Yu-Feng; Tang, Qian; Feng, Qing

    2015-06-01

    A novel space-resolved solid phase microextraction (SR-SPME) technique was developed to facilitate simultaneously analyte monitoring within heterogeneous samples. Graphene (G) and graphene oxide (GO) were coated separately to the segmented fibers which were successfully used for the solid-phase microextraction of two contaminants with dramatically different volatility: 2,4,6-trichloroanisole (TCA) and dibutyl phthalate (DBP). The space-resolved fiber showed good precision (5.4%, 6.8%), low detection limits (0.3ng/L, 0.3ng/L), and wide linearity (1.0-250.0ng/L, 1.0-250.0ng/L) under the optimized conditions for TCA and DBP, respectively. The method was applied to simultaneous analysis of the two contaminates with satisfactory recoveries, which were 96.96% and 98.20% for wine samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Laboratory analyses of micron-sized solid grains: Experimental techniques and recent results

    NASA Technical Reports Server (NTRS)

    Colangeli, L.; Bussoletti, E.; Blanco, A.; Borghesi, A.; Fonti, S.; Orofino, V.; Schwehm, G.

    1989-01-01

    Morphological and spectrophotometric investigations have been extensively applied in the past years to various kinds of micron and/or submicron-sized grains formed by materials which are candidate to be present in space. The samples are produced in the laboratory and then characterized in their physio-chemical properties. Some of the most recent results obtained on various kinds of carbonaceous materials are reported. Main attention is devoted to spectroscopic results in the VUV and IR wavelength ranges, where many of the analyzed samples show typical fingerprints which can be identified also in astrophysical and cometary materials. The laboratory methodologies used so far are also critically discussed in order to point out capabilities and present limitations, in the view of possible application to returned comet samples. Suggestions are given to develop new techniques which should overcome some of the problems faced in the manipulation and analysis of micron solid samples.

  4. Applications of reversible covalent chemistry in analytical sample preparation.

    PubMed

    Siegel, David

    2012-12-07

    Reversible covalent chemistry (RCC) adds another dimension to commonly used sample preparation techniques like solid-phase extraction (SPE), solid-phase microextraction (SPME), molecular imprinted polymers (MIPs) or immuno-affinity cleanup (IAC): chemical selectivity. By selecting analytes according to their covalent reactivity, sample complexity can be reduced significantly, resulting in enhanced analytical performance for low-abundance target analytes. This review gives a comprehensive overview of the applications of RCC in analytical sample preparation. The major reactions covered include reversible boronic ester formation, thiol-disulfide exchange and reversible hydrazone formation, targeting analyte groups like diols (sugars, glycoproteins and glycopeptides, catechols), thiols (cysteinyl-proteins and cysteinyl-peptides) and carbonyls (carbonylated proteins, mycotoxins). Their applications range from low abundance proteomics to reversible protein/peptide labelling to antibody chromatography to quantitative and qualitative food analysis. In discussing the potential of RCC, a special focus is on the conditions and restrictions of the utilized reaction chemistry.

  5. [Determination of alkylphenol and alkylphenolpolyethoxylates in brine by solid phase extraction and high performance liquid chromatography-mass spectrometry].

    PubMed

    Wang, Jincheng; Xiong, Li; Zhang, Haijun; Chen, Jiping

    2011-12-01

    A simple method based on solid phase extraction (SPE) coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed for the determination of octylphenol (OP), nonylphenol (NP), octylphenol ethoxylates (OPEOs) and nonylphenol ethoxylates (NPEOs) in brine. The extraction and cleanup of brine samples were performed on C18 solid-phase extraction cartridges. The complete separation among OP, NP, OPEOs and NPEOs was achieved on a Hypersil GOLD analytical column with methanol-water as the mobile phase. The determination was achieved using HPLC-MS with electrospray ionization (ESI) in selected ion monitoring mode. The results showed that the average recoveries of target compounds were 59.6% - 104.4% and the corresponding relative standard deviations (RSDs, n = 3) were 1.0% - 13.5%. The instrumental limits of detection for the compounds were 0.08 - 3 microg/L. This method was applied to the analysis of the samples of seawater near Dalian coast. The results showed that both NP and NPEOs were detected in all samples and their concentrations in seaport and oil port were much higher than those in other sampling sites.

  6. Laser comminution of submerged samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariella, R. Jr.; Rubenchik, A.; Norton, M.

    With the long-term goal in mind of investigating possible designs for a 'universal, solid-sample comminution technique' for elemental analysis of debris and rubble, we have studied pulsed-laser ablation of solid samples that were submerged in water. Using 351-nm, 15-ns laser pulses with energy between 1 J and 0.35 J, intensities between 500 MW/cm{sup 2} and 30 MW/cm{sup 2}, and samples of broken rock [quartzite] and concrete debris, we have observed conditions in which the laser-driven process can remove material from the solid target substrate, dissolving it and/or converting it into ultrafine particles in a controlled manner. Our study used impure,more » non-metallic substrates and investigated both the rate of material removal as well as the size distribution of particles that were ablated from the process. We studied ablation at lower regimes of intensity and fluence [below 100 MW/cm{sup 2} and 0.4 J/cm{sup 2}, respectively] than has previously attracted attention and discovered that there appears to be a new regime for energy-efficient material removal [Q* < 4000 J/g, for quartzite and <2000 J/g for concrete] and for the generation of ultrafine particles.« less

  7. Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below

    NASA Astrophysics Data System (ADS)

    Winkler, Stephan R.; Eigl, Rosmarie; Forstner, Oliver; Martschini, Martin; Steier, Peter; Sterba, Johannes H.; Golser, Robin

    2015-10-01

    Neutron activation analysis using decay counting of the activated element is a well-established method in elemental analysis. However, for chlorine there is a better alternative to measuring decay of the short-lived activation product chlorine-38 (t1/2 = 37.24 min) - accelerator mass spectrometry (AMS) of 36Cl: the relatively high neutron capture cross section of chlorine-35 for thermal neutrons (43.7 b) and combined the AMS technique for chlorine-36 (t1/2 = 301 ka) allow for determination of chlorine down to ppb-levels using practical sample sizes and common exposure durations. The combination of neutron activation and AMS can be employed for a few other elements (nitrogen, thorium, and uranium) as well. For bulk solid samples an advantage of the method is that lab contamination can be rendered irrelevant. The chlorine-35 in the sample is activated to chlorine-36, and surface chlorine can be removed after the irradiation. Subsequent laboratory contamination, however, will not carry a prominent chlorine-36 signature. After sample dissolution and addition of sufficient amounts of stable chlorine carrier the produced chlorine-36 and thus the original chlorine-35 of the sample can be determined using AMS. We have developed and applied the method for analysis of chlorine in steel samples. The chlorine content of steel is of interest to nuclear industry, precisely because of above mentioned high neutron capture cross section for chlorine-35, which leads to accumulation of chlorine-36 as long-term nuclear waste. The samples were irradiated at the TRIGA Mark II reactor of the Atominstitut in Vienna and the 36Cl-AMS setup at the Vienna Environmental Research Accelerator (VERA) was used for 36Cl/Cl analysis.

  8. A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry.

    PubMed

    Thaler, Florian; Valsasina, Barbara; Baldi, Rosario; Xie, Jin; Stewart, Albert; Isacchi, Antonella; Kalisz, Henryk M; Rusconi, Luisa

    2003-06-01

    beta-Elimination of the phosphate group on phosphoserine and phosphothreonine residues and addition of an alkyldithiol is a useful tool for analysis of the phosphorylation states of proteins and peptides. We have explored the influence of several conditions on the efficiency of this PO(4)(3-) elimination reaction upon addition of propanedithiol. In addition to the described influence of different bases, the solvent composition was also found to have a major effect on the yield of the reaction. In particular, an increase in the percentage of DMSO enhances the conversion rate, whereas a higher amount of protic polar solvents, such as water or isopropanol, induces the opposite effect. We have also developed a protocol for enrichment of the modified peptides, which is based on solid-phase covalent capture/release with a dithiopyridino-resin. The procedure for beta-elimination and isolation of phosphorylated peptides by solid-phase capture/release was developed with commercially available alpha-casein. Enriched peptide fragments were characterized by MALDI-TOF mass spectrometric analysis before and after alkylation with iodoacetamide, which allowed rapid confirmation of the purposely introduced thiol moiety. Sensitivity studies, carried out in order to determine the detection limit, demonstrated that samples could be detected even in the low picomolar range by mass spectrometry. The developed solid-phase enrichment procedure based on reversible covalent binding of the modified peptides is more effective and significantly simpler than methods based on the interaction between biotin and avidin, which require additional steps such as tagging the modified peptides and work-up of the samples prior to the affinity capture step.

  9. Ambient airborne solids concentrations including volcanic ash at Hanford, Washington sampling sites subsequent to the Mount St. Helens eruption

    NASA Technical Reports Server (NTRS)

    Sehmel, G. A.

    1982-01-01

    Airborne solids concentrations were measured on a near daily basis at two Hanford, Washington sites after the eruption of Mount St. Helens on May 18, 1980. These sites are about 211 km east of Mount St. Helens. Collected airborne solids included resuspended volcanic ash plus normal ambient solids. Average airborne solids concentrations were greater at the Hanford meteorological station sampling site which is 24 km northwest of the Horn Rapids dam sampling site. These increased concentrations reflect the sampling site proximity to greater ash fallout depths. Both sites are in low ash fallout areas although the Hanford meteorological station site is closer to the greater ash fallout areas. Airborne solids concentrations were decreased by rain, but airborne solids concentrations rapidly increased as surfaces dried. Airborne concentrations tended to become nearly the same at both sampling sites only for July 12 and 13.

  10. Method and apparatus for automated processing and aliquoting of whole blood samples for analysis in a centrifugal fast analyzer

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1988-01-01

    A rotor and disc assembly for use in a centrifugal fast analyzer. The assembly is designed to process multiple samples of whole blood followed by aliquoting of the resultant serum into precisely measured samples for subsequent chemical analysis. The assembly requires minimal operator involvement with no mechanical pipetting. The system comprises (1) a whole blood sample disc, (2) a serum sample disc, (3) a sample preparation rotor, and (4) an analytical rotor. The blood sample disc and serum sample disc are designed with a plurality of precision bore capillary tubes arranged in a spoked array. Samples of blood are loaded into the blood sample disc in capillary tubes filled by capillary action and centrifugally discharged into cavities of the sample preparation rotor where separation of serum and solids is accomplished. The serum is loaded into the capillaries of the serum sample disc by capillary action and subsequently centrifugally expelled into cuvettes of the analytical rotor for analysis by conventional methods.

  11. Updated methodology for nuclear magnetic resonance characterization of shales

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  12. Updated methodology for nuclear magnetic resonance characterization of shales

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world’s energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1–T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  13. Method optimization for non-equilibrium solid phase microextraction sampling of HAPs for GC/MS analysis

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Del Negro, L. A.

    2010-12-01

    Hazardous air pollutants (HAPs) are usually present in the atmosphere at pptv-level, requiring measurements with high sensitivity and minimal contamination. Commonly used evacuated canister methods require an overhead in space, money and time that often is prohibitive to primarily-undergraduate institutions. This study optimized an analytical method based on solid-phase microextraction (SPME) of ambient gaseous matrix, which is a cost-effective technique of selective VOC extraction, accessible to an unskilled undergraduate. Several approaches to SPME extraction and sample analysis were characterized and several extraction parameters optimized. Extraction time, temperature and laminar air flow velocity around the fiber were optimized to give highest signal and efficiency. Direct, dynamic extraction of benzene from a moving air stream produced better precision (±10%) than sampling of stagnant air collected in a polymeric bag (±24%). Using a low-polarity chromatographic column in place of a standard (5%-Phenyl)-methylpolysiloxane phase decreased the benzene detection limit from 2 ppbv to 100 pptv. The developed method is simple and fast, requiring 15-20 minutes per extraction and analysis. It will be field-validated and used as a field laboratory component of various undergraduate Chemistry and Environmental Studies courses.

  14. Pyrolysis kinetics and combustion of thin wood using advanced cone calorimetry test method

    Treesearch

    Mark A. Dietenberger

    2011-01-01

    Mechanistic pyrolysis kinetics analysis of extractives, holocellulose, and lignin in solid wood over entire heating regime was possible using specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for thin specimen with tiny thermocouples, methane ring burner with stainless steel mesh above cone...

  15. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    PubMed Central

    Evans, Alistair R.; McHenry, Colin R.

    2015-01-01

    The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620

  16. Solid cation exchange phase to remove interfering anthocyanins in the analysis of other bioactive phenols in red wine.

    PubMed

    da Silva, Letícia Flores; Guerra, Celito Crivellaro; Klein, Diandra; Bergold, Ana Maria

    2017-07-15

    Bioactive phenols (BPs) are often targets in red wine analysis. However, other compounds interfere in the liquid chromatography methods used for this analysis. Here, purification procedures were tested to eliminate anthocyanin interference during the determination of 19 red-wine BPs. Liquid chromatography, coupled to a diode array detector (HPLC-DAD) and a mass spectrometer (UPLC-MS), was used to compare the direct injection of the samples with solid-phase extractions: reversed-phase (C18) and strong cation-exchange (SCX). The HPLC-DAD method revealed that, out of 13BPs, only six are selectively analyzed with or without C18 treatment, whereas SCX enabled the detection of all BPs. The recovery with SCX was above 86.6% for eight BPs. Moreover, UPLC-MS demonstrated the potential of SCX sample preparation for the determination of 19BPs. The developed procedure may be extended to the analysis of other red wine molecules or to other analytical methods where anthocyanins may interfere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles as sorbents for the analysis of sodium benzoate in beverages.

    PubMed

    Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin

    2017-01-01

    In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A matrix solid-phase dispersion method for the extraction of seven pesticides from mango and papaya.

    PubMed

    Navickiene, Sandro; Aquino, Adriano; Bezerra, Débora Santos Silva

    2010-10-01

    A simple and effective extraction method based on matrix solid-phase dispersion was developed to determine trichlorfon, pyrimethanil, methyl parathion, tetraconazole, thiabendazole, imazalil, and tebuconazole in papaya and mango using gas chromatography-mass spectrometry with selected ion monitoring. Different parameters of the method were evaluated, such as type of solid-phase (silica-gel, neutral alumina, and Florisil), the amount of solid-phase, and eluent [dichloromethane, ethyl acetate-dichloromethane (4:1, 1:4, 1:1, 2:3, v/v)]. The best results were obtained using 2.0 g of mango or papaya, 3.0 g of silica as dispersant sorbent, and ethyl acetate-dichloromethane (1:1, v/v) as eluting solvent. The method was validated using mango and papaya samples fortified with pesticides at different concentration levels (0.05, 0.10, and 1.0 mg/kg). Average recoveries (4 replicates) ranged from 80% to 146%, with relative standard deviations between 1.0% and 28%. Detection and quantification limits for mango and papaya ranged from 0.01 to 0.03 mg/kg and 0.05 to 0.10 mg/kg, respectively. The proposed method was applied to the analysis of these compounds in commercial fruit samples from a local market (Aracaju/SE, Brazil), and residues of the pesticides were not detected on the samples.

  19. Soil chemical insights provided through vibrational spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Vibrational spectroscopy techniques provide a powerful approach to study environmental materials and processes. These multifunctional analysis tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and exam...

  20. Determination of acrylamide in brewed coffee and coffee powder using polymeric ionic liquid-based sorbent coatings in solid-phase microextraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Cagliero, Cecilia; Ho, Tien D; Zhang, Cheng; Bicchi, Carlo; Anderson, Jared L

    2016-06-03

    This study describes a simple and rapid sampling method employing a polymeric ionic liquid (PIL) sorbent coating in direct immersion solid-phase microextraction (SPME) for the trace-level analysis of acrylamide in brewed coffee and coffee powder. The crosslinked PIL sorbent coating demonstrated superior sensitivity in the extraction of acrylamide compared to all commercially available SPME coatings. A spin coating method was developed to evenly distribute the PIL coating on the SPME support and reproducibly produce fibers with a large film thickness. Ninhydrin was employed as a quenching reagent during extraction to inhibit the production of interfering acrylamide. The PIL fiber produced a limit of quantitation for acrylamide of 10μgL(-1) and achieved comparable results to the ISO method in the analysis of six coffee powder samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Method development for the analysis of 1,4-dioxane in drinking water using solid-phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Grimmett, Paul E; Munch, Jean W

    2009-01-01

    1,4-Dioxane has been identified as a probable human carcinogen and an emerging contaminant in drinking water. The United States Environmental Protection Agency's (U.S. EPA) National Exposure Research Laboratory (NERL) has developed a method for the analysis of 1,4-dioxane in drinking water at ng/L concentrations. The method consists of an activated carbon solid-phase extraction of 500-mL or 100-mL water samples using dichloromethane as the elution solvent. The extracts are analyzed by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. In the NERL laboratory, recovery of 1,4-dioxane ranged from 94-110% in fortified laboratory reagent water and recoveries of 96-102% were demonstrated for fortified drinking water samples. The relative standard deviations for replicate analyses were less than 6% at concentrations exceeding the minimum reporting level.

  2. A solid colorimetric sensor for the analysis of amphetamine-like street samples.

    PubMed

    Argente-García, A; Jornet-Martínez, N; Herráez-Hernández, R; Campíns-Falcó, P

    2016-11-02

    A solid sensor obtained by embedding 1,2-naphthoquinone-4-sulfonate (NQS) into polydimethylsiloxane/tetraethylortosilicate/silicon dioxide nanoparticles composite has been developed to identify and determine amphetamine (AMP), methamphetamine (MAMP), 3,4-methylenedioxymetamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA). The analytes are derivatized inside the composite for 10 min to create a colored product which can be then quantified by measuring the diffuse reflectance or the color intensity after processing the digitalized image. Satisfactory limits of detection (0.002-0.005 g mL -1 ) and relative standard deviations (<10%) have been achieved. The proposed kit has been successfully validated and applied to the analysis of amphetamine-like drugs street samples. The kit allows the in-situ screening of the mentioned illicit drugs owing to its simplicity, rapidity and portability, with excellent sensor stability and at a very low-cost. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Experimental and Numerical Characterization of Polymer Nanocomposites for Solid Rocket Motor Internal Insulation

    DTIC Science & Technology

    2006-09-30

    Nanophase, Thermoplastic Elastomer, EPDM Rubber , Surface Modified MMT Clay, Carbon Nanofibers 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT U...diene rubber ( EPDM ) is the baseline insulation material for solid rocket motor cases. A novel class of insulation materials was developed by the Air...Figure 1. Upon analysis of the control sample, it was observed that the EPDM rubber was totally burned forming a small amount of char, which was easily

  4. Compact near-IR and mid-IR cavity ring down spectroscopy device

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston (Inventor)

    2011-01-01

    This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.

  5. Determination of arsenic species in solid matrices utilizing supercritical fluid extraction coupled with gas chromatography after derivatization with thioglycolic acid n-butyl ester.

    PubMed

    Wang, Zhifeng; Cui, Zhaojie

    2016-12-01

    A method using derivatization and supercritical fluid extraction coupled with gas chromatography was developed for the analysis of dimethylarsinate, monomethylarsonate and inorganic arsenic simultaneously in solid matrices. Thioglycolic acid n-butyl ester was used as a novel derivatizing reagent. A systematic discussion was made to investigate the effects of pressure, temperature, flow rate of the supercritical CO 2 , extraction time, concentration of the modifier, and microemulsion on extraction efficiency. The application for real environmental samples was also studied. Results showed that thioglycolic acid n-butyl ester was an effective derivatizing reagent that could be applied for arsenic speciation. Using methanol as modifier of the supercritical CO 2 can raise the extraction efficiency, which can be further enhanced by adding a microemulsion that contains Triton X-405. The optimum extraction conditions were: 25 MPa, 90°C, static extraction for 10 min, dynamic extraction for 25 min with a flow rate of 2.0 mL/min of supercritical CO 2 modified by 5% v/v methanol and microemulsion. The detection limits of dimethylarsinate, monomethylarsonate, and inorganic arsenic in solid matrices were 0.12, 0.26, and 1.1 mg/kg, respectively. The optimized method was sensitive, convenient, and reliable for the extraction and analysis of different arsenic species in solid samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Field Analysis of Polychlorinated Biphenyls (PCBs) in Soil Using Solid-Phase Microextraction (SPME) and a Portable Gas Chromatography-Mass Spectrometry System.

    PubMed

    Zhang, Mengliang; Kruse, Natalie A; Bowman, Jennifer R; Jackson, Glen P

    2016-05-01

    An expedited field analysis method was developed for the determination of polychlorinated biphenyls (PCBs) in soil matrices using a portable gas chromatography-mass spectrometry (GC-MS) instrument. Soil samples of approximately 0.5 g were measured with a portable scale and PCBs were extracted by headspace solid-phase microextraction (SPME) with a 100 µm polydimethylsiloxane (PDMS) fiber. Two milliliters of 0.2 M potassium permanganate and 0.5 mL of 6 M sulfuric acid solution were added to the soil matrices to facilitate the extraction of PCBs. The extraction was performed for 30 min at 100 ℃ in a portable heating block that was powered by a portable generator. The portable GC-MS instrument took less than 6 min per analysis and ran off an internal battery and helium cylinder. Six commercial PCB mixtures, Aroclor 1016, 1221, 1232, 1242, 1248, 1254, and 1260, could be classified based on the GC chromatograms and mass spectra. The detection limit of this method for Aroclor 1260 in soil matrices is approximately 10 ppm, which is sufficient for guiding remediation efforts in contaminated sites. This method was applicable to the on-site analysis of PCBs with a total analysis time of 37 min per sample. However, the total analysis time could be improved to less than 7 min per sample by conducting the rate-limiting extraction step for different samples in parallel. © The Author(s) 2016.

  7. The value of mutational profiling of the cytocentrifugation supernatant fluid from fine-needle aspiration of pancreatic solid mass lesions.

    PubMed

    Deftereos, Georgios; Finkelstein, Sydney D; Jackson, Sara A; Ellsworth, Eric M G; Krishnamurti, Uma; Liu, Yulin; Silverman, Jan F; Binkert, Candy R; Ujevich, Beth A; Mohanty, Alok

    2014-04-01

    Fine-needle aspiration (FNA) of pancreatic solid masses can be significantly impacted by sampling variation. Molecular analysis of tumor DNA can be an aid for more definitive diagnosis. The aim of this study was to evaluate how molecular analysis of the cell-free cytocentrifugation supernatant DNA can help reduce sampling variability and increase diagnostic yield. Twenty-three FNA smears from pancreatic solid masses were performed. Remaining aspirates were rinsed for preparation of cytocentrifuged slides or cell blocks. DNA was extracted from supernatant fluid and assessed for DNA quantity spectrophotometrically and for amplifiability by quantitative PCR (qPCR). Supernatants with adequate DNA were analyzed for mutations using PCR/capillary electrophoresis for a broad panel of markers (KRAS point mutation by sequencing, microsatellite fragment analysis for loss of heterozygosity (LOH) of 16 markers at 1p, 3p, 5q, 9p, 10q, 17p, 17q, 21q, and 22q). In selected cases, microdissection of stained cytology smears and/or cytocentrifugation cellular slides were analyzed and compared. In all, 5/23 samples cytologically confirmed as adenocarcinoma showed detectable mutations both in the microdissected slide-based cytology cells and in the cytocentrifugation supernatant. While most mutations detected were present in both microdissected slides and supernatant fluid specimens, the latter showed additional mutations supporting greater sensitivity for detecting relevant DNA damage. Clonality for individual marker mutations was higher in the supernatant fluid than in microdissected cells. Cytocentrifugation supernatant fluid contains levels of amplifiable DNA suitable for mutation detection and characterization. The finding of additional detectable mutations at higher clonality indicates that supernatant fluid may be enriched with tumor DNA. Molecular analysis of the supernatant fluid could serve as an adjunct method to reduce sampling variability and increase diagnostic yield, especially in cases with a high clinical suspicion for malignancy and limited number of atypical cells in the smears.

  8. A Convenient Method for Extraction and Analysis with High-Pressure Liquid Chromatography of Catecholamine Neurotransmitters and Their Metabolites.

    PubMed

    Xie, Li; Chen, Liqin; Gu, Pan; Wei, Lanlan; Kang, Xuejun

    2018-03-01

    The extraction and analysis of catecholamine neurotransmitters in biological fluids is of great importance in assessing nervous system function and related diseases, but their precise measurement is still a challenge. Many protocols have been described for neurotransmitter measurement by a variety of instruments, including high-pressure liquid chromatography (HPLC). However, there are shortcomings, such as complicated operation or hard-to-detect multiple targets, which cannot be avoided, and presently, the dominant analysis technique is still HPLC coupled with sensitive electrochemical or fluorimetric detection, due to its high sensitivity and good selectivity. Here, a detailed protocol is described for the pretreatment and detection of catecholamines with high pressure liquid chromatography with electrochemical detection (HPLC-ECD) in real urine samples of infants, using electrospun composite nanofibers composed of polymeric crown ether with polystyrene as adsorbent, also known as the packed-fiber solid phase extraction (PFSPE) method. We show how urine samples can be easily precleaned by a nanofiber-packed solid phase column, and how the analytes in the sample can be rapidly enriched, desorbed, and detected on an ECD system. PFSPE greatly simplifies the pretreatment procedures for biological samples, allowing for decreased time, expense, and reduction of the loss of targets. Overall, this work illustrates a simple and convenient protocol for solid-phase extraction coupled to an HPLC-ECD system for simultaneous determination of three monoamine neurotransmitters (norepinephrine (NE), epinephrine (E), dopamine (DA)) and two of their metabolites (3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC)) in infants' urine. The established protocol was applied to assess the differences of urinary catecholamines and their metabolites between high-risk infants with perinatal brain damage and healthy controls. Comparative analysis revealed a significant difference in urinary MHPG between the two groups, indicating that the catecholamine metabolites may be an important candidate marker for early diagnosis of cases at risk for brain damage in infants.

  9. High-sensitivity ESCA instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, R.D.; Herglotz, H.K.; Lee, J.D.

    1973-01-01

    A new electron spectroscopy for chemical analysis (ESCA) instrument has been developed to provide high sensitivity and efficient operation for laboratory analysis of composition and chemical bonding in very thin surface layers of solid samples. High sensitivity is achieved by means of the high-intensity, efficient x-ray source described by Davies and Herglotz at the 1968 Denver X-Ray Conference, in combination with the new electron energy analyzer described by Lee at the 1972 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. A sample chamber designed to provide for rapid introduction and replacement of samples has adequate facilities for various sample treatmentsmore » and conditiouing followed immediately by ESCA analysis of the sample. Examples of application are presented, demonstrating the sensitivity and resolution achievable with this instrument. Its usefulness in trace surface analysis is shown and some chemical shifts'' measured by the instrument are compared with those obtained by x-ray spectroscopy. (auth)« less

  10. Refractometer assessment of colostral and serum IgG and milk total solids concentrations in dairy cattle

    PubMed Central

    2014-01-01

    Background Estimation of the quantity of colostral IgG or serum IgG absorbed following ingestion of colostrum by calves is essential for monitoring the effectiveness of colostrum feeding practices on dairy farms. Milk total solids concentrations determination is a critical part of quality assessment of nonsaleable whole milk prior to feeding to calves. To date, on-farm methods to assess colostral IgG, serum IgG or milk total solids concentrations have been performed separately with various instruments. The objective of this study was to evaluate the diagnostic performance of a single electronic, hand-held refractometer for assessing colostral and serum IgG concentrations and milk total solids in dairy cattle. Colostral IgG, serum IgG and milk total solids concentrations were determined by the refractometer. Corresponding analysis of colostral and serum IgG concentrations were determined by radial immunodiffusion (RID) while milk total solids were determined by spectrophotometry. Sensitivity and specificity of the refractometer for colostrum and serum samples were calculated as determined by RID. Sensitivity and specificity of the refractometer for milk samples was calculated as determined by spectrophotometry. Results The sensitivity of the refractometer was 1 for colostral IgG, serum IgG and milk total solids determinations. Specificity of the refractometer was 0.66, 0.24 and 0 for colostral IgG, serum IgG and milk total solids determinations, respectively. The refractometer underestimated colostral IgG, serum IgG and milk total solids concentrations compared to the concentrations determined by RID or spectrophotometry. Conclusions The refractometer was an acceptable, rapid, convenient on-farm method for determining colostral IgG and milk total solids. The refractometer was not an acceptable method for determination of serum IgG concentrations as it severely underestimated the serum IgG concentrations. PMID:25125217

  11. Comparability of suspended-sediment concentration and total suspended-solids data for two sites on the L'Anguille River, Arkansas, 2001 to 2003

    USGS Publications Warehouse

    Galloway, Joel M.; Evans, Dennis A.; Green, W. Reed

    2005-01-01

    Suspended-sediment concentration and total suspended solids data collected with automatic pumping samplers at the L'Anguille River near Colt and the L'Anguille River at Palestine, Arkansas, August 2001 to October 2003 were compared using ordinary least squares regression analyses to determine the relation between the two datasets for each of the two sites. The purpose of this report is to describe the suspended-sediment concentration and total suspended-solids data and examine the comparability of the two datasets for each site. Suspended-sediment concentration and total suspended solids data for the L'Anguille River varied spatially and temporally from August 2001 to October 2003. The site at the L'Anguille River at Palestine represents a larger portion of the L'Anguille River Basin than the site near Colt, and generally had higher median suspended-sediment concentration and total suspended solids and greater ranges in values. The differences between suspended-sediment concentration and total suspended solids data for the L'Anguille River near Colt appeared inversely related to streamflow and not related to time. The relation between suspended-sediment concentration and total suspended solids at the L'Anguille River at Palestine was more variable than at Colt and did not appear to have a relation with flow or time. The relation between suspended-sediment concentration and total suspended solids for the L'Anguille River near Colt shows that total suspended solids increased proportionally as suspended-sediment concentration increased. However, the relation between suspended-sediment concentration and total suspended solids for the L'Anguille River at Palestine showed total suspended solids increased less proportionally as suspended-sediment concentration increased compared to the L'Anguille River near Colt. Differences between the two analytical methods may partially explain differences between the suspended-sediment concentration and total suspended solids data at the two sites. Total suspended solids are analyzed by removing an aliquot of the original sample for further analysis, and suspended-sediment concentrations are analyzed using all sediment and the total mass of the sample. At the L'Anguille River at Palestine another source of variability in the two data sets could have been the location of the automatic pumping sampler intake. The intake was located at a point in the stream cross-section that was subject to sedimentation, which may have resulted in positive sample bias.

  12. Molecularly imprinted solid-phase extraction in the analysis of agrochemicals.

    PubMed

    Yi, Ling-Xiao; Fang, Rou; Chen, Guan-Hua

    2013-08-01

    The molecular imprinting technique is a highly predeterminative recognition technology. Molecularly imprinted polymers (MIPs) can be applied to the cleanup and preconcentration of analytes as the selective adsorbent of solid-phase extraction (SPE). In recent years, a new type of SPE has formed, molecularly imprinted polymer solid-phase extraction (MISPE), and has been widely applied to the extraction of agrochemicals. In this review, the mechanism of the molecular imprinting technique and the methodology of MIP preparations are explained. The extraction modes of MISPE, including offline and online, are discussed, and the applications of MISPE in the analysis of agrochemicals such as herbicides, fungicides and insecticides are summarized. It is concluded that MISPE is a powerful tool to selectively isolate agrochemicals from real samples with higher extraction and cleanup efficiency than commercial SPE and that it has great potential for broad applications.

  13. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps and human health hazards associated with uranium exploration and mining, Red, White, and Fry Canyons, southeastern Utah, 2007

    USGS Publications Warehouse

    Beisner, Kimberly R.; Marston, Thomas M.; Naftz, David L.; Snyder, Terry; Freeman, Michael L.

    2010-01-01

    During May, June, and July 2007, 58 solid-phase samples were collected from abandoned uranium mine waste dumps, background sites, and adjacent streambeds in Red, White, and Fry Canyons in southeastern Utah. The objectives of this sampling program were to (1) assess the nonpoint-source chemical loading potential to ephemeral and perennial drainage basins from uranium waste dumps and (2) assess potential effects on human health due to recreational activities on and around uranium waste dumps on Bureau of Land Management property. Uranium waste-dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for major and trace elements at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah. A subset of the solid-phase samples also were digested with strong acids and analyzed for major ions and trace elements at the U.S. Geological Survey Geologic Division Laboratory in Denver, Colorado. For the initial ranking of chemical loading potential for uranium waste dumps, results of leachate analyses were compared with existing aquatic-life and drinking-water-quality standards. To assess potential effects on human health, solid-phase digestion values for uranium were compared to soil screening levels (SSL) computed using the computer model RESRAD 6.5 for a probable concentration of radium. One or more chemical constituents exceeded aquatic life and drinking-water-quality standards in approximately 64 percent (29/45) of the leachate samples extracted from uranium waste dumps. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were located in Red Canyon. Approximately 69 percent (31/45) of the strong acid digestible soil concentration values were greater than a calculated SSL. Uranium waste dump sites with elevated leachate and total digestible concentrations may need to be further investigated to determine the most appropriate remediation method.

  14. Evaluation of Solid Rocket Motor Component Data Using a Commercially Available Statistical Software Package

    NASA Technical Reports Server (NTRS)

    Stefanski, Philip L.

    2015-01-01

    Commercially available software packages today allow users to quickly perform the routine evaluations of (1) descriptive statistics to numerically and graphically summarize both sample and population data, (2) inferential statistics that draws conclusions about a given population from samples taken of it, (3) probability determinations that can be used to generate estimates of reliability allowables, and finally (4) the setup of designed experiments and analysis of their data to identify significant material and process characteristics for application in both product manufacturing and performance enhancement. This paper presents examples of analysis and experimental design work that has been conducted using Statgraphics®(Registered Trademark) statistical software to obtain useful information with regard to solid rocket motor propellants and internal insulation material. Data were obtained from a number of programs (Shuttle, Constellation, and Space Launch System) and sources that include solid propellant burn rate strands, tensile specimens, sub-scale test motors, full-scale operational motors, rubber insulation specimens, and sub-scale rubber insulation analog samples. Besides facilitating the experimental design process to yield meaningful results, statistical software has demonstrated its ability to quickly perform complex data analyses and yield significant findings that might otherwise have gone unnoticed. One caveat to these successes is that useful results not only derive from the inherent power of the software package, but also from the skill and understanding of the data analyst.

  15. Solid waste deposits as a significant source of contaminants of emerging concern to the aquatic and terrestrial environments - a developing country case study from Owerri, Nigeria.

    PubMed

    Arukwe, Augustine; Eggen, Trine; Möder, Monika

    2012-11-01

    In developing countries, there are needs for scientific basis to sensitize communities on the problems arising from improper solid waste deposition and the acute and long-term consequences for areas receiving immobilized pollutants. In Nigeria, as in many other African countries, solid waste disposal by way of open dumping has been the only management option for such wastes. Herein, we have highlighted the challenges of solid waste deposit and management in developing countries, focusing on contaminants of emerging concern and leaching into the environment. We have analyzed sediments and run-off water samples from a solid waste dumping site in Owerri, Nigeria for organic load and compared these with data from representative world cities. Learning from previous incidents, we intend to introduce some perspective for awareness of contaminants of emerging concerns such as those with potential endocrine disrupting activities in wildlife and humans. Qualitative and quantitative data obtained by gas chromatography and mass spectrometric analysis (GC-MS) provide an overview on lipophilic and semi-polar substances released from solid waste, accumulated in sediments and transported via leachates. The chromatograms of the full scan analyses of the sediment extracts clearly point to contamination related to heavy oil. The homologous series of n-alkanes with chain lengths ranging between C16 and C30, as well as detected polyaromatic hydrocarbon (PAH) compounds such as anthracene, phenanthrene, fluoranthene and pyrene support the assumption that diesel fuel or high boiling fractions of oil are deposited on the site. Targeted quantitative analysis for selected compounds showed high concentration of substances typically released from man-made products such as plastics, textiles, household and consumer products. Phthalate, an integral component of plastic products, was the dominant compound group in all sediment samples and run-off water samples. Technical nonylphenols (mixture of isomers), metabolites of non-ionic surfactants (nonylphenol-polyethoxylates), UV-filter compound ethyl methoxy cinnamate (EHMC) and bisphenol A (BPA) were particularly determined in the sediment samples at high μg/kg dry weight concentration. Measuring contaminants in such areas will help in increasing governmental, societal and industrial awareness on the extent and seriousness of the contamination both at waste disposal sites and surrounding terrestrial and aquatic environments. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Report: new guidelines for characterization of municipal solid waste: the Portuguese case.

    PubMed

    da Graça Madeira Martinho, Maria; Silveira, Ana Isabel; Fernandes Duarte Branco, Elsa Maria

    2008-10-01

    This report proposes a new set of guidelines for the characterization of municipal solid waste. It is based on an analysis of reference methodologies, used internationally, and a case study of Valorsul (a company that handles recovery and treatment of solid waste in the North Lisbon Metropolitan Area). In particular, the suggested guidelines present a new definition of the waste to be analysed, change the sampling unit and establish statistical standards for the results obtained. In these new guidelines, the sampling level is the waste collection vehicle and contamination and moisture are taken into consideration. Finally, focus is on the quality of the resulting data, which is essential for comparability of data between countries. These new guidelines may also be applicable outside Portugal because the methodology includes, besides municipal mixed waste, separately collected fractions of municipal waste. They are a response to the need for information concerning Portugal (e.g. Eurostat or OECD inquiries) and follow European Union municipal solid waste management policies (e.g. packaging waste recovery and recycling targets and the reduction of biodegradable waste going to landfill).

  17. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  18. Application of micro-solid-phase extraction for the on-site extraction of heterocyclic aromatic amines in seawater.

    PubMed

    Basheer, Chanbasha

    2018-04-01

    An efficient on-site extraction technique to determine carcinogenic heterocyclic aromatic amines in seawater has been reported. A micro-solid-phase extraction device placed inside a portable battery-operated pump was used for the on-site extraction of seawater samples. Before on-site applications, parameters that influence the extraction efficiency (extraction time, type of sorbent materials, suitable desorption solvent, desorption time, and sample volume) were investigated and optimized in the laboratory. The developed method was then used for the on-site sampling of heterocyclic aromatic amines determination in seawater samples close to distillation plant. Once the on-site extraction completed, the small extraction device with the analytes was brought back to the laboratory for analysis using high-performance liquid chromatography with fluorescence detection. Based on the optimized conditions, the calibration curves were linear over the concentration range of 0.05-20 μg/L with correlation coefficients up to 0.996. The limits of detection were 0.004-0.026 μg/L, and the reproducibility values were between 1.3 and 7.5%. To evaluate the extraction efficiency, a comparison was made with conventional solid-phase extraction and it was applied to various fortified real seawater samples. The average relative recoveries obtained from the spiked seawater samples varied in the range 79.9-95.2%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fast analysis of glycosides based on HKUST-1-coated monolith solid-phase microextraction and direct analysis in real-time mass spectrometry.

    PubMed

    Li, Xianjiang; Wang, Xin; Ma, Wen; Ai, Wanpeng; Bai, Yu; Ding, Li; Liu, Huwei

    2017-04-01

    Glycosides are a kind of highly important natural aromatic precursors in tobacco leaves. In this study, a novel HKUST-1-coated monolith dip-it sampler was designed for the fast and sensitive analysis of trace glycosides using direct analysis in real-time mass spectrometry. This device was prepared in two steps: in situ polymerization of monolith in a glass capillary of dip-it and layer-by-layer growth of HKUST-1 on the surface of monolith. Sufficient extraction was realized by immersing the tip to solution and in situ desorption was carried out by plasma direct analysis in real time. Compared with traditional solid-phase microextraction protocols, sample desorption was not needed anymore, and only extraction conditions were needed to be optimized in this method, including the gas temperature of direct analysis in real time, extraction time, and CH 3 COONH 4 additive concentration. This method enabled the simultaneous detection of six kinds of glycosides with the limits of detection of 0.02-0.05 μg/mL and the linear ranges covering two orders of magnitude with the limits of quantitation of 0.05-0.1 μg/mL. Moreover, the developed method was applied for the glycosides analysis of three tobacco samples, which only took about 2 s for every sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sampling and analyte enrichment strategies for ambient mass spectrometry.

    PubMed

    Li, Xianjiang; Ma, Wen; Li, Hongmei; Ai, Wanpeng; Bai, Yu; Liu, Huwei

    2018-01-01

    Ambient mass spectrometry provides great convenience for fast screening, and has showed promising potential in analytical chemistry. However, its relatively low sensitivity seriously restricts its practical utility in trace compound analysis. In this review, we summarize the sampling and analyte enrichment strategies coupled with nine modes of representative ambient mass spectrometry (desorption electrospray ionization, paper vhspray ionization, wooden-tip spray ionization, probe electrospray ionization, coated blade spray ionization, direct analysis in real time, desorption corona beam ionization, dielectric barrier discharge ionization, and atmospheric-pressure solids analysis probe) that have dramatically increased the detection sensitivity. We believe that these advances will promote routine use of ambient mass spectrometry. Graphical abstract Scheme of sampling stretagies for ambient mass spectrometry.

  1. Acute and Chronic Toxicity of Soluble Fractions of Industrial Solid Wastes on Daphnia magna and Vibrio fischeri

    PubMed Central

    Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson

    2012-01-01

    Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE50,48 h = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method. PMID:22619632

  2. Acute and chronic toxicity of soluble fractions of industrial solid wastes on Daphnia magna and Vibrio fischeri.

    PubMed

    Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson

    2012-01-01

    Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE(50,48 h) = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE(50,30 min) = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.

  3. Ferroelectric and optical properties of `Ba-doped' new double perovskites

    NASA Astrophysics Data System (ADS)

    Parida, B. N.; Panda, Niranjan; Padhee, R.; Parida, R. K.

    2018-06-01

    Solid solution of Pb1.5Ba0.5BiNbO6 ceramic is explored here to obtain its ferroelectric and optical properties. The polycrystalline sample was prepared by a standard solid state reaction route. Room temperature XRD and FTIR spectra of the compound exhibit an appreciable change in its crystal structure of Pb2BiNbO6 on addition of 'Ba' in A site. The surface morphology of the gold-plated sintered pellet sample recorded by SEM exhibits a uniform distribution of small grains with well-defined grain boundaries. Detailed studies on the nature of polarization and variation of dielectric constant, tangent loss with temperature as well as frequency indicate the existence of Ferro-electricity in the sample. Using UV-Vis spectroscopy, the optical band gap of the studied sample has been estimated as 2.1 eV, which is useful for photo catalytic devices. Photoluminescence analysis of the powder sample shows a strong red photoluminescence with blue excitation, which is basically useful for LED.

  4. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry.

    PubMed

    Pan, Chensong; Xu, Songyun; Zou, Hanfa; Guo, Zhong; Zhang, Yu; Guo, Baochuan

    2005-02-01

    A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 microL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized.

  5. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion, Part II.

    PubMed

    Six, Karel; Berghmans, Hugo; Leuner, Christian; Dressman, Jennifer; Van Werde, Kristof; Mullens, Jules; Benoist, Luc; Thimon, Mireille; Meublat, Laurent; Verreck, Geert; Peeters, Jef; Brewster, Marcus; Van den Mooter, Guy

    2003-07-01

    This study was done to elucidate the physical and pharmaceutical properties of itraconazole-HPMC dispersions and the influence of water on the phase separation. Extrudates were prepared using a corotating twin-screw hot-stage extruder with fixed process parameters. Modulated-temperature differential scanning calorimetry (MTDSC) and DSC 111 were used to examine the mixing behavior of itraconazole and the carrier by evaluation of the glass transition region. High temperature diffuse reflectance infrared transform spectroscopy (HT-DRIFT) was performed to reveal interactions between itraconazole and HPMC. Dissolution was performed to investigate the pharmaceutical performance of the dispersions. Although the dissolution rate of itraconazole significantly increased, we found that the solid dispersions do not form a homogeneous system. A different picture was obtained depending on the way MTDSC analysis was performed, i.e., using open or closed sample pans. Water can evaporate in open pans, which allows itraconazole to interact with HPMC and leads to a partially mixed phase. Analysis in hermetically closed pans revealed a further phase separation as water remains on the sample and impedes the interaction between drug and polymer. Solid dispersions of itraconazole and HPMC do not form a homogeneous phase.

  6. The Influences of Stirring and Cow Manure Added on Biogas Production From Vegetable Waste Using Anaerobic Digester

    NASA Astrophysics Data System (ADS)

    Abdullah, N. O.; Pandebesie, E. S.

    2018-03-01

    Based on Indonesian Government Regulation number 18, 2008, solid waste management should be conducted from the source to minimize the amount of waste. The process includes the waste from domestic, commercial, and institution. This also includes in 3R program (reduce, reuse, and recycle). Vegetable waste from market is a potential material to produce biogas due to its chemical composition (hemi-cellulose, cellulose, and lignin) which transform the biomass to be the raw material of biogas. Acid substance of vegetable becomes an obstacle in process of producing biogas. There has to be buffer material which can improve the performance of biogas process. Cow manure is a material which can be easily obtained as buffer. This research used 24 biogas reactor in volume 6 L by batch method. Biogas volume is measured by checking the preferment in manometer. Methane measurement is conducted by using Gas Chromatography (GC) Hewlett Packard (HP-series 6890) in day 15 and 30. The research was started by sample characterization, sample test by total solid analysis, volatile solid, lignin, ratio C/N, ammonium, and ash. Analysis of pH, temperature, and biogas volume is conducted every day.

  7. Modified Sample Preparation Approach for the Determination of the Phenolic and Humic-Like Substances in Natural Organic Materials By the Folin Ciocalteu Method.

    PubMed

    Pontoni, Ludovico; Panico, Antonio; Matanò, Alessia; van Hullebusch, Eric D; Fabbricino, Massimiliano; Esposito, Giovanni; Pirozzi, Francesco

    2017-12-06

    A novel modification of the sample preparation procedure for the Folin-Ciocalteu colorimetric assay for the determination of total phenolic compounds in natural solid and semisolid organic materials (e.g., foods, organic solid waste, soils, plant tissues, agricultural residues, manure) is proposed. In this method, the sample is prepared by adding sodium sulfate as a solid diluting agent before homogenization. The method allows for the determination of total phenols (TP) in samples with high solids contents, and it provides good accuracy and reproducibility. Additionally, this method permits analyses of significant amounts of sample, which reduces problems related to heterogeneity. We applied this method to phenols-rich lignocellulosic and humic-like solids and semisolid samples, including rice straw (RS), peat-rich soil (PS), and food waste (FW). The TP concentrations measured with the solid dilution (SD) preparation were substantially higher (increases of 41.4%, 15.5%, and 59.4% in RS, PS and FW, respectively) than those obtained with the traditional method (solids suspended in water). These results showed that the traditional method underestimates the phenolic contents in the studied solids.

  8. Recovery of Picloram and 2,4-Dichlorophenoxyacetic Acid from Aqueous Samples by Reversed-Phase Solid-Phase Extraction

    Treesearch

    Martha J.M. Wells; Jerry L. Michael

    1987-01-01

    Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...

  9. Ground-based digital imagery for tree stem analysis

    Treesearch

    Neil Clark; Daniel L. Schmoldt; Randolph H. Wynne; Matthew F. Winn; Philip A. Araman

    2000-01-01

    In the USA, a subset of permanent forest sample plots within each geographic region are intensively measured to obtain estimates of tree volume and products. The detailed field measurements required for this type of sampling are both time consuming and error prone. We are attempting to reduce both of these factors with the aid of a commercially-available solid-state...

  10. ON-SITE SOLID-PHASE EXTRACTION AND LABORATORY ANALYSIS OF ULTRA-TRACE SYNTHETIC MUSKS IN MUNICIPAL SEWAGE EFFLUENT USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY IN THE FULL-SCAN MODE

    EPA Science Inventory

    Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are requ...

  11. Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: II. Determination of amphetamine in human urine samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    El-Beqqali, Aziza; Andersson, Lars I; Jeppsson, Amin Dadoun; Abdel-Rehim, Mohamed

    2017-09-15

    Amphetamine selective molecularly imprinted sol-gel polymer tablets, MIP-tablets, for solid-phase microextraction of biofluid samples were prepared. An acetonitrile solution of deuterated amphetamine template and silane precursor, 3-(propylmethacrylate) trimethoxysilane, was soaked into the pores of polyethylene tablet substrates and polymerized by an acid-catalysed sol-gel process. Application of the resultant MIP-tablets to extract amphetamine from human urine samples followed by LC-MS/MS analysis was investigated. The extraction protocol was optimised with respect to pH of sample, addition of sodium chloride, extraction time, desorption solvent and desorption time. The final analysis method determined amphetamine in human urine with a limit of detection (LOD) of 1.0ng/mL and a lower limit of quantification (LLOQ) of 5ng/mL. Validation demonstrated accuracy of the method was 91.0-104.0% and inter-assay precision was 4.8-8.5% (RSD). Extraction recovery was 80%. The MIP-tablets could be re-used and the same tablet could be employed for more than twenty extractions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influence of heating on the weight loss and mineral phase in MSWI ash: LOI of incineration ash

    NASA Astrophysics Data System (ADS)

    Yang, Shuo

    2017-04-01

    Loss on ignition (LOI) is a very common method for estimating the volatile species in solid sample. Normally, the measurement of LOI can be convenient and accurate, but for municipal solid waste incineration (MSWI) ash, the process may become intricate due to the complexity of the sample. In the incineration ash, there exist various phases, such as mineral, metal, organic and glass. The reaction and transformation of some materials during heating will influence the measurement. 5 incineration ash samples were selected and tested in this study. LOI content was basically measured at high (850°C) and relatively low (440°C) temperatures. The comparison between these two measurements showed a large difference. X-ray diffraction (XRD) and thermal analysis (TG-DTA) were carried out to investigate the mineral changes and weight losses with different ignition temperatures. The mineralogical analysis suggests that the decomposition of hydrate and carbonate phases cannot be neglected for LOI measurement of incineration. A long-time heating under relatively lower temperature (400∼450°C) compared with soil sample measurement (≥500°C) was recommended by this study.

  13. Self-Normalized Photoacoustic Technique for the Quantitative Analysis of Paper Pigments

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Gómez y Gómez, Y. M.; Bautista-Ramírez, M. E.; Pescador-Rojas, J. A.; Martínez-Pérez, L.; Lomelí-Mejía, P. A.

    2018-03-01

    A self-normalized photoacoustic technique was applied for quantitative analysis of pigments embedded in solids. Paper samples (filter paper, Whatman No. 1), attached with the pigment: Direct Fast Turquoise Blue GL, were used for this study. This pigment is a blue dye commonly used in industry to dye paper and other fabrics. The optical absorption coefficient, at a wavelength of 660 nm, was measured for this pigment at various concentrations in the paper substrate. It was shown that Beer-Lambert model for light absorption applies well for pigments in solid substrates and optical absorption coefficients as large as 220 cm^{-1} can be measured with this photoacoustic technique.

  14. A new carbon-based magnetic material for the dispersive solid-phase extraction of UV filters from water samples before liquid chromatography-tandem mass spectrometry analysis.

    PubMed

    Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-07-01

    Magnetic solid-phase extraction is one of the most promising new extraction methods for liquid samples before ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Several types of materials, including carbonaceous ones, have been prepared for this purpose. In this paper, for the first time, the preparation, characterization, and sorption capability of Fe 3 O 4 -graphitized carbon black (mGCB) composite toward some compounds of environmental interest were investigated. The synthesized mGCB consisted of micrometric GCB particles with 55 m 2  g -1 surface area bearing some carbonyl and hydroxyl functionalities and the surface partially decorated by Fe 3 O 4 microparticles. The prepared mGCB was firstly tested as an adsorbent for the extraction from surface water of 50 pollutants, including estrogens, perfluoroalkyl compounds, UV filters, and quinolones. The material showed good affinity to many of the tested compounds, except carboxylates and glucoronates; however, some compounds were difficult to desorb. Ten UV filters belonging to the chemical classes of benzophenones and p-aminobenzoates were selected, and parameters were optimized for the extraction of these compounds from surface water before UHPLC-MS/MS determination. Then, the method was validated in terms of linearity, trueness, intra-laboratory precision, and detection and quantification limits. In summary, the method performance (trueness, expressed as analytical recovery, 85-114%; RSD 5-15%) appears suitable for the determination of the selected compounds at the level of 10-100 ng L -1 , with detection limits in the range of 1-5 ng L -1 . Finally, the new method was compared with a published one, based on conventional solid-phase extraction with GCB, showing similar performance in real sample analysis. Graphical Abstract Workflow of the analytical method based on magnetic solid-phase extraction followed by LC-MS/MS determination.

  15. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas; summary and analysis of water-quality data for the basic-fixed-site network, 1993-95

    USGS Publications Warehouse

    Healy, D.F.

    1997-01-01

    The Rio Grande Valley study unit of the U.S. Geological Survey National Water-Quality Assessment Program collected monthly water- quality samples at a network of surface-water sites from April 1993 through September 1995. This basic-fixed-site network consisted of nine main-stem sites on the Rio Grande, five sites on tributaries of the Rio Grande, two sites on streams in the Rio Grande Valley study unit that are not directly tributary to the Rio Grande, and one site on a conveyance channel. During each monthly sampling, field properties were measured and samples were collected for the analysis of dissolved solids, major constituents, nutrients, selected trace elements, and suspended-sediment concentrations. During selected samplings, supplemental samples were collected for the analysis of additional trace elements, organic carbon, and/or pesticides. Spatial variations of dissolved-solids, major-constituent, and nutrient data were analyzed. The report presents summary statistics for the monthly water-quality data by sampling site and background information on the drainage basin upstream from each site. Regression equations are presented that relate dissolved-solids, major-constituent, and nutrient concentrations to streamflow, selected field properties, and time. Median instantaneous streamflow at each basic-fixed site ranged from 1.4 to 1,380 cubic feet per second. Median specific conductance at each basic-fixed site ranged from 84 to 1,680 microsiemens per centimeter at 25 degrees Celsius, and median pH values ranged from 7.8 to 8.5. The water sampled at the basic-fixed sites generally was well oxygenated and had a median dissolved-oxygen percent of saturation range from 89 to 108. With the exception of Rio Grande above mouth of Trinchera Creek, near Lasauses, Colorado, dissolved-solids concentrations in the main stem of the Rio Grande generally increased in a downstream direction. This increase is from natural sources such as ground-water inflow and evapotranspiration and from anthropogenic sources such as irrigation- return flows, urban runoff, and wastewater-treatment plant discharges. The smallest median dissolved-solids concentration detected at a basic- fixed site was 58 milligrams per liter and the largest was 1,240 milligrams per liter. The spatial distribution of calcium, magnesium, sodium, sulfate, chloride, and fluoride was similar to the spatial distribution of dissolved solids. The spatial distribution of potassium and bicarbonate varied slightly from that of dissolved solids. Median silica concentrations generally decreased in a downstream direction. Of all cations, calcium and sodium had the largest concentrations at most basic-fixed sites. Bicarbonate and sulfate were the anions having the largest concentrations at most sites. The largest median silica concentration was at Rito de los Frijoles in Bandelier National Monument, New Mexico, where silica composed approximately 50 percent of the dissolved solids. The largest concentrations and largest median concentrations of dissolved-nutrient analytes were detected at Santa Fe River above Cochiti Lake, New Mexico, and Rio Grande at Isleta, New Mexico. The relatively large dissolved-nutrient concentrations at these sites probably were due to discharges from wastewater-treatment plants and urban runoff. The largest concentrations and largest median concentrations of total ammonia plus organic nitrogen and total phosphorus were detected at Rio Puerco near Bernardo, New Mexico. The largest concentrations of these nutrients at this site were associated with runoff from summer thunderstorms. Dissolved-iron concentrations ranged from censored concentrations to 914 micrograms per liter. Median dissolved-iron concentrations ranged from 3 to 160 micrograms per liter. Dissolved-manganese concentrations ranged from censored concent

  16. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes,more » non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.« less

  17. ANALYSIS OF GEOTHERMAL WASTES FOR HAZARDOUS COMPONENTS

    EPA Science Inventory

    Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous properties. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nev...

  18. Determination of airborne carbonyls: comparison of a thermal desorption/GC method with the standard DNPH/HPLC method.

    PubMed

    Ho, Steven Sai Hang; Yu, Jian Zhen

    2004-02-01

    The standard method for the determination of gaseous carbonyls is to collect carbonyls onto 2,4-dinitrophenyl hydrazine (DNPH) coated solid sorbent followed by solvent extraction of the solid sorbent and analysis of the derivatives using high-pressure liquid chromatography (HPLC). This paper describes a newly developed approach that involves collection of the carbonyls onto pentafluorophenyl hydrazine (PFPH) coated solid sorbents followed by thermal desorption and gas chromatographic (GC) analysis of the PFPH derivatives with mass spectrometric (MS) detection. Sampling tubes loaded with 510 nmol of PFPH on Tenax sorbent effectively collect gaseous carbonyls, including formaldehyde, acetaldehyde, propanal, butanal, heptanal, octanal, acrolein, 2-furfural, benzaldehyde, p-tolualdehyde, glyoxal, and methylglyoxal, at a flow rate of at least up to 100 mL/min. All of the tested carbonyls are shown to have method detection limits (MDLs) of subnanomoles per sampling tube, corresponding to air concentrations of <0.3 ppbv for a sampled volume of 24 L. These limits are 2-12 times lower than those that can be obtained using the DNPH/HPLC method. The improvement of MDLs is especially pronounced for carbonyls larger than formaldehyde and acetaldehyde. The PFPH/GC method also offers better peak separation and more sensitive and specific detection through the use of MS detection. Comparison studies on ambient samples and kitchen exhaust samples have demonstrated that the two methods do not yield systematic differences in concentrations of the carbonyls that are above their respective MDLs in both methods, including formaldehyde, acetaldehyde, acrolein, and butanal. The lower MDLs afforded by the PFPH/ GC method also enable the determination of a few more carbonyls in both applications.

  19. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    PubMed

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Preliminary evaluation of new polymer matrix for solid-phase extraction of nonylphenol from water samples.

    PubMed

    Guerreiro, António; Soares, Ana; Piletska, Elena; Mattiasson, Bo; Piletsky, Sergey

    2008-03-31

    Molecularly imprinted (MIP) and blank polymers with affinity for nonylphenol were designed using computational modelling. Chromatographic tests demonstrated higher affinity of imprinted polymers towards the template nonylphenol as compared with blank polymers. The performance of both polymers in solid-phase extraction was however very similar. Both blank and imprinted polymers appeared to be suitable for the removal and pre-concentration of nonylphenol from contaminated water samples with 99% efficiency of the recovery. The commercial resins PH(EC) (Biotage) and C18 (Varian) tested in the same conditions used for comparative purposes had recovery rate <84%. The polymer capacity for nonylphenol was 231 mg g(-1) for blank and 228 mg g(-1) for MIP. The synthesised materials can have significance for sample pre-concentration and environmental analysis of this class of compounds.

  1. Fabrication and characterization of biological tissue phantoms with embedded nanoparticles

    NASA Astrophysics Data System (ADS)

    Skaptsov, A. A.; Ustalkov, S. O.; Mohammed, A. H. M.; Savenko, O. A.; Novikova, A. S.; Kozlova, E. A.; Kochubey, V. I.

    2017-11-01

    Phantoms are imitations of biological tissue, which are used for modelling of the light propagation in biological tissues. Carrying out any biophysical experiments requires an indispensable constancy of the initial experiment conditions. The use of solid undegradable phantoms is the basis to obtain reliable reproducible experimental results. The fabrication of biological tissues phantoms containing high absorbance or fluorescence nanoparticles and corresponding to specific mechanical, optical properties is an actual task. This work describes development, fabrication and characterization of such solid tissue phantoms with embedded CdSe/ZnS quantum dots, gold and upconversion nanoparticles. Luminescence of samples with CdSe/ZnS quantum dots and upconversion nanoparticles were recorded. A sample of gold nanorods was analyzed using thermal gravimetric analysis. It can be concluded that the samples are well suited for experiments on laser thermolysis.

  2. Atmospheric pressure solid analysis probe coupled to quadrupole-time of flight mass spectrometry as a tool for screening and semi-quantitative approach of polycyclic aromatic hydrocarbons, nitro-polycyclic aromatic hydrocarbons and oxo-polycyclic aromatic hydrocarbons in complex matrices.

    PubMed

    Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina

    2015-01-01

    A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of dextromethorphan in human plasma samples.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Akbari-Adergani, Behrouz

    2011-04-01

    In this paper, a novel method is described for automated determination of dextromethorphan in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and dextromethorphan as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the extraction of dextromethorphan from human plasma samples. Various parameters affecting the extraction efficiency of the MIP cartridges were evaluated. The high selectivity of the sorbent coupled to the high performance liquid chromatographic system permitted a simple and rapid analysis of this drug in plasma samples with limits of detection (LOD) and quantification (LOQ) of 0.12 ng/mL and 0.35 ng/mL, respectively. The MIP selectivity was evaluated by analyzing of the dextromethorphan in presence of several substances with similar molecular structures and properties. Results from the HPLC analyses showed that the recoveries of dextromethorphan using MIP cartridges from human plasma samples in the range of 1-50 ng/mL were higher than 87%. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Pérez, Rosa Ana; Albero, Beatriz; Férriz, Macarena; Tadeo, José Luis

    2017-11-30

    Macrolides are one of the most commonly used families of antibiotics employed in human and veterinary treatment. These compounds are considered emerging contaminants with potential ecological and human health risks that could be present in surface water. This paper describes the development and application of a simple and efficient extraction procedure for the determination of tilmicosin; erythromycin, tylosin and erythromycin-H 2 O from water samples. Sample extraction was carried out using magnetic solid-phase extraction using oleate functionalized magnetic nanoparticles followed by LC-MS/MS analysis. The effects of several parameters on the extraction efficiency of MLs from water were evaluated. The recovery results obtained were >84% for most of the compounds, except for erytromycin. The LOD and LOQ values ranged from 11.5 to 26ngL -1 and from 34 to 77ngL -1 , respectively. The selected method was applied to monitor these contaminants in water samples from different sources. Tilmicosin and tylosin were not detected in any of the samples, but erythromycin and erythromycin-H 2 O were found in 50% of the surface water samples at levels from

  5. Rapid determination of 54 pharmaceutical and personal care products in fish samples using microwave-assisted extraction-Hollow fiber-Liquid/solid phase microextraction.

    PubMed

    Zhang, Yi; Guo, Wen; Yue, Zhenfeng; Lin, Li; Zhao, Fengjuan; Chen, Peijin; Wu, Weidong; Zhu, Hong; Yang, Bo; Kuang, Yanyun; Wang, Jiong

    2017-04-15

    In this paper, a simple, rapid, solvent-less and environmental friendliness microextraction method, microwave-assisted extraction-hollow fiber-liquid/solid phase microextraction (MAE-HF-L/SME), was developed for simultaneous extraction and enrichment of 54 trace hydrophilic/lipophilic pharmaceutical and personal care products (PPCPs) from fish samples. A solid-phase extraction material, solid-phase microextraction (SPME) fiber, was synthesized. The SPME fiber had a homogeneous, loose structure and good mechanical properties, and they exhibited a good adsorption capacity for most PPCPs selected. The material formed the basis for the method of MAE-HF-L/SME. A method of liquid chromatography-high resolution mass spectroscopy (LC-HRMS) for analysis of 54 PPCPs. Under optimal synthesis and extraction conditions, the limits of detection (LODs, n=3) and the limits of quantitation (LOQs, n=10) for the 54 PPCPs were between 0.01-0.50μg·kg -1 and 0.052.00μg·kg -1 , respectively. Percent recoveries and the relative standard deviations (RSDs) in spiked fish samples (n=6) were between 56.3%-119.9% and 0.3%-17.1%, respectively. The microextraction process of 54 PPCPs in MAE-HF-L/SME took approximately 12min. The method has a low matrix interference and high enrichment factor and may be applicable for determination of 54 different PPCPs in fish samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid.

    PubMed

    Santos, Juan E; Savioli, Gabriela B

    2015-11-01

    This paper presents an analysis of a model for the propagation of waves in a poroelastic solid saturated by a three-phase viscous, compressible fluid. The constitutive relations and the equations of motion are stated first. Then a plane wave analysis determines the phase velocities and attenuation coefficients of the four compressional waves and one shear wave that propagate in this type of medium. A procedure to compute the elastic constants in the constitutive relations is defined next. Assuming the knowledge of the shear modulus of the dry matrix, the other elastic constants in the stress-strain relations are determined by employing ideal gedanken experiments generalizing those of Biot's theory for single-phase fluids. These experiments yield expressions for the elastic constants in terms of the properties of the individual solid and fluids phases. Finally the phase velocities and attenuation coefficients of all waves are computed for a sample of Berea sandstone saturated by oil, gas, and water.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir

    Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersivemore » X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.« less

  8. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Sumithra Sivadas; Anitha, R.; Baskar, K.

    2016-05-23

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 °more » C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.« less

  9. Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Rico-Yuste, A; Walravens, J; Urraca, J L; Abou-Hany, R A G; Descalzo, A B; Orellana, G; Rychlik, M; De Saeger, S; Moreno-Bondi, M C

    2018-03-15

    Molecularly imprinted porous polymer microspheres selective to Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), were synthesized and applied to the extraction of both mycotoxins in food samples. The polymer was prepared using 4-vinylpiridine (VIPY) and methacrylamide (MAM) as functional monomers, ethylene glycol dimethacrylate (EDMA) as cross-linker and 3,8,9-trihydroxy-6H-dibenzo[b,d]pyran-6-one (S2) as AOH surrogate template. A molecularly imprinted solid phase extraction (MISPE) method has been optimized for the selective isolation of the mycotoxins from aqueous samples coupled to HPLC with fluorescence (λ ex =258nm; λ em =440nm) or MS/MS analysis. The MISPE method was validated by UPLC-MS/MS for the determination of AOH and AME in tomato juice and sesame oil based on the European Commission Decision 2002/657/EC. Method performance was satisfactory with recoveries from 92.5% to 106.2% and limits of quantification within the 1.1-2.8µgkg -1 range in both samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Classification of bacteria by simultaneous methylation-solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters.

    PubMed

    Lu, Yao; Harrington, Peter B

    2010-08-01

    Direct methylation and solid-phase microextraction (SPME) were used as a sample preparation technique for classification of bacteria based on fatty acid methyl ester (FAME) profiles. Methanolic tetramethylammonium hydroxide was applied as a dual-function reagent to saponify and derivatize whole-cell bacterial fatty acids into FAMEs in one step, and SPME was used to extract the bacterial FAMEs from the headspace. Compared with traditional alkaline saponification and sample preparation using liquid-liquid extraction, the method presented in this work avoids using comparatively large amounts of inorganic and organic solvents and greatly decreases the sample preparation time as well. Characteristic gas chromatography/mass spectrometry (GC/MS) of FAME profiles was achieved for six bacterial species. The difference between Gram-positive and Gram-negative bacteria was clearly visualized with the application of principal component analysis of the GC/MS data of bacterial FAMEs. A cross-validation study using ten bootstrap Latin partitions and the fuzzy rule building expert system demonstrated 87 +/- 3% correct classification efficiency.

  11. Rapid determination of the volatile components in tobacco by ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction with gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang

    2016-03-01

    An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Method for improving accuracy in full evaporation headspace analysis.

    PubMed

    Xie, Wei-Qi; Chai, Xin-Sheng

    2017-05-01

    We report a new headspace analytical method in which multiple headspace extraction is incorporated with the full evaporation technique. The pressure uncertainty caused by the solid content change in the samples has a great impact to the measurement accuracy in the conventional full evaporation headspace analysis. The results (using ethanol solution as the model sample) showed that the present technique is effective to minimize such a problem. The proposed full evaporation multiple headspace extraction analysis technique is also automated and practical, and which could greatly broaden the applications of the full-evaporation-based headspace analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review.

    PubMed

    Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C

    2016-01-28

    Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES PART II: LEACHING RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Reboul, S.

    2012-06-19

    The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitratemore » (NaNO{sub 3}), sodium nitrite (NaNO{sub 2}), gibbsite (Al(OH){sub 3}), hydrated sodium bicarbonate (Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O), and muscovite (KAl{sub 2}(AlSi{sub 3}O{sub 10})(OH){sub 2}). Based on the weight of solids remaining at the end of the test, the water leaching test results indicate 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and approximately 1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The oxalic acid leaching test result indicate approximately 34-47% of the solids in the four annulus samples will dissolve after three contacts with an approximately 3:1 volume of acid to solids at 45 C. The same sodium salts found in the water leaching test comprise the majority of dissolved material in the oxalic acid leaching test. However, the oxalic acid was somewhat more effective in dissolving radionuclides than the water leach. In contrast to the water leaching results, most constituents continued to dissolve during subsequent cycles of oxalic acid leaching. The somewhat higher dissolution found in the oxalic acid leaching test versus the water leaching test might be offset by the tendency of the oxalic acid solutions to take on a gel-like consistency. The filtered solids left behind after three oxalic acid contacts were sticky and formed large clumps after drying. These two observations could indicate potential processing difficulties with solutions and solids from oxalic acid leaching. The gel formation might be avoided by using larger volumes of the acid. Further testing would be recommended before using oxalic acid to dissolve the Tank 16H annulus waste to ensure no processing difficulties are encountered in the full scale process.« less

  15. Development and validation of a solid-phase extraction method coupled to liquid chromatography with fluorescence detection for the determination of fluoroquinolone residues in powdered infant formulae. Application to the analysis of samples from the Spanish and Latin American market.

    PubMed

    Rodriguez, E; Moreno-Bondi, M C; Marazuela, M D

    2008-10-31

    This paper describes a new method for the effective extraction, clean-up and chromatographic analysis of residues of four fluoroquinolones (ciprofloxacin, enrofloxacin, danofloxacin and sarafloxacin) in powdered infant formulae and follow-on preparations. Samples were reconstituted following the manufacturer's recommendations and treated with trichloroacetic acid in methanol 10% (w/v) for deproteinization. Two solid-phase extraction cartridges have been evaluated for sample clean-up and preconcentration, Strata Screen A and Strata X and the later provided the best recoveries for all the analytes tested. Chromatographic analysis has been carried out using a polar endcapped column (AQUA C(18)) and fluorescence detection, with lomefloxacin (LOME) as internal standard. Method validation has been performed according to European Commission Decision 2002/657/EC criteria, in terms of linearity, recovery, precision, specificity, decision limit (CC(alpha)) and detection capability (CC(beta)). Typical recoveries ranged between 70 and 110% at levels below and above the maximum residue limits of the target analytes in bovine milk, with an excellent intralab reproducibility (RSDs<7%). Matrix effects did not significantly affect method accuracy, as evidenced by analyzing different brands of milk. The method has been successfully applied to the analysis of 100 samples of infant and follow-on formulae of the Spanish and Latin American market, using LC-MS/MS as confirmatory technique.

  16. Methylxanthines: properties and determination in various objects

    NASA Astrophysics Data System (ADS)

    Andreeva, Elena Yu; Dmitrienko, Stanislava G.; Zolotov, Yurii A.

    2012-05-01

    Published data on the properties and determination of caffeine, theophylline, theobromine and some other methylxanthines in various objects are surveyed and described systematically. Different sample preparation procedures such as liquid extraction from solid matrices and liquid-liquid, supercritical fluid and solid-phase extraction are compared. The key methods of analysis including chromatography, electrophoresis, spectrometry and electrochemical methods are discussed. Examples of methylxanthine determination in plants, food products, energy beverages, pharmaceuticals, biological fluids and natural and waste waters are given. The bibliography includes 393 references.

  17. Analysis of volatile components from Melipona beecheii geopropolis from Southeast Mexico by headspace solid-phase microextraction.

    PubMed

    Torres-González, Ahira; López-Rivera, Paulina; Duarte-Lisci, Georgina; López-Ramírez, Ángel; Correa-Benítez, Adriana; Rivero-Cruz, J Fausto

    2016-01-01

    A head space solid-phase microextraction method combined with gas chromatography-mass spectrometry was developed and optimised to extract and analyse volatile compounds of Melipona beecheii geopropolis. Seventy-three constituents were identified using this technique in the sample of geopropolis collected. The main compounds detected include β-fenchene (14.53-15.45%), styrene (8.72-9.98%), benzaldehyde (7.44-7.82%) and the most relevant volatile components presents at high level in the geopropolis were terpenoids (58.17%).

  18. Fast determination of octinoxate and oxybenzone uv filters in swimming pool waters by gas chromatography/mass spectrometry after solid-phase microextraction.

    PubMed

    Yılmazcan, Ö; Kanakaki, C; Izgi, B; Rosenberg, E

    2015-07-01

    A fast gas chromatography/mass spectrometry method was developed and validated for the analysis of the potential endocrine disrupters octinoxate and oxybenzone in swimming pool water samples based on the solvent-free solid-phase microextraction technique. The low-pressure gas chromatography/mass spectrometry method used for the fast identification of UV filter substances was compared to a conventional method in terms of sensitivity and speed. The fast method proposed resulted in 2 min runs, leading to an eightfold decrease in the total analysis time and a sevenfold improvement in detection limits. The main parameters affecting the solid-phase microextraction process were also studied in detail and the optimized conditions were as follows: fiber coating, polyacrylate; extraction mode, direct immersion; extraction temperature, 25°C; sample volume, 5 mL; extraction time 45 min; pH 6.5. Under the optimized conditions, a linear response was obtained in the concentration range of 0.5-25 μg/L with correlation coefficients in the range 0.990-0.999. The limits of detection were 0.17-0.29 μg/L, and the recoveries were 80-83%. Combined method uncertainty was assessed and found to be less than 7% for both analytes for concentrations equal to or higher than 5 μg/L. Pool water samples were analyzed to demonstrate the applicability of the proposed method. Neither octinoxate nor oxybenzone were detected in the swimming pool water samples at concentrations above the respective limits of detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Solid tissue culture for cytogenetic analysis: a collaborative survey for the Association of Clinical Cytogeneticists.

    PubMed Central

    Rodgers, C S; Creasy, M R; Fitchett, M; Maliszewska, C T; Pratt, N R; Waters, J J

    1996-01-01

    AIMS: To survey the diagnostic service provided by UK laboratories for the culture of solid tissue samples (excluding tumours) and in particular to examine the variation in culture success rates and the problems of maternal cell overgrowth. METHODS: Twenty seven laboratories took part in a collaborative survey during 1992. Each laboratory submitted data on up to a maximum of 60 consecutive specimens (n = 1361) over a six month period. RESULTS: Skin specimens, the largest category received (n = 520), were the most problematic (51% success rate). Culture success rates were significantly lower (43%) when skin specimens (n = 140) were transported dry to the laboratory. Success rates for skin specimens also varied, depending on the origin of the specimen, from 18% for intra-uterine deaths (IUD) (n = 94) to 85% for neonatal deaths (n = 33) and 83% for live patients (n = 54). Culture of selected extra-fetal tissues from IUD, stillbirths and following elective termination of pregnancy (TOP) gave comparable success rates to those achieved for skin samples from neonatal deaths and live births. Skewed sex ratios, female > male, were identified for products of conception (POC) (n = 298) and placental biopsy specimens (n = 97). CONCLUSIONS: By appropriate selection, transport and processing of tissues, and in particular by avoiding relying solely on skin samples from IUD, stillbirths and TOP, an increase in culture success rates for solid tissue samples submitted for cytogenetic analysis could be achieved. The high risk of maternal cell contamination from POC and placental biopsy specimens was also identified in this survey. PMID:8881913

  20. Predicting Protein Aggregation during Storage in Lyophilized Solids Using Solid State Amide Hydrogen/Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS)

    PubMed Central

    2015-01-01

    Solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS) was used to assess the conformation of myoglobin (Mb) in lyophilized formulations, and the results correlated with the extent of aggregation during storage. Mb was colyophilized with sucrose (1:1 or 1:8 w/w), mannitol (1:1 w/w), or NaCl (1:1 w/w) or in the absence of excipients. Immediately after lyophilization, samples of each formulation were analyzed by ssHDX-MS and Fourier transform infrared spectroscopy (FTIR) to assess Mb conformation, and by dynamic light scattering (DLS) and size exclusion chromatography (SEC) to determine the extent of aggregation. The remaining samples were then placed on stability at 25 °C and 60% RH or 40 °C and 75% RH for up to 1 year, withdrawn at intervals, and analyzed for aggregate content by SEC and DLS. In ssHDX-MS of samples immediately after lyophilization (t = 0), Mb was less deuterated in solids containing sucrose (1:1 and 1:8 w/w) than in those containing mannitol (1:1 w/w), NaCl (1:1 w/w), or Mb alone. Deuterium uptake kinetics and peptide mass envelopes also indicated greater Mb structural perturbation in mannitol, NaCl, or Mb-alone samples at t = 0. The extent of deuterium incorporation and kinetic parameters related to rapidly and slowly exchanging amide pools (Nfast, Nslow), measured at t = 0, were highly correlated with the extent of aggregation on storage as measured by SEC. In contrast, the extent of aggregation was weakly correlated with FTIR band intensity and peak position measured at t = 0. The results support the use of ssHDX-MS as a formulation screening tool in developing lyophilized protein drug products. PMID:24816133

  1. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    USGS Publications Warehouse

    Kile, D.E.; Wershaw, R. L.; Chiou, C.T.

    1999-01-01

    Polarities of the soiL/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment sam pies were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (K(oc)) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxylamide-ester carbons. A plot of the measured partition coefficients (K(oc)) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K(oc) values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K(oc) between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K(oc) illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxyl-amide-ester carbons. A plot of the measured partition coefficients (Koc) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of Koc values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in Koc between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with Koc illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.

  2. SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration.

    PubMed

    Parro, Víctor; de Diego-Castilla, Graciela; Rodríguez-Manfredi, José A; Rivas, Luis A; Blanco-López, Yolanda; Sebastián, Eduardo; Romeral, Julio; Compostizo, Carlos; Herrero, Pedro L; García-Marín, Adolfo; Moreno-Paz, Mercedes; García-Villadangos, Miriam; Cruz-Gil, Patricia; Peinado, Verónica; Martín-Soler, Javier; Pérez-Mercader, Juan; Gómez-Elvira, Javier

    2011-01-01

    The search for unequivocal signs of life on other planetary bodies is one of the major challenges for astrobiology. The failure to detect organic molecules on the surface of Mars by measuring volatile compounds after sample heating, together with the new knowledge of martian soil chemistry, has prompted the astrobiological community to develop new methods and technologies. Based on protein microarray technology, we have designed and built a series of instruments called SOLID (for "Signs Of LIfe Detector") for automatic in situ detection and identification of substances or analytes from liquid and solid samples (soil, sediments, or powder). Here, we present the SOLID3 instrument, which is able to perform both sandwich and competitive immunoassays and consists of two separate functional units: a Sample Preparation Unit (SPU) for 10 different extractions by ultrasonication and a Sample Analysis Unit (SAU) for fluorescent immunoassays. The SAU consists of five different flow cells, with an antibody microarray in each one (2000 spots). It is also equipped with an exclusive optical package and a charge-coupled device (CCD) for fluorescent detection. We demonstrated the performance of SOLID3 in the detection of a broad range of molecular-sized compounds, which range from peptides and proteins to whole cells and spores, with sensitivities at 1-2 ppb (ng mL⁻¹) for biomolecules and 10⁴ to 10³ spores per milliliter. We report its application in the detection of acidophilic microorganisms in the Río Tinto Mars analogue and report the absence of substantial negative effects on the immunoassay in the presence of 50 mM perchlorate (20 times higher than that found at the Phoenix landing site). Our SOLID instrument concept is an excellent option with which to detect biomolecules because it avoids the high-temperature treatments that may destroy organic matter in the presence of martian oxidants.

  3. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  4. Pyrolysis kinetics and combustion of thin wood by an advanced cone caorimetry test method

    Treesearch

    Mark Dietenberger

    2012-01-01

    Pyrolysis kinetics analysis of extractives, holocellulose, and lignin in the solid redwood over the entire heating regime was possible by specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for the thin specimen with tiny thermocouples, the methane ring burner with stainless-steel mesh above...

  5. Critical aspects for the reliable headspace analysis of plants cultivated in vitro.

    PubMed

    Maes, K; Vercammen, J; Pham-Tuan, H; Sandra, P; Debergh, P C

    2001-01-01

    Various factors controlling the recoveries of volatile organic compounds in vitro headspace analysis of tomato plants (Lycopersicon esculentum Mill. 'Moneymaker'), sampled using solid phase micro-extraction, were evaluated and optimised. The variations in composition of the headspaces were determined as a function of time, and following in vitro wounding of the plant.

  6. Core-shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons.

    PubMed

    Jia, Yuqian; Zhao, Yanfang; Zhao, Mei; Wang, Zhenhua; Chen, Xiangfeng; Wang, Minglin

    2018-05-25

    A core-shell discoid shaped indium (III) sulfide@metal-organic framework (MIL-125(Ti)) nanocomposite was synthesized by a solvothermal method and explored as an adsorbent material for dispersive solid-phase extraction (d-SPE). The as-synthesized sorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N 2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The extraction performance was evaluated by the d-SPE of 16 nitro-polycyclic aromatic hydrocarbons (NPAHs) from water samples. The analysis was carried out by gas chromatography (GC) coupled with triple quadruple mass spectrometer in negative chemical ionization (NCI) mode. The selected ion monitoring (SIM) was used in the quantification of the target NPAHs. Extraction factors affecting the d-SPE, including the ionic strength, extraction temperature, and extraction time were optimized by the response surface methodology. The developed d-SPE method showed good linear correlations from 10 to 1000 ng L -1 (r > 0.99), low detection limits (2.9-83.0 ng L -1 ), satisfactory repeatability (relative standard deviation of <10%, n = 6), and acceptable recoveries (71.3%-112.2%) for water samples. The developed method was used for the food and environmental sample analysis. The results demonstrated that the method could be used for sample preparation of trace NPAHs in real samples. Copyright © 2018. Published by Elsevier B.V.

  7. Application of 1-(2-pyridylazo)-2-naphthol-modified nanoporous silica as a technique in simultaneous trace monitoring and removal of toxic heavy metals in food and water samples.

    PubMed

    Abolhasani, Jafar; Behbahani, Mohammad

    2015-01-01

    Solid-phase extraction is one the most useful and efficient techniques for sample preparation, purification, cleanup, preconcentration, and determination of heavy metals at trace levels. In this paper, functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was applied for trace determination of copper, lead, cadmium, and nickel in water and seafood samples. The experimental conditions such as pH, sample and eluent flow rate, type, concentration and volume of the eluent, breakthrough volume, and effect of coexisting ions were optimized for efficient solid-phase extraction of trace heavy metals in different water and seafood samples. The content of solutions containing the mentioned heavy metals was determined by flame atomic absorption spectrometry (FAAS), and the limits of detection were 0.3, 0.4, 0.6, and 0.9 ng mL(-1) for cadmium, copper, nickel, and lead, respectively. Recoveries and precisions were >98.0 and <4%, respectively. The adsorption capacity of the modified nanoporous silica was 178 mg g(-1) for cadmium, 110 mg g(-1) for copper, 98 mg g(-1) for nickel, and 210 mg g(-1) for lead, respectively. The functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN), and N2 adsorption surface area measurement.

  8. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies.

    PubMed

    Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S; Singh, Rajesh R; Roy-Chowdhuri, Sinchita

    2015-08-28

    Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.

  9. Analytical methodologies based on LC-MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-01-01

    In this work, two analytical methodologies based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were developed for quantification of emerging pollutants identified in sewage sludge after a previous wide-scope screening. The target list included 13 emerging contaminants (EC): thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-aminoantipyrine (4-AA), 4-acetyl aminoantipyrine (4-AAA), 4-formyl aminoantipyrine (4-FAA), venlafaxine and benzoylecgonine. The aqueous and solid phases of the sewage sludge were analyzed making use of Solid-Phase Extraction (SPE) and UltraSonic Extraction (USE) for sample treatment, respectively. The methods were validated at three concentration levels: 0.2, 2 and 20 μg L(-1) for the aqueous phase, and 50, 500 and 2000 μg kg(-1) for the solid phase of the sludge. In general, the method was satisfactorily validated, showing good recoveries (70-120%) and precision (RSD < 20%). Regarding the limit of quantification (LOQ), it was below 0.1 μg L(-1) in the aqueous phase and below 50 μg kg(-1) in the solid phase for the majority of the analytes. The method applicability was tested by analysis of samples from a wider study on degradation of emerging pollutants in sewage sludge under anaerobic digestion. The key benefits of these methodologies are: • SPE and USE are appropriate sample procedures to extract selected emerging contaminants from the aqueous phase of the sewage sludge and the solid residue. • LC-MS/MS is highly suitable for determining emerging contaminants in both sludge phases. • Up to our knowledge, the main metabolites of dipyrone had not been studied before in sewage sludge.

  10. Detection of Organic Constituents Including Chloromethylpropene in the Analyses of the ROCKNEST Drift by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; Glavin, D.; Coll, P.; Summons, R. E.; Mahaffy, P.; Archer, D.; Brunner, A.; Conrad, P.; Freissinet, C.; Martin, M.; hide

    2013-01-01

    key challenge in assessing the habitability of martian environments is the detection of organic matter - a requirement of all life as we know it. The Curiosity rover, which landed on August 6, 2012 in Gale Crater of Mars, includes the Sample Analysis at Mars (SAM) instrument suite capable of in situ analysis of gaseous organic components thermally evolved from sediment samples collected, sieved, and delivered by the MSL rover. On Sol 94, SAM received its first solid sample: scooped sediment from Rocknest that was sieved to <150 m particle size. Multiple 10-40 mg portions of the scoop #5 sample were delivered to SAM for analyses. Prior to their introduction, a blank (empty cup) analysis was performed. This blank served 1) to clean the analytical instrument of SAMinternal materials that accumulated in the gas processing system since integration into the rover, and 2) to characterize the background signatures of SAM. Both the blank and the Rocknest samples showed the presence of hydrocarbon components.

  11. Direct Sampling and Analysis from Solid Phase Extraction Cards using an Automated Liquid Extraction Surface Analysis Nanoelectrospray Mass Spectrometry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walworth, Matthew J; ElNaggar, Mariam S; Stankovich, Joseph J

    Direct liquid extraction based surface sampling, a technique previously demonstrated with continuous flow and autonomous pipette liquid microjunction surface sampling probes, has recently been implemented as the Liquid Extraction Surface Analysis (LESA) mode on the commercially available Advion NanoMate chip-based infusion nanoelectrospray ionization system. In the present paper, the LESA mode was applied to the analysis of 96-well format custom solid phase extraction (SPE) cards, with each well consisting of either a 1 or 2 mm diameter monolithic hydrophobic stationary phase. These substrate wells were conditioned, loaded with either single or multi-component aqueous mixtures, and read out using the LESAmore » mode of a TriVersa NanoMate or a Nanomate 100 coupled to an ABI/Sciex 4000QTRAPTM hybrid triple quadrupole/linear ion trap mass spectrometer and a Thermo LTQ XL linear ion trap mass spectrometer. Extraction conditions, including extraction/nanoESI solvent composition, volume, and dwell times, were optimized in the analysis of targeted compounds. Limit of detection and quantitation as well as analysis reproducibility figures of merit were measured. Calibration data was obtained for propranolol using a deuterated internal standard which demonstrated linearity and reproducibility. A 10x increase in signal and cleanup of micromolar Angiotensin II from a concentrated salt solution was demonstrated. Additionally, a multicomponent herbicide mixture at ppb concentration levels was analyzed using MS3 spectra for compound identification in the presence of isobaric interferences.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Distler, T. M.; Wong, C. M.

    Runoff-water samples for the first, third, and fourth quarters of 1975 were analyzed for pesticide residues at LLL and independently by the LFE Environmental Analysis Laboratories. For the compounds analyzed, upper limits to possible contamination were placed conservatively at the low parts-per-billion level. In addition, soil samples were also analyzed. Future work will continue to include quarterly sampling and will be broadened in scope to include quantitative analysis of a larger number of compounds. A study of recovery efficiency is planned. Because of the high backgrounds on soil samples together with the uncertainties introduced by the cleanup procedures, there ismore » little hope of evaluating the distribution of a complex mixture of pesticides among the aqueous and solid phases in a drainage sample. No further sampling of soil from the streambed is therefore contemplated.« less

  13. ACCELERATED SOLVENT EXTRACTION COMBINED WITH ...

    EPA Pesticide Factsheets

    A research project was initiated to address a recurring problem of elevated detection limits above required risk-based concentrations for the determination of semivolatile organic compounds in high moisture content solid samples. This project was initiated, in cooperation with the EPA Region 1 Laboratory, under the Regional Methods Program administered through the ORD Office of Science Policy. The aim of the project was to develop an approach for the rapid removal of water in high moisture content solids (e.g., wetland sediments) in preparation for analysis via Method 8270. Alternative methods for water removal have been investigated to enhance compound solid concentrations and improve extraction efficiency, with the use of pressure filtration providing a high-throughput alternative for removal of the majority of free water in sediments and sludges. In order to eliminate problems with phase separation during extraction of solids using Accelerated Solvent Extraction, a variation of a water-isopropanol extraction method developed at the USGS National Water Quality Laboratory in Denver, CO is being employed. The concentrations of target compounds in water-isopropanol extraction fluids are subsequently analyzed using an automated Solid Phase Extraction (SPE)-GC/MS method developed in our laboratory. The coupled approaches for dewatering, extraction, and target compound identification-quantitation provide a useful alternative to enhance sample throughput for Me

  14. A Living Periodic Table.

    ERIC Educational Resources Information Center

    Marshall, James L.

    2000-01-01

    Introduces a portable and permanent set of the elemental collection including 87 samples of elements which are, minimum, one gram or more. Demonstrates radioactivity, magnetism, fluorescence, melting solids, spectral analysis, and conduction of heat. Includes a display of minerals associated with the elements. (YDS)

  15. Simultaneous determination of V, Ni and Fe in fuel fly ash using solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A

    2018-03-01

    A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Chemical Characterization of an Envelope B/D Sample from Hanford Tank 241-AZ-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.S.

    2000-08-23

    A sample from Hanford waste tank 241-AZ-102 was received at the Savannah River Technology Center (SRTC) and chemically characterized. The sample containing supernate and a small amount of sludge solids was analyzed as-received. The filtered supernatant liquid, the total dried solids of the sample, and the washed insoluble solids obtained from filtration of the sample were analyzed. A mass balance calculation of the three fractions of the sample analyzed indicate the analytical results appear relatively self-consistent for major components of the sample. However, some inconsistency was observed between results were more than one method of determination was employed and formore » species present in low concentrations. The actinides isotopes, plutonium, americium, and curium, present analytical challenges due to the low concentration of these species and the potential for introduction of small amounts of contamination during sampling handling resulting in large uncertainties. A direct comparison to previous analyses of material from tank 241-AZ-102 showed good agreement with the filtered supernatant liquid. However, the comparison of solids data showed poor agreement. The poor agreement shown between the current results for the solids samples and previous analyses most likely results from the uncertainties associated with obtaining small solids samples from a large non-homogenized waste tank.« less

  17. Solid sorbent air sampler

    NASA Technical Reports Server (NTRS)

    Galen, T. J. (Inventor)

    1986-01-01

    A fluid sampler for collecting a plurality of discrete samples over separate time intervals is described. The sampler comprises a sample assembly having an inlet and a plurality of discreet sample tubes each of which has inlet and outlet sides. A multiport dual acting valve is provided in the sampler in order to sequentially pass air from the sample inlet into the selected sample tubes. The sample tubes extend longitudinally of the housing and are located about the outer periphery thereof so that upon removal of an enclosure cover, they are readily accessible for operation of the sampler in an analysis mode.

  18. Regression analysis and real-time water-quality monitoring to estimate constituent concentrations, loads, and yields in the Little Arkansas River, south-central Kansas, 1995-99

    USGS Publications Warehouse

    Christensen, Victoria G.; Jian, Xiaodong; Ziegler, Andrew C.

    2000-01-01

    Water from the Little Arkansas River is used as source water for artificial recharge to the Equus Beds aquifer, which provides water for the city of Wichita in south-central Kansas. To assess the quality of the source water, continuous in-stream water-quality monitors were installed at two U.S. Geological Survey stream-gaging stations to provide real-time measurement of specific conductance, pH, water temperature, dissolved oxygen, and turbidity in the Little Arkansas River. In addition, periodic water samples were collected manually and analyzed for selected constituents, including alkalinity, dissolved solids, total suspended solids, chloride, sulfate, atrazine, and fecal coliform bacteria. However, these periodic samples do not provide real-time data on which to base aquifer-recharge operational decisions to prevent degradation of the Equus Beds aquifer. Continuous and periodic monitoring enabled identification of seasonal trends in selected physical properties and chemical constituents and estimation of chemical mass transported in the Little Arkansas River. Identification of seasonal trends was especially important because high streamflows have a substantial effect on chemical loads and because concentration data from manually collected samples often were not available. Therefore, real-time water-quality monitoring of surrogates for the estimation of selected chemical constituents in streamflow can increase the accuracy of load and yield estimates and can decrease some manual data-collection activities. Regression equations, which were based on physical properties and analysis of water samples collected from 1995 through 1998 throughout 95 percent of the stream's flow duration, were developed to estimate alkalinity, dissolved solids, total suspended solids, chloride, sulfate, atrazine, and fecal coliform bacteria concentrations. Error was evaluated for the first year of data collection and each subsequent year, and a decrease in error was observed as the number of samples increased. Generally, 2 years of data (35 to 55 samples) collected throughout 90 to 95 percent of the stream's flow duration were sufficient to define the relation between a constituent and its surrogate(s). Relations and resulting equations were site specific. To test the regression equations developed from the first 3 years of data collection (1995-98), the equations were applied to the fourth year of data collection (1999) to calculate estimated constituent loads and the errors associated with these loads. Median relative percentage differences between measured constituent loads determined using the analysis of periodic, manual water samples and estimated constituent loads were less than 25 percent for alkalinity, dissolved solids, chloride, and sulfate. The percentage differences for total suspended solids, atrazine, and bacteria loads were more than 25 percent. Even for those constituents with large relative percentage differences between the measured and estimated loads, the estimation of constituent concentrations with regression analysis and real-time water-quality monitoring has numerous advantages over periodic manual sampling. The timely availability of bacteria and other constituent data may be important when considering recreation and the whole-body contact criteria established by the Kansas Department of Health and Environment for a specific water body. In addition, water suppliers would have timely information to use in adjusting water-treatment strategies; environmental changes could be assessed in time to prevent negative effects on fish or other aquatic life; and officials for the Equus Beds Ground-Water Recharge Demonstration project could use this information to prevent the possible degradation of the Equus Beds aquifer by choosing not to recharge when constituent concentrations in the source water are large. Constituent loads calculated from the regression equations may be useful for calculating total maximum daily loads (TMDL's), wh

  19. Direct analysis of environmental and biological samples for total mercury with comparison of sequential atomic absorption and fluorescence measurements from a single combustion event

    NASA Astrophysics Data System (ADS)

    Cizdziel, James V.; Tolbert, Candice; Brown, Garry

    2010-02-01

    A Direct Mercury Analyzer (DMA) based on sample combustion, concentration of mercury by amalgamation with gold, and cold vapor atomic absorption spectrometry (CVAAS) was coupled to a mercury-specific cold vapor atomic fluorescence spectrometer (CVAFS). The purpose was to evaluate combustion-AFS, a technique which is not commercially available, for low-level analysis of mercury in environmental and biological samples. The experimental setup allowed for comparison of dual measurements of mercury (AAS followed by AFS) for a single combustion event. The AFS instrument control program was modified to properly time capture of mercury from the DMA, avoiding deleterious combustion products from reaching its gold traps. Calibration was carried out using both aqueous solutions and solid reference materials. The absolute detection limits for mercury were 0.002 ng for AFS and 0.016 ng for AAS. Recoveries for reference materials ranged from 89% to 111%, and the precision was generally found to be <10% relative standard deviation (RSD). The two methods produced similar results for samples of hair, finger nails, coal, soil, leaves and food stuffs. However, for samples with mercury near the AAS detection limit (e.g., filter paper spotted with whole blood and segments of tree rings) the signal was still quantifiable with AFS, demonstrating the lower detection limit and greater sensitivity of AFS. This study shows that combustion-AFS is feasible for the direct analysis of low levels of mercury in solid samples that would otherwise require time-consuming and contamination-prone digestion.

  20. Covalent triazine framework-1 as adsorbent for inline solid phase extraction-high performance liquid chromatographic analysis of trace nitroimidazoles in porcine liver and environmental waters.

    PubMed

    Zhong, Cheng; Chen, Beibei; He, Man; Hu, Bin

    2017-02-03

    In this study, covalent triazine framework-1 (CTF-1) was adopted as solid phase extraction (SPE) sorbents, and a method of SPE inline coupled with high performance liquid chromatography-ultraviolet (HPLC-UV) detection was developed for trace analysis of three nitroimidazolaes (including metronidazole, ronidazole and dimetridazole) in porcine liver and environmental water samples. CTF-1 has rich π-electron and N containing triazine, thus can form π-π interaction and intermolecular hydrogen bond with three target polar nitroimidazoles, resulting in high extraction efficiency (87%-98%). Besides, CTF-1 has large specific area, which benefits rapid mass transfer and low column pressure, leading to fast adsorption/desorption dynamics. Several parameters affecting inline SPE including pH, sample flow rate, sample volume, desorption reagents, elution flow rate, elution volume, and ionic strength were investigated. Under the optimal experimental conditions, the limits of detection (S/N=3) were found to be in the range of 0.11-0.13μg/L. The enrichment factors (EFs) ranged from 52 to 59 fold (theoretical EF was 60-fold). The relative standard deviations were in the range of 4.3-9.4% (n=7, c=1μg/L), and the linear range was 0.5-500μg/L for three target analytes. The sample throughput is 7/h. The proposed method was successfully applied to the analysis of nitroimidazoles in porcine liver and environmental water samples with good recoveries for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. An extended laser flash technique for thermal diffusivity measurement of high-temperature materials

    NASA Technical Reports Server (NTRS)

    Shen, F.; Khodadadi, J. M.

    1993-01-01

    Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the thermal diffusivity of high-temperature solid samples of pure Nickel and Inconel 718 superalloys are presented. Preliminary measurements showing surface temperature histories are discussed.

  2. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    PubMed

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage could be enhanced significantly with the use of organic solvent as a device rinse after breath sampling to collect the non-aqueous fraction as opposed to neat breath condensate sample. Here, we show the detected ranges of compounds in each case and provide a practical guide for methodology selection for optimal detection of specific compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. System and process for dissolution of solids

    DOEpatents

    Liezers, Martin; Farmer, III, Orville T.

    2017-10-10

    A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.

  4. Application of Acoustic and Optic Methods for Estimating Suspended-Solids Concentrations in the St. Lucie River Estuary, Florida

    USGS Publications Warehouse

    Patino, Eduardo; Byrne, Michael J.

    2004-01-01

    Acoustic and optic methods were applied to estimate suspended-solids concentrations in the St. Lucie River Estuary, southeastern Florida. Acoustic Doppler velocity meters were installed at the North Fork, Speedy Point, and Steele Point sites within the estuary. These sites provide varying flow, salinity, water-quality, and channel cross-sectional characteristics. The monitoring site at Steele Point was not used in the analyses because repeated instrument relocations (due to bridge construction) prevented a sufficient number of samples from being collected at the various locations. Acoustic and optic instruments were installed to collect water velocity, acoustic backscatter strength (ABS), and turbidity data that were used to assess the feasibility of estimating suspended-solids concentrations in the estuary. Other data collected at the monitoring sites include tidal stage, salinity, temperature, and periodic discharge measurements. Regression analyses were used to determine the relations of suspended-solids concentration to ABS and suspended-solids concentration to turbidity at the North Fork and Speedy Point sites. For samples used in regression analyses, measured suspended-solids concentrations at the North Fork and Speedy Point sites ranged from 3 to 37 milligrams per liter, and organic content ranged from 50 to 83 percent. Corresponding salinity for these samples ranged from 0.12 to 22.7 parts per thousand, and corresponding temperature ranged from 19.4 to 31.8 ?C. Relations determined using this technique are site specific and only describe suspended-solids concentrations at locations where data were collected. The suspended-solids concentration to ABS relation resulted in correlation coefficients of 0.78 and 0.63 at the North Fork and Speedy Point sites, respectively. The suspended-solids concentration to turbidity relation resulted in correlation coefficients of 0.73 and 0.89 at the North Fork and Speedy Point sites, respectively. The adequacy of the empirical equations seems to be limited by the number and distribution of suspended-solids samples collected throughout the expected concentration range at the North Fork and Speedy Point sites. Additionally, the ABS relations for both sites seem to overestimate at the low end and underestimate at the high end of the concentration range. Based on the sensitivity analysis, temperature had a greater effect than salinity on estimated suspended-solids concentrations. Temperature also appeared to affect ABS data, perhaps by changing the absorptive and reflective characteristics of the suspended material. Salinity and temperature had no observed effects on the turbidity relation at the North Fork and Speedy Point sites. Estimates of suspended-solids concentrations using ABS data were less 'erratic' than estimates using turbidity data. Combining ABS and turbidity data into one equation did not improve the accuracy of results, and therefore, was not considered.

  5. Chapter 3. Determination of semivolatile organic compounds and polycyclic aromatic hydrocarbons in solids by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Burkhardt, Mark R.; Burbank, Teresa L.; Olson, Mary C.; Iverson, Jana L.; Schroeder, Michael P.

    2006-01-01

    A method for the determination of 38 polycyclic aromatic hydrocarbons (PAHs) and semivolatile organic compounds in solid samples is described. Samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from the solid sample twice at 13,800 kilopascals; first at 120 degrees Celsius using a water/isopropyl alcohol mixture (50:50, volume-to-volume ratio), and then the sample is extracted at 200 degrees Celsius using a water/isopropyl alcohol mixture (80:20, volume-to-volume ratio). The compounds are isolated using disposable solid-phase extraction (SPE) cartridges containing divinylbenzene-vinylpyrrolidone copolymer resin. The cartridges are dried with nitrogen gas, and then sorbed compounds are eluted from the SPE material using a dichloromethane/diethyl ether mixture (80:20, volume-to-volume ratio) and passed through a sodium sulfate/Florisil SPE cartridge to remove residual water and to further clean up the extract. The concentrated extract is solvent exchanged into ethyl acetate and the solvent volume reduced to 0.5 milliliter. Internal standard compounds are added prior to analysis by capillary-column gas chromatography/mass spectrometry. Comparisons of PAH data for 28 sediment samples extracted by Soxhlet and the accelerated solvent extraction (ASE) method described in this report produced similar results. Extraction of PAH compounds from standard reference material using this method also compared favorably with Soxhlet extraction. The recoveries of PAHs less than molecular weight 202 (pyrene or fluoranthene) are higher by up to 20 percent using this ASE method, whereas the recoveries of PAHs greater than or equal to molecular weight 202 are equivalent. This ASE method of sample extraction of solids has advantages over conventional Soxhlet extraction by increasing automation of the extraction process, reducing extraction time, and using less solvent. Extract cleanup also is greatly simplified because SPE replaces commonly used gel permeation chromatography. The performance of the method (as expressed by mean recoveries and mean precision) was determined using Ottawa sand, a commercially available topsoil, and an environmental stream sediment, fortified at 1.5 and 15 micrograms per compound. Recoveries of PAH and semivolatile compounds in Ottawa sand samples fortified at 1.5 micrograms averaged 88 percent ? 9.4 percent relative standard deviation, and calculated initial method detection limits per compound averaged 14 micrograms per kilogram, assuming a 25-gram sample size. The recovery for 1,2,4-trichlorobenzene is less than 60 percent; thus, the concentration of this compound will always be reported as estimated with the E remark code. The analysis of 25 alkylated PAH homolog groups also can be determined with this method with extra data analysis and review, but because of the lack of authentic reference standard compounds, these results are considered to be semiquantitative. The PAH homolog groups are quantitated using the response factor of a parent PAH method compound, if available. Precision data for the alkylated PAH homologs detected in a marine sediment standard reference material (SRM 1944) also are presented to document and demonstrate method capability.

  6. Synthesis and characterization of Zn-Mg ferrite

    NASA Astrophysics Data System (ADS)

    Singh, Shailndra; Barbar, S. K.; Ram, Sahi

    2018-05-01

    The Zn-Mg ferrite sample of general formula Zn0.5Mg0.5Fe2O4 have been prepared by standard solid state reaction technique using high purity oxides. X-ray diffraction analysis shows the formation of a zinc-magnesium ferrite cubic phase at room temperature with space group Fd3m. FTIR spectra show two significant absorption bands first at 665.15 cm-1 corresponding to tetrahedral (A) and second band at 434 cm-1 corresponding to octahedral (B) sites of the spinel. Morphology of the sample determined by the SEM measurement and EDS analysis has confirmed the composition of atoms in the sample.

  7. Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15

    USGS Publications Warehouse

    Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.

    2017-02-23

    The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual peak flow data through water year 2015, using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows. Kendall’s tau nonparametric test was used to determine the statistical significance of trends in the annual peak flows, with none of the 13 streamgages exhibiting significant trends.A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples.Seasonality and long-term trends were identified for the period water years 2001–15 for 10 constituents—total nitrogen, total nitrate plus nitrite, total phosphorus, dissolved phosphorus, total organic carbon, total suspended solids, suspended-sediment concentration, total lead, total zinc, and total dissolved solids. Seasonal patterns were present in most watersheds for all constituents except total dissolved solids, and the watersheds had fairly similar patterns of higher concentrations in the summer and lower concentrations in the winter. A linear long-term trend analysis of residual concentrations from the flow-only load estimation model (without time-trend terms) identified significant trends in 67 of the 130 constituent-watershed combinations. Seventy percent of the significant trends were negative. Total organic carbon and total dissolved solids had predominantly positive trends. Total phosphorus, total suspended solids, suspended-sediment concentration, total lead, and total zinc had only negative trends. The other three constituents exhibited fewer trends, both positive and negative.Streamwater loads were estimated annually for the 13-year period water years 2003–15 for the same 10 constituents in the trend analysis. Loads were estimated using a regression-model-based approach developed by the USGS for the Gwinnett County LTTM program that accommodates the use of storm-event composited samples. Concentrations were modeled as a function of discharge, base flow, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion.Although the amount of annual runoff was the primary factor in variations in annual loads, climatic conditions (classified as dry, average, or wet) affected annual loads beyond what was attributed to climatic-related variations in annual runoff. Significant negative trends in loads were estimated for the combined area of the watersheds for all constituents except dissolved phosphorus, total organic carbon, and total dissolved solids. The trend analysis indicated that total suspended solids and suspended-sediment concentration loads in the study area were decreasing by 57,000 and 87,000 pounds per day per year, respectively.Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (as either total suspended solids or suspended-sediment concentrations), along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc), and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appeared to be associated with watersheds that had a low percentage of high-density development.

  8. Comparison of laser ablation and dried solution aerosol as sampling systems in inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2004-12-01

    This paper describes a study designed to determine the possibility of using a dried aerosol solution for calibration in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The relative sensitivities of tested materials mobilized by laser ablation and by aqueous nebulization were established, and the experimentally determined relative sensitivity factors (RSFs) were used in conjunction with aqueous calibration for the analysis of solid steel samples. To such a purpose a set of CRM carbon steel samples (SS-451/1 to SS-460/1) were sampled into an ICP-MS instrument by solution nebulization using a microconcentric nebulizer with membrane desolvating (D-MCN) and by laser ablation (LA). Both systems were applied with the same ICP-MS operating parameters and the analyte signals were compared. The RSF (desolvated aerosol response/ablated solid response) values were close to 1 for the analytes Cr, Ni, Co, V, and W, about 1.3 for Mo, and 1.7 for As, P, and Mn. Complementary tests were carried out using CRM SS-455/1 as a solid standard for one-point calibration, applying LAMTRACE software for data reduction and quantification. The analytical results are in good agreement with the certified values in all cases, showing that the applicability of dried aerosol solutions is a good alternative calibration system for laser ablation sampling.

  9. Characterization of the Key Aroma Compounds in Proso Millet Wine Using Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry.

    PubMed

    Liu, Jingke; Zhao, Wei; Li, Shaohui; Zhang, Aixia; Zhang, Yuzong; Liu, Songyan

    2018-02-20

    The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm Carboxen (CAR)/PDMS, and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers), and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV). Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1), and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50), having a high OAV. Principal component analysis (PCA) showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME) fibers.

  10. Uncertainties in stormwater runoff data collection from a small urban catchment, Southeast China.

    PubMed

    Huang, Jinliang; Tu, Zhenshun; Du, Pengfei; Lin, Jie; Li, Qingsheng

    2010-01-01

    Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.

  11. Interactions between acidified dispersions of milk proteins and dextran or dextran sulfate.

    PubMed

    Pachekrepapol, U; Horne, D S; Lucey, J A

    2014-09-01

    Polysaccharides are often used to stabilize cultured milk products, although the nature of these interactions is not entirely clear. The objective of this study was to investigate phase behavior of milk protein dispersions with added dextran (DX; molecular weight = 2 × 10(6) Da) or dextran sulfate (DS; molecular weight = 1.4 × 10(6) Da) as examples of uncharged and charged polysaccharides, respectively. Reconstituted skim milk (5-20% milk solids, wt/wt) was acidified to pH 4.4, 4.6, 4.8, or 4.9 at approximately 0°C (to inhibit gelation) by addition of 3 N HCl. Dextran or DS was added to acidified milk samples to give concentrations of 0 to 2% (wt/wt) and 0 to 1% (wt/wt) polysaccharide, respectively. Milk samples were observed for possible phase separation after storage at 0°C for 1 and 24h. Possible gelation of these systems was determined by using dynamic oscillatory rheology. The type of interactions between caseins and DX or DS was probed by determining the total carbohydrate analysis of supernatants from phase-separated samples. At 5.0 to 7.5% milk solids, phase separation of milk samples occurred after 24h even without DX or DS addition, due to destabilization of caseins in these acidic conditions, and a stabilizing effect was observed when 0.7 or 1.0% DS was added. At higher milk solids content, phase separation was not observed without DX or DS addition. Similar results were observed at all pH levels. Gelation occurred in samples containing high milk solids (≥10%) with the addition of 1.0 to 2.0% DX or 0.4 to 1.0% DS. Based on carbohydrate analysis of supernatants, we believe that DX interacted with milk proteins through a type of depletion flocculation mechanism, whereas DS appeared to interact via electrostatic-type interactions with milk proteins. This study helps to explain how uncharged and charged stabilizers influence the texture of cultured dairy products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Measurement of process-dependent material properties of pharmaceutical solids by nanoindentation.

    PubMed

    Liao, Xiangmin; Wiedmann, Timothy Scott

    2005-01-01

    The purpose of this work was to evaluate nanoindentation as a means to characterize the material properties of pharmaceutical solids. X-ray diffraction of potassium chloride and acetaminophen showed that samples prepared by cooling a melt to a crystalline sample as opposed to slow recrystallization had the same crystal structure. With analysis of the force-displacement curves, the KCl quenched samples had a hardness that was 10 times higher than the recrystallized KCl, while acetaminophen quenched samples were 25% harder than the recrystallized samples. The elastic moduli of the quenched samples were also much greater than that observed for the recrystallized samples. Although the elasticity was independent of load, the hardness increased with load for acetaminophen. With each sample, the flow at constant load increased with applied load. Etching patterns obtained by atomic force microscopy showed that the KCl quenched sample had a higher dislocation density than the recrystallized sample, although there was no evident difference in the acetaminophen samples. Overall, the differences in the observed sample properties may be related to the dislocation density. Thus, nanoindentation has been shown to be a sensitive method for determining a processed-induced change in the hardness, creep, and elasticity of KCl and acetaminophen. (c) 2004 Wiley-Liss, Inc.

  13. Structural and Optical properties of poly-crystalline BaTiO3 and SrTiO3 prepared via solid state route

    NASA Astrophysics Data System (ADS)

    Jarabana, Kanaka M.; Mishra, Ashutosh; Bisen, Supriya

    2016-10-01

    Polycrystalline BaTiO3 (BTO) and SrTiO3 (STO) were synthesized by solid state route method and properties of made polycrystalline were characterized by X-Ray diffraction (XRD), Raman Spectroscopy & FTIR Spectroscopy. XRD analysis shows that samples are crystalline in nature. In Raman Spectroscopy measurement, the experiment has been done with the help of JOBIN-YOVN HORIBA LABRAM HR800 single monochromator, which is coupled with a “peltier cooled” charge coupled device (CCD). Raman Spectroscopy at low temperature measurement shows the phase transition above & below the curie temperature in samples. Fourier transform Infrared spectroscopy was used to determine the Ti-O bond length position.

  14. Semi-automated 96-well solid-phase extraction and gas chromatography-negative chemical ionization tandem mass spectrometry for the trace analysis of fluprostenol in rat plasma.

    PubMed

    Gauw, R D; Stoffolano, P J; Kuhlenbeck, D L; Patel, V S; Garver, S M; Baker, T R; Wehmeyer, K R

    2000-07-21

    Semi-automated 96-well plate solid-phase extraction (SPE) was used for sample preparation of fluprostenol, a prostaglandin analog, in rat plasma prior to detection by gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS-MS). A liquid handling system was utilized for all aspects of sample handling prior to SPE including transferring of samples into a 96-well format, preparation of standards as well as addition of internal standard to standards, quality control samples and study samples. SPE was performed in a 96-well plate format using octadecylsilane packing and the effluent from the SPE was dried in a custom-made 96-well apparatus. The sample residue was derivatized sequentially with pentafluorobenzylbromide followed by N-methyl-N-trimethylsilyltrifluoroacetamide. The derivatized sample was then analyzed using GC-NCI-MS-MS. The dynamic range for the method was from 7 to 5800 pg/ml with a 0.1-ml plasma sample. The methodology was evaluated over a 4-day period and demonstrated an accuracy of 90-106% with a precision of 2.4-12.9%.

  15. Rock property measurements and analysis of selected igneous, sedimentary, and metamorphic rocks from worldwide localities

    USGS Publications Warehouse

    Johnson, Gordon R.

    1983-01-01

    Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.

  16. Analysis of 2H-Evaporator Acid Cleaning Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Diprete, D.; Edwards, T.

    The 2H-Evaporator acid cleaning solution samples were analyzed by SRNL to determine a composition for the scale present in the evaporator before recent acid cleaning. Composite samples were formed from the solution samples from the two acid cleaning cycles. The solution composition was converted to a weight percent scale solids basis under an assumed chemical composition. The scale composition produced from the acid cleaning solution samples indicates a concentration of 6.85 wt% uranium. An upper bound, onesided 95% confidence interval on the weight percent uranium value may be given as 6.9 wt% + 1.645 × 0.596 wt% = 7.9 wt%.more » The comparison of the composition from the current acid cleaning solutions with the composition of recent scale samples along with the thermodynamic modeling results provides reasonable assurance that the sample results provide a good representation of the overall scale composition in the evaporator prior to acid cleaning. The small amount of scale solids dissolved in the 1.5 M nitric acid during the evaporator cleaning process likely produced only a small amount of precipitation based on modeling results and the visual appearance of the samples.« less

  17. Direct synthesis of nitrogen-doped graphene on platinum wire as a new fiber coating method for the solid-phase microextraction of BXes in water samples: Comparison of headspace and cold-fiber headspace modes.

    PubMed

    Memarian, Elham; Hosseiny Davarani, Saied Saeed; Nojavan, Saeed; Movahed, Siyavash Kazemi

    2016-09-07

    In this work, a new solid-phase microextraction fiber was prepared based on nitrogen-doped graphene (N-doped G). Moreover, a new strategy was proposed to solve problems dealt in direct coating of N-doped G. For this purpose, first, Graphene oxide (GO) was coated on Pt wire by electrophoretic deposition method. Then, chemical reduction of coated GO to N-doped G was accomplished by hydrazine and NH3. The prepared fiber showed good mechanical and thermal stabilities. The obtained fiber was used in two different modes (conventional headspace solid-phase microextraction and cold-fiber headspace solid-phase microextraction (CF-HS-SPME)). Both modes were optimized and applied for the extraction of benzene and xylenes from different aqueous samples. All effective parameters including extraction time, salt content, stirring rate, and desorption time were optimized. The optimized CF-HS-SPME combined with GC-FID showed good limit of detections (LODs) (0.3-2.3 μg/L), limit of quantifications (LOQs) (1.0-7.0 μg/L) and linear ranges (1.0-5000 μg/L). The developed method was applied for the analysis of benzene and xylenes in rainwater and some wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development of an analytical method for crystalline content determination in amorphous solid dispersions produced by hot-melt extrusion using transmission Raman spectroscopy: A feasibility study.

    PubMed

    Netchacovitch, L; Dumont, E; Cailletaud, J; Thiry, J; De Bleye, C; Sacré, P-Y; Boiret, M; Evrard, B; Hubert, Ph; Ziemons, E

    2017-09-15

    The development of a quantitative method determining the crystalline percentage in an amorphous solid dispersion is of great interest in the pharmaceutical field. Indeed, the crystalline Active Pharmaceutical Ingredient transformation into its amorphous state is increasingly used as it enhances the solubility and bioavailability of Biopharmaceutical Classification System class II drugs. One way to produce amorphous solid dispersions is the Hot-Melt Extrusion (HME) process. This study reported the development and the comparison of the analytical performances of two techniques, based on backscattering and transmission Raman spectroscopy, determining the crystalline remaining content in amorphous solid dispersions produced by HME. Principal Component Analysis (PCA) and Partial Least Squares (PLS) regression were performed on preprocessed data and tended towards the same conclusions: for the backscattering Raman results, the use of the DuoScan™ mode improved the PCA and PLS results, due to a larger analyzed sampling volume. For the transmission Raman results, the determination of low crystalline percentages was possible and the best regression model was obtained using this technique. Indeed, the latter acquired spectra through the whole sample volume, in contrast with the previous surface analyses performed using the backscattering mode. This study consequently highlighted the importance of the analyzed sampling volume. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea.

    PubMed

    Kang, Seongmin; Kim, Seungjin; Lee, Jeongwoo; Yun, Hyunki; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In Korea, the amount of greenhouse gases released due to waste materials was 14,800,000 t CO2eq in 2012, which increased from 5,000,000 t CO2eq in 2010. This included the amount released due to incineration, which has gradually increased since 2010. Incineration was found to be the biggest contributor to greenhouse gases, with 7,400,000 t CO2eq released in 2012. Therefore, with regards to the trading of greenhouse gases emissions initiated in 2015 and the writing of the national inventory report, it is important to increase the reliability of the measurements related to the incineration of waste materials. This research explored methods for estimating the biomass fraction at Korean MSW incinerator facilities and compared the biomass fractions obtained with the different biomass fraction estimation methods. The biomass fraction was estimated by the method using default values of fossil carbon fraction suggested by IPCC, the method using the solid waste composition, and the method using incinerator flue gas. The highest biomass fractions in Korean municipal solid waste incinerator facilities were estimated by the IPCC Default method, followed by the MSW analysis method and the Flue gas analysis method. Therefore, the difference in the biomass fraction estimate was the greatest between the IPCC Default and the Flue gas analysis methods. The difference between the MSW analysis and the flue gas analysis methods was smaller than the difference with IPCC Default method. This suggested that the use of the IPCC default method cannot reflect the characteristics of Korean waste incinerator facilities and Korean MSW. Incineration is one of most effective methods for disposal of municipal solid waste (MSW). This paper investigates the applicability of using biomass content to estimate the amount of CO2 released, and compares the biomass contents determined by different methods in order to establish a method for estimating biomass in the MSW incinerator facilities of Korea. After analyzing the biomass contents of the collected solid waste samples and the flue gas samples, the results were compared with the Intergovernmental Panel on Climate Change (IPCC) method, and it seems that to calculate the biomass fraction it is better to use the flue gas analysis method than the IPCC method. It is valuable to design and operate a real new incineration power plant, especially for the estimation of greenhouse gas emissions.

  20. Dehydrated Carbon Coupled with Laser-Induced Breakdown Spectrometry (LIBS) for the Determination of Heavy Metals in Solutions.

    PubMed

    Niu, Guanghui; Shi, Qi; Xu, Mingjun; Lai, Hongjun; Lin, Qingyu; Liu, Kunping; Duan, Yixiang

    2015-10-01

    In this article, a novel and alternative method of laser-induced breakdown spectroscopy (LIBS) analysis for liquid sample is proposed, which involves the removal of metal ions from a liquid to a solid substrate using a cost-efficient adsorbent, dehydrated carbon, obtained using a dehydration reaction. Using this new technique, researchers can detect trace metal ions in solutions qualitatively and quantitatively, and the drawbacks of performing liquid analysis using LIBS can be avoided because the analysis is performed on a solid surface. To achieve better performance using this technique, we considered parameters potentially influencing both adsorption performance and LIBS analysis. The calibration curves were evaluated, and the limits of detection obtained for Cu(2+), Pb(2+), and Cr(3+) were 0.77, 0.065, and 0.46 mg/L, respectively, which are better than those in the previous studies. In addition, compared to other absorbents, the adsorbent used in this technique is much cheaper in cost, easier to obtain, and has fewer or no other elements other than C, H, and O that could result in spectral interference during analysis. We also used the recommended method to analyze spiked samples, obtaining satisfactory results. Thus, this new technique is helpful and promising for use in wastewater analysis and management.

  1. Speciation analysis of organotin compounds in human urine by headspace solid-phase micro-extraction and gas chromatography with pulsed flame photometric detection.

    PubMed

    Valenzuela, Aníbal; Lespes, Gaëtane; Quiroz, Waldo; Aguilar, Luis F; Bravo, Manuel A

    2014-07-01

    A new headspace solid-phase micro-extraction (HS-SPME) method followed by gas chromatography with pulsed flame photometric detection (GC-PFPD) analysis has been developed for the simultaneous determination of 11 organotin compounds, including methyl-, butyl-, phenyl- and octyltin derivates, in human urine. The methodology has been validated by the analysis of urine samples fortified with all analytes at different concentration levels, and recovery rates above 87% and relative precisions between 2% and 7% were obtained. Additionally, an experimental-design approach has been used to model the storage stability of organotin compounds in human urine, demonstrating that organotins are highly degraded in this medium, although their stability is satisfactory during the first 4 days of storage at 4 °C and pH=4. Finally, this methodology was applied to urine samples collected from harbor workers exposed to antifouling paints; methyl- and butyltins were detected, confirming human exposure in this type of work environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. New environmentally friendly MSPD solid support based on golden mussel shell: characterization and application for extraction of organic contaminants from mussel tissue.

    PubMed

    Rombaldi, Caroline; de Oliveira Arias, Jean Lucas; Hertzog, Gabriel Ianzer; Caldas, Sergiane Souza; Vieira, João P; Primel, Ednei Gilberto

    2015-06-01

    The use of golden mussel shells as a solid support in vortex-assisted matrix solid-phase dispersion (MSPD) was evaluated for the first time for extraction of residues of 11 pesticides and nine pharmaceutical and personal care products from mussel tissue samples. After they had been washed, dried, and milled, the mussel shells were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The MSPD procedure with analysis by liquid chromatography-tandem mass spectrometry allowed the determination of target analytes at trace concentrations (nanograms per gram), with mean recoveries ranging from 61 to 107 % and relative standard deviations lower than 18 %. The optimized method consisted of dispersion of 0.5 g of mussel tissue, 0.5 g of NaSO4, and 0.5 g of golden mussel shell for 5 min, and subsequent extraction with 5 mL of ethyl acetate. The matrix effect was evaluated, and a low effect was found for all compounds. The results showed that mussel shell is an effective material and a less expensive material than materials that have traditionally been used, i.e., it may be used in the MSPD dispersion step during the extraction of pesticides and pharmaceutical and personal care products from golden mussel tissues. Graphical Abstract Vortex-assited matrix solid-phase dispersion for extraction of 11 pesticides and 9 PPCPs care products from mussel tissue samples.

  3. Clinicopathologic and prognostic significance of C-reactive protein/albumin ratio in patients with solid tumors: an updated systemic review and meta-analysis.

    PubMed

    Wu, Jiayuan; Tan, Wenkai; Chen, Lin; Huang, Zhe; Mai, Shao

    2018-03-02

    C-reactive protein/albumin ratio (CAR) was originally used as a novel inflammation-based prognostic score in predicting outcomes in septic patients. Recently, more and more studies have reported the prognostic value of pretreatment CAR in solid tumors. However, the results remain controversial rather than conclusive. We conducted a meta-analysis based on 24 studies with 10203 patients to explore the relationship between CAR and survival outcomes in patients with solid tumors. The correlation between CAR and clinicopathological parameters was also assessed. Hazard ratio (HR) or odds ratio (OR) with its 95% confidence interval (CI) was applied to be the effect size estimate. The overall results showed that elevated CAR was associated with shorter overall survival (OS) (including 23 studies and 10067 patients) and poorer disease-free survival (DFS) (including 6 studies and 2904 patients). Significant associations between high CAR level and poor OS were also found in the subgroup analyses of study region, cancer type, primary treatment, clinical stage, cut-off selection, sample size, and cut-off value. Moreover, subgroup analyses demonstrated that study region, primary treatment, clinical stage, sample size, and cut-off value did not alter the prognostic value of CAR for DFS. Furthermore, elevated CAR was correlated with certain phenotypes of tumor aggressiveness, such as poor histological grade, serious clinical stage, advanced tumor depth, positive lymph node metastasis, and positive distant metastasis. Together, our meta-analysis suggests that elevated level of serum CAR predicts worse survival and unfavorable clinical characteristics in cancer patients, and CAR may serve as an effective prognostic factor for solid tumors.

  4. Intact and Top-Down Characterization of Biomolecules and Direct Analysis Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Coupled to FT-ICR Mass Spectrometry

    PubMed Central

    Sampson, Jason S.; Murray, Kermit K.; Muddiman, David C.

    2013-01-01

    We report the implementation of an infrared laser onto our previously reported matrix-assisted laser desorption electrospray ionization (MALDESI) source with ESI post-ionization yielding multiply charged peptides and proteins. Infrared (IR)-MALDESI is demonstrated for atmospheric pressure desorption and ionization of biological molecules ranging in molecular weight from 1.2 to 17 kDa. High resolving power, high mass accuracy single-acquisition Fourier transform ion cyclotron resonance (FT-ICR) mass spectra were generated from liquid-and solid-state peptide and protein samples by desorption with an infrared laser (2.94 µm) followed by ESI post-ionization. Intact and top-down analysis of equine myoglobin (17 kDa) desorbed from the solid state with ESI post-ionization demonstrates the sequencing capabilities using IR-MALDESI coupled to FT-ICR mass spectrometry. Carbohydrates and lipids were detected through direct analysis of milk and egg yolk using both UV- and IR-MALDESI with minimal sample preparation. Three of the four classes of biological macromolecules (proteins, carbohydrates, and lipids) have been ionized and detected using MALDESI with minimal sample preparation. Sequencing of O-linked glycans, cleaved from mucin using reductive β-elimination chemistry, is also demonstrated. PMID:19185512

  5. Crystallization Kinetics of an Amorphous Pharmaceutical Compound Using Fluorescence-Lifetime-Imaging Microscopy.

    PubMed

    Rautaniemi, Kaisa; Vuorimaa-Laukkanen, Elina; Strachan, Clare J; Laaksonen, Timo

    2018-05-07

    Pharmaceutical scientists are increasingly interested in amorphous drug formulations especially because of their higher dissolution rates. Consequently, the thorough characterization and analysis of these formulations are becoming more and more important for the pharmaceutical industry. Here, fluorescence-lifetime-imaging microscopy (FLIM) was used to monitor the crystallization of an amorphous pharmaceutical compound, indomethacin. Initially, we identified different solid indomethacin forms, amorphous and γ- and α-crystalline, on the basis of their time-resolved fluorescence. All of the studied indomethacin forms showed biexponential decays with characteristic fluorescence lifetimes and amplitudes. Using this information, the crystallization of amorphous indomethacin upon storage in 60 °C was monitored for 10 days with FLIM. The progress of crystallization was detected as lifetime changes both in the FLIM images and in the fluorescence-decay curves extracted from the images. The fluorescence-lifetime amplitudes were used for quantitative analysis of the crystallization process. We also demonstrated that the fluorescence-lifetime distribution of the sample changed during crystallization, and when the sample was not moved between measuring times, the lifetime distribution could also be used for the analysis of the reaction kinetics. Our results clearly show that FLIM is a sensitive and nondestructive method for monitoring solid-state transformations on the surfaces of fluorescent samples.

  6. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    PubMed

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  7. Analysis of benzylpenicillin in milk using MALDI-TOF mass spectrometry with top-down synthesized TiO2 nanowires as the solid matrix.

    PubMed

    Kim, Jo-Il; Park, Jong-Min; Noh, Joo-Yoon; Hwang, Seong-Ju; Kang, Min-Jung; Pyun, Jae-Chul

    2016-01-01

    In this work, the wet-corrosion process for the synthesis of titanium oxide (TiO2) nanowires in the anatase phase was optimized as the solid matrix in MALDI-TOF mass spectrometry, and the solid matrix of the TiO2 nanowires was applied to the detection of antibiotics in a daily milk sample. The influence of the alkali concentration and the heat treatment temperature on the crystal structure of the TiO2 nanowires was investigated. The ionization activity of the TiO2 nanowires was estimated for each synthetic condition using amino acids as model analytes with low molecular weights. For the detection of antibiotics in milk, benzylpenicillin was spiked in daily milk samples, and MALDI-TOF mass spectrometry with the TiO2 nanowires was demonstrated to detect the benzylpenicillin at the cut-off concentration of the EU directive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography-tandem mass spectrometry.

    PubMed

    Xie, Wen; Han, Chao; Qian, Yan; Ding, Huiying; Chen, Xiaomei; Xi, Junyang

    2011-07-15

    This work reports a new sensitive multi-residue liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detection, confirmation and quantification of six neonicotinoid pesticides (dinotefuran, thiamethoxam, clothiandin, imidacloprid, acetamiprid and thiacloprid) in agricultural samples (chestnut, shallot, ginger and tea). Activated carbon and HLB solid-phase extraction cartridges were used for cleaning up the extracts. Analysis is performed by LC-MS/MS operated in the multiple reaction monitoring (MRM) mode, acquiring two specific precursor-product ion transitions per target compound. Quantification was carried by the internal standard method with D(4)-labeled imidacloprid. The method showed excellent linearity (R(2)≥0.9991) and precision (relative standard deviation, RSD≤8.6%) for all compounds. Limits of quantification (LOQs) were 0.01 mg kg(-1) for chestnut, shallot, ginger sample and 0.02 mg kg(-1) for tea sample. The average recoveries, measured at three concentrations levels (0.01 mg kg(-1), 0.02 mg kg(-1) and 0.1 mg kg(-1) for chestnut, shallot, ginger sample, 0.02 mg kg(-1), 0.04 mg kg(-1) and 0.2 mg kg(-1) for tea sample), were in the range 82.1-108.5%. The method was satisfactorily validated for the analysis of 150 agricultural samples (chestnut, shallot, ginger and tea). Imidacloprid and acetamiprid were detected at concentration levels ranging from 0.05 to 3.6 mg kg(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Solid phase microextraction applied to the analysis of organophosphorus insecticides in fruits.

    PubMed

    Fytianos, K; Raikos, N; Theodoridis, G; Velinova, Z; Tsoukali, H

    2006-12-01

    Trace amounts of organophosphorus pesticides (OPs) were determined in various fruits by headspace solid phase microextraction (HS-SPME) and gas chromatography-nitrogen phosphorous detection (GC-NPD). Sampling from the headspace enhanced method selectivity, whereas at the same time improved fiber life time and method sensitivity. Diazinon, parathion, methyl parathion, malathion and fenithrothion were determined in various fruits: more than 150 samples of 21 types of fruits were studied. SPME-GC-NPD provided a useful and very efficient analytical tool: method linearity ranged from 1.2 to 700 ng/ml. Limits of detection (LODs) and quantitation (LOQs) ranged from 0.03 to 3 ng/ml and 0.12 to 10 ng/ml respectively, values well below the residue limits set by the EU. Less than 2% of the samples were found positive containing amounts higher than the EU limits. The effect of fruit peeling and washing was also investigated.

  10. Solid-phase extraction of heavy metal ions on bucky tubes disc in natural water and herbal plant samples.

    PubMed

    Soylak, Mustafa; Unsal, Yunus Emre

    2011-10-01

    A preconcentration-separation procedure has been established based on solid-phase extraction of Fe(III) and Pb(II) on bucky tubes (BTs) disc. Fe(III) and Pb(II) ions were quantitatively recovered at pH 6. The influences of the analytical parameters like sample volume, flow rates on the recoveries of analytes on BT disc were investigated. The effects of co-existing ions on the recoveries were also studied. The detection limits for iron and lead were found 1.6 and 4.9 μg L⁻¹, respectively. The validation of the presented method was checked by the analysis of TMDA-51.3 fortified water certified reference material. The presented procedure was successfully applied to the separation-preconcentration and determination of iron and lead content of some natural water and herbal plant samples from Kayseri, Turkey.

  11. Polypyrrole-magnetite dispersive micro-solid-phase extraction combined with ultraviolet-visible spectrophotometry for the determination of rhodamine 6G and crystal violet in textile wastewater.

    PubMed

    Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S

    2017-11-01

    Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2  > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations < 10%. The method was successfully applied to the analysis of dyes in textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sulfonated poly(styrene-divinylbenzene) modified with amines and the application for pipette-tip solid-phase extraction of carbendazim in apples.

    PubMed

    Ma, Yuxin; Liu, Lingling; Tang, Weiyang; Zhu, Tao

    2017-10-01

    Sulfonated poly(styrene-divinylbenzene) modified with five kinds of amine functional groups was applied to the determination of carbendazim in apple samples with a pipette-tip solid-phase extraction method. The structures of the polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Five different modifications of the solid-phase extraction sorbent based on sulfonated poly(styrene-divinylbenzene) were tested under static and pipette-tip solid-phase extraction conditions. The polymer modified with p-methoxyaniline showed the best recognition capacity and adsorption amount for carbendazim. Under the optimum conditions, 3.00 mg of the adsorbent, 1.00 mL of ethyl acetate as washing solvent, and 1.00 mL of ammonia/acetonitrile (5:95, v/v) as elution solvent were used in the pretreatment procedure of apple samples. The calibration graphs of carbendazim in methanol were linear over 5.00-200.00 μg/mL, and the limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of carbendazim were in the range of 91.31-98.13% with associated intraday relative standard deviations of 0.76-2.13% and interday relative standard deviations of 1.10-1.85%. Sulfonated poly(styrene-divinylbenzene) modified with p-methoxyaniline showed satisfactory results (recovery: 97.96%) and potential for the rapid purification of carbendazim in apple samples combined with the pipette-tip solid-phase extraction. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Determination of trace metals in drinking water using solid-phase extraction disks and X-ray fluorescence spectrometry.

    PubMed

    Hou, Xiandeng; Peters, Heather L; Yang, Zheng; Wagner, Karl A; Batchelor, James D; Daniel, Meredith M; Jones, Bradley T

    2003-03-01

    A convenient method is described for monitoring Cd, Ni, Cu, and Pb at trace levels in drinking water samples. These metals are preconcentrated on a chelating solid-phase extraction disk and then determined by X-ray fluorescence spectrometry. The method tolerates a wide pH range (pH 6-14) and a large amount of alkaline and alkaline earth elements. The preconcentration factor is well over 1600, assuming a 1 L water sample volume. The limits of detection for Cd, Ni, Cu, and Pb are 3.8, 0.6, 0.4, and 0.3 ng/mL, respectively. These are well below the federal maximum contaminant level values, which are 5, 100, 1300, and 15 ng/mL, respectively. The proposed method has many advantages including ease of operation, multielement capability, nondestructiveness, high sensitivity, and relative cost efficiency. The solid-phase extraction step can be conducted in the field and then the disks can be mailed to a laboratory for the analysis, eliminating the cost of transporting large volumes of water samples. Furthermore, the color of the used extraction disk provides an initial estimate of the degree of contamination for some transition metals (for example, Ni and Cu). Thus, the overall cost for analysis of metals in drinking water can be minimized by implementing the method, and small water supply companies with limited budgets will be better able to comply with the Safe Drinking Water Act.

  14. Preparation of solid-phase microextraction fibers by in-mold coating strategy for derivatization analysis of 24-epibrassinolide in pollen samples.

    PubMed

    Pan, Jialiang; Hu, Yuling; Liang, Tingan; Li, Gongke

    2012-11-02

    A novel and simple in-mold coating strategy was proposed for the preparation of uniform solid-phase microextraction (SPME) coatings. Such a strategy is based on the direct synthesis of the polymer coating on the surface of a solid fiber using a glass capillary as the mold. The capillary was removed and the polymer with well-controlled thickness could be coated on the silica fiber reproductively. Following the strategy, a new poly(acrylamide-co-ethylene glycol dimethacrylate) (poly(AM-co-EGDMA)) coating was prepared for the preconcentration of 24-epibrassinolide (24-epiBL) from plant matrix. The coating had the enrichment factor of 32 folds, and the extraction efficiency per unit thickness was 5 times higher than that of the commercial polydimethylsiloxane/divinylbenzene (PDMS/DVB) coating. A novel method based on SPME coupled with derivatization and large volume injection-high performance liquid chromatography (LVI-HPLC) was developed for the analysis of 24-epiBL. The linear range was 0.500-20.0 μg/L with the detection limit of 0.13 μg/L. The amounts of endogenous 24-epiBL in rape and sunflower breaking-wall pollens samples were determined with satisfactory recovery (77.8-104%) and reproducibility (3.9-7.9%). The SPME-DE/LVI-HPLC method is rapid, reliable, convenient and applicable for complicated plant samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Results of Characterization and Retrieval Testing on Tank 241-C-110 Heel Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaway, William S.

    2013-09-30

    Nine samples of heel solids from tank 241-C-110 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, the sample solids were primarily white to light-brown with minor dark-colored inclusions. The maximum dimension of the majority of the solids was <2 mm; however, numerous pieces of aggregate, microcrystalline, and crystalline solids with maximum dimensions ranging from 5-70 mm were observed. In general, the larger pieces of aggregate solids were strongly cemented. Natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}°19H{sub 2}O] was the dominant solid phase identified in the heel solids. Results of chemical analyses suggested that 85-87 wt%more » of the heel solids were the fluoridephosphate double salt. The average bulk density measured for the heel solids was 1.689 g/mL; the reference density of natrophosphate is 1.71 g/mL. Dissolution tests on composite samples indicate that 94 to 97 wt% of the tank 241-C-110 heel solids can be retrieved by dissolution in water. Dissolution and recovery of the soluble components in 1 kg (0.59 L) of the heel solids required the addition of ≈9.5 kg (9.5 L) of water at 15 °C and ≈4.4 kg (4.45 L) of water at 45 °C. Calculations performed using the Environmental Simulation Program indicate that dissolution of the ≈0.86 kg of natrophosphate in each kilogram of the tank 241-C-110 heel solids would require ≈9.45 kg of water at 15 °C and ≈4.25 kg of water at 45 °C. The slightly larger quantities of water determined to be required to retrieve the soluble components in 1 kg of the heel solids are consistent with that required for the dissolution of solids composed mainly of natrophosphate with a major portion of the balance consisting of highly soluble sodium salts. At least 98% of the structural water, soluble phosphate, sodium, fluoride, nitrate, carbonate, nitrite, sulfate, oxalate, and chloride in the test composites was dissolved and recovered in the dissolution tests. Most of the {sup 99}Tc and {sup 137}Cs present in the initial heel solids composites was removed in the water dissolution tests. The estimated activities/weights of {sup 129}I, {sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U in the dry residual solids were <25% of the weights/activities in the initial composite solids. Gibbsite and nordstrandite [both Al(OH){sub 3}] were the major solid phases identified in the solids remaining after completion of the dissolution tests. Chemical analysis indicated that the residual solids may have contained up to 62 wt% Al(OH){sub 3}. Significant quantities of unidentified phosphate-, iron-, bismuth-, silicon-, and strontium- bearing species were also present in the residual solids. The reference density of gibbsite (and nordstrandite) is 2.42 g/mL. The measured density of the residual solids, 2.65 g/mL, would be a reasonable value for solids containing gibbsite as the major component with minor quantities of other, higher density solids. Sieve analysis indicated that 22.2 wt% of the residual solids were discrete particles >710 μm in size, and 77.8 wt% were particulates <710 μm in size. Light-scattering measurements suggested that nearly all of the <710-μm particulates with diameters >12 μm were weakly bound aggregates of particles with diameters <2 μm. The <710-μm residual solids settled very slowly when dispersed in reagent water. The physical appearance of a suspension containing ≈0.4 vol% of the solids in pure water changed very little over a period of 46.5 hours. It should be noted that the distribution of particle sizes in the residual solids and the observed settling behavior were both strongly influenced by the procedures followed in the dissolution tests.« less

  16. Solvent-modified solid-phase microextraction for the determination of diazepam in human plasma samples by capillary gas chromatography.

    PubMed

    Krogh, M; Grefslie, H; Rasmussen, K E

    1997-02-21

    This paper describes microextraction and gas chromatographic analysis of diazepam from human plasma. The method was based on immobilisation of 1.5 microliters of 1-octanol on a polyacrylate-coated fiber designed for solid-phase microextraction. The solvent-modified fibre was used to extract diazepam from the samples. The plasma sample was pre-treated to release diazepam from the protein binding. The fibre was inserted into the modified plasma sample, adjusted to pH 5.5 an internal standard was added and the mixture was carefully stirred for 4 min. The fibre with the immobilised solvent and the enriched analytes was injected into the capillary gas chromatograph. The solvent and the extracted analytes were evaporated at 300 degrees C in the split-splitless injection port of the gas chromatograph, separated on a methylsilicon capillary column and detected with a nitrogen-phosphorus detector. The method was shown to be reproducible with a detection limit of 0.10 nmol/ml in human plasma.

  17. Estimation of optimal biomass fraction measuring cycle formunicipal solid waste incineration facilities in Korea.

    PubMed

    Kang, Seongmin; Cha, Jae Hyung; Hong, Yoon-Jung; Lee, Daekyeom; Kim, Ki-Hyun; Jeon, Eui-Chan

    2018-01-01

    This study estimates the optimum sampling cycle using a statistical method for biomass fraction. More than ten samples were collected from each of the three municipal solid waste (MSW) facilities between June 2013 and March 2015 and the biomass fraction was analyzed. The analysis data were grouped into monthly, quarterly, semi-annual, and annual intervals and the optimum sampling cycle for the detection of the biomass fraction was estimated. Biomass fraction data did not show a normal distribution. Therefore, the non-parametric Kruskal-Wallis test was applied to compare the average values for each sample group. The Kruskal-Wallis test results showed that the average monthly, quarterly, semi-annual, and annual values for all three MSW incineration facilities were equal. Therefore, the biomass fraction at the MSW incineration facilities should be calculated on a yearly cycle which is the longest period of the temporal cycles tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modeling the energy content of combustible ship-scrapping waste at Alang-Sosiya, India, using multiple regression analysis.

    PubMed

    Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Sravan Kumar, V G; Jha, B; Ghosh, P K

    2005-01-01

    Alang-Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10 x 10(6)(+/-7.82 x 10(5)) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol pieces (polyurethane foam material), sponge, oiled rope, cotton waste, rubber, etc. In this study multiple regression analysis was used to develop predictive models for energy content of combustible ship-scrapping solid wastes. The scope of work comprised qualitative and quantitative estimation of solid waste samples and performing a sequential selection procedure for isolating variables. Three regression models were developed to correlate the energy content (net calorific values (LHV)) with variables derived from material composition, proximate and ultimate analyses. The performance of these models for this particular waste complies well with the equations developed by other researchers (Dulong, Steuer, Scheurer-Kestner and Bento's) for estimating energy content of municipal solid waste.

  19. Genetic Analysis of Norovirus Strains that Caused Gastroenteritis Outbreaks Among River Rafters in the Grand Canyon, Arizona.

    PubMed

    Kitajima, Masaaki; Iker, Brandon C; Magill-Collins, Anne; Gaither, Marlene; Stoehr, James D; Gerba, Charles P

    2017-06-01

    Toilet solid waste samples collected from five outbreaks among rafters in the Grand Canyon were subjected to sequencing analysis of norovirus partial capsid gene. The results revealed that a GI.3 strain was associated with one outbreak, whereas the other outbreaks were caused by GII.5 whose sequences shared >98.9% homology.

  20. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring

    USGS Publications Warehouse

    Zaugg, Steven D.; Sandstrom, Mark W.; Smith, Steven G.; Fehlberg, Kevin M.

    1995-01-01

    A method for the isolation of 41 pesticides and pesticide metabolites in natural-water samples using C-18 solid-phase extraction and determination by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction columns containing octadecyl-bonded porous silica to extract the pesticides. The columns are dried using carbon dioxide or nitrogen gas, and adsorbed pesticides are removed from the columns by elution with 3.0 milliliters of hexane-isopropanol (3:1). Extracted pesticides are determined by capillary- column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 4 micrograms per liter (g/L) for most pesticides, with the exception of widely used corn herbicides--atrazine, alachlor, cyanazine, and metolachlor--which have upper concentration limits of 20 g/L. Single- operator method detection limits in reagent-water samples range from 0.001 to 0.018 g/L. Average short-term single-operator precision in reagent- water samples is 7 percent at the 0.1- and 1.0-g/L levels and 8 percent at the 0.01-g/L level. Mean recoveries in reagent-water samples are 73 percent at the 0.1- and 1.0-g/L levels and 83 percent at the 0.01-g/L level. The estimated holding time for pesticides after extraction on the solid-phase extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time.

  1. Analytical strategies for organic food packaging contaminants.

    PubMed

    Sanchis, Yovana; Yusà, Vicent; Coscollà, Clara

    2017-03-24

    In this review, we present current approaches in the analysis of food-packaging contaminants. Gas and liquid chromatography coupled to mass spectrometry detection have been widely used in the analysis of some relevant families of these compounds such as primary aromatic amines, bisphenol A, bisphenol A diglycidyl ether and related compounds, UV-ink photoinitiators, perfluorinated compounds, phthalates and non-intentionally added substances. Main applications for sample treatment and different types of food-contact material migration studies have been also discussed. Pressurized Liquid Extraction, Solid-Phase Microextraction, Focused Ultrasound Solid-Liquid Extraction and Quechers have been mainly used in the extraction of food contact material (FCM) contaminants, due to the trend of minimising solvent consumption, automatization of sample preparation and integration of extraction and clean-up steps. Recent advances in analytical methodologies have allowed unequivocal identification and confirmation of these contaminants using Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS) through mass accuracy and isotopic pattern applying. LC-HRMS has been used in the target analysis of primary aromatic amines in different plastic materials, but few studies have been carried out applying this technique in post-target and non-target analysis of FCM contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Analysis of air-, moisture- and solvent-sensitive chemical compounds by mass spectrometry using an inert atmospheric pressure solids analysis probe.

    PubMed

    Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M

    2018-02-01

    A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.

  3. Quality of water on the Prairie Band Potawatomi Reservation, northeastern Kansas, May 2001 through August 2003

    USGS Publications Warehouse

    Ross Schmidt, Heather C.

    2004-01-01

    Water-quality samples were collected from 20 surface-water sites and 11 ground-water sites on the Prairie Band Potawatomi Reservation in northeastern Kansas in an effort to describe existing water-quality conditions on the reservation and to compare water-quality conditions to results from previous reports published as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Water is a valuable resource to the Prairie Band Potawatomi Nation as tribal members use the streams draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, to fulfill subsistence hunting and fishing needs and as the tribe develops an economic base on the reservation. Samples were collected once at 20 surface-water monitoring sites during June 2001, and quarterly samples were collected at 5 of the 20 monitoring sites from May 2001 through August 2003. Ground-water-quality samples were collected once from seven wells and twice from four wells during April through May 2003 and in August 2003. Surface-water-quality samples collected from May through August 2001 were analyzed for physical properties, nutrients, pesticides, fecal indicator bacteria, and total suspended solids. In November 2001, an additional analysis for dissolved solids, major ions, trace elements, and suspended-sediment concentration was added for surface-water samples. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in a sample from one monitoring well located near a construction and demolition landfill on the reservation. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Forty percent of the 65 surface-water samples analyzed for total phosphorus exceeded the aquatic-life goal of 0.1 mg/L (milligrams per liter) established by the U.S. Environmental Protection Agency (USEPA). Concentrations of dissolved solids and sodium occasionally exceeded USEPA Secondary Drinking-Water Regulations and Drinking-Water Advisory Levels, respectively. One of the 20 samples analyzed for atrazine concentrations exceeded the Maximum Contaminant Level (MCL) of 3.0 ?g/L (micrograms per liter) as an annual average established for drinking water by USEPA. A triazine herbicide screen was used on 63 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. Nitrite plus nitrate concentrations in two ground-water samples from one monitoring well exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in two samples from one monitoring well also exceeded the proposed MCL of 10 ?g/L established by the USEPA for drinking water. Concentrations of dissolved solids and sulfate in some ground-water samples exceeded their respective Secondary Drinking-Water Regulations, and concentrations exceeded the taste threshold of the USEPA?s Drinking-Water Advisory Level for sodium. Consequently, in the event that ground water on the reservation is to be used as a drinking-water source, additional treatment may be necessary to remove excess dissolved solids, sulfate, and sodium.

  4. Chlorotrimethylsilane, a reagent for the direct quantitative analysis of fats and oils present in vegetable and meat samples.

    PubMed

    Eras, Jordi; Ferran, Javier; Perpiña, Belén; Canela, Ramon

    2004-08-20

    Acylglycerides present in oil seeds and meat can be transformed into volatile fatty esters using chlorotrimethylsilane (CTMS) and 1-pentanol as reagents. The volatile esters can then be analysed by GC. The method is quantitative and involves only minor sample manipulation. It often permits major recoveries of the total saponifiable lipids present in solid samples. A 40 min reaction time is enough to ensure the total conversion of saponifiable lipids to the corresponding FAPEs.

  5. Classification of Modern and Old Río Tinto Sedimentary Deposits Through the Biomolecular Record Using a Life Marker Biochip: Implications for Detecting Life on Mars

    NASA Astrophysics Data System (ADS)

    Parro, Victor; Fernández-Remolar, David; Rodríguez-Manfredi, José A.; Cruz-Gil, Patricia; Rivas, Luis A.; Ruiz-Bermejo, Marta; Moreno-Paz, Mercedes; García-Villadangos, Miriam; Gómez-Ortiz, David; Blanco-López, Yolanda; Menor-Salván, César; Prieto-Ballesteros, Olga; Gómez-Elvira, Javier

    2011-01-01

    The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar diagenetic maturity. Our LDCHIP200 and SOLID-like instruments may be excellent tools for the search for molecular biomarkers on Mars or other planets.

  6. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS.

    PubMed

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-01-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Analysis of the compressive behaviour of the three-dimensional printed porous titanium for dental implants using a modified cellular solid model.

    PubMed

    Gagg, Graham; Ghassemieh, Elaheh; Wiria, Florencia E

    2013-09-01

    A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).

  8. Towards sustainable solid waste management: Investigating household participation in solid waste management

    NASA Astrophysics Data System (ADS)

    Akil, A. M.; Ho, C. S.

    2014-02-01

    The aim of this paper is to assess the readiness of Iskandar Malaysia community to accept solid waste recycling. The research is based on quantitative research design and descriptive survey of the households at Iskandar Malaysia using the stratified sampling method for a sample of 670. The survey was conducted using a structured questionnaire that covered two basic principles; a) recycling knowledge; b) willingness to recycle. Data was analysed using the SPSS to carry out statistical analysis. The finding shows households' knowledge towards the solid waste recycling is good and positive. However, finding also shows that respondents have incomprehensive knowledge on the method of disposal as more than 50% of householders only recycle papers and textiles. Most of the households agreed to participate in the activities of the separation of waste if the facility will be made available at their kerbside. Therefore, it is recommended that government should provide more in-depth knowledge by intensifying the awareness of the households in the recycling programs. In term of urban planning and management, the location of recycling facility can be analysing by using GIS. This is important to understand the catchment area of each neighbourhood or precinct to ensure effective household participation.

  9. Application of pseudo-template molecularly imprinted polymers by atom transfer radical polymerization to the solid-phase extraction of pyrethroids.

    PubMed

    Zhang, Ming; He, Juan; Shen, Yanzheng; He, Weiye; Li, Yuanyuan; Zhao, Dongxin; Zhang, Shusheng

    2018-02-01

    A polymer-based adsorption medium with molecular recognition ability for homologs of pyrethroids was prepared by atom transfer radical polymer iration using a fragment imprinting technique. Phenyl ether-biphenyl eutectic was utilized as a pseudo-template molecule, and the adsorption medium prepared was evaluated by solid-phase extraction and gas chromatography. Selectivity of the medium for pyrethroids was evaluated using it as solid phase extraction packing by Gas Chromatography. The results demonstrated that the absorption amount of bifenthrin, fenpropathrin, permethrin, cypermethrin, fenvalerate, Dursban and pentachloronitrobenzene for molecularly imprinted polymers were 2.32, 2.12, 2.18, 2.20, 2.30, 1.30 and 1.40mgg -1 , respectively, while the non-imprinted polymers were 1.20, 1.13, 1.25, 1.05, 1.20, 1.23 and 1.32mgg -1 , respectively. The rebinding test based on the molecularly imprinted solid phase extraction column technique showed the recoveries of honey sample spiked with seven insecticides within 88.5-106.2%, with relative standard deviations of 2.38-5.63%. Finally, the method was successfully applied to the analysis of pyrethroids in a honey sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-10-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.

  11. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  12. The investigation of solid slag obtained by neutralization of sewage sludge.

    PubMed

    Kavaliauskas, Zydrunas; Valincius, Vitas; Stravinskas, Giedrius; Milieska, Mindaugas; Striugas, Nerijus

    2015-11-01

    The purpose of this research is to investigate the feasibility of utilizing the slag collected after gasification of organic fuel combined with sewage sludge. The residue left after gasification process is likely usable as raw material for production of supercondensers. The sewage sludge neutralization system consists of a dosing system (fuel tank), gasifier, plasma reactor, electrostatic filter, and heat exchangers. For the gasification process, dried solid sewage is supplied in proportion of 70% to biomass 30% by weight. The slag is collected in a specially designed chamber beneath the gasifier. A scanning electron microscope (SEM) was used to evaluate surface morphology of the samples. Elemental analysis of the sewage sludge slag was performed using the energy-dispersive spectroscopy (EDS) method, which showed different solid-state elements contained in the porous structure of the solid phase: carbon 29%, aluminum 26%, potassium 20%, chlorine 1%, and others. The specific surface area of the sewage sludge slag is 6.15 m(2)/g as the BET analysis shows. In order to use the slag as a secondary raw material, detailed analysis of the structure and properties is necessary for a decision on whether the slag left after gasification of sewage sludge is suitable for any further usages. Initial results indicate that the slag may be used for production of electrodes for supercapacitors. Every year thousands of tons of sewage sludge are formed in Lithuania. Sewage sludge consists of organic and inorganic compounds. Partial combustion, plasma decomposition, and other methods are used to neutralize the sewage sludge. The incineration of sewage sludge results in generation of solid-phase slag. In this paper the material structure and composition of a solid slag (formed during neutralization of sewage sludge) is considered. Also, the impact the ambient temperature on structure and composition of solid slag is analyzed.

  13. Water quality parameters controlling the photodegradation of two herbicides in surface waters of the Columbia Basin, Washington.

    PubMed

    Furman, Olha S; Yu, Miao; Teel, Amy L; Watts, Richard J

    2013-11-01

    The water quality parameters nitrate-nitrogen, dissolved organic carbon, and suspended solids were correlated with photodegradation rates of the herbicides atrazine and 2,4-D in samples collected from four sites in the Columbia River Basin, Washington, USA. Surface water samples were collected in May, July, and October 2010 and analyzed for the water quality parameters. Photolysis rates for the two herbicides in the surface water samples were then evaluated under a xenon arc lamp. Photolysis rates of atrazine and 2,4-D were similar with rate constants averaging 0.025 h(-1) for atrazine and 0.039 h(-1) for 2,4-D. Based on multiple regression analysis, nitrate-nitrogen was the primary predictor of photolysis for both atrazine and 2,4-D, with dissolved organic carbon also a predictor for some sites. However, at sites where suspended solids concentrations were elevated, photolysis rates of the two herbicides were controlled by the suspended solids concentration. The results of this research provide a basis for evaluating and predicting herbicide photolysis rates in shallow surface waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Multivariate study of parameters in the determination of pesticide residues in apple by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry using experimental factorial design.

    PubMed

    Abdulra'uf, Lukman Bola; Tan, Guan Huat

    2013-12-15

    Solid-phase microextraction (SPME) is a solvent-less sample preparation method which combines sample preparation, isolation, concentration and enrichment into one step. In this study, multivariate strategy was used to determine the significance of the factors affecting the solid phase microextraction of pesticide residues (fenobucarb, diazinon, chlorothalonil and chlorpyrifos) using a randomised factorial design. The interactions and effects of temperature, time and salt addition on the efficiency of the extraction of the pesticide residues were evaluated using 2(3) factorial designs. The analytes were extracted with 100 μm PDMS fibres according to the factorial design matrix and desorbed into a gas chromatography-mass spectrometry detector. The developed method was applied for the analysis of apple samples and the limits of detection were between 0.01 and 0.2 μg kg(-)(1), which were lower than the MRLs for apples. The relative standard deviations (RSD) were between 0.1% and 13.37% with average recovery of 80-105%. The linearity ranges from 0.5-50 μg kg(-)(1) with correlation coefficient greater than 0.99. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Age at Introduction to Solid Foods and Child Obesity at 6 Years.

    PubMed

    Barrera, Chloe M; Perrine, Cria G; Li, Ruowei; Scanlon, Kelley S

    2016-06-01

    Epidemiological evidence suggests that timing of introduction of solid foods may be associated with subsequent obesity, and the association may vary by whether an infant is breastfed or formula-fed. We included 1181 infants who participated in the Infant Feeding Practices Study II (IFPS II) and the Year 6 Follow Up (Y6FU) study. Data from IFPS II were used to calculate the primary exposure and timing of solid food introduction (<4, 4-<6, and ≥6 months), and data from Y6FU were used to calculate the primary outcome and obesity at 6 years of age (BMI ≥95th percentile). We used multivariable logistic regression to assess the association between timing of the introduction of solids and obesity at 6 years and test whether this association was modified by breastfeeding duration (breastfed for 4 months vs. not). Prevalence of obesity in our sample was 12.0%. The odds of obesity was higher among infants introduced to solids <4 months compared to those introduced at 4-<6 months (odds ratio [OR] = 1.66; 95% CI, 1.15, 2.40) in unadjusted analysis; however, this relationship was no longer significant after adjustment for covariates (OR = 1.18; 95% CI, 0.79, 1.77). Introduction of solids ≥6 months was not associated with obesity. We found no interaction between breastfeeding duration and early solid food introduction and subsequent obesity. Timing of introduction of solid foods was not associated with child obesity at 6 years in this sample. Given the inconsistency in findings with other studies, further studies in larger populations may be needed.

  16. The active and passive sampling of benzene, toluene, ethyl benzene and xylenes compounds using the inside needle capillary adsorption trap device.

    PubMed

    Shojania, S; Oleschuk, R D; McComb, M E; Gesser, H D; Chow, A

    1999-08-23

    A new and simple method of solventless extraction of volatile organic compounds (VOCs) from air is presented. The sampling device has an adsorbing carbon coating on the interior surface of a hollow needle, and is called the inside needle capillary adsorption trap (INCAT). This paper describes a study of the reproducibility in the preparation and sampling of the INCAT device. In addition, this paper examines the effects of sample volume in active sampling and exposure time in passive sampling on the analyte adsorption. Analysis was achieved by sampling the air from an environmental chamber doped with benzene, toluene, ethyl benzene and xylenes (BTEX) compounds. Initial rates of adsorption were found to vary among the different compounds, but ranged from 0.0099 to 0.016 nmol h(-1) for passive sampling and from 2.2 to 10 nmol h(-1) for active sampling. Analysis was done by thermal desorption of the adsorbed compounds directly into a gas chromatograph injection port. Quantification of the analysis was done by comparison to actively sampled activated carbon solid phase extraction (SPE) measurements.

  17. Using Single Drop Microextraction for Headspace Analysis with Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Riccio, Daniel; Wood, Derrick C.; Miller, James M.

    2008-07-01

    Headspace (HS) gas chromatography (GC) is commonly used to analyze samples that contain non-volatiles. In 1996, a new sampling technique called single drop microextraction, SDME, was introduced, and in 2001 it was applied to HS analysis. It is a simple technique that uses equipment normally found in the undergraduate laboratory, making it ideal for instructional use, especially to illustrate HS analysis or as an alternative to solid-phase microextraction (SPME) to which it is very similar. The basic principles and practice of HS-GC using SDME are described, including a complete review of the literature. Some possible experiments are suggested using water and N -methylpyrrolidone (NMP) as solvents.

  18. Optimization of the β-Elimination/Michael Addition Chemistry on Reversed-Phase Supports for Mass Spectrometry Analysis of O-Linked Protein Modifications

    PubMed Central

    Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue

    2013-01-01

    We previously adapted the β-elimination/Michael addition chemistry to solid-phase derivatization on reversed-phase supports, and demonstrated the utility of this reaction format to prepare phosphoseryl peptides in unfractionated protein digests for mass spectrometric identification and facile phosphorylation-site determination. Here, we have expanded the use of this technique to β-N-acetylglucosamine peptides, modified at serine/threonine, phosphothreonyl peptides, and phosphoseryl/phosphothreonyl peptides, followed in sequence by proline. The consecutive β-elimination with Michael addition was adapted to optimize the solid-phase reaction conditions for throughput and completeness of derivatization. The analyte remained intact during derivatization and was recovered efficiently from the silica-based, reversed-phase support with minimal sample loss. The general use of the solid-phase approach for enzymatic dephosphorylation was demonstrated with phosphoseryl and phosphothreonyl peptides and was used as an orthogonal method to confirm the identity of phosphopeptides in proteolytic mixtures. The solid-phase approach proved highly suitable to prepare substrates from low-level amounts of protein digests for phosphorylation-site determination by chemical-targeted proteolysis. The solid-phase protocol provides for a simple, robust, and efficient tool to prepare samples for phosphopeptide identification in MALDI mass maps of unfractionated protein digests, using standard equipment available in most biological laboratories. The use of a solid-phase analytical platform is expected to be readily expanded to prepare digest from O-glycosylated- and O-sulfonated proteins for mass spectrometry-based structural characterization. PMID:23997661

  19. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples.

    PubMed

    Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao

    2015-01-01

    An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Application of a novel cold activated carbon fiber-solid phase microextraction for analysis of organochlorine pesticides in soil.

    PubMed

    Chai, Xiaolan; Jia, Jinping; Sun, Tonghua; Wang, Yalin; Liao, Liyan

    2007-08-01

    A novel and simple analytical procedure using cold activated carbon fiber-solid phase microextraction (CACF-SPME) was applied to determine organochlorine pesticides (OCs) in soil samples. The pesticides in this study consist of alpha -, beta -, gamma -, and delta -hexachlorocyclohexane (HCH). By heating the sample while cooling the fiber, the developed method not only provides better performance in terms of sensitivity, linearity and recovery but also offers shorter adsorption procedure than that of traditional headspace-solid phase microextraction (HS-SPME). The experimental conditions such as the amount of water, adsorption time and adsorption temperature were optimized. Matrix effects were investigated with different types of soils. We concluded that using the standard addition method was required for quantification purposes. The limits of detection obtained using the proposed method range from 0.01 to 0.05 ng/g, and the recoveries for CACF-SPME are in the range of 80.01% to 89.68% with relative standard deviation (RSDs) better than 8.60%. The proposed method was further applied to determine OCs in real agricultural soil. The results are in good agreement with those obtained using traditional ultrasonic extraction. The research demonstrates the suitability of the CACF-SPME for the analysis of OCs in soil.

Top